More stories

  • in

    Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses

    1.Singer E, Wagner M, Woyke T. Capturing the genetic makeup of the active microbiome in situ. ISME J. 2017;11:1949–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Hall EK, Bernhardt ES, Bier RL, Bradford MA, Boot CM, Cotner JB, et al. Understanding how microbiomes influence the systems they inhabit. Nat Microbiol. 2018;3:977–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Lewis WH, Tahon G, Geesink P, Sousa DZ, Ettema TJG. Innovations to culturing the uncultured microbial majority. Nat Rev Microbiol. 2021;19:225–40.CAS 
    Article 

    Google Scholar 
    5.Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:16048.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science. 2017;357:eaaf3883.7.Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    Article 

    Google Scholar 
    8.Chen S-C, Musat N, Lechtenfeld OJ, Paschke H, Schmidt M, Said N, et al. Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature 2019;568:108–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Nayfach S, Roux S, Seshadri R, Udwary D, Varghese N, Schulz F, et al. A genomic catalog of Earth’s microbiomes. Nat Biotechnol. 2021;39:499–509.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. Diversity, ecology and evolution of Archaea. Nat Microbiol. 2020;5:887–900.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN. Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol. 2002;5:246–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Galbán-Malagón C, Berrojalbiz N, Ojeda M-J, Dachs J. The oceanic biological pump modulates the atmospheric transport of persistent organic pollutants to the Arctic. Nat Commun 2012;3:862.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Chain PSG, Denef VJ, Konstantinidis KT, Vergez LM, Agulló L, Reyes VL, et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA. 2006;103:15280.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Furukawa K, Suenaga H, Goto M. Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol. 2004;186:5189–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Fernandes C, et al. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA. 2006;103:15582.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Lee TK, Lee J, Sul WJ, Iwai S, Chai BC, Tiedje JM, et al. Novel biphenyl-oxidizing bacteria and dioxygenase genes from a Korean tidal mudflat. Appl Environ Microbiol. 2011;77:3888–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Sul WJ, Park J, Quensen JF, Rodrigues JLM, Seliger L, Tsoi TV, et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75:5501–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, et al. Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microbiol. 2009;75:6471.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Jiang LF, Luo CL, Zhang DY, Song MK, Sun YT, Zhang G. Biphenyl-Metabolizing microbial community and a functional operon revealed in e-waste-contaminated soil. Environ Sci Technol. 2018;52:8558–67.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Tillmann S, Strompl C, Timmis KN, Abraham WR. Stable isotope probing reveals the dominant role of Burkholderia species in aerobic degradation of PCBs. FEMS Microbiol Ecol. 2005;52:207–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, et al. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J. 2007;1:134–48.CAS 
    Article 

    Google Scholar 
    24.Chen S-C, Duan G-L, Ding K, Huang F-Y, Zhu Y-G. DNA stable-isotope probing identifies uncultivated members of Pseudonocardia associated with biodegradation of pyrene in agricultural soil. FEMS Microbiol Ecol. 2018;94:fiy026.25.Neufeld JD, Dumont MG, Vohra J, Murrell JC. Methodological considerations for the use of stable isotope probing in microbial ecology. Micro Ecol. 2007;53:435–42.CAS 
    Article 

    Google Scholar 
    26.Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Mohn WW, Westerberg K, Cullen WR, Reimer KJ. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Appl Environ Microbiol. 1997;63:3378–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wagner-Dobler I, Bennasar A, Vancanneyt M, Strompl C, Brummer I, Eichner C, et al. Microcosm enrichment of biphenyl-degrading microbial communities from soils and sediments. Appl Environ Microbiol. 1998;64:3014–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Allen MB. Studies with cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32:270–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rabus R, Widdel F. Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol. 1995;163:96–103.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 2013;41:D590–D6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ouyang WY, Su JQ, Richnow HH, Adrian L. Identification of dominant sulfamethoxazole-degraders in pig farm-impacted soil by DNA and protein stable isotope probing. Environ Int. 2019;126:118–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, et al. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol. 2012;35:526–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS–a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Stryhanyuk H, Calabrese F, Kümmel S, Musat F, Richnow HH, Musat N. Calculation of single cell assimilation rates from SIP-NanoSIMS-derived isotope ratios: a comprehensive approach. Front Microbiol. 2018;9:2342.38.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 2019;7:e7359–e.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–7.CAS 

    Google Scholar 
    43.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    45.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14. (D1)CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinforma. 2009;10:421.Article 
    CAS 

    Google Scholar 
    49.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Budhraja R, Karande S, Ding C, Ullrich MK, Wagner S, Reemtsma T, et al. Characterization of membrane-bound metalloproteins in the anaerobic ammonium-oxidizing bacterium “Candidatus Kuenenia stuttgartiensis” strain CSTR1. Talanta. 2021;223:121711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 2004;20:1466–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, et al. OpenMS: a flexible open-source software platform for mass spectrometry data analysis. Nat Methods. 2016;13:741–8.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Sachsenberg T, Herbst F-A, Taubert M, Kermer R, Jehmlich N, von Bergen M, et al. MetaProSIP: automated inference of stable isotope incorporation rates in proteins for functional metaproteomics. J Proteome Res. 2015;14:619–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Liu J, He XX, Lin XR, Chen WC, Zhou QX, Shu WS, et al. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities. Environ Sci Technol. 2015;49:6438–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kumamaru T, Suenaga H, Mitsuoka M, Watanabe T, Furukawa K. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol. 1998;16:663–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. Metagenomic analysis of a biphenyl-degrading soil bacterial consortium reveals the metabolic roles of specific populations. Front Microbiol. 2018;9:232.58.Kikuchi Y, Nagata Y, Ohtsubo Y, Koana T, Takagi M. Pseudomonas fluorescens KKL101, a benzoic acid degrader in a mixed culture that degrades biphenyl and polychlorinated biphenyls. Biosci Biotechnol Biochem. 1995;59:2303–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA. 2008;105:17861.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Robertson BR, Button DK, Koch AL. Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol. 1998;64:3900–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Troussellier M, Bouvy M, Courties C, Dupuy C. Variation of carbon content among bacterial species under starvation condition. Aquat Micro Ecol. 1997;13:113–9.Article 

    Google Scholar 
    63.Furukawa K, Miyazaki T. Cloning of a gene cluster encoding biphenyl and chlorobiphenyl degradation in Pseudomonas pseudoalcaligenes. J Bacteriol. 1986;166:392–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Seeger M, Timmis KN, Hofer B. Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl Environ Microbiol. 1995;61:2654–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Chadhain SM, Moritz EM, Kim E, Zylstra GJ. Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol. 2007;34:605–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Hofer B, Backhaus S, Timmis KN. The biphenyl/polychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene 1994;144:9–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Rather LJ, Knapp B, Haehnel W, Fuchs G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem. 2010;285:20615–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Stegen JC, Fredrickson JK, Wilkins MJ, Konopka AE, Nelson WC, Arntzen EV, et al. Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat Commun. 2016;7:1–12.70.Corteselli EM, Aitken MD, Singleton DR. Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. Int J Syst Evol Microbiol 2017;67:311–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Fernandez H, Prandoni N, Fernandez-Pascual M, Fajardo S, Morcillo C, Diaz E, et al. Azoarcus sp. CIB, an anaerobic biodegrader of aromatic compounds shows an endophytic lifestyle. PLoS ONE. 2014;9:e110771.72.Iwai S, Johnson TA, Chai BL, Hashsham SA, Tiedje JM. Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol. 2011;77:3551–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol. 2003;14:262–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Dombrowski N, Donaho JA, Gutierrez T, Seitz KW, Teske AP, Baker BJ. Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nat Microbiol. 2016;1:1–7.75.de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol. 2008;19:579–89.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    76.Rabus R, Wöhlbrand L, Thies D, Meyer M, Reinhold-Hurek B, Kämpfer P. Aromatoleum gen. nov., a novel genus accommodating the phylogenetic lineage including Azoarcus evansii and related species, and proposal of Aromatoleum aromaticum sp. nov., Aromatoleum petrolei sp. nov., Aromatoleum bremense sp. nov., Aromatoleum toluolicum sp. nov. and Aromatoleum diolicum sp. nov. Int J Syst Evol Microbiol. 2019;69:982–97.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Vogt C, Richnow HH. Bioremediation via in situ microbial degradation of organic pollutants. Adv Biochem Engin/Biotechnol. 2014;142:123–46.
    Google Scholar 
    78.Cunningham JA, Rahme H, Hopkins GD, Lebron C, Reinhard M. Enhanced in situ bioremediation of BTEX-contaminated groundwater by combined injection of nitrate and sulfate. Environ Sci Technol. 2001;35:1663–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Mondello FJ, Turcich MP, Lobos JH, Erickson BD. Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl Environ Microbiol. 1997;63:3096–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Gomez-Gil L, Kumar P, Barriault D, Bolin JT, Sylvestre M, Eltis LD. Characterization of biphenyl dioxygenase of Pandoraea pnomenusa B-356 as a potent polychlorinated biphenyl-degrading enzyme. J Bacteriol. 2007;189:5705–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Experimental warming differentially affects vegetative and reproductive phenology of tundra plants

    1.Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).ADS 

    Google Scholar 
    2.Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).ADS 
    CAS 

    Google Scholar 
    3.Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: adaptation and mitigation time scales. Earth’s Future 2, 68–74 (2014).ADS 

    Google Scholar 
    4.Oberbauer, S. F. et al. Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philos. Trans. R. Soc. B Biol. Sci. 368, 1624 (2013).5.Prevéy, J. S. et al. Warming shortens flowering seasons of tundra plant communities. Nat. Ecol. Evol. 3, 45–52 (2019).PubMed 

    Google Scholar 
    6.Jabis, M. D., Winkler, D. E. & Kueppers, L. M. Warming acts through earlier snowmelt to advance but not extend alpine community flowering. Ecology https://doi.org/10.1002/ecy.3108 (2020).7.Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).PubMed 

    Google Scholar 
    8.Gallinat, A. S., Primack, R. B. & Wagner, D. L. Autumn, the neglected season in climate change research. Trends Ecol. Evol. 30, 169–176 (2015).PubMed 

    Google Scholar 
    9.Semenchuk, P. R. et al. High Arctic plant phenology is determined by snowmelt patterns but duration of phenological periods is fixed: an example of periodicity. Environ. Res. Lett. 11, 125006 (2016).10.Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Glob. Chang. Biol. 21, 2634–2641 (2015).ADS 
    PubMed 

    Google Scholar 
    11.Diepstraten, R. A. E., Jessen, T. D., Fauvelle, C. M. D. & Musiani, M. M. Does climate change and plant phenology research neglect the Arctic tundra? Ecosphere 9, e02362 (2018).12.Savage, J. A. A temporal shift in resource allocation facilitates flowering before leaf out and spring vessel maturation in precocious species. Am. J. Bot. 106, 113–122 (2019).PubMed 

