Infection effects of the new microsporidian species Tubulinosema suzukii on its host Drosophila suzukii
1.Capella-Gutiérrez, S., Marcet-Houben, M. & Gabaldon, T. Phylogenomics supports microsporidia as the earliest diverging clade of sequenced fungi. BMC Biol. 10, 47. https://doi.org/10.1186/1741-7007-10-47 (2012).Article
PubMed
PubMed Central
Google Scholar
2.Corsaro, D. et al. Filling gaps in the microsporidian tree: rDNA phylogeny of Chytridiopsis typographi (Microsporidia: Chytridiopsida). Parasitol. Res. 118, 169–180. https://doi.org/10.1007/s00436-018-6130-1 (2019).Article
PubMed
Google Scholar
3.Corsaro, D. et al. Molecular identification of Nucleophaga terricolae sp. nov. (Rozellomycota), and new insights on the origin of the Microsporidia. Parasitol. Res. 115, 3003–3011 (2016).Article
Google Scholar
4.James, T. Y. et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818–822 (2006).ADS
CAS
Article
Google Scholar
5.Sprague, V. & Becnel, J. J. in The Microsporidia and Microsporidiosis (eds M. Wittner & L. M. Weiss) 517–530 (ASM Press, 1999).6.Dunn, A. M., Terry, R. S. & Smith, J. E. Transovarial transmission in the microsporidia. Adv. Parasitol. 48, 57–100. https://doi.org/10.1016/S0065-308X(01)48005-5 (2001).CAS
Article
PubMed
Google Scholar
7.Goertz, D. & Hoch, G. Vertical transmission and overwintering of Microsporidia in the gypsy moth, Lymantria dispar. J. Invertebr. Pathol. 99, 43–48. https://doi.org/10.1016/j.jip.2008.03.008 (2008).Article
PubMed
Google Scholar
8.Becnel, J. J. & Andreadis, T. G. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 521–570 (Wiley, 2014).9.Kellen, W. R. & Lindegren, J. E. Modes of transmission of Nosema plodiae Kellen and Lindegren, a pathogen of Plodia interpunctella (Hübner). J. Stored Prod. Res. 7, 31–34. https://doi.org/10.1016/0022-474X(71)90035-X (1971).Article
Google Scholar
10.Vávra, J. & Larsson, R. J. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 1–70 (Wiley, 2014).11.Mudasar, M., Mathivanan, V., Shah, G. N., Mir, G. M. & Selvisabhanayakam, M. Nosemosis and its effect on performance of honey bees: A review. Int. J. Pharm. Bio. Sci. 4, 923–937 (2013).
Google Scholar
12.Wolf, S. et al. So near and yet so far: Harmonic radar reveals reduced homing ability of Nosema infected honeybees. PLoS ONE 9, e103989. https://doi.org/10.1371/journal.pone.0103989 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
13.Naug, D. & Gibbs, A. Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40, 595–599 (2009).Article
Google Scholar
14.Dussaubat, C. et al. Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J. Invertebr. Pathol. 113, 42–51 (2013).CAS
Article
Google Scholar
15.Goblirsch, M., Huang, Z. Y. & Spivak, M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS ONE 8, 6 (2013).
