Evolutionary history of mental glands in turtles reveals a single origin in an aquatic ancestor and recurrent losses independent of macrohabitat
1.Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article
Google Scholar
2.Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B 340, 215–225 (1993).ADS
CAS
Article
Google Scholar
3.Bakker, T. C. & Mundwiler, B. Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behav. Ecol. 5, 74–80 (1994).Article
Google Scholar
4.Molnár, O., Bajer, K., Mészáros, B., Török, J. & Herczeg, G. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100, 551–558 (2013).ADS
PubMed
Article
CAS
Google Scholar
5.Wolfenbarger, L. L. Red coloration of male northern cardinals correlates with mate quality and territory quality. Behav. Ecol. 10, 80–90 (1999).Article
Google Scholar
6.Endler, J. A. Natural-selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).PubMed
Article
Google Scholar
7.Marcondes, R. S. & Brumfield, R. T. Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution 73, 704–719 (2019).PubMed
Article
Google Scholar
8.Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).9.Campos, S. M. et al. Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behav. Ecol. (2020).10.Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. B 271, 2249–2255 (2004).PubMed
Article
Google Scholar
11.Karlson, P. & Lüscher, M. ‘Pheromones’: A new term for a class of biologically active substances. Nature 183, 55–56 (1959).ADS
CAS
PubMed
Article
Google Scholar
12.Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biol. 10, 200252 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Symonds, M. R. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23, 220–228 (2008).PubMed
Article
Google Scholar
14.Boulet, M., Charpentier, M. J. & Drea, C. M. Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol. Biol. 9, 281 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).CAS
PubMed
Article
Google Scholar
16.Janssenswillen, S. et al. Origin and diversification of a salamander sex pheromone system. Mol. Biol. Evol. 32, 472–480 (2015).PubMed
Article
Google Scholar
17.Kikuyama, S. et al. Sodefrin: A female-attracting peptide pheromone in newt cloacal glands. Science 267, 1643–1645 (1995).ADS
CAS
PubMed
Article
Google Scholar
18.Wabnitz, P. A., Bowie, J. H., Tyler, M. J., Wallace, J. C. & Smith, B. P. Aquatic sex pheromone from a male tree frog. Nature 401, 444–445 (1999).ADS
CAS
PubMed
Article
Google Scholar
19.Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).Article
Google Scholar
20.Martín, J. & López, P. Pheromones and chemical communication in lizards. In Reproductive Biology and Phylogeny of Lizards and Tuatara (eds Rheubert, J. L. et al.) 43–75 (CRC Press, Boca Raton, 2014).
Google Scholar
21.Silva, L. & Antunes, A. Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Ann. Rev. Anim. Biosci. 5, 353–370 (2017).CAS
Article
Google Scholar
22.Bonadonna, F. & Nevitt, G. A. Partner-specific odor recognition in an Antarctic seabird. Science 306, 835–835 (2004).CAS
PubMed
Article
Google Scholar
23.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article
Google Scholar
24.Krause, E. T., Krüger, O., Kohlmeier, P. & Caspers, B. A. Olfactory kin recognition in a songbird. Biol. Lett. 8, 327–329 (2012).Article
Google Scholar
25.Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).Article
Google Scholar
26.Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).Article
Google Scholar
27.Baeckens, S., Edwards, S., Huyghe, K. & Van Damme, R. Chemical signalling in lizards: An interspecific comparison of femoral pore numbers in Lacertidae. Biol. J. Linn. Soc. 114, 44–57 (2015).Article
Google Scholar
28.Ossip-Klein, A. G., Fuentes, J. A., Hews, D. K. & Martins, E. P. Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards. Behav. Ecol. Sociobiol. 67, 1513–1522 (2013).Article
Google Scholar
29.Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. Comparative evidence for strong phylogenetic inertia in precloacal signalling glands in a species-rich lizard clade. Evol. Ecol. Res. 10, 11–28 (2008).
