Linking functional traits and demography to model species-rich communities
1.McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed
Article
PubMed Central
Google Scholar
2.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article
Google Scholar
3.Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. 111, 740–745 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
4.Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. Allocating C. S. R. plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013).5.Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).ADS
Article
Google Scholar
6.Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).PubMed
Article
PubMed Central
Google Scholar
8.Connolly, S. R., Keith, S. A., Colwell, R. K. & Rahbek, C. Process, mechanism, and modeling in macroecology. Trends Ecol. Evol. 32, 835–844 (2017).PubMed
Article
PubMed Central
Google Scholar
9.Dormann, C. F. et al. Correlation and process in species distribution models: bridging a dichotomy. J. Biogeogr. 39, 2119–2131 (2012).Article
Google Scholar
10.Thuiller, W., Pollock, L. J., Gueguen, M. & Münkemüller, T. From species distributions to meta-communities. Ecol. Lett. 18, 1321–1328 (2015).PubMed
PubMed Central
Article
Google Scholar
11.Zurell, D. et al. Benchmarking novel approaches for modelling species range dynamics. Glob. Change Biol. 22, 2651–2664 (2016).ADS
Article
Google Scholar
12.Alexander, J. et al. Lags in the response of alpine plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).ADS
Article
Google Scholar
13.Evans, M. E., Merow, C., Record, S., McMahon, S. M. & Enquist, B. J. Towards process-based range modeling of many species. Trends Ecol. Evol. 31, 860–871 (2016).PubMed
Article
PubMed Central
Google Scholar
14.Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed
Article
CAS
PubMed Central
Google Scholar
15.Paine, C. E. T., Deasey, Anna, Bradley, DuthieA. & Ken, Thompson Towards the general mechanistic prediction of community dynamics. Funct. Ecol. 32, 1681–1692 (2018).Article
Google Scholar
16.Hartig, F. et al. Connecting dynamic vegetation models to data–an inverse perspective. J. Biogeogr. 39, 2240–2252 (2012).Article
Google Scholar
17.Levins, R. The strategy of model building in population biology. Am. Sci. 54, 421–431 (1966).
Google Scholar
18.Kraft, N. J., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl. Acad. Sci. 112, 797–802 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
19.Mayfield, M. M. & Stouffer, D. B. Higher-order interactions capture unexplained complexity in diverse communities. Nat. Ecol. Evol. 1, 0062 (2017).Article
Google Scholar
20.Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F. Experimental evidence for strong stabilizing forces at high functional diversity of aquatic microbial communities. Ecology 96, 1340–1350 (2015).PubMed
Article
PubMed Central
Google Scholar
21.Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).PubMed
Article
PubMed Central
Google Scholar
22.Curtsdotter, A. et al. Ecosystem function in predator–prey food webs—confronting dynamic models with empirical data. J. Anim. Ecol. 88, 196–210 (2019).PubMed
Article
PubMed Central
Google Scholar
23.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).24.Terborgh, J. W. Toward a trophic theory of species diversity. Proc. Natl. Acad. Sci. 112, 11415–11422 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
25.Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007).PubMed
Article
PubMed Central
Google Scholar
26.Körner, C. Alpine Plant Life. (Springer, 2003).27.Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS
Article
Google Scholar
28.Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed
Article
PubMed Central
Google Scholar
29.Chalmandrier, L., Albouy, C. & Pellissier, L. Species pool distributions along functional trade-offs shape plant productivity–diversity relationships. Sci. Rep. 7, 15405 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
30.Nagelkerke, N. J. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet
MATH
Article
Google Scholar
31.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).MathSciNet
MATH
Article
Google Scholar
32.Godínez-Alvarez, H., Herrick, J. E., Mattocks, M., Toledo, D. & Van Zee, J. Comparison of three vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. Ecol. Indic. 9, 1001–1008 (2009).Article
Google Scholar
33.Grime, J. P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).Article
Google Scholar
34.Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article
Google Scholar
35.de Bello, Fde et al. Hierarchical effects of environmental filters on the functional structure of plant communities: a case study in the French Alps. Ecography 36, 393–402 (2013).Article
Google Scholar
36.Dray, S. et al. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology 95, 14–21 (2014).PubMed
Article
PubMed Central
Google Scholar
37.Violle, C. et al. Competition, traits and resource depletion in plant communities. Oecologia 160, 747–755 (2009).ADS
