More stories

  • in

    Diurnal evolution of urban tree temperature at a city scale

    1.Oke, T. R. The heat island of the urban boundary layer: characteristics, causes and effects. In Wind climate in cities (eds Cermak, J. E. et al.) 81–107 (Springer, 1995). https://doi.org/10.1007/978-94-017-3686-2_5.
    Google Scholar 
    2.Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 6, 1066–1081. https://doi.org/10.1029/2018EF000891 (2018).ADS 
    Article 

    Google Scholar 
    3.Pauleit, S. Urban street tree plantings: identifying the key requirements. Proc. Inst. Civ. Eng. Munic. Eng. 156, 43–50. https://doi.org/10.1680/muen.2003.156.1.43 (2003).Article 

    Google Scholar 
    4.Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466. https://doi.org/10.1093/biosci/biz042 (2019).Article 

    Google Scholar 
    5.Armson, D., Stringer, P. & Ennos, A. R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 11, 245–255. https://doi.org/10.1016/j.ufug.2012.05.002 (2012).Article 

    Google Scholar 
    6.Oke, T. R. The micrometeorology of the urban forest. Philos. Trans. R. Soc. Lond. B 324, 335–349. https://doi.org/10.1098/rstb.1989.0051 (1989).ADS 
    Article 

    Google Scholar 
    7.Chow, W. T. & Brazel, A. J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build. Environ. 47, 170–181. https://doi.org/10.1016/j.buildenv.2011.07.027 (2012).Article 

    Google Scholar 
    8.Wang, K., Ma, Q., Wang, X. & Wild, M. Urban impacts on mean and trend of surface incident solar radiation. Geophys. Res. Lett. 41, 4664–4668. https://doi.org/10.1002/2014GL060201 (2014).ADS 
    Article 

    Google Scholar 
    9.Bassuk, N. & Whitlow, T. Environmental stress in street trees. Arboricult. J. 12, 195–201. https://doi.org/10.1080/03071375.1988.9746788 (1988).Article 

    Google Scholar 
    10.Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For. Urban Green. 2, 139–147. https://doi.org/10.1078/1618-8667-00030 (2004).Article 

    Google Scholar 
    11.Monteith, J. . & Unsworth, M. . Principles of Environmental Physics: Plants, Animals, and the Atmosphere 4th edn. (Elsevier Ltd., 2013).
    Google Scholar 
    12.Simon, H. et al. Modeling transpiration and leaf temperature of urban trees—a case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 174, 33–40. https://doi.org/10.1016/j.landurbplan.2018.03.003 (2018).Article 

    Google Scholar 
    13.González-Dugo, M. P., Moran, M. S., Mateos, L. & Bryant, R. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 24, 1–8. https://doi.org/10.1007/s00271-005-0023-7 (2006).Article 

    Google Scholar 
    14.Han, M., Zhang, H., DeJonge, K. C., Comas, L. H. & Trout, T. J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricult. Water Manag. 177, 400–409. https://doi.org/10.1016/j.agwat.2016.08.031 (2016).Article 

    Google Scholar 
    15.Hou, M., Tian, F., Zhang, T. & Huang, M. Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agricult. Water Manag. 222, 182–192. https://doi.org/10.1016/j.agwat.2019.06.005 (2019).Article 

    Google Scholar 
    16.Heilman, J. L., Brittin, C. L. & Zajicek, J. M. Water use by shrubs as affected by energy exchange with building walls. Agricult. For. Meteorol. 48, 345–357. https://doi.org/10.1016/0168-1923(89)90078-6 (1989).ADS 
    Article 

    Google Scholar 
    17.Perini, K. & Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 13, 495–506. https://doi.org/10.1016/j.ufug.2014.03.003 (2014).Article 

    Google Scholar 
    18.Soer, G. J. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Environ. 9, 27–45. https://doi.org/10.1016/0034-4257(80)90045-0 (1980).ADS 
    Article 

    Google Scholar 
    19.Spronken-Smith, R. A. & Oke, T. R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 19, 2085–2104. https://doi.org/10.1080/014311698214884 (1998).ADS 
    Article 

    Google Scholar 
    20.Rahman, M. A. et al. Traits of trees for cooling urban heat islands: a meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).Article 

    Google Scholar 
    21.Leuzinger, S., Vogt, R. & Körner, C. Tree surface temperature in an urban environment. Agricult. For. Meteorol. 150, 56–62. https://doi.org/10.1016/j.agrformet.2009.08.006 (2010).ADS 
    Article 

    Google Scholar 
    22.Meier, F. & Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 110, 373–384. https://doi.org/10.1007/s00704-012-0631-0 (2012).ADS 
    Article 

    Google Scholar 
    23.Ballester, C., Jiménez-Bello, M. A., Castel, J. R. & Intrigliolo, D. S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 168, 120–129. https://doi.org/10.1016/j.agrformet.2012.08.005 (2013).ADS 
    Article 

    Google Scholar 
    24.Jones, H. G. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv. Botan. Res. 41, 107–163. https://doi.org/10.1016/s0065-2296(04)41003-9 (2004).ADS 
    Article 

    Google Scholar 
    25.Givoni, B. Impact of planted areas on urban environmental quality: a review. Atmos. Environ. Part B Urban Atmos. 25, 289–299. https://doi.org/10.1016/0957-1272(91)90001-U (1991).ADS 
    Article 

    Google Scholar 
    26.Kalnay, E. & Cai, M. Impact of urbanization and land-use change on climate. Nature 423, 528–531. https://doi.org/10.1038/nature01675 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    27.A. Coutts, A. et al. Impacts of water sensitive urban design solutions on human thermal comfort. p. 20 (online link: https://watersensitivecities.org.au/wp-content/uploads/2016/07/TMR_B3-1_WSUD_thermal_comfort_no2.pdf) (2014).28.Coutts1, A. et al. The Impacts of WSUD Solutions on Human Thermal Comfort Green Cities and Micro-climate-B3.1-2-2014 Contributing Authors. Tech. Rep. (1968).29.Gunawardena, K. R., Wells, M. J. & Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Völker, S., Baumeister, H., Classen, T., Hornberg, C. & Kistemann, T. Evidence for the temperature-mitigating capacity of urban blue space—a health geographic perspective. Erdkunde 67, 355–371. https://doi.org/10.3112/erdkunde.2013.04.05 (2013).Article 

    Google Scholar 
    31.Hu, L. & Li, Q. Greenspace, bluespace, and their interactive influence on urban thermal environments. Environ. Res. Lett. 15, 034041. https://doi.org/10.1088/1748-9326/ab6c30 (2020).ADS 
    Article 

    Google Scholar 
    32.Theeuwes, N. E., Solcerová, A. & Steeneveld, G. J. Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos. 118, 8881–8896. https://doi.org/10.1002/jgrd.50704 (2013).ADS 
    Article 

    Google Scholar 
    33.Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. U. S. A. 116, 7575–7580. https://doi.org/10.1073/pnas.1817561116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Johnson, S., Ross, Z., Kheirbek, I. & Ito, K. Characterization of intra-urban spatial variation in observed summer ambient temperature from the New York City Community Air Survey. Urban Clim. 31, 100583. https://doi.org/10.1016/j.uclim.2020.100583 (2020).Article 

    Google Scholar 
    35.Wetherley, E. B., McFadden, J. P. & Roberts, D. A. Megacity-scale analysis of urban vegetation temperatures. Remote Sens. Environ. 213, 18–33. https://doi.org/10.1016/j.rse.2018.04.051 (2018).ADS 
    Article 

    Google Scholar 
    36.Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sens. Environ. 195, 1–12. https://doi.org/10.1016/j.rse.2017.03.043 (2017).ADS 
    Article 

    Google Scholar 
    37.Weng, Q., Lu, D. & Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89, 467–483. https://doi.org/10.1016/j.rse.2003.11.005 (2004).ADS 
    Article 

    Google Scholar 
    38.Hulley, G., Hook, S., Fisher, J. & Lee, C. ECOSTRESS, A NASA Earth-Ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle. In International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2017-July, 5494–5496 (Institute of Electrical and Electronics Engineers Inc., 2017). https://doi.org/10.1109/IGARSS.2017.8128248.39.Wood, S. N. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036. https://doi.org/10.1111/j.1541-0420.2006.00574.x (2006).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    40.Duan, S.-B. et al. Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data. Remote Sens. 6, 3247–3262. https://doi.org/10.3390/rs6043247 (2014).ADS 
    Article 

    Google Scholar 
    41.Hu, L., Sun, Y., Collins, G. & Fu, P. Improved estimates of monthly land surface temperature from MODIS using a diurnal temperature cycle (DTC) model. ISPRS J. Photogramm. Remote Sens. 168, 131–140. https://doi.org/10.1016/j.isprsjprs.2020.08.007 (2020).ADS 
    Article 

    Google Scholar 
    42.New York City Department of Information Technology and Telecommunications (NYC DoITT). Land Cover Raster Data 6-inch Resolution (2017).43.New York City Department of Information Technology and Telecommunications (NYC DoITT). New York City Building Footprint (2017).44.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).Book 

    Google Scholar 
    45.Cârlan, I., Mihai, B. A., Nistor, C. & Große-Stoltenberg, A. Identifying urban vegetation stress factors based on open access remote sensing imagery and field observations. Ecol. Inform. 55, 101032. https://doi.org/10.1016/j.ecoinf.2019.101032 (2020).Article 

    Google Scholar 
    46.Cregg, B. & Dix, M. E. Tree moisture stress and insect damage in urban areas in relation to heat island effects. J. Arboricult. 27, 8–17 (2001).
    Google Scholar 
    47.Novem, D. & Falxa, N. United States Department of Agriculture The Urban Forest of New York City. Tech. Rep. https://doi.org/10.2737/NRS-RB-117 (2018).48.Shaker, R. R., Altman, Y., Deng, C., Vaz, E. & Forsythe, K. W. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 233, 972–992. https://doi.org/10.1016/j.jclepro.2019.05.389 (2019).Article 

    Google Scholar 
    49.Meir, T., Orton, P. M., Pullen, J., Holt, T. & Thompson, W. T. Forecasting the New York City urban heat island and sea breeze during extreme heat events. Weather Forecast. 28, 1460–1477. https://doi.org/10.1175/WAF-D-13-00012.1 (2013).ADS 
    Article 

    Google Scholar 
    50.Ramamurthy, P., González, J., Ortiz, L., Arend, M. & Moshary, F. Impact of heatwave on a megacity: an observational analysis of New York City during July 2016. Environ. Res. Lett. 12, 054011. https://doi.org/10.1088/1748-9326/aa6e59 (2017).ADS 
    Article 

    Google Scholar 
    51.Gedzelman, S. D. et al. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 75, 29–42. https://doi.org/10.1007/s00704-002-0724-2 (2003).ADS 
    Article 

    Google Scholar 
    52.Cavender, N. & Donnelly, G. Intersecting urban forestry and botanical gardens to address big challenges for healthier trees, people, and cities. Plants People Planet 1, 315–322. https://doi.org/10.1002/ppp3.38 (2019).Article 

    Google Scholar 
    53.Marias, D. E., Meinzer, F. C. & Still, C. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica. Ecol. Evol. 7, 1297–1310. https://doi.org/10.1002/ece3.2681 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Brune, M. Urban trees under climate change. Potential impacts of dry spells and heat waves in three Germany regions in the 1950s. Report 20, Climate Service Center Germany, Hamburg 123 (2016).55.Jim, C. Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 21, 311–320. https://doi.org/10.1016/j.cities.2004.04.004 (2004).Article 

    Google Scholar 
    56.Santamouris, M. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003 (2014).ADS 
    Article 

    Google Scholar 
    57.Drescher, M. Urban heating and canopy cover need to be considered as matters of environmental justice. Proc. Natl. Acad. Sci. U. S. A. 116, 26153–26154. https://doi.org/10.1073/pnas.1917213116 (2019).ADS 
    CAS 
    Article 
    PubMed Central 

    Google Scholar 
    58.Roloff, A. . Bäume in der Stadt (Ulmer, E, 2013).
    Google Scholar 
    59.Bruse, M. ENVI-met 3.0: Updated Model Overview. Tech. Rep. (2004).60.US Census Bureau. State and County Quick Facts https://www.census.gov/quickfacts/fact/table/US/PST045219 (2019).61.Shorris, A. Cool Neighborhoods NYC: A Comprehensive Approach to Keep Communities Safe in Extreme Heat. Tech. Rep.62.Hulley, G. ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission Level 2 Product Specification Document. Tech. Rep. (2018).63.Stark, P. & Parker, R. Bounded-Variable Least-squares: An Algorithm and Applications. Tech. Rep. 394, (1995). More

  • in

    Differentiation of two swim bladdered fish species using next generation wideband hydroacoustics

    1.Collingsworth, P. D. et al. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev. Fish Biol. Fish. 27, 363–391 (2017).Article 

