More stories

  • in

    Insights into the taxonomic and functional characterization of agricultural crop core rhizobiomes and their potential microbial drivers

    1.Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 32, 1097–1100 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    2.Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biol. 15, e2001793 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: From fundamental to applied. Front Plant Sci. 9, 1205 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants. 4, 247–257 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bonfante, P. & Anca, I.-A. Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annu. Rev. Microbiol. 63, 363–383 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Hiruma, K. et al. Root endophyte colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165, 464–474 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil 383, 3–41 (2014).CAS 
    Article 

    Google Scholar 
    9.Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: Opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 104, 19691–19696 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Robertson, G. P. & Vitousek, P. M. nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).Article 

    Google Scholar 
    12.Elser, J. & Bennett, E. Phosphorus cycle: A broken biogeochemical cycle. Nature 478, 29–31 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Dangl, J. L., Horvath, D. M. & Staskawicz, B. J. Pivoting the plant immune system from dissection to deployment. Science 341, 746–751 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Xiong, W. et al. Rhizosphere protists are key determinants of plant health. Microbiome 8, 27 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Risely, A. Applying the core microbiome to understand host–microbe systems. J. Anim. Ecol. 89, 1549–1558 (2020).PubMed 
    Article 

    Google Scholar 
    21.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 1–10 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 115, 7368–7373 (2018).PubMed 
    Article 

    Google Scholar 
    25.Pérez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Ofek-Lalzar, M. et al. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5, 1–9 (2014).Article 
    CAS 

    Google Scholar 
    27.Marasco, R., Rolli, E., Fusi, M., Michoud, G. & Daffonchio, D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 6, 3 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Jin, T. et al. Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 6, 1–12 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Gottel, N. R. et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934–5944 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911–E920 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Cheng, Z. et al. Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms 8, 170 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    34.Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17, 610–621 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Simonin, M. et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: Identification of a core microbiome across eight African and European soils. FEMS Microbiol. Ecol. 96, fiaa67 (2019).
    Google Scholar 
    36.Schlatter, D. C., Yin, C., Hulbert, S. & Paulitz, T. C. Core rhizosphere microbiomes of dryland wheat are influenced by location and land use history. Appl. Environ. Microbiol. 86, e02135-e2219 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Lemanceau, P., Blouin, M., Muller, D. & Moënne-Loccoz, Y. Let the core microbiota be functional. Trends Plant Sci. 22, 583–595 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Klassen, J. L. Defining microbiome function. Nat. Microbiol. 3, 864–869 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    42.Haichar, F. E. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2, 1221–1230 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    45.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Wu, Z. et al. Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiol. 18, 51 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Yan, Y., Kuramae, E. E., De Hollander, M., Klinkhamer, P. G. L. & Van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.United Nations Food and Agriculture Organization (FAO) http://www.fao.org/faostat/en/#data/QC (2020).54.Stams, A. J. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol 7, 568–577 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.IPCC. IPCC Guidelines for National Greenhouse Gas Inventories Prepared by the National Greenhouse Gas Inventories Programme IGES (2019).56.Kuan, K. B., Othman, R., Rahim, K. A. & Shamsuddin, Z. H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11, e0152478 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Singh, R. P. & Jha, P. N. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11, e0155026 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Sathya, A., Vijayabharathi, R. & Gopalakrishnan, S. Plant growth-promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7, 102 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Verbon, E. H. & Liberman, L. M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci. 21, 218–229 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Yang, P., Yu, S., Cheng, L. & Ning, K. Meta-network: Optimized species-species network analysis for microbial communities. BMC Genom. 20, 187 (2019).Article 

    Google Scholar 
    61.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 1–13 (2018).Article 

    Google Scholar 
    62.Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: Systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    64.Grossmann, G. et al. The RootChip: An integrated microfluidic chip for plant science. Plant Cell 23, 4234–4240 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O. H. & Aharoni, A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. USA 114, 4549–4554 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Choi, J. et al. Strategies to improve reference databases for soil microbiomes. ISME J. 11, 829–834 (2017).PubMed 
    Article 

    Google Scholar 
    69.Lopes, L. D., Pereira e Silva, M. C. & Andreote, F. D. Bacterial abilities and adaptation toward the rhizosphere colonization. Front. Microbiol. 7, 1341 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    71.Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Button, K. S. et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Jervis-Bardy, J. et al. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome 3, 19 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Schöler, A., Jacquiod, S., Vestergaard, G., Schulz, S. & Schloter, M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol. Fertil. Soils 53, 485–489 (2017).Article 
    CAS 

    Google Scholar 
    76.Vestergaard, G., Schulz, S., Schöler, A. & Schloter, M. Making big data smart: How to use metagenomics to understand soil quality. Biol. Fertil. Soils 53, 479–484 (2017).Article 

    Google Scholar 
    77.Venturi, V. & Keel, C. Signaling in the rhizosphere. Trends Plant Sci. 21, 187–198 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Boylen, E. et al. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    79.Callahan, B. J. et al. DADA2 paper supplementary information: High resolution sample inference from amplicon data. Nat. Methods. 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    84.McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. Genome analysis STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    88.Yurgel, S. N., Nearing, J. T., Douglas, G. M. & Langille, M. G. I. Metagenomic functional shifts to plant induced environmental changes. Front. Microbiol. 10, 1682 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data sets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Brisson, V., Schmidt, J., Northen, T. R., Vogel, J. P. & Gaudin, A. A new method to correct for habitat filtering in microbial correlation networks. Front. Microbiol. 10, 585 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    93.Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Banerjee, S., Thrall, P. H., Bissett, A., Heijden, M. G. A. & Richardson, A. E. Linking microbial co-occurrences to soil ecological processes across a woodland-grassland ecotone. Ecol. Evol. 8, 8217–8230 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Gu, Y. et al. Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil. Front. Microbiol. 8, 1516 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    The epidemicity index of recurrent SARS-CoV-2 infections

