Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification
1.EU. No 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 2014, 35–55 (2014).
Google Scholar
2.Ludyanskiy, M. L., McDonald, D. & MacNeill, D. Impact of the Zebra Mussel, a Bivalve Invader. Bioscience 43, 533–544 (1993).Article
Google Scholar
3.Lalaguna, C. D. & Marco, A. A. The zebra mussel invasion in Spain and navigation rules. Aquat. Invasions 3, 315–324 (2008).Article
Google Scholar
4.Rajagopal, S. et al. Origin of spanish invasion by the zebra mussel, dreissena polymorpha (pallas, 1771) revealed by amplified fragment length polymorphism (AFLP) fingerprinting. Biol. Invasions 11, 2147–2159 (2009).Article
Google Scholar
5.CABI Invasive species Compendium: Dreissena polymorpha (zebra mussel) 2017. https://www.cabi.org/isc/datasheet/85295.6.Marescaux, J. & Van Doninck, K. Using DNA barcoding to differentiate invasive Dreissena species (Mollusca, Bivalvia). Zookeys 365, 235–244 (2013).Article
Google Scholar
7.Benson, A. J., Raikow, D., Larson, J., Fusaro, A., & Bogdanoff, A. K. Dreissena polymorpha (Pallas, 1771): U.S. Geological Survey, Nonindigenous Aquatic Species Database. Gainesville, FL (2017).8.Minchin, D., Lucy, F. & Sullivan, M. Zebra Mussel: Impacts and Spread. Invasive Aquat. Species Eur. Distrib. Impacts Manag. 135–146. © 2002 Kluwer Acad. Publ. Dordreicht, Netherlands. 135–148 (2002) doi:https://doi.org/10.1007/978-94-015-9956-6_15.9.Montero Melendez, J. Control of invasive alien species in Guadalquivir river basin. EURO-RIOB 2017. https://www.riob.org/es/node/404510.Molloy, D. P., Karatayev, A., Burlakova, L. E., Kurandina, D. P. & Laruelle, F. Natural enemies of zebra mussels: predators, parasites, and ecological competitors. Rev. Fish. Sci. 5, 27–97 (1997).Article
Google Scholar
11.Nalepa, T. F. & Schloesser, D. W. Zebra Mussels Biology, Impacts, and Control (Lewis Publishers, Boca Raton, 1993).
Google Scholar
12.Birnbaum, C. NOBANIS – Invasive Alien Species Fact Sheet – Dreissena polymorpha. Accessed 2 Dec 2019. https://www.nobanis.org (Online Database of the European Network on Invasive Alien Species – NOBANIS, 2011).13.Lowe, S., Browne, M., Boudjelas, S., De Poorter, M. 100 of the World’s Worst Invasive Alien Species A selection from the Global Invasive Species
Database. (The Invasive Species Specialist Group (ISSG), 2000).14.Glomski, L. M. Zebra Mussel Chemical Control Guide. US Army Corps of Engineers: Waterways Experiment Station. https://erdclibrary.erdc.dren.mil/jspui/bitstream/11681/6966/1/ERDC-EL-TR-15-9.pdf (2015). 15.Boelman, S. F., Neilson, F. M., Dardeau, E. A. & Cross, T. Zebra mussel (Dreissena polymorpha) control handbook for facility operators, first edition . US Army Corps of Engineers: Waterways Experiment Station. https://hdl.handle.net/11681/2966 (1997).16.Durán, C., Lanao, M., Anadón, A. & Touyá, V. Management in practice management strategies for the zebra mussel invasion in the Ebro River basin. Aquat. Invasions 5, 309–316 (2010).Article
Google Scholar
17.Bij de Vaate, A. Rajagopal, S. & van der Velde, G. The zebra mussel in Europe: summary and synthesis. in The Zebra Mussel in Europe (ed van der Velde, G.