    Google Scholar 
    2.Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and the Uncertainty (Routledge, Chapman and Hall Inc., 1992).Book 

    Google Scholar 
    3.Bean, C. W., Winfield, I. J. & Fletcher, J. M. Stock assessment of the Arctic charr (Salvelinus alpinus) population in Loch Ness, UK in stock assessment. In Inland Fisheries (ed. Cowx, I. G.) 206–223 (Blackwell Scientific Publications, 1996).
    Google Scholar 
    4.Emmrich, M. et al. Strong correspondence between gillnet catch per effort and hydroacoustically derived fish biomass in stratified lakes. Freshw. Biol. 57, 2436–2448 (2012).Article 

    Google Scholar 
    5.CEN (European Committee for Standardization). Water quality – sampling of fish with multi-mesh gillnets. European Committee for Standardization, European Standard EN 14757:2015 (Brussels, 2015).6.Murphy, B. & Willis, D. W. Fisheries Techniques 2nd edn. (American Fisheries Society, 1996).
    Google Scholar 
    7.Kinzelbach, R. Neozoans in European waters—Exemplifying the worldwide process of invasion and species mixing. Cell. Mol. Life Sci. 51, 526–538 (1995).CAS 
    Article 

    Google Scholar 
    8.Cerwenka, A. F. Phenotypic and genetic differentiation of invasive gobies in the upper Danube River. Dissertation (Technische
    Universität München, 2014).9.Byström, P. et al. Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter?. Ambio 44, 462–471 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Ustups, D. et al. Diet overlap between juvenile flatifish and the invasive round goby in the central Baltic Sea. J. Sea Res. 107, 121–129 (2016).ADS 
    Article 

    Google Scholar 
    11.Jackson, D. A. & Harvey, H. H. Qualitative and quantitative sampling of lake fish communities. Can. J. Fish. Aquat. Sci. 54, 2807–2813 (1997).Article 

    Google Scholar 
    12.Argyle, R. L. Acoustics as a tool for the assessment of Great Lakes forage fishes. Fish. Res. 14, 179–196 (1992).Article 

    Google Scholar 
    13.Jurvelius, J., Leinikki, J., Mamylov, V. & Pushkin, S. Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): A simultaneous up- and down-looking echo-sounding study. Fish. Res. 27, 227–241 (1996).Article 

    Google Scholar 
    14.Horne, J. K. Acoustic approaches to remote species identification: A review. Fish. Oceanogr. 9, 356–371 (2000).Article 

    Google Scholar 
    15.Godlewska, M., Świerzowski, A. & Winfield, I. J. Hydroacoustics as a tool for studies of fish and their habitat. Ecohydrol. Hydrobiol. 4, 417–427 (2004).
    Google Scholar 
    16.Muška, M. et al. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale. Sci. Rep. 8, 5381. https://doi.org/10.1038/s41598-018-23762-z (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Berger, L. et al. Acoustic target classification. ICES Coop. Res. Rep. https://doi.org/10.17895/ices.pub.4567 (2018).ADS 
    Article 

    Google Scholar 
    18.Emmrich, M., Helland, I. P., Busch, S., Schiller, S. & Mehner, T. Hydroacoustic estimates of fish densities in comparison with stratified pelagic trawl sampling in two deep, coregonid-dominated lakes. Fish. Res. 105, 178–186 (2010).Article 

    Google Scholar 
    19.DuFour, M. R., Qian, S. S., Mayer, C. M. & Vandergoot, C. S. Embracing uncertainty to reduce bias in hydroacoustic species apportionment. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105750 (2021).Article 

    Google Scholar 
    20.Cabreira, A. G., Tripode, M. & Madirolas, A. Artificial neural networks for fish-species identification. ICES J. Mar. Sci. 66, 1119–1129 (2009).Article 

    Google Scholar 
    21.Robotham, H., Bosch, P., Gutierrez-Estrada, J., Castillo, J. & Pulido-Calvo, I. Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks. Fish. Res. 102, 115–122 (2010).Article 

    Google Scholar 
    22.Taylor, J. C. & Maxwell, D. L. Hydroacoustics: lakes and reservoirs. in Salmonid Field Protocols Handbook: Techniques for Assessing Status and Trends in Salmon and Trout Populations (ed. Johnson, D. H. et al.) 153–172 (American Fisheries Society in association with State of the Salmon, 2007).23.Parker-Stetter, S. L., Rudstam, L. G., Sullivan, L. G. & Warner, D. M. Standard operating procedures for fisheries acoustic surveys in the Great Lakes. Great Lakes Fisheries Commission Special Publication 09-01 (2009).24.Guillard, J., Perga, M. E., Colon, M. & Angeli, N. Hydroacoustic assessment of young-of-the-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish. Manag. Ecol. 13, 319–327 (2006).Article 

    Google Scholar 
    25.Winfield, I. J., Fletcher, J. M., James, J. B. & Bean, J. B. Assessment of fish populations in still waters using hydroacoustics and survey gill netting: Experiences with Arctic charr (Salvelinus alpinus) in the UK. Fish. Res. 96, 30–38 (2009).Article 

    Google Scholar 
    26.Yule, D. L., Lori, M. E., Cachera, S., Colon, M. & Guillard, J. Comparing two fish sampling standards over time: Largely congruent results but with caveats. Freshw. Biol. 58, 2074–2088 (2013).Article 

    Google Scholar 
    27.DuFour, M. R., Song, S. Q., Mayer, C. M. & Vandergoot, C. S. Evaluating catchability in a large-scale gillnet survey using hydroacoustics: Making the case for coupled surveys. Fish. Res. 211, 309–318 (2019).Article 

    Google Scholar 
    28.Haralabous, J. & Georgakarakos, S. Artificial neural networks as a tool for species identification of fish schools. ICES J. Mar. Sci. 53, 173–180 (1996).Article 

    Google Scholar 
    29.Zakharia, M. E., Magand, F., Hetroit, F. & Diner, N. Wideband sounder for fish species identification at sea. ICES J. Mar. Sci. 53, 203–208 (1996).Article 

    Google Scholar 
    30.Fernandes, P. G. Classification trees for species identification of fish-school echo traces. ICES J. Mar. Sci. 66, 1073–1080 (2009).Article 

    Google Scholar 
    31.Eckmann, R. A hydroacoustic study of the pelagic spawning behavior of whitefish (Coregonus lavaretus) in lake constance. Can. J. Fish. Aquat. Sci. 48, 995–1002 (1991).Article 

    Google Scholar 
    32.Eckmann, R. & Engesser, B. Reconstructing the build-up of a pelagic stickleback (Gasterosteus aculeatus) population using hydroacoustics. Fish. Res. 210, 189–192 (2018).Article 

    Google Scholar 
    33.Peltonen, H., Ruuhijärvi, J., Malinen, T. & Horppila, J. Estimation of roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) stocks with virtual population analysis. Hydroacoustics and Gillnet CPUE. Fish. Res. 44, 25–36 (1999).Article 

    Google Scholar 
    34.MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    35.Korneliussen, R. J. The acoustic identification of Atlantic mackerel. ICES J. Mar. Sci. 67, 1749–1758 (2010).Article 

    Google Scholar 
    36.Langkau, M. C., Balk, H., Schmidt, M. B. & Borcherding, J. Can acoustic shadows identify fish species? A novel application of imaging sonar data. Fish. Manag. Ecol. 19, 313–322 (2012).Article 

    Google Scholar 
    37.Boswell, K. M., Wilson, M. P. & Cowan, J. H. Jr. A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. N. Am. J. Fish. Manag. 28, 799–807 (2008).Article 

    Google Scholar 
    38.Crossman, J. A., Martel, G., Johnson, P. N. & Bray, K. The use of Dual-Frequency Identification SONar (DIDSON) to document white sturgeon activity in the Columbia River, Canada. J. Appl. Ichthyol. 27, 53–57 (2011).Article 

    Google Scholar 
    39.Rakowitz, G. et al. Use of high-frequency imaging sonar (DIDSON) to observe fish behavior towards a surface trawl. Fish. Res. 123–124, 37–48 (2012).Article 

    Google Scholar 
    40.Skowronski, M. D. & Harris, J. G. Automatic detection of microchiroptera echolocation calls from field recordings using machine learning algorithms. J. Acoust. Soc. Am. 119, 1817–1833 (2005).Article 

    Google Scholar 
    41.Witten, I. H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques 4th edn. (Morgan Kaufmann USA, 2017).MATH 

    Google Scholar 
    42.Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015).ADS 
    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    43.Jech, J. M., Lawson, G. L. & Lavery, A. C. Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus). ICES J. Mar. Sc. 74, 2249–2261 (2017).Article 

    Google Scholar 
    44.Lavery, A. C., Bassett, C., Lawson, G. L. & Jech, J. M. Exploiting signal processing approaches for broadband echosounders. ICES J. of Mar. Sci. 74, 2262–2275 (2017).Article 

    Google Scholar 
    45.Bassett, C., De Robertis, A. & Wilson, C. D. Broadband echosounder measurements of the frequency response of fishes and euphausiids in the Gulf of Alaska. ICES J. Mar. Sci. 75, 1131–1142 (2018).Article 

    Google Scholar 
    46.Demer, D. A. et al. 2016 USA–Norway EK80 Workshop Report: Evaluation of a wideband echosounder for fisheries and marine ecosystem science. ICES Coop. Res. Rep. https://doi.org/10.17895/ices.pub.2318 (2017).Article 

    Google Scholar 
    47.Tuzlukov, V. Signal Processing in Radar Systems 1st edn. (CRC Press Taylor & Francis Group USA, 2013).MATH 

    Google Scholar 
    48.Baer, J., Eckmann, R., Rösch, R., Arlinghaus, R. & Brinker, A. Managing upper lake constance fishery in a multi-sector policy landscape: Beneficiary and victim of a century of anthropogenic trophic change. In Inter-Sectoral Governance of Inland Fisheries (eds Song, A. M. et al.) 32–47 (TBTI Publication Series, 2017).
    Google Scholar 
    49.Roch, S., von Ammon, L., Geist, J. & Brinker, A. Foraging habits of invasive three-spined sticklebacks (Gasterosteus aculeatus)—Impacts on fisheries yield in Upper Lake Constance. Fish. Res. 204, 172–180 (2018).Article 

    Google Scholar 
    50.Rösch, R., Baer, J. & Brinker, A. Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake Constance. Hydrobiol. 824, 255–270 (2018).Article 
    CAS 

    Google Scholar 
    51.Balk, H., & Lindem, T. Sonar4 and Sonar5-Pro Post processing systems Operator manual, version 6.0.3. (2018).52.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    53.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. 2, 18–22 (2002).
    Google Scholar 
    54.Degan, D. J. & Wilson, W. Comparison of four hydroacoustic frequencies for sampling pelagic fish populations in Lake Texoma. N. Am. J. Fish. Manag. 15, 924–932 (1995).Article 

    Google Scholar 
    55.Godlewska, M. et al. Hydroacoustic measurements at two frequencies: 70 and 120 kHz—Consequences for fish stock estimation. Fish. Res. 96, 11–16 (2009).Article 

    Google Scholar 
    56.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    57.Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    58.Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Cons. 156, 94–104 (2012).Article 

    Google Scholar 
    59.Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret (2018).60.Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52, 2249–2260 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    61.Lawson, G. J., Barange, M. & Fréon, P. Species identification of pelagic fish schools on the South African continental shelf using acoustic descriptors and ancillary information. ICES J. Mar. Sci. 58, 275–287 (2001).Article 

    Google Scholar 
    62.Simmonds, E. J., Armstrong, F. & Copland, P. J. Species identification using wideband backscatter with neural network and discriminant analysis. ICES J. Mar. Sci. 53, 189–195 (1996).Article 

    Google Scholar 
    63.Bergström, U. et al. Stickleback increase in the Baltic Sea—A thorny issue for coastal predatory fish. Estuar. Coast. Shelf Sci. 163, 134–142 (2015).ADS 
    Article 

    Google Scholar 
    64.Pepin, T. & Shears, T. H. Influence of body size and alternate prey abundance on the risk of predation to fish larvae. Mar. Ecol. Prog. Ser. 128, 279–285 (1995).ADS 
    Article 

    Google Scholar 
    65.Frouzová, J., Kubečka, J., Balk, H. & Frouz, J. Target strength of some European fish species and its dependence onfish body parameters. Fish. Res. 75, 86–96 (2005).Article 

    Google Scholar 
    66.Marques, D. A., Lucek, K., Sousa, V. C., Excoffier, L. & Seehausen, O. Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nat. Commun. 10, 4240. https://doi.org/10.1038/s41467-019-12182-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Processing of novel food reveals payoff and rank-biased social learning in a wild primate

