More stories

  • in

    Linking functional traits and demography to model species-rich communities

    1.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    3.Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. 111, 740–745 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. Allocating C. S. R. plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).5.Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).ADS 
    Article 

    Google Scholar 
    6.Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Connolly, S. R., Keith, S. A., Colwell, R. K. & Rahbek, C. Process, mechanism, and modeling in macroecology. Trends Ecol. Evol. 32, 835–844 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).Article 

    Google Scholar 
    10.Thuiller, W., Pollock, L. J., Gueguen, M. & Münkemüller, T. From species distributions to meta-communities. Ecol. Lett. 18, 1321–1328 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651–2664 (2016).ADS 
    Article 

    Google Scholar 
    12.Alexander, J. et al. Lags in the response of alpine plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).ADS 
    Article 

    Google Scholar 
    13.Evans, M. E., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Paine, C. E. T., Deasey, Anna, Bradley, DuthieA. & Ken, Thompson Towards the general mechanistic prediction of community dynamics. Funct. Ecol. 32, 1681–1692 (2018).Article 

    Google Scholar 
    16.Hartig, F. et al. Connecting dynamic vegetation models to data–an inverse perspective. J. Biogeogr. 39, 2240–2252 (2012).Article 

    Google Scholar 
    17.Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).
    Google Scholar 
    18.Kraft, N. J., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. 112, 797–802 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 0062 (2017).Article 

    Google Scholar 
    20.Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F. Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. Ecology 96, 1340–1350 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Curtsdotter, A. et al. Ecosystem function in predator–prey food webs—confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).24.Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. 112, 11415–11422 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Körner, C. Alpine Plant Life. (Springer, 2003).27.Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    28.Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Chalmandrier, L., Albouy, C. & Pellissier, L. Species pool distributions along functional trade-offs shape plant productivity–diversity relationships. Sci. Rep. 7, 15405 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Nagelkerke, N. J. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    31.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    32.Godínez-Alvarez, H., Herrick, J. E., Mattocks, M., Toledo, D. & Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 9, 1001–1008 (2009).Article 

    Google Scholar 
    33.Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).Article 

    Google Scholar 
    34.Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    35.de Bello, Fde et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36, 393–402 (2013).Article 

    Google Scholar 
    36.Dray, S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95, 14–21 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Violle, C. et al. Competition, traits and resource depletion in plant communities. Oecologia 160, 747–755 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63 (1996).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A. & Fulé, P. Z. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).Article 

    Google Scholar 
    41.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    42.Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).Article 

    Google Scholar 
    43.O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2019).Article 

    Google Scholar 
    44.Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods Ecol. Evol. 11, 281–293 (2020).Article 

    Google Scholar 
    45.Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).Article 

    Google Scholar 
    46.Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Arnoldi, J.-F., Loreau, M. & Haegeman, B. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecol. Lett. 22, 1557–1567 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.May, R. M. Patterns of species abundance and diversity. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard University Press, 1975).49.Falster, D. S., Brännström, Å., Westoby, M. & Dieckmann, U. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl. Acad. Sci. 114, E2719–E2728 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Boulangeat, I., Georges, D. & Thuiller, W. FATE-HD: a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Glob. Change Biol. 20, 2368–2378 (2014).Article 

    Google Scholar 
    51.Lischke, H. & Löffler, T. J. Finding all multiple stable fixpoints of n-species Lotka–Volterra competition models. Theor. Popul. Biol. 115, 24–34 (2017).PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    52.Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000 (2013).Article 

    Google Scholar 
    53.ter Braak, C. J. New robust weighted averaging-and model-based methods for assessing trait–environment relationships. Methods Ecol. Evol. 10, 1962–1971 (2019).Article 

    Google Scholar 
    54.Pielou, E. C. Ecological Diversity. (Wiley, New York, 1975).55.Gibert, A., Gray, E. F., Westoby, M., Wright, I. J. & Falster, D. S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. J. Ecol. 104, 1488–1503 (2016).Article 

    Google Scholar 
    56.Durand, Y. et al. Reanalysis of 44 Yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. J. Appl. Meteorol. Climatol. 48, 429–449 (2009).ADS 
    Article 

    Google Scholar 
    57.Chalmandrier, L. et al. Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J. Ecol. 105, 277–287 (2017).Article 

    Google Scholar 
    58.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    59.Reich, P. B. et al. Generality of leaf trait relationships: a test across six biomes. Ecology 80, 1955–1969 (1999).Article 

    Google Scholar 
    60.Poorter, H. & Bergkotte, M. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15, 221–229 (1992).CAS 
    Article 

    Google Scholar 
    61.Farquhar, G. D., O’leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).CAS 
    Article 

    Google Scholar 
    62.Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. (Springer, 2018).63.Rapisarda, F., Brigo, D. & Mercurio, F. Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18, 55–73 (2007).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    64.Blumenson, L. E. A derivation of n-dimensional spherical coordinates. Am. Math. Mon. 67, 63–66 (1960).MathSciNet 

    Google Scholar 
    65.Banner, K. M., Irvine, K. M. & Rodhouse, T. The use of bayesian priors in ecology: the good, the bad, and the not great. Methods Ecol. Evol. 00, 1–8 (2020).
    Google Scholar 
    66.Hartig, F., Minunno, F. & Paul, S. BayesianTools: General-Purpose MCMC and SMC samplers and tools for bayesian statistics. R package (2017).67.Warton, D. I. et al. So Many Variables: Joint Modeling in Community Ecology. Trends Ecol. Evol. 30, 766–779 (2015). 68.Pichler, M. & Hartig, F. A new method for faster and more accurate inference of species associations from novel community data. Preprint at https://arxiv.org/abs/2003.05331 (2020).69.Advanced Research Computing Center (ARCC). Teton Computing Environment. https://doi.org/10.15786/m2fy47 (2018). More

  • in

    A study on the effects of regional differences on agricultural water resource utilization efficiency using super-efficiency SBM model

