1.Heger, T. & Jeschke, J. M. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123, 741–750 (2014).Article
Google Scholar
2.Elton, C. S. The Ecology of Invasions by Animals and Plants (Springer, 1958).3.Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends Ecol. Evol. 17, 164–170 (2002).Article
Google Scholar
4.Mitchell, C. E. & Power, A. G. Release of invasive plants from fungal and viral pathogens. Nature 421, 625–627 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
5.Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).Article
Google Scholar
6.Liu, H. & Stiling, P. Testing the enemy release hypothesis: a review and meta-analysis. Biol. Invasions 8, 1535–1545 (2006).Article
Google Scholar
7.Meijer, K., Schilthuizen, M., Beukeboom, L. & Smit, C. A review and meta-analysis of the enemy release hypothesis in plant-herbivorous insect systems. PeerJ 4, e2560v1 (2016).Article
Google Scholar
8.Jeschke, J. M. & Heger, T. (eds) Invasion Biology: Hypotheses and Evidence (CABI, 2018).9.Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989 (2004).Article
Google Scholar
10.Maron, J. L. & Vilà, M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95, 361–373 (2001).Article
Google Scholar
11.Callaway, R. M. & Ridenour, W. M. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2, 436–443 (2004).Article
Google Scholar
12.Cappuccino, N. & Arnason, J. T. Novel chemistry of invasive exotic plants. Biol. Lett. 2, 189–193 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Bezemer, T. M., Harvey, J. A. & Cronin, J. T. Response of native insect communities to invasive plants. Ann. Rev. Entomol. 59, 119–141 (2014).CAS
Article
Google Scholar
14.Keeler, M. S. & Chew, F. S. Escaping an evolutionary trap: preference and performance of a native insect on an exotic invasive host. Oecologia 156, 559–568 (2008).ADS
PubMed
Article
PubMed Central
Google Scholar
15.Eckberg, J. O., Tenhumberg, B. & Louda, S. M. Insect herbivory and propagule pressure influence Cirsium vulgare invasiveness across the landscape. Ecology 93, 1787–1794 (2012).PubMed
Article
PubMed Central
Google Scholar
16.Bürki, C. & Nentwig, W. Comparison of herbivore insect communities of Heracleum sphondylium and H. mantegazzianum in Switzerland (Spermatophyta: Apiaceae). Entomol. Gen. 22, 147–155 (1997).Article
Google Scholar
17.Cincotta, C. L., Adams, J. M. & Holzapfel, C. Testing the enemy release hypothesis: a comparison of foliar insect herbivory of the exotic Norway maple (Acer platanoides L.) and the native sugar maple (A. saccharum L.). Biol. Invasions 11, 379–388 (2008).Article
Google Scholar
18.Cronin, J. T., Bhattarai, G. P., Allen, W. J. & Meyerson, L. A. Biogeography of a plant invasion: plant-herbivore interactions. Ecology 96, 1115–1127 (2015).PubMed
Article
PubMed Central
Google Scholar
19.Hu, X.-T. & Dong, B.-C. Herbivory and nitrogen availability affect performance of an invader Alternanthera philoxeroides and its native congener A. sessilis. Flora 257, 151412 (2019).Article
Google Scholar
20.Agrawal, A. A. & Kotanen, P. M. Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol. Lett. 6, 712–715 (2003).Article
Google Scholar
21.Agrawal, A. A. et al. Enemy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology 86, 2979–2989 (2005).Article
Google Scholar
22.Parker, J. D. & Hay, M. E. Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecol. Lett. 8, 959–967 (2005).Article
Google Scholar
23.Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
24.Parker, I. M. & Gilbert, G. S. When there is no escape: the effects of natural enemies on native, invasive, and non-native plants. Ecology 88, 1210–1224 (2007).PubMed
Article
PubMed Central
Google Scholar
25.Dostál, P. et al. Enemy damage of exotic plant species is similar to that of natives and increases with productivity. J. Ecol. 101, 388–399 (2013).Article
Google Scholar