    Study site and subject detailsThe study was conducted at the Inkawu Vervet Project (IVP) in a 12,000-hectare private game reserve: Mawana (28° 00.327 S, 031° 12.348 E) in KwaZulu Natal province, South Africa. The vegetation of the study site consisted in a savannah characterized by a mosaic of grasslands and clusters of trees of the typical savannah thornveld, bushveld and thicket patches. We studied two groups of wild vervet monkeys (Chlorocebus pygerythrus): ‘Noha’ (NH) and ‘Kubu’ (KB). NH was composed of 34 individuals (6 adult males; 9 adult females; 6 juvenile males; 7 juvenile females; 5 infant males; 1 infant female) and KB was composed of 19 individuals (1 adult male; 6 adult females; 3 juvenile males; 4 juvenile females; 3 infant males; 2 infant females; Table S1). Males were considered as adults once they dispersed, and females were considered as adults after they gave their first birth. Individuals that did not fulfil these criteria were considered as juveniles28 and infants were aged less than 1 year old. In EWA models, infants and juveniles were lumped in a single category “juveniles”. Each group had been habituated to the presence of human observers: since 2010 for NH and since 2013 for KB. All individuals were identifiable thanks to portrait photographs and specific individual body and face features (scars, colours, shape etc.).This research adhered to the “Guidelines for the use of animals in research” of Association for Study of Animal Behaviour, was approved by the relevant local authority, Ezemvelo KZN Wildlife, South Africa and complied with the ARRIVE guidelines.Hierarchy establishmentAgonistic interactions (aggressor behaviour: stare, chase, attack, hit, bite, take place; victim behaviour: retreat, flee, leave, avoid, jump aside) were collected from May 2018 to October 2018, aside from experiment days, on all the adults and juveniles of both groups via ad libitum sampling50 and food competition tests (i.e. corn provided to the whole group from a plastic box). Data were collected by CC, MBC and different observers from the IVP team. Before beginning data collection, observers had to pass an inter-observer reliability test with 80% reliability for each data category between two observers. Data were collected on tablets (Vodacom Smart Tab 2) equipped with Pendragon version 8.Individual hierarchical ranks were determined by the outcome of dyadic agonistic interactions recorded ad libitum and through food competition tests using Socprog software version 2.751. Hierarchies in both groups were significantly linear (NH: h′ = 0.27; P  More

  • in

    Molecular mechanisms of mutualistic and antagonistic interactions in a plant–pollinator association

    1.Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Simões, M. et al. The evolving theory of evolutionary radiations. Trends Ecol. Evol. 31, 27–34 (2016).PubMed 
    Article 

    Google Scholar 
    3.Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Becerra, J. X., Nogeb, K. & Venable, D. L. Macroevolutionary chemical escalation in an ancient plant–herbivore arms race. Proc. Natl Acad. Sci. USA 106, 18062–18066 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Edger, P. P. et al. The butterfly plant arms-race escalated by gene and genome duplications. Proc. Natl Acad. Sci. USA 112, 8362–8366 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Adler, L. S. & Bronstein, J. L. Attracting antagonists: does floral nectar increase leaf herbivory? Ecology 85, 1519–1526 (2004).Article 

    Google Scholar 
    9.McCall, A. C. & Irwin, R. E. Florivory: the intersection of pollination and herbivory. Ecol. Lett. 9, 1351–1365 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Cook, J. M. & Rasplus, J.-Y. Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol. Evol. 18, 241–248 (2003).Article 

    Google Scholar 
    11.Zhang, X. et al. Genomes of the banyan tree and pollinator wasp provide insights into fig–wasp coevolution. Cell 183, 875–889 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Herre, E. A., Jandér, K. C. & Machado, C. A. Evolutionary ecology of figs and their associates: recent progress and outstanding puzzles. Annu. Rev. Ecol. Evol. Syst. 39, 439–458 (2008).Article 

    Google Scholar 
    13.Souza, C. D. et al. Diversity of fig glands is associated with nursery mutualism in fig trees. Am. J. Bot. 102, 1564–1577 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Souto-Vilarós, D. et al. Pollination along an elevational gradient mediated both by floral scent and pollinator compatibility in the fig and fig–wasp mutualism. J. Ecol. Evol. 106, 2256–2273 (2018).
    Google Scholar 
    15.Wang, R. et al. Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proc. R. Soc. B 286, 20182501 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Mori, K. et al. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci. Rep. 7, 41124 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Proffit, M. et al. Chemical signal is in the blend: bases of plant–pollinator encounter in a highly specialized interaction. Sci. Rep. 10, 10071 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Chen, C. et al. Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct. Ecol. 23, 941–950 (2009).Article 

    Google Scholar 
    19.Wang, G., Cannon, C. H. & Chen, J. Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc. R. Soc. B 283, 20152963 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Yu, H. et al. De novo transcriptome sequencing in Ficus hirta Vahl. (Moraceae) to investigate gene regulation involved in the biosynthesis of pollinator attracting volatiles. Tree Genet. Genomes 11, 91 (2015).Article 

    Google Scholar 
    21.Soler, C. C. L., Proffit, M., Bessière, J.-M., Hossaert -McKey, M. & Schatz, B. Evidence for intersexual chemical mimicry in a dioicous plant. Ecol. Lett. 15, 978–985 (2012).PubMed 
    Article 

    Google Scholar 
    22.Volf, M. et al. Community structure of insect herbivores is driven by conservatism, escalation and divergence of defensive traits in Ficus. Ecol. Lett. 21, 83–92 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Martinson, E. O., Hackett, J. D., Machado, C. A. & Arnold, A. E. Metatranscriptome analysis of fig flowers provides insights into potential mechanisms for mutualism stability and gall induction. PLoS ONE 10, e0130745 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Zhang, H. et al. Leaf-mining by Phyllonorycter blancardella reprograms the host–leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense. J. Insect Physiol. 84, 114–127 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Schultz, J. C., Edger, P. P., Body, M. & Appel, H. M. A galling insect activates plant reproductive programs during gall development. Sci. Rep. 9, 1833 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.The Nasonia Genome Working Group Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science 327, 343–348 (2010).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Xiao, J.-H. et al. Obligate mutualism within a host drives the extreme specialization of a fig wasp genome. Genome Biol. 14, R141 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Ohri, D. & Khoshoo, T. N. Nuclear DNA contents in the genus Ficus (Moraceae). Plant Syst. Evol. 156, 1–4 (1987).Article 

    Google Scholar 
    29.Chen, Y., Compton, S. G., Liu, M. & Chen, X.-Y. Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Mol. Ecol. 21, 1687–1701 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Chen, L.-G. et al. Binding affinity characterization of an antennae-enriched chemosensory protein from the white-backed planthopper, Sogatella furcifera (Horváth), with host plant volatiles. Pestic. Biochem. Phys. 152, 1–7 (2018).Article 
    CAS 

    Google Scholar 
    31.Gu, S.-H. et al. Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (GOEZE). Arch. Insect Biochem. Physiol. 77, 81–99 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Leal, W. S. et al. Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS ONE 3, e3045 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Rizzo, W. B. et al. Fatty aldehyde and fatty alcohol metabolism: review and importance for epidermal structure and function. Biochim. Biophys. Acta 1841, 377–389 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Schwab, W., Davidovich‐Rikanati, R. & Lewinsohn, E. Biosynthesis of plant‐derived flavor compounds. Plant J. 54, 712–732 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Capella, M., Ribone, P. A., Arce, A. L. & Chan, R. L. Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation. New Phytol. 207, 669–682 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Jiang, W. et al. Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. J. Exp. Bot. 69, 2555–2567 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Guan, R. et al. Draft genome of the living fossil Ginkgo biloba. GigaScience 5, 49 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    39.Salazar, D. et al. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2, 983–990 (2018).PubMed 
    Article 

    Google Scholar 
    40.Després, L., David, J. P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).PubMed 
    Article 

    Google Scholar 
    41.Segar, S. T., Volf, M., Sisol, M., Pardikes, N. & Souto-Vilarós, A. D. Chemical cues and genetic divergence in insects on plants: conceptual cross pollination between mutualistic and antagonistic systems. Curr. Opin. Insect Sci. 32, 83–90 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Cook, J. M. & Segar, S. T. Speciation in fig wasps. Ecol. Entomol. 35, 54–66 (2010).Article 

    Google Scholar 
    43.Cruaud, A. et al. An extreme case of plant–insect codiversification: figs and fig-pollinating wasps. Syst. Biol. 61, 1029–1047 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Yu, H. et al. Multiple parapatric pollinators have radiated across a continental fig tree displaying clinal genetic variation. Mol. Ecol. 28, 2391–2405 (2019).PubMed 
    Article 

    Google Scholar 
    45.Satler, J. D. et al. Inferring processes of coevolutionary diversification in a community of Panamanian strangler figs and associated pollinating wasps. Evolution 73, 2295–2311 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Wang, G. et al. Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig–wasp pollination mutualism. Nat. Commun. 12, 718 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hoballah, M. E. et al. Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19, 779–790 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 
    Article 

    Google Scholar 
    49.Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474 (2010).Article 

    Google Scholar 
    50.Segar, S. T. et al. The role of evolution in shaping ecological networks. Trends Ecol. Evol. 35, 454–466 (2020).PubMed 
    Article 

    Google Scholar 
    51.Stoy, K. S., Gibson, A. K., Gerardo, N. M. & Morran, L. T. A need to consider the evolutionary genetics of host–symbiont mutualisms. J. Evol. Biol. 33, 1656–1668 (2020).PubMed 
    Article 

    Google Scholar 
    52.Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Xiao, C.-L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Pryszcz, L. P. & Gabaldón, T. Redundans: an assembly pipeline for highly heterozygous genomes. Nucleic Acids Res. 44, e113 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.English, A. C. et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7, e47768 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Sahlin, K., Chikhi & Arvestad, R. L. Assembly scaffolding with PE-contaminated mate-pair libraries. Bioinformatics 32, 1925–1932 (2016).PubMed 
    Article 

    Google Scholar 
    59.Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods 58, 268–276 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler Transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    65.Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859–1875 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, i152–i158 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, i351–i358 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29, 2933–2935 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Nawrocki, E. P. et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 43, D130–D137 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Holt, C. & Yandell, M. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome projects. BMC Bioinf. 12, 491 (2011).Article 

    Google Scholar 
    75.Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Johnson, A. D. et al. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24, 2938–2939 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Stanke, M. & Morgenstern, B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids Res. 33, W465–W467 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Buels, R. et al. JBrowse: a dynamic web platform for genome visualization and analysis. Genome Biol. 17, 66 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    80.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Bairoch, A. & Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 28, 45–48 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Li, L., Stoeckert, C. J. Jr & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Li, H. et al. TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res. 34, D572–D580 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Guindon, S., Delsuc, F., Dufayard, J. F. & Gascuel, O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 537, 113–137 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a computational tool for the study of gene family evolution. Bioinformatics 22, 1269–1271 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Schwartz, S. et al. Human–mouse alignments with BLASTZ. Genome Res. 13, 103–107 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Bailey, J. A., Yavor, A. M., Massa, H. F., Trask, B. J. & Eichler, E. E. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Birney, E., Clamp, M. & Durbin, R. GeneWise and Genomewise. Genome Res. 14, 988–995 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ruan, J., Li, H., Chen, Z. & Coghlan, A. TreeFam: 2008 update. Nucleic Acids Res. 36, D735–D740 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Tholl, D. et al. Practical approaches to plant volatile analysis. Plant J. 45, 540–560 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Wen, B., Mei, Z., Zeng, C. & Liu, S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 18, 183 (2017).Article 
    CAS 

    Google Scholar 
    99.Wen, P. et al. The sex pheromone of a globally invasive honey bee predator, the Asian eusocial hornet, Vespa velutina. Sci. Rep. 7, 12956 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    101.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    103.Tian, X., Chen, L., Wang, J., Qiao, J. & Zhang, W. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J. Proteom. 78, 326–345 (2013).CAS 
    Article 

    Google Scholar 
    104.Wen, B. et al. IQuant: an automated pipeline for quantitative proteomics based upon isobaric tags. Proteomics 14, 2280–2285 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Brosch, M., Yu, L., Hubbard, T. & Choudhary, J. Accurate and sensitive peptide identification with Mascot Percolator. J. Proteome Res. 8, 3176–3181 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    106.Savitski, M. M., Wilhelm, M., Hahne, H., Kuster, B. & Bantscheff, M. A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol. Cell Proteomics 14, 2394–2404 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).CAS 
    Article 

    Google Scholar 
    108.Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell Proteomics 14, 1400–1410 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Wen, X.-L., Wen, P., Dahlsjö, C. A. L., Sillam-Dussès, D. & Šobotník, J. Breaking the cipher: ant eavesdropping on the variational trail pheromone of its termite prey. Proc. R. Soc. B 284, 20170121 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    113.Bailey, T. L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Lescot, M. et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 30, 325–327 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559 (2008).Article 
    CAS 

