More stories

  • in

    Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings

    1.Ali, B. et al. Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58(1), 131–138 (2014).CAS 
    Article 

    Google Scholar 
    2.Tang, Y. et al. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting pgotosynthetic activity and antioxidative enzyme activities. Environ. Sci. pollut. Res. 25, 30671–30679 (2018).CAS 
    Article 

    Google Scholar 
    3.Jia, L. et al. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica. Thunb. J Plant Growth Regul 34(1), 13–21 (2015).CAS 
    Article 

    Google Scholar 
    4.Gallego, S. M., Benavides, M. P. (2019) Cadmium-induced oxidative and nitrosative stress in plants. Cadmium Toxicity and Tolerance in Plants. Elsevier, pp. 233–274.5.Rizwan, M. et al. Cadmium minimization in wheat: a critical review. Ecotoxicol. Environ. Saf. 130, 43–53 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zou, J. et al. Transcriptional, physiological and cytological analysis validated the roles of some key genes linked Cd stress in Salix matsudanaKoidz. Environ. Exp. Bot. 134, 116–129 (2017).CAS 
    Article 

    Google Scholar 
    7.Chen, H. C. et al. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch Under Cd stress. Ecotoxicol. Environ. Saf. 187, 1–10 (2020).
    Google Scholar 
    8.Sarvajeet, S. G., Nafees, A. K. & Narendra, T. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 182, 112–120 (2011).
    Google Scholar 
    9.Daniel, H., Tereza, C., Tom´a, V. & Radka, P. The effect of nanoparticles on the photosynthetic pigments in cadmium-zinc interactions. Environ. Sci. Pollut. Res. 26(4), 4147–4151 (2019).Article 
    CAS 

    Google Scholar 
    10.Tian, X. et al. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil–plant–atmosphere transfers in urban areas South China. Environ. Geochem. Health 38(6), 1283–1301 (2016).Article 
    CAS 

    Google Scholar 
    11.He, J. et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus× _canescens. Plant Physiol. 162, 424–439 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.He, J. et al. Cadmium tolerance in six poplar species. Environ. Sci. Pollut. Res. 20, 163–174 (2013).CAS 
    Article 

    Google Scholar 
    13.He, N. et al. Draft genome sequence of the mulberry tree Morus notabilis. Nat. Commun. 4, 1–9 (2013).Article 
    CAS 

    Google Scholar 
    14.Wu, P., Luo, Z. (1981) Precious sassafras of Guizhou[J]. Guizhou Forest. Sci. Technol.15.Flora of China, 1982, vol. 31, p. 238.16.Xiyou, C. Study on Growth of Sassafras in different Mixed ways[J]. Anhui Forest. Sci. Technol. 4, 9–11 (2015).
    Google Scholar 
    17.Cheng Yong, Wu. et al. Storage test of sassafras seeds[J]. Hunan Forest. Sci. Technol. 2, 28–30 (2014).
    Google Scholar 
    18.Shen, Y. et al. Study on biomass and productivity of natural secondary Sassafras Mixed Forest[J]. J. Central South Univ. Forest. Technol. 5, 26–30 (2011).
    Google Scholar 
    19.Jin, Y. Q. et al. Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin[J]. Int. J. Biol. Macromol. 123, 50–58 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Cheng, Y. F. et al. Rapid method for protein quantitation by Bradford assay after elimination of the interference of polysorbate 80[J]. Anal Biochem 494, 37–39 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Abdelgawad, H., Zinta, G., Badreldin, A. H., et al. (2019) Maize roots and shoots show distinct profiles of oxidative stress and antioxidant defense under heavy metal toxicity[J]. Environ. Pollut., p. 11370522.Donahue, J. L. et al. Responses of antioxidants to paraquat in pea leaves (relationships to resistance) [J]. Plant Physiol 113(1), 249–257 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Merey, H. A. et al. Validated UPLC method for the determination of guaiphenesin, oxeladin citrate, diphenhydramine, and sodium benzoate in their quaternary mixture used in treatment of cough, in the presence of guaiphenesin-related substance (guaiacol)[J]. Chem. Pap. 72(9), 2247–2254 (2018).CAS 
    Article 

