Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis
1.Sikorski, J. A. & Gruys, K. J. Understanding glyphosate’s molecular mode of action with EPSP synthase: evidence favoring an allosteric inhibitor model. Acc. Chem. Res. 30, 2–8 (1997).CAS
Article
Google Scholar
2.Duke, S. O. & Powles, S. B. Glyphosate: a once‐in‐a‐century herbicide. Pest Manag. Sci. 64, 319–325 (2008).CAS
PubMed
Article
Google Scholar
3.Siehl, D. L. Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, vol. 1 (eds. Michael Roe, R., Burton, J. D. & Kuhr, R. J.) 37 (IOS Press, 1997).4.Shilo, T., Zygier, L., Rubin, B., Wolf, S. & Eizenberg, H. Mechanism of glyphosate control of Phelipanche aegyptiaca. Planta 244, 1095–1107 (2016).CAS
PubMed
Article
Google Scholar
5.Tzin, V. & Galili, G. New Insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 3, 956–972 (2010).CAS
PubMed
Article
Google Scholar
6.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110, 3229–3236 (2013).CAS
PubMed
Article
Google Scholar
7.Hacker, S. D. & Gaines, S. D. Some implications of direct positive interactions for community species diversity. Ecology 78, 1990–2003 (1997).Article
Google Scholar
8.van den Bosch, T. J. M. & Welte, C. U. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10, 531–540 (2017).PubMed
Article
CAS
Google Scholar
9.Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).PubMed
Article
Google Scholar
10.Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 36, 533–543 (2011).Article
Google Scholar
11.Moran, N. A. Symbiosis. Curr. Biol. 16, R866–R871 (2006).CAS
PubMed
Article
Google Scholar
12.Moran, N. A. & Telang, A. Bacteriocyte-associated symbionts of insects. Bioscience 48, 295–304 (1998).Article
Google Scholar
13.Oliver, K. M. & Martinez, A. J. How resident microbes modulate ecologically-important traits of insects. Curr. Opin. Insect Sci. 4, 1–7 (2014).PubMed
Article
Google Scholar
14.Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).Article
Google Scholar
15.Douglas, A. E. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr. Opin. Insect Sci. 23, 65–69 (2017).PubMed
Article
Google Scholar
16.Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).CAS
PubMed
Article
Google Scholar
17.Andersen, S. O. Cuticular sclerotization and tanning. In Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 167–192 (Elsevier, 2012).18.Anbutsu, H. & Fukatsu, T. Symbiosis for insect cuticle formation. In Cellular Dialogues in the Holobiont (eds. Bosch, T. C. G. & Hadfield, M. G.) 201–216 (CRC Press, 2020).19.Anbutsu, H. et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl. Acad. Sci. USA 114, E8382–E8391 (2017).CAS
PubMed
Article
Google Scholar
20.Li, A. P. & Long, T. J. An evaluation of the genotoxic potential of glyphosate. Fundam. Appl. Toxicol. 10, 537–546 (1988).CAS
PubMed
Article
Google Scholar
21.Smith, E. A. & Oehme, F. W. The biological activity of glyphosate to plants and animals: a literature review. Vet. Hum. Toxicol. 34, 531–543 (1992).CAS
PubMed
Google Scholar
22.Smith, D. F. Q. et al. Glyphosate inhibits melanization and increases insect susceptibility to infection. bioRxiv (2020).23.Torretta, V., Katsoyiannis, I., Viotti, P. & Rada, E. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 10, 950 (2018).Article
CAS
Google Scholar
24.Snyder, A. K. & Rio, R. V. M. “Wigglesworthia morsitans” folate (Vitamin B 9) biosynthesis contributes to tsetse host fitness. Appl. Environ. Microbiol. 81, 5375–5386 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).CAS
PubMed
Article
Google Scholar
26.Motta, E. V. S. et al. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. 86, e01150–20 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Klein, A. et al. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J 10, 376–388 (2016).CAS
PubMed
Article
Google Scholar
28.Wu, D. et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4, e188 (2006).PubMed
PubMed Central
Article
CAS
Google Scholar
29.Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci 364, 1711–1723 (2009).Article
Google Scholar
30.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article
Google Scholar
31.Memmott, J. et al. Biodiversity loss and ecological network structure. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 325–347 (Oxford University Press, 2005).32.Liao, C., Upadhyay, A., Liang, J., Han, Q. & Li, J. 3,4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects. Dev. Comp. Immunol. 83, 44–50 (2018).CAS
PubMed
Article
Google Scholar
33.Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K. J. Chitin metabolism in insects. In Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 193–235 (Elsevier, 2012).34.Wirtz, R. A. & Hopkins, T. L. Tyrosine and phenylalanine concentrations in haemolymph and tissues of the American cockroach, Periplaneta americana, during metamorphosis. J. Insect Physiol. 20, 1143–1154 (1974).CAS
PubMed
Article
Google Scholar
35.Gibbs, A. G. & Rajpurohit, S. Cuticular lipids and water balance. In Insect Hydrocarbons (eds Blomquist, G. J. & Bagneres, A. -G.) 100–120 (Cambridge University Press, 2010).36.Hackman, R. H. Chemistry of the insect cuticle. in The Physiology of Insecta (ed. Rodstein, M.) 215–270 (Academic Press, 1974).37.Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article
Google Scholar