    Google Scholar 
    116.Yip, A. M. & Horvath, S. Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 22 (2007).Article 
    CAS 

    Google Scholar 
    117.Langfelder, P., Zhang, B. & Horvath, S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24, 719–720 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Gendrel, A. V., Lippman, Z., Martienssen, R. & Colot, V. Profiling histone modification patterns in plants using genomic tiling microarrays. Nat. Methods 2, 213–218 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Genetic structure of urban and non-urban populations differs between two common parid species

    1.Partecke, J., Gwinner, E. & Bensch, S. Is urbanisation of European blackbirds (Turdus merula) associated with genetic differentiation?. J. Ornithol. 147, 549–552 (2006).Article 

    Google Scholar 
    2.Perrier, C. et al. Great tits and the city: Distribution of genomic diversity and gene–environment associations along an urbanization gradient. Evol. Appl. 11, 593–613 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 74, 46–69 (2006).Article 

    Google Scholar 
    4.Evans, K. L. et al. Independent colonization of multiple urban centres by a formerly forest specialist bird species. Proc. R. Soc. B 276(1666), 2403–2410 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Björklund, M., Ruiz, I. & Senar, J. C. Genetic differentiation in the urban habitat: The great tits (Parus major) of the parks of Barcelona city. Biol. J. Linn. Soc. 99, 9–19 (2010).Article 

    Google Scholar 
    6.Crooks, K. R. & Sanjayan, M. A. Connectivity conservation: Maintaining connections for nature. In Connectivity Conservation (eds Crooks, K. R. & Sanjayan, M. A.) 1–20 (Cambridge University Press, Cambridge, 2006).
    Google Scholar 
    7.Evans, K. L., Chamberlain, D. E., Hatchwell, B. J., Gregory, R. D. & Gaston, K. J. What makes an urban bird?. Glob. Change Biol. 17, 32–44 (2011).ADS 
    Article 

    Google Scholar 
    8.Seress, G. & Liker, A. Habitat urbanization and its effects on birds. Acta Zool. Acad. Sci. Hung. 61(4), 373–408 (2015).Article 

    Google Scholar 
    9.Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).PubMed 
    Article 

    Google Scholar 
    10.Shochat, E., Warren, P. S., Faeth, S. H., McIntyre, N. E. & Hope, D. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191 (2006).PubMed 
    Article 

    Google Scholar 
    11.Chamberlain, D. E. et al. Avian productivity in urban landscapes: A review and meta-analysis. Ibis 151, 1–18 (2009).Article 

    Google Scholar 
    12.Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5(9), e12767 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Unfried, T. M., Hauser, L. & Marzluff, J. M. Effects of urbanization on Song Sparrow (Melospiza melodia) population connectivity. Conserv. Genet. 14(1), 41–53 (2013).Article 

    Google Scholar 
    14.Cureton, J. C. et al. Effects of urbanization on genetic diversity, gene flow, and population structure in the ornate box turtle (Terrapene ornato). Amphib-Reptil. 35, 87–97 (2014).Article 

    Google Scholar 
    15.Indykiewicz, P., Podlaszczuk, P., Janiszewska, A. & Minias, P. Extensive gene flow along the urban-rural gradient in a migratory colonial bird. J. Avian Biol. 49(6), e01723 (2018).Article 

    Google Scholar 
    16.Hurtado, G. & Mabry, K. E. Genetic structure of an abundant small mammal is influenced by low intensity urbanization. Conserv. Genet. 20, 705–715 (2019).CAS 
    Article 

    Google Scholar 
    17.Khimoun, A. et al. Urbanization without isolation: The absence of genetic structure among cities and forests in the tiny acorn ant Temnothorax nylanderi. Biol. Lett. 16, 20190741 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Munshi-South, J., Zolnik, C. P. & Harris, S. E. Population genomics of the Anthropocene: Urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evol. Appl. 9, 546–564 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Brewer, V. N., Lane, S. J., Sewall, K. B. & Mabry, K. E. Effects of low-density urbanization on genetic structure in the Song Sparrow. PLoS ONE 15(6), e0234008 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Slatkin, M. Gene flow in natural populations. Annu. Rev. Ecol. Syst. 16, 393–430 (1985).Article 

    Google Scholar 
    21.Balloux, F. & Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155–165 (2002).PubMed 
    Article 

    Google Scholar 
    22.Vangestel, C., Mergeay, J., Dawson, D. A., Vandomme, V. & Lens, L. Spatial heterogeneity in genetic relatedness among house sparrows along an urban—rural gradient as revealed by individual-based analysis. Mol. Ecol. 20, 4643–4653 (2011).PubMed 
    Article 

    Google Scholar 
    23.Barnett, J. R., Ruiz-Gutierrez, V., Coulon, A. & Lovette, I. J. Weak genetic structuring indicates ongoing gene flow across White-ruffed Manakin (Corapipo altera) populations in a highly fragmented Costa Rica landscape. Conserv. Genet. 9, 1403–1412 (2008).Article 

    Google Scholar 
    24.Riegert, J., Fainová, D. & Bystrická, D. Genetic variability, body characteristics and reproductive parameters of neighbouring rural and urban common kestrel (Falco tinnuculus) populations. Popul. Ecol. 52, 73–79 (2009).Article 

    Google Scholar 
    25.MacDougall-Shackleton, E. A., Clinchy, M., Zanette, L. & Neff, B. D. Songbird genetic diversity is lower in anthropogenically versus naturally fragmented landscapes. Conserv. Genet. 12, 1195–1203 (2011).Article 

    Google Scholar 
    26.Caizergues, A. E. et al. Testing for parallel genomic and epigenomic footprints of adaptation to urban life in a passerine bird. bioRxiv. https://doi.org/10.1101/2021.02.10.43045227.Schmidt, C., Domaratzki, M., Kinnunen, R. P., Bowman, J. & Garroway, C. J. Continent-wide effects of urbanization on bird and mammal genetic diversity. Proc. R. Soc. B. 287, 20192497 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Cramp, S. & Perrins, C. M. The Birds of the Western Palearctic Vol. 7 (Oxford University Press, 1993).
    Google Scholar 
    29.Dauwe, T. et al. Great and Blue tit feathers as biomonitors for heavy metal pollution. Ecol. Indic. 1, 227–234 (2002).CAS 
    Article 

    Google Scholar 
    30.Bańbura, J. & Bańbura, M. Blue tits Cyanistes caeruleus and great tits Parus major as urban habitat breeders. Inter Stud. Sparrows 36, 66–72 (2012).Article 

    Google Scholar 
    31.Charmantier, A., Doutrelant, C., Dubuc-Messier, G., Fargevieille, A. & Szulkin, M. Mediterranean blue tits as a case study of local adaptation. Evol. Appl. 9, 135–152 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Lemoine, M. et al. Low but contrasting neutral genetic differentiation shaped by winter temperature in European Great Tits. Biol. J. Linn. Soc. 118, 668–685 (2016).Article 

    Google Scholar 
    33.Porlier, M. Garant, D. Perret, P. and Charmantier, A. Habitat-linked population genetic differentiation in the Blue tit Cyanistes caeruleus. J. Hered. 103, 781–791 (2012).34.Szulkin, M., Gagnaire, P. A., Bierne, N. & Charmantier, A. Population genomic footprints of fine-scale differentiation between habitats in Mediterranean blue tits. Mol. Ecol. 25, 542–558 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Dubuc-Messier, G. et al. Gene flow does not prevent personality and morphological differentiation between two blue tit populations. J. Evol. Biol. 31, 1127–1137 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Postma, E. D., Tex, R.-J., Noordwijk, A. J. & Mateman, A. C. Neutral markers mirror small-scale quantitative genetic differentiation in an avian island population. Biol. J. Linn. Soc. 97, 867–875 (2009).Article 

    Google Scholar 
    37.Salmón, P. et al. Repeated genomic signature of adaptation to urbanisation in a songbird across Europe. bioRxiv. https://doi.org/10.1101/2020.05.05.078568 (2020).38.Dhondt, A. A. Effects of competition on great and blue tit reproduction: Intensity and importance in relation to habitat quality. J. Anim. Ecol. 79, 257–265 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Nilsson, A. L. K., Lindström, Å., Jonzén, N., Nilsson, S. G. & Karlsson, L. The effect of climate change on partial migration: The blue tit paradox. Glob. Change Biol. 12, 2014–2022. https://doi.org/10.1111/j.1365-2486.2006.01237.x (2006).ADS 
    Article 

    Google Scholar 
    40.Nilsson, A. L. K., Alerstam, T. & Nilsson, J. Å. Diffuse, short and slow migration among Blue Tits. J. Ornithol. 149, 365–373. https://doi.org/10.1007/s10336-008-0280-3 (2008).Article 

    Google Scholar 
    41.Bańbura, J. et al. Spatial and temporal variation in heterophil-to-lymphocyte ratios of nestling passerine birds: Comparison of blue tits and great tits. PLoS ONE 8(9), e74226 (2013).42.Adamou, A.-E., Bańbura, M. & Bańbura, J. Subtle differences in breeding performance between Great Tits Parus major and Afrocanarian Blue Tits Cyanistes teneriffae in the peripheral zone of the species geographic ranges in NE Algeria. Eur. Zool. J. 87, 263–271 (2020).Article 

    Google Scholar 
    43.Dhondt, A. A. & Eyckerman, R. Competition between the great tit and the blue tit outside the breeding season in field experiments. Ecology 61, 1291–1296 (1980).Article 

    Google Scholar 
    44.Ortego, J., Garcia-Navas, V., Ferrer, E. S. & Sanz, J. J. Genetic structure reflects natal dispersal movements at different spatial scales in the blue tit Cyanistes caeruleus. Anim. Behav. 82, 131–137 (2011).Article 

    Google Scholar 
    45.Langin, K. M. et al. Characterizing range-wide divergence in an alpine-endemic bird: A comparison of genetic and genomic approaches. Conserv. Genet. 19(6), 1471–1485 (2018).CAS 
    Article 

    Google Scholar 
    46.Roques, S., Chancerel, E., Boury, C., Pierre, M. & Acolas, M. L. From microsatellites to single nucleotide polymorphisms for the genetic monitoring of a critically endangered sturgeon. Ecol. Evol. 9(12), 7017–7029 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Zimmerman, S. J., Aldridge, C. L. & Oyler-McCance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genom. 21, 1–16 (2020).Article 
    CAS 

    Google Scholar 
    48.Markowski, M. et al. Effects of experimental lead exposure on physiological indices of nestling great tits Parus major: Haematocrit and heterophile-to-lymphocyte ratio. Conserv. Physiol. 7, coz067 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Bańbura, J. et al. Habitat and year-to-year variation in haemoglobin concentration in nestling blue tits Cyanistes caeruleus. Comp. Biochem. Phys. A 148, 572–577 (2007).Article 
    CAS 

    Google Scholar 
    50.Kiedrzyński, M. The impact of forest management on the flora and vegetation of old oak-stands (an example from The Spała Forests, central Poland). Nat. Conserv. 65, 51–62 (2008).
    Google Scholar 
    51.Glądalski, M. et al. Effects of human-related disturbance on breeding success of urban and non-urban blue tits (Cyanistes caeruleus). Urban Ecosyst. 19, 1325–1334 (2016).Article 

    Google Scholar 
    52.Markowski, M. et al. Spatial and temporal variation of lead, cadmium, and zinc in feathers of great tit and blue tit nestlings in Central Poland. Arch. Environ. Contam. Toxicol. 67, 507–518 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Richard, M. & Thorpe, R. S. Highly polymorphic microsatellites in the lacertid Gallotia Gallowi from the western Canary Islands. Mol. Ecol. 9, 1919–1952 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Saladin, V., Bonfils, D., Binz, T. & Richner, H. Isolation and characterization of 16 microsatellite loci in the Great Tit Parus major. Mol. Ecol. Notes 3, 520–522 (2003).CAS 
    Article 

    Google Scholar 
    55.Dawson, D. A., Hanotte, O., Greig, C., Stewart, I. R. K. & Burke, T. Polymorphic microsatellites in the blue tit Parus caeruleus and their cross-species utility in 20 songbird families. Mol. Ecol. 9, 1941–1944 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Res. 4, 535–538 (2004).
    Google Scholar 
    57.Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).CAS 
    MATH 
    Article 

    Google Scholar 
    58.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).Article 

    Google Scholar 
    59.Goudet, J. FSTAT (version 12): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    60.Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 

    Google Scholar 
    61.Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel: Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    62.Peakall, R. & Smouse, P. E. GENALEX 6.5: Genetic analysis in Excel. Population genetic software for teaching and research: An update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Slatkin, M. A measure of subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Hardy, O. J., Charbonnel, N., Fréville, H. & Heuertz, M. Microsatellite allele sizes: A simple test to assess their significance on genetic differentiation. Genetics 163, 1467–1482 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Hardy, O. J. & Vekemans, X. SPAGeDi: A versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol. Ecol. Notes 2, 618–620 (2002).Article 
    CAS 