    Study areaChina is one of the countries with the poorest per capita water resources in the world while also having the largest water consumption in the world. In 2018, China’s total water consumption was 601.55 billion m3, with 369.31 billion m3 of water used in agriculture, accounting for 61.4% of the total water2. Agriculture is the most important industrial sector in water resource consumption. However, due to regional and climate differences, the distribution of agricultural water resources is uneven, and the shortage of water resources seriously affects agricultural development in water-deficient areas.Figure 1 shows the agricultural water consumption in China by province for 2007 and 2018. The agricultural water consumption includes farmland irrigation water consumption (classified as paddy field, irrigated land, vegetable field, groundwater exploitation), forest, animal husbandry, fishery, and livestock (classified as forest and fruit, grassland, fish pond, animal husbandry, groundwater exploitation), domestic water consumption of rural residents and rural ecological environment water consumption. Previous studies have mainly considered the irrigation water consumption of the planting industry as the research object at the provincial or regional levels (e.g., eastern, central, and western regions). Few were able to consider all 31 provinces in China and have comprehensively assessed water consumption and water use efficiency in the various types of agricultural production3,4,5,6,10,16,17,22,23,24,25,30. In this study, the agricultural water use efficiency and its influencing factors are assessed based on the agricultural water consumption of agriculture, forestry, animal husbandry, and fishery in China.Figure 1Agricultural water consumption in China by province for (a) 2007 and (b) 2018. Note: Map created using ArcGIS [10.2], (http://www.esri.com/software/arcgis).Full size imageResearch methodIn this study, the agricultural water use efficiency (under the common frontier and the group frontier) is calculated using the super-efficiency slacks-based measure (Super-SBM) model. The significant factors affecting water-use efficiency are then analyzed through the threshold regression model.Super-efficiency SBM modelData envelopment analysis (DEA) is an efficiency evaluation method proposed by Charnes31, a famous American operational research scientist. While traditional radial and angular DEA models do not require the specific form of the estimation function, they ignore the relaxation of variables and result in efficiency values in the range of 0 to 1. If there are multiple efficiency value of decision making units(DMUs) with an efficiency value of 1, these values cannot be compared. The efficiency of the super efficiency DEA model can be greater than 1, which means that the efficiency level of all decision-making units can be compared.To avoid the problem of slack variables, Tone (2001) proposed the SBM model, which is a non-radial and non-angular DEA analysis method based on the relaxation variable measure16,17,18,19,20,32. The SBM model of unexpected output solves the slack problem of input and output variables, minimizing deviations in the efficiency measurement. The super-efficiency SBM model combines the super-efficiency DEA model and the SBM model. It is also one of the methods based on data envelopment analysis, which can measure the efficiency of all decision-making units and the slack of input and output variables.Assume n to be the decision-making units, each of which has m inputs, expected output r1, and unexpected output r2. Let X (X ∈ Rm), Yd (Yd ∈ Rs1), and Yu (Yu ∈ Rs2) be matrices, such that (X=[{x}_{1},dots ,{x}_{n}]in {R}^{m*n}) and (Y=[{y}_{1}^{d}, dots ,{ y}_{n}^{d}in {R}^{{r}_{1}*n}). The form of the super-efficiency SBM model is as follows1,17,19,54:$$min=frac{frac{1}{m}sum_{i=1}^{m}(overline{x}/{x}_{ik})}{1/left({r}_{1}+{r}_{2}right)*(sum_{r=1}^{{r}_{1}}overline{{y}^{d}}/{y}_{rk}^{d}+sum_{q=1}^{{r}_{2}}overline{{y}^{u}}/{y}_{qk}^{u}}.$$
    (1)
    Among them,$$overline{x}ge sum_{j=1ne k}^{n}{x}_{ij}{lambda }_{j}, i=1,dots ,m;$$
    (2)
    $$overline{{y}^{d}}le sum_{j=1,ne k}^{n}{y}_{rj}^{d}{lambda }_{j}, r=1,dots ,{s}_{1};$$
    (3)
    $$overline{{y}^{d}}ge sum_{j=1,ne k}^{n}{y}_{qj}^{u}{lambda }_{j}, q=1,dots ,{s}_{2};$$
    (4)
    $${lambda }_{y}ge 0,j=1,dots ,n;jne 0;$$
    (5)
    $$overline{x}ge {x}_{k},k=1,dots ,m;$$
    (6)
    $$overline{{y}^{d}}le {y}_{k}^{d},d=1,dots ,{r}_{1};$$
    (7)
    $$overline{{y}^{u}}ge {y}_{k}^{u},b=1,dots ,{r}_{2}.$$
    (8)
    Based on the Super-SBM model (Eq. 1) and its constraint formula, the agricultural water use efficiency for the different provinces was calculated for the period 2007–2018 using Maxdea 8 ultra software.Threshold effectConsidering the differences in economic development and technical levels, the agricultural water use in different regions of China shows characteristics of time-series evolution, spatial heterogeneity, and unbalanced spatial distribution. There is a non-linear relationship between the influencing factors of agricultural water use efficiency, which suggests the existence of certain threshold characteristics33,34. This means that for a particular determinant, agricultural water use efficiency would be affected differently depending on whether the parameter has crossed the threshold. In this study, the threshold panel model proposed by Hansen is used. The threshold value of the threshold variable is taken as the critical point, and the regression equation is divided into different stage intervals to analyze the influence of threshold variables on the explained variables at different stages . Therefore, according to the relationship between agricultural water use efficiency and its influencing factors in different regions, the following single threshold regression model is set:$${Y}_{it}=alpha {X}_{it}+{beta }_{1}{T}_{it}Ileft({T}_{it}le {gamma }_{1}right)+{beta }_{2}{T}_{it}Ileft({T}_{it} >{gamma }_{1}right)+C+{varepsilon }_{it},$$
    (9)
    such that i is the province; t is the year; Yit and Tit are the explanatory variables and explained variables, respectively; Xit is the control variable that has a significant impact on the explained variables; Tit is threshold variable, which changes with the different explanatory variables; γ is a specific threshold value; α is the corresponding coefficient vector; β1 and β2 represent the influence coefficients of the threshold variable Tit on the explained variable Yit in the case of ({T}_{it}le {gamma }_{1}) and ({T}_{it} >{gamma }_{1}) , respectively; C is a constant; ε is random disturbance term, ({varepsilon }_{it}sim i.i.d.N(0,{sigma }^{2})); and, I (·) is an indicative function. After obtaining the estimated value of each parameter, two tests need to be carried out: (1) establish whether the threshold effect is significant; and (2) determine whether the estimated threshold value is equal to the true value. In addition, the above equation assumes that only one threshold exists. For two or more thresholds, the model would have to be adjusted according to the data.Based on the panel data of 31 provinces in China from 2007 to 201844,45,46, Stata15.0 software was used to perform threshold regression on seven variables: per capita water resources, rural labor force, disposable income, government’s attention, foreign trade dependence, industrial structure, and gross domestic product (GDP). The threshold effect of each factor can be analyzed, and the impact on agricultural water consumption can be assessed using the threshold value.Variable selection and data sourceThe super-efficiency SBM model was used in calculating the agricultural water use efficiency for the 31 provinces in China from 2007 to 2018. The input–output indicators were defined before the calculations, as shown in Extended Data Table 1.The selection of input–output factors to measure the utilization efficiency of agricultural water resources follows the principles of availability and operability. The input variables included: (1) agricultural water consumption, (2) the number of employees in agriculture, forestry, animal husbandry, and fishery, (3) the total power of agricultural machinery, and (4) the expenditure of local finance on agriculture, forestry, and water affairs. In terms of output, the added value in agriculture, forestry, animal husbandry, and fishery (based on 2007) was used as the expected output, while ammonia nitrogen emission, agricultural chemical oxygen demand emission, and agricultural carbon emission comprised the unexpected output.This study considered the scale of carbon emissions released by the agricultural system. According to existing research, agricultural carbon emissions are associated with rural environmental pollution35. The main consequence of agricultural pollutant emissions is soil pollution, which leads to rural groundwater pollution36,37,39,40,41,41. The deterioration of groundwater quality adversely affects the development of the agricultural economy and threatens the safety of the drinking water supply for rural residents.The threshold regression model was used to investigate the convergence of agricultural water use efficiency and observe the changes in agricultural water consumption under different influencing factors. The control variables include the following: water resource endowment, the number of agricultural labor, the income level of rural residents, industrial structure, the degree of government’s attention, the degree of dependence on foreign trade, and the level of economic development, as shown in Extended Data Table 2. For water resource endowment (WR), WR is expressed in per capita water resource (m3 / person). Zhang Lixiao45,46 and previous studies have shown a negative correlation between water resource endowment and water resource utilization. For agricultural labor (ah), the variable is expressed by the number of people engaged in agriculture, forestry, animal husbandry, and fishery (10,000 people). Past studies suggest rural population affects the consumption of agricultural water resources47,50,51,52,53,52. For income levels, rural residents’ income level is indicated by the per capita disposable income of rural households. Wang Xueyuan et al.3 and Han Qing et al.53 argue that the increase in the rural residents’ income would limit agricultural water consumption. For industrial structure (× 2), which is expressed by the proportion of industrial added value in GDP, research has shown water resource efficiency would vary under different industrial structures54,57,56. For the government’s attention degree (GA), the variable is expressed by the proportion of agriculture, water affairs, and forestry spending in the total financial expenditure. The government’s support for comprehensive agricultural development and infrastructure and technology upgrading for agricultural, forestry, and water conservation significantly affects water resource utilization efficiency16,56,59,58. For the degree of dependence on foreign trade (open), the parameter is indicated by the proportion of the total import and export of agricultural and sideline products in the GDP. Changes in import demand can reduce or increase the consumption and pollution of water resources. Likewise, export demand changes, especially in high water-consuming and high polluting products, can significantly improve or degrade water resource efficiency. And for the level of economic development, expressed in terms of GDP, the level of regional economic development plays a positive role in promoting the efficiency of water resource utilization59,62,61. More

  • in

    Erosion of tropical bird diversity over a century is influenced by abundance, diet and subtle climatic tolerances

    1.Turner, I. M. Species loss in fragments of tropical rain forest: a review of the evidence. J. Appl. Ecol. 33, 200–209 (1996).Article 

    Google Scholar 
    2.Pimm, S. L. & Raven, P. Biodiversity: extinction by numbers. Nature 403, 843 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Robinson, W. D. et al. Distribution of bird diversity in a vulnerable Neotropical landscape. Conserv. Biol. 18, 510–518 (2004).Article 

    Google Scholar 
    4.Rompré, G., Robinson, W. D. & Desrochers, A. Causes of habitat loss in a Neotropical landscape: The Panama Canal corridor. Landsc. Urban Plan. 87, 129–139 (2008).Article 

    Google Scholar 
    5.Diamond, J. Dammed experiments. Science 294, 1847 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Şekercioḡlu, Ç. H. et al. Disappearance of insectivorous birds from tropical forest fragments. Proc. Natl. Acad. Sci. USA 99, 263 (2002).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    7.Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).Article 

    Google Scholar 
    8.Stratford, J. A. & Robinson, W. D. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. Front. Ecol. Environ. 3, 85–92 (2005).Article 

    Google Scholar 
    9.Robinson, W. D. & Sherry, T. W. Mechanisms of avian population decline and species loss in tropical forest fragments. J. Ornithol. 153, 141–152 (2012).Article 

    Google Scholar 
    10.Terborgh, J. Preservation of natural diversity: the problem of extinction prone species. Bioscience 24, 715–722 (1974).Article 

    Google Scholar 
    11.Karr, J. R. Population variability and extinction in the avifauna of a tropical land bridge island. Ecology 63, 1975–1978 (1982).Article 

    Google Scholar 
    12.Sieving, K. E. Nest predation and differential insular extinction among selected forest birds of central Panama. Ecology 73, 2310–2328 (1992).Article 

    Google Scholar 
    13.Bierregaard, R. O., Lovejoy, T. E., Kapos, V., dos Santos, A. A. & Hutchings, R. W. The biological dynamics of tropical rainforest fragments. Bioscience 42, 859–866 (1992).Article 

    Google Scholar 
    14.Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 359, 345–352 (2004).Article 

    Google Scholar 
    15.Laurance, W. F. & Curran, T. J. Impacts of wind disturbance on fragmented tropical forests: a review and synthesis. Austral. Ecol. 33, 399–408 (2008).Article 

    Google Scholar 
    16.Stratford, J. A. & Stouffer, P. C. Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biol. Conserv. 188, 109–115 (2015).Article 

    Google Scholar 
    17.Patten, M. A. & Smith-Patten, B. D. Testing the microclimate hypothesis: light environment and population trends of Neotropical birds. Biol. Conserv. 155, 85–93 (2012).Article 

    Google Scholar 
    18.Ausprey, I. J., Newell, F. L. & Robinson, S. K. Adaptations to light predict the foraging niche and disassembly of avian communities in tropical countrysides. Ecology 102, e03213 (2021).PubMed 
    Article 

    Google Scholar 
    19.Busch, D. S., Robinson, W. D., Robinson, T. R. & Wingfield, J. C. Influence of proximity to a geographical range limit on the physiology of a tropical bird. J. Anim. Ecol. 80, 640–649 (2011).PubMed 
    Article 