38.Kumar, V. et al. Amino acids distribution in economical important plants: a review. Biotechnol. Res. Innov 3, 197–207 (2019).Article
Google Scholar
39.Noh, M. Y., Muthukrishnan, S., Kramer, K. J. & Arakane, Y. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17, 1–9 (2016).PubMed
Article
Google Scholar
40.Sterkel, M. et al. Tyrosine detoxification is an essential trait in the life history of blood-feeding arthropods. Curr. Biol. 26, 2188–2193 (2016).CAS
PubMed
Article
Google Scholar
41.Herrmann, K. M. & Weaver, L. M. The shikimate pathway. Annu. Rev. Plant Biol. 50, 473–503 (1999).CAS
Article
Google Scholar
42.Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).CAS
PubMed
Article
Google Scholar
43.Hirota, B. et al. A novel, extremely elongated, and endocellular bacterial symbiont supports cuticle formation of a grain pest beetle. MBio 8, 1–16 (2017).Article
Google Scholar
44.Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213 (2012).CAS
PubMed
Article
Google Scholar
45.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
46.Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).CAS
PubMed
Article
Google Scholar
47.McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2012).CAS
Article
Google Scholar
48.Van Leuven, J. T., Meister, R. C., Simon, C. & McCutcheon, J. P. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158, 1270–1280 (2014).PubMed
Article
CAS
Google Scholar
49.Campbell, M. A., Łukasik, P., Simon, C. & McCutcheon, J. P. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27, 3568–3575.e3 (2017).CAS
PubMed
Article
Google Scholar
50.Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. USA 112, 10192–10199 (2015).CAS
PubMed
Article
Google Scholar
51.Chen, Y. C., Liu, T., Yu, C. H., Chiang, T. Y. & Hwang, C. C. Effects of GC bias in next-generation-sequencing data on de novo genome assembly. PLoS ONE 8, e62856 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+ C)-biased genomes. Nat. Methods 6, 291–295 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 1–13 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
54.Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2012).CAS
Article
Google Scholar
55.Sloan, D. B. et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31, 857–871 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Zucko, J. et al. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC Genomics 11, 628 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
57.Tokuda, G. et al. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol. Lett. 9, 20121153 (2013).PubMed
PubMed Central
Article
Google Scholar
58.Kinjo, Y. et al. Parallel and gradual genome erosion in the Blattabacterium endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches. Genome Biol. Evol. 10, 1622–1630 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Menzel, R. & Roth, J. Purification of the putA gene product. A bifunctional membrane-bound protein from Salmonella typhimurium responsible for the two-step oxidation of proline to glutamate. J. Biol. Chem. 256, 9755–9761 (1981).CAS
PubMed
Article
Google Scholar
60.Zhou, Y., Zhu, W., Bellur, P. S., Rewinkel, D. & Becker, D. F. Direct linking of metabolism and gene expression in the proline utilization a protein from Escherichia coli. Amino Acids 35, 711–718 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. USA 106, 19521–19526 (2009).CAS
PubMed
Article
Google Scholar
62.McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. USA 106, 15394–15399 (2009).CAS
PubMed
Article
Google Scholar
63.Sabree, Z. L., Huang, C. Y., Okusu, A., Moran, N. A. & Normark, B. B. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Environ. Microbiol. 15, 1988–1999 (2013).CAS
PubMed
Article
Google Scholar
64.Rosas-Pérez, T., Rosenblueth, M., Rincón-Rosales, R., Mora, J. & Martínez-Romero, E. Genome Sequence of “Candidatus Walczuchella monophlebidarum” the Flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol. Evol. 6, 714–726 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
65.Kuriwada, T. et al. Biological role of Nardonella endosymbiont in its weevil host. PLoS ONE 5, e13101 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
66.Okude, G. et al. Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae). Zool. Lett. 3, 13 (2017).Article
Google Scholar
67.Hirota, B., Meng, X.-Y. & Fukatsu, T. Bacteriome-sssociated rndosymbiotic bacteria of Nosodendron tree sap beetles (Coleoptera: Nosodendridae). Front. Microbiol. 11, 2556 (2020).Article
Google Scholar
68.Hopkins, T. L. & Kramer, K. J. Insect cuticle sclerotization. Annu. Rev. Entomol. 37, 273–302 (1992).CAS
Article
Google Scholar
69.Andersen, S. O. Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010).CAS
PubMed
Article
Google Scholar
70.Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS ONE 7, e38718 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Moran, N. A. & Bennett, G. M. The tiniest tiny genomes. Annu. Rev. Microbiol. 68, 195–215 (2014).CAS
PubMed
Article
Google Scholar
72.McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).CAS
PubMed
Article
Google Scholar
73.Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).CAS
PubMed
Article
Google Scholar
74.Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in (semi-) aquatic reed beetles. Nat. Commun. 11, 1–15 (2020).
