More stories

  • in

    Quantitative modeling of radioactive cesium concentrations in large omnivorous mammals after the Fukushima nuclear power plant accident

    Data setsRadioactivity measurement data for several species of wild game mammals and birds in Fukushima Prefecture from May 2011 to March 2018 were released to the public by the Fukushima Prefecture Government (https://emdb.jaea.go.jp/emdb/en/portals/1040501000/). We extracted the data for wild boar (Sus scrofa), 1404 samples, and Asian black bear (Ursus thibetanus), 422 samples. The resulting boar and bear data sets contained total radioactive cesium activity (134Cs + 137Cs isotopes) values (in Bq/kg) from animals captured at different times and locations within Fukushima Prefecture. The data were imported for analysis into R 4.0.3 software21.We ln-transformed the cesium activity values to bring their distribution closer to normal, creating the variable LnCsTot. To facilitate regression analyses (described below), we removed instances of missing data and cesium levels below detection: 20 samples (1.4%) for boar and 15 samples (3.3%) for bears. The time when each sample was taken (labeled “Day of collection” in the Fukushima Prefecture Government data set) was converted to years since the Fukushima accident (since March 11, 2011), assuming that 1 year = 365.25 days. This time of sample collection in years was called variable T.Since for each sample some time passed between sample collection and radioactivity measurement (labeled “Result found Date”, called Tr in our notation), we needed to correct the reported LnCsTot values for physical decay over this time, which was different for different samples. The procedure used to perform this correction is described in Supplementary methods. The data with corrected total cesium values (LnCsc) are provided in Supplementary data (Supplementary_Dataset_File_Full).Mathematical modelTo describe the data on ln-transformed total radioactive cesium levels (LnScc) in each species as function of time after the accident (T), we developed the following simple mathematical model (Eqs. 1A, 1B):$${LnCs}_{c}=X+Q-mu times {T}^{nu }+Atimes mathrm{sin}left[2times pi times left(T+Pright)right], $$
    (1A)
    $$X=mathrm{ln}left[mathrm{exp}left(LnCs{134}_{t{0}_{r}}right)times {2}^{-frac{T}{{Th}_{Cs134}}}+mathrm{exp}left(LnCs{137}_{t{0}_{r}}right)times {2}^{-frac{T}{{Th}_{Cs137}}}right]$$
    (1B)
    Here the term X represents the estimated average radioactive cesium level in the studied area, based on the intercepts (LnCs134t0r for 134Cs and LnCs137t0r for 137Cs, respectively) from robust regression discussed in Supplementary methods, and taking into account only physical decay for each isotope (with half-lives of ThCs134 for 134Cs and ThCs134 for 137Cs, respectively). The terms Q, µ, ν, A and P represent adjustable model parameters. Parameter Q represents the fitted relationship between radioactive cesium levels in the animal (Bq/kg), relative to the external environment (Bq/m2). Parameter µ represents the net rate of radioactive cesium reduction in animal tissues over time due to all processes except physical decay (e.g. decrease in bioavailability due to migration of cesium into deeper soil layers, human-mediated cleanup efforts, etc.). Parameter ν is a potential power dependence for these processes. By default, ν was set to ν = 1, but exploratory calculations using ν = 2 or treating ν as a freely adjustable parameter (≥ 0.1) were performed as well. Parameters A and P in the sine function represent a sinusoidal approximation for seasonal changes in radioactive cesium levels in animal tissues (e.g. due to seasonal variations in diet and life style), where A is the amplitude of the oscillations, P is the phase shift, and the period is set to 1 year. For simplicity, these parameters were assumed to be the same for both studied cesium isotopes. The descriptions of each parameter are also presented in Table 1.Table 1 The meanings of all parameters used in our mathematical model (Eq. 1A, 1B) for radioactive cesium levels in wild boar (Sus scrofa) and Asian black bear (Ursus thibetanus).Full size tableModel fitting approachesInitially, we used nonlinear ordinary least squares (OLS) regression (nls R function) to fit the model (Eq. 1A, 1B) to the data. To find the global optimum fit, we repeated the fitting procedure 2000 times with slightly different random initial parameter values and recorded the solution with the smallest root mean squared error (RMSE). Diagnostics on this regression included checking of convergence criteria and analyses of residuals (by scatter plot and histogram, regressing residuals as function of T, visualizing the QQ plot, autocorrelation and partial autocorrelation functions with 95% confidence intervals, performing the Shapiro–Wilk normality test, and calculating skewness and kurtosis). For boar data, diagnostics revealed problems with convergence (both X-convergence and relative convergence) and non-normality of residuals: e.g. Shapiro–Wilk p-value = 1.476 × 10–7, skewness = − 0.37, kurtosis = 3.50. For black bear data similar problems occurred with convergence, but residuals were closer to the normal distribution (perhaps due to smaller sample size): e.g. Shapiro–Wilk p-value = 0.0526, skewness = − 0.058, kurtosis = 2.45.Due to these issues, we used robust nonlinear regression (nlrob R package) to reduce the effects of “outlier” data points. To find the global optimum, we repeated the fitting procedure 2000 times with slightly different random initial parameter values and selected the solution with the smallest absolute value of median residuals. The best-fit parameters for OLS and robust regressions were somewhat different for both boar and bear data. For boar data, the minimum robustness weight was 0.339 and the median was 0.762, and the corresponding values for black bear data were 0.557 and 0.821, respectively.For each species, we compared the performances of model variants with different assumptions about parameter ν: (1) The default case with ν = 1, which represents an exponential rate of radioactive cesium decrease due to processes other than physical decay. (2) The case with ν = 2, which represents quadratic decay. (3) The case with ν being freely adjustable (≥ 0.1). The comparisons were based on Akaike information criterion (AIC)22,23. The purpose of these calculations was to better assess the shape of the time course for non-physical factors involved in radioactive cesium level decline in animal tissues over time after the accident.In addition to analyzing the full data set for each species, we also performed separate analyses on subsets of data from specific locations: from those districts of Fukushima Prefecture where the mean radioactive cesium levels in animal samples were the highest, and where a sufficiently large number of samples was present. For wild boar, the two selected districts for this subset analysis were Soso and Kenpoku (819 samples), and for black bear they were Kenpoku and Kenchu (163 samples).To further assess the sensitivity of model results to geographical and temporal factors, we also constructed a separate subset of data for each species. This subset excluded data from the Aizu and Minamiaizu districts, which are separated by mountains from the Fukushima Daiichi Nuclear Power Plant, and excluded data collected ≤ 6 months after the accident. These restrictions were intended to determine model performance on data collected in a more geographically contiguous area after the initial abrupt changes in contamination levels were completed and the system entered the phase of more stable kinetics. The purpose of all these analyses was to assess whether the time course of radioactive cesium levels in the bodies of each species differed between locations with high contamination vs. those with lower contamination, and as function of time after the accident.We were interested in quantifying not only the center of the distribution of radioactive cesium values in each species over time, but also in assessing the lower and upper tails of this distribution. For this purpose, we fitted the model (Eq. 1A, 1B) for each species using quantile regression (nlrq function in quantreg R package) for the median (50th percentile), and also for the 25th and 75th percentiles. Initial parameter estimates for the quantile regressions were taken from best-fit parameters from robust regression described above. The 25th and 75th percentiles were selected instead of more extreme values (e.g. 5th and 95th) because the latter resulted in poor quality fits due to limited amounts of data at the fringes of the distribution.To assess the variability of model parameters by location in more detail, we used mixed effects modeling (nlme R package) on the data from each species. Since original OLS fits suggested substantial deviations of residuals from the normality assumption, we performed mixed effects modeling on data with some outlier data points removed. The OutlierDetection package in R removed 43 boar samples and 5 bear samples. These outliers are listed in the Supplementary_outlier_data_points file. The remaining samples were used for mixed effects model fitting, but model performance metrics like coefficient of determination (R2) and RMSE were assessed on the full data set (with outliers included) for each species.Since the Fligner-Killeen test of homogeneity of variances by district generated low p-values for both species (4.6 × 10–14 for boar and 0.018 for black bear), we allowed modelled variances to differ by district (using the weights option in nlme). We investigated several random effects structures for some or all model parameters, with randomness by district only, or by district and municipality within district. Model diagnostics were the same as for fixed effects OLS modeling described above, and also included boxplots of model residuals by district. The mixed effects model variants with different random effects structures were compared using the anova function in R, and also by assessing convergence criteria, normality of residuals, skewness, and kurtosis. Consequently, preferred mixed effects model variants were selected for the full data as well as for the subset of two districts with high radioactive cesium levels, separately for each species.Model extrapolation from training to testing dataTo investigate how the robust and quantile regression fits of our model could extrapolate beyond the time range that was used for model fitting, we split the data for each species into “training” (early times) and “testing” (later times) parts. The split was done based on time since the accident (T variable), so that approximately ½ of the samples were assigned to the training and testing sets, respectively. For wild boar data, the training set included times between 0.20 and 3.45 years after the accident, and the testing set included times between 3.45 and 7.03 years. For black bear data, the training set included times between 0.42 and 3.46 years after the accident, and the testing set included times between 3.46 and 6.87 years.We also evaluated an alternative approach to splitting the data, where the split was done randomly instead of by time. In other words, any data point regardless of time had an equal probability of being assigned to either the training or the testing data set. Both the training and testing data subsets generated by this random split included the complete time range. This approach was implemented in context of the sensitivity analysis described above.For each species, robust and quantile regressions were fitted to training data, and their predictions were calculated for testing data. For robust regression, RMSE was calculated on testing data for two scenarios: (1) for the model fitted to training data only, and (2) for the model fitted over the entire data range (training + testing). These RMSE values for conditions 1 and 2 were compared to assess the quality of model extrapolation. Extrapolation performance for robust and quantile regressions was also assessed visually by plotting the model predictions and data.Application of the model to wild boar data from the Chernobyl accident areaTo compare the results of our analysis of wild boar contamination with radioactive cesium in the area affected by the Fukushima accident with data from another location, we also analyzed wild boar data from the Chernobyl accident area. These data were published by Gulakov14 and contain summaries of 137Cs contamination levels in the muscles of 188 boar collected between 1991 and 2008 (i.e. from 5 to 22 years after the 1986 accident). Sampling was carried out in three zones with different land contamination levels with 137Cs. This data set provides important information on radioactive cesium contamination in wild boar in the Chernobyl area. Unfortunately, 137Cs measurements in each sampled boar were not provided by Gulakov14, and only summary statistics are available for each zone and year after the accident (Tables 1–3 in reference14): number of animals, mean, minimum and maximum 137Cs levels.We could not apply the full model (Eq. 1A, 1B) to these summary data which lacked seasonality information and 134Cs data. However, we were able to perform a weighted linear regression to quantify the ecological half-life of 137Cs in Chernobyl boar and the relationship between 137Cs levels in the animals (Bq/kg), relative to the external environment (Bq/m2). The data used for this analysis, derived from Gulakov14, are provided in Supplementary data (Supplementary_Dataset_File_Full). They contain the following variables. Zone = location of sample collection (Alienation, Permanent control or Periodic control). Time = time in years after the Chernobyl accident. LnMeanCs = ln-transformed mean 137Cs level in boar muscle (Bq/kg). LnMeanCs_c = LnMeanCs − X, where X is ln-transformed 137Cs land contamination (Bq/m2) in the given zone, corrected for physical decay of 137Cs. Weight = weighting of each data point used for regression. Weight = number of animals/(ln[maximum 137Cs level] − ln[minimum 137Cs level])2. These approximately inverse-variance weights were normalized by the overall mean across all data points, so that the mean weight across all data points was set to 1.These data were analyzed by weighted linear regression in R, where LnMeanCs_c was allowed to depend on Time and Zone variables. Model variants containing all possible combinations and pairwise interactions between these predictor variables were fitted and their performances were compared using the Akaike information criterion with correction for small sample size (AICc). These calculations were performed using the glmulti R package. Multimodel inference (MMI) was performed on this collection of fitted model variants. It resulted in the calculation of model-averaged parameter estimates, 95% CIs and importance scores, corrected for model selection uncertainty. Of main interest here were the intercept parameter, which is analogous to parameter Q in the full model (Eq. 1A, 1B), and the Time parameter, which is analogous to parameter µ in the full model. The ecological half-life for 137Cs was calculated based on the Time parameter. More

