More stories

  • in

    Developments in data science solutions for carnivore tooth pit classification

    SampleA total of 620 carnivore tooth pits were included in the present study. These samples included tooth marks produced by;

    Brown Bears (Ursus arctos, Ursidae, 69 pits)

    Spotted Hyenas (Crocuta crocuta, Hyaenidae, 86 pits)

    Wolves (Canis lupus, Canidae, 80 pits)

    African Wild Dogs (Lycaon pictus, Canidae, 89 pits)

    Foxes (Vulpes vulpes, Canidae, 53 pits)

    Jaguars (Panthera onca, Felidae, 77 pits)

    Leopards (Panthera pardus, Felidae, 84 pits)

    Lions (Panthera leo, Felidae, 82 pits)

    Samples originated from a number of different sources, including animals kept in parks as well as wild animals. Samples obtained from wild animals included those produced by foxes as well as wolves. The only sample containing both wild and captive animals was the wolf sample. Preliminary data from these tooth pits revealed animals in captivity to have highly equivalent tooth pit morphologies to wild animals ((vert d vert ) = 0.125, p = 9.0e−14, BFB = 1.4e+11), while tooth scores revealed otherwise ((vert d vert ) = 0.152, p = 0.99, BFB = 3.7e+01 against (H_{a})). Under this premise, and so as to avoid the influence of confounding variables that go beyond the scope of the present study, tooth scores were excluded from the present samples and are under current investigation (data in preperation). Nevertheless, other research have shown tooth pits to be more informative than tooth scores when considering morphology20,23.When working with tooth mark morphologies, preference is usually given to marks found on long bone diaphyses. This is preferred considering how diaphyses are denser than epiphyses, and are thus more likely to survive during carnivore feeding. Nevertheless, when working with captive or semi-captive animals, controlling the bones that carnivores are fed is not always possible. This is due to the rules and regulations established by the institution where these animals are kept64. While this was not an issue for the majority of the animals used within the present study, in the case of P. pardus, animals were only fed ribs in articulation with other axial elements. In light of this, a careful evaluation on the effects this may have on the analogy of our samples was performed (Supplementary Appendix 2). These reflections concluded that in order to maintain a plausible analogy with tooth marks produced by other animals on diaphyses, tooth marks could only be used if found on the shaft of bovine ribs closest to the tuburcle, coinciding with the posterior and posterior-lateral portions of the rib, and farthest away from the costochondral junction65. This area of the rib corresponds to label RI3 described by Lam et al.65. Moreover, with a reported average cortical thickness of 2.3mm (± 0.13 mm) and Bone Mineral Density of (4490 kg/m^{3} [213.5, 334.6])66, bovine ribs are frequently employed in most bone simulation experiments used in agricultural as well as general surgical sciences. Finally, considering the grease, muscle and fat content of typical domestic bovine individuals67, alongside the general size of P. pardus teeth, it was concluded that the use of rib elements for this sample was the closest possible analogy to the tooth marks collected from other animals.Carnivores were fed a number of different sized animals, also dependent in most cases on the regulations established by the institution where these animals are kept64. Nevertheless, recent research has found statistical similarities between tooth marks found on different animals25, with the greatest differences occurring between large and small sized animals. Needless to say, considering the typical size of prey some of these carnivores typically consume, this factor was not considered of notable importance for the present study25 (Supplementary Appendix 1).For the purpose of comparisons, animals were split into 5 groups according to ecosystem as well as taxonomic family. From an ecological perspective, two datasets were defined; (1) the Pleistocene European Taxa dataset containing U. arctos, V. vulpes, C. crocuta, P. pardus, P. leo and C. lupus; and (2) the African Taxa dataset containing C. crocuta, P. pardus, L. pictus and P. leo. When considering taxonomic groupings, animals were separated into 3 groups, including; (1) the Canidae dataset, including V. vulpes, L. pictus and C. lupus; (2) the Felidae dataset, including P. pardus, P. onca and P. leo; and (3) a general Taxonomic Family dataset, including all Canidae in the same group, all Felidae in the same group, followed by Hyaenidae and Ursidae. Some complementary details on each of these carnivores have been included in Supplementary Appendix 1.All experiments involving carnivores were performed in accordance with the relevant ethical guidelines as set forth by park keepers and general park regulations. No animals were sacrificed specifically for the purpose of these experiments. Likewise, carnivores were not manipulated or handled at any point during the collection of samples. Collection of chewed bones were performed directly by park staff and assisted by one of the authors (JY). The present study followed the guidelines set forth by ARRIVE (https://arriveguidelines.org/) wherever necessary. No licenses or permits were required in order to perform these experiments. Finally, in the case of animals in parks, bone samples were provided by the park according to normal feeding protocols. More details can be consulted in the Extended Samples section of the supplementary files.3D modelling and landmark digitisationDigital reconstructions of tooth marks were performed using Structured Light Surface Scanning (SLSS)68. The equipment used in the present study was the DAVID SLS-2 Structured Light Surface Scanner located in the C.A.I. Archaeometry and Archaeological Analysis lab of the Complutense University of Madrid (Spain). This equipment consists of a DAVID USB CMOS Monochrome 2-Megapixel camera and ACER K11 LED projector. Both the camera and the projector were connected to a portable ASUS X550VX personal laptop (8 GB RAM, Intel® CoreTM i5 6300HQ CPU (2.3 GHz), NVIDIA GTX 950 GPU) via USB and HDMI respectively. The DAVID’s Laser Scanner Professional Edition software is stored in a USB Flash Drive. Equipment were calibrated using a 15 mm markerboard, using additional macro lenses attached to both the projector and the camera in order to obtain optimal resolution at this scale. Once calibrated the DAVID SLS-2 produces a point cloud density of up to 1.2 million points which can be exported for further processing via external software.The landmark configuration used for this study consists of a total of 30 landmarks (LMs)21; 5 fixed Type II landmarks18 and a (5 times 5) patch of semilandmarks69 (Fig. S2). Of the 5 fixed landmarks, LM1 and LM2 mark the maximal length (l) of each pit. For the correct orientation of the pit, LM1 can be considered to be the point along the maximum length furthest away from the perpendicular axis marking the maximum width (w). LM2 would therefore be the point closest to said perpendicular axis (see variables (d_{1}) and (d_{2}) in Fig. S2 for clarification). LM3 and LM4 mark the extremities of the perpendicular axis (w) with LM3 being the left-most extremity and LM4 being the right-most extremity. LM5 is the deepest point of the pit. The semilandmark patch is then positioned over the entirety of the pit, so as to capture the internal morphology of the mark.Landmark collection was performed using the free Landmark Editor software (v.3.0.0.6.) by a single experienced analyst. Inter-analyst experiments prior to landmark collection revealed the landmark model to have a robustly defined human-induced margin of error of 0.14 ± 0.09 mm (Median ± Square Root of the Biweight Midvariance). Detailed explanations as well as an instructional video on how to place both landmarks and semilandmarks can be consulted in the Supplementary Appendix and main text of Courtenay et al.21.Geometric morphometricsOnce collected, landmarks were formatted as morphologika files and imported into the R free software environment (v.3.5.3, https://www.r-project.org/). Initial processing of these files consisted in the orthogonal tangent projection into a new normalized feature space. This process, frequently referred to as Generalized Procrustes Analysis (GPA), is a valuable tool that allows for the direct comparison of landmark configurations18,19,70. GPA utilises different superimposition procedures (translation, rotation and scaling) to quantify minute displacements of individual landmarks in space71. This in turn facilitates the comparison of landmark configurations, as well as hypothesis testing, using multivariate statistical analyses. Nevertheless, considering observations made by Courtenay et al.20,21,25 revealed tooth mark size to be an important conditioning factor in their morphology, prior analyses in allometry were also performed72. From this perspective, allometric analyses first considered the calculation of centroid sizes across all individuals; the square root of the sum of squared distances of all landmarks of an object from their centroid18. These calculations were then followed by multiple regressions to assess the significance of shape-size relationships. For regression, the logarithm of centroid sizes were used. In cases where shape-size relationships proved significant, final superimposition procedures were performed excluding the scaling step of GPA (form).In addition to these analyses, preliminary tests were performed to check for the strength of phylogenetic signals73. This was used as a means of testing whether groups of carnivores produced similar tooth pits to other members of the same taxonomic family. For details on the phylogenies used during these tests, consult Fig. S1 and Supplementary Appendix 1.For the visualisation of morphological trends and variations, Thin Plate Splines (TPS) and central morphological tendencies were calculated19,71. From each of these mean landmark configurations, for ease of pattern visualisation across so many landmarks, final calculations were performed using Delaunay 2.5D Triangulation algorithms74 creating visual meshes of these configurations in Python (v.3.7.4, https://www.python.org/).Once normalised, landmark coordinates were processed using dimensionality reduction via Principal Components Analyses (PCA). In order to identify the optimal number of Principal Component Scores (PC Scores) that best represented morphological variance, permutation tests were performed calculating the observed variance explained by each PC with the permuted variance over 50 randomized iterations75. Multivariate Analysis of Variance (MANOVA) tests were then performed on these select PCs to assess the significance of multivariate morphological variance among samples.Geometric Morphometric applications were programmed in the R programming language (Sup. Appendix 8).Robust statisticsWhile GPA is known to normalize data76, this does not always hold true. Under this premise, caution must be taken when performing statistical analyses on these datasets. Taking this into consideration, prior to all hypothesis testing, normality tests were also performed. These included Shapiro tests and the inspection of Quantile–Quantile graphs. In cases where normality was detected, univariate hypothesis tests were performed using traditional parametric Analysis of Variance (ANOVA). For multivariate tests, such as MANOVA, calculations were derived using the Hotelling-Lawley test-statistic. When normality was rejected, robust alternatives to each of these tests were chosen. In the case of univariate testing, the Kruskal–Wallis non-parametric rank test was prefered, while for MANOVA calculations, Wilk’s Lambda was used.Finally, in light of some of the recommendations presented by The American Statistical Association (ASA), as debated in Volume 73, Issue Sup1 of The American Statistician77,78, the present study considers p-values of ( >2sigma ) from the mean to indicate only suggestive support for the alternative hypothesis ((H_{a})). (p ; > ; 0.005), or where possible, (3sigma ) was therefore used as a threshold to conclude that (H_{a}) is “significant”. In addition, Bayes Factor Bound (BFB) values (Eq. 1) have also been included alongside all corresponding p-Values79. Unless stated otherwise, BFBs are reported as the odds in favor of the alternative hypothesis (BFB:1). More details on BFB, Bayes Factors and the (p ; > ; 3sigma ) threshold have been included in Supplementary Appendix 3. General BFB calibrations in accordance with Benjamin and Berger’s Recommendation 0.379, as well as False Positive Risk values according to Colquhoun’s proposals80, have also been included in Table S20 of Supplementary Appendix 3.$$begin{aligned} BFB = frac{1}{-e ; p ; log (p)} end{aligned}$$
    (1)
    All statistical applications were programmed in the R programming language (Sup. Appendix 8).Computational learningComputational Learning employed in this study consisted of two main types of algorithm; Unsupervised and Supervised algorithms. The concept of “learning” in AI refers primarily to the creation of algorithms that are able to extract patterns from raw data (i.e. “learn”), based on their “experience” through the construction of mathematical functions38,81. The basis of all AI learning activities include the combination of multiple components, including; linear algebra, calculus, probability theory and statistics. From this, algorithms can create complex mathematical functions using many simpler concepts as building blocks38. Here we use the term “Computational Learning” to refer to a very large group of sub-disciplines and sub-sub-disciplines within AI. Deep Learning and Machine Learning are terms frequently used (and often debated), however, many more branches and types of learning exist. Under this premise, and so as to avoid complication, the present study has chosen to summarise these algorithms using the term “Computational”.Similar to the concepts of Deep and Machine Learning, many different types of supervision exist. The terms supervised and unsupervised refer to the way raw data is fed into the algorithm. In most literature, data will be referred to via the algebraic symbol x, whether this be a vector, scalar or matrix. The objective of algorithms are to find patterns among a group of x. In an unsupervised context, x is directly fed into the algorithm without further explanation. Algorithms are then forced to search for patterns that best explain the data. In the case of supervised contexts, x is associated with a label or target usually denominated as y. Here the algorithm will try and find the best means of mapping x to y. From a statistical perspective, this can be explained as (pleft( y vert x right) ). In sum, unsupervised algorithms are typically used for clustering tasks, dimensionality reduction or anomaly detection, while supervised learning is typically associated with classification tasks or regression.The workflow used in the present study begins with dimensionality reduction, as explained earlier with the use of PCA. While preliminary experiments were performed using non-linear dimensionality reduction algorithms, such as t-distributed Stochastic Neighbor Embedding (t-SNE)82 and Uniform Manifold Approximation and Projection (UMAP)83, PCA was found to be the most consistent across all datasets, a point which should be developed in detailed further research. Once dimensionality reduction had been performed, and prior to any advanced computational modelling, datasets were cleaned using unsupervised Isolation Forests (IFs)84. Once anomalies had been removed, data augmentation was performed using two different unsupervised approaches; Generative Adversarial Networks (GANs)38,39,40,41 and Markov Chain Monte Carlo (MCMC) sampling44. Data augmentation was performed for two primary reasons; (1) the simulation of larger datasets to ensure supervised algorithms have enough information to train from, and (2) to balance datasets so each sample has the same size. Both MCMCs and GANs were trialed and tested using robust statistics to evaluate quality of augmented data41. Once the best model had been determined, each of the datasets were augmented so they had a total sample size of (n = 100). In the case of the Taxonomic Family dataset, augmentation was performed until all samples had the same size as the largest sample.Once augmented, samples were used for the training of supervised classification models. Two classification models were tried and tested; Support Vector Machines (SVM)85 and Neural Support Vector Machines (NSVM)86,87. NSVMs are an extension of SVM using Neural Networks (NNs)38 as feature extractors, in substituting the kernel functions typically used in SVMs. Hyperparameter optimization for both SVMs and NSVMs were performed using Bayesian Optimization Algorithms (BOAs)88.Supervised computational applications were performed in both the R and Python programming languages (Sup. Appendix 8). For full details on both unsupervised and supervised computational algorithms, consult the Extended Methods section of the Supplementary Materials.Evaluation of supervised learning algorithms took into account a wide array of different popular evaluation metrics in machine and deep learning. These included; Accuracy, Sensitivity, Specificity, Precision, Recall, Area Under the receiver operator characteristic Curve (AUC), the F-Measure (also known as the F1 Score), Cohen’s Kappa ((kappa )) statistic, and model Loss. Each of these metrics, with the exception of loss, are calculated using confusion matrices, measuring the ratio of correctly classified individuals (True Positive & True Negative) as well as miss-classified individuals (False Positive & False Negative). For more details see Supplementary Appendix 6.Accuracy is simply reported as either a decimal (left[ 0, 1right] ) or a percentage. Accuracy is a metric often misinterpreted, as explained in Supplementary Appendix 6, and should always be considered in combination with other values, such as Sensitivity or Specificity. Both Sensitivity and Specificity are values reported as decimals (left[ 0, 1right] ), and are used to evaluate the proportion of correct classifications and miss-classifications. AUC values are derived from receiver operator characteristic curves, a method used to balance and graphically represent the rate of correctly and incorrectly classified individuals. The closest the curve gets to reaching the top left corner of the graph, the better the classifier, while diagonal lines in the graph represent a random classifier (poor model). In order to quantify the curvature of the graph, the area under the curve can be calculated (AUC), with (AUC=1) being a perfect classifier and (AUC=0.5) being a random classifier. The (kappa ) statistic is a measure of observer reliability, usually employed to test the agreement between two systems. When applied to confusion matrix evaluations, (kappa ) can be used to assess the probability that a model will produce an output (hat{y}) that coincides with the real output y. (kappa ) values typically range between (left[ 0, 1right] ), with (kappa =1) meaning perfect agreement, (kappa =0) being random agreement, and (kappa =0.8) typically used as a threshold to define a near-perfect or perfect algorithm.While in the authors’ opinion, AUC, Sensitivity and Specificity values are the most reliable evaluation metrics for studies of this type (Supp. Appendix 6), for ease of comparison with other papers or authors who choose to use other metrics, we have also included Precision, Recall and F-Measure values. Precision and Recall values play a similar role to sensitivity and specificity, with recall being equivalent to sensitivity, and precision being the calculation of the number of correct positive predictions made. Precision and Recall, however, differ from their counterparts in being more robust to imbalance in datasets. F-Measures are a combined evaluation of these two measures. For more details consult Supplementary Appendix 6.Loss metrics were reported using the Mean Squared Error (Eq. 2);$$begin{aligned} MSE = frac{1}{n} sum _{i = 1}^{n} left( y_{i} – hat{y}_{i} right) ^{2} end{aligned}$$
    (2)
    Loss values are interpreted considering values closest to 0 as an indicator of greater confidence when using the model to make new predictions.Final evaluation metrics were reported when using algorithms to classify only the original samples, without augmented data. Augmented data was, therefore, solely used for training and validation. Finally, so as to assess the impact data augmentation has on supervised learning algorithms, algorithms were also trained on the raw data. This was performed using 70% of the raw data for training, while the remaining 30% was used as a test set. More