Google Scholar
30.Wang, Z. et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701–706 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Schwenk, K. Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates (eds Thewissen, J. H. M. & Nummela, S.) 65–81 (University of California Press, Berkeley, 2008).
Google Scholar
32.Vieyra, M. L. Olfactory receptor genes in terrestrial, freshwater, and sea turtles: Evidence for a reduction in the number of functional genes in aquatic species. Chelon. Conserv. Biol. 10, 181–187 (2011).Article
Google Scholar
33.Mason, R. T. & Parker, M. R. Social behavior and pheromonal communication in reptiles. J. Comp. Physiol. A. 196, 729–749 (2010).CAS
Article
Google Scholar
34.Ehrenfeld, J. G. & Ehrenfeld, D. W. Externally secreting glands of freshwater and sea turtles. Copeia 1973, 305–314 (1973).Article
Google Scholar
35.Waagen, G. N. Musk glands in recent turtles. Master of Science thesis, Department of Biology, University of Utah (1972).36.Weldon, P. J., Flachsbarth, B. & Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25, 738–756 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Ibáñez, A. et al. The chemistry and histology of sexually dimorphic mental glands in the freshwater turtle, Mauremys leprosa. PeerJ 8, e9047 (2020).PubMed
PubMed Central
Article
Google Scholar
38.Rose, F. L., Drotman, R. & Weaver, W. G. Electrophoresis of chin gland extracts of Gopherus (tortoises). Comp. Biochem. Physiol. 29, 847–851 (1969).CAS
Article
Google Scholar
39.Winokur, R. M. & Legler, J. M. Chelonian mental glands. J. Morphol. 147, 275–291 (1975).PubMed
Article
Google Scholar
40.Alberts, A. C., Rostal, D. C. & Lance, V. A. Studies on the chemistry and social significance of chin gland secretions in the desert tortoise, Gopherus agassizii. Herpetol. Monogr. 8, 116–124 (1994).Article
Google Scholar
41.Kelley, M. D. & Mendonça, M. T. Mental gland secretions as a social cue in gopher tortoises (Gopherus polyphemus): Tortoise presence stimulates and maintains social behaviour with chemical cues. Acta Ethol. 24, 1–8 (2020).Article
Google Scholar
42.Rose, F. L. Tortoise chin gland fatty acid composition: Behavioral significance. Comp. Biochem. Physiol. 32, 577–580 (1970).CAS
Article
Google Scholar
43.Pereira, A. G., Sterli, J., Moreira, F. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).PubMed
Article
Google Scholar
44.Grosse, A. M., Sterrett, S. C. & Maerz, J. C. Effects of turbidity on the foraging success of the eastern painted turtle. Copeia 2010, 463–467 (2010).Article
Google Scholar
45.Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles (Academic Press, 2013).
Google Scholar
46.Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl. Acad. Sci. 118, e2012215118 (2021).PubMed
Article
CAS
Google Scholar
47.Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20, 1–16 (2020).Article
Google Scholar
48.Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. & Donoghue, P. C. A divergence dating analysis of turtles using fossil calibrations: An example of best practices. J. Paleontol. 87, 612–634 (2013).Article
Google Scholar
49.Shaffer, H. B., McCartney-Melstad, E., Near, T. J., Mount, G. G. & Spinks, P. Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7–15 (2017).PubMed
Article
Google Scholar
50.Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).PubMed
Article
Google Scholar
51.Joyce, W. G. & Gauthier, J. A. Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proc. R. Soc. Lond. B 271, 1–5 (2004).Article
Google Scholar
52.Quagliata, S., Malentacchi, C., Delfino, C., Brunasso, A. M. & Delfino, G. Adaptive evolution of secretory cell lines in vertebrate skin. Caryologia 59, 187–206 (2006).Article
Google Scholar
53.Shi, P. & Zhang, J. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates. In Chemosensory Systems in Mammals, Fishes, and Insects (eds Meyerhof, W. & Korsching, S.) 1–23 (Springer, Berlin, 2009).