PubMed
Article
PubMed Central
Google Scholar
38.Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. & Sleep, D. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105, 53–63 (1996).ADS
PubMed
Article
PubMed Central
Google Scholar
39.Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A. & Fulé, P. Z. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett. 15, 1291–1299 (2012).PubMed
Article
PubMed Central
Google Scholar
40.Laughlin, D. C. The intrinsic dimensionality of plant traits and its relevance to community assembly. J. Ecol. 102, 186–193 (2014).Article
Google Scholar
41.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS
Article
CAS
Google Scholar
42.Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).Article
Google Scholar
43.O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2019).Article
Google Scholar
44.Pichler, M., Boreux, V., Klein, A.-M., Schleuning, M. & Hartig, F. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks. Methods Ecol. Evol. 11, 281–293 (2020).Article
Google Scholar
45.Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).Article
Google Scholar
46.Damgaard, C. A critique of the space-for-time substitution practice in community ecology. Trends Ecol. Evol. 34, 416–421 (2019).PubMed
Article
PubMed Central
Google Scholar
47.Arnoldi, J.-F., Loreau, M. & Haegeman, B. The inherent multidimensionality of temporal variability: how common and rare species shape stability patterns. Ecol. Lett. 22, 1557–1567 (2019).PubMed
PubMed Central
Article
Google Scholar
48.May, R. M. Patterns of species abundance and diversity. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard University Press, 1975).49.Falster, D. S., Brännström, Å., Westoby, M. & Dieckmann, U. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl. Acad. Sci. 114, E2719–E2728 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Boulangeat, I., Georges, D. & Thuiller, W. FATE-HD: a spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale. Glob. Change Biol. 20, 2368–2378 (2014).Article
Google Scholar
51.Lischke, H. & Löffler, T. J. Finding all multiple stable fixpoints of n-species Lotka–Volterra competition models. Theor. Popul. Biol. 115, 24–34 (2017).PubMed
MATH
Article
PubMed Central
Google Scholar
52.Jamil, T., Ozinga, W. A., Kleyer, M. & ter Braak, C. J. Selecting traits that explain species–environment relationships: a generalized linear mixed model approach. J. Veg. Sci. 24, 988–1000 (2013).Article
Google Scholar
53.ter Braak, C. J. New robust weighted averaging-and model-based methods for assessing trait–environment relationships. Methods Ecol. Evol. 10, 1962–1971 (2019).Article
Google Scholar
54.Pielou, E. C. Ecological Diversity. (Wiley, New York, 1975).55.Gibert, A., Gray, E. F., Westoby, M., Wright, I. J. & Falster, D. S. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. J. Ecol. 104, 1488–1503 (2016).Article
Google Scholar
56.Durand, Y. et al. Reanalysis of 44 Yr of climate in the French Alps (1958–2002): methodology, model validation, climatology, and trends for air temperature and precipitation. J. Appl. Meteorol. Climatol. 48, 429–449 (2009).ADS
Article
Google Scholar
57.Chalmandrier, L. et al. Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands. J. Ecol. 105, 277–287 (2017).Article
Google Scholar
58.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article
Google Scholar
59.Reich, P. B. et al. Generality of leaf trait relationships: a test across six biomes. Ecology 80, 1955–1969 (1999).Article
Google Scholar
60.Poorter, H. & Bergkotte, M. Chemical composition of 24 wild species differing in relative growth rate. Plant Cell Environ. 15, 221–229 (1992).CAS
Article
Google Scholar
61.Farquhar, G. D., O’leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).CAS
Article
Google Scholar
62.Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. (Springer, 2018).63.Rapisarda, F., Brigo, D. & Mercurio, F. Parameterizing correlations: a geometric interpretation. IMA J. Manag. Math. 18, 55–73 (2007).MathSciNet
MATH
Article
Google Scholar
64.Blumenson, L. E. A derivation of n-dimensional spherical coordinates. Am. Math. Mon. 67, 63–66 (1960).MathSciNet
Google Scholar
65.Banner, K. M., Irvine, K. M. & Rodhouse, T. The use of bayesian priors in ecology: the good, the bad, and the not great. Methods Ecol. Evol. 00, 1–8 (2020).
Google Scholar
66.Hartig, F., Minunno, F. & Paul, S. BayesianTools: General-Purpose MCMC and SMC samplers and tools for bayesian statistics. R package (2017).67.Warton, D. I. et al. So Many Variables: Joint Modeling in Community Ecology. Trends Ecol. Evol. 30, 766–779 (2015). 68.Pichler, M. & Hartig, F. A new method for faster and more accurate inference of species associations from novel community data. Preprint at https://arxiv.org/abs/2003.05331 (2020).69.Advanced Research Computing Center (ARCC). Teton Computing Environment. https://doi.org/10.15786/m2fy47 (2018). More