  • in

    Priority list of biodiversity metrics to observe from space

    1.Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).2.Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).Article 

    Google Scholar 
    3.What are EBVs? GEO BON https://geobon.org/ebvs/what-are-ebvs/ (2020).4.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Jetz, W. et al. Monitoring plant functional diversity from space. Nat. Plants 2, 16024 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Navarro, L. M. et al. Monitoring biodiversity change through effective global coordination. Curr. Opin. Environ. Sustain. 29, 158–169 (2017).Article 

    Google Scholar 
    7.Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).Article 

    Google Scholar 
    8.Lausch, A. et al. Understanding forest health with remote sensing, part III: requirements for a scalable multi-source forest health monitoring network based on data science approaches. Remote Sens. 10, 1120 (2018).Article 

    Google Scholar 
    9.Barga, R., Gannon, D. & Reed, D. The client and the cloud democratizing research computing. IEEE Internet Comput. 15, 72–75 (2011).Article 

    Google Scholar 
    10.Muller-Karger, F. E. et al. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecol. Appl. 28, 749–760 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).Article 

    Google Scholar 
    12.Geijzendorffer, I. R. et al. Bridging the gap between biodiversity data and policy reporting needs: an essential biodiversity variables perspective. J. Appl. Ecol. 53, 1341–1350 (2016).Article 

    Google Scholar 
    13.Rohde, S., Hostmann, M., Peter, A. & Ewald, K. C. Room for rivers: an integrative search strategy for floodplain restoration. Landsc. Urban Plan. 78, 50–70 (2006).Article 

    Google Scholar 
    14.Belward, A. The Global Observing System for Climate: Implementation Needs Report No. GCOS-200 (Global Climate Observing System, 2016).15.Bojinski, S. et al. The concept of essential climate variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 95, 1431–1443 (2014).Article 

    Google Scholar 
    16.Wu, J. G. Effects of changing scale on landscape pattern analysis: scaling relations. Landsc. Ecol. 19, 125–138 (2004).Article 

    Google Scholar 
    17.Lake, P. S. Disturbance, patchiness, and diversity in streams. J. N. Am. Benthol. Soc. 19, 573–592 (2000).Article 

    Google Scholar 
    18.Graves, S. J. et al. Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sens. 8, 161 (2016).Article 

    Google Scholar 
    19.Schlerf, M., Atzberger, C. & Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 95, 177–194 (2005).Article 

    Google Scholar 
    20.Xue, Y. F., Wang, T. J. & Skidmore, A. K. Automatic counting of large mammals from very high resolution panchromatic satellite imagery. Remote Sens. 9, 878 (2017).Article 

    Google Scholar 
    21.Zhao, M. S., Heinsch, F. A., Nemani, R. R. & Running, S. W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 95, 164–176 (2005).Article 

    Google Scholar 
    22.Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).Article 

    Google Scholar 
    23.Curran, P. J., Dungan, J. L. & Peterson, D. L. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry testing the Kokaly and Clark methodologies. Remote Sens. Environ. 76, 349–359 (2001).Article 

    Google Scholar 
    24.Homolova, L., Maenovsky, Z., Clevers, J., Garcia-Santos, G. & Schaeprnan, M. E. Review of optical-based remote sensing for plant trait mapping. Ecol. Complex. 15, 1–16 (2013).Article 

    Google Scholar 
    25.Khosravipour, A., Skidmore, A. K. & Isenburg, M. Generating spike-free digital surface models using LiDAR raw point clouds: a new approach for forestry applications. Int. J. Appl. Earth Obs. Geoinf. 52, 104–114 (2016).Article 

    Google Scholar 
    26.Verger, A. & Descals, A. Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)—300 m Version 1; Algorithm Theoretical Basis Document (ATBD), Issue 1.00 (Framework Service Contract No. 199494-JRC) (Copernicus Global Land Operations CGLOPS-1, 2020).27.Copernicus Global Land Service: FAPAR Copernicus https://land.copernicus.eu/global/about (2020).28.Schmidt, K. S. et al. Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm. Eng. Remote Sens. 70, 703–715 (2004).Article 

    Google Scholar 
    29.Arvor, D., Durieux, L., Andres, S. & Laporte, M. A. Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective. ISPRS J. Photogramm. Remote Sens. 82, 125–137 (2013).Article 

    Google Scholar 
    30.Lucas, R., Rowlands, A., Brown, A., Keyworth, S. & Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 62, 165–185 (2007).Article 

    Google Scholar 
    31.Skidmore, A. K. An expert system classifies eucalypt forest types using Landsat thematic mapper data and a digital terrain model. Photogramm. Eng. Remote Sens. 55, 1449–1464 (1989).
    Google Scholar 
    32.Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    33.Lausch, A. et al. Understanding and quantifying landscape structure—a review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 295, 31–41 (2015).Article 

    Google Scholar 
    34.Buchhorn, M. et al. Copernicus global land cover layers—Collection 2. Remote Sens. 12, 1044 (2020).Article 

    Google Scholar 
    35.Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).Article 

    Google Scholar 
    36.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Pekel, J., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Ye, H. et al. Improving remote sensing-based net primary production estimation in the grazed land with defoliation formulation model. J. Mt. Sci. 16, 323–336 (2019).Article 

    Google Scholar 
    39.Curran, P. J. & Steele, C. M. MERIS: the re-branding of an ocean sensor. Int. J. Remote Sens. 26, 1781–1798 (2005).Article 

    Google Scholar 
    40.Garrigues, S., Allard, D., Baret, F. & Weiss, M. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sens. Environ. 105, 286–298 (2006).Article 

    Google Scholar 
    41.Wu, S. B. et al. Monitoring tree-crown scale autumn leaf phenology in a temperate forest with an integration of PlanetScope and drone remote sensing observations. ISPRS J. Photogramm. Remote Sens. 171, 36–48 (2021).Article 

    Google Scholar 
    42.Salcedo-Sanz, S. et al. Machine learning information fusion in Earth observation: a comprehensive review of methods, applications and data sources. Inf. Fusion 63, 256–272 (2020).Article 

    Google Scholar 
    43.Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Healy, C., Gotelli, N. J. & Potvin, C. Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J. Ecol. 96, 903–913 (2008).Article 