Google Scholar
54.Swaney, W. T. & Keverne, E. B. The evolution of pheromonal communication. Behav. Brain Res. 200, 239–247 (2009).CAS
PubMed
Article
Google Scholar
55.Martín, J. & López, P. Effects of global warming on sensory ecology of rock lizards: Increased temperatures alter the efficacy of sexual chemical signals. Funct. Ecol. 27, 1332–1340 (2013).Article
Google Scholar
56.Ibáñez, A., López, P. & Martín, J. Discrimination of conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. Anim. Behav. 83, 1107–1113 (2012).Article
Google Scholar
57.Lewis, C. H., Molloy, S. F., Chambers, R. M. & Davenport, J. Response of common musk turtles (Sternotherus odoratus) to intraspecific chemical cues. J. Herpetol. 41, 349–353 (2007).Article
Google Scholar
58.Poschadel, J. R., Meyer-Lucht, Y. & Plath, M. Response to chemical cues from conspecifics reflects male mating preference for large females and avoidance of large competitors in the European pond turtle, Emys orbicularis. Behaviour 143, 569–587 (2006).Article
Google Scholar
59.Weaver, W. G. Courtship and combat behavior in Gopherus berlandieri. Bull. Fla. St. Mus. 15, 1–43 (1970).
Google Scholar
60.Auffenberg, W. On the courtship of Gopherus polyphemus. Herpetologica 22, 113–117 (1966).
Google Scholar
61.Augustine, L. & Haislip, N. Husbandry and reproduction of the Indochinese box turtle Cuora galbinifrons, Bourret’s box turtle Cuora bourreti and Southern Vietnam box turtle Cuora picturata in North America. Int. Zoo Yearb. 53, 238–249 (2019).Article
Google Scholar
62.Liu, Y.-X., Davy, C. M., Shi, H.-T. & Murphy, R. W. Sex in the half-shell: A review of the functions and evolution of courtship behavior in freshwater turtles. Chelon. Conserv. Biol. 12, 84–100 (2013).Article
Google Scholar
63.Schilde, M. Beobachtungen zum Fortpflanzungsverhalten von Sacalia bealei und Sacalia quadriocellata. Radiata 14, 30–32 (2005).
Google Scholar
64.Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 2. A comparison above the species level and remarks on the evolution of behaviour elements. Bull. Chicago Herpetol. Soc. 34, 225–236 (1999).
Google Scholar
65.Martín, J. & López, P. Multimodal sexual signals in male ocellated lizards Lacerta lepida: Vitamin E in scent and green coloration may signal male quality in different sensory channels. Naturwissenschaften 97, 545–553 (2010).ADS
PubMed
Article
CAS
Google Scholar
66.Rowe, C. Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58, 921–931 (1999).CAS
PubMed
Article
Google Scholar
67.Martins, E. P. et al. Evolving from static to dynamic signals: Evolutionary compensation between two communicative signals. Anim. Behav. 102, 223–229 (2015).PubMed
PubMed Central
Article
Google Scholar
68.Ferrara, C. R., Vogt, R. C. & Sousa-Lima, R. S. Turtle vocalizations as the first evidence of posthatching parental care in chelonians. J. Comp. Psychol. 127, 24 (2013).PubMed
Article
Google Scholar
69.Bulté, G., Germain, R. R., O’Connor, C. M. & Blouin-Demers, G. Sexual dichromatism in the northern map turtle, Graptemys geographica. Chelon. Conserv. Biol. 12, 187–192 (2013).Article
Google Scholar
70.Ibáñez, A., Marzal, A., López, P. & Martín, J. Sexually dichromatic coloration reflects size and immunocompetence in female Spanish terrapins, Mauremys leprosa. Naturwissenschaften 100, 1137–1147 (2013).ADS
PubMed
Article
CAS
Google Scholar
71.Rowe, J. W., Gradel, J. R., Bunce, C. F. & Clark, D. L. Sexual dimorphism in size and shell shape, and dichromatism of spotted turtles (Clemmys guttata) in southwestern Michigan. Amphibia-Reptilia 33, 443–450 (2013).Article
Google Scholar
72.Steffen, J. E., Learn, K. M., Drumheller, J. S., Boback, S. M. & McGraw, K. J. Carotenoid composition of colorful body stripes and patches in the painted turtle (Chrysemys picta) and red-eared slider (Trachemys scripta). Chelon. Conserv. Biol. 14, 56–63 (2015).Article
Google Scholar
73.Moll, E. O., Matson, K. E. & Krehbiel, E. B. Sexual and seasonal dichromatism in the Asian river turtle Callagur borneoensis. Herpetologica 37, 181–194 (1981).