  • in

    Substrate control of sulphur utilisation and microbial stoichiometry in soil: Results of 13C, 15N, 14C, and 35S quad labelling

    1.Dong Y, Silbermann M, Speiser A, Forieri I, Linster E, Poschet G, et al. Sulfur availability regulates plant growth via glucose-TOR signaling. Nat Commun. 2017;8:1174.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Freney JR, Melville GE, Williams CH. Soil organic matter fractions as sources of plant-available sulphur. Soil Biol Biochem. 1975;7:217–21.CAS 
    Article 

    Google Scholar 
    3.Kopittke PM, Dalal RC, Finn D, Menzies NW. Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long‐term agricultural production. Global Change Biol. 2017;23:2509–19.Article 

    Google Scholar 
    4.Ciaffi M, Paolacci AR, Celletti S, Catarcione G, Kopriva S, Astolfi S. Transcriptional and physiological changes in the S assimilation pathway due to single or combined S and Fe deprivation in durum wheat (Triticum durum L.) seedlings. J Exp Bot. 2013;64:1663.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Ma Q, Luo Y, Wen Y, Hill PW, Chadwick DR, Wu L, et al. Carbon and sulphur tracing from soil organic sulphur in plants and soil microorganisms. Soil Biol Biochem. 2020;150:107971.CAS 
    Article 

    Google Scholar 
    6.Piotrowska-Długosz A, Siwik-Ziomek A, Długosz J, Gozdowski D. Spatio-temporal variability of soil sulfur content and arylsulfatase activity at a conventionally managed arable field. Geoderma. 2017;295:107–18.Article 
    CAS 

    Google Scholar 
    7.Fitzgerald JW, Watwood ME. Amino-acid metabolism in forest soil—Isolation and turnover of organic matter covalently labelled with 35S-methionine. Soil Biol Biochem. 1988;20:833–8.CAS 
    Article 

    Google Scholar 
    8.Ma Q, Wen Y, Pan W, Macdonald A, Hill PW, Chadwick DR, et al. Soil carbon, nitrogen, and sulphur status affects the metabolism of organic S but not its uptake by microorganisms. Soil Biol Biochem. 2020;149:107943.CAS 
    Article 

    Google Scholar 
    9.Jan MT, Roberts P, Tonheim SK, Jones DL. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol Biochem. 2009;41:2272–82.CAS 
    Article 

    Google Scholar 
    10.Farrell M, Macdonald LM, Hill PW, Wanniarachchi SD, Farrar J, Bardgett RD, et al. Amino acid dynamics across a grassland altitudinal gradient. Soil Biol Biochem. 2014;76:179–82.CAS 
    Article 

    Google Scholar 
    11.Wilkinson A, Hill PW, Farrar JF, Jones DL, Bardgett RD. Rapid microbial uptake and mineralization of amino acids and peptides along a grassland productivity gradient. Soil Biol Biochem. 2014;72:75–83.CAS 
    Article 

    Google Scholar 
    12.Hill PW, Jones DL. Plant–microbe competition: does injection of isotopes of C and N into the rhizosphere effectively characterise plant use of soil N? N Phytol. 2018;221:796–806.Article 
    CAS 

    Google Scholar 
    13.Godwin CM, Cotner JB. Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J. 2015;9:2324–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Hartman WH, Ye R, Horwath WR, Tringe SG. A genomic perspective on stoichiometric regulation of soil carbon cycling. ISME J. 2017;11:2652–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Manzoni S, Jackson RB, Trofymow JA, Porporato A. The global stoichiometry of litter nitrogen mineralization. Science. 2008;321:684–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Cui J, Zhu Z, Xu X, Liu S, Jones DL, Kuzyakov Y, et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol Biochem. 2020;142:107720.CAS 
    Article 

    Google Scholar 
    17.Wei X, Zhu Z, Liu Y, Luo Y, Deng Y, Xu X, et al. C:N:P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil. Biol Fert Soils. 2020;56:1093–107.Article 
    CAS 

    Google Scholar 
    18.Maria M, Wolfgang W, Sophie ZB, Andreas R. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources. Front Microbiol. 2014;5:22.
    Google Scholar 
    19.Qiao N, Xu XL, Hu YH, et al. Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum. Sci Rep-UK. 2016;6:19865.CAS 
    Article 

    Google Scholar 
    20.Kirkby CA, Kirkegaard JA, Richardson AE, Wade LJ, Blanchard C, Batten G. Stable soil organic matter: a comparison of C:N:P:S ratios in Australian and other world soils. Geoderma. 2011;163:197–208.CAS 
    Article 

    Google Scholar 
    21.Manzoni S, Čapek P, Mooshammer M, Lindahl BD, Richter A, Šantrůčková H. Optimal metabolic regulation along resource stoichiometry gradients. Ecol Lett. 2017;20:1182–91.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Mooshammer M, Wanek W, Hämmerle I, Fuchslueger L, Hofhansl F, Knoltsch A, et al. Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling. Nat Commun. 2014;5:3694.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Delgado-Baquerizo M, Reich PB, Khachane AN, Campbell CD, Thomas N, Freitag TE, et al. It is elemental: soil nutrient stoichiometry drives bacterial diversity. Environ Microbiol. 2017;19:1176–88.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mayor JR, Mack MC, Schuur EAG. Decoupled stoichiometric, isotopic, and fungal responses of an ectomycorrhizal black spruce forest to nitrogen and phosphorus additions. Soil Biol Biochem. 2015;88:247–56.CAS 
    Article 

    Google Scholar 
    25.Mooshammer M, Hofhansl F, Frank AH, Wanek W, Hämmerle I, Leitner S, et al. Decoupling of microbial carbon, nitrogen, and phosphorus cycling in response to extreme temperature events. Sci Adv. 2017;3:e1602781.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Chen J, Seven J, Zilla T, Dippold MA, Blagodatskaya E, Kuzyakov Y. Microbial C:N:P stoichiometry and turnover depend on nutrients availability in soil: A 14C, 15N and 33P triple labelling study. Soil Biol Biochem. 2019;131:206–16.CAS 
    Article 

    Google Scholar 
    27.Ma Q, Wu L, Wang J, Ma J, Zheng N, Hill PW, et al. Fertilizer regime changes the competitive uptake of organic nitrogen by wheat and soil microorganisms: An in-situ uptake test using 13C, 15N labelling, and 13C-PLFA analysis. Soil Biol Biochem. 2018;125:319–27.CAS 
    Article 

    Google Scholar 
    28.Jiang G, Zhang W, Xu M, Kuzyakov Y, Zhang X, Wang J, et al. Manure and Mineral Fertilizer Effects on Crop Yield and Soil Carbon Sequestration: a Meta‐Analysis and Modeling Across China. Glob Biogeochem Cy. 2018;32:1659–72.CAS 
    Article 

    Google Scholar 
    29.Liu S, Wang J, Pu S, Blagodatskaya E, Kuzyakov Y, Razavi BS. Impact of manure on soil biochemical properties: a global synthesis. Sci Total Environ. 2020;745:141003.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Cheng L, Zhang N, Yuan M, Xiao J, Qin Y, Deng Y, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 2017;11:1825–35.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Ma Q, Wen Y, Wang D, Sun X, Hill PW, Macdonald A, et al. Farmyard manure applications stimulate soil carbon and nitrogen cycling by boosting microbial biomass rather than changing its community composition. Soil Biol Biochem. 2020;144:107760.CAS 
    Article 

    Google Scholar 
    32.Ma Q, Wen Y, Ma J, Macdonald A, Hill PW, Chadwick DR, et al. Long-term farmyard manure application affects soil organic phosphorus cycling: a combined metagenomic and 33P/14C labelling study. Soil Biol Biochem. 2020;149:107959.CAS 
    Article 