    Google Scholar 
    20.Stouffer, P. C. & Bierregaard, R. O. Use of Amazonian forest fragments by understory insectivorous birds. Ecology 76, 2429–2445 (1995).Article 

    Google Scholar 
    21.Ferraz, G. et al. Rates of species loss from Amazonian forest fragments. Proc. Natl. Acad. Sci. 100, 14069–14073 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Brooks, T. M., Pimm, S. L. & Oyugi, J. O. Time lag between deforestation and bird extinction in tropical forest fragments. Conserv. Biol. 13, 1140–1150 (1999).Article 

    Google Scholar 
    23.Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).PubMed 
    Article 

    Google Scholar 
    24.Ewers, R. M. & Didham, R. K. Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. 81, 117–142 (2006).PubMed 
    Article 

    Google Scholar 
    25.Kattan, G. H., Alvarez-López, H. & Giraldo, M. Forest fragmentation and bird extinctions: San Antonio eighty years later. Conserv. Biol. 8, 138–146 (1994).Article 

    Google Scholar 
    26.Christiansen, M. B. & Pitter, E. Species loss in a forest bird community near Lagoa Santa in southeastern Brazil. Biol. Conserv. 80, 23–32 (1997).Article 

    Google Scholar 
    27.Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv. Biol. 16, 605–618 (2002).Article 

    Google Scholar 
    28.Sigel, B. J., Sherry, T. W. & Young, B. E. Avian community response to lowland tropical rainforest isolation: 40 years of change at La Selva biological station, Costa Rica. Conserv. Biol. 20, 111–121 (2006).PubMed 
    Article 

    Google Scholar 
    29.Stouffer, P. C., Bierregaard, R. O., Strong, C. & Lovejoy, T. E. Long-term landscape change and bird abundance in amazonian rainforest fragments. Conserv. Biol. 20, 1212–1223 (2006).PubMed 
    Article 

    Google Scholar 
    30.Moura, N. G. et al. Two hundred years of local avian extinctions in Eastern Amazonia. Conserv. Biol. 28, 1271–1281 (2014).PubMed 
    Article 

    Google Scholar 
    31.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Foster, R. B. & Brokaw, N. V. Structure and History of the Vegetation of Barro Colorado Island (1982).33.Leigh, E. G. Tropical Forest Ecology: A View from Barro Colorado Island (Oxford University Press, 1999).
    Google Scholar 
    34.Panama Canal Authority (ACP). Meteorology and Hydrology Branch. http://www.pancanal.com (2016).35.ANAM. Informe Final de Resultados de la Cobertura Boscosa y uso del Suelo de la Republica de Panamá 1992–2000 (La Autoridad Nacional para el Ambiente (ANAM) y The International Tropical Timber Organization Panamá, 2003).36.Paton, S. 2017 Meterological and Hydrological Summary for Barro Colorado Island (2018).37.Rompré, G., Robinson, W. D., Desrochers, A. & Angehr, G. Environmental correlates of avian diversity in lowland Panama rain forests. J. Biogeogr. 34, 802–815 (2007).Article 

    Google Scholar 
    38.Karr, J. R. Avian extinction on Barro Colorado island, Panama: a reassessment. Am. Nat. 119, 220–239 (1982).Article 

    Google Scholar 
    39.Willis, E. O. Populations and local extinctions of birds on Barro Colorado Island, Panama. Ecol. Monogr. 44, 153–169 (1974).Article 

    Google Scholar 
    40.Robinson, W. D. Long-term changes in the avifauna of Barro Colorado Island, Panama, a tropical forest isolate. Conserv. Biol. 13, 85–97 (1999).Article 

    Google Scholar 
    41.Robinson, W. D., Robinson, T. R., Robinson, S. K. & Brawn, J. D. Nesting success of understory forest birds in central Panama. J. Avian Biol. 31, 151–164 (2000).Article 

    Google Scholar 
    42.Robinson, W. D. & Robinson, T. R. Observations of predation events at bird nests in central Panama. J. Field Ornithol. 72, 43–48 (2001).Article 

    Google Scholar 
    43.Robinson, W. D., Rompré, G. & Robinson, T. R. Videography of Panama bird nests shows snakes are principal predators. Ornitol. Neotrop. 16, 187–195 (2005).
    Google Scholar 
    44.Chapman, F. M. My Tropical Air Castle (D. Appleton and Co., 1929).
    Google Scholar 
    45.Chapman, F. M. Life in an Air Castle: Nature Studies in the Tropics (D. Appleton-Century Company, Incorporated, 1938).
    Google Scholar 
    46.Eisenmann, E. Annotated List of Birds of Barro Colorado Island, Panama Canal Zone Vol. 117 (Smithsonian Institution, 1952).
    Google Scholar 
    47.Willis, E. O. & Eisenmann, E. A revised list of birds of Barro Colorado Island, Panamá. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.291 (1979).Article 

    Google Scholar 
    48.Robinson, W. D. Changes in abundance of birds in a Neotropical forest fragment over 25 years: a review. Anim. Biodivers. Conserv. 24, 51–65 (2001).
    Google Scholar 
    49.Robinson, W. D., Brawn, J. D. & Robinson, S. K. Forest bird community structure in central Panama: influence of spatial scale and biogeography. Ecol. Monogr. 70, 209–235 (2000).Article 

    Google Scholar 
    50.Sodhi, N. S., Liow, L. H. & Bazzaz, F. A. Avian extinctions from tropical and subtropical forests. Annu. Rev. Ecol. Evol. Syst. 35, 323–345 (2004).Article 

    Google Scholar 
    51.Dunning, J. B. Jr. CRC Handbook of Avian Body Masses (CRC Press, 2007).Book 

    Google Scholar 
    52.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    53.McCune, B. & Mefford, M. J. PC-ORD. Multivariate Analysis of Ecological Data (MjM Software, 2011).
    Google Scholar 
    54.Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    55.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    56.Navarrete, C. B. & Soares, F. C. dominanceanalysis: Dominance Analysis. R package version 1.0.0. (2019).57.McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior (1973).58.Menard, S. Coefficients of determination for multiple logistic regression analysis. Am. Stat. 54, 17–24 (2000).
    Google Scholar 
    59.McFadden, D. Quantitative methods for analyzing travel behaviour of individuals: some recent developments, Cowles Foundation Discussion Papers No. 474 (Cowles Foundation for Research in Economics, Yale University, 1977).60.Clark, W. A. & Hosking, P. L. Statistical Methods for Geographers. (1986).61.Walsh, C. & MacNally, R. Hier.Part: Hierarchical Partitioning. R package version 1.0-4. (2013).62.Harrell Jr, F. E. RMS: Regression Modeling Strategies. R package version 5.1-3. City (2019).63.Le Cessie, S. & Van Houwelingen, J. C. A goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 47, 1267–1282 (1991).MATH 
    Article 

    Google Scholar 
    64.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186 (2000).Article 

    Google Scholar 
    65.Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A. & Real, R. modEvA: Model Evaluation and Analysis. R package version 1.3.2. (2016).66.Suzuki, R., Shimodaira, H., Suzuki, M. R. & Suggests, M. Package ‘pvclust’. R Top. Doc. 14, 1540–1542 (2015).
    Google Scholar 
    67.Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    69.Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    70.Oksanen, J. et al. Vegan: Community Ecology Package (2013).71.Moore, R. P. Biogeographic and Experimental Evidence for Local Scale Dispersal Limitation in Central Panamanian Forest Birds (Oregon State University, 2005).
    Google Scholar 
    72.Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).PubMed 
    Article 

    Google Scholar 
    73.Moore, R. P., Robinson, W. D., Lovette, I. J. & Robinson, T. R. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. Ecology 86, 379–390 (2005).Article 

    Google Scholar 
    75.Wolda, H. Trends in abundance of tropical forest insects. Oecologia 89, 47–52 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    76.Franks, N. R. A new method for censusing animal populations: the number of Eciton burchelli army ant colonies on Barro Colorado Island, Panama. Oecologia 52, 266–268 (1982).ADS 
    PubMed 
    Article 

    Google Scholar 
    77.Socolar, J. B. & Wilcove, D. S. Forest-type specialization strongly predicts avian responses to tropical agriculture. Proc. R. Soc. B 286, 20191724 (2019).PubMed 
    Article 

    Google Scholar 
    78.Şekercioğlu, Ç. H., Primack, R. B. & Wormworth, J. The effects of climate change on tropical birds. Biol. Conserv. 148, 1–18 (2012).Article 

    Google Scholar 
    79.Karr, J. R. & Freemark, K. E. Habitat selection and environmental gradients: dynamics in the” stable” tropics. Ecology 64, 1481–1494 (1983).Article 

    Google Scholar 
    80.Ibarra-Macias, A., Robinson, W. D. & Gaines, M. S. Experimental evaluation of bird movements in a fragmented Neotropical landscape. Biol. Conserv. 144, 703–712 (2011).Article 

    Google Scholar 
    81.Stouffer, P. C. et al. Long-term change in the avifauna of undisturbed Amazonian rainforest: ground-foraging birds disappear and the baseline shifts. Ecol. Lett. 24, 186–195 (2021).PubMed 
    Article 

    Google Scholar 
    82.Blake, J. G. & Loiselle, B. A. Enigmatic declines in bird numbers in lowland forest of eastern Ecuador may be a consequence of climate change. PeerJ 3, e1177 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Legendre, P. & Condit, R. Spatial and temporal analysis of beta diversity in the Barro Colorado Island forest dynamics plot, Panama. For. Ecosyst. 6, 7 (2019).Article 