    Data and data processingThe modeling tools described in the following sections are applied to the Italian COVID-19 epidemic at the scale of second-level administrative divisions, i.e., provinces and metropolitan cities (as of 2020, 107 spatial units). Official data about resident population at the provincial level are produced yearly by the Italian National Institute of Statistics (Istituto Nazionale di Statistica, ISTAT; data available at http://dati.istat.it/Index.aspx?QueryId=18460). The January 2019 update has been used to inform the spatial distribution of the population.The data to quantify nation-wide human mobility prior to the pandemic come from ISTAT (specifically, from the 2011 national census; data available online at https://www.istat.it/it/archivio/139381). Mobility fluxes, mostly reflecting commuting patterns related to work and study purposes, are provided at the scale of third-level administrative units (municipalities)53,54. These fluxes were upscaled to the provincial level following the administrative divisions of 2019, and used to evaluate the fraction pi of mobile people and the fraction qij of mobile people between i and all other administrative units j (see Supplementary Material in Gatto et al.7).Airport traffic data for year 2019, used to inform the simulation shown in Fig. 4c, d, are from the Italian Airports Association (Assaeroporti; data available at http://assaeroporti.com/statistiche_201912/). Note that airports have been assigned to the main Metropolitan Area they serve, rather than to the province where they are geographically located (e.g., Malpensa Airport has been assigned to the Metropolitan City of Milano, rather than to the neighboring Varese province, where it actually lies).Model parameters are taken from a paper by Bertuzzo et al.14, where they were inferred in a Bayesian framework on the basis of the official epidemiological bulletins released daily by Dipartimento della Protezione Civile55 (data available online at https://github.com/pcm-dpc/COVID-19) and the bulletins of Epicentro, at ISS51,56. The parameters estimated for the initial phase of the Italian COVID-19 epidemic14, during which SARS-CoV-2 was spreading unnoticed in the population, reflect a situation of unperturbed social mixing and human mobility, absent any effort devoted to disease control. This parameterization, in which all parameters (including the transmission rates) are spatially homogeneous, is reported in Table 2 and has been used to produce all the results presented in the main text, except for those of Fig. 6. In this case, to account for the containment measures put in place by the Italian authorities and their effects on transmission rates and mobility patterns during the first months of the pandemic, a time-varying parameterization14 for the period February 24 to May 1, 2020 has been used. In this parameterization, the transmission rates were allowed to take different values over different time windows, corresponding to the timing of the implementation of the main nation-wide restrictions, or lifting thereof. Specifically, the effect of the containment measures was parameterized by assuming that the transmission parameters had a sharp decrease after the containment measures announced at the end of February and the beginning of March, and that they were further reduced in the following weeks as the country was effectively entering full lockdown. As a by-product, these time-varying transmission rates can also at least partially account for seasonal effects on disease transmission. Due to the emerging nature of the pathogen, seasonality has not been given further consideration in this work; however, it may become a key component of future modeling efforts aimed at studying post-pandemic SARS-CoV-2 transmission dynamics3, i.e., if/when the pathogen establishes as endemic. Spatial connectivity too was modified with respect to the baseline scenario to reflect the disruption of mobility patterns induced by the pandemic and the associated containment measures14. Specifically, between-province mobility was progressively reduced as the epidemic unfolded according to estimates obtained through mobility data from mobile applications53,57.Spatially explicit SEPIAR with distributed controlsWe consider a set of n communities connected by human mobility fluxes. In each community, the human population is subdivided according to infection status into the epidemiological compartments of susceptible, exposed (latently infected), post-latent (incubating infectious, also termed pre-symptomatic7), symptomatic infectious, asymptomatic infectious (including paucisymptomatic), and recovered individuals. The present model utilizes previous work aimed to describe the first wave of COVID-19 infections7,14. In particular, it allows us to account for three widely adopted types of containment measures: reduction of local transmission (as a result of the use of personal protections, social distancing, and local mobility restriction), travel restriction, and isolation of infected individuals. To describe the effects of isolation, each infected compartment (exposed, post-latent, symptomatic and asymptomatic) is actually split into two, which allows keeping track of the abundances of infected individuals who are still in the community vs. those who are removed from it (i.e., either in isolation at a hospital, if symptomatic, or quarantined at home, if exposed, post-latent, or asymptomatic). The state variables of the model are summarized in Table 1. Supplementary Figure 1 recapitulates the structure of the model.COVID-19 transmission dynamics are thus described by the following set of ordinary differential equations:$${dot{S}}_{i} =mu ({N}_{i}-{S}_{i})-{lambda }_{i}{S}_{i}\ {dot{E}}_{i} ={lambda }_{i}{S}_{i}-(mu +{delta }^{E}+{chi }_{i}^{E}){E}_{i}\ {dot{P}}_{i} ={delta }^{E}{E}_{i}-(mu +{delta }^{P}+{chi }_{i}^{P}){P}_{i}\ {dot{I}}_{i} =sigma {delta }^{P}{P}_{i}-(mu +alpha +{gamma }^{I}+eta +{chi }_{i}^{I}){I}_{i}\ {dot{A}}_{i} =(1-sigma ){delta }^{P}{P}_{i}-(mu +{gamma }^{A}+{chi }_{i}^{A}){A}_{i}\ {dot{E}}_{i}^{{rm{q}}} ={chi }_{i}^{E}{E}_{i}-(mu +{delta }^{E}){E}_{i}^{{rm{q}}}\ {dot{P}}_{i}^{{rm{q}}} ={chi }_{i}^{P}{P}_{i}+{delta }^{E}{E}_{i}^{{rm{q}}}-(mu +{delta }^{P}){P}_{i}^{{rm{q}}}\ {dot{I}}_{i}^{{rm{h}}} =(eta +{chi }_{i}^{I}){I}_{i}+sigma {delta }^{P}{P}_{i}^{{rm{q}}}-(mu +alpha +{gamma }^{I}){I}_{i}^{{rm{h}}}\ {dot{A}}_{i}^{{rm{q}}} ={chi }_{i}^{A}{A}_{i}+(1-sigma ){delta }^{P}{P}_{i}^{{rm{q}}}-(mu +{gamma }^{A}){A}_{i}^{{rm{q}}}\ {dot{R}}_{i} ={gamma }^{I}({I}_{i}+{I}_{i}^{{rm{h}}})+{gamma }^{A}({A}_{i}+{A}_{i}^{{rm{q}}})-mu {R}_{i}.$$
    (3)
    Susceptible individuals are recruited into community i (i = 1…n) at a constant rate μNi, with μ and Ni being the average mortality rate of the population and the size of the community in the absence of disease, respectively, and die at rate μ. In this way, the equilibrium size of community i without disease amounts to Ni. Susceptible individuals get exposed to the pathogen at rate λi, corresponding to the force of infection for community i (detailed below), thus becoming latently infected (but not infectious yet). Exposed individuals die at rate μ and transition to the post-latent, infectious stage at rate δE. If containment measures including mass testing and preventive isolation of positive cases are in place, exposed individuals may be removed from the general population and quarantined at rate ({chi }_{i}^{E}). Post-latent individuals die at rate μ, progress to the next infectious classes at rate ηP, developing an infection that can be either symptomatic—with probability σ—or asymptomatic, including the case in which only mild symptoms are present—with probability 1 − σ, and may be tested and quarantined at rate ({chi }_{i}^{P}). Symptomatic infectious individuals die at rate μ + α, with α being an extra-mortality term associated with disease-related complications, recover from infection at rate γI, may spontaneously seek treatment at a hospital at rate η, and may be identified through mass screening and hospitalized at rate ({chi }_{i}^{I}). Asymptomatic individuals die at rate μ, recover at rate γA, and may be quarantined at rate ({chi }_{i}^{A}). Infected individuals who are either hospitalized or quarantined at home are subject to the same epidemiological dynamics as those who are still in the community, but are considered to be effectively removed from it, thus not contributing to disease transmission. Individuals who recover from the infection die at rate μ, and are assumed to have permanent immunity to reinfection. This last assumption is not fundamental, as loss of immunity can be easily included in the model. However, immunity to SARS-CoV-2 reinfection is reported to be relatively long-lasting (a few months at least), hence its loss cannot alter transmission dynamics over epidemic timescales14.The cornerstone of model (Eq. (3)) is the force of infection, λi, which in a spatially explicit setting must account not only for locally acquired infections but also for the role played by human mobility. We assume that, at the spatiotemporal scales of interest for our problem, human mobility mostly depicts daily commuting flows (also coherently with the data available for parameterization; see above) and does not actually entail a permanent relocation of individuals. We thus describe human mobility (and the associated social contacts possibly conducive to disease transmission) by means of instantaneous spatial-mixing matrices ({M}_{c,ij}^{X}) (with X ∈ {S, E, P, I, A, R}), i.e.,$${M}_{c,ij}^{X}=left{begin{array}{ll}{r}^{X}{p}_{i}{q}_{ij}(1-{xi }_{ij})hfill&,{text{if}},i,ne, jhfill\ (1-{p}_{i})+(1-{r}^{X}){p}_{i}+{r}^{X}{p}_{i}{q}_{ij}(1-{xi }_{ij})&,{text{if}},i=j,end{array}right.$$
    (4)
    where pi (0 ≤ pi ≤ 1 for all i’s) is the fraction of mobile people in community i, qij (0 ≤ qij ≤ 1 for all i’s and j’s) represents the fraction of people moving between i and j (including j = i, (mathop{sum }nolimits_{j = 1}^{n}{q}_{ij}=1) for all i’s), rX (0 ≤ rX ≤ 1 for all X’s) quantifies the fraction of contacts occurring while individuals in epidemiological compartment X are traveling, and ξij (0 ≤ ξij ≤ 1 for all i’s and j’s) represents the effects of travel restrictions that may be imposed between any two communities i and j as a part of the containment response. Therefore, the probability that residents from i have social contacts while being in j (independently of with whom) is assumed to be proportional to the fraction rX of the mobility-related contacts of the individuals in epidemiological compartment X, multiplied by the probability pi that people from i travel (independently of the destination) and the probability qij that the travel occurs between i and j, possibly reduced by a factor 1 − ξij accounting for travel restrictions. All other contacts contribute to mixing within the local community (i in this case). Note also that if ξij = 0 for all i’s and j’s, then ({M}_{c,ij}^{X}) reduces to ({M}_{ij}^{X}), i.e., to the mixing matrix in the absence of disease-containment measures. In this case, (mathop{sum }nolimits_{j = 1}^{n}{M}_{ij}^{X}=1) for all i’s and X’s. It is important to remark, though, that the epidemiologically relevant contacts between the residents of two different communities, say i and j, may not necessarily occur in either i or j; in fact, they could happen anywhere else, say in community k, between residents of i and j simultaneously traveling to k. On this basis, we define the force of infection as$${lambda }_{i}=mathop{sum }limits_{j=1}^{n}{M}_{c,ij}^{S}frac{(1-{epsilon }_{j})left({beta }_{j}^{P}mathop{sum }nolimits_{k = 1}^{n}{M}_{c,kj}^{P}{P}_{k}+{beta }_{j}^{I}mathop{sum }nolimits_{k = 1}^{n}{M}_{c,kj}^{I}{I}_{k}+{beta }_{j}^{A}mathop{sum }nolimits_{k = 1}^{n}{M}_{c,kj}^{A}{A}_{k}right)}{mathop{sum }nolimits_{k = 1}^{n}left({M}_{c,kj}^{S}{S}_{k}+{M}_{c,kj}^{E}{E}_{k}+{M}_{c,kj}^{P}{P}_{k}+{M}_{c,kj}^{I}{I}_{k}+{M}_{c,kj}^{A}{A}_{k}+{M}_{c,kj}^{R}{R}_{k}right)},$$
    (5)
    where the parameters ({beta }_{j}^{X}) (X ∈ {P, I, A}) are the community-dependent rates of disease transmission from the three infectious classes, ϵj (0 ≤ ϵj ≤ 1 for all j’s) represents the reduction of transmission induced by social distancing, the use of personal protective equipment, and local mobility restrictions if such containment measures are in fact in place, and the terms ({M}_{c,ij}^{X}) (with X ∈ {S, E, P, I, A, R}) describe the epidemiological effects of mobility between i and j in the presence of disease-containment measures. Note that transmission has been assumed to be frequency-dependent.The parameters μ, δX (X ∈ {E, P}), σ, α, η, γX (X ∈ {I, A}), and rX (X ∈ {S, E, P, I, A, R}) are assumed to be community-independent, for they pertain to population demography at the country scale or the clinical course of the disease. By contrast, the transmission rates ({beta }_{i}^{X}) (X ∈ {P, I, A}) and the control parameters, namely the isolation rates ({chi }_{i}^{X}) (X ∈ {E, P, I, A}), the reductions of transmission due to personal protection, social distancing, and local mobility restriction ϵi, and the travel restrictions ξij, are assumed to be possibly community-dependent, thereby reflecting spatial heterogeneities in disease transmission prior to the implementation of containment measures (({beta }_{i}^{X})), testing effort and/or strategy (({chi }_{i}^{X})), local transmission reduction (ϵi), and travel restriction (ξij).Derivation of the basic and control reproduction numbersClose to the DFE, a state in which all individuals are susceptible to the disease (Si = Ni, with Ni being the baseline population size of community i) and all the other epidemiological compartments are empty (({E}_{i}={P}_{i}={I}_{i}={A}_{i}={E}_{i}^{{rm{q}}}={P}_{i}^{{rm{q}}}={I}_{i}^{{rm{h}}}={A}_{i}^{{rm{q}}}={R}_{i}=0) for all i’s), the dynamics of model (Eq. (3)) is described by the linearized system (dot{{bf{x}}}={{bf{J}}}_{{bf{c}}}{bf{x}}), where ({bf{x}}={[{S}_{i},{E}_{i},{P}_{i},{I}_{i},{A}_{i},{E}_{i}^{{rm{q}}},{P}_{i}^{{rm{q}}},{I}_{i}^{{rm{h}}},{A}_{i}^{{rm{q}}},{R}_{i}]}^{T}) (where i = 1…n and the superscript T denotes matrix transposition) and Jc is the spatial Jacobian matrix$${{bf{J}}}_{{bf{c}}}=left[begin{array}{llllllllll}-mu {bf{I}}&{bf{0}}&-{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}&-{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}&-{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{delta }^{E}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&sigma {delta }^{P}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&(1-sigma ){delta }^{P}{bf{I}}&{bf{0}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{{boldsymbol{chi }}}^{{bf{E}}}&{bf{0}}&{bf{0}}&{bf{0}}&-(mu +{delta }^{E}){bf{I}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{{boldsymbol{chi }}}^{{bf{P}}}&{bf{0}}&{bf{0}}&{delta }^{E}{bf{I}}&-(mu +{delta }^{P}){bf{I}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&eta {bf{I}}+{{boldsymbol{chi }}}^{{bf{I}}}&{bf{0}}&{bf{0}}&sigma {delta }^{P}{bf{I}}&-(mu +alpha +{gamma }^{I}){bf{I}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{{boldsymbol{chi }}}^{{bf{A}}}&{bf{0}}&(1-sigma ){delta }^{P}{bf{I}}&{bf{0}}&-(mu +{gamma }^{A}){bf{I}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{gamma }^{I}{bf{I}}&{gamma }^{A}{bf{I}}&{bf{0}}&{bf{0}}&{gamma }^{I}{bf{I}}&{gamma }^{A}{bf{I}}&-mu {bf{I}}end{array}right],$$
    (6)
    where I and 0 are the identity and null matrices of size n, respectively, ({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{X}}}) (X ∈ {E, P, I, A}) are diagonal matrices whose non-zero elements are (mu +{delta }^{E}+{chi }_{i}^{E}) (for ({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}})), (mu +{delta }^{P}+{chi }_{i}^{P}) (for ({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}})), (mu +alpha +eta +{gamma }^{I}+{chi }_{i}^{I}) (for ({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}})), and (mu +{gamma }^{A}+{chi }_{i}^{A}) (for ({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}})), and the matrices ({{boldsymbol{theta }}}_{{bf{c}}}^{{bf{X}}}) (X ∈ {P, I, A}) are given by$${{boldsymbol{theta }}}_{{bf{c}}}^{{bf{X}}}={bf{N}}{{bf{M}}}_{{bf{c}}}^{{bf{S}}}({bf{I}}-{boldsymbol{epsilon }}){{boldsymbol{beta }}}^{{bf{X}}}{({{boldsymbol{Delta }}}_{{bf{c}}})}^{-1}{({{bf{M}}}_{{bf{c}}}^{{bf{X}}})}^{T},$$
    (7)
    where N is a diagonal matrix whose non-zero elements are the population sizes Ni, ({{bf{M}}}_{{bf{c}}}^{{bf{X}}}=[{M}_{c,ij}^{X}]) (X ∈ {S, P, I, A}) are sub-stochastic matrices representing the spatially explicit contact terms in the presence of containment measures, ϵ is a diagonal matrix whose non-zero entries are the transmission reductions ϵi, βX (X ∈ {P, I, A}) are diagonal matrices whose non-zero elements are the contact rates ({beta }_{i}^{X}), and Δc is a diagonal matrix whose non-zero entries are the elements of vector ({bf{u}}{bf{N}}{{bf{M}}}_{{bf{c}}}^{{bf{S}}}), with u being a unitary row vector of size n.Because of its block-triangular structure, it is immediate to see that Jc has 6n strictly negative eigenvalues, namely −μ, with multiplicity 2n, and −(μ + δE),−(μ + δP), −(μ + α + γI), and −(μ + γA), each with multiplicity n. Therefore, the asymptotic stability properties of the DFE of model (Eq. (3)), which determine whether long-term disease circulation in the presence of controls is possible, are linked to the eigenvalues of a reduced-order spatial Jacobian associated with the infection subsystem, i.e., the subset of state variables directly related to disease transmission, in this case {E1, …, En, P1, …, Pn, I1, …, In, A1, …, An}. Note that introducing waning immunity would not change the spectral properties of the Jacobian matrix evaluated at the DFE. The reduced-order Jacobian ({{bf{J}}}_{{bf{c}}}^{* }) thus reads$${{bf{J}}}_{{bf{c}}}^{* }=left[begin{array}{llll}-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}\ {delta }^{E}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}}&{bf{0}}&{bf{0}}\ {bf{0}}&sigma {delta }^{P}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}}&{bf{0}}\ {bf{0}}&(1-sigma ){delta }^{P}{bf{I}}&{bf{0}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}}end{array}right].$$
    (8)
    The asymptotic stability properties of the DFE can be assessed through a NGM approach22,37. In fact, the spectral radius of the NGM provides an estimate of the so-called control reproduction number58, ({{mathcal{R}}}_{{rm{c}}}), which can be thought of as the average number of secondary infections produced by one infected individual in a completely susceptible population in the presence of disease-containment measures. Clearly, if ({{mathcal{R}}}_{{rm{c}}}, > , 1) the pathogen can invade the population in the long run, and endemic transmission will eventually be established despite the implementation of disease-containment measures. To evaluate ({{mathcal{R}}}_{{rm{c}}}) for model (Eq. (3)), the Jacobian of the infection subsystem can be decomposed into a spatial transmission matrix$${{bf{T}}}_{{bf{c}}}=left[begin{array}{llll}{bf{0}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}&{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}end{array}right],$$
    (9)
    and a transition matrix$${{boldsymbol{Sigma }}}_{{bf{c}}}=left[begin{array}{llll}-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}&{bf{0}}&{bf{0}}&{bf{0}}\ {delta }^{E}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}}&{bf{0}}&{bf{0}}\ {bf{0}}&sigma {delta }^{P}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}}&{bf{0}}\ {bf{0}}&(1-sigma ){delta }^{P}{bf{I}}&{bf{0}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}}end{array}right],$$
    (10)
    so that Jc = Tc + Σc. The spatial NGM with large domain ({{bf{K}}}_{{bf{c}}}^{{bf{L}}}), including variables other than the states-at-infection59 (i.e., the exposed individuals Ei) thus reads$${{bf{K}}}_{{bf{c}}}^{{bf{L}}}=-{{bf{T}}}_{{bf{c}}}{({{mathbf{Sigma }}}_{{bf{c}}})}^{-1}=left[begin{array}{llll}{{bf{K}}}_{{bf{c}}}^{{bf{1}}}&{{bf{K}}}_{{bf{c}}}^{{bf{2}}}&{{bf{K}}}_{{bf{c}}}^{{bf{3}}}&{{bf{K}}}_{{bf{c}}}^{{bf{4}}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}end{array}right],$$
    (11)
    with$${{bf{K}}}_{{bf{c}}}^{{bf{1}}} ={delta }^{E}left[{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}+sigma {delta }^{P}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}})}^{-1}+(1-sigma ){delta }^{P}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}})}^{-1}right]{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}})}^{-1}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}})}^{-1}\ {{bf{K}}}_{{bf{c}}}^{{bf{2}}} =left[{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}+sigma {delta }^{P}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}})}^{-1}+(1-sigma ){delta }^{P}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}})}^{-1}right]{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}})}^{-1}\ {{bf{K}}}_{{bf{c}}}^{{bf{3}}} ={{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}})}^{-1}\ {{bf{K}}}_{{bf{c}}}^{{bf{4}}} ={{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}})}^{-1}.$$
    (12)
    Because of the peculiar block-triangular structure of ({{bf{K}}}_{{bf{c}}}^{{bf{L}}}), the spatial NGM with small domain (Kc, accounting only for Ei) is simply ({{bf{K}}}_{{bf{c}}}^{{bf{1}}}) (see again Diekmann et al.59). The control reproduction number can thus be found as the spectral radius of the NGM (with either large or small domain), i.e.,$${{mathcal{R}}}_{{rm{c}}}=rho ({{bf{K}}}_{{bf{c}}}^{{bf{L}}})=rho ({{bf{K}}}_{{bf{c}}})=rho ({{bf{G}}}_{{bf{c}}}^{{bf{P}}}+{{bf{G}}}_{{bf{c}}}^{{bf{I}}}+{{bf{G}}}_{{bf{c}}}^{{bf{A}}}),$$
    (13)
    where$${{bf{G}}}_{{bf{c}}}^{{bf{P}}} ={delta }^{E}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}})}^{-1}\ {{bf{G}}}_{{bf{c}}}^{{bf{I}}} =sigma {delta }^{E}{delta }^{P}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}}{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}})}^{-1}\ {{bf{G}}}_{{bf{c}}}^{{bf{A}}} =(1-sigma ){delta }^{E}{delta }^{P}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}{({{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}}{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}})}^{-1}$$
    (14)
    are three spatially explicit generation matrices describing the contributions of post-latent infectious people, infectious symptomatic people, and asymptomatic/paucisymptomatic infectious people to the next generation of infections in a neighborhood of the DFE in the presence of disease-containment measures.In the absence of controls, i.e., if the isolation rates ({chi }_{i}^{X}) (X ∈ {E, P, I, A}), the transmission reductions ϵi, and the travel restrictions ξij are equal to zero for all i’s and j’s, then the control reproduction number ({{mathcal{R}}}_{{rm{c}}}) reduces to the basic reproduction number ({{mathcal{R}}}_{0}), defined as the average number of secondary infections produced by one infected individual in a population that is completely susceptible to the disease and where no containment measures are in place. ({{mathcal{R}}}_{0}) can be evaluated as the spectral radius of matrix GP + GI + GA, where$${{bf{G}}}^{{bf{P}}} ={delta }^{E}{{boldsymbol{theta }}}^{{bf{P}}}{({{boldsymbol{phi }}}^{{bf{E}}}{{boldsymbol{phi }}}^{{bf{P}}})}^{-1}\ {{bf{G}}}^{{bf{I}}} =sigma {delta }^{E}{delta }^{P}{{boldsymbol{theta }}}^{{bf{I}}}{({{boldsymbol{phi }}}^{{bf{E}}}{{boldsymbol{phi }}}^{{bf{P}}}{{boldsymbol{phi }}}^{{bf{I}}})}^{-1}\ {{bf{G}}}^{{bf{A}}} =(1-sigma ){delta }^{E}{delta }^{P}{{boldsymbol{theta }}}^{{bf{A}}}{({{boldsymbol{phi }}}^{{bf{E}}}{{boldsymbol{phi }}}^{{bf{P}}}{{boldsymbol{phi }}}^{{bf{A}}})}^{-1}.$$
    (15)
    In the previous set of expressions, ϕX (X ∈ {E, P, I, A}) are diagonal matrices whose non-zero elements are μ + δE (for ϕE), μ + δP (for ϕP), μ + α + η + γI (for ϕI), and μ + γA (for ϕA), while matrices θX (X ∈ {P, I, A}) are given by ({bf{N}}{{bf{M}}}^{{bf{S}}}{{boldsymbol{beta }}}^{{bf{X}}}{({boldsymbol{Delta }})}^{-1}{({{bf{M}}}^{{bf{X}}})}^{T}), with ({{bf{M}}}^{{bf{X}}}=[{M}_{ij}^{X}]) (X ∈ {S, P, I, A}) and ({M}_{ij}^{X}={M}_{c,ij}^{X}) evaluated with ξij = 0 for all i’s and j’s, and Δ is a diagonal matrix whose non-zero entries are the elements of vector uNMS.Derivation of basic and control epidemicity indicesThe concept of epidemicity26 extends previous work24,25 where a reactivity index was defined and applied to study the transient dynamics of ecological systems characterized by steady-state behavior. To explain, in physical terms, the meaning of reactivity and of the Hermitian matrix used to derive it, consider a linear system dx/dt = Ax, where ({bf{x}}={({x}_{1},ldots ,{x}_{n})}^{T}) is the state vector and A is a n × n real state matrix. The system is subject to pulse perturbations x(0) = x0  > 0. Reactivity is defined as the gradient of the Euclidean norm (| | {bf{x}}| | =sqrt{{x}_{1}^{2}+cdots +{x}_{n}^{2}}=sqrt{{{bf{x}}}^{T}{bf{x}}}) of the state vector, evaluated for the fastest-growing initial perturbation, and corresponds to the spectral abscissa ({{{Lambda }}}_{max }^{{rm{Re}}}(cdot )) of the Hermitian part (A + AT)/2 of matrix A24. Following Mari et al.25, an asymptotically stable equilibrium is characterized by positive generalized reactivity if there exist small perturbations that can lead to a transient growth in the Euclidean norm of a suitable system output y = Wx, with matrix W describing a linear transformation of the system state.In epidemiological applications, W should include the variables of the infection subsystem26. Therefore, a suitable output transformation for the problem at hand is$${bf{W}}=left[begin{array}{llllllllll}{bf{0}}&{w}^{E}{bf{I}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{w}^{P}{bf{I}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{w}^{I}{bf{I}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}\ {bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{w}^{A}{bf{I}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}&{bf{0}}end{array}right],$$
    (16)
    where wE, wP, wI, wA are the weights assigned to the variables of the infection subsystem in the output ({bf{y}}=[{w}^{E}{E}_{1},ldots ,{w}^{E}{E}_{n},{w}^{P}{P}_{1},ldots ,{w}^{P}{P}_{n},{w}^{I}{I}_{1},ldots ,{w}^{I}{I}_{n},{w}^{A}{A}_{1},ldots ,{w}^{A}{A}_{n}]^{T}). Generalized reactivity for the DFE of system (Eq. (3)) is positive if the spectral abscissa of a suitable Hermitian matrix (either H0 or Hc, depending on whether the spread of disease is uncontrolled or some containment measures are in place) is also positive. In SEPIAR, the expressions of matrices H0 and Hc are far from trivial, as shown below, and the evaluation of spectral abscissae typically requires numerical techniques. Note also that, since recovered individuals are not accounted for in the system output, including waning immunity would not alter the epidemicity properties of the DFE.Let us consider the most general case of disease-containment measures being in place (which includes as a limit case also uncontrolled pathogen spread). If we note that (ker ({bf{W}})=ker ({bf{W}}{{bf{J}}}_{{bf{c}}})), with Jc being the Jacobian of SEPIAR at the DFE in the presence of controls, matrix Hc can be defined25,27 as the Hermitian part of WJc(W)+, i.e.,$${{bf{H}}}_{{bf{c}}}=H({bf{W}}{{bf{J}}}_{{bf{c}}}{({bf{W}})}^{+})=frac{1}{2}left{{bf{W}}{{bf{J}}}_{{bf{c}}}{({bf{W}})}^{+}+{[{({bf{W}})}^{+}]}^{T}{({{bf{J}}}_{{bf{c}}})}^{T}{({bf{W}})}^{T}right},$$
    (17)
    where (W)+ is the right pseudo-inverse (a generalization of the concept of inverse for non-square matrices) of W, and can be evaluated as$${({bf{W}})}^{+}={({bf{W}})}^{T}{[{bf{W}}{({bf{W}})}^{T}]}^{-1}.$$
    (18)
    Matrix$${{bf{H}}}_{{bf{c}}}=left[begin{array}{llll}-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{E}}}&frac{{w}^{P}}{2{w}^{E}}{delta }^{E}{bf{I}}+frac{{w}^{E}}{2{w}^{P}}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}&frac{{w}^{E}}{2{w}^{I}}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}&frac{{w}^{E}}{2{w}^{A}}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}\ frac{{w}^{P}}{2{w}^{E}}{delta }^{E}{bf{I}}+frac{{w}^{E}}{2{w}^{P}}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{P}}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{P}}}&frac{{w}^{I}}{2{w}^{P}}sigma {delta }^{P}{bf{I}}&frac{{w}^{A}}{2{w}^{P}}(1-sigma ){delta }^{P}{bf{I}}\ frac{{w}^{E}}{2{w}^{I}}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{I}}}&frac{{w}^{I}}{2{w}^{P}}sigma {delta }^{P}{bf{I}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{I}}}&{bf{0}}\ frac{{w}^{E}}{2{w}^{A}}{{boldsymbol{theta }}}_{{bf{c}}}^{{bf{A}}}&frac{{w}^{A}}{2{w}^{P}}(1-sigma ){delta }^{P}{bf{I}}&{bf{0}}&-{{boldsymbol{phi }}}_{{bf{c}}}^{{bf{A}}}end{array}right]$$
    (19)
    is Hermitian, hence real and symmetric. Therefore all eigenvalues are real and the spectral abscissa ({e}_{{rm{c}}}={{{Lambda }}}_{max }^{{rm{Re}}}({{bf{H}}}_{{bf{c}}})) coincides with the largest eigenvalue, which corresponds to the fastest-growing perturbation in the system output. Thus, ec can be interpreted as a control epidemicity index: if ec  > 0, there must exist some small perturbations to the DFE that are temporarily amplified in the system output, thus generating a transient, subthreshold epidemic wave.Absent any containment measures, the control epidemicity index, ec, reduces to the basic epidemicity index, ({e}_{0}={{{Lambda }}}_{max }^{{rm{Re}}}({{bf{H}}}_{{bf{0}}})), where$${{bf{H}}}_{{bf{0}}}=H({bf{W}}{{bf{J}}}_{{bf{0}}}{({bf{W}})}^{+})=frac{1}{2}left{{bf{W}}{{bf{J}}}_{{bf{0}}}{({bf{W}})}^{+}+{[{({bf{W}})}^{+}]}^{T}{({{bf{J}}}_{{bf{0}}})}^{T}{({bf{W}})}^{T}right}$$
    (20)
    and the Jacobian matrix J0 can be obtained from Jc by setting equal to zero the isolation rates ({chi }_{i}^{X}) (X ∈ {E, P, I, A}), the transmission reductions ϵi, and the travel restrictions ξij for all i’s and j’s.The effective reproduction number and the effective epidemicity indexThe reproduction numbers and the epidemicity indices defined above can be rigorously applied only to characterize the spread of disease in a fully naïve population (Si = Ni ∀ i). As soon as the pathogen begins to circulate within the population, the state of the system gradually departs from the DFE. Under these circumstances, it is customary19,21 to define a time-dependent, effective reproduction number, ({mathcal{R}}(t)), to track the number of secondary infections caused by a single infectious individual in a population in which the pool of susceptible individuals is progressively depleted, and control measures are possibly in place58. Similarly, it is possible to define an effective epidemicity index, e(t), to evaluate the likelihood that transient epidemic waves may occur even if ({mathcal{R}}(t), More

