Multiple social network influences can generate unexpected environmental outcomes
1.Amel, E., Manning, C., Scott, B. & Koger, S. Beyond the roots of human inaction: Fostering collective effort toward ecosystem conservation. Science 356, 275–279 (2017).
Google Scholar
2.Bodin, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 357, eaan1114 (2017).
Google Scholar
3.Cinner, J. E. How behavioral science can help conservation. Science 362, 889–891 (2018).
Google Scholar
4.Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Chang. 23, 1773–1785 (2013).
Google Scholar
5.Christoff, Z., Hansen, J. U. & Proietti, C. Reflecting on social influence in networks. J. Logic Lang. Inf. 25, 299–333 (2016).
Google Scholar
6.Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl. Acad. Sci. USA. 107, 5334–5338 (2010).
Google Scholar
7.Friedkin, N. E. & Johnsen, E. C. Social positions in influence networks. Soc. Netw. 19, 209–222 (1997).
Google Scholar
8.Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).
Google Scholar
9.Barnes, M. L., Lynham, J., Kalberg, K. & Leung, P. Social networks and environmental outcomes. Proc. Natl. Acad. Sci. 113, 6466–6471 (2016).
Google Scholar
10.McPherson, M., Smith-lovin, L. & Cook, J. M. Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).
Google Scholar
11.Bodin, Ö., Mancilla García, M. & Robins, G. Reconciling conflict and cooperation in environmental governance: A social network perspective. Annu. Rev. Environ. Resour. 45, 471–495 (2020).
Google Scholar
12.Bodin, Ö. & Prell, C. Social Networks and Natural Resource. Management Uncovering the Social Fabric of Environmental Governance (Cambridge University Press, 2011).
Google Scholar
13.Small, B., Brown, P. & Montes de Oca Munguia, O. Values, trust, and management in New Zealand agriculture. Int. J. Agric. Sustain. 14, 282–306 (2016).
Google Scholar
14.Friedman, R. S. et al. Beyond the community in participatory forest management: A governance network perspective. Land Use Policy 97, 104738 (2020).
Google Scholar
15.Schill, C. et al. A more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. 2, 1075–1082 (2019).
Google Scholar
16.Yletyinen, J., Hentati-Sundberg, J., Blenckner, T. & Bodin, O. Fishing strategy diversification and fishers’ ecological dependency. Ecol. Soc. 23, 28 (2018).
Google Scholar
17.Grêt-Regamey, A., Huber, S. H. & Huber, R. Actors’ diversity and the resilience of social-ecological systems to global change. Nat. Sustain. 2, 290–297 (2019).
Google Scholar
18.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).
Google Scholar
19.de Lange, E., Milner-Gulland, E. J. & Keane, A. Improving environmental interventions by understanding information flows. Trends Ecol. Evol. 34, 1034–1047 (2019).
Google Scholar
20.Vainio, A., Paloniemi, R. & Hujala, T. How are forest owners’ objectives and social networks related to successful conservation?. J. Rural Stud. 62, 21–28 (2018).
Google Scholar
21.de Snoo, G. R. et al. Toward effective nature conservation on farmland: Making farmers matter. Conserv. Lett. 6, 66–72 (2013).
Google Scholar
22.Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40, 248–255 (2011).
Google Scholar
23.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909–914 (2018).
Google Scholar
24.Hill, R. et al. A social-ecological systems analysis of impediments to delivery of the Aichi 2020 Targets and potentially more effective pathways to the conservation of biodiversity. Glob. Environ. Chang. 34, 22–34 (2015).
Google Scholar
25.Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. AMBIO J. Hum. Environ. 32, 389–396 (2016).
Google Scholar
26.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
Google Scholar
27.Miller, B. W., Caplow, S. C. & Leslie, P. W. Feedbacks between conservation and social-ecological systems. Conserv. Biol. 26, 218–227 (2012).
Google Scholar
28.Larrosa, C., Carrasco, L. R. & Milner-Gulland, E. J. Unintended feedbacks: Challenges and opportunities for improving conservation effectiveness. Conserv. Lett. 9, 316–326 (2016).
