1.Holmes, R. M. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the arctic ocean and surrounding seas. Estuaries Coasts 35(2), 369–382 (2011).Article
CAS
Google Scholar
2.Peterson, B.J., Holmes, R.M., McClelland, J.W., Vörösmarty, C.J., Lammers, R.B., Shiklomanov, A. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171-2173 (2002).
3.McClelland, J.W., Déry, S.J., Peterson, B.J., Holmes, R.M., Wood, E.F. A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett. 33(6), (2006).4.Spencer, R. G. M. et al. Detecting the signature of permafrost thaw in Arctic rivers. Geophys. Res. Lett. 42(8), 2830–2835 (2015).ADS
Article
Google Scholar
5.O’Donnell, J. A. et al. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Glob. Biogeochem. Cycles 30(12), 1811–1826 (2016).ADS
CAS
Article
Google Scholar
6.Kirchman, D. L., Malmstrom, R. R. & Cottrell, M. T. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep Sea Res. Part II 52(24–26), 3386–3395 (2005).ADS
Article
Google Scholar
7.Mann, P.J., Davydova, A., Zimov, N., Spencer, R.G.M., Davydov, S., Bulygina, E. et al. Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J. Geophys. Res. Biogeosci. 117(G1), (2012).8.Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69(4), 2253–2268 (2003).PubMed
PubMed Central
Article
Google Scholar
9.Docherty, K. M., Young, K. C., Maurice, P. A. & Bridgham, S. D. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microb. Ecol. 52(3), 378–388 (2006).CAS
PubMed
Article
Google Scholar
10.Elifantz, H., Malmstrom, R. R., Cottrell, M. T. & Kirchman, D. L. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl. Environ. Microbiol. 71(12), 7799–7805 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
11.Nalven, S. G. et al. Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo-alteration for freshwater microbes. Environ. Microbiol. 22(8), 3505–3521 (2020).CAS
PubMed
Article
Google Scholar
12.Ward, C. P. & Cory, R. M. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils. Environ. Sci. Technol. 50(7), 3545–3553 (2016).ADS
CAS
PubMed
Article
Google Scholar
13.Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W. & Cory, R. M. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8(1), 772 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
14.Kaiser, K., Canedo-Oropeza, M., McMahon, R. & Amon, R. M. W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 7(1), 13064 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
15.Soares, A. R. A., Lapierre, J. F., Selvam, B. P., Lindstrom, G. & Berggren, M. Controls on dissolved organic carbon bioreactivity in river systems. Sci. Rep. 9(1), 14897 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
16.Pegau, W.S. Inherent optical properties of the central Arctic surface waters. J. Geophys. Res. Oceans, 107(C10), SHE-16 (2002).17.Kim, G. E., Pradal, M.-A. & Gnanadesikan, A. Increased surface ocean heating by colored detrital matter (CDM) linked to greater Northern Hemisphere ice formation in the GFDL CM2Mc ESM. J. Clim. 29(24), 9063–9076 (2016).ADS
Article
Google Scholar
18.Laglera, L. M. et al. First quantification of the controlling role of Humic substances in the transport of iron across the surface of the Arctic Ocean. Environ. Sci. Technol. 53(22), 13136–13145 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
19.Charette, M.A., Kipp, L.E., Jensen, L.T., Dabrowski, J.S., Whitmore, L.M., Fitzsimmons, J.N. et al. The transpolar drift as a source of riverine and shelf‐derived trace elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 125(5), (2020). https://doi.org/10.1029/2019JC015920.20.Amon, R. M. W. et al. Dissolved organic matter sources in large Arctic rivers. Geochim. Cosmochim. Acta 94, 217–237 (2012).ADS
CAS
Article
Google Scholar
21.Spencer, R.G.M., Aiken, G.R., Wickland, K.P., Striegl, R.G., Hernes, P.J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. Cycles 22(4), (2008).22.Mann, P.J., Spencer, R.G.M., Hernes, P.J., Six, J., Aiken, G.R., Tank, S.E., et al. Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements. Front. Earth Sci. 4(25), (2016).23.Hernes, P. J. & Benner, R. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar. Chem. 100(1–2), 66–79 (2006).CAS