  • in

    Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin

    The area of study (Fig. 6) was the Greater North Sea ecoregion, which includes the EEZs of six countries (England, Scotland, the Netherlands, Denmark, Norway and Germany). The Kattegat area, the English Channel, and the Belgium EEZ were omitted from the study area. The North Sea Marine Ecosystem is a large semi-closed continental sea situated on the continental shelf of North-western Europe, with a dominant physical division between the comparatively deep northern part (50–200 m, with the Norwegian Trench dropping to 700 m) and the shallower southern part (20–50 m)48. The North Sea is one of the most varied coastal regions in the world, which is characterised by, among others, rocky, fjord and mountainous shores as well as sandy beaches with dunes48. Apart from the marine seabirds feeding primarily in the coastal areas, under 5 km from the coast (e.g., terns, sea-ducks, grebes), the North Sea basin also hosts pelagic birds feeding further offshore, with some also diving for food (guillemot, razorbill, etc.). The North Sea basin is also a major habitat for four marine mammal species, of which the harbour porpoise and harbour seal are the most common. Moreover, fish ecology has been a widely studied topic, especially for commercial species, due to evidence of a decline in the fish stock, such as sprat, whiting, bib, and mackerel. Fish communities, and in particular the small pelagic fish group (such as European sprat, European pilchard), play also a key ecologic role, constituting the main pray for most piscivorous fishes, cetacean and seabirds49, Based on early surveys, the predominant species divided by the three North Sea fish communities are: saithe (43.6% in the shelf edge), haddock (42.4% in the central North Sea, 11.6% in the shelf edge), whiting (21.6% in the eastern North Sea, 13.9% central North Sea), and dab (21.8% in the eastern North Sea)34. More recent assessments of North Sea fish community are emphasizing the clear geographical distinction between the fish species living in the southern part of the North Sea, a shallow area with high primary production and pronounced seasonality, and northern part, a deeper area with lower primary production and lower seasonal variation in temperature and salinity. The southern North Sea fish community is represented by fish species such as lesser weever, while the northern North Sea fish community is represented by species such as saithe, with species like whitting, haddock representative for the North–West subdivision, and the European plaice having the highest abundance in the South–East community50. The future fish stock and spatial distribution is however uncertain due to impacts of climate change related factors (e.g., growing temperatures)49 and overexploitation.Figure 6Offshore wind farm prospects (existing/authorised/planned) in the North Sea basin.Full size imageThe most prominent human activities in the North Sea basin are fishing, coastal construction, maritime transport, oil and gas exploration and production, tourism, military, and OWF construction38. Within this list, the construction of OWFs has seen a rapid increase, aiming to reach a total cumulative installed capacity of 61.8–66.8 GW by 203051. As indicated in Fig. 6, the new designated/search/scoping areas for the location of future OWFs will significantly increase the current space reserved for the offshore production of renewable energy in the North Sea basin.Spatio-temporal database of OWF developments in the North Sea basinFor the input of the geo-spatial layers with the location of OWF areas we compiled a comprehensive spatial data repository in QGIS containing the shapefiles of analysed OWF, from 1999 to 2027 (last year of available official information on OWF development, Appendix D). The analysis was performed for the North Sea geographic area, referred here as the basin scale, taking into account the cumulative pressures from individual OWF projects (project scale). The main data sources for geospatial information for OWF, for the entire North Sea basin, are EMODnet (Human Activities data portal) and OSPAR, which were complemented by data on the country level, where needed; i.e. from Crown Estate Scotland (Energy infrastructure, Legal Agreements), Rijkswaterstaat for the Netherlands. From the available geo-spatial data for OWF, we selected the OWF in our area of study (Fig. 6) with the status of consent-authorised, authorised, pre-construction, under construction, or fully commissioned (operational). Therefore, planned OWF such as Vesterhavet Syd and Vesterhavet Nord, for which the start date of construction is still unknown, were not included in the analysis. Similarly, for the Horns Rev 3 OWF no geo-referenced spatial footprint was available in the open-access data sets, and therefore it was not included in the analysis.The collected OWF geospatial data was aggregated to create a geospatial database, for the studied period of 1999–2050, composed by the following attributes: code name, country, name, production capacity (MW), area (({mathrm{km}}^{2})), number of turbines, start operation (year), installation time, and status in the period 1999–2050 (construction, operation, decommissioning). The created geospatial dataset was additionally cross-checked for integrity with the information provided through the online platform 4coffshore.com.The lack of data regarding the construction time was complemented with the methodology proposed by Lacal-Arántegui et al.36. Based on this research, we calculated the time required for OWF construction phase related activities multiplying 1.06 days by the known production capacity (total MW) for each analysed OWF.The average time of operation is considered to be 20 years, probably profitably extendable to 25 years, as stated in a number of studies on the cycle of offshore wind farms52. For this case study, the operation time considered is 20 years (subject to change). Since there is little experience with the decommissioning of offshore wind farms (only a few OWFs have so far been decommissioned in the UK and Denmark), the decommissioning time is not yet clear. There are a number of parameters that influence the decommissioning time, which are: the number of turbines, the foundation type, the distance to port, etc. It is estimated that the time taken for decommissioning should be around 50–60% less than the installation time37. Our study considers the decommissioning time as 50% of the construction time.Time-aware cumulative effects assessmentIn this study, Tools4MSP53,54, a Python-based Free and Open Source Software (FOSS) for geospatial analysis in support of Maritime Spatial Planning and marine environmental management, was used for the assessment of the impacts of OWFs on the marine ecosystem, in the three development stages. We applied the Tools4MSP CEA module to the OWF of the North Sea basin for the period 1999–2050, taking into account the full life cycle of the OWF development, namely the construction, operation and decommissioning phases. The modified methodology from Menegon et al.31 and subsequent implementation55, proposes to calculate the CEA score for each cell of analysis as follows (Eqs. 1, 2):$$CEA=sum_{k=1}^{n}d({E}_{k}) sum_{j=1}^{m}{s}_{i,j} eff({P}_{j}{E}_{k})$$
    (1)
    where eff is the effect of pressure P over the environmental component E and is defined as follows:$$eff left({P}_{j}{E}_{k}right)=(sum_{i=1}^{l}{w}_{i,j} i({U}_{i},{M}_{i,j,k})){^{prime}}$$
    (2)
    whereas,

    ({U}_{i}) defines the human activity, namely the OWF activity in the study area

    ({E}_{k}) defines the environmental components of the study area described in the Table 1

    ({d(E}_{k})) defines intensity or presence/absence of the k-th environmental component

    ({P}_{j}) defines the pressures exerted by human activities dependent on the three different OWF development phases (Annex B)

    ({w}_{i,j}) refers to the specific pressure weight according to the OWF phase

    ({s(P}_{j}, {E}_{k})) is the sensitivity of the k-th environmental component to the j-th pressure

    ({i({U}_{i, }M({U}_{i, }P}_{j}, {E}_{k}))) is the distance model propagating j-th pressure caused by i-th activity over the k-th environmental component

    ({M(U}_{i}, {P}_{j})) is the 2D Gaussian kernel function used for convolution, which considers buffer distances at 1 km, 5 km, 10 km, 20 km, and 50 km56.