    Google Scholar 
    13.Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 5, 654 (2014).14.Kuprian, E., Briceño, V. F., Wagner, J. & Neuner, G. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer. Environ. Exp. Bot. 106, 4–12 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    15.Vitasse, Y., Lenz, A. & Körner, C. The interaction between freezing tolerance and phenology in temperate deciduous trees. Front. Plant Sci. 5, 1–12 (2014).
    Google Scholar 
    16.Maron, J. L., Agrawal, A. A. & Schemske, D. W. Plant–herbivore coevolution and plant speciation. Ecology 100, 1–11 (2019).
    Google Scholar 
    17.Rafferty, N. E. & Ives, A. R. Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecol. Lett. 14, 69–74 (2011).PubMed 

    Google Scholar 
    18.Fitter, A. H. & Fitter, R. S. R. Rapid changes in flowering time in British plants. Science 296, 1689–1691 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    19.Post, E. Time in Ecology: A Theoretical Framework (Princeton University Press, 2019).20.Kharouba, H. M., Vellend, M., Sarfraz, R. M. & Myers, J. H. The effects of experimental warming on the timing of a plant-insect herbivore interaction. J. Anim. Ecol. 84, 785–796 (2015).PubMed 

    Google Scholar 
    21.Zohner, C. M., Mo, L. & Renner, S. S. Global warming reduces leaf-out and flowering synchrony among individuals. Elife 7, 1–15 (2018).
    Google Scholar 
    22.Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94, 105–121 (2009).ADS 

    Google Scholar 
    23.Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M. & Henry, G. H. R. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Glob. Chang. Biol. 21, 4651–4661 (2015).ADS 
    PubMed 

    Google Scholar 
    24.Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Chang. Biol. 25, 2258–2274 (2019).ADS 
    PubMed 

    Google Scholar 
    25.Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180, 157–167 (2011).CAS 
    PubMed 

    Google Scholar 
    26.Kelsey, K. C. et al. Winter snow and spring temperature have differential effects on vegetation phenology and productivity across Arctic plant communities. Glob. Chang. Biol. 1–15 https://doi.org/10.1111/gcb.15505 (2020).27.Menzel, A. et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 12, 1969–1976 (2006).ADS 

    Google Scholar 
    28.Panchen, Z. A. & Gorelick, R. Prediction of Arctic plant phenological sensitivity to climate change from historical records. Ecol. Evol. 7, 1325–1338 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    29.Livensperger, C. et al. Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8, 1–15 (2016).
    Google Scholar 
    30.Livensperger, C. et al. Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. Ecosphere 10, e02677 (2019).31.Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 1922–1940 https://doi.org/10.1111/gcb.14619 (2019).32.Panchen, Z. A. et al. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes. Ann. Bot. 865–873 https://doi.org/10.1093/aob/mcv015 (2015).33.Wu, C. et al. Contrasting responses of autumn-leaf senescence to daytime and night-time warming. Nat. Clim. Chang. 8, 1092–1096 (2018).ADS 
    CAS 

    Google Scholar 
    34.Zhu, W. et al. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982–2006. Glob. Ecol. Biogeogr. 21, 260–271 (2012).
    Google Scholar 
    35.Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Chang. Biol. 22, 3702–3711 (2016).ADS 
    PubMed 

    Google Scholar 
    36.Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).
    Google Scholar 
    37.Marchand, F. L. et al. Climate warming postpones senescence in High Arctic Tundra. Arct. Antarct. Alp. Res. 36, 390–394 (2004).
    Google Scholar 
    38.Steltzer, H. & Post, E. Seasons and life cycles. Science 324, 886–887 (2009).PubMed 

    Google Scholar 
    39.Jiang, L. L. et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology 97, 1961–1969 (2016).CAS 
    PubMed 

    Google Scholar 
    40.Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    PubMed 

    Google Scholar 
    41.Piao, S., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 21, 1–11 (2007).
    Google Scholar 
    42.Wookey, P. A. et al. Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Glob. Chang. Biol. 15, 1153–1172 (2009).ADS 

    Google Scholar 
    43.Arft, A. M. et al. Responses of Tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecol. Monogr. 69, 491–511 (1999).
    Google Scholar 
    44.Buttler, A. et al. Experimental warming interacts with soil moisture to discriminate plant responses in an ombrotrophic peatland. J. Veg. Sci. 26, 964–974 (2015).
    Google Scholar 
    45.Healy, N. C., Oberbauer, S. F. & Hollister, R. D. Examination of surface temperature modification by open-top chambers along moisture and latitudinal gradients in Arctic Alaska using thermal infrared photography. Remote Sens. 1–19 https://doi.org/10.3390/rs8010054 (2016).46.Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Lett. 15, 164–175 (2012).PubMed 

    Google Scholar 
    47.Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 1–8 https://doi.org/10.1038/s41598-018-22258-0 (2018).48.Iler, A. M., Høye, T. T., Inouye, D. W. & Schmidt, N. M. Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philos. Trans. R. Soc. B Biol. Sci. 368, 13–16 (2013).
    Google Scholar 
    49.Prevéy, J. et al. Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Glob. Chang. Biol. 23, 2660–2671 (2017).ADS 
    PubMed 

    Google Scholar 
    50.Wipf, S. & Rixen, C. A review of snow manipulation experiments in Arctic and Alpine Tundra ecosystems. Polar Res. 29, 95–109 (2010).
    Google Scholar 
    51.Bokhorst, S. et al. Variable temperature effects of open top chambers at polar and alpine sites explained by irradiance and snow depth. Glob. Chang. Biol. 19, 64–74 (2013).ADS 
    PubMed 

    Google Scholar 
    52.Zhu, J., Zhang, Y. & Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 12, 1–4 (2016).ADS 

    Google Scholar 
    53.Kemppinen, J., Niittynen, P., Aalto, J., le Roux, P. C. & Luoto, M. Water as a resource, stress and disturbance shaping tundra vegetation. Oikos 128, 811–822 (2019).
    Google Scholar 
    54.Panchen, Z. A. & Gorelick, R. Canadian arctic archipelago conspecifics flower earlier in the high arctic than the mid-arctic. Int. J. Plant Sci. 177, 661–670 (2016).
    Google Scholar 
    55.Barrett, R. T. & Hollister, R. D. Arctic plants are capable of sustained responses to long-term warming. Polar Res. 35, 1–9 (2016).
    Google Scholar 
    56.Carbognani, M., Bernareggi, G., Perucco, F., Tomaselli, M. & Petraglia, A. Micro-climatic controls and warming effects on flowering time in alpine snowbeds. Oecologia 182, 573–585 (2016).ADS 
    PubMed 

    Google Scholar 
    57.Hollister, R. D., Webber, P. J. & Tweedie, C. E. The response of Alaskan Arctic Tundra to experimental warming: Differences between short- and long-term responses. Glob. Chang. Biol. 11, 525–536 (2005).ADS 

    Google Scholar 
    58.Mulder, C. P. H., Iles, D. T. & Rockwell, R. F. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Glob. Chang. Biol. 23, 801–814 (2017).ADS 
    PubMed 

    Google Scholar 
    59.Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Chang. Biol. 3, 20–32 (1997).
    Google Scholar 
    60.Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    61.Hollister, R. D. & Webber, P. J. Biotic validation of small open-top chambers in a tundra ecosystem. Glob. Chang. Biol. 6, 835–842 (2000).ADS 

    Google Scholar 
    62.Henry, G. H. R. & Molau, U. Tundra plants and climate change: The International Tundra Experiment (ITEX). Glob. Chang. Biol. 3, 1–9 (1997).ADS 

    Google Scholar 
    63.Welker, J. M., Molau, U., Parsons, A. N., Robinson, C. H. & Wookey, P. A. Responses of Dryas octopetala to ITEX environmental manipulations: a synthesis with circumpolar comparisons. Glob. Chang. Biol. 3, 61–73 (1997).ADS 

    Google Scholar 
    64.Basnett, S., Nagaraju, S. K., Ravikanth, G. & Devy, S. M. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons. Ecosphere 10, e02581 (2019).65.Panchen, Z. A. et al. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. N. Phytol. 203, 1208–1219 (2014).CAS 

    Google Scholar 
    66.Davis, C. C., Willis, C. G., Primack, R. B. & Miller-Rushing, A. J. The importance of phylogeny to the study of phenological response to global climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 3202–3213 (2010).
    Google Scholar 
    67.Hänninen, H. et al. Experiments are necessary in process-based tree phenology modelling. Trends Plant Sci. 24, 199–209 (2019).PubMed 

    Google Scholar 
    68.Hanson, P. J. & Walker, A. P. Advancing global change biology through experimental manipulations: Where have we been and where might we go? Glob. Chang. Biol. 26, 287–299 (2020).ADS 
    PubMed 

    Google Scholar 
    69.Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, 1–17 (2016).
    Google Scholar 
    70.Ettinger, A. K. et al. Winter temperatures predominate in spring phenological responses to warming. Nat. Clim. Chang. 10, 1137–1142 (2020).71.Augspurger, C. K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94, 41–50 (2013).PubMed 

    Google Scholar 
    72.Caradonna, P. J. & Bain, J. A. Frost sensitivity of leaves and fl owers of subalpine plants is related to tissue type and phenology. J. Ecol. 55–64 https://doi.org/10.1111/1365-2745.12482 (2016).73.Gezon, Z. J., Inouye, D. W. & Irwin, R. E. Phenological change in a spring ephemeral: Implications for pollination and plant reproduction. Glob. Chang. Biol. 22, 1779–1793 (2016).ADS 
    PubMed 

    Google Scholar 
    74.Iler, A. M. et al. Reproductive losses due to climate change-induced earlier flowering are not the primary threat to plant population viability in a perennial herb. J. Ecol. 107, 1931–1943 (2019).
    Google Scholar 
    75.CaraDonna, P. J. & Waser, N. M. Temporal flexibility in the structure of plant–pollinator interaction networks. Oikos 129, 1369–1380 (2020).
    Google Scholar 
    76.Fründ, J., Dormann, C. F. & Tscharntke, T. Linné’s floral clock is slow without pollinators – flower closure and plant-pollinator interaction webs. Ecol. Lett. 14, 896–904 (2011).PubMed 