    Google Scholar 
    24.Beers, R. F. & Sizer, I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[J]. J. Biol. Chem. 195(1), 133–140 (1952).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Zhao, F. J., Jiang, R. F., Dunham, S. J. & McGrath, S. P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. J. 172, 646–654 (2006).CAS 
    Article 

    Google Scholar 
    26.Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11(5), 591–592 (1983).CAS 

    Google Scholar 
    27.Zipiao, Ye. Andvances in models of photosynthetic response to light and CO2[J]. Chin. J. Plant Ecol. 06, 727–740 (2010).
    Google Scholar 
    28.Saidi, I. et al. Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. S Afr. J. Bot. 85, 32–38 (2013).CAS 
    Article 

    Google Scholar 
    29.Anwaar, S. A. et al. Silicon (Si) alleviates cotton (Gossypium hirsutum L.) fromzinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ. Sci. Pollut. Res. 22, 3441–3450 (2014).Article 
    CAS 

    Google Scholar 
    30.Fuzhong, Wu. et al. Effects of cadmium stress on the growth, nutrient accumulation, distribution and utilization of Osmanthus fragrans. J. Plant Ecol. 34(10), 1220–1226 (2010).
    Google Scholar 
    31.Cengiz, K., Nudrat, A., Akram, M., Ashraf, M., Nasser, A., Parvaiz, A. (2020) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by upregulating the synthesis of nitric oxide and hydrogen sulfide[J]. J. Biotechnol., p. 31632.Wang, H. et al. Effects of cadmium stress at different concentrations on photosynthesis, lipid peroxidation and antioxidant enzyme activities in maize seedlings [J]. J. Plant Nutrition Fertilizer 14(01), 36–42 (2008).CAS 

    Google Scholar 
    33.Awasthi, P., Mahajan, V., Jamwal, V. L. et al. (2016) Cloning and expression analysis of chalcone synthase gene from Coleus forskohlii. J. Genet.34.Ahmad, P., Jaleel, C. A., Salem, M. A., Nabi, G. & Sharma, S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30(3), 161–175 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Chen, H. et al. H2O2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. Plant Cell Environ. 41, 767–781 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kohli, S. K., Khanna, K., Bhardwaj, R., Abd_Alla, E. F., Corpas, F. J. (2019) Assessment of subcellular ros and no metabolism in higher plants: multifunctional signaling molecules. Antioxidants, vol 8, no 1237.Meng Jie, A. & Hai Jiang, W. Effects of modifiers on the growth, photosynthesis, and antioxidant enzymes of cotton under cadmium toxicity. J. Plant Growth Regulat. 38, 1196–1205 (2019).Article 
    CAS 

    Google Scholar 
    38.Wei, X. et al. Effects of different breaking dormancy ways on the photosynthetic characteristics and activities of protective enzymes of ‘misty’ blueberry leaves. Sci. Agric. Sin. 48(22), 4517–4528 (2015).CAS 

    Google Scholar 
    39.Chaabene, Z. et al. Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: monitoring of related biomarkers. Environ. Toxicol. Chem. 37(3), 797–806 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Ozfidan-Konakci, C. et al. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf. 155, 66–75 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Liu, Q. S. et al. Transcriptomic responses of dove tree (Davida involucrata Baill) to heat stress at the seedling stage[J]. Forest 10(8), 656 (2019).Article 

    Google Scholar 
    42.Yang, L. P. et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculate[J]. Ecotox Environ. Safe 160, 10–18 (2018).CAS 
    Article 

    Google Scholar 
    43.Zhang, Y. L. et al. The physiological characteristics of ornamental kale for cold resistance[J]. Act. Agric. 31(4), 168–176 (2016).CAS 

    Google Scholar 
    44.Rady, M. M. & Hemida, K. A. Modulation of cadmium toxicity and enhancing cadmium-tolerance in wheat seedlings by exogenous application of polyamines. Ecotoxicol Environ. Saf 119, 178–185 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chen, Y. H. et al. Study on the characteristics of proline and active oxygen metabolism in red sea under salt stress [J]. J. Xiamen Univ. Nat. Sci. 43(03), 402–405 (2004).CAS 