    Google Scholar 
    84.Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).Article 

    Google Scholar 
    85.Aguilar, E. et al. Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J. Geophys. Res.: Atmos. 110, 2064–2082 (2005).Article 

    Google Scholar 
    86.Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    87.Kaspari, M. & Weiser, M. D. Ant activity along moisture gradients in a neotropical forest 1. Biotropica 32, 703–711 (2000).Article 

    Google Scholar 
    88.Wall, D. H. et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 2661–2677 (2008).ADS 
    Article 

    Google Scholar 
    89.Levings, S. C. & Windsor, D. M. Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica 16, 125–131 (1984).Article 

    Google Scholar 
    90.Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Chang. 7, 133 (2017).ADS 
    Article 

    Google Scholar 
    91.Karp, D. S. et al. Agriculture erases climate-driven β-diversity in Neotropical bird communities. Glob. Change Biol. 24, 338–349 (2018).ADS 
    Article 

    Google Scholar 
    92.Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Wright, S. J. How isolation affects rates of turnover of species on islands. Oikos 44, 331–340 (1985).Article 

    Google Scholar 
    94.Chadwick, R., Good, P., Martin, G. & Rowell, D. P. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Chang. 6, 177–181 (2016).ADS 
    Article 

    Google Scholar 
    95.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species

    1.Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
    Google Scholar 
    2.Wiley, R. H. Signal detection and animal communication. In Advances in the Study of Behavior Vol. 36 217–247 (Academic Press, 2006).3.Brumm, H. Animal Communication and Noise Vol. 2 (Springer, 2013).Book 

    Google Scholar 
    4.Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Tannure-Nascimento, I. C., Nascimento, F. S. & Zucchi, R. The look of royalty: Visual and odour signals of reproductive status in a paper wasp. Proc. R. Soc. B Biol. Sci. 275, 2555–2561 (2008).Article 

    Google Scholar 
    6.Higham, J. P. & Hebets, E. A. An introduction to multimodal communication. Behav. Ecol. Sociobiol. 67, 1381–1388 (2013).Article 

    Google Scholar 
    7.Hölldobler, B. Multimodal signals in ant communication. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 129–141 (1999).Article 

    Google Scholar 
    8.Partan, S. R. & Marler, P. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245 (2005).PubMed 
    Article 

    Google Scholar 
    9.Delattre, O. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insectes Soc. 66, 265–272 (2019).Article 

    Google Scholar 
    10.Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. E. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (CRC Press, 1998).
    Google Scholar 
    11.Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990).Book 

    Google Scholar 
    12.Cohen, E. & Moussian, B. Extracellular Composite Matrices in Arthropods (Springer, 2016).Book 

    Google Scholar 
    13.Tibbetts, E. A. & Lindsay, R. Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol. Lett. 4, 237–239 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Chiu, Y.-K., Mankin, R. W. & Lin, C.-C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).Article 

    Google Scholar 
    15.Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).Article 

    Google Scholar 
    16.Hrncir, M., Maia-Silva, C., Cabe, S. I. M. & Farina, W. M. The recruiter’s excitement—Features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J. Exp. Biol. 214, 4055–4064 (2011).PubMed 
    Article 

    Google Scholar 
    17.Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc. 54, 374–382 (2007).Article 

    Google Scholar 
    18.Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insectes Soc. 51, 158–162 (2004).Article 

    Google Scholar 
    19.Stuart, A. M. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85–96 (1963).Article 

    Google Scholar 
    20.Howse, P. E. On the significance of certain oscillatory movements of termites. Insectes Soc. 12, 335–345 (1965).Article 

    Google Scholar 
    21.Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69, 1945–1955 (2015).Article 

    Google Scholar 
    22.Reinhard, J. & Clément, J.-L. Alarm reaction of European reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95–107 (2002).Article 

    Google Scholar 
    23.Whitman, J. G. & Forschler, B. T. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 100, 763–771 (2007).Article 

    Google Scholar 
    24.Hertel, H., Hanspach, A. & Plarre, R. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106–115 (2011).Article 

    Google Scholar 
    25.Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sun, Q., Hampton, J. D., Haynes, K. F. & Zhou, X. Cooperative policing behavior regulates reproductive division of labor in a termite. bioRxiv https://doi.org/10.1101/2020.02.04.934315 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Park, Y. I. & Raina, A. K. Light sensitivity in workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 45, 367–376 (2005).
    Google Scholar 
    28.Hager, F. A. & Kirchner, W. H. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249–3256 (2013).PubMed 
    Article 

    Google Scholar 
    29.Mignini, M. & Lorenzi, M. C. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 69, 1739–1748 (2015).Article 

    Google Scholar 
    30.Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277, 3793–3800 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Naturwissenschaften 104, 79 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Manfredini, F. et al. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23, 660–672 (2014).PubMed 
    Article 

    Google Scholar 
    33.Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. & Bourke, A. F. G. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 77, 52–61 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780 (2020).Article 

    Google Scholar 
    35.Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U. S. A. 115, 3888–3893 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sieber, R. & Leuthold, R. H. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing Termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Soc. 28, 371–382 (1981).Article 

    Google Scholar 
    38.Maistrello, L. & Sbrenna, G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): The importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 8, 365–375 (1996).Article 

    Google Scholar 
    39.Šobotník, J., Hanus, R. & Roisin, Y. Agonistic Behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J. Insect Behav. 21, 521–534 (2008).Article 

    Google Scholar 
    40.Cristaldo, P. F. et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): The integration of chemical and vibroacoustic signals. Biol. Open 4, 1649–1659 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Yamanaka, Y., Iwata, R. & Kiriyama, S. Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae). Insectes Soc. 66, 107–117 (2019).Article 

    Google Scholar 
    42.Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, 3888–3893 (2019).Article 
    CAS 

    Google Scholar 
    43.Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).Article 

    Google Scholar 
    44.Brossette, L. et al. Termite’s royal cradle: Does colony foundation success differ between two subterranean species?. Insectes Soc. 64, 515–523 (2017).Article 

    Google Scholar 
    45.Lucas, C. et al. When predator odour makes groups stronger: Effects on behavioural and chemical adaptations in two termite species. Ecol. Entomol. 43, 513–524 (2018).Article 

    Google Scholar 
    46.Miyaguni, Y., Sugio, K. & Tsuji, K. Refinement of methods for sexing instars and caste members in Neotermes koshunensis (Isoptera, Kalotermitidae). Sociobiology 59, 1217–1222 (2012).
    Google Scholar 
    47.Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    48.Gamboa, G. J., Reeve, H. K. & Holmes, W. G. Conceptual issues and methodology in kin-recognition research: A critical discussion. Ethology 88, 109–127 (2010).Article 

    Google Scholar 
    49.Oberst, S., Nava-Baro, E., Lai, J. C. S. & Evans, T. A. An innovative signal processing method to extract ants’ walking signals. Acoust. Aust. 43, 87–96 (2015).Article 

    Google Scholar 
    50.Oberst, S., Lai, J. C. S. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (ed. Hill, P. S. M.) 53–78 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_5.
    Google Scholar 
    51.Stanley, D. W. & Nelson, D. R. Insect Lipids: Chemistry, Biochemistry, and Biology (U of Nebraska Press, 1993).
    Google Scholar 
    52.Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, 2003).Book 

    Google Scholar 
    53.Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Nguyen, T. T. & Akino, T. Worker aggression of ant Lasius japonicus enhanced by termite soldier—Specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429 (2012).Article 

    Google Scholar 
    55.Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Evans, T. A. et al. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732–3737 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.George, E. A. & Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav. Ecol. Sociobiol. 73, 41 (2019).Article 

    Google Scholar 
    58.Tautz, J., Roces, F. & Hölldobler, B. Use of a sound-based vibratome by leaf-cutting ants. Science 267, 84–87 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Hill, P. S. M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Röhrig, A., Kirchner, W. H. & Leuthold, R. H. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc. 46, 71–77 (1999).Article 

    Google Scholar 
    61.Hill, P. S. M. Vibrational Communication in Animals (Harvard University Press, 2008).
    Google Scholar 
    62.Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    63.Korb, J., Weil, T., Hoffmann, K., Foster, K. R. & Rehli, M. A gene necessary for reproductive suppression in termites. Science 324, 758 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Penick, C. A., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).Article 

    Google Scholar 
    65.Ishikawa, Y. & Miura, T. Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Anim. Behav. 83, 737–745 (2012).Article 

    Google Scholar  More

  • in

    Bycatch levies could reconcile trade-offs between blue growth and biodiversity conservation

    1.Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).3.The Ocean Economy in 2030 (OECD, 2016).4.Boonstra, W. J., Valman, M. & Björkvik, E. A sea of many colours – how relevant is blue growth for capture fisheries in the global north, and vice versa? Mar. Policy 87, 340–349 (2018).Article 

    Google Scholar 
    5.Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    6.Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Maxwell, S. M. et al. Cumulative human impacts on marine predators. Nat. Commun. 4, 2688 (2013).8.Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).9.Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).10.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    11.Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2020).Article 

    Google Scholar 
    14.Davies, R. W. D., Cripps, S. J. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 33, 661–672 (2009).Article 

    Google Scholar 
    15.Hall, M. A., Alverson, D. L. & Metuzals, K. I. By-catch: problems and solutions. Mar. Pollut. Bull. 41, 204–219 (2000).CAS 
    Article 

    Google Scholar 
    16.Crowder, L. B. & Murawski, S. A. Fisheries bycatch: implications for management. Fisheries 23, 8–17 (1998).Article 