Google Scholar
75.Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B Biol. Sci. 282, 20142957 (2015).Article
Google Scholar
76.Salem, H. et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875–2886 (2020).CAS
PubMed
Article
Google Scholar
77.Hansen, A. K., Pers, D. & Russell, J. A. Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In Mechanisms Underlying Microbial Symbiosis, vol. 58 (ed. Kerry M. Oliver, J. A. R.) 161–205 (Academic Press, 2020).78.Tanner, J. J. Structural biology of proline catabolism. Amino Acids 35, 719–730 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
79.Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–61 (1980).CAS
PubMed
Article
Google Scholar
80.Bursell, E. The role of proline in energy metabolism.In Energy Metabolism in Insects (ed. Downer R.G.H.) 135–154 (Springer, Boston, 1981).81.Engl, T., Schmidt, T. H. P., Kanyile, S. N. & Klebsch, D. Metabolic cost of a nutritional symbiont manifests in delayed reproduction in a grain pest beetle. Insects 11, 717 (2020).PubMed Central
Article
PubMed
Google Scholar
82.José de Souza, D., Devers, S. & Lenoir, A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C. R. Biol. 334, 737–741 (2011).PubMed
Article
CAS
Google Scholar
83.Zientz, E., Beyaert, I., Gross, R. & Feldhaar, H. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Appl. Environ. Microbiol. 72, 6027–6033 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
84.Oakeson, K. F. et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol. Evol. 6, 76–93 (2013).Article
Google Scholar
85.Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J 12, 898–908 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
86.McCutcheon, J. P. & Moran, N. A. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol. Evol. 2, 708–718 (2010).PubMed
PubMed Central
Article
Google Scholar
87.Gerth, M., Gansauge, M. T., Weigert, A. & Bleidorn, C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat. Commun. 5, 1–7 (2014).Article
CAS
Google Scholar
88.Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the Lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. Msystems 5, e00268–20 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
90.Helander, M., Pauna, A., Saikkonen, K. & Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9, 19653 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
91.Kiers, E. T., Rousseau, R. A., West, S. A. & Denlson, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81 (2003).CAS
PubMed
Article
Google Scholar
92.Whiteside, M. D., Digman, M. A., Gratton, E. & Treseder, K. K. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol. Biochem. 55, 7–13 (2012).CAS
Article
Google Scholar
93.Faita, M. R., Cardozo, M. M., Amandio, D. T. T., Orth, A. I. & Nodari, R. O. Glyphosate-based herbicides and Nosema sp. microsporidia reduce honey bee (Apis mellifera L.) survivability under laboratory conditions. J. Apic. Res. 59, 1–11 (2020).Article
Google Scholar
94.Wilson, A. C. C. et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol. Biol. 19, 249–258 (2010).CAS
PubMed
Article
Google Scholar
95.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article
Google Scholar
96.Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS
Article
Google Scholar
97.Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS
Article
Google Scholar
98.Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS
PubMed
Article
Google Scholar
99.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
100.Hayes, T. B. & Hansen, M. From silent spring to silent night: agrochemicals and the anthropocene. Elem. Sci. Anthropol. 5, (2017).101.Bowler, D. E., Heldbjerg, H., Fox, A. D., Jong, M. & Böhning‐Gaese, K. Long‐term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130 (2019).PubMed
Article
Google Scholar
102.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
103.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, 1–12 (2014).Article
Google Scholar
104.Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
105.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2015).Article
CAS
Google Scholar
106.Laczny, C. C. et al. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 45, W171–W179 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
107.Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).Article
CAS
Google Scholar
108.Arkin, A. P. et al. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
109.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
110.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
111.Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
112.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS
PubMed
PubMed Central
Google Scholar
113.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS
PubMed
Article
Google Scholar
114.Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
115.Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
116.Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS
Article
PubMed
Google Scholar
117.Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–14 (2014).CAS
PubMed
Article
Google Scholar
118.Weiss, B. & Kaltenpoth, M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front. Microbiol. 7, 1486 (2016).PubMed
PubMed Central
Article
Google Scholar
119.Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).Article
Google Scholar
120.Tanahashi, M. Natsumushi: Image measuring software for entomological studies. Entomol. Sci. 21, 347–360 (2018).Article
Google Scholar
121.Pérez-Palacios, T., Barroso, M. A., Ruiz, J. & Antequera, T. A rapid and accurate extraction procedure for analysing free amino acids in meat samples by GC–MS. Int. J. Anal. Chem. 2015, 209214 (2015).PubMed
PubMed Central
Article
Google Scholar
122.Miller, R. G. Simultaneous Statistical Inference (Springer, 1981).123.Engl, T., Kiefer, J.S.T. Data from: Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamenis. Max Planck Soc. https://doi.org/10.17617/3.5l (2021). More