26.Meijer, K. et al. Phytophagous insects on native and non-native host plants: combining the community approach and the biogeographical approach. PLoS ONE 10, e0125607 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
27.Schultheis, E. H., Berardi, A. E. & Lau, J. A. No release for the wicked: enemy release is dynamic and not associated with invasiveness. Ecology 96, 2446–2457 (2015).PubMed
Article
PubMed Central
Google Scholar
28.Beckstead, J. & Parker, I. M. Invasiveness of Ammophila arenaria: release from soil-borne pathogens? Ecology 84, 2824–2831 (2003).Article
Google Scholar
29.van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).PubMed
Article
PubMed Central
Google Scholar
30.Ashton, I. W. & Lerdau, M. T. Tolerance to herbivory, and not resistance, may explain differential success of invasive, naturalized, and native North American temperate vines. Divers. Distrib. 14, 169–178 (2008).Article
Google Scholar
31.Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
32.Eppinga, M. B., Rietkerk, M., Dekker, S. C., De Ruiter, P. C. & van der Putten, W. H. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos 114, 168–176 (2006).Article
Google Scholar
33.Bufford, J. L. et al. Taxonomic similarity, more than contact opportunity, explains novel plant–pathogen associations between native and alien taxa. N. Phytol. 212, 657–667 (2016).CAS
Article
Google Scholar
34.White, E. M., Wilson, J. C. & Clarke, A. R. Biotic indirect effects: a neglected concept in invasion biology. Divers. Distrib. 12, 443–455 (2006).Article
Google Scholar
35.Allen, W. J. in Plant Invasions: The Role of Species Interactions (CABI Publishing, 2020).36.Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).MathSciNet
CAS
PubMed
Article
Google Scholar
37.Holt, R. D. & Bonsall, M. B. Apparent competition. Annu. Rev. Ecol. Evol. Syst. 48, 447–471 (2017).Article
Google Scholar
38.Sessions, L. & Kelly, D. Predator-mediated apparent competition between an introduced grass, Agrostis capillaris, and a native fern, Botrychium australe (Ophioglossaceae), in New Zealand. Oikos 96, 102–109 (2002).Article
Google Scholar
39.Dangremond, E. M., Pardini, E. A. & Knight, T. M. Apparent competition with an invasive plant hastens the extinction of an endangered lupine. Ecology 91, 2261–2271 (2010).PubMed
PubMed Central
Article
Google Scholar
40.Bhattarai, G. P., Meyerson, L. A. & Cronin, J. T. Geographic variation in apparent competition between native and invasive Phragmites australis. Ecology 98, 349–358 (2017).PubMed
Article
PubMed Central
Google Scholar
41.Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).Article
Google Scholar
42.Allen, W. J. et al. Community-level direct and indirect impacts of an invasive plant favour exotic over native species. J. Ecol. 108, 2499–2510 (2020).Article
Google Scholar
43.Morris, R. J., Lewis, O. T. & Godfray, C. J. Experimental evidence for apparent competition in a tropical forest food web. Nature 428, 310–313 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
44.Tack, A. J. M., Gripenberg, S. & Roslin, T. Can we predict indirect interactions from quantitative food webs? – an experimental approach. J. Anim. Ecol. 80, 108–118 (2011).PubMed
Article
Google Scholar
45.Frost, C. M. et al. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nat. Commun. 7, 12644 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
46.Bardgett, R. D. & Wardle, D. A. Aboveground–Belowground Linkages: Biotic Interactions, Ecosystem Processes and Global Change (Oxford University Press, 2010).47.Heinen, R., Biere, A., Harvey, J. A. & Bezemer, T. M. Effects of soil organisms on aboveground plant-insect interactions in the field: patterns, mechanisms and the role of methodology. Front. Ecol. Evol. 6, 106 (2018).Article
Google Scholar
48.Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997).Article
Google Scholar