    Google Scholar 
    46.Niu, M. G. et al. Effects of drought, waterlogging and low temperature stress on physiological and biochemical characteristics of wheat [J]. Seed 04, 17–19 (2003).
    Google Scholar 
    47.Deng, F.-F., Yang, S.-L. & Gong, M. Regulation of proline metabolism in abiotic plants by cell signaling molecules [J]. J. Plant Physiol. 51(10), 1573–1582 (2015).CAS 

    Google Scholar 
    48.Samuel, D. et al. Proline inhibits aggre-gation during protein refolding[J]. Protein Sci. 9(2), 344–352 (2010).Article 

    Google Scholar 
    49.Abd Allah, E. F. et al. Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). J. Plant Interact. 12(1), 237–243 (2017).Article 
    CAS 

    Google Scholar 
    50.Zhang, X. D. et al. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Bio Metals 31(1), 107–121 (2018).CAS 

    Google Scholar 
    51.Chen, K. et al. Physiological response and cold resistance evaluation of the leaves of Parashorea chinensis seedlings to low temperature stress[J]. J NW For Univ 34(3), 67–73 (2019).CAS 

    Google Scholar 
    52.Ge, W. & Jiao, Y. Changes of soluble protein content of two poplar trees under cadmium stress [J]. Modern Agric. Sci. Technol. 1, 199–200 (2012).
    Google Scholar 
    53.Aina, R. et al. Thiol-petide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. rotts[J]. Environ. Exp. Botany 59(3), 381–392 (2007).CAS 
    Article 

    Google Scholar 
    54.Xu, J. J. et al. Effects of Cd stress on antioxidant enzymes activity of Sonchus asper L. Hill and Zea mays L. in intercropping system[J]. J. Yunnan Agric. Univ. Nat Sci. Ed. 30(2), 348–355 (2016).
    Google Scholar 
    55.Hendrik, K., Frithjof, K. & Martin, S. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. J. Exp. Bot. 47(2), 259–266 (1996).Article 

    Google Scholar 
    56.Chen, X. X. et al. Effects of thallium and cadmiun stress on the growth and photosynthetic characteristics of Arundinacea[J]. Guangxi Plants 39(6), 743–751 (2019).
    Google Scholar 
    57.Ahanger, M. A., U Aziz, Alsahli, A. A., Alyemeni, M. N., Ahmad, P. (2020). Combined kinetin and spermidine treatments ameliorate growth and photosynthetic inhibition in vigna angularis by up-regulating antioxidant and nitrogen metabolism under cadmium stress. Biomolecules, vol. 10, no 158.Sun Xiaolin, Xu. et al. Response of photosynthetic pigments in plant leaves to shading[J]. Chin. J. Plant Ecol. 34(8), 989–999 (2010).
    Google Scholar 
    59.Chen, X.-X. et al. Effects of cadmium stress on growth and photosynthetic characteristics of asparagus spears[J]. Plants Guangxi 39(6), 743–751 (2019).
    Google Scholar 
    60.Lu, Y. et al. Effects of heavy metals on photosynthetic and physiological growth characteristics of halophytes[J]. Acta Botanica Northwestern Sinica 31(2), 370–376 (2011).CAS 

    Google Scholar 
    61.Farquhar, G. D. & Sharkey, T. D. Stomatal Conductance and Photosynthesis[J]. Annu. Rev. Plant Physiol. 33(1), 317–345 (1982).CAS 
    Article 

    Google Scholar 
    62.Haizhen, W. et al. Response of chlorophyll fluorescence characteristics to high temperature in heteromorphous leaves of Populus eureka [J]. Acta Ecol. Sin. 9, 100–109 (2011).
    Google Scholar 
    63.Liyuan, Li. et al. Photosynthetic light response simulation of leaves of Quercus variabilis and Robinia pseudoacacia under different light environments[J]. Chin. J. Appl. Ecol. 29(7), 2295–2306 (2016).
    Google Scholar 
    64.Wang, F.-K. et al. Photosynthetic light response curve of Populus microphylla under different slope orientation[J]. Water Soil Conservat. Res. 22(113), 182–187 (2015).
    Google Scholar 
    65.Xin, Qi., Qunfang, C. & Yulong, F. Adaptation of photosynthesis to growth light intensity in seedlings of three tree species of Putaoia in tropical rain forest [J]. Chin. J. Plant Ecol. 01, 34–41 (2004).
    Google Scholar  More