    Google Scholar 
    33.Jones DL, Hill PW, Smith AR, Farrell M, Ge T, Banning NC, et al. Role of substrate supply on microbial carbon use efficiency and its role in interpreting soil microbial community-level physiological profiles (CLPP). Soil Biol Biochem. 2018;123:1–6.CAS 
    Article 

    Google Scholar 
    34.Jones DL, Magthab EA, Gleeson DB, Hill PW, Sánchez-Rodríguez AR, Roberts P, et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol Biochem. 2018;117:72–82.CAS 
    Article 

    Google Scholar 
    35.Mariano E, Jones DL, Hill PW, Trivelin PCO. Mineralisation and sorption of dissolved organic nitrogen compounds in litter and soil from sugarcane fields. Soil Biol Biochem. 2016;103:522–32.CAS 
    Article 

    Google Scholar 
    36.Corre M, Brumme R, Veldkamp EF. Changes in nitrogen cycling and retention processes in soils under spruce forests along a nitrogen enrichment gradient in Germany. Glob Change Biol. 2010;13:1509–27.Article 

    Google Scholar 
    37.Spohn M, Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem. 2013;61:69–75.CAS 
    Article 

    Google Scholar 
    38.Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC. Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem. 1990;22:1167–9.CAS 
    Article 

    Google Scholar 
    39.Glanville H, Hill PW, Schnepf A, Oburger E, Jones DL. Combined use of empirical data and mathematical modelling to better estimate the microbial turnover of isotopically labelled carbon substrates in soil. Soil Biol Biochem. 2015;94:154–68.Article 
    CAS 

    Google Scholar 
    40.Greenfield LM, Hill PW, Paterson E, Baggs EM, Jones DL. Methodological bias associated with soluble protein recovery from soil. Sci Rep-UK. 2018;8:11186.Article 
    CAS 

    Google Scholar 
    41.Näsholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants. N Phytol. 2010;182:31–48.Article 
    CAS 

    Google Scholar 
    42.Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM. Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biol Biochem. 2014;77:261–7.CAS 
    Article 

    Google Scholar 
    43.Niknahad-Gharmakher H, Piutti S, Machet JM, Benizri E, Recous S. Mineralization-immobilization of sulphur in a soil during decomposition of plant residues of varied chemical composition and S content. Plant Soil. 2012;360:391–404.CAS 
    Article 

    Google Scholar 
    44.Vong PC, Piutti S, Slezackdeschaumes S, Benizri E, Guckert A. Effects of low-molecular-weight organic compounds on sulphur immobilization and re-mineralization and extraction of immobilized sulphur by hot-water and acid hydrolysis. Eur J Soil Sci. 2010;61:287–97.CAS 
    Article 

    Google Scholar 
    45.Takriti M, Wild B, Schnecker J, Mooshammer M, Knoltsch A, Lashchinskiy N, et al. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biol Biochem. 2018;121:212–20.CAS 
    Article 

    Google Scholar 
    46.Zhu Z, Ge T, Luo Y, Liu S, Xu X, Tong C, et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol Biochem. 2018;121:67–76.CAS 
    Article 

    Google Scholar 
    47.Xu X, Hui D, King AW, Song X, Thornton PE, Zhang L. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus and sulfur in terrestrial ecosystems. Sci Rep-UK. 2015;5:17445.CAS 
    Article 

    Google Scholar 
    48.Fanin N, Fromin N, Buatois B, Ttenschwiler SH. An experimental test of the hypothesis of non-homeostatic consumer stoichiometry in a plant litter-microbe system. Ecol Lett. 2013;16:764–72.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Peters MK, Hemp A, Appelhans T, Becker JN, Behler C, Classen A, et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature. 2019;568:88–92.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Kaiser C, Franklin O, Dieckmann U, Richter A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol Lett. 2014;17:680–90.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Xu X, Schimel JP, Thornton PE, Song X, Yuan F, Goswami S. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth system models. Ecol Lett. 2014;17:547–55.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Apostel C, Dippold M, Kuzyakov Y. Biochemistry of hexose and pentose transformations in soil analyzed by position-specific labeling and 13C-PLFA. Soil Biol Biochem. 2015;80:199–208.CAS 
    Article 

    Google Scholar 
    53.Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. Environmental and stoichiometric controls on microbial carbon‐use efficiency in soils. N Phytol. 2012;196:79–91.CAS 
    Article 

    Google Scholar 
    54.Fitzgerald JW, Hale DD, Swank WT. Sulphur-containing amino acid metabolism in surface horizons of a hardwood forest. Soil Biol Biochem. 1988;20:825–31.CAS 
    Article 

    Google Scholar 
    55.Akashi H, Gojobori T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. P Natl Acad Sci USA. 2002;99:3695–700.CAS 
    Article 

    Google Scholar 
    56.Nozaki T, Ali V, Tokoro M. Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa. Adv Parasit. 2005;60:1–99.Article 

    Google Scholar 
    57.Takagi H, Ohtsu I. l-Cysteine Metabolism and Fermentation in Microorganisms. Adv Biochem Eng Biotechnol. 2016;159:129–51.
    Google Scholar 
    58.Bustos I, Miguel AM, Fouad A, Carmen P, Teresa R, CM M. Volatile sulphur compounds-forming abilities of lactic acid bacteria: C-S lyase activities. Int J Food Microbiol. 2011;148:121–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Assefa MK, Tucher SV, Schmidhalter U. Soil sulfur availability due to mineralization: soil amended with biogas residues. J Soil Sci Enviro Manag. 2014;5:13–9.CAS 
    Article 

    Google Scholar  More

  • in

    Identification and characteristics of combined agrometeorological disasters caused by low temperature in a rice growing region in Liaoning Province, China

