El Niño-Southern Oscillation affects the water relations of tree species in the Yucatan Peninsula, Mexico
1.Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Ann. Rev. Ecol. Syst. 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435 (1986).Article
Google Scholar
2.Hasselquist, N. J., Allen, M. F. & Santiago, L. S. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164, 881–890. https://doi.org/10.1007/s00442-010-1725-y (2010).ADS
Article
PubMed
PubMed Central
Google Scholar
3.Maass, M. et al. Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. For. Ecol. Manage. 426, 7–17. https://doi.org/10.1016/j.foreco.2017.09.040 (2018).Article
Google Scholar
4.NOAA. National Weather Service. Climate Prediction Center. Cold and warm episodes by season. http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. (Accessed 19 October 2019).5.Detto, M., Wright, J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat. Commun. 9, 9–13. https://doi.org/10.1038/s41467-018-03306-9 (2018).CAS
Article
Google Scholar
6.Bretfeld, M., Ewers, B. E. & Hal, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).Article
PubMed
Google Scholar
7.Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958. https://doi.org/10.1111/nph.14633 (2018).CAS
Article
PubMed
Google Scholar
8.Salmon, Y. et al. Drought impacts on tree phloem: From cell-level responses to ecological significance. Tree Physiol. 39, 173–191. https://doi.org/10.1093/treephys/tpy153 (2019).CAS
Article
PubMed
Google Scholar
9.Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266. https://doi.org/10.1126/science.aat7631 (2020).ADS
CAS
Article
PubMed
Google Scholar
10.Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133. https://doi.org/10.1111/gcb.15037 (2020).ADS
Article
Google Scholar
11.Wigneron, J. P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603. https://doi.org/10.1126/sciadv.aay4603 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
12.Martinez-Vilalta, J. & Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Change 144, 94–108. https://doi.org/10.1016/j.gloplacha.2016.07.009 (2016).ADS
Article
Google Scholar
13.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article
Google Scholar
14.Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS 113, 5024–5029. https://doi.org/10.1073/pnas.1525678113 (2016).ADS
CAS
Article
PubMed
Google Scholar
15.Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553. https://doi.org/10.1111/ele.12748 (2017).Article
PubMed
Google Scholar
16.Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645. https://doi.org/10.1111/j.1365-3040.2007.01765.x (2008).Article
PubMed
Google Scholar
17.Borchert, R. & Pockman, W. T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol. 25, 457–466. https://doi.org/10.1093/treephys/25.4.457 (2005).Article
PubMed
Google Scholar
18.Valdez-Hernández, M., Andrade, J. L., Jackson, P. C. & Rebolledo-Vieyra, M. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: Effects of environmental and physiological factors. Plant Soil 329, 155–171. https://doi.org/10.1007/s11104-009-0142-7 (2010).CAS
Article
Google Scholar
19.Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024. https://doi.org/10.1111/nph.15058 (2018).Article
PubMed
Google Scholar
20.Bussotti, F., Pollastrini, M., Holland, V. & Bruggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Experim. Bot. 111, 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006 (2015).Article
Google Scholar
21.Reich, P. B. & Borchert, R. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol. 72(1), 61–74. https://doi.org/10.2307/2260006 (1984).Article
Google Scholar
22.Holbrook, N. M., Whitbeck, J. L. & Mooney, H. A. Drought responses of neotropical dry forest trees. In Seasonally Dry Tropical Forests (eds Bullock, S. H. et al.) (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511753398.010.