    Google Scholar 
    45.Richards, J. A., Woodgate, P. W. & Skidmore, A. K. An explanation of enhanced radar backscattering from flooded forests. Int. J. Remote Sens. 8, 1093–1100 (1987).Article 

    Google Scholar 
    46.Morsdorf, F. et al. in Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 83–104 (Springer International, 2020).47.Gratani, L. & Bombelli, A. Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environ. Exp. Bot. 43, 141–153 (2000).Article 

    Google Scholar 
    48.Kitayama, K. & Aiba, S. I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J. Ecol. 90, 37–51 (2002).Article 

    Google Scholar 
    49.Nagler, P. L., Glenn, E. P. & Hinojosa-Huerta, O. Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens. Environ. 113, 1473–1485 (2009).Article 

    Google Scholar 
    50.Brassard, B. W., Chen, H. Y. H., Bergeron, Y. & Pare, D. Differences in fine root productivity between mixed- and single-species stands. Funct. Ecol. 25, 238–246 (2011).Article 

    Google Scholar 
    51.Reich, P. B., Walters, M. B. & Ellsworth, D. S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392 (1992).Article 

    Google Scholar 
    52.Huston, M. A. & Wolverton, S. The global distribution of net primary production: resolving the paradox. Ecol. Monogr. 79, 343–377 (2009).Article 

    Google Scholar 
    53.Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. Remote Sens. Environ. 115, 1102–1114 (2011).Article 

    Google Scholar 
    54.Garonna, I., de Jong, R. & Schaepman, M. E. Variability and evolution of global land surface phenology over the past three decades (1982–2012). Glob. Change Biol. 22, 1456–1468 (2016).Article 

    Google Scholar 
    55.Niklas, K. J. et al. ‘Diminishing returns’ in the scaling of functional leaf traits across and within species groups. Proc. Natl Acad. Sci. USA 104, 8891–8896 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).Article 

    Google Scholar 
    57.Bai, Y. F. et al. Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol. 49, 1204–1215 (2012).CAS 
    Article 

    Google Scholar 
    58.Schmeller, D. S. et al. An operational definition of essential biodiversity variables. Biodivers. Conserv. 26, 2967–2972 (2017).Article 

    Google Scholar 
    59.Potter, C. et al. Recent history of large-scale ecosystem disturbances in North America derived from the AVHRR satellite record. Ecosystems 8, 808–824 (2005).Article 

    Google Scholar 
    60.Roy, D. P., Boschetti, L., Justice, C. O. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).Article 

    Google Scholar 
    61.Russell-Smith, J., Ryan, P. G. & Durieu, R. A LANDSAT MSS-derived fire history of Kakadu National Park, monsoonal northern Australia, 1980–94: seasonal extent, frequency and patchiness. J. Appl. Ecol. 34, 748–766 (1997).Article 

    Google Scholar 
    62.Van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).CAS 
    Article 

    Google Scholar 
    63.Nidumolu, U. B., De Bie, C., Van Keulen, H. & Skidmore, A. K. Enhancement of area-specific land-use objectives for land development. Land Degrad. Dev. 15, 513–525 (2004).Article 

    Google Scholar 
    64.Chen, F. et al. Fast automatic airport detection in remote sensing images using convolutional neural networks. Remote Sens. 10, 443 (2018).Article 

    Google Scholar 
    65.Weng, Q. H. Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends. Remote Sens. Environ. 117, 34–49 (2012).Article 

    Google Scholar 
    66.Scott, G. J., England, M. R., Starms, W. A., Marcum, R. A. & Davis, C. H. Training deep convolutional neural networks for land-cover classification of high-resolution imagery. IEEE Geosci. Remote Sens. Lett. 14, 549–553 (2017).Article 

    Google Scholar 
    67.Skidmore, A. K., Turner, B. J., Brinkhof, W. & Knowles, E. Performance of a neural network: mapping forests using GIS and remotely sensed data. Photogramm. Eng. Remote Sens. 63, 501–514 (1997).
    Google Scholar 
    68.Joshi, C. et al. Indirect remote sensing of a cryptic forest understorey invasive species. For. Ecol. Manag. 225, 245–256 (2006).Article 

    Google Scholar 
    69.Defries, R. S. et al. Mapping the land surface for global atmosphere–biosphere models—toward continuous distributions of vegetation’s functional properties. J. Geophys. Res. Atmos. 100, 20867–20882 (1995).Article 

    Google Scholar 
    70.Cunliffe, A. M., Brazier, R. E. & Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 183, 129–143 (2016).Article 

    Google Scholar 
    71.Asner, G. P., Wessman, C. A. & Schimel, D. S. Heterogeneity of savanna canopy structure and function from imaging spectrometry and inverse modeling. Ecol. Appl. 8, 1022–1036 (1998).Article 

    Google Scholar 
    72.Peterseil, J. et al. Evaluating the ecological sustainability of Austrian agricultural landscapes—the SINUS approach. Land Use Policy 21, 307–320 (2004).Article 

    Google Scholar 
    73.Saura, S., Bodin, O. & Fortin, M. J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).Article 

    Google Scholar 
    74.De Jong, R., de Bruin, S., de Wit, A., Schaepman, M. E. & Dent, D. L. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sens. Environ. 115, 692–702 (2011).Article 

    Google Scholar 
    75.Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Baldeck, C. A. & Asner, G. P. Improving remote species identification through efficient training data collection. Remote Sens. 6, 2682–2698 (2014).Article 

    Google Scholar 
    77.Fassnacht, F. E. et al. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 186, 64–87 (2016).Article 

    Google Scholar 
    78.Lausch, A. et al. Linking earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).Article 

    Google Scholar 
    79.Shi, Y. F., Wang, T. J., Skidmore, A. K. & Heurich, M. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 137, 163–174 (2018).Article 

    Google Scholar 
    80.Wilkes, P. et al. Using discrete-return airborne laser scanning to quantify number of canopy strata across diverse forest types. Methods Ecol. Evol. 7, 700–712 (2016).Article 

    Google Scholar 
    81.Hyyppa, J. et al. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 29, 1339–1366 (2008).Article 

    Google Scholar 
    82.Transon, J., d’Andrimont, R., Maugnard, A. & Defourny, P. Survey of hyperspectral earth observation applications from space in the Sentinel-2 context. Remote Sens. 10, 157 (2018).Article 

    Google Scholar 
    83.Guanter, L. et al. The EnMAP spaceborne imaging spectroscopy mission for Earth observation. Remote Sens. 7, 8830–8857 (2015).Article 

    Google Scholar 
    84.Qi, W. L. & Dubayah, R. O. Combining Tandem-X InSAR and simulated GEDI LiDAR observations for forest structure mapping. Remote Sens. Environ. 187, 253–266 (2016).Article 

    Google Scholar 
    85.Ramoelo, A., Cho, M., Mathieu, R. & Skidmore, A. K. Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote Sens. 9, 094096 (2015).Article 

    Google Scholar 
    86.Madonsela, S. et al. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf. 58, 65–73 (2017).Article 

    Google Scholar 
    87.Bush, A. et al. Connecting Earth observation to high-throughput biodiversity data. Nat. Ecol. Evol. 1, 0176 (2017).Article 

    Google Scholar 
    88.Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    89.Meireles, J. E. et al. Leaf reflectance spectra capture the evolutionary history of seed plants. New Phytol. 228, 485–493 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.McManus, K. M. et al. Phylogenetic structure of foliar spectral traits in tropical forest canopies. Remote Sens. 8, 196 (2016).Article 

    Google Scholar 
    91.Urbano, F. et al. Wildlife tracking data management: a new vision. Phil. Trans. R. Soc. B Biol. Sci. 365, 2177–2185 (2010).Article 

    Google Scholar 
    92.Cubaynes, H. C., Fretwell, P. T., Bamford, C., Gerrish, L. & Jackson, J. A. Whales from space: four mysticete species described using new VHR satellite imagery. Mar. Mammal. Sci. 35, 466–491 (2019).Article 

    Google Scholar 
    93.Yang, Z. et al. Spotting East African mammals in open savannah from space. PLoS ONE 9, e115989 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Neumann, W. et al. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement. Mov. Ecol. 3, 8 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Weiss, J. R., Smythe, W. D. & Lu, W. W. Science Traceability. In Proc. IEEE Aerospace Conference 292–299 (IEEE, 2005).96.National Academies of Sciences, Engineering, and Medicine Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space (National Academies Press, 2018).97.Verstraete, M. M., Diner, D. J. & Bezy, J. L. Planning for a spaceborne Earth observation mission: from user expectations to measurement requirements. Environ. Sci. Policy 54, 419–427 (2015).Article 

    Google Scholar 
    98.Skidmore, A. K. et al. Agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008).Article 

    Google Scholar 
    100.O’Connor, B., Bojinski, S., Roosli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).101.Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).Article 

    Google Scholar 
    103.Walters, M. et al. Essential Biodiversity Variables UNEP/CBD/SBSTTA/17/INF/7 (Convention on Biological Diversity, 2013).104.Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Coll, M. et al. Ecological indicators to capture the effects of fishing on biodiversity and conservation status of marine ecosystems. Ecol. Indic. 60, 947–962 (2016).Article 

    Google Scholar 
    106.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    107.Gibert, J. P., Dell, A. I., DeLong, J. P. & Pawar, S. Scaling-up trait variation from individuals to ecosystems. Adv. Ecol. Res. 52, 1–17 (2015).Article 

    Google Scholar 
    108.Hagen, M. et al. Biodiversity, species interactions and ecological networks in a fragmented world. Adv. Ecol. Res. 46, 89–210 (2012).Article 

    Google Scholar 
    109.Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).Article 

    Google Scholar 
    110.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Schmeller, D. et al. Building capacity in biodiversity monitoring at the global scale. Biodivers. Conserv. 26, 2765–2790 (2017).Article 

    Google Scholar 
    114.Belward, A. S. & Skoien, J. O. Who launched what, when and why; trends in global land-cover observation capacity from civilian earth observation satellites. ISPRS J. Photogramm. Remote Sens. 103, 115–128 (2015).Article 

    Google Scholar 
    115.Vogel, D. Private global business regulation. Annu. Rev. Polit. Sci. 11, 261–282 (2008).Article 

    Google Scholar 
    116.Tranquilli, S. et al. Lack of conservation effort rapidly increases African great ape extinction risk. Conserv. Lett. 5, 48–55 (2012).Article 

    Google Scholar 
    117.Buchanan, G. M. et al. Free satellite data key to conservation. Science 361, 139–140 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    118.Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).Article 

    Google Scholar 
    119.Wulder, M. A. et al. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015).Article 

    Google Scholar 
    120.Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    121.Czyz, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976–982 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    123.Cavender-Bares, J. et al. Associations of leaf spectra with genetic and phylogenetic variation in oaks: prospects for remote detection of biodiversity. Remote Sens. 8, 221 (2016).Article 

    Google Scholar 
    124.Surface Biology and Geology (SBG) NASA Science https://science.nasa.gov/earth-science/decadal-sbg (2020). More

  • in

    Using past interglacial temperature maxima to explore transgressions in modern Maldivian coral and Amphistegina bleaching thresholds