    Table 1 Primary sources for the environmental component data sets.Full size tableIn Eq. (3), the CEA 1999–2050 describes the modelling over the time frame 1999–2050, whereas ({CEA}_{t}) is the cumulative effect of year t within the timeframe 1999–2050:$${CEA}_{1999-2050}= sum_{t=1999}^{2050}{CEA}_{t}$$In this study, each final CEA score was normalised. To normalise the value of each initial CEA score obtained using the Eq. (1), we calculated its percentage of the sum of all CEA scores for all OWFs in the three development phases, period spanning the period 1999–2050 (({CEA}_{1999-2050})).Environmental componentsThe selection of the environmental components (receptors) impacted by the identified pressures is an essential part of the scoping phase for OWF location, as monitoring the status (distribution, abundance) of different identified species represents a relevant indicator for the ecosystem status. For the evaluation of the habitats and species that can be affected by the cumulative ecological effects of OWF, we adapted the methodology of Meissl et al.14. Therefore, we selected the environmental components based first on their: (1) ecological value, supported by legal documents identifying species protected by law or through various national and international agreements (e.g. EU Habitats Directive, Wild Mammals (Protection) Act (UK), see Table 1 in Appendix E), to which we added species with (2) commercial value, but also with a (3) broad geographic-scale habitat occurrence of the species in the studied area, based on previous studies35 and on 35 EIA studies for OWF in the North Sea basin.Among the five fish species selected, sprat and sandeel play key roles in the marine food web (small pelagic fish), as prey source for piscivorous fish, cetacean and birds. The ecological value of sandeel, sprat, whiting and saither is also highlighted through EU or national protection agreements such as Priority Marine Features—PMF or Scottish/UK Biodiversity list (see Appendix E, Table 2). The list is completed by haddock, one of the fish species with commercial importance, highly dominant in the Central North Sea. With regards to the spatial occurrence at the basin level, the fish species selected are representative for both of the two distinct North Sea communities50, the southern part of the North Sea (sprat), and the northern and north-west part (haddock, whiting, saithe).The three selected seabird species are of ecological importance for the marine ecosystem, as indicated through the European, national and international protection agreements, such as the EU Birds Directive Migratory Species or the IUCN Red List (see Appendix E, Table 1). While razorbill and guillemot have similar feeding and flying patterns (low flight, catch pray underwater), there is evidence of different behaviors towards OWFs, with relatively more avoidance from razorbill compared to guillemot. In relation to the spatial distribution of the three selected species, there is a clear distinction between razorbill, highly present in the coastal areas of west North Sea basin, guillemot, with a relatively even distribution across the marine basin, and fulmar, one of the 4 most common seabirds in the studied area, in particular in the central and N–E parts.In the marine mammals category we selected the harbor porpoise, indicated to be one of the most impacted species in this category57, with a high occurrence in the North Sea basin. Its ecological value is emphasized by its presence in European and international lists for habitat protection, such as EU Habitats Directive58, OSPAR List of Threatened and/or Declining Species59, the Agreement on the Conservation of Small Cetaceans in the Baltic and the North Seas (ASCOBANS)60. The harbor porpoise is the protected species in numerous Natura 2000 areas in the North Sea basin, such as the Spatial Area of Conservation Southern North Sea61 (British EEZ) or The Special area of Protection Kleverbank62 (Dutch EEZ).Among the selected fish species, sandeel had the highest occurrence in EIA studies of OWF developments (23 out of 35), while guillemot had the highest occurrence among seabird species (25 out of 35). With an occurrence of 26 out of the 35 analysed EIA document, the harbour porpoise is the most studied mammal in relation to the impact of OWF.As a result, we selected three EUNIS marine seabed habitat types (European Union Nature Information System)58 (Appendix E, Table 2), three seabird species, one mammal species and five fish species (Appendix E, Table 1). The list can be extended; however, for this exercise we considered it sufficient.The data sets used to represent the spatial distribution (presence/absence, intensity) of the environmental components in the studied area were obtained from multiple sources and were used in the Tools4MSP model either directly (EUNIS habitats, marine mammals, seabirds) or further processed using a predictive distribution model (fish species). In the case of EUNIS marine habitats, the data source was the online geo-portal EMODnet, through the Seabed Habitat service (Table 1), which provided GIS polygon layers for each habitat type and was further used to indicate presence/absence of a specific habitat.For the distribution of the selected mammal species, the harbour porpoise, we used the modelling results of Waggit et al.16, translated into maps for the prediction of densities (nr. animals/({mathrm{km}}^{2})). The mapping approach starts with collating data from available surveys, which are further standardised with regards to transect length, number of platform sides, and the effective strip width. Finally, the standardised data sets were used in a binomial and a Poisson model, in association with environmental conditions (Table 1), in order to deliver a homogenous cover of species distribution maps, on 10 km × 10 km spatial resolution grid16.For the distribution of the selected seabird species (razorbill, fulmar, guillemot), we used the results of the SEAPOP program (http://www.seapop.no/en/distribution-status/), through the open-source data portal (https://www2.nina.no/seapop/seapophtml/). The proposed methodology for creating the occurrence density prediction maps, on a 10 × 10 km spatial resolution grid, starts with the modelling of the presence/absence of birds using a binomial distribution and “logit link”. This was followed by the modelling of the number of birds using a Gamma distribution with a “log link” function, which also took into account geographically fixed explanatory variables (geographic position, water depth, and distance to coast).The predictive model for the spatial distribution of fish species biomass (haddock, sandeel, whiting, saithe, sprat) was developed using AI4Blue software, an open-source, python-based library for Artificial Intelligence based geospatial analysis of Blue Growth settings (AI4Blue, 2021)63. The model was based on two types of inputs: (1) the observation data on the presence of species and (2) data on the absence of species (absence data) for the period 2000–2019. Both data types were extracted by the ICES North Sea International Bottom Trawl Survey (NSI-IBTS, extracted survey year 2000–2019 including all available quarters) for commercial fish species, which was accessed on the online ICES-DATRAS database64. Data was extracted using two DATRAS web service Application Programming Interfaces (APIs): (1) the HHData, that returns detailed haul-based meta-data of the survey (e.g. haul position, sampling method etc.) and (2) the CPUEPerLengthPerHaulPerHour for the catch/unit of effort per length of sampled species.The presence data were represented by the catch/unit of effort (CPUE), expressed in kg of biomass of the specified species per one hour of hauling. The biomass was estimated by using the SAMLK (sex-maturity-age-length keys) dataset for ICES standard species. This approach is a viable alternative to presence-only data models, as it tackles the biased outcomes resulting from an non-uniform marine coverage of the data sets (mainly along the shipping routes)65. The absence data were estimated using the methodology presented by Coro et al.65, which detects absence location for the chosen species as the locations in which repeated surveys (with the selected species on the survey’s species target list) report information only on other species.Additionally, the predictive model automatically correlates the presence/absence data with environmental conditions (Appendix E, Table 3) data to more accurately estimate the likelihood of species presence in the North Sea basin. Intersecting a large number of surveys containing observation data on the presence of selected species can return the true absence data locations, which represent a valuable indicator for geographical areas with unsuitable habitat (see methodology by Coro et al.65). Those locations were estimated from abiotic and biotic parameters and differed to the sampling absences which were estimated from surveys without presence data65. The environmental conditions (Appendix E, Table 2) data were accessed through direct queries using the MOTU Client option from the Marine Copernicus database. In order to input the layers to the CEA calculation, the input layer for the biomass was transformed using log[x + 1] to avoid an over-dominance of extreme values and all datasets rescaled from 0 to 1 in order to allow direct comparison on a single, unit-less scale55.The rescaled special distribution of biomass for the selected species are presented in Appendix F (Fig. a–j).OWF pressures and relative weightsA systematic literature review was conducted to reach a first quantification of the OWF pressure weights (({w}_{i,j}),) in the construction, operation, and decommissioning phases (({U}_{i})). The OWF-related pressures specific to each of the phases of the OWF life cycle were based on the comprehensive analysis of all the existing Environmental Impact Assessment (EIA) methodologies used in the North Sea countries14. The review enabled the collection of 18 pressures that were subsequently compared and merged with the pressures established in the Marine Strategy Framework Directive, applied by the EU countries in the assessment of environmental impacts66. Figure 7 illustrates the impact chain linking the three OWF development phases with the exerted 18 pressures and the 12 selected environmental components impacted.Figure 7Impact chain defining OWF phases-pressure-environmental components analysed in the North Sea (the strength of the link between pressures and environmental components is proportional to the sensitivity scores. The order is descending from the pressures with highest impact, as well as from the environmental components most affected).Full size imageSensitivity in this research is defined as the likelihood of change when a pressure is applied to a receptor (environmental component) and is a function of the ability of the receptor to adapt, tolerate or resist change and its ability to recover from the impact67. The criteria for assessing the sensitivities of environmental components is based on MarLIN (Marine Life Information Network) detailed criteria (https://www.marlin.ac.uk/sensitivity/sensitivity_rationale).We validated the weights of pressures (({w}_{i,j}) from 0 to 5) and scores of environmental components sensitivities (({s(P}_{j}, {E}_{k})) from 0 to 5), as well as the distance of pressure propagation (≤1000 m to ≥ 25,000 m), through a series of 4 questionnaires for the marine mammals, seabirds, fish and seabed habitats. The compiled questionnaires were further validated through semi-interviews of 9 experts in the field of marine ecology, spatial planning, environmental impact assessment and offshore wind energy development. The expert-based questionnaires also included a confidence level for the proposed scores, which ranged between 0.2 (very low confidence: based on expert judgement; proxy assessment) and 1 (very high confidence: based on peer reviewed papers, report, assessment on the same receptor). The confidence level was used in determining the final scores for the pressure weights and species sensitivities. The final scores for weights and sensitivity scores were identified either by calculating the mean value (for cases where literature review scores and expert scores differed by  > 2 units) or selecting the higher value—precautionary principle (for cases where scores from different sources differed by  More

  • in

    Infection effects of the new microsporidian species Tubulinosema suzukii on its host Drosophila suzukii

    1.Capella-Gutiérrez, S., Marcet-Houben, M. & Gabaldon, T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 10, 47. https://doi.org/10.1186/1741-7007-10-47 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Corsaro, D. et al. Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol. Res. 118, 169–180. https://doi.org/10.1007/s00436-018-6130-1 (2019).Article 
    PubMed 

    Google Scholar 
    3.Corsaro, D. et al. Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol. Res. 115, 3003–3011 (2016).Article 

    Google Scholar 
    4.James, T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Sprague, V. & Becnel, J. J. in The Microsporidia and Microsporidiosis (eds M. Wittner & L. M. Weiss) 517–530 (ASM Press, 1999).6.Dunn, A. M., Terry, R. S. & Smith, J. E. Transovarial transmission in the microsporidia. Adv. Parasitol. 48, 57–100. https://doi.org/10.1016/S0065-308X(01)48005-5 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Goertz, D. & Hoch, G. Vertical transmission and overwintering of Microsporidia in the gypsy moth, Lymantria dispar. J. Invertebr. Pathol. 99, 43–48. https://doi.org/10.1016/j.jip.2008.03.008 (2008).Article 
    PubMed 

    Google Scholar 
    8.Becnel, J. J. & Andreadis, T. G. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 521–570 (Wiley, 2014).9.Kellen, W. R. & Lindegren, J. E. Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7, 31–34. https://doi.org/10.1016/0022-474X(71)90035-X (1971).Article 

    Google Scholar 
    10.Vávra, J. & Larsson, R. J. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 1–70 (Wiley, 2014).11.Mudasar, M., Mathivanan, V., Shah, G. N., Mir, G. M. & Selvisabhanayakam, M. Nosemosis and its effect on performance of honey bees: A review. Int. J. Pharm. Bio. Sci. 4, 923–937 (2013).
    Google Scholar 
    12.Wolf, S. et al. So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS ONE 9, e103989. https://doi.org/10.1371/journal.pone.0103989 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Naug, D. & Gibbs, A. Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599 (2009).Article 

    Google Scholar 
    14.Dussaubat, C. et al. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J. Invertebr. Pathol. 113, 42–51 (2013).CAS 
    Article 

    Google Scholar 
    15.Goblirsch, M., Huang, Z. Y. & Spivak, M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE 8, 6 (2013).
    Google Scholar 
    16.Lipsitch, M., Nowak, M. A., Ebert, D. & May, R. M. The population dynamics of vertically and horizontally transmitted parasites. Proc. R. Soc. Lond. B 260, 321–327. https://doi.org/10.1098/rspb.1995.0099 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Goertz, D., Solter, L. F. & Linde, A. Horizontal and vertical transmission of a Nosema sp. (Microsporidia) from Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 95, 9–16. https://doi.org/10.1016/j.jip.2006.11.003 (2007).Article 
    PubMed 

    Google Scholar 
    18.Kellen, W. R., Chapman, H. C., Clark, T. B. & Lindegren, J. E. Host-parasite relationships of some Thelohania from mosquitoes (Nosematidae: Microsporidia). J. Invertebr. Pathol. 7, 161–166. https://doi.org/10.1016/0022-2011(65)90030-3 (1965).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Dunn, A. M. & Smith, J. E. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 3, 381–388. https://doi.org/10.1016/S1286-4579(01)01394-6 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Terry, R. S. et al. Widespread vertical transmission and associated host sex–ratio distortion within the eukaryotic phylum Microspora. Proc. R. Soc. Lond. B 271, 1783–1789. https://doi.org/10.1098/rspb.2004.2793 (2004).Article 

    Google Scholar 
    21.Mercer, C. & Wigley, P. A microsporidian pathogen of the poroporo stem borer, Sceliodes cordalis (Dbld)(Lepidoptera: Pyralidae): Effects on adult reproductive success. J. Invertebr. Pathol. 49, 108–115. https://doi.org/10.1016/0022-2011(87)90132-7 (1987).Article 