    Google Scholar 
    77.Song, C. & Saavedra, S. Structural stability as a consistent predictor of phenological events. Proc. R. Soc. B Biol. Sci. 285, 20180767 (2018).78.Saavedra, S., Rohr, R. P., Olesen, J. M. & Bascompte, J. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6, 997–1007 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    79.Mosbacher, J. B., Michelsen, A., Stelvig, M., Hjermstad-Sollerud, H. & Schmidt, N. M. Muskoxen modify plant abundance, phenology, and nitrogen dynamics in a high Arctic Fen. Ecosystems 22, 1095–1107 (2019).
    Google Scholar 
    80.Barboza, P. S., Van Someren, L. L., Gustine, D. D. & Syndonia Bret-Harte, M. The nitrogen window for arctic herbivores: Plant phenology and protein gain of migratory caribou (Rangifer tarandus). Ecosphere 9, e02073 (2018).81.Gougherty, A. V. & Gougherty, S. W. Sequence of flower and leaf emergence in deciduous trees is linked to ecological traits, phylogenetics, and climate. N. Phytol. 220, 121–131 (2018).
    Google Scholar 
    82.Bjorkman, A. D. et al. Status and trends in Arctic vegetation: evidence from experimental warming and long-term monitoring. Ambio 49, 678–692 (2020).PubMed 

    Google Scholar 
    83.Loe, L. E. et al. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Glob. Chang. Biol. 993–1002 https://doi.org/10.1111/gcb.15458 (2020).84.Ueyama, M. et al. Growing season and spatial variations of carbon fluxes of Arctic and boreal ecosystems in Alaska (USA). Ecol. Appl. 23, 1798–1816 (2013).PubMed 

    Google Scholar 
    85.White, M. A., Running, S. W. & Thornton, P. E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145 (1999).86.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Chang. 9, 852–857 (2019).ADS 
    CAS 

    Google Scholar 
    87.Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 3–7 (2008).
    Google Scholar 
    88.Radville, L., Post, E. & Eissenstat, D. M. On the sensitivity of root and leaf phenology to warming in the Arctic. Arctic Antarct. Alp. Res. 50, S100020 (2018).89.Sloan, V. L., Fletcher, B. J. & Phoenix, G. K. Contrasting synchrony in root and leaf phenology across multiple sub-Arctic plant communities. J. Ecol. 104, 239–248 (2016).CAS 

    Google Scholar 
    90.Danby, R. K. & Hik, D. S. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glob. Chang. Biol. 13, 437–451 (2007).ADS 

    Google Scholar 
    91.Dabros, A., Fyles, J. W. & Strachan, I. B. Effects of open-top chambers on physical properties of air and soil at post-disturbance sites in northwestern Quebec. Plant Soil 333, 203–218 (2010).92.Finger Higgens, R. A. et al. Changing Lake Dynamics indicate a drier Arctic in Western Greenland. J. Geophys. Res. Biogeosci. 124, 870–883 (2019).
    Google Scholar 
    93.Leuzinger, S. et al. Do global change experiments overestimate impacts on terrestrial ecosystems? Trends Ecol. Evol. 26, 236–241 (2011).PubMed 

    Google Scholar 
    94.Molau, U. & MØlgaard, P. ITEX Manual (1996).95.Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).96.Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S. & Golicher, D. J. Taxonstand: An r package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).
    Google Scholar 
    97.C3S. ERA5: fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home%0A (2017).98.Kittel, T. G. F. et al. Contrasting long-term alpine and subalpine precipitation trends in a mid-latitude North American mountain system, Colorado Front Range, USA. Plant Ecol. Divers. 8, 607–624 (2015).
    Google Scholar 
    99.Therneau, T. A package for survival analysis in S. Citeseer 1–83 (2020).100.R Core Team. R: A Language and Environment for Statistical Computing (2019).101.Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).102.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).
    Google Scholar 
    103.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences linked references are available on JSTOR for this article: inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    104.Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).ADS 

    Google Scholar 
    105.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J 10, 439–446 (2018).
    Google Scholar 
    106.Wickham, H. Elegant Graphics for Data Analysis Media Vol. 35 (Springer Publishing Company, Incorporated, 2009).107.Collins, C. cour10eygrace/OTC_synthesis_analyses: release for Nature Communications manuscript (Version v1.0.3). Zenodo https://doi.org/10.5281/zenodo.4763165 (2021). More

  • in

    Non-uniform tropical forest responses to the ‘Columbian Exchange’ in the Neotropics and Asia-Pacific

    1.Zalasiewicz, J., Williams, M., Haywood, A. & Ellis, M. The Anthropocene: a new epoch of geological time? Phil. Trans. A Math. Phys. Eng. Sci. 369, 835–841 (2011).
    Google Scholar 
    2.Ellis, E., Maslin, M. A., Boivin, N. & Bauer, A. Involve social scientists in defining the Anthropocene. Nature 540, 192–193 (2016).Article 

    Google Scholar 
    3.Ruddiman, W. F. The Anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).CAS 
    Article 

    Google Scholar 
    4.Crutzen, P. J. Geology of mankind. Nature 415, 23 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Gallery, R. E. in Ecology and the Environment (ed. Monson, R. K.) 247–272 (Springer, 2014).6.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).Article 

    Google Scholar 
    9.Staal, A. et al. Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Lenton, T. M. et al. Climate tipping points—too risky to bet against. Nature 575, 592–595 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Zalasiewicz, J. et al. The Working Group on the Anthropocene: summary of evidence and interim recommendations. Anthropocene 19, 55–60 (2017).Article 

    Google Scholar 
    12.Syvitski, J. et al. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun. Earth Environ. https://doi.org/10.1038/s43247-020-00029-y (2020).13.Ruddiman, W. F. Three flaws in defining a formal ‘Anthropocene’. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133318783142 (2018).14.Smith, B. D. & Zeder, M. A. The onset of the Anthropocene. Anthropocene 4, 8–13 (2013).Article 

    Google Scholar 
    15.Roberts, P., Boivin, N. & Kaplan, J. O. Finding the Anthropocene in tropical forests. Anthropocene 23, 5–16 (2018).Article 

    Google Scholar 
    16.Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Crosby, A. W. The Columbian Exchange: Biological and Cultural Consequences of 1492 (Greenwood Publishing Group, 1972).19.Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Denevan, W. M. Estimating the Aboriginal population of Latin America in 1492: methodological synthesis. Publ. Ser. Conf. Lat. Am. Geogr. 5, 125–132 (1976).
    Google Scholar 
    21.Koch, A., Brierley, C., Maslin, M. M. & Lewis, S. L. Earth system impacts of the European arrival and Great Dying in the Americas after 1492. Quat. Sci. Rev. 207, 13–36 (2019).Article 

    Google Scholar 
    22.Denevan, W. M. The Native Population of the Americas in 1492 (Univ. Wisconsin Press, 1992).23.Denevan, W. M. After 1492: nature rebounds. Geogr. Rev. 106, 381–398 (2016).Article 

    Google Scholar 
    24.Iriarte, J. et al. Fire-free land use in pre-1492 Amazonian savannas. Proc. Natl Acad. Sci. USA 109, 6473–6478 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Nevle, R. J., Bird, D. K., Ruddiman, W. F. & Dull, R. A. Neotropical human–landscape interactions, fire, and atmospheric CO2 during European conquest. Holocene 21, 853–864 (2011).Article 

    Google Scholar 
    26.Power, M. J. et al. Climatic control of the biomass-burning decline in the Americas after ad 1500. Holocene 23, 3–13 (2013).Article 

    Google Scholar 
    27.Mann, C. C. Uncovering the New World Columbus Created (Knopf Publishing Group, 2011).28.Hung, H.-C. et al. Ancient jades map 3,000 years of prehistoric exchange in Southeast Asia. Proc. Natl Acad. Sci. USA 104, 19745–19750 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Newson, L. A. Conquest and Pestilence in the Early Spanish Philippines (Univ. Hawaii Press, 2009).30.Amano, N., Bankoff, G., Findley, D. M., Barretto-Tesoro, G. & Roberts, P. Archaeological and historical insights into the ecological impacts of pre-colonial and colonial introductions into the Philippine Archipelago. Holocene 31, 313–330 (2021).Article 

    Google Scholar 
    31.Acabado, S. B. in Irrigated Taro (Colocasia esculenta) in the Indo-Pacific (Senri Ethnological Studies 78) (eds Spriggs, M. et al.) 285–305 (National Museum of Ethnology, 2012).32.Junker, L. L. Raiding, Trading, and Feasting: The Political Economy of Philippine Chiefdoms (Ateneo de Manila Univ. Press, 2000).33.Amano, N., Piper, P. J., Hung, H.-C. & Bellwood, P. Introduced domestic animals in the Neolithic and Metal Age of the Philippines: evidence from Nagsabaran, Northern Luzon. J. Isl. Coast. Archaeol. 8, 317–335 (2013).Article 

    Google Scholar 
    34.Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quat. Res. 89, 156–177 (2018).Article 

    Google Scholar 
    35.Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).PubMed 
    Article 

    Google Scholar 
    36.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    37.Berrio, J. C., Hooghiemstra, H., Behling, H., Botero, P. & Van der Borg, K. Late-Quaternary savanna history of the Colombian Llanos Orientales from Lagunas Chenevo and Mozambique: a transect synthesis. Holocene 12, 35–48 (2002).
    Google Scholar 
    38.Berrío, J. C., Hooghiemstra, H., Marchant, R. & Rangel, O. Late-glacial and Holocene history of the dry forest area in the south Colombian Cauca Valley. J. Quat. Sci. 17, 667–682 (2002).Article 

    Google Scholar 
    39.Mayle, F. E., Burbridge, R. & Killeen, T. J. Millennial-scale dynamics of southern Amazonian rain forests. Science 290, 2291–2294 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Flantua, S. G. A. et al. Climate variability and human impact in South America during the last 2000 years: synthesis and perspectives from pollen records. Climate 12, 483–523 (2016).
    Google Scholar 
    41.Polissar, P. J. et al. Solar modulation of Little Ice Age climate in the tropical Andes. Proc. Natl Acad. Sci. USA 103, 8937–8942 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Maezumi, S. Y. et al. The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon. Nat. Plants 4, 540–547 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Leyden, B. W. et al. in The Managed Mosaic: Ancient Maya Agriculture and Resource Use (ed. Fedick, S. L.) (Univ. Utah Press, 1996).44.Dodson, J. R. & Intoh, M. Prehistory and palaeoecology of Yap, Federated States of Micronesia. Quat. Int. 59, 17–26 (1999).Article 

    Google Scholar 
    45.Athens, J. S. & Ward, J. V. Holocene vegetation, savanna origins and human settlement of Guam. Rec. Aust. Mus. Suppl. 29, 15–30 (2004).Article 

    Google Scholar 
    46.Levin, M. J. & Ayres, W. S. Managed agroforests, swiddening, and the introduction of pigs in Pohnpei, Micronesia: phytolith evidence from an anthropogenic landscape. Quat. Int. 434, 70–77 (2017).Article 

    Google Scholar 
    47.Chen, S.-H. et al. Late Holocene paleoenvironmental changes in subtropical Taiwan inferred from pollen and diatoms in lake sediments. J. Paleolimnol. 41, 315–327 (2009).Article 