    Study site and target foraminiferal speciesThe Maldivian archipelago is a partially drowned carbonate platform within the central, equatorial Indian Ocean. It consists of two rows of north–south orientated atolls, which encompass an Inner Sea. The lowermost neritic carbonate unit sits upon volcanic bedrock and has been dated back to the Eocene19 with continuous drift deposition, within the Inner Sea, starting ~ 12.9 Ma at the establishment of the modern South Asian Monsoon (SAM)35,36. This seasonally reversing, major climatic system has an impact on both the regional precipitation patterns as well as physiochemical oceanographic properties (Fig. 1). The summer southwest SAM brings warm, wet conditions to the Indian subcontinent, as well as higher saline surface waters from the Arabian Sea into the Maldives region. In comparison, the winter northeast SAM results in cool, dry continental conditions and transports lower salinity water from the Bay of Bengal into the central, equatorial Indian Ocean. As a result, the Maldives seasonal salinity depth profiles can vary significantly, yet due to its tropical location the seasonal sea water temperatures are relatively stable.Three symbiont-bearing foraminiferal species are used in this study: Amphistegina lessonii, Globigerinoides ruber (white) and Trilobatus sacculifer (with sac-like final chamber):Amphistegina lessonii is a larger benthic, symbiont-bearing (diatoms) foraminiferal species. It has a shallow depth range (0–50 m)37,38,39 and is globally abundant in tropical coral reef, benthic foraminiferal shoal and general carbonate shelf settings40. Similarly to corals, amphisteginids have been shown to bleach under high temperatures/high irradiance levels with the new development of the Amphistegina Bleaching Index (ABI) as an indicator of photo-inhibitory stress in coral reef settings41,42. From ~ 30 °C this species starts showing signs of thermal stress, with bleaching and mortality reported for temperatures  > 31 °C11,12.Globigerinoides ruber (w) hosts dinoflagellate endosymbionts and is the most common planktonic foraminiferal species in tropical-subtropical waters13 state that while G. ruber (w) is generally considered one of the shallowest-dwelling species, its depth distribution does vary in relation to regional ecological conditions. It has a particular relation to the nutricline depth in less turbid, oligotrophic conditions43 which has been confirmed for the Maldives28. It is omnivorous, however in comparison to other omnivorous, symbiont-bearing species, it has demonstrated an elevated adaptation for consuming phytoplankton protein over zooplankton protein13. From culture experiments, it has a broad temperature (14–31 °C) and salinity (22–49 PSU) tolerance, and has been reported as the most tolerant species to low sea surface salinity (SSS)13. This species occurs year-round and has a fortnightly reproduction13.Trilobatus sacculifer is a planktonic foraminiferal species abundant in tropical-subtropical surface waters and as such is extensively used in paleo-reconstructions. It hosts dinoflagellate endosymbionts yet is omnivorous, feeding predominantly on calanoid copepods13. It is a euryhaline species, with a broad salinity (24–47 PSU) and temperature (14–32 °C) tolerance. Similarly to G. ruber (w), this species occurs year-round and has a monthly reproduction on a synodic lunar cycle13. While a shallow dwelling species, it is generally reported to live slightly deeper in the water column, in comparison to G. ruber (w)28,30,44.SamplingAll planktonic foraminiferal specimens (G. ruber (w) and T. sacculifer (w/s)) for the geochemical analysis (δ18Oc and Mg/Ca) originate from the International Ocean Discovery Program (IODP) Expedition 359, Site U1467 (4° 51.0274′ N, 73° 17.0223′ E) drilled in 2015 within the Inner Sea of the Maldivian archipelago at a water depth of 487 m19. The age model for these samples was adopted from a previous study45 which is based on the correlation of their long-term (0–1800 kyr) Site 359-U1467 C. mabahethi and G. ruber (w) δ18Oc records to the stacked reference curve of46. Recent surface sediment samples (mudline A and B: representing the sample from the sediment/water interface), as well as three samples from the peak of MIS9e (U1467C, 2H6, 0–1 cm; U1467C, 2H6, 15–16 cm; U1467C, 2H6, 18–19 cm) and MIS11c (U1467B, 3H2, 147–148 cm; U1467B, 3H3, 9–10 cm; U1467B, 3H3, 12–13 cm) were analysed19,28 (sample locations are shown on Fig. 3). The mudline is identified as Recent, likely representing the last few hundred years, based on the presence of Rose Bengal (1 g/L) stained ostracods and benthic foraminifera. The study by45 has verified that diagenetic influences, within this shallow, carbonate environment, are not a concern for foraminiferal geochemical compositions over the investigated time-interval (MIS1-11).Rose Bengal stained A. lessonii specimens were obtained from modern surface rubble samples collected by hand, at 10 m water depth, during the 2015 International Union for Conservation of Nature (IUCN) REGENERATE cruise47 (Supplementary Table 6). Samples were collected from the reefs of two islands, Maayafushi and Rasdhoo, both located within the central part of the Maldivian archipelago. As the foraminifera shells were stained pink, it implies they were living at the time of collection. These specimens were used for stable isotopic analysis and their reconstructed temperatures represent modern (a cumulative signal encompassing their lifespan of four to twelve months48) conditions (Supplementary Tables 5–6). A full explanation of the Rose Bengal protein stain for foraminifera is detailed in49.δ18Oc stable isotopic analysisAll samples were initially washed using a 32 μm sieve to remove the finer clay and silt fractions. Subsequently, they were air dried and sieved into discrete sizes for foraminiferal picking. To ensure enough calcite for the measurements, all specimens for Individual Foraminifera Analysis (IFA) for both G. ruber (w) and T. sacculifer (w/s) (n = 632) were picked from the 355–400 μm size fraction. In addition, traditional whole-shell (pooled) measurements for G. ruber (w) (n = 24) were conducted on specimens from the 212–400 μm fraction (2–5 pooled specimens). Trilobatus sacculifer (w/s) traditional whole-shell analysis (n = 21) was measured on specimens (2 pooled specimens) from the 300–355 μm fraction. The majority of these pooled measurements are obtained from28,45,50,51 (Supplementary Table 1). Amphistegina lessonii measurements were run on single specimens  > 250 μm in size. Prior to stable isotopic analysis, all shells were briefly cleaned (1–2 s) by ultrasonication in Milli-Q water to remove any adhering particles. All stable isotopic measurements were conducted at the School of GeoSciences at the University of Edinburgh on a Thermo Electron Delta + Advantage mass spectrometer integrated with a Kiel carbonate III automated extraction line. Samples were reacted with 100% phosphoric acid (H3PO4) at 90 °C for 15 min, with the evolved CO2 gas collected in a liquid nitrogen coldfinger and analysed compared to a reference gas. All samples are corrected using an internal laboratory standard and expressed as parts per mil (‰) relative to Vienna Pee Dee Belemnite (VPDB). Replicate measurements of the standards give the instrument an analytical precision (1σ) of ~ 0.05 ‰ for δ18O and δ13C.Mg/Ca analysisThe Mg/Ca data is obtained from28,45,50,51 (Supplementary Table 1). Each G. ruber (w) Mg/Ca analysis (n = 17; 212–250 μm in size) was conducted on 30 pooled specimens by inductively coupled plasma optical emission spectrometry (ICP-OES) on a Thermoscientific iCap 6300 (dual viewing) at the Institute of Geosciences of the Goethe-University of Frankfurt. All samples were initially cleaned (1–2 s) by ultrasonication in Milli-Q water and then the standard oxidative cleaning protocol of52 followed to prevent clay mineral contamination. The final centrifuged sample solution was diluted with an yttrium solution (1 mg/l) prior to measurement to allow for the correction of matrix effects. In addition, before each analysis five calibration solutions were measured to allow for intensity ratio calibrations. All element/Ca measurements were standardized using an internal consistency standard (ECRM 752–1, 3.761 mmol/mol Mg/Ca). Furthermore, the elements Al, Fe, and Mn were screened and blanks periodically run to monitor for further signs of contamination during the analyses.Establishment of present and past seawater temperaturesPrior to temperature calculations, we test the IFA distributions for normality using the Shapiro‐Wilk test and the Fisher–Pearson coefficient of skewness with bootstrap confidence intervals, to define the skewness of the datasets53 (Supplementary Table 3). The Recent G. ruber (w) and T. sacculifer (w/s) and MIS11c T. sacculifer are normally distributed. In the case of both MIS9e datasets and the MIS11c G. ruber population, the null hypothesis that the data are normally distributed (p ≤ 0.05) is rejected (Supplementary Table 3). Considering bioturbation within the sediment record is a possibility, we use two methods to identify and remove outliers in the IFA datasets. Firstly, the inter-quartile range (IQR) is used for each δ18Oc dataset, which defines a measurement as an outlier if it falls outside the range [Q1 − 1.5 (Q3 − Q1), Q3 + 1.5 (Q3 − Q1)], with IQR = Q3 − Q1 and Q3 and Q1 representing the third and first quartile of the dataset20. But if there is considerable reworking, the IQR method would not necessarily identify reworked glacial measurements (highest δ18Oc values) within the interglacial samples. As such, the Recent IFA datasets, which are both normally distributed, are used to further set a rudimentary cut-off point for the highest δ18Oc (= lowest temperatures) value to expect during past interglacial minima periods for both G. ruber (w) and T. sacculifer (w/s) (this is discussed further in the Supplementary Materials, Supplementary Figs. 1–3).There are innumerable analytical techniques (e.g., traditional mass spectrometry, secondary-ion mass spectrometry, laser ablation inductively coupled plasma mass spectrometry), proxies (Mg/Ca, δ18O, clumped isotopes, TEX86, Uk’37) as well as target medians (e.g., calcitic shells of foraminifera, aragonitic coral skeletons, ice, lipids, alkenones) which are used in marine paleo-temperature reconstructions. Furthermore, different methods exist in the literature to calculate temperature estimates using both planktonic foraminiferal δ18Oc and Mg/Ca measurements with innumerable species-specific δ18O-temperature and Mg/Ca-temperature equations reported20,23,30,54,55,56. Moreover, due to the exponential nature of the Mg/Ca-temperature equations, if inappropriately applied, offsets in the upper temperature range are exacerbated. Additional considerations are species-specific offsets and differential geochemical compositions within the shell (e.g., high versus low Mg banding, gametogenic calcite). Trilobatus sacculifer gametogenic calcite has been reported to be significantly enriched in Mg in comparison to the rest of the shell57. As T. sacculifer specimens selected for use in this study underwent reproduction, indicated by the presence of a sac-like final chamber58, we can expect their Mg/Ca ratios to be biased. As such, to avoid overestimates we chose to use only G ruber (w, pooled) Mg/Ca and δ18Oc data to calculate representative δ18Osw values for each time interval, for use with both the G. ruber (w) and T. sacculifer (w/s) δ18Oc IFA datasets. Considering both planktonic species are considered as shallow-dwellers with similar living depths and an affinity for the DCM, the utilisation of common δ18Osw values is applicable13,28,30.The G. ruber Mg/Ca-temperature Eq. (1) from55 (temperature calibration range: ~ 22–27 °C), similarly applied in the Maldivian study of28, was used in this study:$$Mg/Ca=0.34left(pm 0.08right)mathrm{exp}(0.102left(pm 0.010right)*T)$$
    (1)
    The applied δ18O-temperature species-specific equations (Eqs. 2 and 3) were previously utilised in the local study by28. Both the G. ruber (Eq. 2) and T. sacculifer (Eq. 3) equations are from the Indian Ocean study of59 (temperature calibration range: ~ 20–31 °C):$$T=12.75-5({delta }^{18}{O}_{c}-{delta }^{18}{O}_{sw})$$
    (2)
    $$T=11.95-5.26({delta }^{18}{O}_{c}-{delta }^{18}{O}_{sw})$$
    (3)
    Using the above equations, the range in temperature estimates are obtained as follows (Fig. 4):

    1.

    The mean G. ruber (w) Mg/Ca measurements are used together with Eq. (1) to calculate a temperature estimate for each time point (Supplementary Table 1). Since the Mg/Ca calcification temperatures are based on 30 pooled specimens, they are considered to reflect mean calcification temperatures.

    2.

    The Mg/Ca derived temperature estimates are then used together with the mean traditional (pooled) G. ruber (w) δ18Oc data and Eq. (2) to calculate representative δ18Osw values for each time point (Supplementary Table 2). As these are calculated from pooled samples, they are considered to mirror mean δ18Osw values for both the Recent and fossil populations.