  • in

    Relationship of contact angle of spray solution on leaf surfaces with weed control

    The results were divided into two factors, both were an independent process that was occurring on the surfaces, together, the two factors explained 60.2% of the total variation of the original data. Factor 1, which consists of the contact angle and the weed control, represent 60.1% of the data, and Factor 2, which consists of the contact angle of the abaxial surface of I. grandifolia and the adaxial surface of A. curassavica, represent 0.9% of the total variation (Table 1).Table 1 Result of the analysis of factors containing the first two factors (processes) with their respective factorial loads that represent the correlation coefficients between the foliar surfaces and control and each Factor.Full size tableThe process contained in the contact angle and weed control is the most important for this study since it is derived from the higher eigenvalue and has a higher percentage of explanation (60.1%), and the variables that contribute the most are represented by artificial surface (0.98), lantana adaxial and abaxial face (0.75 and 0.68, respectively), shakeshake adaxial and abaxial face (0.95 and 0.96, respectively), morning glory adaxial face (0.81), sicklepod adaxial and abaxial face (0.88 and 0.94), castor bean adaxial and abaxial face (0.52 and 0.85), bloodflower milkweed abaxial face (0.73), control in shakeshake 5, 11 and 16 DAA (−0.50, −0.77 and −0.92, respectively), control in lantana 5, 11 and 16 DAA (−0.51, −0.84 and −0.95, respectively). Furthermore, according to the signs of the factorial loads, the contact angle and weed control factor are directly and strongly correlated with the surfaces, because the contact angle showed the same positive sign for both surfaces, as well as to the control shakeshake and lantana showed the same negative sign.Considering that the factors are orthogonal (uncorrelated), the processes retained in the contact angle, weed control (Factor 1), and the factor morning glory abaxial surface, bloodflower milkweed adaxial surface (Factor 2) are considered independent. Thus, the analysis was performed with the scores of the contact angle and control factor (Fig. 1) and the morning glory abaxial surface factor, and bloodflower milk weed adaxial surface (Fig. 2). A significant difference (F = 109.58; p = 0.0001) was found between the treatments when the surfaces and weed control were evaluated (Factor 1). There were differences between the spray solutions and water treatment.Figure 1Graphical representation with the scores of Factor 1 (surface and control) as a function of the evaluated samples. Vertical bars represent confidence intervals of 0.95 (F = 109.58; p = 0.0001). Spray solution: 1-No adjuvant; 2-herbicide associated with vegetable oil; 3- herbicide associated with mineral oil; 4-herbicide associated with lecithin, and Control.Full size imageFigure 2Graphical representation with Factor 2 (Ipomoea grandifolia (abaxial) and Asclepias curassavica (adaxial) scores) as a function of the evaluated samples. Vertical bars represent confidence intervals of 0.95 (F = 4.036, p = 0.009). Spray solution: 1-No adjuvant; 2-herbicide associated with vegetable oil; 3-herbicide associated with mineral oil; 4-herbicide associated with lecithin, and Control.Full size imageFor factor 2 there was also a difference (F = 4.036; p = 0.009) when the plants were evaluated together. The spray solution did not differ from the control. When the spray solutions were compared, there was a difference only between the herbicide spray solution with no lecithin and the herbicide spray solution with lecithin (Fig. 2).Correlating with the results of the univariate analysis, it is possible to observe that the separation of factors is related to the result obtained from the contact angle of the bloodweed milkweed and morningglory surfaces, because, for bloodflower milkweed, the treatments and control were not significant (p  > 0.05), with no significance for the dosage and adjuvant interaction (p  > 0.05). The two experiments to control the weeds were