et al.) 415–421 (Backhuys Publishers, 2010).18.Herder, J. et al. Environmental DNA—a review of the possible applications for the detection of (invasive) species. Report 2013-104. Accessed 3 May 2019. https://www.researchgate.net/publication/283267157_Environmental_DNA_-_a_review_of_the_possible_applications_for_the_detection_of_invasive_species#fullTextFileContent (Stichting RAVON, Nijmegen, 2014).19.Xiong, W., Li, H. & Zhan, A. Early detection of invasive species in marine ecosystems using high-throughput sequencing: technical challenges and possible solutions. Mar. Biol. 163, 1–12 (2016).CAS
Article
Google Scholar
20.Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).Article
Google Scholar
21.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. ‘Sight-unseen’ detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article
Google Scholar
22.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article
Google Scholar
23.Jerde, C. L. et al. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance program. Can. J. Fish. Aquat. Sci. 70, 522–526 (2013).CAS
Article
Google Scholar
24.Laramie, M. B., Pilliod, D. S. & Goldberg, C. S. Characterizing the distribution of an endangered salmonid using environmental DNA analysis. Biol. Conserv. 183, 29–37 (2015).Article
Google Scholar
25.Takahara, T., Minamoto, T. & Doi, H. Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS ONE 8, e56584 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
26.Gingera, T. D., Bajno, R., Docker, M. F. & Reist, J. D. Environmental DNA as a detection tool for zebra mussels Dreissena polymorpha (Pallas, 1771) at the forefront of an invasion event in Lake Winnipeg, Manitoba, Canada. Manag. Biol. Invasions 8, 287–300 (2017).Article
Google Scholar
27.Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).CAS
PubMed
Article
Google Scholar
28.Kaprou, G. D. et al. Miniaturized devices for isothermal DNA amplification addressing DNA diagnostics. Microsyst. Technol. 22, 1529–1534 (2016).CAS
Article
Google Scholar
29.Mori, Y. & Notomi, T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J. Infect. Chemother. 15, 62–69 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Fang, X., Liu, Y., Kong, J. & Jiang, X. Loop-mediated isothermal amplification integrated on microfluidic chips for point-of-care quantitative detection of pathogens. Anal. Chem. 82, 3002–3006 (2010).CAS
PubMed
Article
Google Scholar
31.Rafati, A. & Gill, P. Microfluidic method for rapid turbidimetric detection of the DNA of Mycobacterium tuberculosis using loop-mediated isothermal amplification in capillary tubes. Microchim. Acta 182, 523–530 (2014).Article
CAS
Google Scholar
32.Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28, e63 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Mori, Y., Kitao, M., Tomita, N. & Notomi, T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods 59, 145–157 (2004).CAS
PubMed
Article
Google Scholar
34.Tomita, N., Mori, Y., Kanda, H. & Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 3, 877–882 (2008).CAS
PubMed
Article
Google Scholar
35.Garrido-Maestu, A., Fuciños, P., Azinheiro, S., Carvalho, J. & Prado, M. Systematic loop-mediated isothermal amplification assays for rapid detection and characterization of Salmonella spp., Enteritidis and Typhimurium in food samples. Food Control 80, 297–306 (2017).CAS
Article
Google Scholar
36.Verkaar, E., Nijman, I., Boutaga, K. & Lenstra, J. Differentiation of cattle species in beef by PCR-RFLP of mitochondrial and satellite DNA. Meat Sci. 60, 365–369 (2002).CAS
PubMed
Article
Google Scholar
37.Wilson-Wilde, L., Norman, J. & Robertson, J. et al. Current issues in species identification for forensic science and the validity of using the cytochrome oxidase I
(COI) gene. Forensic Sci. Med. Pathol. 6, 233–241. https://doi.org/10.1007/s12024-010-9172-y (2010). CAS
PubMed
Article
Google Scholar
38.Hebert, P. D. N., Cywinska, A., Ball, S. L. & Jeremy, R. Biological identifications through DNA barcodes. Proc. Biol. Sci. 270(1512), 313–321 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Staroscik, A. Copy number calculator for realtime PCR. http://www.scienceprimer.com/copy-number-calculator-for-realtime-pcr (2012).40.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed
PubMed Central
Article
Google Scholar
41.Zanoli, L. M. & Spoto, G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors 3, 18–43 (2013).CAS
PubMed
Article
Google Scholar
42.Egan, S. P. et al. Rapid molecular detection of invasive species in ballast and harbor water by integrating environmental DNA and light transmission spectroscopy. Environ. Sci. Technol. 49, 4113–4121 (2015).ADS
CAS
PubMed
Article
Google Scholar
43.Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).Article
Google Scholar
44.Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
45.Frackman, B. S., Kobs, G., Simpson, D., Storts, D. & Corporation, P. Betaine and DMSO: enhancing agents for PCR. Promega Notes 65, 9–12 (1998).
Google Scholar
46.Wang, D.-G., Brewster, J., Paul, M. & Tomasula, P. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification. Molecules 20, 6048–6059 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Jantz, B. & Neumann, D. Growth and reproductive cycle of the zebra mussel in the River Rhine as studied in a river bypass. Oecologia 114, 213–225 (1998).ADS
CAS
PubMed
Article
Google Scholar
48.Grigorovich, I. A., Kelly, J. R., Darling, J. A. & West, C. W. The quagga mussel invades the Lake Superior Basin. J. Great Lakes Res. 34, 342–350 (2008).Article
Google Scholar
49.Mahon, A. R. et al. Molecular detection of invasive species in heterogeneous mixtures using a microfluidic carbon nanotube platform. PLoS ONE 6, 1–5 (2011).Article
CAS
Google Scholar
50.PrimerExplorer. LAMP Primer Designing Software (Fujitsu Ltd, Tokyo, 2005).
Google Scholar
51.Untergasser, A. et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 40, e115–e115 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS
PubMed
PubMed Central
Article
Google Scholar More