    Google Scholar 
    22.Bauer, L. S. & Nordin, G. L. Effect of Nosema fumiferanae (Microsporida) on fecundity, fertility, and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environ. Entomol. 18, 261–265. https://doi.org/10.1093/ee/18.2.261 (1989).Article 

    Google Scholar 
    23.Futerman, P. et al. Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids. Parasitology 132, 479–492. https://doi.org/10.1017/S0031182005009339 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Goertz, D., Golldack, J. & Linde, A. Two different and sublethal isolates of Nosema lymantriae (Microsporidia) reduce the reproductive success of their host, Lymantria dispar. Biocontrol Sci. Technol. 18, 419–430. https://doi.org/10.1080/09583150801993212 (2008).Article 

    Google Scholar 
    25.Lockwood, J. A., Bomar, C. R. & Ewen, A. B. The history of biological control with Nosema locustae: Lessons for locust management. Int. J. Trop. Insect Sci. 19, 333–350. https://doi.org/10.1017/S1742758400018968 (1999).Article 

    Google Scholar 
    26.Kiritani, K. & Yamamura, K. in Invasive Species: Vectors and Management Strategies. (ed J. Carlton) 44–67 (Island Press, 2003).27.Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manage. 2, G1–G7. https://doi.org/10.1603/IPM10010 (2011).Article 

    Google Scholar 
    28.Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).
    Google Scholar 
    29.Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510. https://doi.org/10.1603/en13200 (2014).Article 
    PubMed 

    Google Scholar 
    30.Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).Article 

    Google Scholar 
    31.Gabarra, R., Riudavets, J., Rodríguez, G., Pujade-Villar, J. & Arnó, J. Prospects for the biological control of Drosophila suzukii. Biocontrol 60, 331–339. https://doi.org/10.1007/s10526-014-9646-z (2015).Article 

    Google Scholar 
    32.Cuthbertson, A. G. S. & Audsley, N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects 7, 24. https://doi.org/10.3390/insects7020024 (2016).Article 
    PubMed Central 

    Google Scholar 
    33.Woltz, J. M., Donahue, K. M., Bruck, D. J. & Lee, J. C. Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J. Appl. Entomol. 139, 759–770. https://doi.org/10.1111/jen.12200 (2015).Article 

    Google Scholar 
    34.Haye, T. et al. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest. Sci. 89, 643–651. https://doi.org/10.1007/s10340-016-0737-8 (2016).Article 

    Google Scholar 
    35.Biganski, S., Jehle, J. A. & Kleespies, R. G. Bacillus thuringiensis serovar israelensis has no effect on Drosophila suzukii Matsumura. J. Appl. Entomol. 142, 33–36. https://doi.org/10.1111/jen.12415 (2018).CAS 
    Article 

    Google Scholar 
    36.Carrau, T., Hiebert, N., Vilcinskas, A. & Lee, K.-Z. Identification and characterization of natural viruses associated with the invasive insect pest Drosophila suzukii. J. Invertebr. Pathol. 154, 74–78. https://doi.org/10.1016/j.jip.2018.04.001 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Medd, N. C. et al. The virome of Drosophila suzukii, an invasive pest of soft fruit. BioRxiv 4, 190322. https://doi.org/10.1093/ve/vey009 (2017).Article 

    Google Scholar 
    38.Kaur, R., Siozios, S., Miller, W. J. & Rota-Stabelli, O. Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci. Rep. 7, 14815. https://doi.org/10.1038/s41598-017-13808-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Biganski, S. et al. Molecular and morphological characterisation of a novel microsporidian species, Tubulinosema suzukii, infecting Drosophila suzukii (Diptera: Drosophilidae). J. Invertebr. Pathol. 107440 (2020).40.Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426. https://doi.org/10.1017/S0031182000055360 (1982).Article 
    PubMed 

    Google Scholar 
    41.Aigaki, T. & Ohba, S. Effect of mating status on Drosophila virilis lifespan. Exp. Gerontol. 19, 267–278. https://doi.org/10.1016/0531-5565(84)90022-6 (1984).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Partridge, L., Green, A. & Fowler, K. Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. J. Insect Physiol. 33, 745–749. https://doi.org/10.1016/0022-1910(87)90060-6 (1987).Article 

    Google Scholar 
    43.Bretman, A., Westmancoat, J. D., Gage, M. J. & Chapman, T. Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster. Evolution 67, 2413–2422. https://doi.org/10.1111/evo.12125 (2013).Article 
    PubMed 

    Google Scholar 
    44.Armstrong, E. & Bass, L. K. Nosema kingi: Effects on fecundity, fertility, and longevity of Drosophila melanogaster. J. Exp. Zool. 250, 82–86. https://doi.org/10.1002/jez.1402500111 (1989).Article 

    Google Scholar 
    45.Armstrong, E. Transmission and infectivity studies on Nosema kingi in Drosophila willistoni and other Drosophilids. Z. Parasitenkd. 50, 161–165. https://doi.org/10.1007/BF00380520 (1976).Article 

    Google Scholar 
    46.Armstrong, E., Bass, L., Staker, K. & Harrell, L. A comparison of the biology of a Nosema in Drosophila melanogaster to Nosema kingi in Drosophila willistoni. J. Invertebr. Pathol. 48, 124–126. https://doi.org/10.1016/0022-2011(86)90151-5 (1986).Article 

    Google Scholar 
    47.Vijendravarma, R. K., Godfray, H. C. J. & Kraaijeveld, A. R. Infection of Drosophila melanogaster by Tubulinosema kingi: Stage-specific susceptibility and within-host proliferation. J. Invertebr. Pathol. 99, 239–241. https://doi.org/10.1016/j.jip.2008.02.014 (2008).Article 
    PubMed 

    Google Scholar 
    48.Niehus, S., Giammarinaro, P., Liégeois, S., Quintin, J. & Ferrandon, D. Fly culture collapse disorder: Detection, prophylaxis and eradication of the microsporidian parasite Tubulinosema ratisbonensis infecting Drosophila melanogaster. Fly 6, 193–204. https://doi.org/10.4161/fly.20896 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Franchet, A., Niehus, S., Caravello, G. & Ferrandon, D. Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies. Nat Microbiol 4, 645–655 (2019).CAS 
    Article 

    Google Scholar 
    50.Robertson, F. W. & Sang, J. H. The ecological determinants of population growth in a Drosophila culture. I. Fecundity of adult flies. Proc. R. Soc. Lond. B 132, 258–277. https://doi.org/10.1098/rspb.1944.0017 (1944).ADS 
    Article 

    Google Scholar 
    51.Vijendravarma, R. K., Kraaijeveld, A. R. & Godfray, H. C. J. Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs. Evolution 63, 104–114. https://doi.org/10.1111/j.1558-5646.2008.00516.x (2009).Article 
    PubMed 

    Google Scholar 
    52.Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. Lond. B 250, 91–98. https://doi.org/10.1098/rspb.1992.0135 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Saeed, N., Battisti, A., Martinez-Sañudo, I. & Mori, N. Combined effect of temperature and Wolbachia infection on the fitness of Drosophila suzukii. Bull. Insectol. 71, 161–169 (2018).
    Google Scholar 
    54.Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol. Ecol. 23, 4871–4885. https://doi.org/10.1111/mec.12901 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Mazzetto, F., Gonella, E. & Alma, A. Wolbachia infection affects female fecundity in Drosophila suzukii. Bull. Insectol. 68, 153–157 (2015).
    Google Scholar 
    56.Hurst, G. D., Johnson, A. P., vd Schulenburg, J. H. G. & Fuyama, Y. Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156, 699–709 (2000).57.Markow, T. A. Parents without partners: Drosophila as a model for understanding the mechanisms and evolution of parthenogenesis. G3 3, 757–762. https://doi.org/10.1534/g3.112.005421 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Wolfner, M. F. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 85–93. https://doi.org/10.1038/sj.hdy.6800017 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Blaser, M. & Schmid-Hempel, P. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum. J. Invertebr. Pathol. 89, 251–257. https://doi.org/10.1016/j.jip.2005.04.004 (2005).Article 
    PubMed 

    Google Scholar 
    60.Solter, L. F. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 165–194 (Wiley, 2014).61.Eberle, K. E., Wennmann, J. T., Kleespies, R. G. & Jehle, J. A. in Manual of Techniques in Invertebrate Pathology (ed L. A. Lacey) 15–74 (Academic Press, 2012).62.Hughes, P. & Wood, H. A synchronous peroral technique for the bioassay of insect viruses. J. Invertebr. Pathol. 37, 154–159. https://doi.org/10.1016/0022-2011(81)90069-0 (1981).Article 

    Google Scholar 
    63.Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).CAS 
    Article 

    Google Scholar 
    64.Software for the statistical analysis of biotests (ToxRat GmbH, Alsdorf, Germany, 2003).65.Pan, G. et al. Invertebrate host responses to microsporidia infections. Dev. Comp. Immunol. 83, 104–113. https://doi.org/10.1016/j.dci.2018.02.004 (2018).Article 
    PubMed 

    Google Scholar 
    66.Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212. https://doi.org/10.1038/sj.embor.7400073 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Kraaijeveld, A. R. & Godfray, H. C. J. Selection for resistance to a fungal pathogen in Drosophila melanogaster. Heredity 100, 400–406. https://doi.org/10.1038/sj.hdy.6801092 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Viral load, not food availability or temperature, predicts colony longevity in an invasive eusocial wasp with plastic life history

    1.Seeley, T. D. Honey bee colonies are group-level adaptive units. Am. Nat. 150, S22–S41 (1997).PubMed 
    Article 

    Google Scholar 
    2.Negroni, M. A., Jongepier, E., Feldmeyer, B., Kramer, B. H. & Foitzik, S. Life history evolution in social insects: A female perspective. Curr. Opin. Insect Sci. 16, 51–57 (2016).PubMed 
    Article 

    Google Scholar 
    3.Wilson, E. O. The Insect Societies. (Belknap Press, 1971).4.Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).Article 

    Google Scholar 
    5.Ratnieks, F. L. W., Vetter, R. S. & Visscher, P. K. A polygynous nest of Vespula pensylvanica from California with a discussion of possible factors influencing the evolution of polygyny in Vespula. Insect. Soc. 43, 401–410 (1996).Article 

    Google Scholar 
    6.Wilson, E. E., Mullen, L. M. & Holway, D. A. Life history plasticity magnifies the ecological effects of a social wasp invasion. Proc. Natl. Acad. Sci. USA. 106, 12809–12813 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Gambino, P. Reproductive plasticity of Vespula pensylvanica (Hymenoptera: Vespidae) on Maui and Hawaii Islands, USA. N. Z. J. Zool. 18, 139–149 (1991).Article 

    Google Scholar 
    8.Hanna, C. et al. Colony social structure in native and invasive populations of the social wasp Vespula pensylvanica. Biol. Invasions 16, 283–294 (2014).Article 

    Google Scholar 
    9.Ross, K. G. & Matthews, R. W. Two polygynous overwintered Vespula squamosa colonies from the southeastern US (Hymenoptera: Vespidae). Florida Entomol. 65, 176–184 (1982).Article 

    Google Scholar 
    10.Visscher, P. K. & Vetter, R. S. Annual and multi-year nests of the western yellowjacket, Vespula pensylvanica, in California. Insect. Soc. 50, 160–166 (2003).Article 

    Google Scholar 
    11.Plunkett, G. M., Moller, H., Hamilton, C., Clapperton, B. K. & Thomas, C. D. Overwintering colonies of German (Vespula germanica) and common wasps (Vespula vulgaris) (Hymenoptera: Vespidae) in New Zealand. N. Z. J. Zool. 16, 345–353 (1989).Article 

    Google Scholar 
    12.Goodisman, M. A., Matthews, R. W., Spradbery, J. P., Carew, M. E. & Crozier, R. H. Reproduction and recruitment in perennial colonies of the introduced wasp Vespula germanica. J. Hered. 92, 346–349 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Gambino, P. & Loope, L. L. Yellowjacket (Vespula pensylvanica): Biology and abatement in the National Parks of Hawaii.  Technical report of the Cooperatuve National Parks Resources Study Unit, Honolulu (1992).14.Wilson, E. E. & Holway, D. A. Multiple mechanisms underlie displacement of solitary Hawaiian Hymenoptera by an invasive social wasp. Ecology 91, 3294–3302 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Wilson Rankin, E. E. Diet subsidies and climate may contribute to Vespula invasion impacts. In 17th Congress of the International Union for the Study of Social Insects (IUSSI), Cairns, Australia, 13-18 July 2014 (2014).16.Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B Biol. Sci. 274, 67–72 (2007).Article 

    Google Scholar 
    17.Berthoud, H., Imdorf, A., Haueter, M., Radloff, S. & Neumann, P. Virus infections and winter losses of honey bee colonies (Apis mellifera). J. Apic. Res. 49, 60–65 (2010).Article 

    Google Scholar 
    18.Otti, O. & Schmid-Hempel, P. A field experiment on the effect of Nosema bombi in colonies of the bumblebee Bombus terrestris. Ecol. Entomol. 33, 577–582 (2008).Article 

    Google Scholar 
    19.Cremer, S., Pull, C. D. & Fürst, M. A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).PubMed 
    Article 

    Google Scholar 
    21.Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS One 14, 1–13 (2018).24.Dobelmann, J. et al. Fitness in invasive social wasps: The role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218 (2017).CAS 
    Article 

    Google Scholar 
    25.Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).27.Mordecai, G. J. et al. Moku virus; a new Iflavirus found in wasps, honey bees and Varroa. Sci. Rep. 6, srep34983 (2016).28.Loope, K. J., Baty, J. W., Lester, P. J. & Wilson Rankin, E. E. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc. R. Soc. B Biol. Sci. 286 (2019).29.Brettell, L. E., Schroeder, D. C. & Martin, S. J. RNAseq analysis reveals virus diversity within hawaiian apiary insect communities. Viruses 11 (2019).30.Moret, Y. & Schmid-Hempel, P. Immune responses of bumblebee workers as a function of individual and colony age: Senescence versus plastic adjustment of the immune function. Oikos 118, 371–378 (2009).Article 

    Google Scholar 
    31.Budge, G. E. et al. Identifying bacterial predictors of honey bee health. J. Invertebr. Pathol. 141, 41–44 (2016).PubMed 
    Article 

    Google Scholar 
    32.Schmid-Hempel, R. & Tognazzo, M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 57, 337–345 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Akre, R. D., Hill, W. B., Donald, J. F. M. & Garnett, W. B. Foraging distances of Vespula pensylvanica workers (Hymenoptera: Vespidae). J. Kansas Entomol. Soc. 48, 12–16 (1975).
    Google Scholar 
    34.Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46, 716–727 (2015).Article 