    Google Scholar 
    17.Branch, T. A., Rutherford, K. & Hilborn, R. Replacing trip limits with individual transferable quotas: implications for discarding. Mar. Policy 30, 281–292 (2006).Article 

    Google Scholar 
    18.Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19, 598–604 (2004).Article 

    Google Scholar 
    19.Gilman, E. et al. Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. Biol. Conserv. 139, 19–28 (2007).Article 

    Google Scholar 
    20.Watson, J. T., Essington, T. E., Lennert-Cody, C. E. & Hall, M. A. Trade-offs in the design of fishery closures: management of silky shark bycatch in the eastern Pacific Ocean tuna fishery. Conserv. Biol. 23, 626–635 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Campbell, L. M. & Cornwell, M. L. Human dimensions of bycatch reduction technology: current assumptions and directions for future research. Endang. Species Res. 5, 325–334 (2008).Article 

    Google Scholar 
    22.Hall, M. A. On bycatches. Rev. Fish Biol. Fish. 6, 319–352 (1996).Article 

    Google Scholar 
    23.Smith, V. L. On models of commercial fishing. J. Polit. Econ. 77, 181–198 (1969).Article 

    Google Scholar 
    24.Innes, J., Pascoe, S., Wilcox, C., Jennings, S. & Paredes, S. Mitigating undesirable impacts in the marine environment: a review of market-based management measures. Front. Mar. Sci. 2, 76 (2015).Article 

    Google Scholar 
    25.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    27.Gneezy, U., Meier, S. & Rey-Biel, P. When and why incentives (don’t) work to modify behavior. J. Econ. Perspect. 25, 191–210 (2011).Article 

    Google Scholar 
    28.Fulton, E. A., Smith, A. D. M., Smith, D. C. & Van Putten, I. E. Human behaviour: the key source of uncertainty in fisheries management. Fish Fish. 12, 2–17 (2011).Article 

    Google Scholar 
    29.Sumaila, U. R., Lam, V., Le Manach, F., Swartz, W. & Pauly, D. Global fisheries subsidies: an updated estimate. Mar. Policy 69, 189–193 (2016).Article 

    Google Scholar 
    30.Bladon, A. J., Short, K. M., Mohammed, E. Y. & Milner-Gulland, E. J. Payments for ecosystem services in developing world fisheries. Fish Fish. 17, 839–859 (2016).Article 

    Google Scholar 
    31.Deutza, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap (The Paulson Institute, The Nature Conservancy, and the Cornell Atkinson Center for Sustainability, 2020).32.Dutton, P. H. & Squires, D. Reconciling biodiversity with fishing: a holistic strategy for Pacific sea turtle recovery. Ocean Dev. Int. Law 39, 200–222 (2008).Article 

    Google Scholar 
    33.Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).Article 

    Google Scholar 
    34.Wilcox, C. & Donlan, C. J. Compensatory mitigation as a solution to fisheries bycatch–biodiversity conservation conflicts. Front. Ecol. Environ. 5, 325–331 (2007).Article 

    Google Scholar 
    35.Dutton, P. H. & Squires, D. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 37–59 (Univ. Hawaii Press, 2011).36.Sumaila, U. R. et al. Ocean Finance: Financing the Transition to a Sustainable Ocean Economy (World Resources Institute, 2020).37.Squires, D., Restrepo, V., Garcia, S. & Dutton, P. Fisheries bycatch reduction within the least-cost biodiversity mitigation hierarchy: conservatory offsets with an application to sea turtles. Mar. Policy 93, 55–61 (2018).Article 

    Google Scholar 
    38.Finkelstein, M. et al. Evaluating the potential effectiveness of compensatory mitigation strategies for marine bycatch. PLoS ONE 3, e2480 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Žydelis, R., Wallace, B. P., Gilman, E. L. & Werner, T. B. Conservation of marine megafauna through minimization of fisheries bycatch. Conserv. Biol. 23, 608–616 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Blomquist, J., Bartolino, V. & Waldo, S. Price premiums for providing eco-labelled seafood: evidence from MSC-certified cod in Sweden. J. Agric. Econ. 66, 690–704 (2015).Article 

    Google Scholar 
    41.Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N. & Uchida, H. Evolution and future of the sustainable seafood market. Nat. Sustain. 1, 392–398 (2018).Article 

    Google Scholar 
    42.Shumway, N., Watson, J. E. M., Saunders, M. I. & Maron, M. The risks and opportunities of translating terrestrial biodiversity offsets to the marine realm. BioScience 68, 125–133 (2018).Article 

    Google Scholar 
    43.Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    44.Gjertsen, H., Squires, D., Dutton, P. H. & Eguchi, T. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle. Conserv. Biol. 28, 140–149 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Segerson, K. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 370–395 (Univ. Hawaii Press, 2011).46.Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    47.zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).48.zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early-adopter jurisdictions in England. Preprint at SocArXiv https://doi.org/10.31235/osf.io/tw6nr (2021).49.Segerson, K. Voluntary approaches to environmental protection and resource management. Annu. Rev. Resour. Econ. 5, 161–180 (2013).Article 

    Google Scholar 
    50.Kotchen, M. J. Voluntary- and information-based approaches to environmental management: a public economics perspective. Rev. Environ. Econ. Policy 7, 276–295 (2013).Article 

    Google Scholar 
    51.Janisse, C., Squires, D., Seminoff, J. A. & Dutton, P. H. in Handbook of Marine Fisheries Conservation and Management, (eds Grafton, Q. et al.) 231–240 (Oxford Univ. Press, 2010).52.Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Jacob, C. et al. Marine biodiversity offsets: pragmatic approaches toward better conservation outcomes. Conserv Lett. 13, 1–12 (2020).Article 

    Google Scholar 
    54.Lent, R. & Squires, D. Reducing marine mammal bycatch in global fisheries: an economics approach. Deep Sea Res. Pt II 140, 268–277 (2017).Article 

    Google Scholar 
    55.Zhou, R. & Segerson, K. Individual vs. collective approaches to fisheries management. Mar. Resour. Econ. 31, 165–192 (2016).Article 

    Google Scholar 
    56.Yagi, N., Clark, M. L., Anderson, L. G., Arnason, R. & Metzner, R. Applicability of individual transferable quotas (ITQs) in Japanese fisheries: a comparison of rights-based fisheries management in Iceland, Japan, and United States. Mar. Policy 36, 241–245 (2012).Article 

    Google Scholar 
    57.Kotchen, M. J. & Segerson, K. On the use of group performance and rights for environmental protection and resource management. Proc. Natl Acad. Sci. USA 116, 5285–5292 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Stewart, A. J. & Plotkin, J. B. Collapse of cooperation in evolving games. Proc. Natl Acad. Sci. USA 111, 17558–17563 (2014).59.Mani, A., Rahwan, I. & Pentland, A. Inducing peer pressure to promote cooperation. Sci. Rep. 3, 1735 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kroeger, T. The quest for the ‘optimal’ payment for environmental services program: ambition meets reality, with useful lessons. Policy Econ. 37, 65–74 (2013).Article 

    Google Scholar 
    61.Ledoux, L. & Turner, R. K. Valuing ocean and coastal resources: a review of practical examples and issues for further action. Ocean Coast. Manag. 45, 583–616 (2002).Article 

    Google Scholar 
    62.Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2019).Article 

    Google Scholar 
    63.Bull, J. W. & Milner-Gulland, E. Choosing prevention or cure when mitigating biodiversity loss: trade-offs under ‘no net loss’ policies. J. Appl. Ecol. 57, 354–366 (2020).Article 

    Google Scholar 
    64.Norton, D. A. & Warburton, B. The potential for biodiversity offsetting to fund effective invasive species control. Conserv. Biol. 29, 5–11 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Holmes, N. D. et al. The potential for biodiversity offsetting to fund invasive species eradications on islands. Conserv. Biol. 30, 425–427 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Gallagher, A. J. & Hammerschlag, N. Global shark currency: the distribution frequency and economic value of shark ecotourism. Curr. Issues Tour. 14, 797–812 (2011).Article 

    Google Scholar 
    67.Mustika, P. L. K., Ichsan, M. & Booth, H. The economic value of shark and ray tourism in Indonesia and its role in delivering conservation outcomes. Front. Mar. Sci. 7, 261 (2020).Article 

    Google Scholar 
    68.O’Malley, M. P., Lee-Brooks, K. & Medd, H. B. The global economic impact of manta ray watching tourism. PLoS ONE 8, e65051 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Vianna, G. M. S. et al. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 94, 220–226 (2018).Article 

    Google Scholar 
    70.Swimmer, Y. et al. Sea turtle bycatch mitigation in U.S. longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article 

    Google Scholar 
    71.Croll, D. A. et al. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 562–575 (2016).Article 

    Google Scholar 
    72.Anderson, R. C., Adam, M. S., Kitchen-Wheeler, A. M. & Stevens, G. Extent and economic value of manta ray watching in Maldives. Tour. Mar. Environ. 7, 15–27 (2011).Article 

    Google Scholar 
    73.Farley, J. Ecosystem services: the economics debate. Ecosyst. Serv. 1, 40–49 (2012).Article 

    Google Scholar 
    74.Kenter, J. O., Hyde, T., Christie, M. & Fazey, I. The importance of deliberation in valuing ecosystem services in developing countries—evidence from the Solomon Islands. Glob. Environ. Change 21, 505–521 (2011).Article 

    Google Scholar 
    75.Gilman, E. et al. Robbing Peter to pay Paul: replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    76.Dissou, Y. & Siddiqui, M. S. Can carbon taxes be progressive?. Energy Econ. 42, 88–100 (2014).Article 