49.Kulmatiski, A., Beard, K. H., Stevens, J. R. & Cobbold, S. M. Plant–soil feedbacks: a meta‐analytical review. Ecol. Lett. 11, 980–992 (2008).PubMed
Article
Google Scholar
50.Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G. & Lambers, J. H. Plant-soil feedbacks and invasive spread. Ecol. Lett. 9, 1005–1014 (2006).PubMed
Article
PubMed Central
Google Scholar
51.Suding, K. N., Harpole, W. S., Fukami, T., Kulmatiski, A., MacDougall, A. S., Stein, C. & van der Putten, W. H. Consequences of plant–soil feedbacks in invasion. J. Ecol. 101, 298–308 (2013).Article
Google Scholar
52.Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).PubMed
PubMed Central
Google Scholar
53.Cornelissen, T., Fernandes, G. W. & Vasconcellos-Neto, J. Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117, 1121–1130 (2008).Article
Google Scholar
54.Price, P. W. The plant vigor hypothesis and herbivore attack. Oikos 62, 244–251 (1991).Article
Google Scholar
55.Waller, L. P. et al. Biotic interactions drive ecosystem responses to plant invaders. Science 368, 967–972 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Kozlov, M. V., Lanta, V., Zverev, V. & Zvereva, E. L. Global patterns in background losses of woody plant foliage to insects. Glob. Ecol. Biogeogr. 24, 1126–1135 (2015).Article
Google Scholar
57.Zas, R., Moreira, X. & Sampedro, L. Tolerance and induced resistance in a native and an exotic pine species: relevant traits for invasion ecology. J. Ecol. 99, 1316–1326 (2011).Article
Google Scholar
58.Croy, J. R., Meyerson, L. A., Allen, W. J., Bhattarai, G. P. & Cronin, J. T. Lineage and latitudinal variation in Phragmites australis tolerance to herbivory: implications for invasion success. Oikos 129, 1341–1357 (2020).Article
Google Scholar
59.Liu, G., Huang, Q.-Q., Lin, Z.-G., Huang, F.-F., Liao, H.-X. & Peng, S.-L. High tolerance to salinity and herbivory stresses may explain the expansion of Ipomoea cairica to salt marshes. PLoS ONE 7, e48829 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
60.Paynter, Q. et al. Why did specificity testing fail to predict the field host-range of the gorse pod moth in New Zealand. Biol. Control 46, 453–462 (2008).Article
Google Scholar
61.Groenteman, R., Fowler, S. V. & Sullivan, J. J. St. John’s wort beetles would not have been introduced to New Zealand now: a retrospective host range test of New Zealand’s most successful weed biocontrol agents. Biol. Control 57, 50–58 (2011).Article
Google Scholar
62.Blossey, B. & Nötzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83, 887–889 (1995).Article
Google Scholar
63.Felker-Quinn, E., Schweitzer, J. A. & Bailey, J. K. Meta-analysis reveals evolution in invasive plant species but little support for evolution of increased competitive ability (EICA). Ecol. Evol. 3, 739–751 (2013).PubMed
PubMed Central
Article
Google Scholar
64.Rotter, M. C. & Holeski, L. M. A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol. Invasions 20, 2647–2660 (2018).Article
Google Scholar
65.Shelby, N. et al. No difference in the competitive ability of introduced and native Trifolium provenances when grown with soil biota from their introduced and native ranges. AoB Plants 8, plw016 (2016).PubMed
PubMed Central
Article
Google Scholar
66.Harvey, J. A., Bukovinszky, T. & van der Putten, W. H. Interactions between invasive plants and insect herbivores: a plea for a multitrophic perspective. Biol. Conserv. 143, 2251–2259 (2010).Article
Google Scholar
67.Allen, W. J. et al. Multitrophic enemy release of invasive Phragmites australis and its introduced herbivores in North America. Biol. Invasions 17, 3419–3432 (2015).Article
Google Scholar
68.Kim, T. N. & Underwood, N. Plant neighborhood effects on herbivory: damage is both density and frequency dependent. Ecology 96, 1431–1437 (2015).PubMed
Article
Google Scholar
69.Bartomeus, I., Vilà, M. & Santamaría, L. Contrasting effects of invasive plants in plant-pollinator networks. Oecologia 155, 761–770 (2008).ADS