    Characteristics of the single agrometeorological disaster scenariosSAD-f occurred in 49 out of 57 years at different spatial scales, with a maximum IOC of 0.519 in 2013; SAD-d occurred in 33 years with a maximum IOC value of 0.808 in 1995; SAD-s occurred in 5 years, with a maximum IOC value of 0.115 in 1977 (Fig. 4). SAD-d showed a declining trend over the past 57 years, but the SAD-d frequency was higher than SAD-f and SAD-d. Since the mid-1980s, the frequency of SAD-f has increased, while the frequency and scale of SAD-s were relatively small.Figure 4IOC change curve for single agrometeorological disasters (SAD) in different scenarios.Full size imageA large-scale grade SAD-f event occurred in 2013 in Liaoning Province, and regional SAD-f occurred in 17 years. Five years showed a large-scale SAD-d and 11 years had regional SAD-d. There were no large-scale and regional years for SAD-s (Table 5).Table 5 Occurrence years of large-scale and regional single agrometeorological disaster (SAD) in Liaoning Province.Full size tableThe occurrence of SAD-f was recorded at 15 sites with a frequency greater than 20%, 13 sites with frequency in the 10%–20% range, and 24 sites with a low frequency (P ≤ 10%) in Liaoning Province from 1961 to 2017 (Fig. 5). SAD-d occurred at 12 sites with a frequency higher than 20%, 22 sites with frequency between 10% and 20%, and 18 sites with a low frequency (P ≤ 10%). In the three scenarios, the occurrence frequency and distribution of SAD-f was the highest and SAD-s was the lowest.Figure 5Frequency of single agrometeorological disasters (SAD) in different scenarios (a SAD-f, b SAD-d, c SAD-s). Maps generated in ArcGIS 9.3.Full size imageComparison of the characteristics of single agrometeorological disasters and combined agrometeorological disastersThe maximum IOC of SAD was 0.808 in 1995 and the mean value was 0.294 for the 57 years of the study; the maximum IOC of CAD was 0.654 in 1987, and the mean value was 0.180 over the past 57 years; SAD and CAD occurred in all 57 years (Fig. 6). Both SAD and CAD showed declining trends from 1961 to 2017. The IOC was lower for CAD than for SAD for 42 years and higher than SAD for 14 years.Figure 6Change in the IOC for agrometeorological disasters in rice crops.Full size imageThis paper analysed the mean IOC of SAD and CAD over six decades and found that the interdecadal mean value of the IOC in CAD was lower than that of SAD over five of the periods, but the IOC of SAD was lower than that of CAD in 1971–1980 (Fig. 7). The IOC of SAD showed a decreasing trend from the 1970s to the 2010s but showed an increasing trend after 2011. The IOC of CAD showed a decreasing trend from the 1970s to the 2000s, but showed an increasing trend after 2001 (Fig. 7).Figure 7Interdecadal mean value of IOC for agrometeorological disasters in rice crops.Full size imageThere was one site (Fushun) with a SAD frequency of more than 50% in Liaoning Province from 1961 to 2017, 42 sites with a frequency between 20% and 50%, and nine sites with a frequency lower than 20%. There were four sites (Xinfeng, Jianping, Xinbin and Caohekou) with a CAD frequency higher than 50%, 13 sites with a frequency in the range 20%–50%, and 35 sites with a frequency lower than 20% (Fig. 8). The frequency and range of CAD were less than those of SAD.Figure 8Frequency of agrometeorological disaster in rice crops (a combined agrometeorological disaster (CAD), b single agrometeorological disaster (SAD)). Maps generated in ArcGIS 9.3.Full size imageThere has been little research into the temporal or spatial distribution of CAD for rice and its occurrence characteristics: most research has been on SAD. For example, studies have examined the characteristics of SCD, DCD, FD for rice in northeast China26, 27, 29, and the risk of multiple disasters for rice in northeast China30, 31. Han et al.31 analysed the risk of disaster using the reduction rate of rice yield in Liaoning Province from 1980 to 2011, and found that the high-risk areas were distributed in the west and northeast of Liaoning Province; higher rates of yield reduction in lean years were mainly found in western Liaoning and its surrounding areas. In this study, a higher frequency of CAD was mainly distributed in the northwest of Liaoning Province, while that of SAD occurred in the northeast of Liaoning Province. The median frequency of CAD occurred in the northwest and northeast of Liaoning Province, while that of SAD covered most areas in Liaoning Province. The range of medium and higher frequency occurrence in CAD was consistent with the distribution of high-risk and high yield reduction areas in the study of Han et al.31. Therefore, it can be speculated that the CAD scenarios might magnify the effect of each single disaster, and, therefore, CAD would more easily lead to a higher reduction in the rice yield.Comparison of the occurrence of single agrometeorological disasters and combined agrometeorological disastersDuring the rice growing season in Liaoning Province, there were three scenarios of SAD and six scenarios of CAD. Compared with SAD, CAD had more scenarios and more complex processes, and its effect on rice was more difficult to evaluate. In SAD, the occurrence frequency and distribution of SAD-f and SAD-d were both high, when FD and DCD occurred alone in only one rice growth stage. In CAD, the occurrence frequency and distribution of TD-1, when FD and DCD occurred simultaneously, was the highest in the six scenarios. A single or combined occurrence of FD and DCD was most common disaster for rice in Liaoning Province. The occurrence frequency and distribution of OD-1 were both smaller than that of SAD-f, indicating that the occurrence was lower when FD happened at both the seedling and milk stages. SAD-s and OD-2 had the lowest frequency and range in all scenarios, indicating that DSD rarely appeared in SAD and CAD. The occurrence of SCD was not major disaster in the growth and development of rice in Liaoning Province, but the occurrence of DCD or FD, or both, was.In this study, the occurrence frequency and range of SAD and CAD for rice showed declining trends in most sites over the past 57 years, which was consistent with the results of other studies. Studies on rice DCD and SCD concluded that cold damage events of rice in most areas of northeast China showed decreasing trends26, 27. Because of events such as climate warming, earlier warming in spring, delaying first frost dates and fewer low temperature days in summer, the trend of disasters was lower in rice planting areas30. However, although rice disasters showed a decreasing trend, local disasters may increase because of the frequent occurrence of climate anomalies. SAD-f and OD-1 scenarios in this study showed no significant decreasing trend, and even a partial increasing trend. Jiang et al.29 believed that the possibility of frequent SCD in north-east China was still high. According to Xi et al.32, cold periods would still occur in the growing season of rice in northeast China. Hu et al.33 concluded that the increase of SCD in northeast China was mainly because of the increase of climate variability, and most of the sites with increases were located in areas with decreasing temperature or no obvious trend of temperature increase.Rice is a higher temperature-loving crop, which is mainly restricted by temperature conditions during its growing season. Liaoning Province is in the south of the rice planting area of the colder regions in China. Because of the relatively low latitude, heat conditions during the rice growing season were better than those in Jilin and Heilongjiang to the north of Liaoning Province. The climatic risk of cold damage in the rice growing season was lower than other regions in northeast China34. The occurrence of CAD was generally caused by low temperatures, which were the dominant factor. When two or more disasters occur together, there is a coupling or amplifying effect on rice growth compared with a single disaster.A comparison of the rice yield reduction rates in the years when CAD or SAD occurred in more than 50% of stations in Liaoning Province revealed that the former happened in 5 years, 1969, 1974, 1976, 1980 and 1987, whereas the latter happened in 7 years, 1972, 1973, 1985, 1986, 1990, 1995 and 2013. When CAD was the major occurrence, the average yield reduction rate in the five years was 10.6%. The yield reduction rate in 1969 was 34.6%, which was the highest in the past 57 years. When SAD was the major occurrence, the average yield reduction rate in the seven years was 9.8%. The average yield reduction rate in the years when CAD dominated was greater than in the years when SAD dominated. Therefore, it can be speculated that CAD has a greater effect on rice growing than any single disaster within CAD. However, it is difficult to quantify the effect on rice yield of CAD, and further controlled field experiments should be conducted to verify these. It is difficult to control field experiments that are limited by conditions and facilities.Comparison of the occurrence of agrometeorological disasters in years having rice yield reductionsOn the basis of the rice yield reduction rate in calculations Liaoning Province from 1961 to 2017, a total of 10 years (Table 6) were screened. Six years had large-scale disasters (including SAD and CAD) and four years had regional disasters. In 1969, which showed the highest yield reduction rate (34.6%), 30 sites had TD-1 disasters and the other 22 sites had SAD-f disasters. In 1972, the second highest reduction year (29.1%), 11 sites had MD-1 disasters, i.e. three kinds of disasters occurred, seven sites had TD-1 disasters, one site had a TD-2 disaster, 31 sites had SAD-d disasters, one site had a SAD-f disaster, and only one station had no disaster. The TD-1 disaster, i.e. delayed cold damage and frost injury, was the most frequent CAD over the years, and SAD-d, i.e., delayed cold damage, was the most frequent SAD. The occurrence of single and combined agrometeorological disasters in different regions strongly affected the rice yield. Generally, the larger the disaster range, the higher the yield reduction. However, some years were not completely consistent with this conclusion. The yield reduction rate was also related to the type, severity, occurrence period and geographical location of the disasters.Table 6 Comparison of agrometeorological disasters in years having greater than 10% rice yield reduction rates in Liaoning Province.Full size tableIn every year from 1961 to 2017, CAD or SAD occurred in Liaoning Province, and the rice yields declined in 23 of the 57 years owing to meteorological disasters (Fig. 9). Although meteorological disasters occurred in the other 34 years, there was no reduction in rice production, which may be related to the gradient of the disaster or the spatial distribution of the rice planting areas. The rice yield reduction rates in 1969 and 1976 were 34.6% and 15.6%, respectively. In these two years, CAD occurred at 30 stations and SAD occurred at 22 stations, and TD-1 was the main type of CAD, whereas SAD-d was the main type of SAD. Using statistical data, on the rice planting area of each city in Liaoning Province, the provincial area can be divided into four regions. The first region was Shenyang City, which has the largest rice planting area, accounting for 20%–25% of the total rice planting area; the second region was Panjin City, accounting for 15%–20% of the total rice area; the third region encompassed Tieling and other six cities, accounting for nearly 50% of the total rice area, with each city representing 5%–10%; and the fourth region encompassed Jinzhou and five other cities, accounting for 10%–15% of the total, with each city representing 0–5%. As shown in Fig. 10a,b, TD-1 occurred in the first region in both 1969 and 1976 and in the second region in 1969. SAD-d occurred in the second region in 1976. In the third region, TD-1 occurred at more stations of 1969 than in 1976. The rice area in the first three regions accounted for nearly 80% of the total rice area, and CAD occurred more often than SAD in these regions. Thus, there was a greater yield reduction rate in 1969 than in 1976.Figure 9The IOC change curve of all agrometeorological disasters and the rice yield reduction rate from 1961 to 2017.Full size imageFigure 10Distributions of the types of agrometeorological disasters and the percentages of rice planting areas in different regions of Liaoning Province in 1969 and 1976 (a: 1969; b: 1976). Maps generated in ArcGIS 9.3.Full size imageThe occurrence characteristics of single disasters or the risk of yield reduction were analysed in previous studies, but the quantitative effect on rice production was rarely evaluated. Ji et al.26 reported that the delayed cold damage in 1961, 1962, 1969, 1972, 1976, 1989 and 1995 was so severe that there was a large reduction in rice production. In our paper, we examined the occurrence of not just one disaster, i.e. delayed cold damage, over time, but also other types of disasters including SAD and CAD. For example, in 1972 and 1976, the disaster scenario affecting the largest number of stations was TD-1, i.e., both delayed cold damage and frost damage occurred in the growing season of rice. In 1961, the most widespread damage came from a single disaster—frost damage. According to the records35, Liaoning Province experienced frost damage in 1961, 1962, 1969, 1972, 1976 and 1995, and the rice yield was seriously reduced. Most regions of Liaoning Province experienced both delayed cold damage and frost damage in 1976 and 1995. There was a low temperature during the critical period of rice growth (mid-July to mid-August) in 1995. In 1985, the growing season in most areas was characterized by unusually persistent low temperature and little sunshine. These statistics were basically consistent with the conclusion of this study. In the process of rice production, a variety of disasters occurred caused by low temperature, such as delayed cold damage, frost damage and sterile cold damage. More

  • in

    Nitrogen factor of common carp Cyprinus carpio fillets with and without skin

    Fish and experimental protocolThree-hundred-fifty market-size (755–3865 g) common carp Cyprinus carpio were obtained from six sources at various times of year to for effects of variation in rearing conditions. The weight of collected carp corresponded to the weight of carp normally delivered to the market. Fish were obtained from the Faculty of Fisheries and Protection of Waters of the University of South Bohemia in Ceske Budejovice (FFPW USB), Vodnany and the fisheries Chlumec nad Cidlinou, Blatna, Hodonin, Klatovy, Lnare, and Tabor. Ten fish were collected from each fishery at the spring (March/April), summer (June/July), and autumn harvests (October/November) in 2018 and 2019. Carp were transported live to the laboratory of the FFPW, killed by a blow to the head, weighed, measured, and filleted. Two fillets, one with skin removed, from each fish were individually vacuum packed, immediately frozen, and stored at − 32 °C until chemical analysis.Ethics approvalAll the methods used in the present study followed relevant guidelines and regulations. Also, the competent authority (Ethical Committee for the Protection of Animals in Research of the University of South Bohemia, FFPW Vodnany) approved the fish sampling and protocols of the present study and reporting herein follows the recommendations in the ARRIVE guidelines.Chemical analysisSeven-hundred carp fillets were analysed for basic nutritional composition, dry matter, protein, fat, and ash. All samples were homogenized by grinding before analysis.The determination of dry matter followed ISO 1442:1997 Meat and meat products—Determination of moisture content (Reference method)26. The homogenized samples were dried with sand to constant weight at 103 ± 2 °C in a laboratory oven (Memmert UE 500, Memmert GmbH + Co. KG, Germany).The determination of ash was based on the standard ISO 936:1998 Meat and meat products—Determination of total ash27. The homogenized samples were burned in a muffle furnace (Nabertherm A11/HR, Nabertherm GmbH, Germany) at 550 ± 25 °C to a grey-white colour.The determination of total fat was based on the standard ISO 1443:1973 Meat and meat products—Determination of total fat content28. The homogenized samples were hydrolysed by hydrochloric acid, and fat was extracted by light petroleum in SOXTEC 2050 (FOSS Headquarters, Denmark).The determination of nitrogen used the Kjeldahl method based on the standard method ISO 937:1978 Meat and meat products—Determination of nitrogen content (Reference method)29. The homogenized samples were digested by sulphuric acid and a catalyser in a KjelROC Digestor 20 (OPSIS AB, Sweden) digestion unit at 420 ± 10 °C. Organically bound nitrogen was measured on the KJELTEC 8400 with KJELTEC sampler 8420 (FOSS Headquarters, Denmark). Calculation of protein content from nitrogen used the conversion factor for meat of 6.25.All analysis of dry matter, ash, and total fat were performed in duplicate and analysis of nitrogen (protein) was performed in triplicate for each sample.Calculation of fat-free nitrogen (Nff) in g/100 g used the formula24:$$ N_{ff} = frac{{100 times N { }}}{{100 – F { }}}. $$This formula was applied to nitrogen (N) and fat (F) content for all samples, providing a fat-free nitrogen value for each sample.Fish meat content calculated based on nitrogen factor Nf (total fillet) in g/100 g used the formula9:$$ Fish ;content_{Nf} = frac{N times 100}{{N_{f} }}. $$Fish meat content calculated based on fat-free nitrogen factor (Nff) and DCC (defatted carp content) in g/100 g used formulas11:$$ Fishc; content_{Nff} = DCC + F, $$$$ DCC = frac{N times 100}{{N_{ff} }}. $$Statistical analysisKolmogorov–Smirnov and Bartlett’s tests were applied to assess normal distribution data and the homoscedasticity of variance, respectively. A two-way ANOVA and Tukey’s test was conducted to analyse effects of season, weight, fishery, and difference between fillets with and without skin. The significance level was set at p  More