    Google Scholar 
    66.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Meirmans, P. G. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60, 2399–2402 (2006).Article 

    Google Scholar 
    68.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Dray, S. & Dufour, A. The ade4 Package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04 (2007).Article 

    Google Scholar 
    70.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405 (2008).CAS 
    Article 

    Google Scholar 
    71.TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13. http://statistica.io. (2017). More

  • in

    El Niño-Southern Oscillation affects the water relations of tree species in the Yucatan Peninsula, Mexico

    1.Murphy, P. G. & Lugo, A. E. Ecology of tropical dry forest. Ann. Rev. Ecol. Syst. 17, 67–88. https://doi.org/10.1146/annurev.es.17.110186.000435 (1986).Article 

    Google Scholar 
    2.Hasselquist, N. J., Allen, M. F. & Santiago, L. S. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia 164, 881–890. https://doi.org/10.1007/s00442-010-1725-y (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Maass, M. et al. Long-term (33 years) rainfall and runoff dynamics in a tropical dry forest ecosystem in western Mexico: Management implications under extreme hydrometeorological events. For. Ecol. Manage. 426, 7–17. https://doi.org/10.1016/j.foreco.2017.09.040 (2018).Article 

    Google Scholar 
    4.NOAA. National Weather Service. Climate Prediction Center. Cold and warm episodes by season. http://www.cpc.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml. (Accessed 19 October 2019).5.Detto, M., Wright, J., Calderón, O. & Muller-Landau, H. C. Resource acquisition and reproductive strategies of tropical forest in response to the El Niño-Southern Oscillation. Nat. Commun. 9, 9–13. https://doi.org/10.1038/s41467-018-03306-9 (2018).CAS 
    Article 

    Google Scholar 
    6.Bretfeld, M., Ewers, B. E. & Hal, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).Article 
    PubMed 

    Google Scholar 
    7.Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958. https://doi.org/10.1111/nph.14633 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Salmon, Y. et al. Drought impacts on tree phloem: From cell-level responses to ecological significance. Tree Physiol. 39, 173–191. https://doi.org/10.1093/treephys/tpy153 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266. https://doi.org/10.1126/science.aat7631 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133. https://doi.org/10.1111/gcb.15037 (2020).ADS 
    Article 

    Google Scholar 
    11.Wigneron, J. P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603. https://doi.org/10.1126/sciadv.aay4603 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Martinez-Vilalta, J. & Lloret, F. Drought-induced vegetation shifts in terrestrial ecosystems: The key role of regeneration dynamics. Glob. Planet. Change 144, 94–108. https://doi.org/10.1016/j.gloplacha.2016.07.009 (2016).ADS 
    Article 

    Google Scholar 
    13.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article 

    Google Scholar 
    14.Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. PNAS 113, 5024–5029. https://doi.org/10.1073/pnas.1525678113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553. https://doi.org/10.1111/ele.12748 (2017).Article 
    PubMed 

    Google Scholar 
    16.Sperry, J. S., Meinzer, F. C. & McCulloh, K. A. Safety and efficiency conflicts in hydraulic architecture: Scaling from tissues to trees. Plant Cell Environ. 31, 632–645. https://doi.org/10.1111/j.1365-3040.2007.01765.x (2008).Article 
    PubMed 

    Google Scholar 
    17.Borchert, R. & Pockman, W. T. Water storage capacitance and xylem tension in isolated branches of temperate and tropical trees. Tree Physiol. 25, 457–466. https://doi.org/10.1093/treephys/25.4.457 (2005).Article 
    PubMed 

    Google Scholar 
    18.Valdez-Hernández, M., Andrade, J. L., Jackson, P. C. & Rebolledo-Vieyra, M. Phenology of five tree species of a tropical dry forest in Yucatán, Mexico: Effects of environmental and physiological factors. Plant Soil 329, 155–171. https://doi.org/10.1007/s11104-009-0142-7 (2010).CAS 
    Article 

    Google Scholar 
    19.Santiago, L. S. et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol. 218, 1015–1024. https://doi.org/10.1111/nph.15058 (2018).Article 
    PubMed 

    Google Scholar 
    20.Bussotti, F., Pollastrini, M., Holland, V. & Bruggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Experim. Bot. 111, 91–113. https://doi.org/10.1016/j.envexpbot.2014.11.006 (2015).Article 

    Google Scholar 
    21.Reich, P. B. & Borchert, R. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J. Ecol. 72(1), 61–74. https://doi.org/10.2307/2260006 (1984).Article 

    Google Scholar 
    22.Holbrook, N. M., Whitbeck, J. L. & Mooney, H. A. Drought responses of neotropical dry forest trees. In Seasonally Dry Tropical Forests (eds Bullock, S. H. et al.) (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511753398.010.
    Google Scholar 
    23.Wolfe, B. T. & Kursar, T. A. Diverse patterns of stored water use among saplings in seasonally dry tropical forests. Oecologia 179, 925–936. https://doi.org/10.1007/s00442-015-3329-z (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    24.Borchert, R., Rivera, G. & Hagnauer, W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34, 27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x (2002).Article 

    Google Scholar 
    25.Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).Article 
    PubMed 

    Google Scholar 
    26.Aragón-Moreno, A. A., Islebe, G. A., Torrescano-Valle, N. & Arellano-Verdejo, J. Middle and late Holocene mangrove dynamics of the Yucatan Peninsula, Mexico. J. S. Am. Earth Sci. 85, 307–311. https://doi.org/10.1016/j.jsames.2018.05.015 (2018).Article 

    Google Scholar 
    27.De la Barreda, B., Metcalfe, E. S. & Boyd, D. S. Precipitation regionalization, anomalies and drought occurrence in the Yucatan peninsula, Mexico. Int. J. Climatol. 40(10), 1–15. https://doi.org/10.1002/joc.6474 (2020).Article 

    Google Scholar 
    28.IPCC. Summary for Policymakers. In: Global warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (V. Masson-Delmotte, P., Zhai, H. O., Pörtner, D., Roberts, J., Skea, P.R., Shukla, A., Pirani, W., Moufouma-Okia, C., Péan, R., Pidcock, S., Connors, J.B.R., Matthews, Y., Chen, X., Zhou, M. I., Gomis, E., Lonnoy, T., Maycock, M., Tignor, T., Waterfield, eds.). World Meteorological Organization, Geneva, Switzerland. https://www.ipcc.ch/sr15/ (Accessed 15 November 2019).29.Eller, C. B., Rowland, L. & Oliveira, R. S. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Phil. Trans. R. Soc. B 373, 1–12. https://doi.org/10.1098/rstb.2017.0315 (2018).CAS 
    Article 

    Google Scholar 
    30.Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 3(9), 811–815. https://doi.org/10.1038/nclimate1907 (2013).ADS 
    Article 

    Google Scholar 
    31.Goldstein, G. et al. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell Environ. 21, 397–406. https://doi.org/10.1046/j.1365-3040.1998.00273.x (1998).Article 

    Google Scholar 
    32.Landsberg, J. & Waring, R. Water relations in tree physiology: where to from here?. Tree Physiol. 37, 18–32. https://doi.org/10.1093/treephys/tpw102 (2016).Article 

    Google Scholar 
    33.Kim, J. S. & Kug, J.-S. Increased atmospheric CO2 growth rate during El Niño driven by reduced terrestrial CO2 capture in the CMIP5 ESMs. J. Clim. 29, 8783–8805. https://doi.org/10.1175/JCLI-D-14-00672.1 (2016).ADS 
    Article 

    Google Scholar 
    34.Kim, J. S., Kug, J.-S. & Jeong, S. Intensification of terrestrial carbon cycle related to El Niño-Southern Oscillation under greenhouse warming. Nat. Commun. 8, 1674. https://doi.org/10.1038/s41467-017-01831-7 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Wang, Q., Cai, W., Zeng, L. & Wang, D. Nonlinear meridional moisture advection and the ENSO-southern China rainfall teleconnection. Geophys. Res. Lett. 45(9), 4353–4360. https://doi.org/10.1029/2018GL077446 (2018).ADS 
    Article 

    Google Scholar 
    36.Wang, Q., Wang, Y., Sui, J., Zhou, W. & Li, D. Effects of weak and strong winter currents on the thermal state of the South China Sea. J. Clim. 34(1), 313–325. https://doi.org/10.1175/JCLI-D-19-0790.1 (2021).ADS 
    Article 

    Google Scholar 
    37.Xie, S.-P. et al. Eastern Pacific ITCZ dipole and ENSO diversity. J. Clim. 31, 4449–4462. https://doi.org/10.1175/JCLI-D-17-0905.1 (2018).ADS 
    Article 

    Google Scholar 
    38.Peng, Q., Xie, S.-P., Wang, D., Zheng, X.-T. & Zhang, H. Coupled ocean–atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 10, 298. https://doi.org/10.1038/s41467-018-08258-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Peng, Q. et al. Eastern Pacific winds in the evolution of El Niño: implications for ENSO diversity. J. Clim. 33, 3197–3212. https://doi.org/10.1175/JCLI-D-19-0435.1 (2020).ADS 
    Article 

    Google Scholar 
    40.Barkhodarian, A., Saatchi, S. S., Behrangi, A., Loikith, P. C. & Mechoso, C. R. A recent systematic increase in vapor pressure deficit over tropical South America. Sci. Rep. 9, 15331. https://doi.org/10.1038/s41598-019-51857-8 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Meinzer, F. C., James, S. A., Goldstein, G. & Woodruff, D. Whole-tree water transport scales sapwood capacitance in tropical forest canopy trees. Plant Cell Environ. 26, 1147–1155. https://doi.org/10.1046/j.1365-3040.2003.01039.x (2003).Article 

    Google Scholar 
    42.Luo, Z. et al. Responses of plant water use to a severe summer drought for two subtropical tree species in the central southern China. J. Hydrol. Reg. Stud. 8, 1–9. https://doi.org/10.1016/j.ejrh.2016.08.001 (2016).CAS 
    Article 

    Google Scholar 
    43.Vinya, R., Malhi, Y., Brown, N. & Fisher, J. Functional coordination between branch hydraulic properties and leaf functional traits in miombo woodlands: Implications for water stress management and species habitat preference. Acta Physiol. Plant 34, 1701–1710. https://doi.org/10.1007/s11738-012-0965-3 (2012).CAS 
    Article 

    Google Scholar 
    44.Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Autralia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2005).Article 

    Google Scholar 
    45.Romero, E., González, E. J., Meave, J. A. & Terrazas, T. Wood anatomy of dominant species with contrasting ecological performance in tropical dry forest succession. Plant Biosyst. 154, 524–534. https://doi.org/10.1080/11263504.2019.1651775 (2019).Article 

    Google Scholar 
    46.Pineda-García, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).Article 
    PubMed 

    Google Scholar 
    47.Choat, B., Sack, L. & Holbrook, M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).Article 
    PubMed 

    Google Scholar 
    48.Fallas-Cedeño, L., Holbrook, N. M., Rocha, O. J., Vásquez, N. & Gutiérrez-Soto, M. Phenology, lignotubers, and water relations of Cochlospermum vitifolium, a pioneer tropical dry forest tree in Costa Rica. Biotropica 42, 104–111. https://doi.org/10.1111/j.1744-7429.2009.00539.x (2010).Article 

    Google Scholar 
    49.Quintanar-Isaías, A., Velasquez-Nuñez, M., Solares-Arenas, F., Pérez-Olvera, C. P. & Torre-Blanco, A. Secondary stem anatomy and uses or four drought-deciduous species of a tropical dry forest in Mexico. Rev. Biol. Trop. 53, 29–48. https://doi.org/10.15517/RBT.V53I1-2.14297 (2005).Article 

    Google Scholar 
    50.Veneklaas, E. J., Santos-Silva, M. P. & den Ouden, F. Determinants of growth rate in Ficus benjamina L. compared to related faster-growing woody and herbaceous species. Sci. Hortic. 93, 75–84. https://doi.org/10.1016/S0304-4238(01)00315-6 (2002).Article 

    Google Scholar 
    51.Mediavilla, S., Escudero, A. & Heilmeier, H. Internal leaf anatomy and photosynthetic resource-use efficiency: Interspecific and intraspecific comparisons. Tree Physiol. 21, 251–259. https://doi.org/10.1093/treephys/21.4.251 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Peguero-Pina, J. J., Sancho-Knapik, D. & Gil-Pelegrin, E. Ancientcell structural traits and photosynthesis in today’s environment. J. Exp. Bot. 68, 1389–1392. https://doi.org/10.1093/jxb/erx081 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kitajima, K. & Poorter, L. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species. New Phytol. 186, 708–721. https://doi.org/10.1111/j.1469-8137.2010.03212.x (2010).Article 
    PubMed 