    Google Scholar 
    48.Stevenson, J., Siringan, F., Finn, J. A. N., Madulid, D. & Heijnis, H. Paoay Lake, northern Luzon, the Philippines: a record of Holocene environmental change. Glob. Change Biol. 16, 1672–1688 (2010).Article 

    Google Scholar 
    49.Wigboldus, J. S. A History of the Minahasa c. 1615–1680. Archipel 34, 63–101 (1987).Article 

    Google Scholar 
    50.United States Office of the Chief of Naval Operations. West Caroline Islands (Office of the Chief of Naval Operations, Navy Department, 1943).51.De Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).PubMed 
    Article 

    Google Scholar 
    52.Leal, C. Landscapes of Freedom: Building a Postemancipation Society in the Rainforests of Western Colombia (Univ. Arizona Press, 2018).53.Block, D. Mission Culture on the Upper Amazon: Native Tradition, Jesuit Enterprise & Secular Policy in Moxos, 1660–1880 (Univ. Nebraska Press, 1994).54.Callaghan, R. & Fitzpatrick, S. M. On the relative isolation of a Micronesian archipelago during the historic period: the Palau case-study. Int. J. Nautical Archaeol. 36, 353–364 (2007).Article 

    Google Scholar 
    55.Da Silva, C. M. The miracle of the Brazilian Cerrados as a juggernaut: soil, science, and national culture. Hispanic Issues Ser. 24, 98–116 (2019).
    Google Scholar 
    56.Goldberg, W. M. The Geography, Nature and History of the Tropical Pacific and Its Islands (Springer, 2017).57.Schwaller, R. C. Contested conquests: African maroons and the incomplete conquest of Hispaniola, 1519–1620. Americas 75, 609–638 (2018).Article 

    Google Scholar 
    58.Acabado, S. B. et al. The short history of the Ifugao rice terraces: a local response to the Spanish conquest. J. Field Archaeol. 44, 195–214 (2019).Article 

    Google Scholar 
    59.Iriarte, J. et al. The origins of Amazonian landscapes: plant cultivation, domestication and the spread of food production in tropical South America. Quat. Sci. Rev. 248, 106582 (2020).Article 

    Google Scholar 
    60.Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Graham, N. R., Gruner, D. S., Lim, J. Y. & Gillespie, R. G. Island ecology and evolution: challenges in the Anthropocene. Environ. Conserv. 44, 323–335 (2017).Article 

    Google Scholar 
    62.Roos, C. I. Scale in the study of Indigenous burning. Nat. Sustain. 3, 898–899 (2020).Article 

    Google Scholar 
    63.Lu, Z., Liu, Z., Zhu, J. & Cobb, K. M. A review of paleo El Niño-Southern Oscillation. Atmosphere https://doi.org/10.3390/atmos9040130 (2018).64.Shi, F., Li, J. & Wilson, R. J. A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci. Rep. 4, 6739 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Newton, A., Thunell, R. & Stott, L. Climate and hydrographic variability in the Indo-Pacific Warm Pool during the last millennium. Geophys. Res. Lett. https://doi.org/10.1029/2006gl027234 (2006).66.Chepstow-Lusty, A. & Winfield, M. Inca agroforestry: lessons from the past. Ambio 29, 322–328 (2000).Article 

    Google Scholar 
    67.Nunn, P. Environmental catastrophe in the Pacific Islands around A.D. 1300. Geoarchaeology 15, 715–740 (2000).Article 

    Google Scholar 
    68.Robinson, M. et al. Uncoupling human and climate drivers of late Holocene vegetation change in southern Brazil. Sci. Rep. 8, 7800 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Green, W. A. The New World and the rise of European capitalist hegemony: some historiographical perspectives. Itinerario 10, 53–68 (1986).Article 

    Google Scholar 
    70.Wolf, E. R. Europe and the People Without History (Univ. California Press, 2010).71.Castilla-Beltrán, A. et al. Columbus’ footprint in Hispaniola: a paleoenvironmental record of indigenous and colonial impacts on the landscape of the central Cibao Valley, northern Dominican Republic. Anthropocene 22, 66–80 (2018).Article 

    Google Scholar 
    72.Goman, M. & Byrne, R.A 5000-year record of agriculture and tropical forest clearance in the Tuxtlas, Veracruz, Mexico. Holocene 8, 83–89 (1998).Article 

    Google Scholar 
    73.Francis, X. & Hezel, S. J. Disease in Micronesia: a historical survey. Pac. Health Dialogue 16, 11–25 (2010).
    Google Scholar 
    74.Jones, J. G. Pollen Evidence of Prehistoric Forest Modification and Maya Cultivation in Belize. PhD thesis, Texas A&M Univ. (1991).75.Rojas, M., Arias, P. A., Flores-Aqueveque, V., Seth, A. & Vuille, M. The South American monsoon variability over the last millennium in climate models. Climate 12, 1681–1691 (2016).
    Google Scholar 
    76.Rosenthal, Y., Linsley, B. K. & Oppo, D. W.Pacific ocean heat content during the past 10,000 years. Science 342, 617–621 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Blois, J. L., Williams, J. W., Grimm, E. C., Jackson, S. T. & Graham, R. W. A methodological framework for assessing and reducing temporal uncertainty in paleovegetation mapping from late-Quaternary pollen records. Quat. Sci. Rev. 30, 1926–1939 (2011).Article 

    Google Scholar 
    78.Flantua, S. G. A., Blaauw, M. & Hooghiemstra, H. Geochronological database and classification system for age uncertainties in Neotropical pollen records. Climate 12, 387–414 (2016).
    Google Scholar 
    79.Marchant, R. et al. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years ago. Climate 5, 725–767 (2009).
    Google Scholar 
    80.Juggins, S. rioja: Analysis of Quaternary Science Data. R package version 0.9-21. https://cran.r-project.org/package=rioja (2014)..81.R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).82.Hamilton, R., Penny, D. & Hall, T. L. Forest, fire & monsoon: investigating the long-term threshold dynamics of south-east Asia’s seasonally dry tropical forests. Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106334 (2020).83.Bhagwat, S. A., Nogué, S. & Willis, K. J. Resilience of an ancient tropical forest landscape to 7500 years of environmental change. Biol. Conserv. 153, 108–117 (2012).Article 

    Google Scholar 
    84.Blarquez, O. et al. paleofire: an R package to analyse sedimentary charcoal records from the Global Charcoal Database to reconstruct past biomass burning. Comput. Geosci. 72, 255–261 (2014).Article 

    Google Scholar 
    85.Rohatgi, A. WebPlotDigitizer v4.2 https://automeris.io/WebPlotDigitizer (2019).86.Blaauw, M. & Christen, J. A.Flexible paleoclimate age–depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).Article 

    Google Scholar 
    87.Plumpton, H., Whitney, B. & Mayle, F. Ecosystem turnover in palaeoecological records: the sensitivity of pollen and phytolith proxies to detecting vegetation change in southwestern Amazonia. Holocene 29, 1720–1730 (2019).Article 

    Google Scholar 
    88.Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00149 (2018).89.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).Article 

    Google Scholar 
    90.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).Article 

    Google Scholar 
    91.Dowle, M. et al. data.table: Extension of ‘data.frame’. R package version 0.9-21. https://cran.r-project.org/web/packages/data.table (2018).92.Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).93.Doeppers, D. F. The development of Philippine cities before 1900. J. Asian Stud. 31, 769–792 (1972).Article 

    Google Scholar 
    94.Dobyns, H. F. Disease transfer at contact. Annu. Rev. Anthropol. 22, 273–291 (1993).Article 

    Google Scholar 
    95.Watts, W. A. & Bradbury, J. P. Paleoecological studies at Lake Patzcuaro on the west-central Mexican Plateau and at Chalco in the Basin of Mexico. Quat. Res. 17, 56–70 (1982).Article 

    Google Scholar 
    96.Van Hengstum, P. J. et al. The intertropical convergence zone modulates intense hurricane strikes on the western North Atlantic margin. Sci. Rep. 6, 21728 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Crausbay, S. D., Martin, P. H., Kelly, E. F. & McGlone, M. Tropical montane vegetation dynamics near the upper cloud belt strongly associated with a shifting ITCZ and fire. J. Ecol. 103, 891–903 (2015).Article 

    Google Scholar 
    98.Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).Article 

    Google Scholar 
    99.Carson, J. F. et al. Environmental impact of geometric earthwork construction in pre-Columbian Amazonia. Proc. Natl Acad. Sci. USA 111, 10497–10502 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Berrio, J. C., Hooghiemstra, H., Behling, H. & van der Borg, K. Late Holocene history of savanna gallery forest from Carimagua area, Colombia. Rev. Palaeobot. Palynol. 111, 295–308 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Ledru, M.-P. Late quaternary environmental and climatic changes in central Brazil. Quat. Res. 39, 90–98 (1993).Article 

    Google Scholar 
    102.Ledru, M.-P., Behling, H., Fournier, M., Martin, L. & Servant, M. Localisation de la forêt d’Araucaria du Brésil au cours de l’Holocène. Implications paléoclimatiques. C. R. Acad. Sci. Paris 317, 517–521 (1994).
    Google Scholar 
    103.Behling, H. A high resolution Holocene pollen record from Lago do Pires, SE Brazil: vegetation, climate and fire history. J. Paleolimnol. 14, 253–268 (1995).Article 

    Google Scholar 
    104.Behling, H. Late Quaternary vegetation, climate and fire history from the tropical mountain region of Morro de Itapeva, SE Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 129, 407–422 (1997).Article 

    Google Scholar 
    105.Behling, H., Hooghiemstra, H. & Negret, A. J. Holocene history of the Chocó rain forest from Laguna Piusbi, southern Pacific lowlands of Colombia. Quat. Res. 50, 300–308 (1998).Article 

    Google Scholar 
    106.Vélez, M. I. et al. Late Holocene environmental history of southern Chocó region, Pacific Colombia; sediment, diatom and pollen analysis of core El Caimito. Palaeogeogr. Palaoclimatol. Palaeoecol. 173, 197–214 (2001).Article 

    Google Scholar 
    107.Vélez, M. I., Berrío, J. C., Hooghiemstra, H., Metcalfe, S. & Marchant, R. Palaeoenvironmental changes during the last ca. 8590 calibrated yr (7800 radiocarbon yr) in the dry forest ecosystem of the Patía Valley, Southern Colombian Andes: a multiproxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 216, 279–302 (2005).Article 

    Google Scholar 
    108.Behling, H., Negret, A. J. & Hooghiemstra, H. Late Quaternary vegetational and climatic change in the Popayán region, southern Colombian Andes. J. Quat. Sci. 13, 43–53 (1998).Article 

