Metaplasmidome-encoded functions of Siberian low-centered polygonal tundra soils
1.Brilli M, Mengoni A, Fondi M, Bazzicalupo M, Liò P, Fani R. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics. 2008;9:551.PubMed
PubMed Central
Article
CAS
Google Scholar
2.Dziewit L, Pyzik A, Szuplewska M, Matlakowska R, Mielnicki S, Wibberg D, et al. Diversity and role of plasmids in adaptation of bacteria inhabiting the Lubin copper mine in Poland, an environment rich in heavy metals. Front Microbiol. 2015;6:152.PubMed
PubMed Central
Google Scholar
3.Matyar F, Kaya A, Dinçer S. Antibacterial agents and heavy metal resistance in Gram-negative bacteria isolated from seawater, shrimp and sediment in Iskenderun Bay, Turkey. Sci Total Environ. 2008;407:279–85.CAS
PubMed
Article
Google Scholar
4.Dagan T, Artzy-Randrup Y, Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA. 2008;105:10039–44.CAS
PubMed
Article
Google Scholar
5.Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev. 2012;36:1083–104.CAS
PubMed
Article
Google Scholar
6.Morozova D, Möhlmann D, Wagner D. Survival of methanogenic archaea from Siberian permafrost under simulated Martian thermal conditions. Orig Life Evol Biosph. 2007;37:189–200.CAS
PubMed
Article
Google Scholar
7.Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its implications for ecosystem functioning. Ecology. 2007;88:1386–94.Article
Google Scholar
8.Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011;162:346–61.PubMed
Article
Google Scholar
9.Dutta H, Dutta A. The microbial aspect of climate change. Energy, Ecol Environ. 2016;1:209–32.Article
Google Scholar
10.Leplae R, Lima-Mendez G, Toussaint A. A first global analysis of plasmid encoded proteins in the ACLAME database. FEMS Microbiol Rev. 2006;30:980–94.CAS
PubMed
Article
PubMed Central
Google Scholar
11.Couturier M, Bex F, Bergquist PL, Maas WK. Identification and classification of bacterial plasmids. Microbiol Rev. 1988;52:375–95.CAS
PubMed
PubMed Central
Article
Google Scholar
12.Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63:219–28.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Johnson TJ, Wannemuehler YM, Johnson SJ, Logue CM, White DG, Doetkott C, et al. Plasmid replicon typing of commensal and pathogenic Escherichia coli isolates. Appl Environ Microbiol. 2007;73:1976–83.CAS
PubMed
PubMed Central
Article
Google Scholar
14.Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278:631–7.CAS
PubMed
Article
PubMed Central
Google Scholar
15.Smalla K, Jechalke S, Top EM. Plasmid detection, characterization, and ecology. Microbiol Spectr. 2015;3:PLAS-0038-2014.16.Top EM, Holben WE, Forney LJ. Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol. 1995;61:1691–8.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Sayler GS, Hooper SW, Layton AC, King JMH. Catabolic plasmids of environmental and ecological significance. Microb Ecol. 1990;19:1–20.CAS
PubMed
Article
PubMed Central
Google Scholar
18.Elsas JD, Bailey MJ. The ecology of transfer of mobile genetic elements. FEMS Microbiol Ecol. 2006;42:187–97.Article
Google Scholar
19.Barrón MD, La C, Merlin C, Guilloteau H, Montargès-Pelletier E, Bellanger X. Suspended materials in river waters differentially enrich class 1 integron- and IncP-1 plasmid-carrying bacteria in sediments. Front Microbiol. 2018;9:1443.Article
Google Scholar
20.Dziewit L, Bartosik D. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Front Microbiol. 2014;5:596.PubMed
PubMed Central
Article
Google Scholar
21.McCann CM, Christgen B, Roberts JA, Su JQ, Arnold KE, Gray ND, et al. Understanding drivers of antibiotic resistance genes in High Arctic soil ecosystems. Environ Int. 2019;125:497–504.CAS
PubMed
Article
PubMed Central
Google Scholar
22.Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol. 2015;17:913–30.PubMed
Article
PubMed Central
Google Scholar
23.Sjölund M, Bonnedahl J, Hernandez J, Bengtsson S, Cederbrant G, Pinhassi J, et al. Dissemination of multidrug-resistant bacteria into the Arctic. Emerg Infect Dis. 2008;14:70–72.PubMed
PubMed Central
Article
Google Scholar