    Google Scholar 
    54.Schwedenman, L., Pendall, E., Sanchez-Bragado, R., Kunert, N. & Holscher, D. Tree water uptake in a tropical plantation varying in tree diversity: Interspecific differences, seasonal shifts and complementary. Ecohydrology 8, 1–12. https://doi.org/10.1002/eco.1479 (2015).Article 

    Google Scholar 
    55.Reyes-García, C., Andrade, J. L., Simá, J. L., Us-Santamaría, R. & Jackson, P. C. Sapwood to heartwood ratio affects whole-tree water use in dry forest legume and non-legume trees. Trees 26, 1317–1330. https://doi.org/10.1007/s00468-012-0708-5 (2012).Article 

    Google Scholar 
    56.Santiago, L. et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140, 543–550. https://doi.org/10.1007/s00442-004-1624-1 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Li, X. et al. Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient. Plant Cell Environ. 41, 646–660. https://doi.org/10.1111/pce.13129 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Querejeta, J. I., Estrada-Medina, H., Allen, M. F., Jiménez-Osorio, J. J. & Ruenes, R. Utilization of bedrock water by Brosimum alicastrum trees growing on shallow soil atop limestone in a dry tropical climate. Plant Soil 287, 187–197. https://doi.org/10.1007/s11104-006-9065-8 (2006).CAS 
    Article 

    Google Scholar 
    59.Scholz, F. G., Phillips, N. G., Bucci, S. J., Meinzer, F. C. & Goldstein, G. Hydraulic capacitance: Biophysics and functional significance of internal water sources in relation to tree size. In Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer, F. C. et al.) 341–362 (Springer, 2011). https://doi.org/10.1007/978-94-007-1242-3_13.
    Google Scholar 
    60.Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 139, 1–5. https://doi.org/10.1038/nplants.2015.139 (2015).Article 

    Google Scholar 
    61.Sobrado, M. A. Embolism vulnerability in drought-deciduous and evergreen species of a tropical dry forest. Acta Oecol. 18, 383–391. https://doi.org/10.1016/S1146-609X(97)80030-6 (1997).ADS 
    Article 

    Google Scholar 
    62.Brodribb, T. J., Holbrook, N. M., Edwards, E. J. & Gutierrez, M. V. Relation between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ. 26, 443–450. https://doi.org/10.1046/j.1365-3040.2003.00975.x (2003).Article 

    Google Scholar 
    63.Orellana, R., Balam, M. & Bañuelos, I. Balance Ombrotérmico, evaluación climática. In Atlas de procesos territoriales de Yucatán (eds de Fuentes, A. G. et al.) 174–175 (Universidad Autónoma de Yucatán, 1999).
    Google Scholar 
    64.Instituto Nacional de Estadística Geografía e Informática, 2017. Anuario estadístico y geográfico de Quintana Roo. INEGI, México. https://www.datatur.sectur.gob.mx/ITxEF_Docs/QROO_ANUARIO. (Accessed 12 December 2019).65.Espinoza-Avalos, J., Islebe, G. A. & Hernández-Arana, H. A. El sistema ecológico de la bahía de Chetumal/corozal: Costa occidental del mar caribe (El Colegio de la Frontera Sur, 2009).
    Google Scholar 
    66.McKee, T.B., Doesken, N.J. & Kelist, J. The relationship of drought frequency and duration to time scale. in American Meteorological Society, Proceedings of the Eighth Conference on Applied Climatology, 17–22 January, Anaheim, California 179–184 (1993).67.Cheval, S. The Standardized Precipitation Index—An overview. Rom. J. Meteorol. 12(1–2), 17–64 (2015).
    68.Koide, R. T., Robichaux, R. H., Morse, S. R. & Smith, C. M. Plant water status, hydraulic resistance and capacitance. In Plant Physiological Ecology, Field Methods and Instrumentation (eds Pearcy, R. W. et al.) 161–178 (Chapman and Hall, 1991). https://doi.org/10.1007/978-94-010-9013-1_9.
    Google Scholar 
    69.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.StatSoft, Inc. STATISTICA (data analysis software system), version 12. www.statsoft.com (2013). More

  • in

    Evolutionary history of mental glands in turtles reveals a single origin in an aquatic ancestor and recurrent losses independent of macrohabitat

    1.Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article 

    Google Scholar 
    2.Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B 340, 215–225 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Bakker, T. C. & Mundwiler, B. Female mate choice and male red coloration in a natural three-spined stickleback (Gasterosteus aculeatus) population. Behav. Ecol. 5, 74–80 (1994).Article 

    Google Scholar 
    4.Molnár, O., Bajer, K., Mészáros, B., Török, J. & Herczeg, G. Negative correlation between nuptial throat colour and blood parasite load in male European green lizards supports the Hamilton-Zuk hypothesis. Naturwissenschaften 100, 551–558 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Wolfenbarger, L. L. Red coloration of male northern cardinals correlates with mate quality and territory quality. Behav. Ecol. 10, 80–90 (1999).Article 

    Google Scholar 
    6.Endler, J. A. Natural-selection on color patterns in Poecilia reticulata. Evolution 34, 76–91 (1980).PubMed 
    Article 

    Google Scholar 
    7.Marcondes, R. S. & Brumfield, R. T. Fifty shades of brown: Macroevolution of plumage brightness in the Furnariida, a large clade of drab Neotropical passerines. Evolution 73, 704–719 (2019).PubMed 
    Article 

    Google Scholar 
    8.Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).9.Campos, S. M. et al. Volatile fatty acid and aldehyde abundances evolve with behavior and habitat temperature in Sceloporus lizards. Behav. Ecol. (2020).10.Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. B 271, 2249–2255 (2004).PubMed 
    Article 

    Google Scholar 
    11.Karlson, P. & Lüscher, M. ‘Pheromones’: A new term for a class of biologically active substances. Nature 183, 55–56 (1959).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biol. 10, 200252 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Symonds, M. R. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23, 220–228 (2008).PubMed 
    Article 

    Google Scholar 
    14.Boulet, M., Charpentier, M. J. & Drea, C. M. Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evol. Biol. 9, 281 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Janssenswillen, S. et al. Origin and diversification of a salamander sex pheromone system. Mol. Biol. Evol. 32, 472–480 (2015).PubMed 
    Article 

    Google Scholar 
    17.Kikuyama, S. et al. Sodefrin: A female-attracting peptide pheromone in newt cloacal glands. Science 267, 1643–1645 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Wabnitz, P. A., Bowie, J. H., Tyler, M. J., Wallace, J. C. & Smith, B. P. Aquatic sex pheromone from a male tree frog. Nature 401, 444–445 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).Article 

    Google Scholar 
    20.Martín, J. & López, P. Pheromones and chemical communication in lizards. In Reproductive Biology and Phylogeny of Lizards and Tuatara (eds Rheubert, J. L. et al.) 43–75 (CRC Press, Boca Raton, 2014).
    Google Scholar 
    21.Silva, L. & Antunes, A. Vomeronasal receptors in vertebrates and the evolution of pheromone detection. Ann. Rev. Anim. Biosci. 5, 353–370 (2017).CAS 
    Article 

    Google Scholar 
    22.Bonadonna, F. & Nevitt, G. A. Partner-specific odor recognition in an Antarctic seabird. Science 306, 835–835 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    24.Krause, E. T., Krüger, O., Kohlmeier, P. & Caspers, B. A. Olfactory kin recognition in a songbird. Biol. Lett. 8, 327–329 (2012).Article 

    Google Scholar 
    25.Baeckens, S. et al. Environmental conditions shape the chemical signal design of lizards. Funct. Ecol. 32, 566–580 (2018).Article 

    Google Scholar 
    26.Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).Article 

    Google Scholar 
    27.Baeckens, S., Edwards, S., Huyghe, K. & Van Damme, R. Chemical signalling in lizards: An interspecific comparison of femoral pore numbers in Lacertidae. Biol. J. Linn. Soc. 114, 44–57 (2015).Article 

    Google Scholar 
    28.Ossip-Klein, A. G., Fuentes, J. A., Hews, D. K. & Martins, E. P. Information content is more important than sensory system or physical distance in guiding the long-term evolutionary relationships between signaling modalities in Sceloporus lizards. Behav. Ecol. Sociobiol. 67, 1513–1522 (2013).Article 

    Google Scholar 
    29.Pincheira-Donoso, D., Hodgson, D. J. & Tregenza, T. Comparative evidence for strong phylogenetic inertia in precloacal signalling glands in a species-rich lizard clade. Evol. Ecol. Res. 10, 11–28 (2008).
    Google Scholar 
    30.Wang, Z. et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701–706 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Schwenk, K. Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In Sensory Evolution on the Threshold: Adaptations in Secondarily Aquatic Vertebrates (eds Thewissen, J. H. M. & Nummela, S.) 65–81 (University of California Press, Berkeley, 2008).
    Google Scholar 
    32.Vieyra, M. L. Olfactory receptor genes in terrestrial, freshwater, and sea turtles: Evidence for a reduction in the number of functional genes in aquatic species. Chelon. Conserv. Biol. 10, 181–187 (2011).Article 

    Google Scholar 
    33.Mason, R. T. & Parker, M. R. Social behavior and pheromonal communication in reptiles. J. Comp. Physiol. A. 196, 729–749 (2010).CAS 
    Article 

    Google Scholar 
    34.Ehrenfeld, J. G. & Ehrenfeld, D. W. Externally secreting glands of freshwater and sea turtles. Copeia 1973, 305–314 (1973).Article 

    Google Scholar 
    35.Waagen, G. N. Musk glands in recent turtles. Master of Science thesis, Department of Biology, University of Utah (1972).36.Weldon, P. J., Flachsbarth, B. & Schulz, S. Natural products from the integument of nonavian reptiles. Nat. Prod. Rep. 25, 738–756 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Ibáñez, A. et al. The chemistry and histology of sexually dimorphic mental glands in the freshwater turtle, Mauremys leprosa. PeerJ 8, e9047 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Rose, F. L., Drotman, R. & Weaver, W. G. Electrophoresis of chin gland extracts of Gopherus (tortoises). Comp. Biochem. Physiol. 29, 847–851 (1969).CAS 
    Article 

    Google Scholar 
    39.Winokur, R. M. & Legler, J. M. Chelonian mental glands. J. Morphol. 147, 275–291 (1975).PubMed 
    Article 

    Google Scholar 
    40.Alberts, A. C., Rostal, D. C. & Lance, V. A. Studies on the chemistry and social significance of chin gland secretions in the desert tortoise, Gopherus agassizii. Herpetol. Monogr. 8, 116–124 (1994).Article 

    Google Scholar 
    41.Kelley, M. D. & Mendonça, M. T. Mental gland secretions as a social cue in gopher tortoises (Gopherus polyphemus): Tortoise presence stimulates and maintains social behaviour with chemical cues. Acta Ethol. 24, 1–8 (2020).Article 

    Google Scholar 
    42.Rose, F. L. Tortoise chin gland fatty acid composition: Behavioral significance. Comp. Biochem. Physiol. 32, 577–580 (1970).CAS 
    Article 

    Google Scholar 
    43.Pereira, A. G., Sterli, J., Moreira, F. R. & Schrago, C. G. Multilocus phylogeny and statistical biogeography clarify the evolutionary history of major lineages of turtles. Mol. Phylogenet. Evol. 113, 59–66 (2017).PubMed 
    Article 

    Google Scholar 
    44.Grosse, A. M., Sterrett, S. C. & Maerz, J. C. Effects of turbidity on the foraging success of the eastern painted turtle. Copeia 2010, 463–467 (2010).Article 

    Google Scholar 
    45.Vitt, L. J. & Caldwell, J. P. Herpetology: An Introductory Biology of Amphibians and Reptiles (Academic Press, 2013).
    Google Scholar 
    46.Thomson, R. C., Spinks, P. Q. & Shaffer, H. B. A global phylogeny of turtles reveals a burst of climate-associated diversification on continental margins. Proc. Natl. Acad. Sci. 118, e2012215118 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    47.Colston, T. J., Kulkarni, P., Jetz, W. & Pyron, R. A. Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol. Biol. 20, 1–16 (2020).Article 

    Google Scholar 
    48.Joyce, W. G., Parham, J. F., Lyson, T. R., Warnock, R. C. & Donoghue, P. C. A divergence dating analysis of turtles using fossil calibrations: An example of best practices. J. Paleontol. 87, 612–634 (2013).Article 

    Google Scholar 
    49.Shaffer, H. B., McCartney-Melstad, E., Near, T. J., Mount, G. G. & Spinks, P. Q. Phylogenomic analyses of 539 highly informative loci dates a fully resolved time tree for the major clades of living turtles (Testudines). Mol. Phylogenet. Evol. 115, 7–15 (2017).PubMed 
    Article 