  • in

    The impact of stopping and starting indoor residual spraying on malaria burden in Uganda

    Uganda has been exceptionally successful in scaling-up coverage of LLINs. Following the mass distribution campaigns to deliver free LLINs in 2013–14 and 2017–18, 90 and 83% of households, respectively reported ownership of at least one LLIN7,14. However, despite this success, the burden of malaria remains high in much of the country. Uganda had the third highest number of malaria cases reported in 2019, with reported case incidence increasing since 20142. If Uganda is to achieve the goals established by the World Health Organization’s Global Technical Strategy for malaria including reducing malaria case incidence by at least 90% by 2030 as compared with 201515, additional malaria control measures will be needed. This report highlights the critical role of IRS in substantially reducing the burden of malaria in areas where transmission remains high despite deployment of LLINs. Withdrawing IRS after 5 years of sustained use in three districts in northern Uganda was associated with a more than fivefold increase in malaria cases within 10 months. Restarting IRS with a single round in nine districts in Northern Uganda ~3 years after IRS had been stopped was associated with a transient but important (more than a fivefold) decrease in malaria cases within 8–12 months, returning to pre-IRS levels after 23 months. Initiating and sustaining IRS in five districts in Eastern Uganda was associated with a gradual reduction in malaria cases reaching almost a sevenfold reduction after 4–5 years.Robust evidence supports the widespread use of LLINs for malaria control. In a systematic review of clinical trials conducted between 1987 and 2001, insecticide treated nets reduced all cause child mortality by 17% and the incidence of uncomplicated P. falciparum malaria by almost half16. However, there is concern that the effectiveness of LLINs may be diminishing due to widespread resistance to pyrethroids which until recently were the only class of insecticides approved for LLINs. Similar to many other African countries, high-level resistance to pyrethroids among the principle Anopheles vectors has been reported recently throughout Uganda17,18,19. In addition, behavioral changes in vector biting activity following the introduction of LLINs have been reported which could present new challenges for malaria control20,21,22. Finally, the effectiveness of LLINs may be further compromised by poor adherence and waning coverage in the setting of free distribution campaigns done intermittently. In Uganda, less than 18% of households reported adequate coverage (defined as at least one LLIN per two residents) 3 years after the 2013–14 distribution campaign23 and adequate coverage decreased from 71% to 51% between 6 and 18 months following the 2017–18 distribution campaign24. Although the World Health Organization recommends mass distribution campaigns every 3 years, mounting evidence suggests that LLINs should be distributed more frequently to sustain high coverage25,26,27,28,29,30,31.Given concerns about the current effectiveness of pyrethroid-based LLINs and the persistently high burden of malaria despite aggressive scale-up of LLINs in countries like Uganda, additional malaria control measures are needed. IRS is an attractive option. Historically, IRS programs were used to dramatically reduce and even eliminate malaria in many parts of the world. Thus, while there is some evidence for the impact of IRS in the absence of LLINs32, it is surprising that the evidence base from contemporary controlled trials on the impact of adding IRS to LLINs for vector control is limited. A recent systematic review of cluster randomized controlled trials conducted in sub-Saharan Africa since 2008, reported that adding IRS using a “pyrethroid-like” insecticide to LLINs did not provide any benefits, while adding IRS with a “non-pyrethroid-like” insecticide produced mixed results5. Among the four trials comparing IRS plus LLINs with LLINs alone, three evaluated IRS with a carbamate (bendiocarb) and one evaluated a long-lasting organophosphate, pirimiphos-methyl (Actellic 300CS®)33,34,35,36. Only two trials (both using bendiocarb) assessed malaria incidence; one from Sudan found a 35% reduction when adding IRS to LLINs34, while another from Benin found no benefit of adding IRS33. All four trials assessed parasite prevalence, with an overall non-significant trend towards a lower prevalence when adding IRS to LLINs (RR = 0.67, 95% CI 0.35–1.28)5. However, when the analyses were restricted to include only the two studies with LLIN usage over 50%, adding IRS reduced parasite prevalence by over 50% (RR = 0.47, 95% CI 0.33–0.67)5. Of note, none of the trials that evaluated the impact of adding IRS with a “non-pyrethroid-like” insecticide assessed outcomes beyond 2 years. More recently, a number of observational studies have reported benefits of using IRS with pirimiphos-methyl (Actellic 300CS®). In the Mopti Region of Mali, delivery of a single round of IRS with Actellic 300CS® was associated with a 42% decrease in the peak incidence of laboratory-confirmed malaria cases reported at public health facilities37. In the Koulikoro Region of Mali, villages that received a single round of IRS with Actellic 300CS® combined with LLINs observed a greater than 50% decrease in the incidence of malaria compared to villages that only received LLINs38. In the Northern Region of Ghana, districts that received IRS with Actellic 300CS® reported 26–58% fewer cases of laboratory-confirmed malaria cases reported at public health facilities over a 2-year period, compared to districts that did not receive IRS39. In Northern Zambia, implementation of IRS with Actellic 300CS® targeting only high burden areas over a 3 year period was associated with a 25% decline in parasite prevalence during the rainy season, but no decline during the dry season40. In Western Kenya, the introduction of a single round of IRS with Actellic 300CS® was associated with a 44–65% decrease in district level malaria case counts over a 10 month period compared to pre-IRS levels41. In addition, several recent reports have documented dramatic resurgences of malaria following the withdrawal of IRS with bendiocarb in Benin42, and the withdrawal of IRS with Actellic 300CS® in Mali and Ghana37,39.The results from this study provides additional support for the critical role IRS can play in reducing the burden of malaria in African countries with high LLINs coverage. A strength of the study was its use of a large, rigorously collected dataset. Data were collected over nearly 7 years through an enhanced health facility-based surveillance system covering 14 districts in Uganda where IRS was being withdrawn, re-started, and initiated. This enhanced surveillance system facilitated laboratory testing and provided prospectively collected, individual-level data, allowing for analyses of quantitative changes in laboratory-confirmed cases of malaria over time, controlling for temporal changes in rainfall, seasonal effects, diagnostic practices, and health seeking behavior. Previous work by our group documented a marked decrease in malaria TPRs after 4 years of sustained IRS with bendiocarb in one district of Northern Uganda followed by a rapid resurgence over an 18-month period after IRS was withdrawn11. In this study we expand on these findings by including data from three districts and covering a 31-month period following the withdrawal of IRS. We were able to quantify more than a fivefold increase in malaria cases which was sustained over the 10–31 months following the withdrawal of IRS. This marked resurgence occurred despite the fact the first universal LLIN distribution campaign was timed to occur right after IRS was withdrawn. Given the dramatic nature of the resurgence, the Ugandan government was able to procure funding for a single round of IRS with Actellic 300CS® ~3 years after IRS was withdrawn in 10 districts of Northern Uganda. In this study, we assessed the impact of this single round in nine of these districts. This single round was associated with over a fivefold decrease in malaria cases after 8–12 months, with malaria cases returning to pre-IRS levels after almost 2 years. These data suggest that IRS with longer-acting formulations such as Actellic 300CS® administered every 2 years could be considered as a strategy for mitigating the risk of resurgence following sustained IRS and/or enabling countries to expand coverage when resources are limited, but formal assessment and a cost-effectiveness analyses are needed. This study also evaluated the impact of 5 years of sustained IRS in five districts of Eastern Uganda, starting first with bendiocarb and then switching to Actellic 300CS® after 18 months. Rounds of IRS were initially associated with marked decreases in malaria cases followed by peaks before subsequent rounds until the fourth and fifth years after IRS was initiated when there was a sustained decrease of almost sevenfold compared to pre-IRS level. Given the before-and-after nature of our study design, it is not clear whether the maximum sustained benefits of IRS seen after 4–5 years were due to the cumulative effect of multiple rounds of IRS, the switch from bendiocarb to Actellic 300CS®, improvements in implementation (although campaigns occurred regularly and coverage was universally high across rounds, see Supplementary Table 4), the second universal LLIN distribution campaign which occurred in this area in 2017, and/or other factors.This study had several limitations. First, we used an observational study design, with measures of impact based on comparisons made before-and-after key changes in IRS policy. Although cluster randomized controlled trials are the gold standard study design for estimating the impact of IRS, it could be argued that withholding IRS would be unethical, given what is known about its impact in Uganda. Second, our estimates of impact could have been confounded by secular trends in factors not accounted for in our analyses. However, we feel that our overall conclusions are robust given the large amount of data available from multiple sites over an extended period with multiple complementary objectives providing consistent findings. Third, we could not assess the impact of IRS independent of LLIN use and did not have access to measures of IRS or LLIN coverage from our study populations. It is possible that some of the impacts we observed were from LLIN distributions in combination with IRS campaigns. However, we were able to provide a “real world” assessment of IRS in a setting where LLIN use is strongly supported by repeated universal distribution campaigns that are becoming increasingly common in sub-Saharan Africa. Similarly, we cannot draw conclusions on the impact of different IRS compounds given all sites received the same formulations consecutively. The results from Objective 3 indicate that malaria incidence dropped substantially in the years that districts stopped receiving bendiocarb and began receiving Actellic 300CS®. However, we cannot conclude whether this reduction was a result of this change or rather the cumulative impact of sustained IRS campaigns, as it has been suggested that in very high transmission settings, several years of IRS may be needed to maximize impact on measures of morbidity.43,44 Finally, our study outcome was limited to case counts of laboratory-confirmed malaria captured at health facilities. Thus, we were unable to measure the impact of IRS on other important indicators such as measures of vector distribution, parasite prevalence, or mortality.There is a growing body of evidence that combining LLINs with IRS using “non-pyrethroid-like” insecticides, especially the long acting organophosphate Actellic 300CS®, is highly effective at reducing the burden of malaria in Uganda, and elsewhere in Africa. Despite these encouraging findings, IRS coverage in Africa has been moving in the wrong direction. The proportion of those at risk protected by IRS in Africa peaked at just over 10% in 2010. However, the spread of pyrethroid resistance has led many control programs to switch to more expensive formulations resulting in a 53% decrease in the number of houses sprayed between years of peak coverage and 2015 across 18 countries supported by the US President’s Malaria Initiative45 and an overall reduction in the proportion protected by IRS in Africa to less than 2% in 20192. Given the lack of recent progress in reducing the global burden of malaria coupled with challenges in funding, renewed commitments are needed to address the “high burden to high impact” approach now being advocated by the World Health Organization2. IRS is a widely available tool that could be scaled up, however demands currently exceed the availability of resources. Additional work is needed to optimize the use of IRS, prevent further spread of insecticide resistance, and better evaluate the cost-effectiveness of IRS in the context of other control interventions. More