Google Scholar
29.Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).
Google Scholar
30.Brehony, P., Tyrrell, P., Kamanga, J., Waruingi, L. & Kaelo, D. Incorporating social-ecological complexities into conservation policy. Biol. Conserv. 248, 108697 (2020).
Google Scholar
31.Jacob, U. et al. Marine conservation: Towards a multi-layered network approach. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190459 (2020).
Google Scholar
32.Hoole, A. & Berkes, F. Breaking down fences: Recoupling social-ecological systems for biodiversity conservation in Namibia. Geoforum 41, 304–317 (2010).
Google Scholar
33.Dajka, J. et al. Red and green loops help uncover missing feedbacks in a coral reef social–ecological system. People Nat. 2, 608–618 (2020).
Google Scholar
34.Yletyinen, J. et al. Understanding and managing social-ecological tipping points in primary industries. Bioscience 69, 335–347 (2019).
Google Scholar
35.Mason, W. A., Conrey, F. R. & Smith, E. R. Situating social influence processes: Dynamic, multidirectional flows of influence within social networks. Personal. Soc. Psychol. Rev. 11, 279–300 (2007).
Google Scholar
36.Niemiec, R. M., Willer, R., Ardoin, N. M. & Brewer, F. K. Motivating landowners to recruit neighbors for private land conservation. Conserv. Biol. 33, 930–941 (2019).
Google Scholar
37.Brown, P. Survey of rural decision makers. Manaaki Whenua Landcare Res. https://doi.org/10.7931/J2736P2D (2015).
Google Scholar
38.Burt, R. S. & Doreian, P. Testing a structural model of perception: Conformity and deviance with respect to Journal norms in elite sociological methodology. Qual. Quant. 16, 109–150 (1982).
Google Scholar
39.Zhang, B., Pavlou, P. A. & Krishnan, R. On direct vs. indirect peer influence in large social networks. Inf. Syst. Res. 29, 292–314 (2018).
Google Scholar
40.Pinheiro, F. L., Santos, M. D., Santos, F. C. & Pacheco, J. M. Origin of peer influence in social networks. Phys. Rev. Lett. 112, 1–5 (2014).
Google Scholar
41.Lewis, K., Gonzalez, M. & Kaufman, J. Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. 109, 68–72 (2012).
Google Scholar
42.Stein, C., Barron, J. & Ernstson, H. A social network approach to analyze multi-stakeholders governance arrangement in water resources management: Three case studies from catchments in Burkina Faso, Tanzania and Zambia. In Proceedings of the XIVth World Water Congress, 25–29 September, at Porto de Galinhas, Pernambuco, Brazil. (2011).43.Autant-bernard, C., Mairesse, J. & Massard, N. Spatial knowledge diffusion through collaborative networks. Pap. Reg. Sci. 86, 341–350 (2007).
Google Scholar
44.Ward, P. S. & Pede, V. O. Capturing social network effects in technology adoption: The spatial diffusion of hybrid rice in Bangladesh. Aust. J. Agric. Resour. Econ. 59, 225–241 (2015).
Google Scholar
45.Kuhfuss, L. et al. Nudges, social norms, and permanence in agri-environmental schemes. Land Econ. 92, 641–655 (2016).
Google Scholar
46.Fehr, E. & Schurtenberger, I. Normative foundations of human cooperation. Nat. Hum. Behav. 2, 458–468 (2018).
Google Scholar
47.Delaroche, M. Adoption of conservation practices: What have we learned from two decades of social-psychological approaches?. Curr. Opin. Environ. Sustain. 45, 25–35 (2020).
Google Scholar
48.Knowler, D. & Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 32, 25–48 (2007).
Google Scholar
49.O’Sullivan, D. & Perry, G. L. W. Spatial Simulation. Exploring Pattern and Process (Wiley, 2013).