complementary, did not differ from each other (p  > 0.05).For lantana on the adaxial surface, the control treatment differed from the treatments (p = 0.001), however, the spray solution, doses, and interaction were not significant (p  > 0.05, 0.0844, and 0.0616, respectively) (Table 2). For the abaxial surface, the spray solutions and the interaction of the factors were not significant (p = 0.0535 and 0.1353, respectively). However, the herbicide doses were statistically different (p  > 0.0001) (Figs. 3, 4).Table 2 Average and standard deviation of the contact angle (°) after drop deposition in surfaces of the leaves of the weeds.Full size tableFigure 3Percentage of control of Crotalaria incana L. plants after herbicide solution spraying. (A) Aminopyralid + fluroxypyr at 155.3 L of active ingredient ha−1. (B) Aminopyralid + fluroxypyr at 360.6 L of active ingredient ha−1. Equal letters within the evaluation days, the adjuvants do not differ from each other by the Tukey test (p  > 0.05).Full size imageFigure 4Percentage of control of Lantana camara L. plants after herbicide solution spraying. (A) Aminopyralid + fluroxypyr at 155.3 L of active ingredient ha−1. (B) Aminopyralid + fluroxypyr at 360.6 L of active ingredient ha−1. Equal letters within the evaluation days, the adjuvants do not differ from each other by the Tukey test (p  > 0.05).Full size imageThe contact angle of the shakeshake adaxial surface did not differ for spray solutions (p = 0.666), dose and control factors versus the treatments were significant (p  > 0.0001 and 0.0001), but for interaction, there was no significance (p = 0.5327) (Table 2). The abaxial surface, the spray solution, doses, and the control treatment versus the treatments were significant (p = 0.0056, 0.0428, and 0.0001), but the interaction was not significant (0.4453) (Table 2). For sicklepods adaxial and abaxial surfaces, doses, spray solution, control versus treatments and interaction were significant (p  > 0.0001). The surfaces of the species shakeshake and sicklepod showed higher values to the control, the abaxial surface sicklepod presented the contact angle value of approximately 177° (Table 2; Figs. 5 and 6), for shakeshake the addition of vegetable oil decreased the contact angle on the adaxial surface at any dose, and for sicklepod the addition of lecithin resulted in the lowest contact angle (Table 2).Figure 5Surface adaxial in plants of the Crotalaria incana L. (A), Lantana camara L. (B), Asclepias curassavica L. (C), Senna obtusifolia (L.) H.S.Irwin & Barneby (D), Ricinus communis L. (E) and Ipomoea grandifolia (Dammer) O’Donell (F) taken on the Stereoscopic Microscope with × 1.0.Full size imageFigure 6Surface abaxial in plants of the Crotalaria incana L. (A), Lantana camara L. (B), Asclepias curassavica L. (C), Senna obtusifolia (L.) H.S.Irwin & Barneby (D), Ricinus communis L. (E) and Ipomoea grandifolia (Dammer) O’Donell (F) taken on the Stereoscopic Microscope with × 1.0.Full size imageFor the castor bean, on the adaxial surface, the spray solution and doses were not significant (p = 0.06126 and 0.1761, respectively), the control treatment and the interaction were significant (p  > 0.0001), but for the abaxial surface the spray solution, dose, interaction, and control treatment were significant (p  > 0.0001). The morningglory on the adaxial surface showed a significant difference between the spray solution, doses, control treatment (p = 0.0001, 0.0072, and 0.0001) but it was not significant for the interaction (p = 0.2283), on the abaxial surface, the spray solution and the doses were not significant (p = 0.0755 and 0.3025), but the interaction and the control treatment were significant (p = 0.0007 and 0.0018). For morningglory the addition of lecithin resulted in the lowest contact angle on the adaxial surface, for the abaxial addition of mineral oil and lecithin presented the lowest values, for the castor beans the lecithin resulted in the lowest contact angle on the adaxial surface for the dose of 155.3 L ha−1, however, at a dose of 310.6 L ha−1, the spray solution without adjuvant or mineral or vegetable