    Google Scholar 
    77.Engel, S., Pagiola, S. & Wunder, S. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65, 663–674 (2008).Article 

    Google Scholar 
    78.Bene, C. Small-Scale Fisheries: Assessing Their Contribution to Rural Livelihoods in Developing Countries FAO Fisheries Circular No. 1008 (FAO, 2006).79.Arlidge, W. N. S. et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Article 

    Google Scholar 
    80.Levi, M., Sacks, A. & Tyler, T. Conceptualizing legitimacy, measuring legitimating beliefs. Am. Behav. Sci. 53, 354–375 (2009).Article 

    Google Scholar 
    81.Oyanedel, R., Gelcich, S. & Milner-Gulland, E. J. Motivations for (non-)compliance with conservation rules by small-scale resource users. Conserv. Lett. 15, e12725 (2020).
    Google Scholar 
    82.Pakiding, F. et al. Community engagement: an integral component of a multifaceted conservation approach for the transboundary western Pacific leatherback. Front. Mar. Sci. 7, 756 (2020).Article 

    Google Scholar 
    83.Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework Report No. CBD/COP/14/9 (CBD, 2018).84.Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).CAS 
    Article 

    Google Scholar 
    85.Ban, N. C., Adams, V., Pressey, R. L. & Hicks, J. Promise and problems for estimating management costs of marine protected areas. Conserv. Lett. 4, 241–252 (2011).Article 

    Google Scholar 
    86.Arias, A., Pressey, R. L., Jones, R. E., Álvarez-Romero, J. G. & Cinner, J. E. Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica. Oryx 50, 18–26 (2016).Article 

    Google Scholar 
    87.Bartholomew, D. C. et al. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 219, 35–45 (2018).Article 

    Google Scholar 
    88.Mangi, S. C., Dolder, P. J., Catchpole, T. L., Rodmell, D. & de Rozarieux, N. Approaches to fully documented fisheries: practical issues and stakeholder perceptions. Fish Fish. 16, 426–452 (2015).Article 

    Google Scholar 
    89.Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).90.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Cardeñosa, D., Gollock, M. J. & Chapman, D. D. Development and application of a novel real‐time polymerase chain reaction assay to detect illegal trade of the European eel (Anguilla anguilla). Conserv. Sci. Prac. 1, e39 (2019).Article 

    Google Scholar 
    92.Griffiths, V. F., Bull, J. W., Baker, J. & Milner-Gulland, E. J. No net loss for people and biodiversity. Conserv. Biol. 33, 76–87 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Milner-Gulland, E. J. et al. Translating the terrestrial mitigation hierarchy to marine megafauna by-catch. Fish Fish. 19, 547–561 (2018).Article 

    Google Scholar 
    94.Republic of Namibia Ministry of Fisheries and Marine Resources Annual Report 2012–2013 (MFMR, 2013).95.Sanchirico, J. N., Holland, D., Quigley, K. & Fina, M. Catch-quota balancing in multispecies individual fishing quotas. Mar. Policy 30, 767–785 (2006).Article 

    Google Scholar 
    96.Walker, S. & Townsend, R. Economic analysis of New Zealand’s deemed value system. In Proc. of the Fourteenth Biennial Conference of the International Institute of Fisheries Economics & Trade, July 22–25, 2008, Nha Trang, Vietnam: Achieving a Sustainable Future: Managing Aquaculture, Fishing, Trade and Development 1–11 (Oregon State Univ., 2008).97.Sanchirico, J. N. Managing marine capture fisheries with incentive based price instruments. Public Finance Manag. 3, 67–93 (2003).
    Google Scholar 
    98.Pascoe, S., Wilcox, C. & Donlan, C. J. Biodiversity offsets: a cost-effective interim solution to seabird bycatch in fisheries? PLoS ONE 6, e25762 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Mukherjee, Z. Controlling stochastic externalities with penalty threats: the case of bycatch. Environ. Econ. Policy Stud. 18, 93–113 (2016).Article 

    Google Scholar 
    100.Androkovich, R. A. & Stollery, K. R. A stochastic dynamic programming model of bycatch control in fisheries. Mar. Resour. Econ. 9, 19–30 (1994).Article 

    Google Scholar 
    101.Herrera, G. E. Stochastic bycatch, informational asymmetry, and discarding. J. Environ. Econ. Manag. 49, 463–483 (2005).Article 

    Google Scholar 
    102.Singh, R. & Weninger, Q. Bioeconomies of scope and the discard problem in multiple-species fisheries. J. Environ. Econ. Manag. 58, 72–92 (2009).Article 

    Google Scholar 
    103.Pascoe, S., Cannard, T. & Steven, A. Offset payments can reduce environmental impacts of urban development. Environ. Sci. Policy 100, 205–210 (2019).Article 

    Google Scholar 
    104.Schouten, G. & Glasbergen, P. Creating legitimacy in global private governance: the case of the roundtable on sustainable palm oil. Ecol. Econ. 70, 1891–1899 (2011).Article 

    Google Scholar 
    105.Ruysschaert, D. & Salles, D. in The Anthropology of Conservation NGOs (eds Larsen, P. B. & Brockington, D.) 121–149 (Palgrave Macmillan, 2018).106.Right Whales and Entanglements: More on How NOAA Makes Decisions (NOAA Fisheries, 2019); https://www.fisheries.noaa.gov/new-england-mid-atlantic/marine-mammal-protection/right-whales-and-entanglements-more-how-noaa#right-whales-and-the-lobster-fishery107.Jouffray, J. B., Crona, B., Wassénius, E., Bebbington, J. & Scholtens, B. Leverage points in the financial sector for seafood sustainability. Sci. Adv. 5, eaax3324 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Österblom, H. et al. Emergence of a global science-business initiative for ocean stewardship. Proc. Natl Acad. Sci. USA 114, 9038–9043 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    109.Deforestation-Free Supply Chains: From Commitments to Action (CDP, 2014).110.Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).111.Österblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, e0127533 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Galland, G., Rogers, A. & Nickson, A. Netting Billions: A Global Valuation of Tuna (The Pew Charitible Trusts, 2016).113.Zeller, D., Cashion, T., Palomares, M. & Pauly, D. Global marine fisheries discards: a synthesis of reconstructed data. Fish Fish. 19, 30–39 (2018).Article 

    Google Scholar 
    114.Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Engel, S. & Palmer, C. Payments for environmental services as an alternative to logging under weak property rights: the case of Indonesia. Ecol. Econ. 65, 799–809 (2008).Article 

    Google Scholar 
    116.Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).Article 

    Google Scholar 
    117.Angelsen, A. et al. (eds) Realising REDD+: National Strategy and Policy Options (CIFOR, 2009).118.Spergel, B. & Mikitin, K. Practice Standards for Conservation Trust Funds (CFA, 2013).119.Progress Summary of 2014–15 ISSF Funded Marine Turtle Projects (ISSF, 2016). More

  • in

    Plant scientists’ research attention is skewed towards colourful, conspicuous and broadly distributed flowers

    1.Schaal, B. Plants and people: our shared history and future. Plants People Planet 1, 14–19 (2019).Article 

    Google Scholar 
    2.Bates, D. M. People, plants and genes: the story of crops and humanity. Q. Rev. Biol. 84, 206–207 (2009).3.Nedelcheva, A., Dogan, Y., Obratov-Petkovic, D. & Padure, I. M. The traditional use of plants for handicrafts in southeastern Europe. Hum. Ecol. Interdiscip. J. 39, 813–828 (2011).Article 

    Google Scholar 
    4.Willes, M. A Shakespearean Botanical (Bodleian Library, 2015).5.Shoemaker, C. A. Plants and human culture. J. Home Consum. Hortic. 1, 3–7 (1994).Article 

    Google Scholar 
    6.Alfred, J. & Baldwin, I. T. The natural history of model organisms: new opportunities at the wild frontier. eLife 4, e06956 (2015).PubMed Central 
    Article 

    Google Scholar 
    7.Hedges, S. B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Clark, J. A. Taxonomic bias in conservation research. Science 297, 191–192 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166 (2020).PubMed 
    Article 

    Google Scholar 
    10.Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).Article 

    Google Scholar 
    11.Quijas, S., Schmid, B. & Balvanera, P. Plant diversity enhances provision of ecosystem services: a new synthesis. Basic Appl. Ecol. 11, 582–593 (2010).Article 

    Google Scholar 
    12.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).Article 

    Google Scholar 
    13.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    15.Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. Bioscience 67, 1026–1028 (2017).Article 

    Google Scholar 
    16.Balding, M. & Williams, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Fukushima, C. S., Mammola, S. & Cardoso, P. Global wildlife trade permeates the Tree of Life. Biol. Conserv. 247, 108503 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wandersee, J. H. & Schussler, E. E. Preventing plant blindness. Am. Biol. Teach. 61, 82–86 (1999).Article 

    Google Scholar 
    19.Parsley, K. M. Plant awareness disparity: a case for renaming plant blindness. Plants People Planet 2, 598–601 (2020).Article 

    Google Scholar 
    20.Villemant, C. et al. The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37, 667–679 (2015).Article 

    Google Scholar 
    21.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    22.Médail, F. & Verlaque, R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol. Conserv. 80, 269–281 (1997).Article 

    Google Scholar 
    23.Noble, V. & Diadema, K. in La flore des Alpes-Maritimes et de la Principauté de Monaco (eds Noble, V. & Diadema, K.) 57–72 (Naturalia, 2011).24.Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    25.Horiguchi, H., Winawer, J., Dougherty, R. F. & Wandell, B. A. Human trichromacy revisited. Proc. Natl Acad. Sci. USA 110, E260–E269 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ. Outreach 1, 476–486 (2008).Article 