    Google Scholar 
    35.McArt, S. H., Koch, H., Irwin, R. E. & Adler, L. S. Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecol. Lett. 17, 624–636 (2014).PubMed 
    Article 

    Google Scholar 
    36.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    37.Yañez, O. et al. Bee viruses: Routes of infection in Hymenoptera. Front. Microbiol. 11, 1–22 (2020).Article 

    Google Scholar 
    38.Malham, J. P., Rees, J. S., Alspach, P. A., Beggs, J. R. & Moller, H. Traffic rate as an index of colony size in Vespula wasps. N. Z. J. Zool. 18, 105–109 (1991).Article 

    Google Scholar 
    39.Brettell, L. et al. A comparison of deformed wing virus in deformed and asymptomatic honey bees. Insects 8, 28 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    40.Garigliany, M. et al. Moku virus in invasive Asian Hornets, Belgium, 2016. Emerg. Infect. Dis. 23, 2109–2112 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Garigliany, M., El Agrebi, N., Franssen, M., Hautier, L. & Saegerman, C. Moku virus detection in honey bees, Belgium, 2018. Transbound. Emerg. Dis. 66, 43–46 (2019).PubMed 
    Article 

    Google Scholar 
    42.Highfield, A. et al. Detection and replication of Moku virus in honey bees and social wasps. Viruses 12, 607 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    43.Felden, A. et al. Viral and fungal pathogens associated with Pneumolaelaps niutirani (Acari: Laelapidae): A mite found in diseased nests of Vespula wasps. Insect. Soc. 67, 83–93 (2020).Article 

    Google Scholar 
    44.Lindström, A., Korpela, S. & Fries, I. Horizontal transmission of Paenibacillus larvae spores between honey bee (Apis mellifera) colonies through robbing. Apidologie 39, 515–522 (2008).Article 

    Google Scholar 
    45.Smith, M. L. The honey bee parasite Nosema ceranae: Transmissible via food exchange?. PLoS ONE 7, 1–6 (2012).
    Google Scholar 
    46.Folly, A. J., Koch, H., Stevenson, P. C. & Brown, M. J. F. Larvae act as a transient transmission hub for the prevalent bumblebee parasite Crithidia bombi. J. Invertebr. Pathol. 148, 81–85 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Loope, K. J., Millar, J. G. & Wilson Rankin, E. E. Weak nestmate discrimination behavior in native and invasive populations of a yellowjacket wasp (Vespula pensylvanica). Biol. Invasions 20, 3431–3444 (2018).48.Yañez, O., Gauthier, L., Chantawannakul, P. & Neumann, P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol. Lett. 363, fnw147 (2016).49.McNally, L. C. & Schneider, S. S. Spatial distribution and nesting biology of colonies of the African honey bee Apis mellifera scutellata (Hymenoptera: Apidae) in Botswana, Africa. Environ. Entomol. 25, 643–652 (1996).Article 

    Google Scholar 
    50.Seeley, T. D. Honey bees of the Arnot forest: A population of feral colonies persisting with Varroa destructor in the northeastern United States. Apidologie 38, 19–29 (2007).Article 

    Google Scholar 
    51.Arundel, J., Oldroyd, B. P. & Winter, S. Modelling estimates of honey bee (Apis spp.) colony density from drones. Ecol. Model. 267, 1–10 (2013).52.Graystock, P., Goulson, D. & Hughes, W. O. H. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282, 20151371 (2015).Article 

    Google Scholar 
    53.Graystock, P., Meeus, I., Smagghe, G., Goulson, D. & Hughes, W. O. H. The effects of single and mixed infections of Apicystis bombi and deformed wing virus in Bombus terrestris. Parasitology 143, 358–365 (2016).PubMed 
    Article 

    Google Scholar 
    54.Benaets, K. et al. Covert deformed wing virus infections have long-term deleterious effects on honeybee foraging and survival. Proc. R. Soc. B Biol. Sci. 284, 20162149 (2017).Article 

    Google Scholar 
    55.Natsopoulou, M. E. et al. The virulent, emerging genotype B of deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7, 5242 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Gambino, P., Medeiros, A. C. & Loope, L. L. Invasion and colonization of upper elevations on East Maui (Hawaii) by Vespula pensylvanica (Hymenoptera: Vespidae). Ann. Entomol. Soc. Am. 83, 1088–1095 (1990).Article 

    Google Scholar 
    57.Akre, R. D. & Reed, H. C. Population cycles of yellowjackets (Hymenoptera: Vespinae) in the Pacific Northwest. Environ. Entomol. 10, 267–274 (1981).Article 

    Google Scholar 
    58.Giambelluca, T. W. et al. Online rainfall atlas of Hawai’i. Bull. Am. Meteorol. Soc. 94, 313–316 (2013).ADS 
    Article 

    Google Scholar 
    59.Marion, G. M. et al. Open-top designs for manipulating field temperature in high-latitude ecosystems. Glob. Chang. Biol. 3, 20–32 (1997).Article 

    Google Scholar 
    60.de Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    61.Johnson, D. H. Estimating nest success : The Mayfield method and an alternative. Auk 96, 651–661 (1979).
    Google Scholar 
    62.R Core Team. R: A Language and Environment for Statistical Computing. (2020).63.Therneau, T. A Package for Survival Analysis in S. (2015).64.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    65.Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar  More

  • in

    A study on the effects of regional differences on agricultural water resource utilization efficiency using super-efficiency SBM model

    Study areaChina is one of the countries with the poorest per capita water resources in the world while also having the largest water consumption in the world. In 2018, China’s total water consumption was 601.55 billion m3, with 369.31 billion m3 of water used in agriculture, accounting for 61.4% of the total water2. Agriculture is the most important industrial sector in water resource consumption. However, due to regional and climate differences, the distribution of agricultural water resources is uneven, and the shortage of water resources seriously affects agricultural development in water-deficient areas.Figure 1 shows the agricultural water consumption in China by province for 2007 and 2018. The agricultural water consumption includes farmland irrigation water consumption (classified as paddy field, irrigated land, vegetable field, groundwater exploitation), forest, animal husbandry, fishery, and livestock (classified as forest and fruit, grassland, fish pond, animal husbandry, groundwater exploitation), domestic water consumption of rural residents and rural ecological environment water consumption. Previous studies have mainly considered the irrigation water consumption of the planting industry as the research object at the provincial or regional levels (e.g., eastern, central, and western regions). Few were able to consider all 31 provinces in China and have comprehensively assessed water consumption and water use efficiency in the various types of agricultural production3,4,5,6,10,16,17,22,23,24,25,30. In this study, the agricultural water use efficiency and its influencing factors are assessed based on the agricultural water consumption of agriculture, forestry, animal husbandry, and fishery in China.Figure 1Agricultural water consumption in China by province for (a) 2007 and (b) 2018. Note: Map created using ArcGIS [10.2], (http://www.esri.com/software/arcgis).Full size imageResearch methodIn this study, the agricultural water use efficiency (under the common frontier and the group frontier) is calculated using the super-efficiency slacks-based measure (Super-SBM) model. The significant factors affecting water-use efficiency are then analyzed through the threshold regression model.Super-efficiency SBM modelData envelopment analysis (DEA) is an efficiency evaluation method proposed by Charnes31, a famous American operational research scientist. While traditional radial and angular DEA models do not require the specific form of the estimation function, they ignore the relaxation of variables and result in efficiency values in the range of 0 to 1. If there are multiple efficiency value of decision making units(DMUs) with an efficiency value of 1, these values cannot be compared. The efficiency of the super efficiency DEA model can be greater than 1, which means that the efficiency level of all decision-making units can be compared.To avoid the problem of slack variables, Tone (2001) proposed the SBM model, which is a non-radial and non-angular DEA analysis method based on the relaxation variable measure16,17,18,19,20,32. The SBM model of unexpected output solves the slack problem of input and output variables, minimizing deviations in the efficiency measurement. The super-efficiency SBM model combines the super-efficiency DEA model and the SBM model. It is also one of the methods based on data envelopment analysis, which can measure the efficiency of all decision-making units and the slack of input and output variables.Assume n to be the decision-making units, each of which has m inputs, expected output r1, and unexpected output r2. Let X (X ∈ Rm), Yd (Yd ∈ Rs1), and Yu (Yu ∈ Rs2) be matrices, such that (X=[{x}_{1},dots ,{x}_{n}]in {R}^{m*n}) and (Y=[{y}_{1}^{d}, dots ,{ y}_{n}^{d}in {R}^{{r}_{1}*n}). The form of the super-efficiency SBM model is as follows1,17,19,54:$$min=frac{frac{1}{m}sum_{i=1}^{m}(overline{x}/{x}_{ik})}{1/left({r}_{1}+{r}_{2}right)*(sum_{r=1}^{{r}_{1}}overline{{y}^{d}}/{y}_{rk}^{d}+sum_{q=1}^{{r}_{2}}overline{{y}^{u}}/{y}_{qk}^{u}}.$$
    (1)
    Among them,$$overline{x}ge sum_{j=1ne k}^{n}{x}_{ij}{lambda }_{j}, i=1,dots ,m;$$
    (2)
    $$overline{{y}^{d}}le sum_{j=1,ne k}^{n}{y}_{rj}^{d}{lambda }_{j}, r=1,dots ,{s}_{1};$$
    (3)
    $$overline{{y}^{d}}ge sum_{j=1,ne k}^{n}{y}_{qj}^{u}{lambda }_{j}, q=1,dots ,{s}_{2};$$
    (4)
    $${lambda }_{y}ge 0,j=1,dots ,n;jne 0;$$
    (5)
    $$overline{x}ge {x}_{k},k=1,dots ,m;$$
    (6)
    $$overline{{y}^{d}}le {y}_{k}^{d},d=1,dots ,{r}_{1};$$
    (7)
    $$overline{{y}^{u}}ge {y}_{k}^{u},b=1,dots ,{r}_{2}.$$
    (8)
    Based on the Super-SBM model (Eq. 1) and its constraint formula, the agricultural water use efficiency for the different provinces was calculated for the period 2007–2018 using Maxdea 8 ultra software.Threshold effectConsidering the differences in economic development and technical levels, the agricultural water use in different regions of China shows characteristics of time-series evolution, spatial heterogeneity, and unbalanced spatial distribution. There is a non-linear relationship between the influencing factors of agricultural water use efficiency, which suggests the existence of certain threshold characteristics33,34. This means that for a particular determinant, agricultural water use efficiency would be affected differently depending on whether the parameter has crossed the threshold. In this study, the threshold panel model proposed by Hansen is used. The threshold value of the threshold variable is taken as the critical point, and the regression equation is divided into different stage intervals to analyze the influence of threshold variables on the explained variables at different stages . Therefore, according to the relationship between agricultural water use efficiency and its influencing factors in different regions, the following single threshold regression model is set:$${Y}_{it}=alpha {X}_{it}+{beta }_{1}{T}_{it}Ileft({T}_{it}le {gamma }_{1}right)+{beta }_{2}{T}_{it}Ileft({T}_{it} >{gamma }_{1}right)+C+{varepsilon }_{it},$$
    (9)
    such that i is the province; t is the year; Yit and Tit are the explanatory variables and explained variables, respectively; Xit is the control variable that has a significant impact on the explained variables; Tit is threshold variable, which changes with the different explanatory variables; γ is a specific threshold value; α is the corresponding coefficient vector; β1 and β2 represent the influence coefficients of the threshold variable Tit on the explained variable Yit in the case of ({T}_{it}le {gamma }_{1}) and ({T}_{it} >{gamma }_{1}) , respectively; C is a constant; ε is random disturbance term, ({varepsilon }_{it}sim i.i.d.N(0,{sigma }^{2})); and, I (·) is an indicative function. After obtaining the estimated value of each parameter, two tests need to be carried out: (1) establish whether the threshold effect is significant; and (2) determine whether the estimated threshold value is equal to the true value. In addition, the above equation assumes that only one threshold exists. For two or more thresholds, the model would have to be adjusted according to the data.Based on the panel data of 31 provinces in China from 2007 to 201844,45,46, Stata15.0 software was used to perform threshold regression on seven variables: per capita water resources, rural labor force, disposable income, government’s attention, foreign trade dependence, industrial structure, and gross domestic product (GDP). The threshold effect of each factor can be analyzed, and the impact on agricultural water consumption can be assessed using the threshold value.Variable selection and data sourceThe super-efficiency SBM model was used in calculating the agricultural water use efficiency for the 31 provinces in China from 2007 to 2018. The input–output indicators were defined before the calculations, as shown in Extended Data Table 1.The selection of input–output factors to measure the utilization efficiency of agricultural water resources follows the principles of availability and operability. The input variables included: (1) agricultural water consumption, (2) the number of employees in agriculture, forestry, animal husbandry, and fishery, (3) the total power of agricultural machinery, and (4) the expenditure of local finance on agriculture, forestry, and water affairs. In terms of output, the added value in agriculture, forestry, animal husbandry, and fishery (based on 2007) was used as the expected output, while ammonia nitrogen emission, agricultural chemical oxygen demand emission, and agricultural carbon emission comprised the unexpected output.This study considered the scale of carbon emissions released by the agricultural system. According to existing research, agricultural carbon emissions are associated with rural environmental pollution35. The main consequence of agricultural pollutant emissions is soil pollution, which leads to rural groundwater pollution36,37,39,40,41,41. The deterioration of groundwater quality adversely affects the development of the agricultural economy and threatens the safety of the drinking water supply for rural residents.The threshold regression model was used to investigate the convergence of agricultural water use efficiency and observe the changes in agricultural water consumption under different influencing factors. The control variables include the following: water resource endowment, the number of agricultural labor, the income level of rural residents, industrial structure, the degree of government’s attention, the degree of dependence on foreign trade, and the level of economic development, as shown in Extended Data Table 2. For water resource endowment (WR), WR is expressed in per capita water resource (m3 / person). Zhang Lixiao45,46 and previous studies have shown a negative correlation between water resource endowment and water resource utilization. For agricultural labor (ah), the variable is expressed by the number of people engaged in agriculture, forestry, animal husbandry, and fishery (10,000 people). Past studies suggest rural population affects the consumption of agricultural water resources47,50,51,52,53,52. For income levels, rural residents’ income level is indicated by the per capita disposable income of rural households. Wang Xueyuan et al.3 and Han Qing et al.53 argue that the increase in the rural residents’ income would limit agricultural water consumption. For industrial structure (× 2), which is expressed by the proportion of industrial added value in GDP, research has shown water resource efficiency would vary under different industrial structures54,57,56. For the government’s attention degree (GA), the variable is expressed by the proportion of agriculture, water affairs, and forestry spending in the total financial expenditure. The government’s support for comprehensive agricultural development and infrastructure and technology upgrading for agricultural, forestry, and water conservation significantly affects water resource utilization efficiency16,56,59,58. For the degree of dependence on foreign trade (open), the parameter is indicated by the proportion of the total import and export of agricultural and sideline products in the GDP. Changes in import demand can reduce or increase the consumption and pollution of water resources. Likewise, export demand changes, especially in high water-consuming and high polluting products, can significantly improve or degrade water resource efficiency. And for the level of economic development, expressed in terms of GDP, the level of regional economic development plays a positive role in promoting the efficiency of water resource utilization59,62,61. More

