Insights into the taxonomic and functional characterization of agricultural crop core rhizobiomes and their potential microbial drivers
1.Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 32, 1097–1100 (2011).ADS
Article
CAS
Google Scholar
2.Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed
Article
PubMed Central
Google Scholar
3.Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLOS Biol. 15, e2001793 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
4.Sergaki, C., Lagunas, B., Lidbury, I., Gifford, M. L. & Schäfer, P. Challenges and approaches in microbiome research: From fundamental to applied. Front Plant Sci. 9, 1205 (2018).PubMed
PubMed Central
Article
Google Scholar
5.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants. 4, 247–257 (2018).PubMed
Article
PubMed Central
Google Scholar
6.Bonfante, P. & Anca, I.-A. Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annu. Rev. Microbiol. 63, 363–383 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Hiruma, K. et al. Root endophyte colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165, 464–474 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
8.Calvo, P., Nelson, L. & Kloepper, J. W. Agricultural uses of plant biostimulants. Plant Soil 383, 3–41 (2014).CAS
Article
Google Scholar
9.Vorholt, J. A., Vogel, C., Carlström, C. I. & Müller, D. B. Establishing causality: Opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Howden, S. M. et al. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 104, 19691–19696 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
11.Robertson, G. P. & Vitousek, P. M. nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).Article
Google Scholar
12.Elser, J. & Bennett, E. Phosphorus cycle: A broken biogeochemical cycle. Nature 478, 29–31 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
13.Dangl, J. L., Horvath, D. M. & Staskawicz, B. J. Pivoting the plant immune system from dissection to deployment. Science 341, 746–751 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
14.Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).PubMed
PubMed Central
Article
Google Scholar
15.Qiu, Z., Egidi, E., Liu, H., Kaur, S. & Singh, B. K. New frontiers in agriculture productivity: Optimised microbial inoculants and in situ microbiome engineering. Biotechnol. Adv. 37, 107371 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, eaaw0759 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
17.Xiong, W. et al. Rhizosphere protists are key determinants of plant health. Microbiome 8, 27 (2020).PubMed
PubMed Central
Article
Google Scholar
18.Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
19.Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Risely, A. Applying the core microbiome to understand host–microbe systems. J. Anim. Ecol. 89, 1549–1558 (2020).PubMed
Article
Google Scholar
21.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
22.Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Xu, J. et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9, 1–10 (2018).ADS
Article
CAS
Google Scholar
24.Walters, W. A. et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 115, 7368–7373 (2018).PubMed
Article
Google Scholar
25.Pérez-Jaramillo, J. E. et al. Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome 7, 114 (2019).PubMed
PubMed Central
Article
Google Scholar
26.Ofek-Lalzar, M. et al. Niche and host-associated functional signatures of the root surface microbiome. Nat. Commun. 5, 1–9 (2014).Article
CAS
Google Scholar
27.Marasco, R., Rolli, E., Fusi, M., Michoud, G. & Daffonchio, D. Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. Microbiome 6, 3 (2018).PubMed
PubMed Central
Article
Google Scholar
28.Jin, T. et al. Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 6, 1–12 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Gottel, N. R. et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934–5944 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112, E911–E920 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Mendes, L. W., Kuramae, E. E., Navarrete, A. A., Van Veen, J. A. & Tsai, S. M. Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J. 8, 1577–1587 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Hamonts, K. et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20, 124–140 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Cheng, Z. et al. Revealing the Variation and Stability of Bacterial Communities in Tomato Rhizosphere Microbiota. Microorganisms 8, 170 (2020).CAS
PubMed Central
Article
Google Scholar
34.Donn, S., Kirkegaard, J. A., Perera, G., Richardson, A. E. & Watt, M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ. Microbiol. 17, 610–621 (2015).PubMed
Article
PubMed Central
Google Scholar
35.Simonin, M. et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: Identification of a core microbiome across eight African and European soils. FEMS Microbiol. Ecol. 96, fiaa67 (2019).