    Google Scholar 
    27.Bompas, A., Kendall, G. & Sumner, P. Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception 4, 84–94 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Elliot, A. J. & Maier, M. A. Color psychology: effects of perceiving color on psychological functioning in humans. Annu. Rev. Psychol. 65, 95–120 (2014).PubMed 
    Article 

    Google Scholar 
    29.Chiao, J. Y. et al. Dynamic cultural influences on neural representations of the self. J. Cogn. Neurosci. 22, 1–11 (2010).PubMed 
    Article 

    Google Scholar 
    30.Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Costa, G. C., Nogueira, C., Machado, R. B. & Colli, G. R. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers. Conserv. 19, 883–899 (2010).Article 

    Google Scholar 
    32.Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).PubMed 
    Article 

    Google Scholar 
    33.De Boeck, H. J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. The observer effect in plant science. New Phytol. 177, 579–583 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Morrison, L. W. Observer error in vegetation surveys: a review. J. Plant Ecol. 9, 367–379 (2016).Article 

    Google Scholar 
    35.Kéry, M. & Gregg, K. B. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria. J. Ecol. 91, 265–273 (2003).Article 

    Google Scholar 
    36.Allioni, C. Flora Pedemontana: Sive Enumeratio Methodica Stirpium Indigenarum Pedemontii Vol. 1 (Joannes Michael Briolus, 1785).37.Aeschimann, D., Rasolofo, N. & Theurillat, J.-P. Analyse de la flore des alpes. 1: Historique et biodiversité. Candollea 66, 27–55 (2011).Article 

    Google Scholar 
    38.Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Julve, P. Baseflor. Index Botanique, Ecologique et Chorologique de la Flore de France http://philippe.julve.pagesperso-orange.fr/baseflor.xlsx (1998).40.Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).Article 

    Google Scholar 
    41.Web of Science (Clarivate Analytics, accessed 16 March 2020); https://www.webofknowledge.com42.Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).Article 

    Google Scholar 
    43.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).44.Heaton, L., Millerand, F. & Proulx, S. Tela Botanica: une fertilisation croisée des amateurs et des experts. Hermès 57, 61–68 (2010).45.Lauber, K., Wagner, G. & Gygax, A. Flora Helvetica: Illustrierte Flora der Schweiz (Haupt Verlag, 2018).46.Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).47.The IUCN Red List of Threatened Species (IUCN, 2020).48.Global Biodiversity Information Facility (2020); https://www.gbif.org49.Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    50.Shirey, V., Belitz, M. W., Barve, V. & Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography 44, 537–547 (2021).Article 

    Google Scholar 
    51.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).52.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    53.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    54.Bartoń, K. MuMIn: multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).55.Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).Article 

    Google Scholar 
    56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1 (2015).Article 

    Google Scholar 
    57.Blasco-Moreno, A., Pérez-Casany, M., Puig, P., Morante, M. & Castells, E. What does a zero mean? Understanding false, random and structural zeros in ecology. Methods Ecol. Evol. 10, 949–959 (2019).Article 

    Google Scholar 
    58.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Assessment, testing and comparison of statistical models using R. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/vtq8f (2021). More

  • in

    The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management

    1.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).Article 

    Google Scholar 
    4.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    6.Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).Article 

    Google Scholar 
    9.Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. J. S. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).Article 

    Google Scholar 
    10.Cawson, J. G. et al. Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models. Landsc. Ecol. 35, 1775–1798 (2020).Article 

    Google Scholar 
    11.Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D. & Price, O. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south‐eastern Australia. Ecography 37, 827–837 (2014).Article 

    Google Scholar 
    12.Bennett, L. T. et al. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 380, 107–117 (2016).Article 

    Google Scholar 
    13.Fairman, T. A., Bennett, L. T., Tupper, S. & Nitschke, C. R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest. J. Veg. Sci. 28, 1151–1165 (2017).Article 

    Google Scholar 
    14.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    15.Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. J. S. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).Article 

    Google Scholar 
    16.Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).Article 

    Google Scholar 
    18.Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).Article 

    Google Scholar 
    19.Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell Environ. 44, 347–355 (2020).20.Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).Article 

    Google Scholar 
    21.Borchers Arriagada, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 213, 282–283 (2020).22.Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).Article 

    Google Scholar 
    23.Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bowman, D. M. J. S., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 25, 1166–1172 (2016).Article 

    Google Scholar 
    25.Povak, N. A., Kane, V. R., Collins, B. M., Lydersen, J. M. & Kane, J. T. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Landsc. Ecol. 35, 293–318 (2020).Article 

    Google Scholar 
    26.Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).Article 

    Google Scholar 
    27.Fang, L., Yang, J., Zu, J., Li, G. & Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2–12 (2015).Article 

    Google Scholar 
    28.Thompson, J. R. & Spies, T. A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 258, 1684–1694 (2009).Article 

    Google Scholar 
    29.Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    30.Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: implications for a warming world. Glob. Change Biol. 26, 6062–6079 (2020).Article 

    Google Scholar 
    31.Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega‐fires. Glob. Change Biol. 26, 1039–1041 (2020).32.Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).Article 

    Google Scholar 
    33.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).Article 

    Google Scholar 
    34.Adams, M. A., Shadmanroodposhti, M. & Neumann, M. Letter to the Editor. Causes and consequences of Eastern Australia’s 2019‐20 season of mega‐fires: a broader perspective. Glob. Change Biol. 26, 3756–3758 (2020).35.Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).Article 

    Google Scholar 
    38.Collins, L., Griffioen, P., Newell, G. & Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384 (2018).Article 

    Google Scholar 
    39.Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).Article 

    Google Scholar 
    40.Collins, L., Bradstock, R. & Penman, T. Can precipitation influence landscape controls on wildfire severity? A case study within temperate eucalypt forests of south-eastern Australia. Int. J. Wildland Fire 23, 9–20 (2014).Article 

    Google Scholar 
    41.Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).Article 

    Google Scholar 
    42.Storey, M., Price, O. & Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 25, 1048–1060 (2016).Article 

    Google Scholar 
    43.Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).Article 

    Google Scholar 
    44.Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. https://doi.org/10.1111/conl.12766 (2020).45.Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).Article 

    Google Scholar 
    47.Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Jackson, W. Fire, air, water and earth–an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3, 9–16 (1968).
    Google Scholar 
    49.Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Aust. For. 79, 1–14 (2016).Article 

    Google Scholar 
    50.Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2011).51.Dargavel, J. Views and perspectives: why does Australia have ‘forest wars’? Int. Rev. Environ. Hist. 4, 33–51 (2018).Article 

    Google Scholar 
    52.Kanowski, P. J. Australia’s forests: contested past, tenure-driven present, uncertain future. For. Policy Econ. 77, 56–68 (2017).Article 

    Google Scholar 
    53.Australian Forest and Wood Products Statistics Mar-Jun 2019 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2019).54.Ferguson, I. Australian plantations: mixed signals ahead. Int. For. Rev. 16, 160–171 (2014).
    Google Scholar 
    55.Raison, R. & Squire, R. Forest Management in Australia: Implications for Carbon Budgets Technical Report 32 (Australian Greenhouse Office, 2008).56.Proctor, E. & McCarthy, G. Changes in fuel hazard following thinning operations in mixed-species forests in East Gippsland, Victoria. Aust. For. 78, 195–206 (2015).Article 

    Google Scholar 
    57.NSW Regional Forest Agreements Assessment of Matters Pertaining to Renewal of Regional Forest Agreements (NSW Department of Primary Industries, 2018).58.Evans, J. spatialEco_. R package version 1.3-1 https://github.com/jeffreyevans/spatialEco (2020).59.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).60.Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).Article 

    Google Scholar 
    61.Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334 (2010).Article 

    Google Scholar 
    62.Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57, 241–262 (2003).Article 

    Google Scholar 
    63.Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-77 (2018).64.De Reu, J. et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186, 39–49 (2013).Article 

    Google Scholar  More

  • in

    Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings

    1.Ali, B. et al. Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58(1), 131–138 (2014).CAS 
    Article 

    Google Scholar 
    2.Tang, Y. et al. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pgotosynthetic activity and antioxidative enzyme activities. Environ. Sci. pollut. Res. 25, 30671–30679 (2018).CAS 
    Article 

    Google Scholar 
    3.Jia, L. et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica. Thunb. J Plant Growth Regul 34(1), 13–21 (2015).CAS 
    Article 

    Google Scholar 
    4.Gallego, S. M., Benavides, M. P. (2019) Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Tolerance in Plants. Elsevier, pp. 233–274.5.Rizwan, M. et al. Cadmium minimization in wheat: a critical review. Ecotoxicol. Environ. Saf. 130, 43–53 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zou, J. et al. Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudanaKoidz. Environ. Exp. Bot. 134, 116–129 (2017).CAS 
    Article 

    Google Scholar 
    7.Chen, H. C. et al. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch Under Cd stress. Ecotoxicol. Environ. Saf. 187, 1–10 (2020).
    Google Scholar 
    8.Sarvajeet, S. G., Nafees, A. K. & Narendra, T. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 182, 112–120 (2011).
    Google Scholar 
    9.Daniel, H., Tereza, C., Tom´a, V. & Radka, P. The effect of nanoparticles on the photosynthetic pigments in cadmium-zinc interactions. Environ. Sci. Pollut. Res. 26(4), 4147–4151 (2019).Article 
    CAS 