  • in

    Comparison of sample types from white-tailed deer (Odocoileus virginianus) for DNA extraction and analyses

    1.Piertney, S. B. In Current Trends in Wildlife Research (eds Mateo, R. et al.) 201–223 (Springer International Publishing, 2016).2.Jabin, G., Sahajpal, V., Chandra, K. & Thakur, M. In Forensic DNA Typing: Principles, Applications and Advancements (eds Shrivastava, P., et al.) 399–403 (Springer, Singapore, 2020).3.Drechsler, A., Helling, T. & Steinfartz, S. Genetic fingerprinting proves cross-correlated automatic photo-identification of individuals as highly efficient in large capture–mark–recapture studies. Ecol. Evol. 5, 141–151. https://doi.org/10.1002/ece3.1340 (2015).Article 
    PubMed 

    Google Scholar 
    4.Gupta, S. K. In DNA Fingerprinting: Advancements and Future Endeavors (eds Ranjan Dash, H., et al.) 77–87 (Springer, Singapore, 2018).5.Dale, T. D. et al. Enhancement of wildlife disease surveillance using multiplex quantitative PCR: Development of qPCR assays for major pathogens in UK squirrel populations. Eur. J. Wildl. Res. 62, 589–599. https://doi.org/10.1007/s10344-016-1031-z (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Latch, E. K., Heffelfinger, J. R., Fike, J. A. & Rhodes, O. E. Jr. Species-wide phylogeography of North American mule deer (Odocoileus hemionus): Cryptic glacial refugia and postglacial recolonization. Mol. Ecol. 18, 1730–1745. https://doi.org/10.1111/j.1365-294X.2009.04153.x (2009).Article 
    PubMed 

    Google Scholar 
    7.Moscarella, R. A., Aguilera, M. & Escalante, A. A. Phylogeography, population structure, and implications for conservation of white-tailed deer (Odocoileus virginianus) in Venezuela. J. Mammal. 84, 1300–1315. https://doi.org/10.1644/brb-028 (2003).Article 

    Google Scholar 
    8.Lang, K. R. & Blanchong, J. A. Population genetic structure of white-tailed deer: Understanding risk of chronic wasting disease spread. J. Wildl. Manag. 76, 832–840. https://doi.org/10.1002/jwmg.292 (2012).Article 

    Google Scholar 
    9.Locher, A., Scribner, K. T., Moore, J. A., Murphy, B. & Kanefsky, J. Influence of landscape features on spatial genetic structure of white-tailed deer in human-altered landscapes. J. Wildl. Manag. 79, 180–194 (2015).Article 

    Google Scholar 
    10.Green, M. L., Manjerovic, M. B., Mateus-Pinilla, N. & Novakofski, J. Genetic assignment tests reveal dispersal of white-tailed deer: Implications for chronic wasting disease. J. Mammal. 95, 646–654. https://doi.org/10.1644/13-MAMM-A-167 (2014).Article 

    Google Scholar 
    11.Zachos, F. E. et al. Population viability analysis and genetic diversity of the endangered red deer Cervus elaphus population from Mesola, Italy. Wildl. Biol. 15, 175–186 (2009).Article 

    Google Scholar 
    12.Villanova, V. L., Hughes, P. T. & Hoffman, E. A. Combining genetic structure and demographic analyses to estimate persistence in endangered key deer (Odocoileus virginianus clavium). Conserv. Genet. 18, 1061–1076. https://doi.org/10.1007/s10592-017-0958-2 (2017).Article 

    Google Scholar 
    13.Lorenzini, R. DNA forensics and the poaching of wildlife in Italy: A case study. Forensic Sci. Int. 153, 218–221. https://doi.org/10.1016/j.forsciint.2005.04.032 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Vikas, K. Wildlife DNA evidence: Recognition, collection and preservation. Res. J. Forensic Sci. 3(7), 8–15 (2015).
    Google Scholar 
    15.Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69, 1419–1433 (2005).Article 

    Google Scholar 
    16.Oyler-McCance, S. J. & Leberg, P. L. In The Wildlife Techniques Manual: Research (ed 7th) 526–546 (John Hopkins University Press, 2012).17.Begley-Miller, D. R., Hipp, A. L., Brown, B. H., Hahn, M. & Rooney, T. P. White-tailed deer are a biotic filter during community assembly, reducing species and phylogenetic diversity. AoB Plants https://doi.org/10.1093/aobpla/plu030 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Saunders, S. E., Bartelt-Hunt, S. L. & Bartz, J. C. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerg. Infect. Dis. 18, 369–376 (2012).Article 

    Google Scholar 
    19.Miller, W. L., Edson, J., Pietrandrea, P., Miller-Butterworth, C. & Walter, W. D. Identification and evaluation of a core microsatellite panel for use in white-tailed deer (Odocoileus virginianus). BMC Genet. 20, 49. https://doi.org/10.1186/s12863-019-0750-z (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Budd, K., Berkman, L. K., Anderson, M., Koppelman, J. & Eggert, L. S. Genetic structure and recovery of white-tailed deer in Missouri. J. Wildl. Manag. 82, 1598–1607. https://doi.org/10.1002/jwmg.21546 (2018).Article 

    Google Scholar 
    21.DeYoung, R. W., Demarais, S., Gonzales, R. A., Honeycutt, R. L. & Gee, K. L. Multiple paternity in white-tailed deer (Odocoileus Virginianus) revealed by DNA microsatellites. J. Mammal. 83, 884–892. https://doi.org/10.1644/1545-1542(2002)083%3c0884:mpiwtd%3e2.0.co;2 (2002).Article 

    Google Scholar 
    22.Poutanen, J., Pusenius, J., Wikström, M. & Brommer, J. E. Estimating population density of the white-tailed deer in Finland using non-invasive genetic sampling and spatial capture-recapture. Ann. Zool. Fenn. 56, 1–16 (2019).Article 

    Google Scholar 
    23.Brinkman, T. J. et al. Individual identification of Sitka black-tailed deer (Odocoileus hemionus sitkensis) using DNA from fecal pellets. Conserv. Genet. Resour. 2, 115–118. https://doi.org/10.1007/s12686-010-9176-7 (2010).Article 

    Google Scholar 
    24.de Vargas Wolfgramm, E. et al. Simplified buccal DNA extraction with FTA® Elute Cards. Forensic Sci. Int. Genet. 3, 125–127. https://doi.org/10.1016/j.fsigen.2008.11.008 (2009).CAS 
    Article 

    Google Scholar 
    25.Bunting, S., Burnett, E., Hunter, R. B., Field, R. & Hunter, K. L. Incorporating molecular genetics into remote expedition fieldwork. Trop. Conserv. Sci. 7, 260–271. https://doi.org/10.1177/194008291400700207 (2014).Article 

    Google Scholar 
    26.McClure, M. C., McKay, S. D., Schnabel, R. D. & Taylor, J. F. Assessment of DNA extracted from FTA cards for use on the Illumina iSelect BeadChip. BMC Res Notes 2, 107. https://doi.org/10.1186/1756-0500-2-107 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Milne, E. et al. Buccal DNA collection: Comparison of buccal swabs with FTA cards. Cancer Epidemiol. Biomark. Prev. 15, 816–819. https://doi.org/10.1158/1055-9965.epi-05-0753 (2006).CAS 
    Article 