Google Scholar
23.Wolfe, B. T. & Kursar, T. A. Diverse patterns of stored water use among saplings in seasonally dry tropical forests. Oecologia 179, 925–936. https://doi.org/10.1007/s00442-015-3329-z (2015).ADS
Article
PubMed
Google Scholar
24.Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x (2002).Article
Google Scholar
25.Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).Article
PubMed
Google Scholar
26.Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. S. Am. Earth Sci. 85, 307–311. https://doi.org/10.1016/j.jsames.2018.05.015 (2018).Article
Google Scholar
27.De la Barreda, B., Metcalfe, E. S. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan peninsula, Mexico. Int. J. Climatol. 40(10), 1–15. https://doi.org/10.1002/joc.6474 (2020).Article
Google Scholar
28.IPCC. Summary for Policymakers. In: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P., Zhai, H. O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., Connors, J.B.R., Matthews, Y., Chen, X., Zhou, M. I., Gomis, E., Lonnoy, T., Maycock, M., Tignor, T., Waterfield, eds.). World Meteorological Organization, Geneva, Switzerland. https://www.ipcc.ch/sr15/ (Accessed 15 November 2019).29.Eller, C. B., Rowland, L. & Oliveira, R. S. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Phil. Trans. R. Soc. B 373, 1–12. https://doi.org/10.1098/rstb.2017.0315 (2018).CAS
Article
Google Scholar
30.Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 3(9), 811–815. https://doi.org/10.1038/nclimate1907 (2013).ADS
Article
Google Scholar
31.Goldstein, G. et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ. 21, 397–406. https://doi.org/10.1046/j.1365-3040.1998.00273.x (1998).Article
Google Scholar
32.Landsberg, J. & Waring, R. Water relations in tree physiology: where to from here?. Tree Physiol. 37, 18–32. https://doi.org/10.1093/treephys/tpw102 (2016).Article
Google Scholar
33.Kim, J. S. & Kug, J.-S. Increased atmospheric CO2 growth rate during El Niño driven by reduced terrestrial CO2 capture in the CMIP5 ESMs. J. Clim. 29, 8783–8805. https://doi.org/10.1175/JCLI-D-14-00672.1 (2016).ADS
Article
Google Scholar
34.Kim, J. S., Kug, J.-S. & Jeong, S. Intensification of terrestrial carbon cycle related to El Niño-Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674. https://doi.org/10.1038/s41467-017-01831-7 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
35.Wang, Q., Cai, W., Zeng, L. & Wang, D. Nonlinear meridional moisture advection and the ENSO-southern China rainfall teleconnection. Geophys. Res. Lett. 45(9), 4353–4360. https://doi.org/10.1029/2018GL077446 (2018).ADS
Article
Google Scholar
36.Wang, Q., Wang, Y., Sui, J., Zhou, W. & Li, D. Effects of weak and strong winter currents on the thermal state of the South China Sea. J. Clim. 34(1), 313–325. https://doi.org/10.1175/JCLI-D-19-0790.1 (2021).ADS
Article
Google Scholar
37.Xie, S.-P. et al. Eastern Pacific ITCZ dipole and ENSO diversity. J. Clim. 31, 4449–4462. https://doi.org/10.1175/JCLI-D-17-0905.1 (2018).ADS
Article
Google Scholar
38.Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T. & Zhang, H. Coupled ocean–atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 10, 298. https://doi.org/10.1038/s41467-018-08258-8 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
39.Peng, Q. et al. Eastern Pacific winds in the evolution of El Niño: implications for ENSO diversity. J. Clim. 33, 3197–3212. https://doi.org/10.1175/JCLI-D-19-0435.1 (2020).ADS
Article
Google Scholar
40.Barkhodarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331. https://doi.org/10.1038/s41598-019-51857-8 (2019).ADS
CAS
Article
Google Scholar
41.Meinzer, F. C., James, S. A., Goldstein, G. & Woodruff, D. Whole-tree water transport scales sapwood capacitance in tropical forest canopy trees. Plant Cell Environ. 26, 1147–1155. https://doi.org/10.1046/j.1365-3040.2003.01039.x (2003).Article
Google Scholar
42.Luo, Z. et al. Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. J. Hydrol. Reg. Stud. 8, 1–9. https://doi.org/10.1016/j.ejrh.2016.08.001 (2016).CAS
Article
Google Scholar
43.Vinya, R., Malhi, Y., Brown, N. & Fisher, J. Functional coordination between branch hydraulic properties and leaf functional traits in miombo woodlands: Implications for water stress management and species habitat preference. Acta Physiol. Plant 34, 1701–1710. https://doi.org/10.1007/s11738-012-0965-3 (2012).CAS
Article
Google Scholar
44.Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Autralia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2005).Article
Google Scholar
45.Romero, E., González, E. J., Meave, J. A. & Terrazas, T. Wood anatomy of dominant species with contrasting ecological performance in tropical dry forest succession. Plant Biosyst. 154, 524–534. https://doi.org/10.1080/11263504.2019.1651775 (2019).Article
Google Scholar
46.Pineda-García, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).Article
PubMed
Google Scholar