oil showed lower values of contact angle.For the milkweed bloodflower, on the adaxial surface, the sprays solution, doses, interaction, and control treatment were not significant (p = 0.1320, 0.6804, 0.0848, and 0.800, respectively), the abaxial surface, the sprays solution, doses, and interaction were not significant (p = 0.2016, 0.7371 and 0.8916, respectively), so the contact angle values were statistically similar to each other. However, its species presented a lower average value of the contact angle (43.93°) compared to other plants (Fig. 5 and 6).The standard surface (Parafilm) sprays solutions, control treatment and doses were significant (p  > 0.0001) but there was no significance for interaction (p = 0.2077), thus, regardless of the dose, the addition of lecithin resulted in the lowest contact angle of the drops.In the weed control experiment, shakeshake and lantana plants showed rapid damage caused by the herbicide aminopyralid + fluroxypyr (Fig. 3 and 4). For shakeshake, at 5 DAP the spray solution and dose were not significant (p  > 0.05), the control treatment versus the treatments and the interaction was significant (p = 0.0019 and 0.0149, respectively), the interaction was significant only in mineral oil in that the level of control was lower at the dose of 155.3 L ha−1. At 11 DAP the spray solution was not significant (p  > 0.05), but the doses, the interaction, and the control treatment versus the treatments were significant (p = 0.0009, 0.0413, and 0.0001, respectively), the interaction was significant because there were differences in lecithin at the control level, in which the dose of 155.3 L ha−1 resulted in the lowest level of control. In the last evaluation at 16 DAP, the spray solution was not significant (p  > 0.05), dose, interaction, and control versus treatments were significant (p = 0.0001, 0.0353 and 0.001), the interaction was significant for the spray solutions that had the addition of an adjuvant, in which the highest level of control was observed at the dose of 310.6 L ha−1 (Fig. 3 and 4).The level of lantana control at 5 DAP showed significance for spray solution (p = 0.0257) and control versus treatments (0.007), the dose and interaction were not significant (p  > 0.05), at 11DAP the spray solution, dose, and interaction were not significant (p = 0.1377, 0.0706 and 0.6540, respectively) there was only significance for control versus treatments (p = 0.0001). At 16 DAP the spray solution, dose, and interaction were not significant (p = 0.4703, 0.1734, and 0.4210, respectively), there was significance for the control versus treatments (p = 0.0004) (Fig. 3 and 4).In general, at 5 DAP, both species showed symptoms of twisting of the leaves next of the apical region was observed differences between treatments with no adjuvant and the doses used. The dose of 310.6 L ha−1 showed a better percentage of control in both species, and independent of the treatments used (Fig. 3 and 4).At 16 DAP, lantana plants showed 100% control independent of the dose used, but the shakeshake plants had control of close to 80% independent of the dose (Fig. 4). Shakeshake plants have a lower percentage of control due to the surface being more hydrophobic to the surface of the lantana, hydrophobicity can cause the drops to ricochet, with no drops being deposited, therefore, the product does not absorb (Fig. 3).The addition of adjuvants to the spray solution did not result in differences between the treatment without addition, despite the decrease in the contact angle with the addition of the herbicide. In the shakeshake, a higher percentage of control was observed in the treatment without the addition of an adjuvant, in the dose of 155.3 L ha−1, in the dose of 310.6 L ha−1 with the addition of lecithin resulted in a higher percentage of control (Fig. 3). For lantana, the addition or not of the adjuvant did not result in different control percentage values, independent of the dose, that is, only the herbicide was necessary to obtain 100% control of the plants, this is due to the lower angle value of contact compared to shakeshake (Fig. 4). More