    Google Scholar 
    109.Wille, M., Hooghiemstra, H., Behling, H., van der Borg, K. & Negret, A. J. Environmental change in the Colombian subandean forest belt from 8 pollen records: the last 50 kyr. Veg. Hist. Archaeobot. 10, 61–77 (2001).Article 

    Google Scholar 
    110.Epping, I. Environmental Change in the Colombian Upper Forest Belt. MSc thesis, Univ. Amsterdam (2009).111.Niemann, H. & Behling, H. Late Pleistocene and Holocene environmental change inferred from the Cocha Caranga sediment and soil records in the southeastern Ecuadorian Andes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 276, 1–14 (2009).Article 

    Google Scholar 
    112.Graf, K. in Pollendiagramme aus den Anden, eine Synthese zur Klimageschichte und Vegetationsentwicklung Seit der letzten Eiszeit. Vol. 34 (Univ. Zurich, 1992).113.Kuhry, P., Salomons, J. B., Riezebos, P. A. & Van der Hammen, T. in Studies on Tropical Andean Ecosystems/Estudios de Ecosistemas Tropandinos: La Cordillera Central Colombiana Transecto Parque Los Nevados (eds van der Hammen, T. et al.) 227–261 (Cramer, 1983).114.Velásquez-R, C. A. & Hooghiemstra, H. Pollen-based 17-kyr forest dynamics and climate change from the Western Cordillera of Colombia; no-analogue associations and temporarily lost biomes. Rev. Palaeobot. Palynol. 194, 38–49 (2013).Article 

    Google Scholar 
    115.Rull, V., Salgado-Labouriau, M.-L., Schubert, C. & Valastro, S. Jr. Late Holocene temperature depression in the Venezuelan Andes: palynological evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 60, 109–121 (1987).Article 

    Google Scholar 
    116.Van der Hammen, T. Palinología de la región de “Laguna de los Bobos”: historia de su clima, vegetación y agricultura durante los últimos 5.000 años. Revista de la Academia Colombiana de Ciencias Exactas. Físicas Nat. 11, 359–361 (1962).
    Google Scholar 
    117.Wang, L. C. et al. Late Holocene environmental reconstructions and their implications on flood events, typhoon, and agricultural activities in NE Taiwan. Climate 10, 1857–1869 (2014).CAS 

    Google Scholar 
    118.Dam, R. A. C., Fluin, J., Suparan, P. & van der Kaars, S. Palaeoenvironmental developments in the Lake Tondano area (N. Sulawesi, Indonesia) since 33,000 yr B.P. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 147–183 (2001).Article 

    Google Scholar 
    119.Suparan, P., Dam, R. A. C., van der Kaars, S. & Wong, T. E. Late Quaternary tropical lowland environments on Halmahera, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 229–258 (2001).Article 

    Google Scholar 
    120.Athens, J. S. & Ward, J. V. Holocene Paleoenvironmental Investigations on Ngerekebesang, Koror, South Babeldaob, and Peleliu Islands, Palau (International Archaeological Research Institute, 2002).121.Athens, J. S. & Ward, J. V. Palau Compact Road Archaeological Investigations, Babeldaob Island, Republic of Palau. Phase I: Intensive Archaeological Survey. Volume IV: Holocene Paleoenvironment and Landscape Change (International Archaeological Research Institute, 2005). More

  • in

    Extraversion level predicts perceived benefits from social resources and tool use

    ParticipantsThe sample consisted of 36 participants (Mage = 22.72, SDage = 1.91), which were recruited during the autumn semester at the Saint-Charles cafeteria of the University Paul Valery, France. All participants completed an informed consent form and reported being right-handed, had normal or corrected-to-normal visual acuity, and normal motricity. We chose a sample composed exclusively of women due to the existence of differences between men and women in the use of SR26. The aim was also to avoid a possible effect of sexism (e.g., men might not use the SR because it is a woman)27,28. The sample size was determined with G*Power29. A hypothesized effect size of − 0.43 was chosen, based on a previous study23; a corresponding power analysis (effect size r = − 0.43, α = 0.05, power = 0.80) resulted in an estimation of 32 participants. The final sample size (36) was chosen to meet methodological needs. The study was conducted according to the Declaration of Helsinki and were reviewed and approved by the Scientific and Ethics Committee of Epsylon Laboratory EA4556, University Paul Valéry of Montpellier.Materials and stimuliA schematic representation of the experimental design is presented in Fig. 1 left-hand side. Three, rectangular tables were placed some distance apart from each other. In the real action task, toilet tissue rolls (either 16 or 8) were positioned in rows on Table A, with each row containing four rolls (e.g., for eight rolls, there were two rows of four rolls). The aim was to use objects that can be grasped with hands and light enough to limit the impact of the weight. Participants were asked to move the rolls from Table A to Table B and to put them into containers disposed on Table B. There were two containers (height: 30 cm, width: 55 cm, depth: 35 cm) in order to avoid interference between the participant and the SR during the real action task. A beeper was placed on Table C. Participants had to press on this beeper to ask for help from the SR. For all participants, the SR was a 23-year-old woman student who sat on a chair 2 m from Table A. The distances AB and AC were 2 m and 3.5 m, respectively.Figure 1Schematic representation of the design used in Experiments 1 and 2.Full size imageThe decision task (Fig. 2) was computer-based, and developed with OpenSesame software30. Participants were seated at a table located 3 m from Table A, in front of a monitor and keyboard (screen size: 14-inch; distance participant-screen: 75 cm; distance participant-keyboard: 30 cm). Photographs showing a quantity of 4 (Q4), 8 (Q8), 12 (Q12), 16 (Q16), 20 (Q20), and 24 (Q24) rolls were displayed on the screen.Figure 2Experimental design for decision task in Experiment 1 and 2.Full size imagePersonality traits were assessed by a self-report questionnaire: the Big Five Inventory (BFI)31 translated and validated in a French population32. This questionnaire is based on the “Big Five”, the five dimensions consensual model of adult personality33. The Big Five dimensions are: Conscientiousness, Agreeableness, Neuroticism, Openness to experience, and Extraversion.ProcedureParticipants were informed that the experiment was composed of four phases. In the first phase they would be asked to fill out the BFI. In a second phase called the real action task, they would have to move different quantities of rolls with their hands, or with the help of a SR. In the third phase, the decision task, they could decide to use the SR or not depending on the actions performed in the second phase. Finally, they were told that in the last, fourth, phase they would be asked to move different quantities of rolls depending on the choices they had made in the decision task (third phase). Here, the aim was to raise the participant’s awareness of the impact and importance of the decision task, but this fourth phase was never actually done.After the BFI completion, participants began phase two. Here, they were asked to physically move rolls from Table A at normal speed (i.e., without any time constraint) and place them in the container on Table B. This scenario was designed to reflect a real action task of storing purchases after returning from the supermarket. The experimenter asked participants to perform four trials: two in the Hands condition (quantities 8 and 16), and two in the SR condition (quantities 8 and 16). In the Hands condition, participants had to move all the rolls from Table A to Table B and only two at a time. Once the task was completed, they had to return to Table A. In the SR condition, participants had to move all rolls with the help of the SR. Here, they had to move from Table A, go to Table C to press the beeper (which sounded instantly), then return to Table A and move rolls with their hands, two at a time, to the container on Table B. Simultaneously, the co-actor got up from her chair and went to Table A to help participants to move the rolls. The co-actor also moved two rolls at a time, in synchrony with participants. Thus, participants and the co-actor moved four rolls, at the same time, with their hands. When the task was completed, participants had to go back to Table A, then Table C, press the beeper a second time, and finally return to Table A. The variables Quantity of rolls (8 vs. 16) and Condition (Hands vs. SR) were counterbalanced between participants, leading to the four following orders: (1) Hands/Q8, SR/Q16, Hands/Q16, SR/Q8, (2) Hands/Q16, SR/Q8, Hands/Q8, SR/Q16, (3), SR/Q8, Hands/Q16, SR/Q16, Hands/Q8, (4) SR/Q16, Hands/Q8, SR/Q8, Hands/Q16.As mentioned above, decision task (third phase) was computer based. Each trial began with a white fixation cue presented in the center of a black screen displayed for 1500 ms. The fixation cue was immediately followed by a photograph showing a quantity of rolls (Q4 vs. Q8 vs. Q12 vs. Q16 vs. Q20 vs. Q24) displayed for 3000 ms on the screen. Participants had to evaluate 20 times each Quantity of Rolls (6 Quantity of Rolls × 20 Blocks), making a total of 120 photographs to be evaluated. They were asked to respond as rapidly as they could before the photograph disappeared from the screen. In case they did not respond to a trial in the allotted time, the trial was presented later in its corresponding block. Participants were asked to press the ‘a’ key with their left index finger, or the ‘p’ key with their right index finger if they considered being faster to move the rolls with the SR or by hands. The response assigned to each key was counterbalanced across participants and the quantity of rolls was fully randomized. Response times and decisions were collected for each of the 120 photographs. Participants were informed that after the decision task, the software would randomly choose 12 photographs, and in a second real action task (i.e., fourth phase), they would have to move these quantities of rolls depending on the choices they had previously made. Moreover, they were informed that the SR was at their complete disposal and they were invited to choose its use according to their own estimate. In fact, once the decision task was over, they were informed that they would not have to complete the fourth phase. Upon recruitment, they were told that the experiment would take 40 min (i.e., enough time to also complete the fourth phase). However, the actual duration of the experiment was 30 min (the time to complete the BFI, the real action task and the decision task).ResultsRaw responses were converted to a binary response, based on the participant’s choice (0 for Hands, 1 for SR). These data were then fitted locally using the ModelFree software package34, giving a point of subjective equality (PSE-SR) for each participant. Specifically, the PSE-SR indicates the quantity of rolls for which the participant considered the use of their hands, or the SR as equivalent. After a visual inspection of the psychometric curve, data of four participants were excluded from the analysis because these participants had particularly flat curve (i.e., slope = 0). Then, we used the Shapiro test to test the normality of distributions of all dependent variables. PSE-SR, Neuroticism, Openness to experience, Conscientiousness, and Extraversion were identified to be normally distributed (all W [0.940, 0.979], and p [0.070, 0.78]), while Agreeableness was not (W = 0.933, p = 0.048). Hence, the use of parametric statistical tests was proscribed, and the analysis of the correlation matrix was performed with the Spearman non-parametric method.Correlations matrix between the five personality factors, and the PSE-SR score are given in Table 1, which highlights a correlation between Extraversion and PSE-SR (Fig. 3). Data were also examined by estimating Bayes factors comparing fit under the null hypothesis (PSE-SR is not a function of personality trait), and the alternative hypothesis (PSE-SR is a function of personality trait). Bayes factors were, respectively, BF01 = 3.481 for Neuroticism, and BF01 = 3.728 for Conscientiousness. These results confirm the null hypothesis, as Bayes factors are above three35. Bayes factors were, respectively, BF01 = 1.550 for Openness to experience, and BF01 = 1.117 for Agreeableness. As these results do not support either the null nor the alternative hypothesis, a multiple regression was conducted to test whether Extraversion, Agreeableness, and Openness to experience predicted PSE-SR.Table 1 Spearman correlation coefficients for PSE-SR and personality factors, and among personality factors for Experiment 1.Full size tableFigure 3Correlation between Extraversion and PSE-SR found in Experiment 1.Full size imageThe multiple regression showed that these three factors explain a significant amount of variance in the value of PSE-SR, F(3,31) = 5.087, p = 0.006, R2Adjusted = 0.283. Specifically, Agreeableness (β =  − 0.141, t =  − 0.882, p = 0.385, 95% CI = [− 0.258, 0.103]), and Openness to experience (β =  − 0.159, t =  − 1.023, p = 0.314, 95% CI = [− 0.237, 0.079]) did not significantly predict the value of PSE-SR. However, Extraversion did (β =  − 0.480, t =  − 2.958, p = 0.006, 95% CI = [− 0.402, − 0.073]).DiscussionThe key finding of Experiment 1 is the significant negative linear relationship between Extraversion and PSE-SR. This result supports our hypothesis, and shows that participants’ Extraversion level predicts the use of the SR. The more participants are extraverted, the more they perceive the SR as a benefit. This is consistent with the work of Amirkhan et al.23, which shows that extraverts seek help much more quickly than introverts. They also extend the results obtained by Schnall et al.13 and Doerffeld et al.12, namely that there are individual differences in how the benefits of a SR are perceived: the more participants are extraverted, the more they tend to incorporate SR as a benefit into their economy of action. However, a new question arises: does Extraversion only influence how people perceive the benefits of SR, or does it extend to other external resources? To investigate this question, we replicated the second experiment reported in Osiurak et al.25 (i.e. we replaced the SR with a tool) and added the BFI. More