Article
Google Scholar
24.Catalá, T.S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature communications 6(1), 1–9 (2015).25.Colatriano, D., Tran, P.Q., Guéguen, C., Williams, W.J., Lovejoy, C., Walsh, D.A. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 1(1), 1–9 (2018).26.Müller, O., Seuthe, L., Bratbak, G., Paulsen, M.L. Bacterial response to permafrost derived organic matter input in an Arctic Fjord. Front. Mar. Sci. 5(263), (2018).27.Kujawinski, E.B., Longnecker, K., Barott, K.L., Weber, R.J.M., Kido Soule, M.C. Microbial community structure affects marine dissolved organic matter composition. Front. Mar. Sci. 3(45), (2016).28.Avila, M. P. et al. Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. Sci. Total Environ. 672, 990–1003 (2019).ADS
CAS
PubMed
Article
Google Scholar
29.Elifantz, H., Dittel, A. I., Cottrell, M. T. & Kirchman, D. L. Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat. Microb. Ecol. 50, 39–49 (2007).Article
Google Scholar
30.Lee, J. et al. Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in Western Arctic Surface Waters (from the Bering Strait to the Chukchi Borderland). Sci. Rep. 9(1), 16822 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
31.Fortunato, C. S. & Crump, B. C. Bacterioplankton community variation across river to ocean environmental gradients. Microb. Ecol. 62(2), 374–382 (2011).PubMed
Article
Google Scholar
32.Balmonte, J. P. et al. Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community composition, and DOM pools in a NE Greenland fjord. Limnol. Oceanogr. 65(1), 77–95 (2020).ADS
CAS
Article
Google Scholar
33.Sipler, R. E. et al. Microbial community response to terrestrially derived dissolved organic matter in the Coastal Arctic. Front. Microbiol. 8, 1018 (2017).PubMed
PubMed Central
Article
Google Scholar
34.Scully, N. M., Cooper, W. J. & Tranvik, L. J. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol. Ecol. 46(3), 353–357 (2003).CAS
PubMed
Article
Google Scholar
35.Bélanger, S., Xie, H., Krotkov, N., Larouche, P., Vincent, W.F., Babin, M. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change. Glob. Biogeochem. Cycles 20(4), (2006).36.Timko, S.A., Maydanov, A., Pittelli, S.L., Conte, M.H., Cooper, W.J., Koch, B.P. et al. Depth-dependent photodegradation of marine dissolved organic matter. Front. Mar. Sci. 2(66) (2015).37.Pisani, O., Yamashita, Y. & Jaffe, R. Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool. Water Res. 45(13), 3836–3844 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51, 325–346 (1996).CAS
Article
Google Scholar
39.Kothawala, D. N. et al. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey. Glob. Chang Biol. 20(4), 1101–1114 (2014).ADS
PubMed
Article
Google Scholar
40.Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5(5), 337–345 (2020).CAS
Article
Google Scholar
41.Spencer, R.G.M., Aiken, G.R., Butler, K.D., Dornblaser, M.M., Striegl, R.G., Hernes, P.J. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys. Res. Lett. 36(6), (2009).42.Maie, N., Scully, N. M., Pisani, O. & Jaffe, R. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res. 41(3), 563–570 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Hernes, P.J., Bergamaschi, B.A., Eckard, R.S., Spencer, R.G.M. Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J. Geophys. Res. 114(G4) (2009).44.Murphy, K. R., Stedmon, C. A., Wenig, P. & Bro, R. OpenFluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6(3), 658–661 (2014).CAS
Article
Google Scholar
45.Lanzalunga, O. & Bietti, M. Photo- and radiation chemical induced degradation of lignin model compounds. J. Photochem. Photobiol. B 56(2–3), 85–108 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Brym, A. et al. Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments. Mar. Chem. 162, 96–113 (2014).CAS
Article
Google Scholar
47.Tanentzap, A. J. et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. USA 116(49), 24689–24695 (2019).ADS
CAS
PubMed
Article
Google Scholar