    3.

    The G. ruber (w) and T. sacculifer (w/s) IFA datasets are then used, together with the relevant species-specific δ18O-temperature equations and δ18Osw values, to calculate the spread in temperature estimates (Fig. 4, Supplementary Tables 3–4).

    Trilobatus sacculifer (w/s) data from the glacial maxima of MIS12 are included in the study to illustrate the applicability of the IFA method, however, as they do not contribute to the discussion on bleaching thresholds, they are discussed further in the Supplementary Materials (Supplementary Figs. 1, 3).Finally, the temperature estimates for the shallow-dwelling symbiont-bearing benthic A. lessonii are obtained using the genus-specific δ18O-temperature equation of60 (Eq. 4) (Supplementary Tables 5–6).$$T=16.3-4.24({delta }^{18}{O}_{c}-{delta }^{18}{O}_{sw})$$
    (4)
    Considering the benthic specimens were deemed living at the time of collection (Rose Bengal stained), a mean regional surface (0 m) δ18Osw value (0.49 ‰) is used together with the δ18Oc data in the calculations (Supplementary Tables 5–6). More

  • in

    Ecological recipes for selecting community function

    1.Doolittle, W. F. & Zhaxybayeva, O. BioScience 60, 102–112 (2010).Article 

    Google Scholar 
    2.Liautaud, K., van Nes, E. H., Barbier, M., Scheffer, M. & Loreau, M. Ecol. Lett. 22, 1243–1252 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    3.Morris, A., Meyer, K. & Bohannan, B. Phil. Trans. R. Soc. B Biol. Sci. 375, 20190244 (2020).CAS 
    Article 

    Google Scholar 
    4.De Monte, S. & Rainey, P. B. J. Biosci. 39, 237–248 (2014).PubMed 

    Google Scholar 
    5.Chang, C.-Y. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01457-5 (2021).6.Goldford, J. E. et al. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Machado, D. et al. Nat. Ecol. Evol. 5, 195–203 (2021).PubMed 
    Article 

    Google Scholar 
    8.Ratzke, C., Barrere, J. & Gore, J. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    9.Wright, E. S. & Vetsigian, K. H. Nat. Commun. 7, 11274 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Szathmáry, E. & Demeter, L. J. Theor. Biol. 128, 463–486 (1987).PubMed 
    Article 

    Google Scholar 
    11.Xie, L., Yuan, A. E. & Shou, W. PLoS Biol. 17, e3000295 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.van Vliet, S. & Doebeli, M. Proc. Natl Acad. Sci. USA 116, 20591–20597 (2019).PubMed 
    Article 

    Google Scholar 
    13.Doulcier, G., Lambert, A., De Monte, S. & Rainey, P. B. eLife 9, e53433 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Black, A. J., Bourrat, P. & Rainey, P. B. Nat. Ecol. Evol. 4, 426–436 (2020).PubMed 
    Article 

    Google Scholar 
    15.Williams, H. T. P. & Lenton, T. M. Proc. Natl Acad. Sci. USA 104, 8918–8923 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Pearce, M. T., Agarwala, A. & Fisher, D. S. Proc. Natl Acad. Sci. USA 117, 14572–14583 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Roy, F., Barbier, M., Biroli, G. & Bunin, G. PLoS Comput. Biol. 16, e1007827 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification

    1.EU. No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, 35–55 (2014).
    Google Scholar 
    2.Ludyanskiy, M. L., McDonald, D. & MacNeill, D. Impact of the Zebra Mussel, a Bivalve Invader. Bioscience 43, 533–544 (1993).Article 

    Google Scholar 
    3.Lalaguna, C. D. & Marco, A. A. The zebra mussel invasion in Spain and navigation rules. Aquat. Invasions 3, 315–324 (2008).Article 

    Google Scholar 
    4.Rajagopal, S. et al. Origin of spanish invasion by the zebra mussel, dreissena polymorpha (pallas, 1771) revealed by amplified fragment length polymorphism (AFLP) fingerprinting. Biol. Invasions 11, 2147–2159 (2009).Article 

    Google Scholar 
    5.CABI Invasive species Compendium: Dreissena polymorpha (zebra mussel) 2017. https://www.cabi.org/isc/datasheet/85295.6.Marescaux, J. & Van Doninck, K. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia). Zookeys 365, 235–244 (2013).Article 

    Google Scholar 
    7.Benson, A. J., Raikow, D., Larson, J., Fusaro, A., & Bogdanoff, A. K. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Gainesville, FL (2017).8.Minchin, D., Lucy, F. & Sullivan, M. Zebra Mussel: Impacts and Spread. Invasive Aquat. Species Eur. Distrib. Impacts Manag. 135–146. © 2002 Kluwer Acad. Publ. Dordreicht, Netherlands. 135–148 (2002) doi:https://doi.org/10.1007/978-94-015-9956-6_15.9.Montero Melendez, J. Control of invasive alien species in Guadalquivir river basin. EURO-RIOB 2017. https://www.riob.org/es/node/404510.Molloy, D. P., Karatayev, A., Burlakova, L. E., Kurandina, D. P. & Laruelle, F. Natural enemies of zebra mussels: predators, parasites, and ecological competitors. Rev. Fish. Sci. 5, 27–97 (1997).Article 

    Google Scholar 
    11.Nalepa, T. F. & Schloesser, D. W. Zebra Mussels Biology, Impacts, and Control (Lewis Publishers, Boca Raton, 1993).
    Google Scholar 
    12.Birnbaum, C. NOBANIS – Invasive Alien Species Fact Sheet – Dreissena polymorpha. Accessed 2 Dec 2019. https://www.nobanis.org (Online Database of the European Network on Invasive Alien Species – NOBANIS, 2011).13.Lowe, S., Browne, M., Boudjelas, S., De Poorter, M. 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species
    Database. (The Invasive Species Specialist Group (ISSG), 2000).14.Glomski, L. M. Zebra Mussel Chemical Control Guide. US Army Corps of Engineers: Waterways Experiment Station. https://erdclibrary.erdc.dren.mil/jspui/bitstream/11681/6966/1/ERDC-EL-TR-15-9.pdf (2015). 15.Boelman, S. F., Neilson, F. M., Dardeau, E. A. & Cross, T. Zebra mussel (Dreissena polymorpha) control handbook for facility operators, first edition . US Army Corps of Engineers: Waterways Experiment Station. https://hdl.handle.net/11681/2966 (1997).16.Durán, C., Lanao, M., Anadón, A. & Touyá, V. Management in practice management strategies for the zebra mussel invasion in the Ebro River basin. Aquat. Invasions 5, 309–316 (2010).Article 

    Google Scholar 
    17.Bij de Vaate, A. Rajagopal, S. & van der Velde, G. The zebra mussel in Europe: summary and synthesis. in The Zebra Mussel in Europe (ed van der Velde, G.
    et al.) 415–421 (Backhuys Publishers, 2010).18.Herder, J. et al. Environmental DNA—a review of the possible applications for the detection of (invasive) species. Report 2013-104. Accessed 3 May 2019. https://www.researchgate.net/publication/283267157_Environmental_DNA_-_a_review_of_the_possible_applications_for_the_detection_of_invasive_species#fullTextFileContent (Stichting RAVON, Nijmegen, 2014).19.Xiong, W., Li, H. & Zhan, A. Early detection of invasive species in marine ecosystems using high-throughput sequencing: technical challenges and possible solutions. Mar. Biol. 163, 1–12 (2016).CAS 
    Article 

    Google Scholar 
    20.Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).Article 

    Google Scholar 
    21.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. ‘Sight-unseen’ detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article 

    Google Scholar 
    22.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article 

    Google Scholar 
    23.Jerde, C. L. et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70, 522–526 (2013).CAS 
    Article 

    Google Scholar 
    24.Laramie, M. B., Pilliod, D. S. & Goldberg, C. S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Conserv. 183, 29–37 (2015).Article 

    Google Scholar 
    25.Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8, e56584 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Gingera, T. D., Bajno, R., Docker, M. F. & Reist, J. D. Environmental DNA as a detection tool for zebra mussels Dreissena polymorpha (Pallas, 1771) at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Manag. Biol. Invasions 8, 287–300 (2017).Article 

    Google Scholar 
    27.Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Kaprou, G. D. et al. Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics. Microsyst. Technol. 22, 1529–1534 (2016).CAS 
    Article 

    Google Scholar 
    29.Mori, Y. & Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15, 62–69 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Fang, X., Liu, Y., Kong, J. & Jiang, X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82, 3002–3006 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Rafati, A. & Gill, P. Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim. Acta 182, 523–530 (2014).Article 
    CAS 

    Google Scholar 
    32.Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mori, Y., Kitao, M., Tomita, N. & Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 59, 145–157 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Garrido-Maestu, A., Fuciños, P., Azinheiro, S., Carvalho, J. & Prado, M. Systematic loop-mediated isothermal amplification assays for rapid detection and characterization of Salmonella spp., Enteritidis and Typhimurium in food samples. Food Control 80, 297–306 (2017).CAS 
    Article 

    Google Scholar 
    36.Verkaar, E., Nijman, I., Boutaga, K. & Lenstra, J. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Sci. 60, 365–369 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Wilson-Wilde, L., Norman, J. & Robertson, J. et al. Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I
    (COI) gene. Forensic Sci. Med. Pathol. 6, 233–241. https://doi.org/10.1007/s12024-010-9172-y (2010). CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Hebert, P. D. N., Cywinska, A., Ball, S. L. & Jeremy, R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270(1512), 313–321 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Staroscik, A. Copy number calculator for realtime PCR. http://www.scienceprimer.com/copy-number-calculator-for-realtime-pcr (2012).40.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Zanoli, L. M. & Spoto, G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors 3, 18–43 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Egan, S. P. et al. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ. Sci. Technol. 49, 4113–4121 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).Article 

    Google Scholar 
    44.Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Frackman, B. S., Kobs, G., Simpson, D., Storts, D. & Corporation, P. Betaine and DMSO: enhancing agents for PCR. Promega Notes 65, 9–12 (1998).
    Google Scholar 
    46.Wang, D.-G., Brewster, J., Paul, M. & Tomasula, P. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048–6059 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Jantz, B. & Neumann, D. Growth and reproductive cycle of the zebra mussel in the River Rhine as studied in a river bypass. Oecologia 114, 213–225 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Grigorovich, I. A., Kelly, J. R., Darling, J. A. & West, C. W. The quagga mussel invades the Lake Superior Basin. J. Great Lakes Res. 34, 342–350 (2008).Article 

    Google Scholar 
    49.Mahon, A. R. et al. Molecular detection of invasive species in heterogeneous mixtures using a microfluidic carbon nanotube platform. PLoS ONE 6, 1–5 (2011).Article 
    CAS 

    Google Scholar 
    50.PrimerExplorer. LAMP Primer Designing Software (Fujitsu Ltd, Tokyo, 2005).
    Google Scholar 
    51.Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115–e115 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Engineering complex communities by directed evolution

    1.Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617 (2015).CAS 
    Article 

    Google Scholar 
    2.Gilbert, E. S., Walker, A. W. & Keasling, J. D. A constructed microbial consortium for biodegradation of the organophosphorus insecticide parathion. Appl. Microbiol. Biotechnol. 61, 77–81 (2003).CAS 
    Article 

    Google Scholar 
    3.Yoshida, S., Ogawa, N., Fujii, T. & Tsushima, S. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. J. Appl. Microbiol. 106, 790–800 (2009).CAS 
    Article 

    Google Scholar 
    4.Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).CAS 
    Article 

