1.Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).Article
Google Scholar
2.Zimmerman, J. B., Mihelcic, J. R. & Smith, J. Global stressors on water quality and quantity. Environ. Sci. Technol. 42, 4247–4254 (2008).Article
Google Scholar
3.Banwart, S. A., Nikolaidis, N. P., Zhu, Y.-G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting Earth’s critical zone. Annu. Rev. Earth Planet. Sci. Lett. 47, 333–359 (2019).Article
Google Scholar
4.Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).5.Knorr, K. H., Lischeid, G. & Blodau, C. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153, 379–392 (2009).Article
Google Scholar
6.McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).Article
Google Scholar
7.Yabusaki, S. B. et al. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ. Sci. Technol. 51, 3307–3317 (2017).Article
Google Scholar
8.Krause, S. et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 53, 6359–6376 (2017).Article
Google Scholar
9.Stumm W. & Morgan J. J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley & Sons, 1996).10.Aeschbacher, M., Vergari, D., Schwarzenbach, R. P. & Sander, M. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45, 8385–8394 (2011).Article
Google Scholar
11.Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–84 (2000).Article
Google Scholar
12.Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).Article
Google Scholar
13.Piepenbrock, A., Dippon, U., Porsch, K., Appel, E. & Kappler, A. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Acta 75, 6844–6858 (2011).Article
Google Scholar
14.Amstaetter, K., Borch, T., Larese-Casanova, P. & Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).Article
Google Scholar
15.Ilgen, A. G., Foster, A. L. & Trainor, T. P. Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochim. Cosmochim. Acta 94, 128–145 (2012).Article
Google Scholar
16.Lan, S. et al. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Res. 128, 92–101 (2018).Article
Google Scholar
17.Lovley, D. R. et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch. Hydrob. 26, 152–157 (1998).Article
Google Scholar
18.Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).Article
Google Scholar
19.Peretyazhko, T. & Sposito, G. Reducing capacity of terrestrial humic acids. Geoderma 137, 140–146 (2006).Article
Google Scholar
20.Heitmann, T. & Blodau, C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 235, 12–20 (2006).Article
Google Scholar
21.Yu, Z. G., Peiffer, S., Goettlicher, J. & Knorr, K. H. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ. Sci. Technol. 49, 5441–5449 (2015).Article
Google Scholar
22.Rose, A. L. & Waite, T. D. Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar. Chem. 84, 85–103 (2003).Article
Google Scholar
23.Bauer, I. & Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43, 4902–4908 (2009).Article
Google Scholar
24.Uchimiya, M. & Stone, A. T. Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77, 451–458 (2009).Article
Google Scholar
25.Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).Article
Google Scholar
26.Ilgen, A. G., Kukkadapu, R. K., Leung, K. & Washington, R. E. ‘Switching on’ iron in clay minerals. Environ. Sci. Nano 6, 1704–1715 (2019).Article
Google Scholar
27.Peiffer, S., dos Santos Afonso, M., Wehrli, B. & Gaechter, R. Kinetics and mechanism of the reaction of hydrogen sulfide with lepidocrocite. Environ. Sci. Technol. 26, 2408–2413 (1992).Article
Google Scholar
28.Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).Article
Google Scholar
29.Hellige, K., Pollok, K., Larese-Casanova, P., Behrends, T. & Peiffer, S. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. Geochim. Cosmochim. Acta 81, 69–81 (2012).Article
Google Scholar
30.Wan, M., Shchukarev, A., Lohmayer, R., Planer-Friedrich, B. & Peiffer, S. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environ. Sci. Technol. 48, 5076–5084 (2014).Article
Google Scholar
31.Hedderich, R. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22, 353–381 (1998).Article
Google Scholar
32.Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).Article
Google Scholar
33.Poser, A. et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17, 1003–1012 (2013).Article
Google Scholar
34.Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).Article
Google Scholar
35.Aeppli, M. et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environ. Sci. Technol. 53, 3568–3578 (2019).Article
Google Scholar
36.Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).Article
Google Scholar
37.Blodau, C. Carbon cycling in peatlands—a review of processes and controls. Environ. Rev. 10, 111–134 (2002).Article
Google Scholar
38.Gao, C., Sander, M., Agethen, S. & Knorr, K.-H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta 245, 266–277 (2019).Article
Google Scholar
39.Schaefer, M. V., Gorski, C. A. & Scherer, M. M. Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral. Environ. Sci. Technol. 45, 540–545 (2011).Article
Google Scholar
40.Pentrakova, L., Su, K., Pentrak, M. & Stucko, J. W. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48, 543–560 (2013).Article
Google Scholar
41.Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S. & Stucki, J. W. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68, 6256–6262 (2002).Article
Google Scholar
42.Li, Y. L. et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim. Cosmochim. Acta 68, 3251–3260 (2004).Article
Google Scholar
43.Liu, D. et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim. Cosmochim. Acta 75, 1057–1071 (2011).Article
Google Scholar
44.Zhang, J., Dong, H., Liu, D. & Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilicmethanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 106, 203–215 (2013).Article
Google Scholar
45.Shelobolina, E. et al. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 78, 5746–5752 (2012).Article
Google Scholar
46.Gorski, C. A. et al. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46, 9360–9368 (2012).Article
Google Scholar
47.Blodau, C., Mayer, B., Peiffer, S. & Moore, T. R. Support for an anaerobic sulfur cycle in two Canadian peatland soils. J. Geophys. Res. 112, G000364 (2007).