  • in

    The role of anthropogenic disturbance and invasion of yellow crazy ant in a recent decline of land crab population

    1.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The cause and consequences of ant invasions. Annu. Rev. Ecol. Systemat. 33, 181–233 (2002).Article 

    Google Scholar 
    2.Moller, H. Lessons for invasion theory from social insects. Biol. Conserv. 78, 125–142 (1996).Article 

    Google Scholar 
    3.Hoffmann, B. D. & Saul, W. C. Yellow crazy ant (Anoplolepis gracilipes) invasions within undisturbed mainland Australian habitats: no support for biotic resistance hypothesis. Biol. Invasions 12, 3093–3108 (2010).Article 

    Google Scholar 
    4.Human, K. G. & Gordon, D. M. Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105, 405–412 (1996).ADS 
    PubMed 
    Article 

    Google Scholar 
    5.Walker, K. L. Impact of the little fire ant, Wasmannia auropunctata, on native forest ants in Gabon. Biotropica 38, 666–673 (2006).Article 

    Google Scholar 
    6.Cole, F. R., Medeiros, A. C., Loope, L. L. & Zuehlke, W. W. Effects of the Argentine ant on arthropod fauna of Hawaiian high-elevation shrubland. Ecology 73, 1313–1322 (1992).Article 

    Google Scholar 
    7.Porter, S. D. & Savignano, D. A. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71, 2095–2106 (1990).Article 

    Google Scholar 
    8.Feare, C. Ants take over from rats on Bird Island, Seychelles. Bird Conserv. Int. 9, 95–96 (1999).Article 

    Google Scholar 
    9.Laakkonen, J., Fisher, R. N. & Case, T. J. Effect of land cover, habitat fragmentation, and ant colonies on the distribution and abundance of shrews in southern California. J. Anim. Ecol. 70, 776–788 (2001).Article 

    Google Scholar 
    10.Wojcik, D. P. et al. Red imported fire ants: impact on biodiversity. Am. Entomol. 47, 16–23 (2001).Article 

    Google Scholar 
    11.O’Dowd, D. J., Green, P. T. & Lake, P. S. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6, 812–817 (2003).Article 

    Google Scholar 
    12.Ness, J. H. & Bronstein, J. L. The effects of invasive ants on prospective ant mutualists. Biol. Invasions 6, 445–461 (2004).Article 

    Google Scholar 
    13.Buczkowski, G. & Bennett, G. Seasonal polydomy in a polygynous supercolony of the odorous house ant, Tapinoma sessile. Ecol. Entomol. 33, 780–788 (2008).
    Google Scholar 
    14.Menke, S. B., Fisher, R. N., Jetz, W. & Holway, D. A. Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales. Ecology 88, 3164–3173 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Roura-Pascual, N. et al. Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc. Natl. Acad. Sci. USA 108, 220–225 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Bos, M. M., Tylianakis, J. M., Steffan-Dewenter, I. & Tsharntke, T. The invasive yellow crazy ant and the decline of forest ant diversity in Indonesian cacao agroforests. Biol. Invasions 10, 1399–1409 (2008).Article 

    Google Scholar 
    17.Human, K. G., Weiss, S., Weiss, A., Sandler, B. & Gordon, D. M. Effects of abiotic factors on the distribution and activity of the invasive Argentine ant (Hymenoptera: Formicidae). Environ. Entomol. 27, 822–833 (1998).Article 

    Google Scholar 
    18.Suarez, A. V., Holway, D. A. & Case, T. J. Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc. Natl. Acad. Sci. USA 98, 1095–1100 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ito, F., Asfiya, W. & Kojima, J. I. Discovery of independent-founding solitary queens in the yellow crazy ant Anoplolepis gracilipes in East Java, Indonesia (Hymenoptera: Formicidae). Entomol. Sci. 19, 312–314 (2016).Article 

    Google Scholar 
    20.Lee, C. C., Lin, C. Y., Hsu, H. W. & Yang, C. C. S. Complete genome sequences of two novel dicistroviruses detected in yellow crazy ants (Anoplolepis gracilipes). Arch. Virol. 165, 2715–2719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Wetterer, J. K. Worldwide distribution and potential spread of the long-legged ant, Anoplolepis gracilipes (Hymenoptera: Formicidae). Sociobiology 45, 77–97 (2005).
    Google Scholar 
    22.Abbott, K. L., Greaves, S. N. J., Ritchie, P. A. & Lester, P. J. Behaviourally and genetically distinct populations of an invasive ant provide insight into invasion history and impacts on a tropical ant community. Biol. Invasions 9, 453–463 (2007).Article 

    Google Scholar 
    23.Haines, I. H., Haines, J. B. & Cherrett, J. M. The impact and control of the crazy ant, Anoplolepis Longipes (Jerd.), in the Seychelles. In Exotic ants. Biology, impact and control of introduced species (ed. Williams, D. F.) 206–218 (Westview Press, 1994).
    Google Scholar 
    24.Gerlach, J. Impact of the invasive ant Anoplolepis gracilipes on Bird Island, Seychelles. J. Insect Conserv. 8, 15–25 (2004).Article 

    Google Scholar 
    25.Hill, M., Holm, K., Vel, T., Shah, N. J. & Matyot, P. Impact of the introduced yellow crazy ant Anoplolepis gracilipes on Bird Island, Seychelles. Biodivers. Conserv. 12, 1969–1984 (2003).Article 

    Google Scholar 
    26.Hoffmann, B. D., Auina, S. & Stanley, M. C. Targeted research to improve invasive species management: yellow crazy ant Anoplolepis gracilipes in Samoa. PLoS ONE 9, e95301 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Kaiser-Bunbury, C. N., Cuthbert, H., Fox, R., Birch, D. & Bunburry, N. Invasion of yellow crazy ant Anoplolepis gracilipes in a Seychelles UNESCO palm forest. NeoBiota 22, 43–57 (2014).Article 

    Google Scholar 
    28.Wheeler, W. M. Ants of Formosa and the Philippines. Bull. Am. Mus. Nat. Hist. 26, 333–345 (1909).
    Google Scholar 
    29.Hsu, P. C. The study of habitats distribution of exotic invasive ants in Taiwan by using bait traps. Master dissertation, National Changhua University of Education (2013) (In Chinese).30.Tseng, H. H. The ant community structure at Kenting National Park in Taiwan. Master dissertation, National Changhua University of Education (2013) (In Chinese).31.Hsu, J. W. & Shih, H. T. Diversity of Taiwanese Brackish crabs genus Ptychognathus Stimpson, 1858 (Crustacea: Brachyura: Varunidae) based on DNA barcodes, with descriptions of two new species. Zool. Stud. 59, 59 (2020).CAS 

    Google Scholar 
    32.Li, J. J., Shih, H. T. & Ng, P. K. Three new species and two new records of Parasesarma De Man, 1895 (Crustacea: Brachyura: Sesarmidae) from Taiwan and the Philippines from morphological and molecular evidence. Zool. Stud. 58, 40 (2019).CAS 

    Google Scholar 
    33.Li, J. J., Hsu, J. W., Ng, N. K. & Shih, H. T. Eight new records of crabs (Decapoda, Brachyura: Sesarmidae, Varunidae) from the coasts of Taiwan. Crustaceana 92, 1207–1230 (2019).Article 

    Google Scholar 
    34.Li, J. J., Shih, H. T. & Ng, P. K. The Taiwanese and Philippine species of the terrestrial crabs Bresedium Serène and Soh, 1970 and Sesarmops Serène and Soh, 1970 (Crustacea: Decapoda: Brachyura), with descriptions of two new species. Zool. Stud. 59, 16 (2020).CAS 

    Google Scholar 
    35.Liu, H. C. Report on the survey of ecological resources of land crab in Kenting National Park 2019–2020. Consultancy Report to Kenting National Park Headquarters, p. 155 (2020) (In Chinese).36.Ng, P. K., Li, J. J. & Shih, H. T. What is Sesarmops impressus (H. Milne Edwards, 1837) (Crustacea: Brachyura: Sesarmidae)?. Zool. Stud. 59, 27 (2020).CAS 

    Google Scholar 
    37.Shih, H. T., Hsu, J. W., Li, J. J., Ng, N. K. & Lee, J. H. The identities of three species of Parahelice Sakai, Türkay & Yang, 2006 (Crustacea: Brachyura: Varunidae) from the western Pacific, based on morphological and molecular evidence. Zootaxa 4728, 249–265 (2020).Article 