    Google Scholar 
    28.Smith, L. M. & Burgoyne, L. A. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol 4, 4–4. https://doi.org/10.1186/1472-6785-4-4 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Fryxell, R. T. T. et al. Survey of Borreliae in ticks, canines, and white-tailed deer from Arkansas, U.S.A. Parasit. Vectors 5, 139. https://doi.org/10.1186/1756-3305-5-139 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Picard-Meyer, E., Barrat, J. & Cliquet, F. Use of filter paper (FTA®) technology for sampling, recovery and molecular characterisation of rabies viruses. J. Virol. Methods 140, 174–182. https://doi.org/10.1016/j.jviromet.2006.11.011 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Haley, N. J. et al. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 54, 1108–1116. https://doi.org/10.1128/jcm.02699-15 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mas, S., Crescenti, A., Gassó, P., Vidal-Taboada, J. M. & Lafuente, A. DNA cards: Determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies. Basic Clin. Pharmacol. Toxicol. 101, 132–137. https://doi.org/10.1111/j.1742-7843.2007.00089.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Drew, R. E. et al. Conservation genetics of the fisher (Martes pennanti) based on mitochondrial DNA sequencing. Mol. Ecol. 12, 51–62. https://doi.org/10.1046/j.1365-294X.2003.01715.x (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Soulsbury, C. D., Iossa, G., Edwards, K. J., Baker, P. J. & Harris, S. Allelic dropout from a high-quality DNA source. Conserv. Genet. 8, 733–738. https://doi.org/10.1007/s10592-006-9194-x (2007).CAS 
    Article 

    Google Scholar 
    35.Soanes, K. et al. Evaluating the success of wildlife crossing structures using genetic approaches and an experimental design: Lessons from a gliding mammal. J. Appl. Ecol. 55, 129–138. https://doi.org/10.1111/1365-2664.12966 (2018).Article 

    Google Scholar 
    36.Cheng, E., Hodges, K. E., Sollmann, R. & Mills, L. S. Genetic sampling for estimating density of common species. Ecol. Evol. 7, 6210–6219. https://doi.org/10.1002/ece3.3137 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.DeYoung, R. W. et al. Evaluation of DNA microsatellite panel useful for genetic exclusion studies in white-tailed deer. Wildl. Soc. Bull. 31, 220–232 (2003).
    Google Scholar 
    38.Vedicherla, S. & Buckley, C. T. Rapid chondrocyte isolation for tissue engineering applications: The effect of enzyme concentration and temporal exposure on the matrix forming capacity of nasal derived chondrocytes. Biomed. Res. Int. 2395138, 12 (2017).
    Google Scholar 
    39.Maličev, E., Kregar-Velikonja, N., Barlič, A., Alibegović, A. & Drobnič, M. Comparison of articular and auricular cartilage as a cell source for the autologous chondrocyte implantation. J. Orthop. Res. 27, 943–948. https://doi.org/10.1002/jor.20833 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Goel, M., Picciani, R. G., Lee, R. K. & Bhattacharya, S. K. Aqueous humor dynamics: A review. Open Ophthalmol J 4, 52–59. https://doi.org/10.2174/1874364101004010052 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Park, S. J., Kim, J. Y., Yang, Y. G. & Lee, S. H. Direct STR amplification from whole blood and blood- or saliva-spotted FTA® without DNA purification*. J. Forensic Sci. 53, 335–341. https://doi.org/10.1111/j.1556-4029.2008.00666.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Forgacs, D., Wallen, R., Boedeker, A. & Derr, J. Evaluation of fecal samples as a valid source of DNA by comparing paired blood and fecal samples from American bison (Bison bison). BMC Genet https://doi.org/10.1186/s12863-019-0722-3 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Pfeiler, S. S. et al. Costs and precision of fecal DNA mark–recapture versus traditional mark–resight. Wildl. Soc. Bull. 44, 531–542. https://doi.org/10.1002/wsb.1119 (2020).Article 

    Google Scholar 
    44.Henry, P., Henry, A. & Russello, M. A noninvasive hair sampling technique to obtain high quality DNA from elusive small mammals. J. Vis. Exp. JoVE. https://doi.org/10.3791/2791 (2011).Article 
    PubMed 

    Google Scholar 
    45.Wirsing, A. J., Quinn, T. P., Adams, J. R. & Waits, L. P. Optimizing selection of brown bear hair for noninvasive genetic analysis. Wildl. Soc. Bull. 44, 94–100. https://doi.org/10.1002/wsb.1057 (2020).Article 

    Google Scholar  More

  • in

    Leaf trait variation in species-rich tropical Andean forests

    Study sites and examined tree speciesThe study was conducted at three sites in the Andes of southern Ecuador along an elevation gradient at ca. 1000 m (Bombuscaro, Podocarpus NP), ca. 2000 m (San Francisco Reserve) and ca. 3000 m elevation (Cajanuma, Podocarpus NP) in the Provinces of Loja and Zamora-Chinchipe. All sites are located in protected forest areas. At each elevation three permanent 1-ha plots were established in 2018, choosing representative portions of old-growth forest without visible signs of human disturbance (Appendix A1).The forest types at the three sites differ in floristic composition, species richness and structural characteristics49: The premontane rain forest (below 1300 m) at the lowermost site reaches 40 m in height with common tree families being Fabaceae, Moraceae, Myristicaceae, Rubiaceae, and Sapotaceae. It is replaced at 1300–2100 m by smaller-statured lower montane rain forest with Euphorbiaceae, Lauraceae, Melastomataceae, and Rubiaceae as characteristic tree families, and above 2100 m by upper montane rain forest with a canopy height that rarely exceeds 8–10 m. Dominant tree families of the latter forest type are Aquifoliaceae, Clusiaceae, Cunoniaceae, and Melastomataceae. Tree species turnover is complete between premontane and upper montane forest, while a few tree species are shared between lower montane and premontane or upper montane forest types.The climate is tropical humid with a precipitation peak from June to August and a less humid period from September to December. Mean annual temperature decreases with elevation from 20 °C at 1000 m to 9.5 °C at 3000 m, while annual precipitation increases from around 2000 mm at the two lowermost sites to 4500 mm at 3000 m. Typically, there are no arid months with More

  • in

    Field studies on breeding sites of Culicoides Latreille (Diptera: Ceratopogonidae) in agriculturally used and natural habitats