Google Scholar
48.Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 16, GB001370 (2002).Article
Google Scholar
49.Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).Article
Google Scholar
50.Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015).Article
Google Scholar
51.Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).Article
Google Scholar
52.Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).Article
Google Scholar
53.Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015b).Article
Google Scholar
54.Findlay, A. J. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw103(2016).55.Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).Article
Google Scholar
56.Peng, C., Bryce, C., Sundman, A. & Kappler, A.Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826-18 (2019).Article
Google Scholar
57.Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210 (2011).Article
Google Scholar
58.Otte, J. M. et al. The distribution of active iron cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ. Microbiol. 20, 2483–2499 (2018).Article
Google Scholar
59.Steefel, C. I. & van Cappellen, P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990).Article
Google Scholar
60.Vinson, D. S., Block, S. E., Crossey, L. J. & Dahm, C. N. Biogeochemistry at the zone of intermittent saturation: field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico. Geosphere 3, 366–380 (2007).Article
Google Scholar
61.Frei, S., Knorr, K., Peiffer, S. & Fleckenstein, J. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: a virtual modeling experiment. J. Geophys. Res. Biogeosciences 117, G00N12 (2012).Article
Google Scholar
62.Briggs, M. A. et al. A physical explanation for the development of redox microzones in hyporheic flow. Geophys. Res. Lett. 42, 4402–4410 (2015).Article
Google Scholar
63.Stockdale, A., Davison, W. & Zhang, H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth Sci. Rev. 92, 81–97 (2009).Article
Google Scholar
64.Sawyer, A. H. Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys. Res. Lett. 42, 403–410 (2015).Article
Google Scholar
65.Arora, B., Dwivedi, D., Hubbard, S. S., Steefel, C. I. & Williams, K. H. Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 85, 27–41 (2016).Article
Google Scholar
66.Sawyer, A. H., Kaplan, L. A., Lazareva, O. & Michael, H. A. Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resour. Res. 50, 4877–4892 (2014).Article
Google Scholar
67.Posth, N., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).Article
Google Scholar
68.Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The role of dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides during redox cycling. Chem. Geol. 438, 163–170 (2016).Article
Google Scholar
69.Bishop, M. E. et al. Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochim. Cosmochim. Acta 252, 88–106 (2019).Article
Google Scholar
70.Bartsch, S. et al. River–aquifer exchange fluxes under monsoonal climate conditions. J. Hydrol. 509, 601–614 (2014).Article
Google Scholar
71.McAllister, S. M. et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329–345 (2015).Article
Google Scholar
72.Goldberg, S. D., Knorr, K. ‐H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Change Biol. 16, 220–233 (2010).Article
Google Scholar
73.Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue bog, Southern Canada. Ecosystems 14, 646–657 (2011).Article
Google Scholar
74.Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T. & Lafleur, P. M. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. J. Geophys. Res. Biogeosciences 119, 826–835 (2014).Article
Google Scholar
75.Estop-Aragonés, C., Zając, K. & Blodau, C. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition. Glob. Change Biol. 22, 2285–2300 (2016).Article
Google Scholar
76.Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Change Biol. 24, 4107–4121 (2018).Article
Google Scholar
77.Arora, B. et al. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127, 367–396 (2016).Article
Google Scholar
78.Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in Riparian Wetlands. J. Hydrol. 543, 182–196 (2016).Article
Google Scholar
79.Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B. & Versteeg, R. Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour. Res. 54, 205–222 (2018).Article
Google Scholar
80.Peiffer, S., Klemm, O., Pecher, K. & Hollerung, R. Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J. Contam. Hydrol. 10, 1–18 (1992).Article
Google Scholar
81.Wainwright, H. M. et al. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour. Res. 52, 533–551 (2016).Article
Google Scholar
82.Mellage, A. et al. Sensing coated iron-oxide nanoparticles with spectral induced polarization (SIP): experiments in natural sand packed flow-through columns. Environ. Sci. Technol. 52, 14256–14265 (2018).Article
Google Scholar
83.Revil, A., Florsch, N. & Mao, D. Induced polarization response of porous media with metallic particles—part 1: a theory for disseminated semiconductors. Geophysics 80, D525–D538 (2015).Article
Google Scholar
84.Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D. & Florsch, N. Induced polarization response of porous media with metallic particles—part 2: comparison with a broad database of experimental data. Geophysics 80, D539–D552 (2015).Article
Google Scholar
85.Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).Article
Google Scholar
86.Dwivedi, D. et al. Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River mountainous watershed, Colorado. Water Resour. Res. 54, 8456–8477 (2018).Article
Google Scholar
87.Jin, Q. & Bethke, C. M. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677 (2007).Article
Google Scholar
88.Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam—effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total Environ. 502, 526–536 (2015).Article
Google Scholar
89.Appelo, C. A. J. & Postma, D. Geochemistry, Groundwater and Pollution (CRC Press, 2004).90.Brazhkin, V. V. Metastable phases and ‘metastable’ phase diagrams. J. Phys. Condens. Matter 18, 9643–9650 (2006).Article
Google Scholar
91.Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, 2006).92.Ahmed, I. A. M. & Maher, B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proc. Natl Acad. Sci. USA 115, 1736–1741 (2018).Article
Google Scholar
93.Engel, M. H. & Macko, S. A. Organic Geochemistry. Principles and Applications (Springer, 1993).94.Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).Article
Google Scholar
95.Gorski, C. A. & Scherer, M. M. in Aquatic Redox Chemistry (eds Tratnyek, P. G. et al.) 315–343 (ACS, 2011).96.Orsetti, S., Laskov, C. & Haderlein, S. B. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)–goethite surface from AQDS speciation. Environ. Sci. Technol. 47, 14161–14168 (2013).Article
Google Scholar
97.Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016).Article
Google Scholar
98.Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).Article
Google Scholar More