    Google Scholar 
    50.Beaulieu, J. M., O’Meara, B. C. & Donoghue, M. J. Identifying hidden rate changes in the evolution of a binary morphological character: The evolution of plant habit in campanulid angiosperms. Syst. Biol. 62, 725–737 (2013).PubMed 
    Article 

    Google Scholar 
    51.Joyce, W. G. & Gauthier, J. A. Palaeoecology of Triassic stem turtles sheds new light on turtle origins. Proc. R. Soc. Lond. B 271, 1–5 (2004).Article 

    Google Scholar 
    52.Quagliata, S., Malentacchi, C., Delfino, C., Brunasso, A. M. & Delfino, G. Adaptive evolution of secretory cell lines in vertebrate skin. Caryologia 59, 187–206 (2006).Article 

    Google Scholar 
    53.Shi, P. & Zhang, J. Extraordinary diversity of chemosensory receptor gene repertoires among vertebrates. In Chemosensory Systems in Mammals, Fishes, and Insects (eds Meyerhof, W. & Korsching, S.) 1–23 (Springer, Berlin, 2009).
    Google Scholar 
    54.Swaney, W. T. & Keverne, E. B. The evolution of pheromonal communication. Behav. Brain Res. 200, 239–247 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Martín, J. & López, P. Effects of global warming on sensory ecology of rock lizards: Increased temperatures alter the efficacy of sexual chemical signals. Funct. Ecol. 27, 1332–1340 (2013).Article 

    Google Scholar 
    56.Ibáñez, A., López, P. & Martín, J. Discrimination of conspecifics’ chemicals may allow Spanish terrapins to find better partners and avoid competitors. Anim. Behav. 83, 1107–1113 (2012).Article 

    Google Scholar 
    57.Lewis, C. H., Molloy, S. F., Chambers, R. M. & Davenport, J. Response of common musk turtles (Sternotherus odoratus) to intraspecific chemical cues. J. Herpetol. 41, 349–353 (2007).Article 

    Google Scholar 
    58.Poschadel, J. R., Meyer-Lucht, Y. & Plath, M. Response to chemical cues from conspecifics reflects male mating preference for large females and avoidance of large competitors in the European pond turtle, Emys orbicularis. Behaviour 143, 569–587 (2006).Article 

    Google Scholar 
    59.Weaver, W. G. Courtship and combat behavior in Gopherus berlandieri. Bull. Fla. St. Mus. 15, 1–43 (1970).
    Google Scholar 
    60.Auffenberg, W. On the courtship of Gopherus polyphemus. Herpetologica 22, 113–117 (1966).
    Google Scholar 
    61.Augustine, L. & Haislip, N. Husbandry and reproduction of the Indochinese box turtle Cuora galbinifrons, Bourret’s box turtle Cuora bourreti and Southern Vietnam box turtle Cuora picturata in North America. Int. Zoo Yearb. 53, 238–249 (2019).Article 

    Google Scholar 
    62.Liu, Y.-X., Davy, C. M., Shi, H.-T. & Murphy, R. W. Sex in the half-shell: A review of the functions and evolution of courtship behavior in freshwater turtles. Chelon. Conserv. Biol. 12, 84–100 (2013).Article 

    Google Scholar 
    63.Schilde, M. Beobachtungen zum Fortpflanzungsverhalten von Sacalia bealei und Sacalia quadriocellata. Radiata 14, 30–32 (2005).
    Google Scholar 
    64.Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 2. A comparison above the species level and remarks on the evolution of behaviour elements. Bull. Chicago Herpetol. Soc. 34, 225–236 (1999).
    Google Scholar 
    65.Martín, J. & López, P. Multimodal sexual signals in male ocellated lizards Lacerta lepida: Vitamin E in scent and green coloration may signal male quality in different sensory channels. Naturwissenschaften 97, 545–553 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    66.Rowe, C. Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58, 921–931 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Martins, E. P. et al. Evolving from static to dynamic signals: Evolutionary compensation between two communicative signals. Anim. Behav. 102, 223–229 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Ferrara, C. R., Vogt, R. C. & Sousa-Lima, R. S. Turtle vocalizations as the first evidence of posthatching parental care in chelonians. J. Comp. Psychol. 127, 24 (2013).PubMed 
    Article 

    Google Scholar 
    69.Bulté, G., Germain, R. R., O’Connor, C. M. & Blouin-Demers, G. Sexual dichromatism in the northern map turtle, Graptemys geographica. Chelon. Conserv. Biol. 12, 187–192 (2013).Article 

    Google Scholar 
    70.Ibáñez, A., Marzal, A., López, P. & Martín, J. Sexually dichromatic coloration reflects size and immunocompetence in female Spanish terrapins, Mauremys leprosa. Naturwissenschaften 100, 1137–1147 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    71.Rowe, J. W., Gradel, J. R., Bunce, C. F. & Clark, D. L. Sexual dimorphism in size and shell shape, and dichromatism of spotted turtles (Clemmys guttata) in southwestern Michigan. Amphibia-Reptilia 33, 443–450 (2013).Article 

    Google Scholar 
    72.Steffen, J. E., Learn, K. M., Drumheller, J. S., Boback, S. M. & McGraw, K. J. Carotenoid composition of colorful body stripes and patches in the painted turtle (Chrysemys picta) and red-eared slider (Trachemys scripta). Chelon. Conserv. Biol. 14, 56–63 (2015).Article 

    Google Scholar 
    73.Moll, E. O., Matson, K. E. & Krehbiel, E. B. Sexual and seasonal dichromatism in the Asian river turtle Callagur borneoensis. Herpetologica 37, 181–194 (1981).
    Google Scholar 
    74.Praschag, P. et al. A new subspecies of Batagur affinis (Cantor, 1847), one of the world’s most critically endangered chelonians (Testudines: Geoemydidae). Zootaxa 2233, 57–68 (2009).Article 

    Google Scholar 
    75.Praschag, P., Hundsdörfer, A. & Fritz, U. Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zool. Scr. 36, 429–442 (2007).Article 

    Google Scholar 
    76.Fritz, U. Courtship behavior and systematics in the subtribe Nectemydina. 1. The genus Trachemys, especially Trachemys scripta callirostris (Gray, 1855). Bull. Chicago Herpetol. Soc. 33, 225–236 (1998).
    Google Scholar 
    77.Ferrara, C. R., Vogt, R. C., Eisemberg, C. C. & Doody, J. S. First evidence of the pig-nosed turtle (Carettochelys insculpta) vocalizing underwater. Copeia 105, 29–32 (2017).Article 

    Google Scholar 
    78.Baeckens, S. & Whiting, M. J. Investment in chemical signalling glands facilitates the evolution of sociality in lizards. Proc. R. Soc. B 288, 20202438 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Baeckens, S., García-Roa, R., Martín, J. & Van Damme, R. The role of diet in shaping the chemical signal design of lacertid lizards. J. Chem. Ecol. 43, 902–910 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).Article 

    Google Scholar 
    81.Kopena, R., Martín, J., López, P. & Herczeg, G. Vitamin E supplementation increases the attractiveness of males’ scent for female European green lizards. PLoS ONE 6, e19410 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Martin, J., Ortega, J. & Lopez, P. Interpopulational variations in sexual chemical signals of Iberian wall lizards may allow maximizing signal efficiency under different climatic conditions. PLoS ONE 10, e0131492 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Donihue, C. M. et al. Rapid and repeated divergence of animal chemical signals in an island introduction experiment. J. Anim. Ecol. 89, 1458–1467 (2020).PubMed 
    Article 

    Google Scholar 
    84.Novelli, I. A. Estudo morfológico (anatômico e histológico) do sistema tegumentar de Hydromedusa maximiliani (Mikan, 1820) (Testudines, Chelidae) e Phrynops geoffroanus (Schweigger, 1812) (Testudines, Chelidae). Doctoral thesis, Universidade Federal Rural do Rio de Janeiro (2011).85.Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).PubMed 
    Article 

    Google Scholar 
    86.Bonin, F., Devaux, B. & Dupré, A. Turtles of the World (JHU Press, Baltimore, 2006).
    Google Scholar 
    87.Bour, R. Global diversity of turtles (Chelonii; Reptilia) in freshwater. Hydrobiologia 595, 593–598 (2008).Article 

    Google Scholar 
    88.Ernst, C. H. & Barbour, R. W. Turtles of the World (Smithsonian Institution Press, Washington DC, 1989).
    Google Scholar 
    89.Beaulieu, J. M., Oliver, J. C. & O’Meara, B. C. corHMM: Analysis of Binary Character Evolution, https://CRAN.R-project.org/package=corHMM (2017).90.Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic comparative datasets. Methods Ecol. Evol. 12, 468–478 (2021).Article 

    Google Scholar 
    91.Beaulieu, J. M. & Donoghue, M. J. Fruit evolution and diversification in campanulid angiosperms. Evolution 67, 3132–3144 (2013).PubMed 
    Article 

    Google Scholar 
    92.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    93.Pagel, M. Detecting correlated evolution on phylogenies: A general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).ADS 
    Article 

    Google Scholar 
    94.Gray, K. M. & Steidl, R. J. A plant invasion affects condition but not density or population structure of a vulnerable reptile. Biol. Invasions 17, 1979–1988 (2015).Article 

    Google Scholar 
    95.Edwards, T. et al. The desert tortoise trichotomy: Mexico hosts a third, new sister-species of tortoise in the Gopherus morafkai—G. agassizii group. ZooKeys 562, 131–158 (2016).Article 

    Google Scholar  More

  • in

    Long-term conservation agriculture and best nutrient management improves productivity and profitability coupled with soil properties of a maize–chickpea rotation

    1.Hobbs, P. R. & Gupta, R. K. Problems and challenges of no-till farming for the Rice–Wheat systems of the Indo-Gangetic Plains in South Asia. In Sustainable Agriculture and the International Rice–Wheat System (eds Lal, R. et al.) 101–119 (Ohio State University; Marcel Dekker Inc, 2004).
    Google Scholar 
    2.Saharawat, Y. S. et al. Evaluation of alternative tillage and crop establishment methods in a rice–wheat rotation in north-western IGP. Field Crops Res. 116, 260–267 (2010).Article 

    Google Scholar 
    3.Jat, R. K. et al. Seven years of conservation agriculture in a rice–wheat rotation of eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crops Res. 164, 199–210 (2014).Article 

    Google Scholar 
    4.Parihar, C. M. et al. Long-term conservation agriculture and intensified cropping systems: Effects on growth, yield, water, and energy-use efficiency of maize in north-western India. Pedosphere 28(6), 952–963 (2018).Article 

    Google Scholar 
    5.Shiferaw, B., Prasanna, B. M., Hellin, J. & Banziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 3, 30–327 (2011).
    Google Scholar 
    6.Srinivasan, G., Zaidi, P. H., Prasanna, B. M., Gonzalez, F. & Lesnick, K. eds. Proceedings of the Eighth Asian Regional Maize Workshop: New Technologies for the New Millennium. Bangkok, Thailand, 5–8 August 2002. Mexico, D.F.: CIMMYT (2004).7.FAO. FAOSTAT database 2019. http://www.fao.org/faostat/en/#data/QC (Accessed 17 April 2021). FAO, Rome (2019).8.Aulakh, M. S. & Grant, C. A. Integrated Nutrient Management for Sustainable Crop Production (The Haworth Press, Taylor and Francis Group, 2008).Book 

    Google Scholar 
    9.Jat, S. L., Parihar, C. M., Singh, A. K., Jat, M. L. & Jat, R. K. Carbon sustainability and productivity of maize based cropping system under conservation agriculture practices in Indo-Gangetic plains. In: Resilient food systems for a changing world, Proceedings of the 5th World Congress of Conservation Agriculture Incorporating 3rd Farming Systems Design Conference, Brisbane Australia, 26-29 September, 2011, p. 110–111 (2011).10.Parihar, C. M. et al. Conservation agriculture in irrigated intensive maize-based systems of north-western India: Effects on crop yields, water productivity and economic profitability. Field Crops Res. 193, 104–116 (2016).Article 

    Google Scholar 
    11.Jat, M. L. et al. Crop residue management for sustainable production of maize (Zea mays) in dryland ecosystem. Chem. Sci. Rev. Lett. 6(23), 1681–1686 (2017).CAS 

    Google Scholar 
    12.Pooniya, V. et al. Six years of conservation agriculture and nutrient management in maize–mustard rotation: Impact on soil properties, system productivity and profitability. Field Crops Res. 260, 108002 (2021).Article 