  • in

    Wide and increasing suitability for Aedes albopictus in Europe is congruent across distribution models

    1.Medlock, J. M. et al. An entomological review of invasive mosquitoes in Europe. Bull. Entomol. Res. 105, 637–663 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, L. P. Spread of the Tiger. Vector Borne Zoonotic Dis. 7, 76–85 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Jourdain, F. et al. Towards harmonisation of entomological surveillance in the mediterranean area. PLoSNegl. Trop. Dis. 13, 1–28 (2019).
    Google Scholar 
    5.Kraemer, M. U. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Kamal, M., Kenawy, M. A., Rady, M. H., Khaled, A. S. & Samy, A. M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE 13, 1–21 (2018).
    Google Scholar 
    7.Proestos, Y. et al. Present and future projections of habitat suitability of the Asian tiger mosquito, a vector of viral pathogens, from global climate simulation. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130554 (2015).Article 

    Google Scholar 
    8.Campbell, L. P. et al. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140135 (2015).Article 

    Google Scholar 
    9.Gossner, C. M., Ducheyne, E. & Schaffner, F. Increased risk for autochthonous vector-borne infections transmitted by Aedes albopictus in continental europe. Eurosurveillance 23, 2–7 (2018).
    Google Scholar 
    10.ECDC, E. C. for D. P. and C. & EFSA, E. F. S. A. Aedes albopictus—current known distribution: September 2020. Mosquito maps [internet]. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (2020).11.Ding, F., Fu, J., Jiang, D., Hao, M. & Lin, G. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus. Acta Trop. 178, 155–162 (2018).PubMed 
    Article 

    Google Scholar 
    12.Kraemer, M. U. et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 4, 1–18 (2015).Article 

    Google Scholar 
    13.Santos, J. & Meneses, B. M. An integrated approach for the assessment of the Aedes aegypti and Aedes albopictus global spatial distribution, and determination of the zones susceptible to the development of Zika virus. Acta Trop. 168, 80–90 (2017).PubMed 
    Article 

    Google Scholar 
    14.Kuhlisch, C., Kampen, H. & Walther, D. The Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Central Germany: surveillance in its northernmost distribution area. Acta Trop. 188, 78–85 (2018).PubMed 
    Article 

    Google Scholar 
    15.Vaux, A. G. C. et al. The challenge of invasive mosquito vectors in the U.K. during 2016–2018: a summary of the surveillance and control of Aedes albopictus. Med. Vet. Entomol. https://doi.org/10.1111/mve.12396 (2019).PubMed 
    Article 

    Google Scholar 
    16.Metelmann, S. et al. The UK’s suitability for Aedes albopictus in current and future climates. J. R. Soc. Interface 16, 20180761 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Petrić, M., Lalić, B., Ducheyne, E., Djurdjević, V. & Petrić, D. Modelling the regional impact of climate change on the suitability of the establishment of the Asian tiger mosquito (Aedes albopictus) in Serbia. Clim. Chang. 142, 361–374 (2017).ADS 
    Article 

    Google Scholar 
    18.Fischer, D., Thomas, S. M., Niemitz, F., Reineking, B. & Beierkuhnlein, C. Projection of climatic suitability for Aedes albopictusSkuse (Culicidae) in Europe under climate change conditions. Glob. Planet. Chang. 78, 54–64 (2011).ADS 
    Article 

    Google Scholar 
    19.Caminade, C. et al. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J. R. Soc. Interface 9, 2708–2717 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Fischer, D., Thomas, S. M., Neteler, M., Tjaden, N. B. & Beierkuhnlein, C. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance 19, 1–13 (2014).
    Google Scholar 
    21.Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 1–8 (2015).Article 

    Google Scholar 
    22.Cunze, S., Kochmann, J., Koch, L. K. & Klimpel, S. Aedes albopictus and its environmental limits in Europe. PLoS ONE 11, 1–14 (2016).Article 
    CAS 

    Google Scholar 
    23.Shragai, T. & Harrington, L. C. Aedes albopictus (Diptera: Culicidae) on an invasive edge: abundance, spatial distribution, and habitat usage of larvae and pupae across urban and socioeconomic environmental gradients. J. Med. Entomol. 56, 472–482 (2019).PubMed 
    Article 

    Google Scholar 
    24.Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Chang. Biol. 16, 1145–1157 (2010).ADS 
    Article 

    Google Scholar 
    25.LaDeau, S. L., Allan, B. F., Leisnham, P. T. & Levy, M. Z. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 29, 889–901 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    27.Acevedo, P. & Real, R. Favourability: concept, distinctive characteristics and potential usefulness. Naturwissenschaften 99, 515–522 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).Article 

    Google Scholar 
    29.Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Synth. Am. Museum Nat. Hist. 50, 54–89 (2007).
    Google Scholar 
    30.Capinha, C., Larson, E. R., Tricarico, E., Olden, J. D. & Gherardi, F. Effects of climate change, invasive species, and disease on the distribution of native european crayfishes. Conserv. Biol. 27, 731–740 (2013).PubMed 
    Article 

