Solar geoengineering can alleviate climate change pressures on crop yields
1.Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734 (2018).ADS
PubMed
PubMed Central
Google Scholar
2.MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Phil. Trans. R. Soc. A 376, 20160454 (2018).ADS
Google Scholar
3.Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climatic Change 77, 211–220 (2006).ADS
CAS
Google Scholar
4.Ahlm, L. et al. Marine cloud brightening—as effective without clouds. Atmos. Chem. Phys. 17, 13071–13087 (2017).ADS
CAS
Google Scholar
5.Muri, H. et al. Climate response to aerosol geoengineering: a multimethod comparison. J. Clim. 31, 6319–6340 (2018).ADS
Google Scholar
6.Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).ADS
Google Scholar
7.Robock, A., Oman, L. & Stenchikov, G. L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. Atmos. 113, D16101 (2008).ADS
Google Scholar
8.Tjiputra, J. F., Grini, A. & Lee, H. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. J. Geophys. Res. Biogeosci. 121, 2015JG003045 (2016).
Google Scholar
9.Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).CAS
PubMed
PubMed Central
Google Scholar
10.Xia, L. et al. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 119, 8695–8711 (2014).ADS
Google Scholar
11.Zhan, P., Zhu, W., Zhang, T., Cui, X. & Li, N. Impacts of sulfate geoengineering on rice yield in china: results from a multimodel ensemble. Earth Future 7, 395–410 (2019).ADS
Google Scholar
12.Parkes, B., Challinor, A. & Nicklin, K. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. Environ. Res. Lett. 10, 084003 (2015).13.Yang, H. et al. Potential negative consequences of geoengineering on crop production: a study of Indian groundnut. Geophys. Res. Lett. 43, 11786–11795 (2016).ADS
PubMed
PubMed Central
Google Scholar
14.Pongratz, J., Lobell, D. B., Cao, L. & Caldeira, K. Crop yields in a geoengineered climate. Nat. Clim. Change 2, 101–105 (2012).ADS
CAS
Google Scholar
15.Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560, 480–483 (2018).ADS
CAS
Google Scholar
16.Tjiputra, J. F. et al. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 6, 301–325 (2013).ADS
Google Scholar
17.MacMartin, D. G. & Kravitz, B. Mission-driven research for stratospheric aerosol geoengineering. Proc. Natl Acad. Sci. USA 116, 1089–1094 (2019).ADS
CAS
Google Scholar
18.Lombardozzi, D. L. et al. Simulating agriculture in the community land model version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).ADS
Google Scholar
19.Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Google Scholar
20.O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS
Google Scholar
21.IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).22.FAOSTAT (FAO, 2019); http://www.fao.org/faostat/en/?#data/QC23.Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).ADS
CAS
Google Scholar
24.Hsiao, J., Swann, A. L. S. & Kim, S.-H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).ADS
Google Scholar
25.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. https://doi.org/10.1111/nph.16485 (2020).26.Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).
Google Scholar
27.Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).ADS
CAS
Google Scholar
28.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).ADS
CAS
Google Scholar
29.Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review. New Phytol. 165, 351–372 (2004).
Google Scholar
30.Bishop, K. A., Leakey, A. D. B. & Ainsworth, E. A. How seasonal temperature or water inputs affect the relative response of C3 crops to elevated CO2: a global analysis of open top chamber and free air CO2 enrichment studies. Food Energy Secur. 3, 33–45 (2014).
Google Scholar
31.Ainsworth, E. A. et al. A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8, 695–709 (2002).ADS
Google Scholar
32.Leakey, A. D. B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B 276, 2333–2343 (2009).CAS
Google Scholar
33.Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).CAS
Google Scholar
34.National Research Council Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies, 2015); https://doi.org/10.17226/1898835.Lutsko, N. J., Seeley, J. T. & Keith, D. W. Estimating impacts and trade-offs in solar geoengineering scenarios with a moist energy balance model. Geophys. Res. Lett. 47, e2020GL087290 (2020).ADS
Google Scholar
36.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS
Google Scholar
37.Tilmes, S. et al. The hydrological impact of geoengineering in the geoengineering model intercomparison project (GeoMIP). J. Geophys. Res. Atmos. 118, 11,036–11,058 (2013).
Google Scholar
38.Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS
Google Scholar
39.Fisher, R. A. et al. Parametric controls on vegetation responses to biogeochemical forcing in the CLM5. J. Adv. Model. Earth Syst. 11, 2879–2895 (2019).ADS
Google Scholar
40.Bonan, G. B. et al. Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Glob. Biogeochem. Cycles 33, 1310–1326 (2019).ADS
CAS
Google Scholar
41.Osborne, T., Rose, G. & Wheeler, T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. For. Meteorol. 170, 183–194 (2013).ADS
Google Scholar
42.Peng, B. et al. Improving maize growth processes in the community land model: implementation and evaluation. Agric. For. Meteorol. 250–251, 64–89 (2018).ADS
Google Scholar
43.Buzan, J. R. & Huber, M. Moist heat stress on a hotter earth. Annu. Rev. Earth Planet. Sci. 48, 623–655 (2020).ADS
CAS
Google Scholar
44.Wieder, W. R. et al. Beyond static benchmarking: using experimental manipulations to evaluate land model assumptions. Glob. Biogeochem. Cycles 33, 1289–1309 (2019).ADS
CAS
Google Scholar
45.Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS
CAS
Google Scholar
46.Cheng, S. J. et al. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric. For. Meteorol. 201, 98–110 (2015).ADS
Google Scholar
47.Shao, L. et al. The fertilization effect of global dimming on crop yields is not attributed to an improved light interception. Glob. Change Biol. 26, 1697–1713 (2020).ADS
Google Scholar
48.Vattioni, S. et al. Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model. Atmos. Chem. Phys. 19, 4877–4897 (2019).ADS
CAS
Google Scholar
49.Levis, S., Badger, A., Drewniak, B., Nevison, C. & Ren, X. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change 146, 501–515 (2018).ADS
Google Scholar
50.Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).
Google Scholar
51.Lauvset, S. K., Tjiputra, J. & Muri, H. Climate engineering and the ocean: effects on biogeochemistry and primary production. Biogeosciences 14, 5675–5691 (2017).ADS
Google Scholar
52.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117–161 (2011).ADS
Google Scholar
53.West, T. O. et al. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecol. Appl. 20, 1074–1086 (2010).
Google Scholar
54.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS
CAS
Google Scholar
55.Farquhar, G., von Caemmerer, Svon & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS
Google Scholar
56.Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519–538 (1992).
Google Scholar
57.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).ADS
Google Scholar
58.Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921 (2006).ADS
CAS
Google Scholar
59.The NCAR Command Language (NCL, Version 6.5.0) (UCAR, NCAR, CISL, TDD, 2018); https://doi.org/10.5065/D6WD3XH5 More
