Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings
1.Ali, B. et al. Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58(1), 131–138 (2014).CAS
Article
Google Scholar
2.Tang, Y. et al. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pgotosynthetic activity and antioxidative enzyme activities. Environ. Sci. pollut. Res. 25, 30671–30679 (2018).CAS
Article
Google Scholar
3.Jia, L. et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica. Thunb. J Plant Growth Regul 34(1), 13–21 (2015).CAS
Article
Google Scholar
4.Gallego, S. M., Benavides, M. P. (2019) Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Tolerance in Plants. Elsevier, pp. 233–274.5.Rizwan, M. et al. Cadmium minimization in wheat: a critical review. Ecotoxicol. Environ. Saf. 130, 43–53 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Zou, J. et al. Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudanaKoidz. Environ. Exp. Bot. 134, 116–129 (2017).CAS
Article
Google Scholar
7.Chen, H. C. et al. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch Under Cd stress. Ecotoxicol. Environ. Saf. 187, 1–10 (2020).
Google Scholar
8.Sarvajeet, S. G., Nafees, A. K. & Narendra, T. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 182, 112–120 (2011).
Google Scholar
9.Daniel, H., Tereza, C., Tom´a, V. & Radka, P. The effect of nanoparticles on the photosynthetic pigments in cadmium-zinc interactions. Environ. Sci. Pollut. Res. 26(4), 4147–4151 (2019).Article
CAS
Google Scholar
10.Tian, X. et al. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas South China. Environ. Geochem. Health 38(6), 1283–1301 (2016).Article
CAS
Google Scholar
11.He, J. et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus× _canescens. Plant Physiol. 162, 424–439 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
12.He, J. et al. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 20, 163–174 (2013).CAS
Article
Google Scholar
13.He, N. et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun. 4, 1–9 (2013).Article
CAS
Google Scholar
14.Wu, P., Luo, Z. (1981) Precious sassafras of Guizhou[J]. Guizhou Forest. Sci. Technol.15.Flora of China, 1982, vol. 31, p. 238.16.Xiyou, C. Study on Growth of Sassafras in different Mixed ways[J]. Anhui Forest. Sci. Technol. 4, 9–11 (2015).
Google Scholar
17.Cheng Yong, Wu. et al. Storage test of sassafras seeds[J]. Hunan Forest. Sci. Technol. 2, 28–30 (2014).
Google Scholar
18.Shen, Y. et al. Study on biomass and productivity of natural secondary Sassafras Mixed Forest[J]. J. Central South Univ. Forest. Technol. 5, 26–30 (2011).
Google Scholar
19.Jin, Y. Q. et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin[J]. Int. J. Biol. Macromol. 123, 50–58 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Cheng, Y. F. et al. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80[J]. Anal Biochem 494, 37–39 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Abdelgawad, H., Zinta, G., Badreldin, A. H., et al. (2019) Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environ. Pollut., p. 11370522.Donahue, J. L. et al. Responses of antioxidants to paraquat in pea leaves (relationships to resistance) [J]. Plant Physiol 113(1), 249–257 (1997).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Merey, H. A. et al. Validated UPLC method for the determination of guaiphenesin, oxeladin citrate, diphenhydramine, and sodium benzoate in their quaternary mixture used in treatment of cough, in the presence of guaiphenesin-related substance (guaiacol)[J]. Chem. Pap. 72(9), 2247–2254 (2018).CAS
Article
Google Scholar
24.Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[J]. J. Biol. Chem. 195(1), 133–140 (1952).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Zhao, F. J., Jiang, R. F., Dunham, S. J. & McGrath, S. P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. J. 172, 646–654 (2006).CAS
Article
Google Scholar
26.Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11(5), 591–592 (1983).CAS
Google Scholar
27.Zipiao, Ye. Andvances in models of photosynthetic response to light and CO2[J]. Chin. J. Plant Ecol. 06, 727–740 (2010).
Google Scholar
28.Saidi, I. et al. Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr. J. Bot. 85, 32–38 (2013).CAS
Article
Google Scholar
29.Anwaar, S. A. et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) fromzinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ. Sci. Pollut. Res. 22, 3441–3450 (2014).Article
CAS
Google Scholar
30.Fuzhong, Wu. et al. Effects of cadmium stress on the growth, nutrient accumulation, distribution and utilization of Osmanthus fragrans. J. Plant Ecol. 34(10), 1220–1226 (2010).