Google Scholar
50.Will, M., Groeneveld, J., Frank, K. & Müller, B. Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review. Socio-Environ. Syst. Model. 2, 16325 (2020).
Google Scholar
51.Bodin, Ö. & Crona, B. I. The role of social networks in natural resource governance: What relational patterns make a difference?. Glob. Environ. Chang. 19, 366–374 (2009).
Google Scholar
52.Erdős, P. & Rényi, A. On random graphs. Publ. Math. 6, 290–297 (1959).
Google Scholar
53.Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 38, 210–221 (1982).
Google Scholar
54.Groce, J. E., Farrelly, M. A., Jorgensen, B. S. & Cook, C. N. Using social-network research to improve outcomes in natural resource management. Conserv. Biol. 33, 53-65 (2018).
Google Scholar
55.Schill, C., Wijermans, N., Schlüter, M. & Lindahl, T. Cooperation is not enough – Exploring social-ecological micro-foundations for sustainable common-pool resource use. PLoS ONE 11, e0165009 (2016).
Google Scholar
56.Valente, T. W. Network interventions. Science 337, 49–53 (2012).
Google Scholar
57.Valente, T. W. Putting the network in network interventions. Proc. Natl. Acad. Sci. USA. 114, 9500–9501 (2017).
Google Scholar
58.Kossinets, G. & Watts, D. J. Empirical analysis of an evolving social network. Science 311, 88–90 (2006).
Google Scholar
59.De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).
Google Scholar
60.Prell, C. Social Network Analysis (SAGE publications Ltd, 2012).
Google Scholar
61.Thampi, V. A., Anand, M. & Bauch, C. T. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation. Sci. Rep. 8, 2597 (2018).
Google Scholar
62.Dannenberg, A. & Barrett, S. Cooperating to avoid catastrophe. Nat. Hum. Behav. 2, 435–437 (2018).
Google Scholar
63.Rasoulkhani, K., Logasa, B., Reyes, M. P. & Mostafavi, A. Understanding fundamental phenomena affecting the water conservation technology adoption of residential consumers using agent-based modeling. Water 10, 993 (2018).
Google Scholar
64.Wang, P., Robins, G., Pattison, P. & Lazega, E. Exponential random graph models for multilevel networks. Soc. Netw. 35, 96–115 (2013).
Google Scholar
65.Kivelä, M. et al. Multilayer networks. J. Complex Networks 2, 203–271 (2014).
Google Scholar
66.Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2011).
Google Scholar
67.May, R. M., Levin, S. A. & Sugihara, G. Complex systems: Ecology for bankers. Nature 451, 893–895 (2008).
Google Scholar
68.Grimm, V. et al. The ODD protocol for describing agent-based models: a second update to improve clarity, replication and structural realism. J. Artif. Soc. Soc. Simul. 23(2), 7 (2020).
Google Scholar
69.Alexander, S. M., Bodin, Ö. & Barnes, M. L. Untangling the drivers of community cohesion in small-scale fisheries. Int. J. Commons 12, 519–547 (2018).
Google Scholar
70.QE II National Trust. QE II National Trust. Ngā Kiarauhi Papa|Forever protected. https://qeiinationaltrust.org.nz.71.Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).
Google Scholar
72.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).
Google Scholar
73.Aral, S., Muchnik, L. & Sundararajan, A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. US. A. 106, 21544–21549 (2009).
Google Scholar
74.Stefano, A. D. et al. Quantifying the role of homophily in human cooperation using multiplex evolutionary game theory. PLoS ONE 10, e0140646 (2015).
Google Scholar
75.Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/. (Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1999).76.Thiele, J. C. R Marries NetLogo: Introduction to the RNetLogo Package. J. Stat. Softw. 58, 1–41 (2014).
Google Scholar
77.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, 2018).78.Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Softw. Code Snippets 28, 1–9 (2008).
Google Scholar
79.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1. (2016).80.Csardi, G. & Nepusz, T. The igraph software package for complex network research. Interjournal Complex Syst. 1695, 1–9 (2006).
Google Scholar More