Google Scholar
16.Lipsitch, M., Nowak, M. A., Ebert, D. & May, R. M. The population dynamics of vertically and horizontally transmitted parasites. Proc. R. Soc. Lond. B 260, 321–327. https://doi.org/10.1098/rspb.1995.0099 (1995).ADS
CAS
Article
Google Scholar
17.Goertz, D., Solter, L. F. & Linde, A. Horizontal and vertical transmission of a Nosema sp. (Microsporidia) from Lymantria dispar (L.) (Lepidoptera: Lymantriidae). J. Invertebr. Pathol. 95, 9–16. https://doi.org/10.1016/j.jip.2006.11.003 (2007).Article
PubMed
Google Scholar
18.Kellen, W. R., Chapman, H. C., Clark, T. B. & Lindegren, J. E. Host-parasite relationships of some Thelohania from mosquitoes (Nosematidae: Microsporidia). J. Invertebr. Pathol. 7, 161–166. https://doi.org/10.1016/0022-2011(65)90030-3 (1965).CAS
Article
PubMed
Google Scholar
19.Dunn, A. M. & Smith, J. E. Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect. 3, 381–388. https://doi.org/10.1016/S1286-4579(01)01394-6 (2001).CAS
Article
PubMed
Google Scholar
20.Terry, R. S. et al. Widespread vertical transmission and associated host sex–ratio distortion within the eukaryotic phylum Microspora. Proc. R. Soc. Lond. B 271, 1783–1789. https://doi.org/10.1098/rspb.2004.2793 (2004).Article
Google Scholar
21.Mercer, C. & Wigley, P. A microsporidian pathogen of the poroporo stem borer, Sceliodes cordalis (Dbld)(Lepidoptera: Pyralidae): Effects on adult reproductive success. J. Invertebr. Pathol. 49, 108–115. https://doi.org/10.1016/0022-2011(87)90132-7 (1987).Article
Google Scholar
22.Bauer, L. S. & Nordin, G. L. Effect of Nosema fumiferanae (Microsporida) on fecundity, fertility, and progeny performance of Choristoneura fumiferana (Lepidoptera: Tortricidae). Environ. Entomol. 18, 261–265. https://doi.org/10.1093/ee/18.2.261 (1989).Article
Google Scholar
23.Futerman, P. et al. Fitness effects and transmission routes of a microsporidian parasite infecting Drosophila and its parasitoids. Parasitology 132, 479–492. https://doi.org/10.1017/S0031182005009339 (2006).CAS
Article
PubMed
Google Scholar
24.Goertz, D., Golldack, J. & Linde, A. Two different and sublethal isolates of Nosema lymantriae (Microsporidia) reduce the reproductive success of their host, Lymantria dispar. Biocontrol Sci. Technol. 18, 419–430. https://doi.org/10.1080/09583150801993212 (2008).Article
Google Scholar
25.Lockwood, J. A., Bomar, C. R. & Ewen, A. B. The history of biological control with Nosema locustae: Lessons for locust management. Int. J. Trop. Insect Sci. 19, 333–350. https://doi.org/10.1017/S1742758400018968 (1999).Article
Google Scholar
26.Kiritani, K. & Yamamura, K. in Invasive Species: Vectors and Management Strategies. (ed J. Carlton) 44–67 (Island Press, 2003).27.Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manage. 2, G1–G7. https://doi.org/10.1603/IPM10010 (2011).Article
Google Scholar
28.Cini, A., Ioriatti, C. & Anfora, G. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 65, 149–160 (2012).
Google Scholar
29.Tochen, S. et al. Temperature-related development and population parameters for Drosophila suzukii (Diptera: Drosophilidae) on cherry and blueberry. Environ. Entomol. 43, 501–510. https://doi.org/10.1603/en13200 (2014).Article
PubMed
Google Scholar
30.Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).Article
Google Scholar
31.Gabarra, R., Riudavets, J., Rodríguez, G., Pujade-Villar, J. & Arnó, J. Prospects for the biological control of Drosophila suzukii. Biocontrol 60, 331–339. https://doi.org/10.1007/s10526-014-9646-z (2015).Article
Google Scholar
32.Cuthbertson, A. G. S. & Audsley, N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii. Insects 7, 24. https://doi.org/10.3390/insects7020024 (2016).Article
PubMed Central
Google Scholar
33.Woltz, J. M., Donahue, K. M., Bruck, D. J. & Lee, J. C. Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J. Appl. Entomol. 139, 759–770. https://doi.org/10.1111/jen.12200 (2015).Article
Google Scholar
34.Haye, T. et al. Current SWD IPM tactics and their practical implementation in fruit crops across different regions around the world. J. Pest. Sci. 89, 643–651. https://doi.org/10.1007/s10340-016-0737-8 (2016).Article
Google Scholar
35.Biganski, S., Jehle, J. A. & Kleespies, R. G. Bacillus thuringiensis serovar israelensis has no effect on Drosophila suzukii Matsumura. J. Appl. Entomol. 142, 33–36. https://doi.org/10.1111/jen.12415 (2018).CAS