48.Jørgensen, L., Stedmon, C. A., Granskog, M. A. & Middelboe, M. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. Geophys. Res. Lett. 41(7), 2481–2488 (2014).ADS
Article
CAS
Google Scholar
49.McDonald, N., Achterberg, E.P., Carlson, C.A., Gledhill, M., Liu, S., Matheson-Barker, J.R. et al. The role of heterotrophic bacteria and archaea in the transformation of lignin in the open ocean. Front. Mar. Sci. 6(743), (2019).50.Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9(1), 3178 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
51.Harfmann, J. L. et al. Convergence of terrestrial dissolved organic matter composition and the role of microbial buffering in aquatic ecosystems. J. Geophys. Res. Biogeosci. 124(10), 3125–3142 (2019).CAS
Article
Google Scholar
52.Wünsch, U. J., Bro, R., Stedmon, C. A., Wenig, P. & Murphy, K. R. Emerging patterns in the global distribution of dissolved organic matter fluorescence. Anal. Methods 11(7), 888–893 (2019).Article
Google Scholar
53.Fitch, A., Orland, C., Willer, D., Emilson, E. J. S. & Tanentzap, A. J. Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. Glob. Chang Biol. 24(11), 5110–5122 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
54.Saw, J.H.W., Nunoura, T., Hirai, M., Takaki, Y., Parsons, R., Michelsen, M. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11(1), (2020).55.Min, D. W. et al. Abiotic formation of humic-like substances through freezing-accelerated reaction of phenolic compounds and nitrite. Environ. Sci. Technol. 53(13), 7410–7418 (2019).ADS
CAS
PubMed
Article
Google Scholar
56.Dagley, S. & Gibson, D. The bacterial degradation of catechol. Biochem. J. 95(2), 466–474 (1965).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Kraepiel, A. M., Bellenger, J. P., Wichard, T. & Morel, F. M. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22(4), 573–581 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Stedmon, C. A. & Markager, S. Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing. Estuar. Coast. Shelf Sci. 57(5–6), 973–979 (2003).ADS
CAS
Article
Google Scholar
59.Servais, P., Courties, C., Lebaron, P. & Troussellier, M. Coupling bacterial activity measurements with cell sorting by flow cytometry. Microb. Ecol. 38(2), 180–189 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Newton, R. J. & Shade, A. Lifestyles of rarity: Understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Microb. Ecol. 78(1), 51–63 (2016).Article
Google Scholar
61.Amado, A. M., Cotner, J. B., Cory, R. M., Edhlund, B. L. & McNeill, K. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: Amino acids play a central role. Microb. Ecol. 69(3), 554–566 (2015).CAS
PubMed
Article
Google Scholar
62.Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11(4), 999–1010 (2017).PubMed
PubMed Central
Article
Google Scholar
63.Gundersen, K., Bratbak, G., Heldal, M. Factors influencing the loss of bacteria in preserved seawater samples. Marine ecology progress
series 137, 305–310 (1996).64.Logozzo, L., Tzortziou, M., Neale, P., Clark, B. Photochemical and microbial degradation of chromophoric dissolved organic matter exported from tidal marshes. J. Geophys. Res. Biogeosci. 126, e2020JG005744. https://doi.org/10.1029/2020JG005744(2021).65.Tzortziou, M. et al. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnol. Oceanogr. 53(1), 148–159 (2008).ADS
CAS
Article
Google Scholar
66.Grunert B. bricegrunert/cdom: Version 1 (Version v1.0). 2020, December 23 (ed: Zenodo). https://doi.org/10.5281/zenodo.439109767.Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 39(8), 1903–1916 (1994).ADS
CAS
Article
Google Scholar
68.Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37(20), 4702–4708 (2003).ADS
CAS
PubMed
Article
Google Scholar
69.Andersen, C. M. & Bro, R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 17(4), 200–215 (2003).CAS
Article
Google Scholar
70.Bahram, M., Bro, R., Stedmon, C. & Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemom. 20(3–4), 99–105 (2006).CAS
Article
Google Scholar
71.Murphy, K.R., Stedmon, C.A., Graeber, D., Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 5(23), 6557-6566 (2013). More