    Google Scholar 
    13.Gathala, M. K. et al. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year rice–wheat rotation. Soil Sci. Soc. Am. J. 75, 1851–1862 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Ladha, J. K. et al. Integrating crop and resource management technologies for enhanced productivity, profitability and sustainability of the rice-wheat system in South Asia. p. 69–108. In J.K. Ladha et al. (ed.) Integrated crop and resource management in the rice-wheat system of South Asia. IRRI, Los Baños, Philippines (2009).15.Corsi, S. & Muminjanov, H. Conservation Agriculture: Training guide for extension agents and farmers in Eastern Europe and Central Asia. Rome – ISBN 978-92-5-131456-2 (FAO, 2019).16.Balwinder, S., Humphreys, E., Gaydon, D. S. & Yadav, S. Options for increasing the productivity of the rice–wheat system of north-west India while reducing groundwater depletion Part 2. Is conservation agriculture the answer?. Field Crops Res. 173, 81–94 (2015).Article 

    Google Scholar 
    17.Laik, R. et al. Integration of conservation agriculture with best management practices for improving system performance of the rice–wheat rotation in eastern Indo-Gangetic plains of India. Agric. Ecosyst. Environ. 195, 68–82 (2014).ADS 
    Article 

    Google Scholar 
    18.Govaerts, B. et al. Conservation agriculture as a sustainable option for the central Mexican highlands. Soil Till. Res. 103, 222–230 (2009).Article 

    Google Scholar 
    19.Jat, M. L. et al. Double no-till and permanent raised beds in maize–wheat rotation of north western Indo-Gangetic plains of India: Effects on crop yields, water productivity, profitability and soil physical properties. Field Crop Res. 149, 291–299 (2013).Article 

    Google Scholar 
    20.Ludwig, B. et al. Effects of fertilization and soil management on crop yields and carbon stabilization in soils. A review. Agron. Sustain. Dev. 31, 361–372 (2011).Article 

    Google Scholar 
    21.Powlson, D. S., Stirling, C. M., Thierfelder, C., White, R. P. & Jat, M. L. Does conservation agriculture deliver climate change mitigation through soil carbon sequestration in tropical agro- ecosystems?. Agric. Ecosyst. Environ. 220, 164–174 (2016).CAS 
    Article 

    Google Scholar 
    22.Kandeler, E. et al. Response of soil microbial biomass and enzyme activities to the transient elevation of carbon dioxide in semi-arid grassland. Soil Biol. Biochem. 38, 2448–2460 (2006).CAS 
    Article 

    Google Scholar 
    23.Witt, C., Pasuquin, J. M., Pampolino, M.F., Buresh, R. J. & Dobermann, A. A manual for the development and participatory evaluation of site-specific nutrient management for maize in tropical, favorable environments. International Plant Nutrition Institute, Penang, Malaysia. http://seap.ipni.net (2009).24.Pampolino, M. et al. Development and evaluation of nutrient expert for wheat in South Asia (special issue): Nutrient management for wheat. Better Crops 96(3), 29–31 (2012).
    Google Scholar 
    25.Johnston, A. M. Nutrient expert-going global with improved fertilizer recommendations. Better Crops.Plant Food. 99(3), 20, (2015).26.Sapkota, T. B. et al. Precision nutrient management in conservation agriculture based wheat production system of north–west India: Profitability, nutrient use efficiency and environmental footprint. Field Crop Res. 155, 233–244 (2014).Article 

    Google Scholar 
    27.Pooniya, V. et al. ‘Nutrient expert’ assisted site-specific-nutrient-management: An alternative precision fertilization technology for maize–wheat cropping system in South-Asian Indo-Gangetic Plains. Indian J. Agric. Sci. 85(8), 996–1002 (2015).CAS 

    Google Scholar 
    28.Budhathoki, S. et al. Assessing growth, productivity and profitability of drought tolerant rice using nutrient expert—rice and other precision fertilizer management practices in Lamjung, Nepal. Acta. Sci. Agric. 2(8), 153–158 (2018).
    Google Scholar 
    29.Satyanarayana, T. et al. Economics of nitrogen fertilizer application in rice, wheat and maize grown in the Indo-Gangetic Plains. Indian J. of Fert. 8(8), 62–71 (2012).
    Google Scholar 
    30.Satyanarayana, T., Majumdar, K., Pampolino, M., Johnston, A. M. & Jat, M. L. Nutrient ExpertTM: A tool to optimize nutrient use and improve productivity of maize. Better Crops. South Asia 97(1), 21–24 (2013).
    Google Scholar 
    31.Anonymous. Annual Progress Report Kharif Maize. All India Coordinated Research Project on Maize. Eds. V. Mahajan et al. Indian Institute of Maize Research, PAU Campus, Ludhiana-141 004, India. pp. 1082 (2016).32.Abrol, I. P. & Sangar, S. Sustaining Indian agriculture-conservation agriculture the way forward. Curr. Sci. 91, 1020–2015 (2006).
    Google Scholar 
    33.Ghosh, P. K. et al. Conservation agriculture towards achieving food security in north-east India. Curr. Sci. 99, 915–921 (2010).
    Google Scholar 
    34.Parihar, C. M. et al. Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil Tillage Res. 202, 104653 (2020).Article 

    Google Scholar 
    35.Mahajan, G., Singh, K. & Gill, M. S. Scope for enhancing and sustaining rice productivity in Punjab (food bowl of India). Afr. J. Agric. Res. 7, 5611–5620 (2012).Article 

    Google Scholar 
    36.Jat, H. S. et al. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. Soil Till. Res. 190, 128–138 (2019).CAS 
    Article 

    Google Scholar 
    37.Jat, H. S. et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 64, 531–545 (2018).CAS 
    Article 

    Google Scholar 
    38.Kaschuk, G., Alberton, O. & Hungria, M. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biol. Biochem. 42, 1–13 (2010).CAS 
    Article 

    Google Scholar 
    39.Sarkar, D. et al. Can sustainability of maize–mustard cropping system be achieved through balanced nutrient management?. Field Crops Res. 225, 9–21 (2018).Article 

    Google Scholar 
    40.Pooniya, V., Palta, J. A., Chen, Y., Delhaize, E. & Siddique, K. H. M. Impact of the TaMATE1B gene on above and below-ground growth of durum wheat grown on an acid and Al3+-toxic soil. Plant Soil 447, 73–84 (2020).CAS 
    Article 

    Google Scholar 
    41.Pasuquin, J. M. et al. Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management. Field Crops Res. 156, 219–230 (2014).Article 

    Google Scholar 
    42.Choudhary, K. M. et al. Evaluating alternatives to rice–wheat system in western Indo-Gangetic Plains: Crop yields, water productivity and economic profitability. Field Crop Res. 218, 1–10 (2018).Article 

    Google Scholar 
    43.Jat, R. K. et al. Ten years of conservation agriculture in a rice-maize rotation of Eastern Gangetic Plains of India: Yield trends, water productivity and economic profitability. Field Crop Res. 232, 1–10 (2019).Article 

    Google Scholar 
    44.Jat, H. S. et al. Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Sci. Rep. 10(1), 1–16 (2020).Article 
    CAS 

    Google Scholar 
    45.Thierfelder, C., Amezquita, E. & Stahr, K. Effects of intensifying organic manuring and tillage practices on penetration resistance and infiltration rate. Soil Till. Res. 82, 211–226 (2005).Article 

    Google Scholar 
    46.Bescansa, P., Imaz, M. J., Virto, I., Enrique, A. & Hoogmoed, W. B. Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Till. Res. 87, 19–27 (2006).Article 

    Google Scholar 
    47.Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. JSWC. 70, 55A-62A (2015).
    Google Scholar 
    48.Page, K. L., Dang, Y. P. & Dalal, R. C. The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Front. Sustain. Food Syst. 4, 31 (2020).Article 

    Google Scholar 
    49.Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Bio. Biochem. 32, 2099–2103 (2000).CAS 
    Article 

    Google Scholar 
    50.Tan, Z., Lal, R., Owens, L. & Izaurralde, R. C. Distribution of light and heavy fractions of soil organic carbon as related to land use and tillage practice. Soil Till. Res. 92, 53–59 (2007).Article 

    Google Scholar 
    51.Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).ADS 
    Article 

    Google Scholar 
    52.Somasundaram, J. et al. Conservation agriculture effects on soil properties and crop productivity in a semiarid region of India. Soil Res. 57, 187–199 (2019).Article 

    Google Scholar 
    53.Hansen, N. C., Allen, B. L., Baumhardt, R. L. & Lyon, D. J. Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains. Field Crops Res. 132, 196–203 (2012).Article 

    Google Scholar 
    54.Dalal, R. C., Wang, W., Allen, D. E., Reeves, S. & Menzies, N. W. Soil nitrogen and nitrogen-use efficiency under long-term no-till practice. Soil Sci. Society Am. J. 75, 2251–2261 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Zhang, H. L., Lal, R., Zhao, X., Xue, J. F. & Chen, F. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China. Adv. Agron. 124, 1–36 (2014).CAS 
    Article 

    Google Scholar 
    56.Mandal, A., Patra, A. K., Singh, D., Swarup, A. & Masto, R. E. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Biores. Tech. 98, 3585–3592 (2007).CAS 
    Article 

    Google Scholar 
    57.Singh, G., Kumar, D., Marwaha, T. S., Singh, A. K. & Srinivasmurthy, K. Conservation tillage and integrated nitrogen management stimulates soil microbial properties under varying water regimes in maize–wheat cropping system in northern India. Arch. Agro. Soil Sci. 57(5), 507–521 (2011).Article 

    Google Scholar 
    58.Manning, D. A. C. & Renforth, P. Passive sequestration of atmospheric CO2 through coupled plant mineral reactions in urban soils. Environ. Sci. Technol. 47, 135–141 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Mullen, M., Melhorn, C., Tyler, C. & Duck, D. Biological and biochemical soil properties in no–till corn with different cover crops. J. Soil Water Conserv. 5, 219–224 (1998).
    Google Scholar 
    60.Pooniya, V. & Shivay, Y. S. Summer green-manuring crops and zinc fertilization on productivity and economics of basmati rice (Oryza sativa L.). Arch. Agron. Soil. Sci. 58(6), 593–616 (2012).Article 

    Google Scholar 
    61.Pooniya, et al. Influence of summer legume residue–recycling and varietal diversification on productivity, energetics and nutrient dynamics in basmati rice–wheat cropping system of western Indo-Gangetic Plains. J. Plant Nutr. 41(12), 1491–1506 (2018).CAS 
    Article 

    Google Scholar 
    62.Pooniya, V., Shivay, Y. S., Rana, A., Nain, L. & Prasanna, R. Enhancing soil nutrient dynamics and productivity of Basmati rice through residue incorporation and zinc fertilization. Eur. J. Agron. 41, 28–37 (2012).CAS 
    Article 

    Google Scholar 
    63.Walkley, A. J. & Black, I. A. An examination of the Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Subbiah, B. V. & Asija, G. L. A rapid procedure for estimation of the available nitrogen in soil. Curr. Sci. 25, 259–260 (1956).CAS 

    Google Scholar 
    65.Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. Estimation of Available Phosphorus in Soil by Extraction with Sodium Carbonate (USDA, 1954).
    Google Scholar 
    66.Hanway, J. J. & Heidel, H. Soil Analysis Methods as used in Iowa State College Soil Testing Laboratory, Bulletin 57 (Iowa State College of Agriculture, 1952).
    Google Scholar 
    67.Babu, S. et al. Impact of land configuration and organic nutrient management on productivity, quality and soil properties under baby corn in Eastern Himalayas. Sci. Rep. 10(1), 1–14 (2020).Article 
    CAS 

    Google Scholar 
    68.Dey, A. et al. Effect of conservation agriculture on soil organic and inorganic carbon sequestration and lability: A study from a rice–wheat cropping system on a calcareous soil of the eastern Indo-Gangetic Plains. Soil Use Manage. 36, 429–438 (2018).Article 

    Google Scholar 
    69.Ellert, B. H. & Bettany, J. R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can. J. Soil Sci. 75, 529–538 (1995).CAS 
    Article 

    Google Scholar 
    70.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 19, 703–704 (1987).CAS 
    Article 

    Google Scholar 
    71.Bhushan, L. et al. Saving of water and labor in a rice–wheat system with no-tillage and direct seeding technologies. Agron. J. 99, 1288–1296 (2007).Article 

    Google Scholar 
    72.Singh, R. P., Das, S. K., Rao, U. M. B. & Reddy, N. Towards Sustainable Dryland Agricultural Practices (CRIDA, 1990).
    Google Scholar 
    73.Wanjari, R. H., Singh, M. V. & Ghosh, P. K. Sustainable yield index: An approach to evaluate the sustainability of long-term intensive cropping systems in India. J. Sustain. Agric. 24(4), 39–56 (2004).Article 

    Google Scholar 
    74.Gomez, K. A. & Gomez, A. A. Statistical Procedures for Agricultural Research 2nd edn, 180–209 (Wiley, 1984).
    Google Scholar  More