  • in

    Erosion of tropical bird diversity over a century is influenced by abundance, diet and subtle climatic tolerances

    1.Turner, I. M. Species loss in fragments of tropical rain forest: a review of the evidence. J. Appl. Ecol. 33, 200–209 (1996).Article 

    Google Scholar 
    2.Pimm, S. L. & Raven, P. Biodiversity: extinction by numbers. Nature 403, 843 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Robinson, W. D. et al. Distribution of bird diversity in a vulnerable Neotropical landscape. Conserv. Biol. 18, 510–518 (2004).Article 

    Google Scholar 
    4.Rompré, G., Robinson, W. D. & Desrochers, A. Causes of habitat loss in a Neotropical landscape: The Panama Canal corridor. Landsc. Urban Plan. 87, 129–139 (2008).Article 

    Google Scholar 
    5.Diamond, J. Dammed experiments. Science 294, 1847 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Şekercioḡlu, Ç. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA 99, 263 (2002).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    7.Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).Article 

    Google Scholar 
    8.Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).Article 

    Google Scholar 
    9.Robinson, W. D. & Sherry, T. W. Mechanisms of avian population decline and species loss in tropical forest fragments. J. Ornithol. 153, 141–152 (2012).Article 

    Google Scholar 
    10.Terborgh, J. Preservation of natural diversity: the problem of extinction prone species. Bioscience 24, 715–722 (1974).Article 

    Google Scholar 
    11.Karr, J. R. Population variability and extinction in the avifauna of a tropical land bridge island. Ecology 63, 1975–1978 (1982).Article 

    Google Scholar 
    12.Sieving, K. E. Nest predation and differential insular extinction among selected forest birds of central Panama. Ecology 73, 2310–2328 (1992).Article 

    Google Scholar 
    13.Bierregaard, R. O., Lovejoy, T. E., Kapos, V., dos Santos, A. A. & Hutchings, R. W. The biological dynamics of tropical rainforest fragments. Bioscience 42, 859–866 (1992).Article 

    Google Scholar 
    14.Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 359, 345–352 (2004).Article 

    Google Scholar 
    15.Laurance, W. F. & Curran, T. J. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 33, 399–408 (2008).Article 

    Google Scholar 
    16.Stratford, J. A. & Stouffer, P. C. Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol. Conserv. 188, 109–115 (2015).Article 

    Google Scholar 
    17.Patten, M. A. & Smith-Patten, B. D. Testing the microclimate hypothesis: light environment and population trends of Neotropical birds. Biol. Conserv. 155, 85–93 (2012).Article 

    Google Scholar 
    18.Ausprey, I. J., Newell, F. L. & Robinson, S. K. Adaptations to light predict the foraging niche and disassembly of avian communities in tropical countrysides. Ecology 102, e03213 (2021).PubMed 
    Article 

    Google Scholar 
    19.Busch, D. S., Robinson, W. D., Robinson, T. R. & Wingfield, J. C. Influence of proximity to a geographical range limit on the physiology of a tropical bird. J. Anim. Ecol. 80, 640–649 (2011).PubMed 
    Article 

    Google Scholar 
    20.Stouffer, P. C. & Bierregaard, R. O. Use of Amazonian forest fragments by understory insectivorous birds. Ecology 76, 2429–2445 (1995).Article 

    Google Scholar 
    21.Ferraz, G. et al. Rates of species loss from Amazonian forest fragments. Proc. Natl. Acad. Sci. 100, 14069–14073 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Brooks, T. M., Pimm, S. L. & Oyugi, J. O. Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13, 1140–1150 (1999).Article 

    Google Scholar 
    23.Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).PubMed 
    Article 

    Google Scholar 
    24.Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).PubMed 
    Article 

    Google Scholar 
    25.Kattan, G. H., Alvarez-López, H. & Giraldo, M. Forest fragmentation and bird extinctions: San Antonio eighty years later. Conserv. Biol. 8, 138–146 (1994).Article 

    Google Scholar 
    26.Christiansen, M. B. & Pitter, E. Species loss in a forest bird community near Lagoa Santa in southeastern Brazil. Biol. Conserv. 80, 23–32 (1997).Article 

    Google Scholar 
    27.Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).Article 

    Google Scholar 
    28.Sigel, B. J., Sherry, T. W. & Young, B. E. Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva biological station, Costa Rica. Conserv. Biol. 20, 111–121 (2006).PubMed 
    Article 

    Google Scholar 
    29.Stouffer, P. C., Bierregaard, R. O., Strong, C. & Lovejoy, T. E. Long-term landscape change and bird abundance in amazonian rainforest fragments. Conserv. Biol. 20, 1212–1223 (2006).PubMed 
    Article 

    Google Scholar 
    30.Moura, N. G. et al. Two hundred years of local avian extinctions in Eastern Amazonia. Conserv. Biol. 28, 1271–1281 (2014).PubMed 
    Article 

    Google Scholar 
    31.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Foster, R. B. & Brokaw, N. V. Structure and History of the Vegetation of Barro Colorado Island (1982).33.Leigh, E. G. Tropical Forest Ecology: A View from Barro Colorado Island (Oxford University Press, 1999).
    Google Scholar 
    34.Panama Canal Authority (ACP). Meteorology and Hydrology Branch. http://www.pancanal.com (2016).35.ANAM. Informe Final de Resultados de la Cobertura Boscosa y uso del Suelo de la Republica de Panamá 1992–2000 (La Autoridad Nacional para el Ambiente (ANAM) y The International Tropical Timber Organization Panamá, 2003).36.Paton, S. 2017 Meterological and Hydrological Summary for Barro Colorado Island (2018).37.Rompré, G., Robinson, W. D., Desrochers, A. & Angehr, G. Environmental correlates of avian diversity in lowland Panama rain forests. J. Biogeogr. 34, 802–815 (2007).Article 

    Google Scholar 
    38.Karr, J. R. Avian extinction on Barro Colorado island, Panama: a reassessment. Am. Nat. 119, 220–239 (1982).Article 

    Google Scholar 
    39.Willis, E. O. Populations and local extinctions of birds on Barro Colorado Island, Panama. Ecol. Monogr. 44, 153–169 (1974).Article 

    Google Scholar 
    40.Robinson, W. D. Long-term changes in the avifauna of Barro Colorado Island, Panama, a tropical forest isolate. Conserv. Biol. 13, 85–97 (1999).Article 

    Google Scholar 
    41.Robinson, W. D., Robinson, T. R., Robinson, S. K. & Brawn, J. D. Nesting success of understory forest birds in central Panama. J. Avian Biol. 31, 151–164 (2000).Article 

    Google Scholar 
    42.Robinson, W. D. & Robinson, T. R. Observations of predation events at bird nests in central Panama. J. Field Ornithol. 72, 43–48 (2001).Article 

    Google Scholar 
    43.Robinson, W. D., Rompré, G. & Robinson, T. R. Videography of Panama bird nests shows snakes are principal predators. Ornitol. Neotrop. 16, 187–195 (2005).
    Google Scholar 
    44.Chapman, F. M. My Tropical Air Castle (D. Appleton and Co., 1929).
    Google Scholar 
    45.Chapman, F. M. Life in an Air Castle: Nature Studies in the Tropics (D. Appleton-Century Company, Incorporated, 1938).
    Google Scholar 
    46.Eisenmann, E. Annotated List of Birds of Barro Colorado Island, Panama Canal Zone Vol. 117 (Smithsonian Institution, 1952).
    Google Scholar 
    47.Willis, E. O. & Eisenmann, E. A revised list of birds of Barro Colorado Island, Panamá. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.291 (1979).Article 

    Google Scholar 
    48.Robinson, W. D. Changes in abundance of birds in a Neotropical forest fragment over 25 years: a review. Anim. Biodivers. Conserv. 24, 51–65 (2001).
    Google Scholar 
    49.Robinson, W. D., Brawn, J. D. & Robinson, S. K. Forest bird community structure in central Panama: influence of spatial scale and biogeography. Ecol. Monogr. 70, 209–235 (2000).Article 

    Google Scholar 
    50.Sodhi, N. S., Liow, L. H. & Bazzaz, F. A. Avian extinctions from tropical and subtropical forests. Annu. Rev. Ecol. Evol. Syst. 35, 323–345 (2004).Article 

    Google Scholar 
    51.Dunning, J. B. Jr. CRC Handbook of Avian Body Masses (CRC Press, 2007).Book 

    Google Scholar 
    52.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    53.McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data (MjM Software, 2011).
    Google Scholar 
    54.Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    55.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    56.Navarrete, C. B. & Soares, F. C. dominanceanalysis: Dominance Analysis. R package version 1.0.0. (2019).57.McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior (1973).58.Menard, S. Coefficients of determination for multiple logistic regression analysis. Am. Stat. 54, 17–24 (2000).
    Google Scholar 
    59.McFadden, D. Quantitative methods for analyzing travel behaviour of individuals: some recent developments, Cowles Foundation Discussion Papers No. 474 (Cowles Foundation for Research in Economics, Yale University, 1977).60.Clark, W. A. & Hosking, P. L. Statistical Methods for Geographers. (1986).61.Walsh, C. & MacNally, R. Hier.Part: Hierarchical Partitioning. R package version 1.0-4. (2013).62.Harrell Jr, F. E. RMS: Regression Modeling Strategies. R package version 5.1-3. City (2019).63.Le Cessie, S. & Van Houwelingen, J. C. A goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 47, 1267–1282 (1991).MATH 
    Article 

    Google Scholar 
    64.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    65.Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A. & Real, R. modEvA: Model Evaluation and Analysis. R package version 1.3.2. (2016).66.Suzuki, R., Shimodaira, H., Suzuki, M. R. & Suggests, M. Package ‘pvclust’. R Top. Doc. 14, 1540–1542 (2015).
    Google Scholar 
    67.Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    69.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    70.Oksanen, J. et al. Vegan: Community Ecology Package (2013).71.Moore, R. P. Biogeographic and Experimental Evidence for Local Scale Dispersal Limitation in Central Panamanian Forest Birds (Oregon State University, 2005).
    Google Scholar 
    72.Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).PubMed 
    Article 

    Google Scholar 
    73.Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390 (2005).Article 

    Google Scholar 
    75.Wolda, H. Trends in abundance of tropical forest insects. Oecologia 89, 47–52 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    76.Franks, N. R. A new method for censusing animal populations: the number of Eciton burchelli army ant colonies on Barro Colorado Island, Panama. Oecologia 52, 266–268 (1982).ADS 
    PubMed 
    Article 

    Google Scholar 
    77.Socolar, J. B. & Wilcove, D. S. Forest-type specialization strongly predicts avian responses to tropical agriculture. Proc. R. Soc. B 286, 20191724 (2019).PubMed 
    Article 

    Google Scholar 
    78.Şekercioğlu, Ç. H., Primack, R. B. & Wormworth, J. The effects of climate change on tropical birds. Biol. Conserv. 148, 1–18 (2012).Article 

    Google Scholar 
    79.Karr, J. R. & Freemark, K. E. Habitat selection and environmental gradients: dynamics in the” stable” tropics. Ecology 64, 1481–1494 (1983).Article 

    Google Scholar 
    80.Ibarra-Macias, A., Robinson, W. D. & Gaines, M. S. Experimental evaluation of bird movements in a fragmented Neotropical landscape. Biol. Conserv. 144, 703–712 (2011).Article 

    Google Scholar 
    81.Stouffer, P. C. et al. Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol. Lett. 24, 186–195 (2021).PubMed 
    Article 

    Google Scholar 
    82.Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ 3, e1177 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Legendre, P. & Condit, R. Spatial and temporal analysis of beta diversity in the Barro Colorado Island forest dynamics plot, Panama. For. Ecosyst. 6, 7 (2019).Article 

    Google Scholar 
    84.Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).Article 

    Google Scholar 
    85.Aguilar, E. et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res.: Atmos. 110, 2064–2082 (2005).Article 

    Google Scholar 
    86.Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    87.Kaspari, M. & Weiser, M. D. Ant activity along moisture gradients in a neotropical forest 1. Biotropica 32, 703–711 (2000).Article 

    Google Scholar 
    88.Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    89.Levings, S. C. & Windsor, D. M. Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica 16, 125–131 (1984).Article 

    Google Scholar 
    90.Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Chang. 7, 133 (2017).ADS 
    Article 

    Google Scholar 
    91.Karp, D. S. et al. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob. Change Biol. 24, 338–349 (2018).ADS 
    Article 

    Google Scholar 
    92.Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Wright, S. J. How isolation affects rates of turnover of species on islands. Oikos 44, 331–340 (1985).Article 

    Google Scholar 
    94.Chadwick, R., Good, P., Martin, G. & Rowell, D. P. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Chang. 6, 177–181 (2016).ADS 
    Article 

    Google Scholar 
    95.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis

    1.Sikorski, J. A. & Gruys, K. J. Understanding glyphosate’s molecular mode of action with EPSP synthase: evidence favoring an allosteric inhibitor model. Acc. Chem. Res. 30, 2–8 (1997).CAS 
    Article 

    Google Scholar 
    2.Duke, S. O. & Powles, S. B. Glyphosate: a once‐in‐a‐century herbicide. Pest Manag. Sci. 64, 319–325 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Siehl, D. L. Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. In Herbicide Activity: Toxicology, Biochemistry and Molecular Biology, vol. 1 (eds. Michael Roe, R., Burton, J. D. & Kuhr, R. J.) 37 (IOS Press, 1997).4.Shilo, T., Zygier, L., Rubin, B., Wolf, S. & Eizenberg, H. Mechanism of glyphosate control of Phelipanche aegyptiaca. Planta 244, 1095–1107 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Tzin, V. & Galili, G. New Insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plant 3, 956–972 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110, 3229–3236 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Hacker, S. D. & Gaines, S. D. Some implications of direct positive interactions for community species diversity. Ecology 78, 1990–2003 (1997).Article 

    Google Scholar 
    8.van den Bosch, T. J. M. & Welte, C. U. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10, 531–540 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    9.Lemoine, M. M., Engl, T. & Kaltenpoth, M. Microbial symbionts expanding or constraining abiotic niche space in insects. Curr. Opin. Insect Sci. 39, 14–20 (2020).PubMed 
    Article 

    Google Scholar 
    10.Feldhaar, H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol. Entomol. 36, 533–543 (2011).Article 