    Google Scholar 
    5.Herrera Paredes, S. et al. Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biol. 16, e2003962 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Minty, J. J. et al. Design and characterization of synthetic fungal-bacterial consortia for direct production of isobutanol from cellulosic biomass. Proc. Natl Acad. Sci. USA 110, 14592–14597 (2013).CAS 
    Article 

    Google Scholar 
    7.Jiang, Y., Dong, W., Xin, F. & Jiang, M. Designing synthetic microbial consortia for biofuel production. Trends Biotechnol. 38, 828–831 (2020).CAS 
    Article 

    Google Scholar 
    8.Eng, A. & Borenstein, E. Microbial community design: methods, applications, and opportunities. Curr. Opin. Biotechnol. 58, 117–128 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).CAS 
    Article 

    Google Scholar 
    10.Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Senay, Y., John, G., Knutie, S. A. & Brandon Ogbunugafor, C. Deconstructing higher-order interactions in the microbiota: a theoretical examination. Preprint at bioRxiv https://doi.org/10.1101/647156 (2019).12.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    Article 

    Google Scholar 
    13.Mickalide, H. & Kuehn, S. Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst. 9, 521–533.e10 (2019).CAS 
    Article 

    Google Scholar 
    14.Sanchez, A. Defining higher-order interactions in synthetic ecology: lessons from physics and quantitative genetics. Cell Syst. 9, 519–520 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Guo, X. & Boedicker, J. Q. The contribution of high-order metabolic interactions to the global activity of a four-species microbial community. PLoS Comput. Biol. 12, e1005079 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Sundarraman, D. et al. Higher-order interactions dampen pairwise competition in the zebrafish gut microbiome. mBio 11, e01667-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Goldman, R. P. & Brown, S. P. Making sense of microbial consortia using ecology and evolution. Trends Biotechnol. 27, 3–4 (2009).CAS 
    Article 

    Google Scholar 
    18.Brenner, K., You, L. & Arnold, F. H. Response to Goldman and Brown: Making sense of microbial consortia using ecology and evolution. Trends Biotechnol. 27, 4 (2009).CAS 
    Article 

    Google Scholar 
    19.Escalante, A. E., Rebolleda-Gómez, M., Benítez, M. & Travisano, M. Ecological perspectives on synthetic biology: insights from microbial population biology. Front. Microbiol. 6, 143 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Gilmore, S. P. et al. Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. ACS Synth. Biol. 8, 2174–2185 (2019).CAS 
    Article 

    Google Scholar 
    21.Cortes-Tolalpa, L., Jiménez, D. J., de Lima Brossi, M. J., Salles, J. F. & van Elsas, J. D. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl. Microbiol. Biotechnol. https://doi.org/10.1007/s00253-016-7516-6 (2016).22.Lee, D.-J., Show, K.-Y. & Wang, A. Unconventional approaches to isolation and enrichment of functional microbial consortium – a review. Bioresour. Technol. 136, 697–706 (2013).CAS 
    Article 

    Google Scholar 
    23.Lazuka, A., Auer, L., O’Donohue, M. & Hernandez-Raquet, G. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnol. Biofuels 11, 284 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Puentes-Téllez, P. E. & Falcao Salles, J. Construction of effective minimal active microbial consortia for lignocellulose degradation. Microb. Ecol. 76, 419–429 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.He, X., McLean, J. S., Guo, L., Lux, R. & Shi, W. The social structure of microbial community involved in colonization resistance. ISME J. 8, 564–574 (2014).Article 

    Google Scholar 
    26.Jung, J., Philippot, L. & Park, W. Metagenomic and functional analyses of the consequences of reduction of bacterial diversity on soil functions and bioremediation in diesel-contaminated microcosms. Sci. Rep. 6, 23012 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Franklin, R. B. & Mills, A. L. Structural and functional responses of a sewage microbial community to dilution-induced reductions in diversity. Microb. Ecol. 52, 280–288 (2006).Article 

    Google Scholar 
    28.Kang, D. et al. Enrichment and characterization of an environmental microbial consortium displaying efficient keratinolytic activity. Bioresour. Technol. 270, 303–310 (2018).CAS 
    Article 

    Google Scholar 
    29.Goodnight, C. J. Evolution in metacommunities. Phil. Trans. R. Soc. B 366, 1401–1409 (2011).Article 

    Google Scholar 
    30.Swenson, W., Wilson, D. S. & Elias, R. Artificial ecosystem selection. Proc. Natl Acad. Sci. USA 97, 9110–9114 (2000).CAS 
    Article 

    Google Scholar 
    31.Jochum, M. D., McWilliams, K. L., Pierson, E. A. & Jo, Y.-K. Host-mediated microbiome engineering (HMME) of drought tolerance in the wheat rhizosphere. PLoS ONE 14, e0225933 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Mueller, U. G. et al. Artificial microbiome-selection to engineer microbiomes that confer salt-tolerance to plants. Preprint at bioRxiv https://doi.org/10.1101/081521 (2016).33.Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9, 980–989 (2015).CAS 
    Article 

    Google Scholar 
    34.Panke-Buisse, K., Lee, S. & Kao-Kniffin, J. Cultivated sub-populations of soil microbiomes retain early flowering plant trait. Microb. Ecol. https://doi.org/10.1007/s00248-016-0846-1 (2016).35.Arora, J., Mars Brisbin, M. A. & Mikheyev, A. S. Effects of microbial evolution dominate those of experimental host-mediated indirect selection. PeerJ 8, e9350 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Swenson, W., Arendt, J. & Wilson, D. S. Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Environ. Microbiol. 2, 564–571 (2000).CAS 
    Article 

    Google Scholar 
    37.Wright, R. J., Gibson, M. I. & Christie-Oleza, J. A. Understanding microbial community dynamics to improve optimal microbiome selection. Microbiome 7, 85 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Blouin, M., Karimi, B., Mathieu, J. & Lerch, T. Z. Levels and limits in artificial selection of communities. Ecol. Lett. 18, 1040–1048 (2015).Article 

    Google Scholar 
    39.Raynaud, T., Devers, M., Spor, A. & Blouin, M. Effect of the reproduction method in an artificial selection experiment at the community level. Front. Ecol. Evol. 7, 416 (2019).Article 

    Google Scholar 
    40.Chang, C.-Y., Osborne, M. L., Bajic, D. & Sanchez, A. Artificially selecting bacterial communities using propagule strategies. Evolution https://doi.org/10.1111/evo.14092 (2020).41.Arias-Sánchez, F. I., Vessman, B. & Mitri, S. Artificially selecting microbial communities: if we can breed dogs, why not microbiomes? PLoS Biol. 17, e3000356 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Day, M. D., Beck, D. & Foster, J. A. Microbial communities as experimental units. BioScience 61, 398–406 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Wade, M. J. Group selections among laboratory populations of Tribolium. Proc. Natl Acad. Sci. USA 73, 4604–4607 (1976).CAS 
    Article 

    Google Scholar 
    44.Wade, M. J. An experimental study of group selection. Evolution 31, 134–153 (1977).Article 

    Google Scholar 
    45.Wade, M. J. A critical review of the models of group selection. Q. Rev. Biol. 53, 101–114 (1978).Article 

    Google Scholar 
    46.Goodnight, C. J. Experimental studies of community evolution I: The response to selection at the community level. Evolution 44, 1614–1624 (1990).Article 

    Google Scholar 
    47.Guo, X. & Boedicker, J. High-order interactions between species strongly influence the activity of microbial communities. Biophys. J. 110, 143a (2016).Article 

    Google Scholar 
    48.Stein, R. R. et al. Computer-guided design of optimal microbial consortia for immune system modulation. eLife 7, e30916 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Arnold, F. H. Innovation by evolution: bringing new chemistry to life (Nobel lecture). Angew. Chem. Int. Ed. 58, 14420–14426 (2019).CAS 
    Article 

    Google Scholar 
    50.Tracewell, C. A. & Arnold, F. H. Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr. Opin. Chem. Biol. 13, 3–9 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Williams, H. T. P. & Lenton, T. M. Artificial selection of simulated microbial ecosystems. Proc. Natl Acad. Sci. USA 104, 8918–8923 (2007).CAS 
    Article 

    Google Scholar 
    52.Williams, H. T. P. & Lenton, T. M. in Advances in Artificial Life ECAL 2007. Lecture Notes in Computer Science, vol. 4648 (eds Almeida e Costa, F. et al.) 93–102 (Springer, 2007).53.Doulcier, G., Lambert, A., De Monte, S. & Rainey, P. B. Eco-evolutionary dynamics of nested Darwinian populations and the emergence of community-level heredity. eLife 9, e53433 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Xie, L., Yuan, A. E. & Shou, W. Simulations reveal challenges to artificial community selection and possible strategies for success. PLoS Biol. 17, e3000295 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).Article 

    Google Scholar 
    56.Marsland, R. III et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Marsland, R., Cui, W., Goldford, J. & Mehta, P. The Community Simulator: a Python package for microbial ecology. PLoS ONE 15, e0230430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Marsland, R. III, Cui, W. & Mehta, P. A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns. Sci. Rep. 10, 3308 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Advani, M., Bunin, G. & Mehta, P. Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model. J. Stat. Mech. 2018, 033406 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Lu, N., Sanchez-Gorostiaga, A., Tikhonov, M. & Sanchez, A. Cohesiveness in microbial community coalescence. Preprint at bioRxiv https://doi.org/10.1101/282723 (2018).62.Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6, 220ra11 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Estrela, S. et al. Metabolic rules of microbial community assembly. Preprint at bioRxiv https://doi.org/10.1101/2020.03.09.984278 (2020).64.Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).Article 

    Google Scholar 
    65.Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Hall, B. G. Experimental evolution of a new enzymatic function. II. Evolution of multiple functions for ebg enzyme in E. coli. Genetics 89, 453–465 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Smith, G. P. & Petrenko, V. A. Phage display. Chem. Rev. 97, 391–410 (1997).CAS 
    Article 

    Google Scholar 
    68.Bloom, J. D. & Arnold, F. H. In the light of directed evolution: pathways of adaptive protein evolution. Proc. Natl Acad. Sci. USA 106, 9995–10000 (2009).CAS 
    Article 

    Google Scholar 
    69.Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness landscape with Gaussian processes. Proc. Natl Acad. Sci. USA 110, E193–E201 (2013).CAS 
    Article 

    Google Scholar 
    70.Ho, K.-L., Lee, D.-J., Su, A. & Chang, J.-S. Biohydrogen from cellulosic feedstock: dilution-to-stimulation approach. Int. J. Hydrog. Energy 37, 15582–15587 (2012).CAS 
    Article 

    Google Scholar 
    71.Shepherd, E. S., DeLoache, W. C., Pruss, K. M., Whitaker, W. R. & Sonnenburg, J. L. An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 557, 434–438 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Ting, S.-Y. et al. Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microbe https://doi.org/10.1016/j.chom.2020.05.006 (2020).73.Sheth, R. U., Cabral, V., Chen, S. P. & Wang, H. H. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet. 32, 189–200 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Harcombe, W. R. & Bull, J. J. Impact of phages on two-species bacterial communities. Appl. Environ. Microbiol. 71, 5254–5259 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Chan, B. K. et al. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 60–66 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Rillig, M. C., Tsang, A. & Roy, J. Microbial community coalescence for microbiome engineering. Front. Microbiol. 7, 1967 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Sierocinski, P. et al. A single community dominates structure and function of a mixture of multiple methanogenic communities. Curr. Biol. 27, 3390–3395.e4 (2017).CAS 
    Article 

    Google Scholar 
    79.Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    80.Shade, A. et al. Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 417 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Kang, D. et al. Construction of simplified microbial consortia to degrade recalcitrant materials based on enrichment and dilution-to-extinction cultures. Front. Microbiol. 10, 3010 (2019).Article 