    Google Scholar 
    38.Liu, H. C. Biodiversity and population abundance of the land crab fauna both at Houwan and Hsiangchiaowan-Shadao areas of the Kenting National Park. Consultancy Report to Kenting National Park Headquarters, p. 102 (2016) (In Chinese)39.Lin, C. C., Chang, T. W., Chen, H. W., Shih, C. H. & Hsu, P. C. Development of liquid bait with unique bait station for control of Dolichoderus thoracicus (Hymenoptera: Formicidae). J. Econ. Entomol. 110, 1685–1692 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Haines, I. H. & Haines, J. B. Colony structure, seasonality and food requirements of the crazy ant, Anoplolepis longipes (Jerd.), in the Seychelles. Ecol. Entomol. 3, 109–118 (1978).Article 

    Google Scholar 
    41.Ho, P. H. Land crabs at coastal forests in Kenting National Park, p. 47 (Kenting National Park Headquarters, 2003) (In Chinese).42.Tung, G. S., Chang, T. P. & Liu, H. C. Monitor and comparison of terrestrial crab communities in the virgin and restoration tropical coastal forests in Kenting National Park. J. Natl. Park 23, 21–30 (2013).
    Google Scholar 
    43.National Land Survey and Mapping Center (NLSC). The Second National Land-Use Survey (Ministry of Interior, 2008).44.ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, 2011).45.R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. Available online: https://www.R-project.org/, accessed 20 December 2018.46.Lester, P. J. & Tavite, A. Long-legged ants, Anoplolepis gracilipes (Hymenoptera: Formicidae), have invaded Tokelau, changing composition and dynamics of ant and invertebrate communities. Pac. Sci. 58, 391–401 (2004).Article 

    Google Scholar 
    47.Liu, H. C. & Jeng, M. S. Some reproductive aspects of Gecarcoidea lalandii (Brachyura: Gecarcinidae) in Taiwan. Zool. Stud. 46, 347–354 (2007).
    Google Scholar 
    48.Su, C. Y., Li, J. J., Wu, H. J. & Chiu, Y. W. An investigation of diversity and reproduction of land crab fauna in Houwan. J. Natl. Park 26, 49–57 (2014).
    Google Scholar 
    49.Baumgartner, N. R. II. & Ryan, S. D. Interaction of red crabs with yellow crazy ants during migration on Christmas Island. Math. Biosci. 330, 108486 (2020).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    50.Hicks, J. W. The breeding behaviour and migrations of the terrestrial crab Gecarcoidea natalis (Decapoda: Brachyura). Aust. J. Zool. 33, 127–142 (1985).Article 

    Google Scholar 
    51.Green, P. T., O’Dowd, D. J. & Lake, P. S. Alien ant invasion and ecosystem collapse on Christmas Island, Indian Ocean. Aliens 9, 2–4 (1999).
    Google Scholar 
    52.Li, J. J. & Chiu, Y. W. An atlas of land crabs on Hengchun Peninsula 2.0, p. 136 (National Museum of Marine Biology and Aquarium, 2019) (In Chinese).53.Liu, H. C. Land crab resource survey and management plan in Kenting National Park. Consultancy Report to Kenting National Park Headquarters, p. 88 (2010) (In Chinese).54.Achury, R., Chacón de Ulloa, P., Arcila, Á. & Suarez, A. V. Habitat disturbance modifies dominance, coexistence, and competitive interactions in tropical ant communities. Ecol. Entomol. 45, 1247–1262 (2020).Article 

    Google Scholar 
    55.Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve, Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    56.Mauda, E. V., Joseph, G. S., Seymour, C. L., Munyai, T. C. & Foord, S. H. Changes in landuse alter ant diversity, assemblage composition and dominant functional groups in African savannas. Biodivers. Conserv. 27, 947–965 (2018).Article 

    Google Scholar 
    57.Bacon, S. J., Aebi, A., Calanca, P. & Bacher, S. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers. Distrib. 20, 84–94 (2014).Article 

    Google Scholar 
    58.Tschinkel, W. R. Distribution of the fire ants Solenopsis invicta and S. geminata (Hymenoptera: Formicidae) in Northern Florida in relation to habitat and disturbance. Ann. Entomol. Soc. Am. 81, 76–81 (1988).Article 

    Google Scholar 
    59.Pyšek, P. et al. Disentangling the role of environmental and human pressure on biological invasions across Europe. Proc. Natl. Acad. Sci. USA 107, 12157–12162 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    60.Rizali, A. et al. Ant communities on small tropical islands: effects of island size and isolation are obscured by habitat disturbance and ‘tramp’ ant species. J. Biogeogr. 37, 229–236 (2010).Article 

    Google Scholar 
    61.Rao, N. S., Veeresh, G. K. & Viraktamath, C. A. Dispersal and spread of crazy ant Anoplolepis longipes (Jerdon)(Hymenoptera: Formicidae). Environ. Ecol. 9, 682–686 (1991).
    Google Scholar 
    62.Gordon, D. M., Moses, L., Falkovitz-Halpern, M. & Wong, E. H. Effect of weather on infestation of buildings by the invasive Argentine ant, Linepithema humile (Hymenoptera: Formicidae). Am. Midl. Nat. 146, 321–328 (2001).Article 

    Google Scholar 
    63.Menke, S. B. & Holway, D. A. Abiotic factors control invasion by Argentine ants at the community scale. J. Anim. Ecol 75, 368–376 (2006).PubMed 
    Article 

    Google Scholar 
    64.Hsu, P. W. et al. Ant crickets (Orthoptera: Myrmecophilidae) associated with the invasive yellow crazy ant Anoplolepis gracilipes (Hymenoptera: Formicidae): evidence for cryptic species and potential co-introduction with hosts. Myrmecol. News 30, 103–129 (2020).
    Google Scholar 
    65.Rao, N. S. & Veeresh, G. K. Nesting and foraging habits of crazy ant Anoplolepis longipes (Jerdon) (Hymenoptera: Formicidae). Environ. Ecol. 9, 670–677 (1991).
    Google Scholar 
    66.Vonshak, M. & Gordon, D. M. Intermediate disturbance promotes invasive ant abundance. Biol. Conserv. 186, 359–367 (2015).Article 

    Google Scholar 
    67.Yodzis, P. How rare is omnivory?. Ecology 65, 321–323 (1984).Article 

    Google Scholar 
    68.Linquist, E. S. et al. Land crabs as key drivers in tropical coastal forest recruitment. Biol. Rev. 84, 203–223 (2009).Article 

    Google Scholar 
    69.Koch, V. & Wolff, M. Energy budget and ecological role of mangrove epibenthos in the Caeté estuary, North Brazil. Mar. Ecol. Prog. Ser. 228, 119–130 (2002).ADS 
    Article 

    Google Scholar  More

  • in

    Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains

    1.Ramírez-Llodrà, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Hein, J. R. & Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. in Treatise on Geochemistry (eds. Holland, H. & Turekian, K.) vol. 13 273–291 (Elsevier Ltd., 2014).3.Hein, J. R. Manganese nodules. Encyclop. Mar. Geosci. 1, 408–412 (2016).
    Google Scholar 
    4.Kuhn, T., Wegorzewski, A. V., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. in Deep-Sea Mining (ed. Sharma, R.) 23–63 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.5.Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion–Clipperton Zone. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    6.Purser, A. et al. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr. Biol. 26, R1268–R1269 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vanreusel, A., Hilário, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).ADS 
    Article 

    Google Scholar 
    9.Aberle, N. & Witte, U. Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: In situ pulse-chase experiments using 13C-labelled phytodetritus. Mar. Ecol. Prog. Ser. 251, 37–47 (2003).ADS 
    Article 

    Google Scholar 
    10.Sweetman, A. K. & Witte, U. Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar. Ecol. Prog. Ser. 355, 73–84 (2008).ADS 
    Article 

    Google Scholar 
    11.van Oevelen, D., Soetaert, K. & Heip, C. H. R. Carbon flows in the benthic food web of the Porcupine Abyssal Plain: The (un)importance of labile detritus in supporting microbial and faunal carbon demands. Limnol. Oceanogr. 57, 645–664 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    12.Dunlop, K. M. et al. Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input. Limnol. Oceanogr. 61, 1956–1968 (2016).ADS 
    Article 

    Google Scholar 
    13.de Jonge, D. S. W. et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446 (2020).Article 

    Google Scholar 
    14.Smith, C. R., De Léo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.van der Zee, E. M. et al. How habitat-modifying organisms structure the food web of two coastal ecosystems. Proc. R. Soc. B Biol. Sci. 283, 20152326 (2016).Article 
    CAS 

    Google Scholar 
    17.Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediment (Springer, 2009).
    Google Scholar 
    18.Hall, S. J. & Raffaelli, D. G. Food webs: Theory and reality. Adv. Ecol. Res. 24, 187–239 (1993).Article 

    Google Scholar 
    19.Mahatma, R. Meiofauna communities of the Pacific nodule province: Abundance, diversity and community structure. PhD-Thesis (Carl von Ossietzky Universität Oldenburg, 2009).20.McIntyre, A. Ecoloy of marine meiobenthos. Biol. Rev. 44, 245–288 (1969).Article 

    Google Scholar 
    21.Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, Southeast Pacific, revisited 7 years after the experimental impact. Deep. Res. II(48), 3809–3839 (2001).ADS 

    Google Scholar 
    22.Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Roberts, D. & Moore, H. M. Tentacular diversity in deep-sea deposit-feeding holothurians: Implications for biodiversity in the deep sea. Biodivers. Conserv. 6, 1487–1505 (1997).Article 

    Google Scholar 
    24.Buhl-Mortensen, L. et al. Habitat complexity and bottom fauna composition at different scales on the continental shelf and slope of northern Norway. Hydrobiologia 685, 191–219 (2012).Article 

    Google Scholar 
    25.Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Hasemann, C. et al. Effects of dropstone-induced habitat heterogeneity on Arctic deep-sea benthos with special reference to nematode communities. Mar. Biol. Res. 9, 229–245 (2013).Article 

    Google Scholar 
    27.Riehl, T., Wölfl, A. C., Augustin, N., Devey, C. W. & Brandt, A. Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proc. Natl. Acad. Sci. USA. 117, 15450–15459 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Kidd, R. B., Huggett, J. & Huggett, Q. J. Rock debris on abyssal plains in the northeast Atlantic: A comparison of epibenthic sledge hauls and photographic surveys. Oceanol. Acta 4, 99–104 (1981).
    Google Scholar 
    29.Gooday, A. J., Goineau, A. & Voltski, I. Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion-Clipperton Fracture Zone: A preliminary description and comparison with North Atlantic dropstone assemblages. Mar. Biodivers. 45, 391–412 (2015).Article 

    Google Scholar 
    30.Ziegler, A. F., Smith, C. R., Edwards, K. F. & Vernet, M. Glacial dropstones: Islands enhancing seafloor species richness of benthic megafauna in West Antarctic Peninsula fjords. Mar. Ecol. Prog. Ser. 583, 1–14 (2017).ADS 
    Article 