Google Scholar
31.Cengiz, K., Nudrat, A., Akram, M., Ashraf, M., Nasser, A., Parvaiz, A. (2020) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by upregulating the synthesis of nitric oxide and hydrogen sulfide[J]. J. Biotechnol., p. 31632.Wang, H. et al. Effects of cadmium stress at different concentrations on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize seedlings [J]. J. Plant Nutrition Fertilizer 14(01), 36–42 (2008).CAS
Google Scholar
33.Awasthi, P., Mahajan, V., Jamwal, V. L. et al. (2016) Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii. J. Genet.34.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Chen, H. et al. H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ. 41, 767–781 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Kohli, S. K., Khanna, K., Bhardwaj, R., Abd_Alla, E. F., Corpas, F. J. (2019) Assessment of subcellular ros and no metabolism in higher plants: multifunctional signaling molecules. Antioxidants, vol 8, no 1237.Meng Jie, A. & Hai Jiang, W. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J. Plant Growth Regulat. 38, 1196–1205 (2019).Article
CAS
Google Scholar
38.Wei, X. et al. Effects of different breaking dormancy ways on the photosynthetic characteristics and activities of protective enzymes of ‘misty’ blueberry leaves. Sci. Agric. Sin. 48(22), 4517–4528 (2015).CAS
Google Scholar
39.Chaabene, Z. et al. Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: monitoring of related biomarkers. Environ. Toxicol. Chem. 37(3), 797–806 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Ozfidan-Konakci, C. et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf. 155, 66–75 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Liu, Q. S. et al. Transcriptomic responses of dove tree (Davida involucrata Baill) to heat stress at the seedling stage[J]. Forest 10(8), 656 (2019).Article
Google Scholar
42.Yang, L. P. et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculate[J]. Ecotox Environ. Safe 160, 10–18 (2018).CAS
Article
Google Scholar
43.Zhang, Y. L. et al. The physiological characteristics of ornamental kale for cold resistance[J]. Act. Agric. 31(4), 168–176 (2016).CAS
Google Scholar
44.Rady, M. M. & Hemida, K. A. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ. Saf 119, 178–185 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Chen, Y. H. et al. Study on the characteristics of proline and active oxygen metabolism in red sea under salt stress [J]. J. Xiamen Univ. Nat. Sci. 43(03), 402–405 (2004).CAS
Google Scholar
46.Niu, M. G. et al. Effects of drought, waterlogging and low temperature stress on physiological and biochemical characteristics of wheat [J]. Seed 04, 17–19 (2003).
Google Scholar
47.Deng, F.-F., Yang, S.-L. & Gong, M. Regulation of proline metabolism in abiotic plants by cell signaling molecules [J]. J. Plant Physiol. 51(10), 1573–1582 (2015).CAS
Google Scholar
48.Samuel, D. et al. Proline inhibits aggre-gation during protein refolding[J]. Protein Sci. 9(2), 344–352 (2010).Article
Google Scholar
49.Abd Allah, E. F. et al. Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J. Plant Interact. 12(1), 237–243 (2017).Article
CAS
Google Scholar
50.Zhang, X. D. et al. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Bio Metals 31(1), 107–121 (2018).CAS
Google Scholar
51.Chen, K. et al. Physiological response and cold resistance evaluation of the leaves of Parashorea chinensis seedlings to low temperature stress[J]. J NW For Univ 34(3), 67–73 (2019).CAS
Google Scholar
52.Ge, W. & Jiao, Y. Changes of soluble protein content of two poplar trees under cadmium stress [J]. Modern Agric. Sci. Technol. 1, 199–200 (2012).
Google Scholar
53.Aina, R. et al. Thiol-petide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. rotts[J]. Environ. Exp. Botany 59(3), 381–392 (2007).CAS
Article
Google Scholar
54.Xu, J. J. et al. Effects of Cd stress on antioxidant enzymes activity of Sonchus asper L. Hill and Zea mays L. in intercropping system[J]. J. Yunnan Agric. Univ. Nat Sci. Ed. 30(2), 348–355 (2016).
Google Scholar
55.Hendrik, K., Frithjof, K. & Martin, S. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. J. Exp. Bot. 47(2), 259–266 (1996).Article
Google Scholar
56.Chen, X. X. et al. Effects of thallium and cadmiun stress on the growth and photosynthetic characteristics of Arundinacea[J]. Guangxi Plants 39(6), 743–751 (2019).
Google Scholar
57.Ahanger, M. A., U Aziz, Alsahli, A. A., Alyemeni, M. N., Ahmad, P. (2020). Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules, vol. 10, no 158.Sun Xiaolin, Xu. et al. Response of photosynthetic pigments in plant leaves to shading[J]. Chin. J. Plant Ecol. 34(8), 989–999 (2010).
Google Scholar
59.Chen, X.-X. et al. Effects of cadmium stress on growth and photosynthetic characteristics of asparagus spears[J]. Plants Guangxi 39(6), 743–751 (2019).
Google Scholar
60.Lu, Y. et al. Effects of heavy metals on photosynthetic and physiological growth characteristics of halophytes[J]. Acta Botanica Northwestern Sinica 31(2), 370–376 (2011).CAS
Google Scholar
61.Farquhar, G. D. & Sharkey, T. D. Stomatal Conductance and Photosynthesis[J]. Annu. Rev. Plant Physiol. 33(1), 317–345 (1982).CAS
Article
Google Scholar
62.Haizhen, W. et al. Response of chlorophyll fluorescence characteristics to high temperature in heteromorphous leaves of Populus eureka [J]. Acta Ecol. Sin. 9, 100–109 (2011).
Google Scholar
63.Liyuan, Li. et al. Photosynthetic light response simulation of leaves of Quercus variabilis and Robinia pseudoacacia under different light environments[J]. Chin. J. Appl. Ecol. 29(7), 2295–2306 (2016).
Google Scholar
64.Wang, F.-K. et al. Photosynthetic light response curve of Populus microphylla under different slope orientation[J]. Water Soil Conservat. Res. 22(113), 182–187 (2015).
Google Scholar
65.Xin, Qi., Qunfang, C. & Yulong, F. Adaptation of photosynthesis to growth light intensity in seedlings of three tree species of Putaoia in tropical rain forest [J]. Chin. J. Plant Ecol. 01, 34–41 (2004).
Google Scholar More