Google Scholar
36.Schlatter, D. C., Yin, C., Hulbert, S. & Paulitz, T. C. Core rhizosphere microbiomes of dryland wheat are influenced by location and land use history. Appl. Environ. Microbiol. 86, e02135-e2219 (2020).CAS
PubMed
PubMed Central
Google Scholar
37.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).CAS
PubMed
Article
Google Scholar
39.Lemanceau, P., Blouin, M., Muller, D. & Moënne-Loccoz, Y. Let the core microbiota be functional. Trends Plant Sci. 22, 583–595 (2017).CAS
PubMed
Article
Google Scholar
40.Klassen, J. L. Defining microbiome function. Nat. Microbiol. 3, 864–869 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).Article
CAS
Google Scholar
42.Haichar, F. E. Z. et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2, 1221–1230 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
44.Turner, T. R., James, E. K. & Poole, P. S. The plant microbiome. Genome Biol. 14, 1–10 (2013).Article
CAS
Google Scholar
45.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed
Article
PubMed Central
Google Scholar
46.Wu, Z. et al. Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microbiol. 18, 51 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
47.Yan, Y., Kuramae, E. E., De Hollander, M., Klinkhamer, P. G. L. & Van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).PubMed
Article
PubMed Central
Google Scholar
48.Schmidt, J. E., Kent, A. D., Brisson, V. L. & Gaudin, A. C. M. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7, 146 (2019).PubMed
PubMed Central
Article
Google Scholar
49.van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
50.Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
51.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed
Article
PubMed Central
Google Scholar
52.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
53.United Nations Food and Agriculture Organization (FAO) http://www.fao.org/faostat/en/#data/QC (2020).54.Stams, A. J. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol 7, 568–577 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
55.IPCC. IPCC Guidelines for National Greenhouse Gas Inventories Prepared by the National Greenhouse Gas Inventories Programme IGES (2019).56.Kuan, K. B., Othman, R., Rahim, K. A. & Shamsuddin, Z. H. Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilisation of maize under greenhouse conditions. PLoS ONE 11, e0152478 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
57.Singh, R. P. & Jha, P. N. The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.). PLoS ONE 11, e0155026 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
58.Sathya, A., Vijayabharathi, R. & Gopalakrishnan, S. Plant growth-promoting actinobacteria: A new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotech 7, 102 (2017).PubMed
PubMed Central
Article
Google Scholar
59.Verbon, E. H. & Liberman, L. M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci. 21, 218–229 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Yang, P., Yu, S., Cheng, L. & Ning, K. Meta-network: Optimized species-species network analysis for microbial communities. BMC Genom. 20, 187 (2019).Article
Google Scholar
61.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 1–13 (2018).Article
Google Scholar
62.Bulgarelli, D., Schlaeppi, K., Spaepen, S., van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64, 807–838 (2013).CAS
PubMed
Article
Google Scholar
63.Müller, D. B., Vogel, C., Bai, Y. & Vorholt, J. A. The plant microbiota: Systems-level insights and perspectives. Annu. Rev. Genet. 50, 211–234 (2016).PubMed
Article
CAS
Google Scholar
64.Grossmann, G. et al. The RootChip: An integrated microfluidic chip for plant science. Plant Cell 23, 4234–4240 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Massalha, H., Korenblum, E., Malitsky, S., Shapiro, O. H. & Aharoni, A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. USA 114, 4549–4554 (2017).CAS
PubMed
Article
Google Scholar
66.Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
67.Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome prediction tools varies across sample types and functional categories. Microbiome 8, 46 (2020).PubMed
PubMed Central
Article
Google Scholar
68.Choi, J. et al. Strategies to improve reference databases for soil microbiomes. ISME J. 11, 829–834 (2017).PubMed
Article
Google Scholar
69.Lopes, L. D., Pereira e Silva, M. C. & Andreote, F. D. Bacterial abilities and adaptation toward the rhizosphere colonization. Front. Microbiol. 7, 1341 (2016).PubMed
PubMed Central
Article
Google Scholar
70.Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).PubMed
PubMed Central
Google Scholar
71.Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
72.Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Button, K. S. et al. Power failure: Why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Jervis-Bardy, J. et al. Deriving accurate microbiota profiles from human samples with low bacterial content through post-sequencing processing of Illumina MiSeq data. Microbiome 3, 19 (2015).PubMed
PubMed Central
Article
Google Scholar
75.Schöler, A., Jacquiod, S., Vestergaard, G., Schulz, S. & Schloter, M. Analysis of soil microbial communities based on amplicon sequencing of marker genes. Biol. Fertil. Soils 53, 485–489 (2017).Article
CAS
Google Scholar
76.Vestergaard, G., Schulz, S., Schöler, A. & Schloter, M. Making big data smart: How to use metagenomics to understand soil quality. Biol. Fertil. Soils 53, 479–484 (2017).Article
Google Scholar
77.Venturi, V. & Keel, C. Signaling in the rhizosphere. Trends Plant Sci. 21, 187–198 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
78.Boylen, E. et al. Reproducible, interactive, scalable, and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article
CAS
Google Scholar
79.Callahan, B. J. et al. DADA2 paper supplementary information: High resolution sample inference from amplicon data. Nat. Methods. 13, 581–583 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
80.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
81.Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed
PubMed Central
Article
Google Scholar
82.Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Paradis, E. & Schliep, K. Phylogenetics ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article
CAS
Google Scholar
84.McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
85.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Parks, D. H., Tyson, G. W., Hugenholtz, P. & Beiko, R. G. Genome analysis STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 57, 289–300 (1995).MathSciNet
MATH
Google Scholar
88.Yurgel, S. N., Nearing, J. T., Douglas, G. M. & Langille, M. G. I. Metagenomic functional shifts to plant induced environmental changes. Front. Microbiol. 10, 1682 (2019).PubMed
PubMed Central
Article
Google Scholar
89.Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
90.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger data sets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
91.Brisson, V., Schmidt, J., Northen, T. R., Vogel, J. P. & Gaudin, A. A new method to correct for habitat filtering in microbial correlation networks. Front. Microbiol. 10, 585 (2019).PubMed
PubMed Central
Article
Google Scholar
92.Reshef, D. N. et al. Detecting novel associations in large data sets. Science 334, 1518–1524 (2011).ADS
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
93.Shannon, P. et al. Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
94.Banerjee, S., Thrall, P. H., Bissett, A., Heijden, M. G. A. & Richardson, A. E. Linking microbial co-occurrences to soil ecological processes across a woodland-grassland ecotone. Ecol. Evol. 8, 8217–8230 (2018).PubMed
PubMed Central
Article
Google Scholar
95.Gu, Y. et al. Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil. Front. Microbiol. 8, 1516 (2017).PubMed
PubMed Central
Article
Google Scholar More