24.Perron GG, Whyte L, Turnbaugh PJ, Goordial J, Hanage WP, Dantas G, et al. Functional characterization of bacteria isolated from ancient Arctic soil exposes diverse resistance mechanisms to modern antibiotics. PLoS One. 2015;10:e0069533.PubMed
PubMed Central
Article
CAS
Google Scholar
25.Hernández J, González-Acuña D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect Ecol Epidemiol. 2016;6:32112.PubMed
PubMed Central
Google Scholar
26.Tan L, Li L, Ashbolt N, Wang X, Cui Y, Zhu X, et al. Arctic antibiotic resistance gene contamination, a result of anthropogenic activities and natural origin. Sci Total Environ. 2018;621:1176–84.CAS
PubMed
Article
PubMed Central
Google Scholar
27.Wang F, Stedtfeld RD, Kim OS, Chai B, Yang L, Stedtfeld TM, et al. Influence of soil characteristics and proximity to antarctic research stations on abundance of antibiotic resistance genes in soils. Environ Sci Technol. 2016;50:12621–9.CAS
PubMed
Article
PubMed Central
Google Scholar
28.Winkel M, Mitzscherling J, Overduin PP, Horn F, Winterfeld M, Rijkers R, et al. Anaerobic methanotrophic communities thrive in deep submarine permafrost. Sci Rep. 2018;8:1291.PubMed
PubMed Central
Article
CAS
Google Scholar
29.Liebner S, Harder J, Wagner D. Bacterial diversity and community structure in polygonal tundra soils from Samoylov Island, Lena Delta, Siberia. Int Microbiol. 2008;11:195–202.CAS
PubMed
PubMed Central
Google Scholar
30.Taş N, Prestat E, Wang S, Wu Y, Ulrich C, Kneafsey T, et al. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nat Commun. 2018;9:777.PubMed
PubMed Central
Article
CAS
Google Scholar
31.Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49:1–7.CAS
PubMed
PubMed Central
Article
Google Scholar
32.Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.CAS
PubMed
PubMed Central
Article
Google Scholar
33.Mizrahi-Man O, Davenport ER, Gilad Y. Taxonomic classification of bacterial 16S rRNA genes using short sequencing reads: evaluation of effective study designs. PLoS One. 2013;8:e53608.CAS
PubMed
PubMed Central
Article
Google Scholar
34.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.Article
Google Scholar
35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Article
Google Scholar
36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS
PubMed
Article
PubMed Central
Google Scholar
37.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:2584.Article
Google Scholar
38.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS
PubMed
PubMed Central
Article
Google Scholar
39.Hammer DAT, Ryan PD, Hammer Ø, Harper DAT. Past: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
Google Scholar
40.Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.PubMed
PubMed Central
Article
CAS
Google Scholar
42.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed
PubMed Central
Article
CAS
Google Scholar
43.Kahlke T, Ralph PJ. BASTA—taxonomic classification of sequences and sequence bins using last common ancestor estimations. Methods Ecol Evol. 2019;10:100–3.Article
Google Scholar
44.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS
PubMed
Article
PubMed Central
Google Scholar
45.Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41.PubMed
PubMed Central
Article
Google Scholar
46.Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third Int AAAI Conf Weblogs Soc Media. San Jose, California, USA. 2009.47.Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One. 2014;9:e98679.PubMed
PubMed Central
Article
CAS
Google Scholar
48.McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The comprehensive antibiotic resistance database. Antimicrob Agents Chemother. 2013;57:3348–57.CAS
PubMed
PubMed Central
Article
Google Scholar
49.Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DG. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.CAS
PubMed
Article
Google Scholar
50.Caswell TA, Droettboom M, Hunter J, Lee A, Firing E, Stansby D, et al. matplotlib/matplotlib: REL: v3.1.1. 2019.51.Pham VHT, Kim J. Improvement for isolation of soil bacteria by using common culture media. J Pure Appl Microbiol. 2016;10:49–60.