    Google Scholar 
    31.Schulz, M., Bergmann, M., von Juterzenka, K. & Soltwedel, T. Colonisation of hard substrata along a channel system in the deep Greenland Sea. Polar Biol. 33, 1359–1369 (2010).Article 

    Google Scholar 
    32.Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article 

    Google Scholar 
    33.Ilan, M., Ben-Eliahu, M. N. & Galil, B. Three deep water sponges from the eastern Mediterranean and their associated Fauna. Ophelia 39, 45–54 (1994).Article 

    Google Scholar 
    34.Beaulieu, S. E. Colonization of habitat islands in the deep sea: Recruitment to glass sponge stalks. Deep. Res. I(48), 1121–1137 (2001).Article 

    Google Scholar 
    35.Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).ADS 
    Article 

    Google Scholar 
    36.Huston, M. A. Introduction. in Biological Diversity. The coexistence of species on changing landscapes 1–11 (Cambridge University Press, 1994).37.Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article 

    Google Scholar 
    38.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    39.Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. B Biol. Sci. 268, 2039–2045 (2001).CAS 
    Article 

    Google Scholar 
    40.Warren, P. H. Spatial and temporal variation in the structure of a freshwater food web. Oikos 55, 299–311 (1989).Article 

    Google Scholar 
    41.Van Dover, C. L. et al. Biodiversity loss from deep-sea mining. Nat. Geosci. 10, 464–465 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    42.Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 00195 (2018).Article 

    Google Scholar 
    43.Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).Article 

    Google Scholar 
    44.Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909-3912.e3 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Ramírez-Llodrà, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).ADS 
    Article 

    Google Scholar 
    47.International Seabed Authority. Regulations on prospecting and exploration for polymetallic nodules in the Area. (2000).48.Stratmann, T. et al. Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences 15, 4131–4145 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Soetaert, K. & van Oevelen, D. Modeling food web interactions in benthic deep-sea ecosystems: A practical guide. Oceanography 22, 128–143 (2009).Article 

    Google Scholar 
    50.van Oevelen, D. et al. Quantifying food web flows using linear inverse models. Ecosystems 13, 32–45 (2010).Article 

    Google Scholar 
    51.International Seabed Authority. Draft environmental management plan for the Clarion-Clipperton Zone I. 1–18 (International Seabed Authority, 2011).52.Jung, H.-S., Lee, C.-B., Jeong, K.-S. & Kang, J.-K. Geochemical and mineralogical characteristics in two-color core sediments from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific. Mar. Geol. 144, 295–309 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Wedding, L. M. et al. From principles to practice: A spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).CAS 
    Article 

    Google Scholar 
    54.Hannides, A. K. & Smith, C. R. The Northeast Pacific abyssal plain. in Biogeochemistry of Marine Systems (eds. Black, K. D. & Shimmield, G. B.) 208–237 (Blackwell Publishing, 2003).55.International Seabed Authority. A geological model of polymetallic nodule deposits in the Clarion Clipperton Fracture Zone. ISA technical study No. 6. (2010).56.Schoening, T., Jones, D. O. B. & Greinert, J. Compact-morphology-based polymetallic nodule delineation. Sci. Rep. 7, 13338 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Anonymous. Google Earth. https://www.google.com/earth/ (2018).58.Klein, H. Near-bottom currents in the deep Peru Basin, DISCOL experimental area. Dtsch. Hydrogr. Z. 45, 31–42 (1993).Article 

    Google Scholar 
    59.Bharatdwaj, K. Reliefs of the ocean basins. in Physical Geography (Oceanography) 1–53 (Discovery Publishing House, 2006).60.Glasby, G. P. Manganese: Predominant role of nodules and crusts. in Marine Geochemistry (eds. Schulz, H. D. & Zabel, M.) 371–427 (Springer-Verlag, 2006). https://doi.org/10.1007/3-540-32144-6_11.61.Haeckel, M., König, I., Riech, V., Weber, M. E. & Suess, E. Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep. Res. I(48), 3713–3736 (2001).ADS 

    Google Scholar 
    62.Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Thiel, H. Use and protection of the deep sea: An introduction. Deep. Res. II(48), 3427–3431 (2001).ADS 

    Google Scholar 
    64.Anthropogenic disturbances in the deep sea. (Frontiers Media SA, 2019). https://doi.org/10.3389/978-2-88963-288-6.65.Assessing environmental impacts of deep-sea mining – revisiting decade-old benthic disturbances in Pacific nodule areas. Biogeosciences (2018).66.Martínez Arbizu, P. & Haeckel, M. RV SONNE Fahrtbericht/Cruise Report SO239. EcoResponse assessing the ecology, connectivity and resilience of polymetallic nodule field systems. vol. 25 (2015).67.Boetius, A. RV SONNE SO242/2. Cruise Report/Fahrtbericht. DISCOL revisited. Guayaquil: 28 August 2015: Guayaquil: 1 October 2015. SO242/2: JPI Oceans Ecological Aspects of Deep-Sea Mining. (2015).68.Horton, T. et al. World Register of Marine Species (WoRMS). http://www.marinespecies.org (2018). https://doi.org/10.14284/170.69.Ahnert, A. & Schriever, G. Response of abyssal copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep. Res. II 48, 3779–3794 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Radziejewska, T. Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. Int. Rev. Hydrobiol. 87, 457–477 (2002).Article 

    Google Scholar 
    71.Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep. Res. II 45, 55–81 (1998).ADS 
    Article 

    Google Scholar 
    72.Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).ADS 
    Article 

    Google Scholar  More

  • in

    Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment

    Our analysis suggests that, over 465 ha of mangrove area, almost 83% of aboveground tree biomass were harvested annually for commercial timber purposes, using a keyhole harvest pattern (Fig. S3b). Yet after 25 years of natural and human-induced regeneration, both field- and satellite-based assessments reveal that biomass carbon stocks and canopy cover had fully recovered. Our approach using space-for-time substitution indicates that manual selective logging did not significantly affect soil carbon stocks and rates of annual carbon burial. While the differences in soil carbon stock between sites may be due to the diverse hydro-geomorphic settings8,14 the mangrove root mass in the top 1-m were not disturbed by manual logging activities. Similar situation was found in Tampa Bay, Florida where peat formation from root mass has enhance carbon sequestration15. These findings reduce uncertainty around the effects of mangrove forest management on the long-term functional capacity of blue carbon storage and provide evidence that managed mangrove ecosystems may deliver nature-based climate solutions.Recovery of forest structure, canopy cover and species diversityAlong carbon stocks, forest structure and species diversity also demonstrated recovery (Fig. 2, Table S1). Seedling densities were significantly higher in 5 year-old mangrove plots than in plots at any other stage (F(5,13) = 28.321, p  More

  • in

    Characterization of metapopulation of Ellobium chinense through Pleistocene expansions and four covariate COI guanine-hotspots linked to G-quadruplex conformation

    Genetic diversity of E. chinense based on COIThe partial fragment of COI, 595 bp in length, was sequenced from 113 E. chinense individuals collected from the eleven sites in South Korea (Table 1). The resultant COI sequences were aligned together with 27 COI individual sequences12,13,14 retrieved from the NCBI GenBank (Table 1). The latter consists of 26 from six collection sites in South Korea and one from a Japanese site. Hence, 140 COI sequences of E. chinense were analyzed, representing 18 collection sites at the nine populations in South Korea and Japan (Table 1). Based on the alignment set (no indels) of these 140 COI sequences (Data S1), we obtained a total of 58 COI haplotypes, of which 43 were singleton, appeared in only a single site. The novel 41 out of 58 COI haplotypes obtained were registered under the GenBank accession nos. MW265437–MW265477 (Table S2). According to the sequence alignment of the 58 COI haplotypes (Fig. S2; Data S2), there were 71 polymorphic sites and 31 parsimoniously informative sites (Fig. 1C), among which four adenine/guanine hotspots at 207, 282, 354, and 420 were ascertained to articulately divide the haplotypes of E. chinense into four meaningful phylogenetic groups: (a) A(207)–A(282)–A(354)–A(420), (b) A–A–G–A, (c) G–A–G–A, and (d) G–G–G–G.Table 1 List of collection sites and the number of individuals of Ellobium chinense with genetic markers applied to each of the nine populations in South Korea and Japan.Full size tableBased on the COI haplotype sequence alignment (Fig. S2; Data S2), we reconstructed a ML tree using Ellobium aurisjudae as an outgroup. In the resultant tree topology (Fig. S3), it was confirmed that E. chinense appeared as a monophyletic group, but no distinction between the haplotypes from each geographical population was observed. To define detailed relationships among the COI haplotypes, the outgroup was removed and then an unrooted ML tree (Fig. 1D) was reconstructed. The resultant tree showed two distinctive phylogenetic groups, namely A–A–A–A and the other groups (including at least one G or more in the four positions), regardless of collection localities. The A–A–A–A group included 35 of the 58 COI haplotypes. The others could be divided into the A–A–G–A group (N = 12: ECH11, 12, 15, 16, 18, 23, 27, 28, 32, 33, 36, and 49), the G–A–G–A group (N = 1: ECH35), and the G–G–G–G group (N = 8: ECH01, 07, 19, 29, 41, 45, 48, and 54).As shown in Table S2 and Fig. S3, ECH01 was a dominant member of the G–G–G–G group with the most individuals (27), which appeared across all the South Korean populations examined here. As shown in Fig. 1D, the A–A–A–A group is likely to be an ancestral type because it was most frequently found in the other species within Ellobiidae (unpublished data) and its haplotype diversity was the highest among the four genetic groups. Given that the G–G–G–G group exhibited much lower haplotype diversity than the A–A–A–A group, and was not observed in any other ellobiid species (unpublished data), it is reasonable to suggest that the G–G–G–G group is a derived rather than an ancestral type. Thus, as shown in Fig. 1D, it is conceivable that unidirectional and stepwise A → G transition events from A–A–A–A to G–G–G–G may have been occurred in E. chinense. Within the A–A–A–A and A–A–G–A groups, parsimoniously informative A → G transition events were found at the sites 120 (ECH12, 15, 16, 18, 23, 38, 40, 44, and 49) and 183 (ECH3, 9, 10, 20, 43, 50, and 55), with a few exceptional cases of G → A at the sites 216 (ECH12, 15, 16, 18, and 23), 372 (ECH12, 15, and 23), and 429 (ECH37, 38, 46, and 47; ECH19 found in the G–G–G–G group).As indicated in Table 2, the nucleotide diversity (π) is relatively low among the nine populations of E. chinense, ranging from 0.00749 (population BG) to 0.01042 (SC) with an average of 0.00865, whereas the haplotype diversity was very high across these populations, ranging from 0.924 (YG) to 1.000 (SC and JB) with an average of 0.939). All values of Tajima’s D and Fu’s FS were congruently negative, with averages of − 1.87100 (P  More