    Google Scholar 
    82.Zanaroli, G. et al. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microb. Cell Factories 9, 10 (2010).Article 
    CAS 

    Google Scholar 
    83.Peter, H. et al. Function-specific response to depletion of microbial diversity. ISME J. 5, 351–361 (2011).CAS 
    Article 

    Google Scholar 
    84.Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. Social evolution theory for microorganisms. Nat. Rev. Microbiol. 4, 597–607 (2006).CAS 
    Article 

    Google Scholar 
    86.Scheuerl, T. et al. Bacterial adaptation is constrained in complex communities. Nat. Commun. 11, 754 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Lewontin, R. C. The units of selection. Annu. Rev. Ecol. Syst. 1, 1–18 (1970).Article 

    Google Scholar 
    88.Marsland, R., Cui, W., Goldford, J. & Mehta, P. The Community Simulator: a Python package for microbial ecology. PLoS ONE 15, e0230430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Shoemaker, W. R., Locey, K. J. & Lennon, J. T. A macroecological theory of microbial biodiversity. Nat. Ecol. Evol. 1, 0107 (2017).Article 

    Google Scholar 
    90.Degnan, P. H., Taga, M. E. & Goodman, A. L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 20, 769–778 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Degnan, P. H., Barry, N. A., Mok, K. C., Taga, M. E. & Goodman, A. L. Human gut microbes use multiple transporters to distinguish vitamin B12 analogs and compete in the gut. Cell Host Microbe 15, 47–57 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale

    1.Smol, J. P. et al. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl Acad. Sci. USA 102, 4397–4402 (2005).CAS 
    Article 

    Google Scholar 
    2.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).CAS 
    Article 

    Google Scholar 
    3.Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    Article 

    Google Scholar 
    4.Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).CAS 
    Article 

    Google Scholar 
    5.Su, H. et al. Long‐term empirical evidence, early warning signals and multiple drivers of regime shifts in a lake ecosystem. J. Ecol. https://doi.org/10.1111/1365-2745.13544 (2020).6.Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    Article 

    Google Scholar 
    7.Steffen, W. et al. Trajectories of the Earth system in the Anthropocene. Proc. Natl Acad. Sci. 115, 8252–8259 (2018).CAS 
    Article 

    Google Scholar 
    8.Holling, C. S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    9.Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).Article 

    Google Scholar 
    10.Pimm, S. L. The complexity and stability of ecosystems. Nature 307, 321–326 (1984).Article 

    Google Scholar 
    11.Holling, C. S. Engineering resilience versus ecological resilience. Eng. Ecol.Constraints 31, 32 (1996).
    Google Scholar 
    12.Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    13.Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).CAS 
    Article 

    Google Scholar 
    14.Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    Article 

    Google Scholar 
    15.Guttal, V. & Jayaprakash, C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol. Lett. 11, 450–460 (2008).Article 

    Google Scholar 
    16.Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    Article 

    Google Scholar 
    17.Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456 (2010).CAS 
    Article 

    Google Scholar 
    18.Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature 492, 419–422 (2012).Article 
    CAS 

    Google Scholar 
    19.Clements, C. F. & Ozgul, A. Including trait-based early warning signals helps predict population collapse. Nat. Commun. 7, 10984 (2016).CAS 
    Article 

    Google Scholar 
    20.Chevalier, M. & Grenouillet, G. Global assessment of early warning signs that temperature could undergo regime shifts. Sci. Rep. 8, 10058 (2018).Article 
    CAS 

    Google Scholar 
    21.Cole, L. E., Bhagwat, S. A. & Willis, K. J. Recovery and resilience of tropical forests after disturbance. Nat. Commun. 5, 3906 (2014).CAS 
    Article 

    Google Scholar 
    22.Willis, K. J., Jeffers, E. S. & Tovar, C. What makes a terrestrial ecosystem resilient? Science 359, 988–989 (2018).CAS 
    Article 

    Google Scholar 
    23.Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).CAS 
    Article 

    Google Scholar 
    24.Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).CAS 
    Article 

    Google Scholar 
    25.Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).Article 

    Google Scholar 
    26.Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209 (2012).CAS 
    Article 

    Google Scholar 
    27.Holmgren, M., Hirota, M., Van Nes, E. H. & Scheffer, M. Effects of interannual climate variability on tropical tree cover. Nat. Clim. Chang. 3, 755–758 (2013).Article 

    Google Scholar 
    28.Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).Article 

    Google Scholar 
    29.Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).CAS 
    Article 

    Google Scholar 
    30.Jha, S., Das, J. & Goyal, M. K. Assessment of risk and resilience of terrestrial ecosystem productivity under the influence of extreme climatic conditions over India. Sci. Rep. 9, 18923 (2019).CAS 
    Article 

    Google Scholar 
    31.Li, D., Wu, S., Liu, L., Zhang, Y. & Li, S. Vulnerability of the global terrestrial ecosystems to climate change. Glob. Change Biol. 24, 4095–4106 (2018).Article 

    Google Scholar 
    32.Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).Article 

    Google Scholar 
    33.Wang, S. & Loreau, M. Ecosystem stability in space: α, β and γ variability. Ecol. Lett. 17, 891–901 (2014).Article 

    Google Scholar 
    34.Stenseth, N. C. et al. The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx. Proc. Natl Acad. Sci. USA 101, 6056–6061 (2004).CAS 
    Article 

    Google Scholar 
    35.Koenig, W. D. & Liebhold, A. M. Temporally increasing spatial synchrony of North American temperature and bird populations. Nat. Clim. Chang. 6, 614–617 (2016).Article 

    Google Scholar 
    36.Sheppard, L. W., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Chang. 6, 610–613 (2016).Article 

    Google Scholar 
    37.Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).Article 

    Google Scholar 
    38.Paruelo, J. M., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).Article 

    Google Scholar 
    39.Piao, S., Fang, J., Zhou, L., Tan, K. & Tao, S. Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Global Biogeochem. Cycles 21, 2 (2007).
    Google Scholar 
    40.Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).Article 

    Google Scholar 
    41.Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    42.Earn, D. J., Levin, S. A. & Rohani, P. Coherence and conservation. Science 290, 1360–1364 (2000).CAS 
    Article 

    Google Scholar 
    43.Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean,‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).Article 

    Google Scholar 
    44.Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).Article 

    Google Scholar 
    45.Bernstein, L. et al. IPCC, 2007: Climate Change 2007: Synthesis Report. (IPCC, Geneva, 2008)46.Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).Article 

    Google Scholar 
    47.Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).Article 

    Google Scholar 
    48.Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest resilience, biodiversity, and climate change. In Secretariat of the Convention on Biological Diversity, Montreal. Technical Series 43, 1–67 (2009).
    Google Scholar 
    49.Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).CAS 
    Article 

    Google Scholar 
    50.Gsell, A. S. et al. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proc. Natl Acad. Sci. USA 113, E8089–E8095 (2016).CAS 
    Article 

    Google Scholar 
    51.Clements, C. F., Blanchard, J. L., Nash, K. L., Hindell, M. A. & Ozgul, A. Body size shifts and early warning signals precede the historic collapse of whale stocks. Nat. Ecol. Evol. 1, 0188 (2017).Article 

    Google Scholar 
    52.Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B, Biol. Sci. 370, 20130263 (2015).Article 

    Google Scholar 
    53.Zemp, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).CAS 
    Article 

    Google Scholar 
    54.Staal, A. et al. Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Chang. 8, 539–543 (2018).Article 

    Google Scholar 
    55.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    Article 

    Google Scholar 
    56.Locosselli, G. M. et al. Global tree-ring analysis reveals rapid decrease in tropical tree longevity with temperature. Proc. Natl Acad. Sci. USA 117, 33358–33364 (2020).CAS 
    Article 

    Google Scholar 
    57.Ruiz-Pérez, G. & Vico, G. Effects of temperature and water availability on Northern European boreal forests. Front. For. Glob.Change 3, 34 (2020).Article 

    Google Scholar 
    58.Kitzberger, T., Aráoz, E., Gowda, J. H., Mermoz, M. & Morales, J. M. Decreases in fire spread probability with forest age promotes alternative community states, reduced resilience to climate variability and large fire regime shifts. Ecosystems 15, 97–112 (2012).Article 

    Google Scholar 
    59.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).CAS 
    Article 

    Google Scholar 
    60.Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).Article 

    Google Scholar 
    61.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).Article 

    Google Scholar 
    62.Wang, S. et al. An invariability-area relationship sheds new light on the spatial scaling of ecological stability. Nat. Commun. 8, 1–8 (2017).Article 
    CAS 

    Google Scholar 
    63.Mehrabi, Z. & Ramankutty, N. Synchronized failure of global crop production. Nat. Ecol. Evol. 3, 780–786 (2019).Article 

    Google Scholar 
    64.Post, E. & Forchhammer, M. C. Spatial synchrony of local populations has increased in association with the recent Northern Hemisphere climate trend. Proc. Natl Acad. Sci. 101, 9286–9290 (2004).CAS 
    Article 

    Google Scholar 
    65.Ripa, J. Analysing the Moran effect and dispersal: their significance and interaction in synchronous population dynamics. Oikos 89, 175–187 (2000).Article 

    Google Scholar 
    66.Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    67.Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).Article 

    Google Scholar 
    68.Dakos, V. et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PloS ONE 7, e41010 (2012).CAS 
    Article 

    Google Scholar 
    69.R core team. R: a language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2019).70.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.5-16 https://CRAN.R-project.org/package=rgdal (2020).71.Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).Article 

    Google Scholar 
    72.Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    73.Holben, B. N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 7, 1417–1434 (1986).Article 

    Google Scholar 
    74.Piao, S. et al. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem. Cycles 19, 2 (2005).Article 
    CAS 

    Google Scholar 
    75.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    76.Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 1–18. (2020).Article 

    Google Scholar 
    77.Mitchell, A. The ESRI Guide to GIS Analysis: Spatial Measurements and Statistics (Environmental System Research Institute Press, 2005).78.Fang, J., Piao, S., He, J. & Ma, W. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China C Life Sci. 47, 229–240 (2004).
    Google Scholar 
    79.Peng, S. et al. Recent change of vegetation growth trend in China. Environ. Res. Lett. 6, 044027 (2011).Article 

    Google Scholar 
    80.Thenkabail, P. S. & Lyon, J. G. Hyperspectral Remote Sensing of Vegetation (CRC press, 2016).81.Feng, Y. et al. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environ. Res. Lett. 14, 124009 (2019).Article 

    Google Scholar 
    82.He, H. et al. Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl Sci. Rev. 6, 505–514 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Strong variations in urban allergenicity riskscapes due to poor knowledge of tree pollen allergenic potential

    1.Traidl-Hoffmann, C. et al. Impact of pollen on human health: More than allergen carriers?. Int. Arch. Allergy Immunol. 131, 1–13 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Nicolaou, N., Siddique, N. & Custovic, A. Allergic disease in urban and rural populations: Increasing prevalence with increasing urbanization. Allergy Eur. J. Allergy Clin. Immunol. 60, 1357–1360 (2005).CAS 
    Article 

    Google Scholar 
    3.Biedermann, T. et al. Birch pollen allergy in Europe. Allergy Eur. J. Allergy Clin. Immunol. 74, 1237–1248 (2019).CAS 

    Google Scholar 
    4.D’Amato, G. et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ. J. 8, 1–52 (2015).Article 
    CAS 

    Google Scholar 
    5.Braun-Fahrländer, C. et al. No further increase in asthma, hay fever and atopic sensitisation in adolescents living in Switzerland. Eur. Respir. J. 23, 407–413 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Ziska, L. H. et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet. Health 3, e124–e131 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Ziello, C. et al. Changes to airborne pollen counts across Europe. PLoS ONE 7, e34076 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Sierra-Heredia, C. et al. Aeroallergens in Canada: Distribution, public health impacts, and opportunities for prevention. Int. J. Environ. Res. Public Health 15, 1577 (2018).PubMed Central 
    Article 