PubMed
Article
PubMed Central
Google Scholar
70.Lekberg, Y., Gibbons, S. M., Rosendahl, S. & Ramsey, P. W. Severe plant invasions can increase mycorrhizal fungal abundance and diversity. ISME J. 7, 1424–1433 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Fernandez-Conradi, P., Jactel, H., Robin, C., Tack, A. J. M. & Castagneyrol, B. Fungi reduce preference and performance of insect herbivores on challenged plants. Ecology 99, 300–311 (2018).PubMed
Article
PubMed Central
Google Scholar
72.Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. N. Phytol. 170, 445–457 (2006).Article
Google Scholar
73.Gioria, M. & Osborne, B. A. Resource competition in plant invasions: emerging patterns and research needs. Front. Plant Sci. 5, 501 (2014).PubMed
PubMed Central
Article
Google Scholar
74.Frost, C. M. et al. Using ecological network theory to predict biological invasions. Trends Ecol. Evol. 34, 831–843 (2019).PubMed
Article
PubMed Central
Google Scholar
75.Sauve, A. M. C., Thébault, E., Pocock, M. J. O. & Fontaine, C. How plants connect pollination and herbivory networks and their contribution to community stability. Ecology 97, 908–917 (2016).PubMed
PubMed Central
Google Scholar
76.Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017).Article
Google Scholar
77.Weir, B. S., Turner, S. J., Silvester, W. B., Park, D. C. & Young, J. M. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl. Environ. Microbiol. 70, 5980–5987 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Cappuccino, N. & Carpenter, D. Invasive exotic plants suffer less herbivory than non-invasive exotic plants. Biol. Lett. 1, 435–438 (2005).PubMed
PubMed Central
Article
Google Scholar
79.Liu, H., Stiling, P. & Pemberton, R. W. Does enemy release matter for invasive plants? evidence from a comparison of insect herbivore damage among invasive, non-invasive and native congeners. Biol. Invasions 9, 773–781 (2007).Article
Google Scholar
80.Howell, C. Consolidated List of Environmental Weeds in New Zealand. DOC Research & Development Series 292 (Department of Conservation, 2008).81.Ghanizadeh, H. & Harrington, K. C. Weed management in New Zealand pastures. Agronomy 9, 448 (2019).CAS
Article
Google Scholar
82.Kos, M., Tuijl, M. A. B., de Roo, J., Mulder, P. P. J. & Bezemer, T. M. Species-specific plant–soil feedback effects on aboveground plant-insect interactions. J. Ecol. 103, 904–914 (2015).CAS
Article
Google Scholar
83.Heinen, R., Biere, A. & Bezemer, T. M. Plant traits shape soil legacy effects on individual plant–insect interactions. Oikos 129, 261–273 (2020).CAS
Article
Google Scholar
84.Bezemer, T. M et al. Above‐and below‐ground herbivory effects on below‐ground plant–fungus interactions and plant–soil feedback responses. J. Ecol. 101, 325–333 (2013).Article
CAS
Google Scholar
85.Heinze, J., Wacker, A. & Kulmatiski, A. Plant–soil feedback effects altered by aboveground herbivory explain plant species abundance in the landscape. Ecology 101, e03023 (2020).PubMed
Article
PubMed Central
Google Scholar
86.Müller, C. B., Adriaanse, I. C. T., Belshaw, R. & Godfray, H. C. J. The structure of an aphid-parasitoid community. J. Anim. Ecol. 68, 346–370 (1999).Article
Google Scholar
87.R Core Team. R: a language and environment for statistical computing. Version 3.6.1. R Foundation for Statistical Computing http://www.R-project.org (2019).88.Bates, D. et al. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-21 http://CRAN.R-project.org/package=lme4 (2019).89.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: estimated marginal means, aka least-squares means. R package version 1.3.5.1 http://CRAN.R-project.org/package=emmeans (2019).90.Dormann, C. F., Fruend, J. & Gruber, B. bipartite: visualising bipartite networks and calculating some (ecological) indices. R package version 2.13 http://CRAN.R-project.org/package=bipartite (2019). More