Article
Google Scholar
36.Carrau, T., Hiebert, N., Vilcinskas, A. & Lee, K.-Z. Identification and characterization of natural viruses associated with the invasive insect pest Drosophila suzukii. J. Invertebr. Pathol. 154, 74–78. https://doi.org/10.1016/j.jip.2018.04.001 (2018).CAS
Article
PubMed
Google Scholar
37.Medd, N. C. et al. The virome of Drosophila suzukii, an invasive pest of soft fruit. BioRxiv 4, 190322. https://doi.org/10.1093/ve/vey009 (2017).Article
Google Scholar
38.Kaur, R., Siozios, S., Miller, W. J. & Rota-Stabelli, O. Insertion sequence polymorphism and genomic rearrangements uncover hidden Wolbachia diversity in Drosophila suzukii and D. subpulchrella. Sci. Rep. 7, 14815. https://doi.org/10.1038/s41598-017-13808-z (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
39.Biganski, S. et al. Molecular and morphological characterisation of a novel microsporidian species, Tubulinosema suzukii, infecting Drosophila suzukii (Diptera: Drosophilidae). J. Invertebr. Pathol. 107440 (2020).40.Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426. https://doi.org/10.1017/S0031182000055360 (1982).Article
PubMed
Google Scholar
41.Aigaki, T. & Ohba, S. Effect of mating status on Drosophila virilis lifespan. Exp. Gerontol. 19, 267–278. https://doi.org/10.1016/0531-5565(84)90022-6 (1984).CAS
Article
PubMed
Google Scholar
42.Partridge, L., Green, A. & Fowler, K. Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. J. Insect Physiol. 33, 745–749. https://doi.org/10.1016/0022-1910(87)90060-6 (1987).Article
Google Scholar
43.Bretman, A., Westmancoat, J. D., Gage, M. J. & Chapman, T. Costs and benefits of lifetime exposure to mating rivals in male Drosophila melanogaster. Evolution 67, 2413–2422. https://doi.org/10.1111/evo.12125 (2013).Article
PubMed
Google Scholar
44.Armstrong, E. & Bass, L. K. Nosema kingi: Effects on fecundity, fertility, and longevity of Drosophila melanogaster. J. Exp. Zool. 250, 82–86. https://doi.org/10.1002/jez.1402500111 (1989).Article
Google Scholar
45.Armstrong, E. Transmission and infectivity studies on Nosema kingi in Drosophila willistoni and other Drosophilids. Z. Parasitenkd. 50, 161–165. https://doi.org/10.1007/BF00380520 (1976).Article
Google Scholar
46.Armstrong, E., Bass, L., Staker, K. & Harrell, L. A comparison of the biology of a Nosema in Drosophila melanogaster to Nosema kingi in Drosophila willistoni. J. Invertebr. Pathol. 48, 124–126. https://doi.org/10.1016/0022-2011(86)90151-5 (1986).Article
Google Scholar
47.Vijendravarma, R. K., Godfray, H. C. J. & Kraaijeveld, A. R. Infection of Drosophila melanogaster by Tubulinosema kingi: Stage-specific susceptibility and within-host proliferation. J. Invertebr. Pathol. 99, 239–241. https://doi.org/10.1016/j.jip.2008.02.014 (2008).Article
PubMed
Google Scholar
48.Niehus, S., Giammarinaro, P., Liégeois, S., Quintin, J. & Ferrandon, D. Fly culture collapse disorder: Detection, prophylaxis and eradication of the microsporidian parasite Tubulinosema ratisbonensis infecting Drosophila melanogaster. Fly 6, 193–204. https://doi.org/10.4161/fly.20896 (2012).CAS
Article
PubMed
Google Scholar
49.Franchet, A., Niehus, S., Caravello, G. & Ferrandon, D. Phosphatidic acid as a limiting host metabolite for the proliferation of the microsporidium Tubulinosema ratisbonensis in Drosophila flies. Nat Microbiol 4, 645–655 (2019).CAS
Article
Google Scholar
50.Robertson, F. W. & Sang, J. H. The ecological determinants of population growth in a Drosophila culture. I. Fecundity of adult flies. Proc. R. Soc. Lond. B 132, 258–277. https://doi.org/10.1098/rspb.1944.0017 (1944).ADS
Article
Google Scholar
51.Vijendravarma, R. K., Kraaijeveld, A. R. & Godfray, H. C. J. Experimental evolution shows Drosophila melanogaster resistance to a microsporidian pathogen has fitness costs. Evolution 63, 104–114. https://doi.org/10.1111/j.1558-5646.2008.00516.x (2009).Article
PubMed
Google Scholar
52.Rousset, F., Bouchon, D., Pintureau, B., Juchault, P. & Solignac, M. Wolbachia endosymbionts responsible for various alterations of sexuality in arthropods. Proc. R. Soc. Lond. B 250, 91–98. https://doi.org/10.1098/rspb.1992.0135 (1992).ADS
CAS
Article
Google Scholar
53.Saeed, N., Battisti, A., Martinez-Sañudo, I. & Mori, N. Combined effect of temperature and Wolbachia infection on the fitness of Drosophila suzukii. Bull. Insectol. 71, 161–169 (2018).