    Google Scholar 
    10.Reed, S. D., Lee, T. A. & McCrory, D. C. The economic burden of allergic rhinitis: A critical evaluation of the literature. Pharmacoeconomics 22, 345–361 (2004).PubMed 
    Article 

    Google Scholar 
    11.Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. U. S. A. 116, 7575–7580 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Akbari, H. & Konopacki, S. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 33, 721–756 (2005).Article 

    Google Scholar 
    13.World Health Organization. Urban Green Spaces and Health: a Review of Evidence. (2016).14.Keddem, S. et al. Mapping the urban asthma experience: Using qualitative GIS to understand contextual factors affecting asthma control. Soc. Sci. Med. 140, 9–17 (2015).PubMed 
    Article 

    Google Scholar 
    15.Lovasi, G. S. et al. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York city birth cohort. Environ. Health Perspect. 121, 494–500 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Buters, J. T. M. et al. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study. Atmos. Environ. 55, 496–505 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Asam, C., Hofer, H., Wolf, M., Aglas, L. & Wallner, M. Tree pollen allergens—An update from a molecular perspective. Allergy Eur. J. Allergy Clin. Immunol. 70, 1201–1211 (2015).CAS 
    Article 

    Google Scholar 
    18.D’Amato, G. et al. Allergenic pollen and pollen allergy in Europe. Allergy Eur. J. Allergy Clin. Immunol. 62, 976–990 (2007).Article 
    CAS 

    Google Scholar 
    19.Weber, R. W. Patterns of pollen cross-allergenicity. J. Allergy Clin. Immunol. 112, 229–239 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Damialis, A., Traidl-Hoffmann, C. & Treudler, R. Climate Change and Pollen Allergies. In Biodiversity and Health in the Face of Climate Change (eds. Marselle, M., Stadler, J., Korn, H., Irvine, K. & Bonn, A.) 47–66 (Springer, Cham, 2019).21.Sousa-Silva, R., Smargiassi, A., Paquette, A., Kaiser, D. & Kneeshaw, D. Exactly what do we know about tree pollen allergenicity?. Lancet Respir. Med. 6, 1869–1876 (2020).
    Google Scholar 
    22.Radauer, C. & Breiteneder, H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J. Allergy Clin. Immunol. 117, 141–147 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Gassner, M., Schmid-Grendelmeier, P. & Clot, B. Ash pollen allergy and aerobiology. Allergo J. Int. 28, 289–298 (2019).Article 

    Google Scholar 
    24.Imhof, K., Probst, E., Seifert, B., Regenass, S. & Schmid-Grendelmeier, P. Ash pollen allergy: Reliable detection of sensitization on the basis of IgE to Ole e 1. Allergo J. Int. 23, 78–83 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lin, R. Y., Clauss, A. E. & Bennett, E. S. Hypersensitivity to common tree pollens in New York city patients. Allergy Asthma Proc. 23, 253–258 (2002).PubMed 

    Google Scholar 
    26.Ribeiro, H. et al. Pollen allergenic potential nature of some trees species: A multidisciplinary approach using aerobiological, immunochemical and hospital admissions data. Environ. Res. 109, 328–333 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Yun, Y. Y., Ko, S. H., Park, J. W. & Hong, C. S. IgE immune response to Ginkgo biloba pollen. Ann. Allergy Asthma Immunol. 85, 298–302 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Hruska, K. Assessment of urban allergophytes using an allergen index. Aerobiologia 19, 107–111 (2003).Article 

    Google Scholar 
    29.Cariñanos, P., Casares-Porcel, M. & Quesada-Rubio, J. M. Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc. Urban Plan. 123, 134–144 (2014).Article 

    Google Scholar 
    30.Friedman, J. & Barrett, S. C. H. Wind of change: New insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Ann. Bot. 103, 1515–1527 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kasprzyk, I., Wójcik, T., Cariñanos, P., Borycka, K. & Ćwik, A. Evaluation of the allergenicity of various types of urban parks in a warm temperate climate zone. Aerobiologia 35, 57–71 (2019).Article 

    Google Scholar 
    32.Jochner-Oette, S., Stitz, T., Jetschni, J. & Cariñanos, P. The influence of individual-specific plant parameters and species composition on the allergenic potential of urban green spaces. Forests 9, 284 (2018).Article 

    Google Scholar 
    33.Zong, H., Yao, M., Tang, Y. & Chen, H. Assessing the composition, diversity, and allergenic risk of street trees in Qingyang District of Chengdu City. Urban For. Urban Green. 54, 126747 (2020).Article 

    Google Scholar 
    34.Cariñanos, P., Adinolfi, C., DíazdelaGuardia, C., De Linares, C. & Casares-Porcel, M. Characterization of allergen emission sources in urban areas. J. Environ. Qual. 45, 244–252 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    35.Lai, Y. & Kontokosta, C. E. The impact of urban street tree species on air quality and respiratory illness: A spatial analysis of large-scale, high-resolution urban data. Health Place 56, 80–87 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Baxi, S. N. & Phipatanakul, W. The role of allergen exposure and avoidance in asthma. Adolesc. Med. State Art Rev. 21, 57–71 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    37.Cariñanos, P. & Casares-Porcel, M. Urban green zones and related pollen allergy: A review. Some guidelines for designing spaces with low allergy impact. Landsc. Urban Plan. 101, 205–214 (2011).Article 

    Google Scholar 
    38.Lara, B. et al. Impact of plane tree abundance on temporal and spatial variations in pollen concentration. Forests 11, 817 (2020).Article 

    Google Scholar 
    39.Alcázar, P. et al. Airborne plane-tree (Platanus hispanica) pollen distribution in the city of Córdoba, South-western Spain, and possible implications on pollen allergy. J. Investig. Allergol. Clin. Immunol. 14, 238–243 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    40.AAAAI. Allergies & Gardening. (2020). https://www.aaaai.org/conditions-and-treatments/library/allergy-library/allergy-friendly-gardening. Accessed 11th Oct 2020.41.Ortolani, C. et al. Allergenicità delle piante arboree e arbustive destinate al verde urbano italiano. Revisione Sistematica e Raccomandazioni basate sull’evidenza. Eur. J. Aerobiol. Environ. Med. XI, (2015).42.Cecchi, L. Introduction. In Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts, Vol. 9789400748, 1–7 (Springer Netherlands, 2013).43.Mossabeb, R., Kraft, D. & Valenta, R. Evaluation of the allergenic potential of Ginkgo biloba extracts. Wien. Klin. Wochenschr. 113, 580–587 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Sercombe, J. K. et al. London Plane Tree bioaerosol exposure and allergic sensitization in Sydney. Australia. Ann. Allergy Asthma Immunol. 107, 493–500 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Lo, F., Bitz, C. M., Battisti, D. S. & Hess, J. J. Pollen calendars and maps of allergenic pollen in North America. Aerobiologia 35, 613–633 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA. 109, 8334–8339 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Haahtela, T. A biodiversity hypothesis. Allergy Eur. J. Allergy Clin. Immunol. 74, 1445–1456 (2019).
    Google Scholar 
    48.CDC & National Center for Health Statistics. FastStats – Allergies and Hay Fever. U.S. Department of Health & Human Services (2014). https://www.cdc.gov/nchs/fastats/allergies.htm. Accessed: 27th April 2020.49.American College of Allergy Asthma and Immunology. Allergy Facts. (2018).50.Bousquet, J. et al. Allergic rhinitis and its impact on asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy Eur. J. Allergy Clin. Immunol. 63, 8–160 (2008).Article 

    Google Scholar 
    51.Bastl, K., Berger, M., Bergmann, K. C., Kmenta, M. & Berger, U. The medical and scientific responsibility of pollen information services. Wien. Klin. Wochenschr. 129, 70–74 (2017).PubMed 
    Article 

    Google Scholar 
    52.van Velthoven, M. H. & Smith, C. Some considerations on digital health validation. npj Digit. Med. 2, 1–2 (2019).Article 

    Google Scholar 
    53.Roman, L. A. et al. Beyond ‘trees are good’: Disservices, management costs, and tradeoffs in urban forestry. Ambio 50, 615–630 (2021).Article 
    PubMed 

    Google Scholar 
    54.Vogt, J. et al. Citree: A database supporting tree selection for urban areas in temperate climate. Landsc. Urban Plan. 157, 14–25 (2017).Article 

    Google Scholar 
    55.Eisenman, T. S. et al. Urban trees, air quality, and asthma: An interdisciplinary review. Landsc. Urban Plan. 187, 47–59 (2019).Article 

    Google Scholar 
    56.van Dorn, A. Urban planning and respiratory health. Lancet Respir. Med. 5, 781–782 (2017).PubMed 
    Article 

    Google Scholar 
    57.Poland, T. M. & McCullough, D. G. Emerald ash borer: Invasion of the urban forest and the threat to North America’s ash resource. J. For. 104, 118–124 (2006).
    Google Scholar 
    58.Ahern, J. From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landsc. Urban Plan. 100, 341–343 (2011).Article 

    Google Scholar 
    59.Conway, T. M. & Vander Vecht, J. Growing a diverse urban forest: Species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 138, 1–10 (2015).Article 

    Google Scholar 
    60.Konijnendijk, C. C., Ricard, R. M., Kenney, A. & Randrup, T. B. Defining urban forestry—A comparative perspective of North America and Europe. Urban For. Urban Green. 4, 93–103 (2006).Article 

    Google Scholar 
    61.Katz, D. S. W. & Batterman, S. A. Urban-scale variation in pollen concentrations: A single station is insufficient to characterize daily exposure. Aerobiologia (Bologna). 36, 417–431 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Weinberger, K. R. et al. Levels and determinants of tree pollen in New York City. J. Expo. Sci. Environ. Epidemiol. 28, 119–124 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Zimmermann, B. & Kohler, A. Infrared spectroscopy of pollen identifies plant species and genus as well as environmental conditions. PLoS ONE 9, e95417 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Bell, K. L. et al. Pollen DNA barcoding: Current applications and future prospects. Genome 59, 629–640 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.California Department of Public Health (CDPH). Strategic Plan for Asthma in California, 2015–2019. (2015).66.Giguère, M. Mesures de lutte aux îlots de chaleur urbains. Revue de littérature. (2009).67.Ogren, T. L. The Allergy-Fighting Garden: Stop Asthma and Allergies with Smart Landscaping. (2015).68.RNSA. Guide d’information de la végétation en ville. (2016).69.Pollen.com. About Pollen.com. (2020). https://www.pollen.com/help/about. Accessed 20 Apr 2020.70.Nock, C. A., Paquette, A., Follett, M., Nowak, D. J. & Messier, C. Effects of urbanization on tree species functional diversity in eastern North America. Ecosystems 16, 1487–1497 (2013).Article 

    Google Scholar 
    71.Tuomisto, H. Commentary: Do we have a consistent terminology for species diversity? Yes, if we choose to use it. Oecologia 167, 903–911 (2011).ADS 
    Article 

    Google Scholar 
    72.R Core Team. R: A Language and Environment for Statistical Computing. (2019).73.Chamberlain, S. A. & Szöcs, E. Taxize: Taxonomic search and retrieval in R. 2, (2013).74.Oksanen, J. et al. vegan: Community Ecology Package. (2017).75.Green, B. J. et al. Landscape plant selection criteria for the allergic patient. J. Allergy Clin. Immunol. Pract. 6, 1869–1876 (2018).PubMed 
    Article 

    Google Scholar 
    76.Asselin, S., Bachand, S., Christin, C. & Bonvalot, Y. Liens entre les pollens allergènes, leur mesure et les symptômes ressentis. (1998). More