    In total, 13 culicoid species were found in the present study, with 45.5% of the collected specimens belonging to the Obsoletus Complex while species only occasionally present in previous collections in Germany, accounted for approximately 25% of the sampled individuals. Thus, the species composition is only partly in accordance to earlier studies on the German Culicoides fauna according to which 70 to over 90% of the specimens belonged to the Obsoletus Complex and up to 20% represented members of the Pulicaris Complex, while other culicoid species were present in negligible numbers only12,13. However, previous studies were based on UV-light trap catches12,13,14,15 and targeted active culicoid specimens16. The results obtained in this study are very specific as they represent the species compositions associated with the respective breeding substrates.The gender ratio differed strongly between species, revealing no pattern applicable to all species. The dominance of female Culicoides emerging from breeding sites corresponds to earlier results17,18, even though the sex ratio in the present study showed a much higher proportion of females with 70.7% or a female:male ratio of 2.4:1 than the above studies with 55.6%17 or a female:male ratio of 1.06:118.The evaluation of the diversity of each biotope (excluding the ungrazed meadow where no Culicoides were found) revealed clear differences between the agriculturally used habitats and the more natural biotopes. The Shannon–Weaver index depicted very low diversity for all three studied meadows where biting midges were found. The two meadows (with cattle and sheep) of region 2 reached the lowest possible diversity. This seems plausible as only one species was sampled within each biotope. The meadow with cattle of region 1 revealed at least two species. The Evenness factor of 0.24 depicts the dominance of one of them. The low number of species and unbalanced number of specimens within the biotope result in a low Shannon–Weaver index of 0.24, which describes the poor level of biodiversity.The Simpson index measures the probability that two individuals, randomly selected from a sample, belong to the same species. As only one species was sampled on each meadow from region 2, the probability to choose two specimens which belong to one species is 100% (displayed by the value of D = 1.0). The meadow with cattle of region 2 revealed at least two culicoid species, but the dominance of one species leads to a high Simpson index of 0.92 as well.Opposite to the very low biodiversity of all meadows, the four more natural biotopes of region 3 show an overall high level of biodiversity: according to the Shannon–Weaver index, the level of biodiversity is highest within the AFS (H = 2.96). Compared to the other biotopes of region 3, the AFS revealed by far the highest numbers of culicoid species and specimens. This and the relatively high Evenness factor (E = 0.89) lead to the high H value. The Shannon–Weaver indices for CW and MA are 1.91 and 1.92, respectively. Based on the low numbers of species and specimens in both biotopes, the relatively high H value is mainly caused by its high Evenness values of 0.95 (CW) and 0.96 (MA), respectively. Therefore, the almost equal numbers of all present species leads to the relatively high biodiversity, rather than a high number of species.The Shannon–Weaver index of the DW is the lowest of the four biotopes of region 3 with H = 1.42 and rates this biotope as the one with the lowest diversity of region 3. Though the number of species equal the one of the CW and MA, the higher number of specimens and especially the much lower Evenness factor of 0.71 reduces the H value.Other than the Shannon–Weaver index, the Simpson index rates both, the AFS and the MA, as the two most diverse biotopes. With values of D = 0.13, the probability to randomly select two species of the same species is rather low in both biotopes. As the AFS revealed more than double as many species than the MA, the lower number of caught specimens of the MA must have led to the same biodiversity rate.Study 1—Influence of domestic animals on meadows: up to date, dung-breeding Culicoides have been investigated more thoroughly18,19,20 than most other culicoid species. Most studies have focused on examining selectively either dungheaps or cowpats, rather than conducting a direct comparison between grazed and ungrazed meadows under field conditions. In the present study, we were able to show that the ungrazed meadow seems to be an unsuitable breeding habitat for Culicoides. Therefore, it seems plausible that the suitability of meadows as culicoid breeding sites can be largely, if not completely, attributed to the influence of livestock pasturing.The strong dominance of Obsoletus Complex specimens sampled on grazed meadows is not surprising as this species complex is known to contain typical dung-breeders19,20. The high potential of manure as a breeding substrate has been demonstrated before21,22 and explains the high quantity of Culicoides developing on meadows used by cattle in the present study. While 0.83 midges/sample were found on the meadow with cattle in region 1, only 0.21 midges/sample were collected on the meadow with cattle in region 2. The quantitative differences between these two study sites might be caused by the differing time periods of sampling (April to July for region 1 and August to October for region 2). Previous studies observed population peaks of Obsoletus Complex midges in October, though23, giving reason to expect even higher numbers of midges for region 2 than for region 1, particularly so, as region 2 is an agriculturally dominated area with a higher abundance of potential blood hosts and more suitable breeding habitats than region 1.Compared to the much higher total number of midges emerging from cowpats, sheep dung produced only two specimens. The very low number of midges originating from sheep faeces might be due to the very quick decomposition and desiccation of the rather small droppings, which likely reduces the quality of these remains as culicoid breeding sites. Therefore, it can be assumed that, contrary to pastures with cattle dung, sheep-runs might not play an essential role in promoting the distribution of Culicoides. For modeling approaches, it should be considered, though, that this might only apply to single scattered pieces of faeces as the longer persistence of higher volumes of sheep dung, i.e. on muckheaps, might very likely raise its quality as potential breeding sites as observed by21.All grazed meadows revealed very few culicoid species. Besides members of the Obsoletus Complex, only one individual of C. comosioculatus was found. The present investigation represents a case study though as merely one habitat of each type was sampled. More research to confirm the present results is therefore strongly recommended, even more, as ceratopogonid communities of terrestrial ecosystems have been barely investigated24, with the consequence that breeding sites of Culicoides spp. are still poorly known25.Study 2—Quality of forest-dominated biotopes as culicoid breeding sites: In the present study, the AFS turned out to be very productive as a culicoid breeding site in regards to the number of caught specimens and species diversity. Ten of the 13 collected species were found in the AFS. This is 2.5 times as many species as in the three other biotopes of region 3, which contained four species each in different compositions. Therefore, species-specific requirements for larval development seem to be met for more culicoid species in the AFS than in any of the other study sites.The measured pH values are in accordance to soil analyses conducted in German forests26. As the top layers usually are the most acidic ones, the chosen depth of soil sampling in the present study (upper 0–5 cm) persistently produced low pH values. Additionally, the used solvent (CaCl2) is less sensitive to fast changing weather conditions, but also lowers the measured pH value significantly compared to distilled water26—a solvent often used in earlier studies analyzing the distribution of Ceratopogonidae.The wide variances of the soil factors, especially moisture and organic content, were mainly caused by unequal soil conditions within each biotope rather than changes over time (unpublished data). Nevertheless, the statistical analysis revealed that all four biotopes of region 3 were significantly different from each other regarding the three soil factors. Comparing the means of each soil factor revealed that the AFS contained a higher level of soil moisture, a less acidic pH value and a higher organic content than the other three biotopes of region 3. We could show that significantly more midges (0.4 Culicoides/sample) developed in the AFS compared to the three other biotopes of region 3 with 0.12 (DW), 0.07 (CW) and 0.06 (MA) Culicoides per sample.Previous studies have assumed that the level of moisture be a crucial factor for ceratopogonid development17,20. Also, some studies determined the organic content as pivotal17,27. Our statistical analysis revealed that each soil factor has an impact on the probability of Culicoides to occur. Due to high correlations between the various measured soil factors, it could not be clarified, though, whether they influence the number of specimens, too. But as many culicoid species are known to lay their eggs in batches and previous egg-laying encourages females to oviposit at the same site28, an increase in the probability of biting midge presence should indirectly result in a higher number of specimens, too.The aggregation of larvae in terrestrial habitats29 typically results in a high number of samples completely devoid of midges and an overall low number of specimens sampled by emergence traps30. Thus, the obtained low numbers of collected specimens are not surprising. Nevertheless, emergence traps are still considered to be the best tool for the investigation of breeding site productivity, as it offers a safe assignment of species to their specific developmental sites24,29,31.The Culicoides collected in this study are discussed on species level in regards to existing literature.Culicoides achrayi was found in the AFS. A swamp as a breeding site32 and soil located in stagnant water22 have previously been described for this species. We confirm June as the time of emergence32 and add that C. achrayi co-exists with C. pulicaris.Culicoides albicans was collected in the AFS and DW. Specimens hatched from late April to mid-June, representing one generation per year. We confirm co-habitation with C. pictipennis and C. kibunensis11,33 and the preference for very humid substrates which has been described for the wettest parts of boglands5,34 and for artificially waterlogged soil11. Our results show, that C. albicans larvae can tolerate medium moisture levels, too. The mean organic content of their developmental sites reached from moderate to high, and the pH values lay between strong and ultra-acidic.Culicoides comosioculatus was found on the meadow with cattle dung in mid-June. As only one individual (a gravid female with the presumed intention to oviposit) was collected and no literature regarding breeding sites of this species could be found, our finding only indicates that this species might possibly develop in animal dung although in extremely low numbers.Culicoides grisescens was found within the AFS, the CW and the DW from late May until mid-July. Kremer35 listed soils of swamps and boggy grasslands as developmental sites. We collected C. grisescens in three different biotopes with wide variances of the mean moisture level, mean organic content and mean pH value, which reveals the wide tolerance range of this species towards these three soil factors.Culicoides impunctatus was collected in the AFS and the CW from late May to mid-July, representing one generation per year. This finding differs from earlier observations of two generations per year in Scotland36. Previous studies described breeding sites as acidic, oligotrophic grasslands, swamps, boglands or marshes, often of a peaty consistence5,10,33,34,37 and with soil pH values of 5.0–6.5 (dissolved in distilled water)37. This matches the pH values of the AFS in the present study (lower, but dissolved in CaCl2), but excludes the much lower pH values of the CW. The range considered suitable for C. impunctatus larvae should therefore be extended downwards to as low as pH 2.9–3.9 (CaCl2). We found C. impunctatus in two biotopes comprising a wide variance regarding soil moisture and organic content, which illustrates the wide tolerance range of this species. Individuals of C. impunctatus co-exist with Obsoletus Complex specimens as both were collected within the same sample in the AFS.Culicoides kibunensis was collected in the AFS and MA, which matches earlier observations depicting swamps of eutrophic fresh water bodies17,34, soil of stagnant water bodies22 and acidic grasslands in considerable distances to swamps33 as breeding sites. The AFS and MA revealed pH values between 3.4 and 5.4. Soil moisture and organic content displayed wide variances. All specimens hatched from late May to mid-June. Culicoides kibunensis was found to co-exist with C. albicans as observed by Kettle33. Earlier observations of co-habitations with C. obsoletus s.s. and C. pallidicornis5,34 could not be confirmed.Obsoletus Complex members were present in all study sites except for the ungrazed meadow. In the grazed meadows, Obsoletus Complex midges emerged almost throughout the entire sampling period except for the month of September. Two peaks were observed, one in June/July and a smaller one in October. As in the grazed meadows, the biotopes of region 3 also revealed two generations, but emerging at a slightly earlier time of the year with one peak in May/June and the other one in September/October.Members of the Obsoletus Complex are known to be generalists regarding their choice of breeding sites. Only the identified member species, C. chiopterus and C. obsoletus s.s., are considered here.Culicoides chiopterus was exclusively found on meadows grazed by cattle, which is in accordance to several earlier studies as this species is described as a dung-breeding species developing in cowpats and horse droppings5,34,35,38.Culicoides obsoletus s.s. was mostly sampled in the AFS. Only one individual was collected on a meadow grazed by cattle. Previous descriptions of breeding sites differed widely. Acidic grasslands in considerable distance to bogs/swamps33 and leaf litter compost5,35 could not be confirmed in the present study, although the MA and AFS were of a comparable character. While Uslu and Dik17 could not find any C. obsoletus s.s. in wet organic matter-rich soil, we collected most specimens of this species in the AFS and can therefore confirm previous findings11,29,32,39. The time of C. obsoletus s.s. activity in Germany (April–October) as described by Havelka32 agrees with our observations.Culicoides pallidicornis was found in the MA in late June. This species revealed the smallest variances of all sampled biting midge species regarding the three soil factors, using soil with pH values of 3.6–5.0 (CaCl2) and a relatively low level of moisture. This contradicts earlier observations where C. pallidicornis developed in the mud of eutrophic fresh-water swamps5. While C. pallidicornis larvae are known to co-exist with C. kibunensis5, we can add C. subfagineus to share the same developmental site.Culicoides pictipennis was collected in the DW and, to a minor part, in the AFS. The preferred physicochemical breeding conditions were ultra to extremely acidic with a medium moisture level and a moderate to slightly increased organic content. This differs from previous studies, which have found this species to develop only at the margin of stillwater bodies like pools and ponds, and the littoral of lakes or in artificially waterlogged soil11,32,34. Havelka32 observed C. pictipennis between May and June, while in our investigation the first specimen emerged as early as mid-April. We can confirm the co-existence of C. pictipennis and C. albicans as previously observed by Harrup11.Culicoides pulicaris was sampled in the AFS from late June until September, which agrees with observations denoting May to September as the activity time of this species32. Culicoides pulicaris seems to prefer breeding substrates with a high moisture level and a high organic content, as previously described17,32,34. We can add that C. pulicaris breeds in soil showing pH values at least between 4.0 and 5.4. We collected C. pulicaris together with C. achrayi and found it to simultaneously emerge from one biotope with C. obsoletus s.s. Additionally, we can confirm the co-existence of C. pulicaris with C. punctatus5,40, since both species have similar breeding habitat preferences11.Culicoides punctatus was sampled in the AFS and, to a minor part, in the CW. Time of emergence was from mid-June to late September, which is in accordance with earlier observations listing April-August and October as times of activity32. In the present study, a strong preference for swampy conditions with soil of high moisture, high organic content and a strong to very strong acidity was found. This is in agreement to previous findings11,32,41. The co-existence of C. punctatus with C. pulicaris is well known5,40 and can be confirmed once more. Additionally, we found C. punctatus to co-occur with C. subfasciipennis.Culicoides subfagineus was caught in the MA in late June. The soil was oligotrophic and contained a relatively low moisture level with pH values between 3.6 and 5.0. The first record of this species in Germany was in 2014, when C. subfagineus was observed to attack cattle42.Culicoides subfasciipennis was sampled in mid-June in the AFS. The time and choice of breeding site are in accordance to previous findings17,32. Breeding conditions for the only individual collected revealed a medium soil moisture factor, a pH value of 5.2 and a medium organic content. The species was found to co-develop with C. punctatus. More