    Google Scholar 
    10.Tian, X. et al. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas South China. Environ. Geochem. Health 38(6), 1283–1301 (2016).Article 
    CAS 

    Google Scholar 
    11.He, J. et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus× _canescens. Plant Physiol. 162, 424–439 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.He, J. et al. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 20, 163–174 (2013).CAS 
    Article 

    Google Scholar 
    13.He, N. et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun. 4, 1–9 (2013).Article 
    CAS 

    Google Scholar 
    14.Wu, P., Luo, Z. (1981) Precious sassafras of Guizhou[J]. Guizhou Forest. Sci. Technol.15.Flora of China, 1982, vol. 31, p. 238.16.Xiyou, C. Study on Growth of Sassafras in different Mixed ways[J]. Anhui Forest. Sci. Technol. 4, 9–11 (2015).
    Google Scholar 
    17.Cheng Yong, Wu. et al. Storage test of sassafras seeds[J]. Hunan Forest. Sci. Technol. 2, 28–30 (2014).
    Google Scholar 
    18.Shen, Y. et al. Study on biomass and productivity of natural secondary Sassafras Mixed Forest[J]. J. Central South Univ. Forest. Technol. 5, 26–30 (2011).
    Google Scholar 
    19.Jin, Y. Q. et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin[J]. Int. J. Biol. Macromol. 123, 50–58 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Cheng, Y. F. et al. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80[J]. Anal Biochem 494, 37–39 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Abdelgawad, H., Zinta, G., Badreldin, A. H., et al. (2019) Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environ. Pollut., p. 11370522.Donahue, J. L. et al. Responses of antioxidants to paraquat in pea leaves (relationships to resistance) [J]. Plant Physiol 113(1), 249–257 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Merey, H. A. et al. Validated UPLC method for the determination of guaiphenesin, oxeladin citrate, diphenhydramine, and sodium benzoate in their quaternary mixture used in treatment of cough, in the presence of guaiphenesin-related substance (guaiacol)[J]. Chem. Pap. 72(9), 2247–2254 (2018).CAS 
    Article 

    Google Scholar 
    24.Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[J]. J. Biol. Chem. 195(1), 133–140 (1952).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Zhao, F. J., Jiang, R. F., Dunham, S. J. & McGrath, S. P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. J. 172, 646–654 (2006).CAS 
    Article 

    Google Scholar 
    26.Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11(5), 591–592 (1983).CAS 

    Google Scholar 
    27.Zipiao, Ye. Andvances in models of photosynthetic response to light and CO2[J]. Chin. J. Plant Ecol. 06, 727–740 (2010).
    Google Scholar 
    28.Saidi, I. et al. Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr. J. Bot. 85, 32–38 (2013).CAS 
    Article 

    Google Scholar 
    29.Anwaar, S. A. et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) fromzinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ. Sci. Pollut. Res. 22, 3441–3450 (2014).Article 
    CAS 

    Google Scholar 
    30.Fuzhong, Wu. et al. Effects of cadmium stress on the growth, nutrient accumulation, distribution and utilization of Osmanthus fragrans. J. Plant Ecol. 34(10), 1220–1226 (2010).
    Google Scholar 
    31.Cengiz, K., Nudrat, A., Akram, M., Ashraf, M., Nasser, A., Parvaiz, A. (2020) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by upregulating the synthesis of nitric oxide and hydrogen sulfide[J]. J. Biotechnol., p. 31632.Wang, H. et al. Effects of cadmium stress at different concentrations on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize seedlings [J]. J. Plant Nutrition Fertilizer 14(01), 36–42 (2008).CAS 

    Google Scholar 
    33.Awasthi, P., Mahajan, V., Jamwal, V. L. et al. (2016) Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii. J. Genet.34.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Chen, H. et al. H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ. 41, 767–781 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kohli, S. K., Khanna, K., Bhardwaj, R., Abd_Alla, E. F., Corpas, F. J. (2019) Assessment of subcellular ros and no metabolism in higher plants: multifunctional signaling molecules. Antioxidants, vol 8, no 1237.Meng Jie, A. & Hai Jiang, W. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J. Plant Growth Regulat. 38, 1196–1205 (2019).Article 
    CAS 

    Google Scholar 
    38.Wei, X. et al. Effects of different breaking dormancy ways on the photosynthetic characteristics and activities of protective enzymes of ‘misty’ blueberry leaves. Sci. Agric. Sin. 48(22), 4517–4528 (2015).CAS 

    Google Scholar 
    39.Chaabene, Z. et al. Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: monitoring of related biomarkers. Environ. Toxicol. Chem. 37(3), 797–806 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Ozfidan-Konakci, C. et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf. 155, 66–75 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Liu, Q. S. et al. Transcriptomic responses of dove tree (Davida involucrata Baill) to heat stress at the seedling stage[J]. Forest 10(8), 656 (2019).Article 

    Google Scholar 
    42.Yang, L. P. et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculate[J]. Ecotox Environ. Safe 160, 10–18 (2018).CAS 
    Article 

    Google Scholar 
    43.Zhang, Y. L. et al. The physiological characteristics of ornamental kale for cold resistance[J]. Act. Agric. 31(4), 168–176 (2016).CAS 

    Google Scholar 
    44.Rady, M. M. & Hemida, K. A. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ. Saf 119, 178–185 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chen, Y. H. et al. Study on the characteristics of proline and active oxygen metabolism in red sea under salt stress [J]. J. Xiamen Univ. Nat. Sci. 43(03), 402–405 (2004).CAS 

    Google Scholar 
    46.Niu, M. G. et al. Effects of drought, waterlogging and low temperature stress on physiological and biochemical characteristics of wheat [J]. Seed 04, 17–19 (2003).
    Google Scholar 
    47.Deng, F.-F., Yang, S.-L. & Gong, M. Regulation of proline metabolism in abiotic plants by cell signaling molecules [J]. J. Plant Physiol. 51(10), 1573–1582 (2015).CAS 

    Google Scholar 
    48.Samuel, D. et al. Proline inhibits aggre-gation during protein refolding[J]. Protein Sci. 9(2), 344–352 (2010).Article 

    Google Scholar 
    49.Abd Allah, E. F. et al. Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J. Plant Interact. 12(1), 237–243 (2017).Article 
    CAS 

    Google Scholar 
    50.Zhang, X. D. et al. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Bio Metals 31(1), 107–121 (2018).CAS 

    Google Scholar 
    51.Chen, K. et al. Physiological response and cold resistance evaluation of the leaves of Parashorea chinensis seedlings to low temperature stress[J]. J NW For Univ 34(3), 67–73 (2019).CAS 

    Google Scholar 
    52.Ge, W. & Jiao, Y. Changes of soluble protein content of two poplar trees under cadmium stress [J]. Modern Agric. Sci. Technol. 1, 199–200 (2012).
    Google Scholar 
    53.Aina, R. et al. Thiol-petide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. rotts[J]. Environ. Exp. Botany 59(3), 381–392 (2007).CAS 
    Article 

    Google Scholar 
    54.Xu, J. J. et al. Effects of Cd stress on antioxidant enzymes activity of Sonchus asper L. Hill and Zea mays L. in intercropping system[J]. J. Yunnan Agric. Univ. Nat Sci. Ed. 30(2), 348–355 (2016).
    Google Scholar 
    55.Hendrik, K., Frithjof, K. & Martin, S. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. J. Exp. Bot. 47(2), 259–266 (1996).Article 

    Google Scholar 
    56.Chen, X. X. et al. Effects of thallium and cadmiun stress on the growth and photosynthetic characteristics of Arundinacea[J]. Guangxi Plants 39(6), 743–751 (2019).
    Google Scholar 
    57.Ahanger, M. A., U Aziz, Alsahli, A. A., Alyemeni, M. N., Ahmad, P. (2020). Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules, vol. 10, no 158.Sun Xiaolin, Xu. et al. Response of photosynthetic pigments in plant leaves to shading[J]. Chin. J. Plant Ecol. 34(8), 989–999 (2010).
    Google Scholar 
    59.Chen, X.-X. et al. Effects of cadmium stress on growth and photosynthetic characteristics of asparagus spears[J]. Plants Guangxi 39(6), 743–751 (2019).
    Google Scholar 
    60.Lu, Y. et al. Effects of heavy metals on photosynthetic and physiological growth characteristics of halophytes[J]. Acta Botanica Northwestern Sinica 31(2), 370–376 (2011).CAS 

    Google Scholar 
    61.Farquhar, G. D. & Sharkey, T. D. Stomatal Conductance and Photosynthesis[J]. Annu. Rev. Plant Physiol. 33(1), 317–345 (1982).CAS 
    Article 

    Google Scholar 
    62.Haizhen, W. et al. Response of chlorophyll fluorescence characteristics to high temperature in heteromorphous leaves of Populus eureka [J]. Acta Ecol. Sin. 9, 100–109 (2011).
    Google Scholar 
    63.Liyuan, Li. et al. Photosynthetic light response simulation of leaves of Quercus variabilis and Robinia pseudoacacia under different light environments[J]. Chin. J. Appl. Ecol. 29(7), 2295–2306 (2016).
    Google Scholar 
    64.Wang, F.-K. et al. Photosynthetic light response curve of Populus microphylla under different slope orientation[J]. Water Soil Conservat. Res. 22(113), 182–187 (2015).
    Google Scholar 
    65.Xin, Qi., Qunfang, C. & Yulong, F. Adaptation of photosynthesis to growth light intensity in seedlings of three tree species of Putaoia in tropical rain forest [J]. Chin. J. Plant Ecol. 01, 34–41 (2004).
    Google Scholar  More