Google Scholar
54.Hamm, C. A. et al. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella. Mol. Ecol. 23, 4871–4885. https://doi.org/10.1111/mec.12901 (2014).Article
PubMed
PubMed Central
Google Scholar
55.Mazzetto, F., Gonella, E. & Alma, A. Wolbachia infection affects female fecundity in Drosophila suzukii. Bull. Insectol. 68, 153–157 (2015).
Google Scholar
56.Hurst, G. D., Johnson, A. P., vd Schulenburg, J. H. G. & Fuyama, Y. Male-killing Wolbachia in Drosophila: a temperature-sensitive trait with a threshold bacterial density. Genetics 156, 699–709 (2000).57.Markow, T. A. Parents without partners: Drosophila as a model for understanding the mechanisms and evolution of parthenogenesis. G3 3, 757–762. https://doi.org/10.1534/g3.112.005421 (2013).CAS
Article
PubMed
Google Scholar
58.Wolfner, M. F. The gifts that keep on giving: physiological functions and evolutionary dynamics of male seminal proteins in Drosophila. Heredity 88, 85–93. https://doi.org/10.1038/sj.hdy.6800017 (2002).CAS
Article
PubMed
Google Scholar
59.Blaser, M. & Schmid-Hempel, P. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum. J. Invertebr. Pathol. 89, 251–257. https://doi.org/10.1016/j.jip.2005.04.004 (2005).Article
PubMed
Google Scholar
60.Solter, L. F. in Microsporidia: Pathogens of Opportunity (eds L. M. Weiss & J. J. Becnel) 165–194 (Wiley, 2014).61.Eberle, K. E., Wennmann, J. T., Kleespies, R. G. & Jehle, J. A. in Manual of Techniques in Invertebrate Pathology (ed L. A. Lacey) 15–74 (Academic Press, 2012).62.Hughes, P. & Wood, H. A synchronous peroral technique for the bioassay of insect viruses. J. Invertebr. Pathol. 37, 154–159. https://doi.org/10.1016/0022-2011(81)90069-0 (1981).Article
Google Scholar
63.Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265–267 (1925).CAS
Article
Google Scholar
64.Software for the statistical analysis of biotests (ToxRat GmbH, Alsdorf, Germany, 2003).65.Pan, G. et al. Invertebrate host responses to microsporidia infections. Dev. Comp. Immunol. 83, 104–113. https://doi.org/10.1016/j.dci.2018.02.004 (2018).Article
PubMed
Google Scholar
66.Roxström-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: A genomic study. EMBO Rep. 5, 207–212. https://doi.org/10.1038/sj.embor.7400073 (2004).CAS
Article
PubMed
PubMed Central
Google Scholar
67.Kraaijeveld, A. R. & Godfray, H. C. J. Selection for resistance to a fungal pathogen in Drosophila melanogaster. Heredity 100, 400–406. https://doi.org/10.1038/sj.hdy.6801092 (2008).CAS
Article
PubMed
Google Scholar More