Google Scholar
74.Praschag, P. et al. A new subspecies of Batagur affinis (Cantor, 1847), one of the world’s most critically endangered chelonians (Testudines: Geoemydidae). Zootaxa 2233, 57–68 (2009).Article
Google Scholar
75.Praschag, P., Hundsdörfer, A. & Fritz, U. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442 (2007).Article
Google Scholar
76.Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 1. The genus Trachemys, especially Trachemys scripta callirostris (Gray, 1855). Bull. Chicago Herpetol. Soc. 33, 225–236 (1998).
Google Scholar
77.Ferrara, C. R., Vogt, R. C., Eisemberg, C. C. & Doody, J. S. First evidence of the pig-nosed turtle (Carettochelys insculpta) vocalizing underwater. Copeia 105, 29–32 (2017).Article
Google Scholar
78.Baeckens, S. & Whiting, M. J. Investment in chemical signalling glands facilitates the evolution of sociality in lizards. Proc. R. Soc. B 288, 20202438 (2021).PubMed
Article
PubMed Central
Google Scholar
79.Baeckens, S., García-Roa, R., Martín, J. & Van Damme, R. The role of diet in shaping the chemical signal design of lacertid lizards. J. Chem. Ecol. 43, 902–910 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).Article
Google Scholar
81.Kopena, R., Martín, J., López, P. & Herczeg, G. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS ONE 6, e19410 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
82.Martin, J., Ortega, J. & Lopez, P. Interpopulational variations in sexual chemical signals of Iberian wall lizards may allow maximizing signal efficiency under different climatic conditions. PLoS ONE 10, e0131492 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
83.Donihue, C. M. et al. Rapid and repeated divergence of animal chemical signals in an island introduction experiment. J. Anim. Ecol. 89, 1458–1467 (2020).PubMed
Article
Google Scholar
84.Novelli, I. A. Estudo morfológico (anatômico e histológico) do sistema tegumentar de Hydromedusa maximiliani (Mikan, 1820) (Testudines, Chelidae) e Phrynops geoffroanus (Schweigger, 1812) (Testudines, Chelidae). Doctoral thesis, Universidade Federal Rural do Rio de Janeiro (2011).85.Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).PubMed
Article
Google Scholar
86.Bonin, F., Devaux, B. & Dupré, A. Turtles of the World (JHU Press, Baltimore, 2006).
Google Scholar
87.Bour, R. Global diversity of turtles (Chelonii; Reptilia) in freshwater. Hydrobiologia 595, 593–598 (2008).Article
Google Scholar
88.Ernst, C. H. & Barbour, R. W. Turtles of the World (Smithsonian Institution Press, Washington DC, 1989).
Google Scholar
89.Beaulieu, J. M., Oliver, J. C. & O’Meara, B. C. corHMM: Analysis of Binary Character Evolution, https://CRAN.R-project.org/package=corHMM (2017).90.Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).Article
Google Scholar
91.Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).PubMed
Article
Google Scholar
92.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet
Article
Google Scholar
93.Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).ADS
Article
Google Scholar
94.Gray, K. M. & Steidl, R. J. A plant invasion affects condition but not density or population structure of a vulnerable reptile. Biol. Invasions 17, 1979–1988 (2015).Article
Google Scholar
95.Edwards, T. et al. The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the Gopherus morafkai—G. agassizii group. ZooKeys 562, 131–158 (2016).Article
Google Scholar More