    Google Scholar 
    11.Moran, N. A. Symbiosis. Curr. Biol. 16, R866–R871 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Moran, N. A. & Telang, A. Bacteriocyte-associated symbionts of insects. Bioscience 48, 295–304 (1998).Article 

    Google Scholar 
    13.Oliver, K. M. & Martinez, A. J. How resident microbes modulate ecologically-important traits of insects. Curr. Opin. Insect Sci. 4, 1–7 (2014).PubMed 
    Article 

    Google Scholar 
    14.Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).Article 

    Google Scholar 
    15.Douglas, A. E. The B vitamin nutrition of insects: the contributions of diet, microbiome and horizontally acquired genes. Curr. Opin. Insect Sci. 23, 65–69 (2017).PubMed 
    Article 

    Google Scholar 
    16.Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Andersen, S. O. Cuticular sclerotization and tanning. In Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 167–192 (Elsevier, 2012).18.Anbutsu, H. & Fukatsu, T. Symbiosis for insect cuticle formation. In Cellular Dialogues in the Holobiont (eds. Bosch, T. C. G. & Hadfield, M. G.) 201–216 (CRC Press, 2020).19.Anbutsu, H. et al. Small genome symbiont underlies cuticle hardness in beetles. Proc. Natl. Acad. Sci. USA 114, E8382–E8391 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Li, A. P. & Long, T. J. An evaluation of the genotoxic potential of glyphosate. Fundam. Appl. Toxicol. 10, 537–546 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Smith, E. A. & Oehme, F. W. The biological activity of glyphosate to plants and animals: a literature review. Vet. Hum. Toxicol. 34, 531–543 (1992).CAS 
    PubMed 

    Google Scholar 
    22.Smith, D. F. Q. et al. Glyphosate inhibits melanization and increases insect susceptibility to infection. bioRxiv (2020).23.Torretta, V., Katsoyiannis, I., Viotti, P. & Rada, E. Critical review of the effects of glyphosate exposure to the environment and humans through the food supply chain. Sustainability 10, 950 (2018).Article 
    CAS 

    Google Scholar 
    24.Snyder, A. K. & Rio, R. V. M. “Wigglesworthia morsitans” folate (Vitamin B 9) biosynthesis contributes to tsetse host fitness. Appl. Environ. Microbiol. 81, 5375–5386 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Motta, E. V. S., Raymann, K. & Moran, N. A. Glyphosate perturbs the gut microbiota of honey bees. Proc. Natl. Acad. Sci. USA 115, 10305–10310 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Motta, E. V. S. et al. Oral or topical exposure to glyphosate in herbicide formulation impacts the gut microbiota and survival rates of honey bees. Appl. Environ. Microbiol. 86, e01150–20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Klein, A. et al. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J 10, 376–388 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Wu, D. et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol. 4, e188 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. B Biol. Sci 364, 1711–1723 (2009).Article 

    Google Scholar 
    30.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article 

    Google Scholar 
    31.Memmott, J. et al. Biodiversity loss and ecological network structure. In Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 325–347 (Oxford University Press, 2005).32.Liao, C., Upadhyay, A., Liang, J., Han, Q. & Li, J. 3,4-Dihydroxyphenylacetaldehyde synthase and cuticle formation in insects. Dev. Comp. Immunol. 83, 44–50 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Muthukrishnan, S., Merzendorfer, H., Arakane, Y. & Kramer, K. J. Chitin metabolism in insects. In Insect Molecular Biology and Biochemistry (ed. Gilbert, L. I.) 193–235 (Elsevier, 2012).34.Wirtz, R. A. & Hopkins, T. L. Tyrosine and phenylalanine concentrations in haemolymph and tissues of the American cockroach, Periplaneta americana, during metamorphosis. J. Insect Physiol. 20, 1143–1154 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Gibbs, A. G. & Rajpurohit, S. Cuticular lipids and water balance. In Insect Hydrocarbons (eds Blomquist, G. J. & Bagneres, A. -G.) 100–120 (Cambridge University Press, 2010).36.Hackman, R. H. Chemistry of the insect cuticle. in The Physiology of Insecta (ed. Rodstein, M.) 215–270 (Academic Press, 1974).37.Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article 

    Google Scholar 
    38.Kumar, V. et al. Amino acids distribution in economical important plants: a review. Biotechnol. Res. Innov 3, 197–207 (2019).Article 

    Google Scholar 
    39.Noh, M. Y., Muthukrishnan, S., Kramer, K. J. & Arakane, Y. Cuticle formation and pigmentation in beetles. Curr. Opin. Insect Sci. 17, 1–9 (2016).PubMed 
    Article 

    Google Scholar 
    40.Sterkel, M. et al. Tyrosine detoxification is an essential trait in the life history of blood-feeding arthropods. Curr. Biol. 26, 2188–2193 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Herrmann, K. M. & Weaver, L. M. The shikimate pathway. Annu. Rev. Plant Biol. 50, 473–503 (1999).CAS 
    Article 

    Google Scholar 
    42.Engl, T. et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol. Ecol. 27, 2095–2108 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Hirota, B. et al. A novel, extremely elongated, and endocellular bacterial symbiont supports cuticle formation of a grain pest beetle. MBio 8, 1–16 (2017).Article 

    Google Scholar 
    44.Boyer, S., Zhang, H. & Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 102, 213 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10, 13–26 (2012).CAS 
    Article 

    Google Scholar 
    48.Van Leuven, J. T., Meister, R. C., Simon, C. & McCutcheon, J. P. Sympatric speciation in a bacterial endosymbiont results in two genomes with the functionality of one. Cell 158, 1270–1280 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Campbell, M. A., Łukasik, P., Simon, C. & McCutcheon, J. P. Idiosyncratic genome degradation in a bacterial endosymbiont of periodical cicadas. Curr. Biol. 27, 3568–3575.e3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Campbell, M. A. et al. Genome expansion via lineage splitting and genome reduction in the cicada endosymbiont Hodgkinia. Proc. Natl. Acad. Sci. USA 112, 10192–10199 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Chen, Y. C., Liu, T., Yu, C. H., Chiang, T. Y. & Hwang, C. C. Effects of GC bias in next-generation-sequencing data on de novo genome assembly. PLoS ONE 8, e62856 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kozarewa, I. et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+ C)-biased genomes. Nat. Methods 6, 291–295 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13, 1–13 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Treangen, T. J. & Salzberg, S. L. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat. Rev. Genet. 13, 36–46 (2012).CAS 
    Article 

    Google Scholar 
    55.Sloan, D. B. et al. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31, 857–871 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Zucko, J. et al. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC Genomics 11, 628 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Tokuda, G. et al. Maintenance of essential amino acid synthesis pathways in the Blattabacterium cuenoti symbiont of a wood-feeding cockroach. Biol. Lett. 9, 20121153 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kinjo, Y. et al. Parallel and gradual genome erosion in the Blattabacterium endosymbionts of Mastotermes darwiniensis and Cryptocercus Wood Roaches. Genome Biol. Evol. 10, 1622–1630 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Menzel, R. & Roth, J. Purification of the putA gene product. A bifunctional membrane-bound protein from Salmonella typhimurium responsible for the two-step oxidation of proline to glutamate. J. Biol. Chem. 256, 9755–9761 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Zhou, Y., Zhu, W., Bellur, P. S., Rewinkel, D. & Becker, D. F. Direct linking of metabolism and gene expression in the proline utilization a protein from Escherichia coli. Amino Acids 35, 711–718 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Sabree, Z. L., Kambhampati, S. & Moran, N. A. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc. Natl. Acad. Sci. USA 106, 19521–19526 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.McCutcheon, J. P., McDonald, B. R. & Moran, N. A. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc. Natl. Acad. Sci. USA 106, 15394–15399 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Sabree, Z. L., Huang, C. Y., Okusu, A., Moran, N. A. & Normark, B. B. The nutrient supplying capabilities of Uzinura, an endosymbiont of armoured scale insects. Environ. Microbiol. 15, 1988–1999 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Rosas-Pérez, T., Rosenblueth, M., Rincón-Rosales, R., Mora, J. & Martínez-Romero, E. Genome Sequence of “Candidatus Walczuchella monophlebidarum” the Flavobacterial endosymbiont of Llaveia axin axin (Hemiptera: Coccoidea: Monophlebidae). Genome Biol. Evol. 6, 714–726 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Kuriwada, T. et al. Biological role of Nardonella endosymbiont in its weevil host. PLoS ONE 5, e13101 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Okude, G. et al. Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae). Zool. Lett. 3, 13 (2017).Article 

    Google Scholar 
    67.Hirota, B., Meng, X.-Y. & Fukatsu, T. Bacteriome-sssociated rndosymbiotic bacteria of Nosodendron tree sap beetles (Coleoptera: Nosodendridae). Front. Microbiol. 11, 2556 (2020).Article 

    Google Scholar 
    68.Hopkins, T. L. & Kramer, K. J. Insect cuticle sclerotization. Annu. Rev. Entomol. 37, 273–302 (1992).CAS 
    Article 

    Google Scholar 
    69.Andersen, S. O. Insect cuticular sclerotization: a review. Insect Biochem. Mol. Biol. 40, 166–178 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Cao, G. et al. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS ONE 7, e38718 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Moran, N. A. & Bennett, G. M. The tiniest tiny genomes. Annu. Rev. Microbiol. 68, 195–215 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Salem, H. et al. Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171, 1520–1531 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Reis, F. et al. Bacterial symbionts support larval sap feeding and adult folivory in (semi-) aquatic reed beetles. Nat. Commun. 11, 1–15 (2020).
    Google Scholar 
    75.Salem, H., Florez, L., Gerardo, N. & Kaltenpoth, M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc. R. Soc. B Biol. Sci. 282, 20142957 (2015).Article 

    Google Scholar 
    76.Salem, H. et al. Symbiont digestive range reflects host plant breadth in herbivorous beetles. Curr. Biol. 30, 2875–2886 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Hansen, A. K., Pers, D. & Russell, J. A. Symbiotic solutions to nitrogen limitation and amino acid imbalance in insect diets. In Mechanisms Underlying Microbial Symbiosis, vol. 58 (ed. Kerry M. Oliver, J. A. R.) 161–205 (Academic Press, 2020).78.Tanner, J. J. Structural biology of proline catabolism. Amino Acids 35, 719–730 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–61 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Bursell, E. The role of proline in energy metabolism.In Energy Metabolism in Insects (ed. Downer R.G.H.) 135–154 (Springer, Boston, 1981).81.Engl, T., Schmidt, T. H. P., Kanyile, S. N. & Klebsch, D. Metabolic cost of a nutritional symbiont manifests in delayed reproduction in a grain pest beetle. Insects 11, 717 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    82.José de Souza, D., Devers, S. & Lenoir, A. Blochmannia endosymbionts and their host, the ant Camponotus fellah: cuticular hydrocarbons and melanization. C. R. Biol. 334, 737–741 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    83.Zientz, E., Beyaert, I., Gross, R. & Feldhaar, H. Relevance of the endosymbiosis of Blochmannia floridanus and carpenter ants at different stages of the life cycle of the host. Appl. Environ. Microbiol. 72, 6027–6033 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Oakeson, K. F. et al. Genome degeneration and adaptation in a nascent stage of symbiosis. Genome Biol. Evol. 6, 76–93 (2013).Article 

    Google Scholar 
    85.Chong, R. A. & Moran, N. A. Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids. ISME J 12, 898–908 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.McCutcheon, J. P. & Moran, N. A. Functional convergence in reduced genomes of bacterial symbionts spanning 200 My of evolution. Genome Biol. Evol. 2, 708–718 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Gerth, M., Gansauge, M. T., Weigert, A. & Bleidorn, C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat. Commun. 5, 1–7 (2014).Article 
    CAS 

    Google Scholar 
    88.Santos-Garcia, D., Silva, F. J., Morin, S., Dettner, K. & Kuechler, S. M. The all-rounder Sodalis: a new bacteriome-associated endosymbiont of the Lygaeoid bug Henestaris halophilus (Heteroptera: Henestarinae) and a critical examination of its evolution. Genome Biol. Evol. 9, 2893–2910 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Motta, E. V. S. & Moran, N. A. Impact of glyphosate on the honey bee gut microbiota: effects of intensity, duration, and timing of exposure. Msystems 5, e00268–20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Helander, M., Pauna, A., Saikkonen, K. & Saloniemi, I. Glyphosate residues in soil affect crop plant germination and growth. Sci. Rep. 9, 19653 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Kiers, E. T., Rousseau, R. A., West, S. A. & Denlson, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    92.Whiteside, M. D., Digman, M. A., Gratton, E. & Treseder, K. K. Organic nitrogen uptake by arbuscular mycorrhizal fungi in a boreal forest. Soil Biol. Biochem. 55, 7–13 (2012).CAS 
    Article 

    Google Scholar 
    93.Faita, M. R., Cardozo, M. M., Amandio, D. T. T., Orth, A. I. & Nodari, R. O. Glyphosate-based herbicides and Nosema sp. microsporidia reduce honey bee (Apis mellifera L.) survivability under laboratory conditions. J. Apic. Res. 59, 1–11 (2020).Article 

    Google Scholar 
    94.Wilson, A. C. C. et al. Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol. Biol. 19, 249–258 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    96.Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    Article 

    Google Scholar 
    97.Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS 
    Article 

    Google Scholar 
    98.Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Hayes, T. B. & Hansen, M. From silent spring to silent night: agrochemicals and the anthropocene. Elem. Sci. Anthropol. 5, (2017).101.Bowler, D. E., Heldbjerg, H., Fox, A. D., Jong, M. & Böhning‐Gaese, K. Long‐term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130 (2019).PubMed 
    Article 

    Google Scholar 
    102.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, 1–12 (2014).Article 

    Google Scholar 
    104.Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2015).Article 
    CAS 

    Google Scholar 
    106.Laczny, C. C. et al. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res. 45, W171–W179 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).Article 
    CAS 

    Google Scholar 
    108.Arkin, A. P. et al. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    113.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Brettin, T. et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5, 8365 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    115.Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    117.Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, D206–14 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Weiss, B. & Kaltenpoth, M. Bacteriome-localized intracellular symbionts in pollen-feeding beetles of the genus Dasytes (Coleoptera, Dasytidae). Front. Microbiol. 7, 1486 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).Article 

    Google Scholar 
    120.Tanahashi, M. Natsumushi: Image measuring software for entomological studies. Entomol. Sci. 21, 347–360 (2018).Article 

    Google Scholar 
    121.Pérez-Palacios, T., Barroso, M. A., Ruiz, J. & Antequera, T. A rapid and accurate extraction procedure for analysing free amino acids in meat samples by GC–MS. Int. J. Anal. Chem. 2015, 209214 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Miller, R. G. Simultaneous Statistical Inference (Springer, 1981).123.Engl, T., Kiefer, J.S.T. Data from: Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamenis. Max Planck Soc. https://doi.org/10.17617/3.5l (2021). More