Google Scholar
52.Romaniuk K, Ciok A, Decewicz P, Uhrynowski W, Budzik K, Nieckarz M, et al. Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biol. 2018;41:1319–33.Article
Google Scholar
53.Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69.CAS
PubMed
PubMed Central
Article
Google Scholar
54.Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, et al. Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol. 2005;71:2162–9.CAS
PubMed
PubMed Central
Article
Google Scholar
55.Stewart EJ. Growing unculturable bacteria. J Bacteriol. 2012;194:4151–60.CAS
PubMed
PubMed Central
Article
Google Scholar
56.Ganzert L, Jurgens G, Munster U, Wagner D. Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol. 2007;59:476–88.CAS
PubMed
Article
PubMed Central
Google Scholar
57.Bajerski F, Ganzert L, Mangelsdorf K, Padur L, Lipski A, Wagner D. Chryseobacterium frigidisoli sp. nov., a psychrotolerant species of the family Flavobacteriaceae isolated from sandy permafrost from a glacier forefield. Int J Syst Evol Microbiol. 2013;63:2666–71.CAS
PubMed
Article
PubMed Central
Google Scholar
58.Filippidou S, Wunderlin T, Junier T, Jeanneret N, Dorador C, Molina V, et al. A combination of extreme environmental conditions favor the prevalence of endospore-forming Firmicutes. Front Microbiol. 2016;7:1707.PubMed
PubMed Central
Article
Google Scholar
59.Kuramae EE, Yergeau E, Wong LC, Pijl AS, Veen JA, Kowalchuk GA. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 2012;79:12–24.CAS
PubMed
Article
PubMed Central
Google Scholar
60.Filippidou S, Junier T, Wunderlin T, Lo CC, Li PE, Chain PS, et al. Under-detection of endospore-forming Firmicutes in metagenomic data. Comput Struct Biotechnol J. 2015;13:299–306.CAS
PubMed
PubMed Central
Article
Google Scholar
61.Dziewit L, Cegielski A, Romaniuk K, Uhrynowski W, Szych A, Niesiobedzki P, et al. Plasmid diversity in arctic strains of Psychrobacter spp. Extremophiles. 2013;17:433–44.CAS
PubMed
PubMed Central
Article
Google Scholar
62.Mindlin S, Petrenko A, Kurakov A, Beletsky A, Mardanov A, Petrova M. Resistance of permafrost and modern Acinetobacter lwoffiistrains to heavy metals and arsenic revealed by genome analysis. Biomed Res Int. 2016;2016:3970831.PubMed
PubMed Central
Article
CAS
Google Scholar
63.Moghadam MS, Albersmeier A, Winkler A, Cimmino L, Rise K, Hohmann-Marriott MF, et al. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics. 2016;17:117.PubMed
PubMed Central
Article
CAS
Google Scholar
64.Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genomics. 2015;16:964.PubMed
PubMed Central
Article
CAS
Google Scholar
65.Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. MBio. 2019;10:e00853–19.CAS
PubMed
PubMed Central
Article
Google Scholar
66.Bleich A, Fox JG. The mammalian microbiome and its importance in laboratory animal research. ILAR J. 2015;56:153–8.CAS
PubMed
PubMed Central
Article
Google Scholar
67.Grond K, Sandercock BK, Jumpponen A, Zeglin LH. The avian gut microbiota: community, physiology and function in wild birds. J Avian Biol. 2018;49:e01788.Article
Google Scholar
68.Anganova EV, Savchenkov MF, Stepanenko LA, Savilov ED. Microbiological monitoring of opportunistic Enterobacteriaceae of the Lena river. Gig Sanit. 2016;95:1124–8.69.Tignat-Perrier R, Dommergue A, Thollot A, Keuschnig C, Magand O, Vogel TM, et al. Global airborne microbial communities controlled by surrounding landscapes and wind conditions. Sci Rep. 2019;9:14441.PubMed
PubMed Central
Article
CAS
Google Scholar
70.Mu C, Zhang F, Chen X, Ge S, Mu M, Jia L, et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Res. 2019;161:54–60.CAS
PubMed
Article
Google Scholar
71.Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. Microbiology. 2014;160:2253–63.CAS
PubMed
Article
Google Scholar
72.Afouda P, Dubourg G, Levasseur A, Fournier P-E, Delerce J, Mediannikov O, et al. Culturing ancient bacteria carrying resistance genes from permafrost and comparative genomics with modern isolates. Microorganisms. 2020;8:1522.CAS
PubMed Central
Article
PubMed
Google Scholar More