47.Choat, B., Sack, L. & Holbrook, M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).Article
PubMed
Google Scholar
48.Fallas-Cedeño, L., Holbrook, N. M., Rocha, O. J., Vásquez, N. & Gutiérrez-Soto, M. Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42, 104–111. https://doi.org/10.1111/j.1744-7429.2009.00539.x (2010).Article
Google Scholar
49.Quintanar-Isaías, A., Velasquez-Nuñez, M., Solares-Arenas, F., Pérez-Olvera, C. P. & Torre-Blanco, A. Secondary stem anatomy and uses or four drought-deciduous species of a tropical dry forest in Mexico. Rev. Biol. Trop. 53, 29–48. https://doi.org/10.15517/RBT.V53I1-2.14297 (2005).Article
Google Scholar
50.Veneklaas, E. J., Santos-Silva, M. P. & den Ouden, F. Determinants of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Sci. Hortic. 93, 75–84. https://doi.org/10.1016/S0304-4238(01)00315-6 (2002).Article
Google Scholar
51.Mediavilla, S., Escudero, A. & Heilmeier, H. Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparisons. Tree Physiol. 21, 251–259. https://doi.org/10.1093/treephys/21.4.251 (2001).CAS
Article
PubMed
Google Scholar
52.Peguero-Pina, J. J., Sancho-Knapik, D. & Gil-Pelegrin, E. Ancientcell structural traits and photosynthesis in today’s environment. J. Exp. Bot. 68, 1389–1392. https://doi.org/10.1093/jxb/erx081 (2017).CAS
Article
PubMed Central
Google Scholar
53.Kitajima, K. & Poorter, L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol. 186, 708–721. https://doi.org/10.1111/j.1469-8137.2010.03212.x (2010).Article
PubMed
Google Scholar
54.Schwedenman, L., Pendall, E., Sanchez-Bragado, R., Kunert, N. & Holscher, D. Tree water uptake in a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and complementary. Ecohydrology 8, 1–12. https://doi.org/10.1002/eco.1479 (2015).Article
Google Scholar
55.Reyes-García, C., Andrade, J. L., Simá, J. L., Us-Santamaría, R. & Jackson, P. C. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26, 1317–1330. https://doi.org/10.1007/s00468-012-0708-5 (2012).Article
Google Scholar
56.Santiago, L. et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140, 543–550. https://doi.org/10.1007/s00442-004-1624-1 (2004).ADS
CAS
Article
PubMed
Google Scholar
57.Li, X. et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 41, 646–660. https://doi.org/10.1111/pce.13129 (2018).CAS
Article
PubMed
Google Scholar
58.Querejeta, J. I., Estrada-Medina, H., Allen, M. F., Jiménez-Osorio, J. J. & Ruenes, R. Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287, 187–197. https://doi.org/10.1007/s11104-006-9065-8 (2006).CAS
Article
Google Scholar
59.Scholz, F. G., Phillips, N. G., Bucci, S. J., Meinzer, F. C. & Goldstein, G. Hydraulic capacitance: Biophysics and functional significance of internal water sources in relation to tree size. In Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer, F. C. et al.) 341–362 (Springer, 2011). https://doi.org/10.1007/978-94-007-1242-3_13.
Google Scholar
60.Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 139, 1–5. https://doi.org/10.1038/nplants.2015.139 (2015).Article
Google Scholar
61.Sobrado, M. A. Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecol. 18, 383–391. https://doi.org/10.1016/S1146-609X(97)80030-6 (1997).ADS
Article
Google Scholar
62.Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutierrez, M. V. Relation between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450. https://doi.org/10.1046/j.1365-3040.2003.00975.x (2003).Article
Google Scholar
63.Orellana, R., Balam, M. & Bañuelos, I. Balance Ombrotérmico, evaluación climática. In Atlas de procesos territoriales de Yucatán (eds de Fuentes, A. G. et al.) 174–175 (Universidad Autónoma de Yucatán, 1999).
Google Scholar
64.Instituto Nacional de Estadística Geografía e Informática, 2017. Anuario estadístico y geográfico de Quintana Roo. INEGI, México. https://www.datatur.sectur.gob.mx/ITxEF_Docs/QROO_ANUARIO. (Accessed 12 December 2019).65.Espinoza-Avalos, J., Islebe, G. A. & Hernández-Arana, H. A. El sistema ecológico de la bahía de Chetumal/corozal: Costa occidental del mar caribe (El Colegio de la Frontera Sur, 2009).
Google Scholar
66.McKee, T.B., Doesken, N.J. & Kelist, J. The relationship of drought frequency and duration to time scale. in American Meteorological Society, Proceedings of the Eighth Conference on Applied Climatology, 17–22 January, Anaheim, California 179–184 (1993).67.Cheval, S. The Standardized Precipitation Index—An overview. Rom. J. Meteorol. 12(1–2), 17–64 (2015).
68.Koide, R. T., Robichaux, R. H., Morse, S. R. & Smith, C. M. Plant water status, hydraulic resistance and capacitance. In Plant Physiological Ecology, Field Methods and Instrumentation (eds Pearcy, R. W. et al.) 161–178 (Chapman and Hall, 1991). https://doi.org/10.1007/978-94-010-9013-1_9.
Google Scholar
69.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
70.StatSoft, Inc. STATISTICA (data analysis software system), version 12. www.statsoft.com (2013). More