    Google Scholar 
    31.Castellanos, A. A., Huntley, J. W., Voelker, G. & Lawing, A. M. Environmental filtering improves ecological niche models across multiple scales. Methods Ecol. Evol. 10, 481–492 (2019).Article 

    Google Scholar 
    32.Machín, L., Aschemann-Witzel, J., Curutchet, M. R., Giménez, A. & Ares, G. Traffic light system can increase healthfulness perception: implications for policy making. J. Nutr. Educ. Behav. 50, 668–674 (2018).PubMed 
    Article 

    Google Scholar 
    33.OECD. Redefining Urban: A New Way to Measure Metropolitan Areas (OECD, 2012).Book 

    Google Scholar 
    34.Tippelt, L., Werner, D. & Kampen, H. Tolerance of three Aedes albopictus strains (Diptera: Culicidae) from different geographical origins towards winter temperatures under field conditions in northern Germany. PLoS ONE 14, e0219553 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Li, R. et al. Climate-driven variation in mosquito density predicts the spatiotemporal dynamics of dengue. Proc. Natl. Acad. Sci. U. S. A. 116, 3624–3629 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Murray, K. A. et al. Global biogeography of human infectious diseases. Proc. Natl. Acad. Sci. U. S. A. 112, 12746–12751 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Shragai, T., Tesla, B., Murdock, C. & Harrington, L. C. Zika and chikungunya: mosquito-borne viruses in a changing world. Ann. N. Y. Acad. Sci. 1399, 61–77 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    38.Tjaden, N. B., Caminade, C., Beierkuhnlein, C. & Thomas, S. M. Mosquito-borne diseases: advances in modelling climate-change impacts. Trends Parasitol. 34, 227–245 (2018).PubMed 
    Article 

    Google Scholar 
    39.Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).CAS 
    Article 

    Google Scholar 
    40.Mariconti, M. et al. Estimating the risk of arbovirus transmission in Southern Europe using vector competence data. Sci. Rep. 9, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    41.Egizi, A., Fefferman, N. H. & Fonseca, D. M. Evidence that implicit assumptions of ‘no evolution’ of disease vectors in changing environments can be violated on a rapid timescale. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–10 (2015).Article 

    Google Scholar 
    42.Zeller, H., Marrama, L., Sudre, B., Van Bortel, W. & Warns-Petit, E. Mosquito-borne disease surveillance by the European Centre for Disease Prevention and Control. Clin. Microbiol. Infect. 19, 693–698 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Fernandes, J. N., Moise, I. K., Maranto, G. L. & Beier, J. C. Revamping mosquito-borne disease control to tackle future threats. Trends Parasitol. 34, 359–368 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Lwande, O. W., Obanda, V., Lindstro, A., Ahlm, C. & Evander, M. Risk factors for arbovirus pandemics. Vector-Borne Zoonotic Dis. 20, 71–81 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Colón-González, F. J. et al. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc. Natl. Acad. Sci. U. S. A. 115, 6243–6248 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    46.Zheng, X., Zhong, D., He, Y. & Zhou, G. Seasonality modeling of the distribution of Aedes albopictus in China based on climatic and environmental suitability. Infect. Dis. Poverty 8, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    47.Schaffner, F., Medlock, J. M. M. & Van Bortel, W. Public health significance of invasive mosquitoes in Europe. Clin. Microbiol. Infect. 19, 685–692 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Rückert, C. & Ebel, G. D. How do virus-mosquito interactions lead to viral emergence?. Trends Parasitol. 34, 310–321 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Sanna, M. & Hsieh, Y. H. Ascertaining the impact of public rapid transit system on spread of dengue in urban settings. Sci. Total Environ. 598, 1151–1159 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Valerio, L. et al. Host-feeding patterns of Aedes albopictus (Diptera: Culicidae) in urban and rural contexts within Rome province, Italy. Vector-Borne Zoonotic Dis. 10, 291–294 (2010).PubMed 
    Article 

    Google Scholar 
    51.Wen, T. H., Lin, M. H. & Fang, C. T. Population movement and vector-borne disease transmission: differentiating spatial-temporal diffusion patterns of commuting and noncommuting dengue cases. Ann. Assoc. Am. Geogr. 102, 1026–1037 (2012).Article 

    Google Scholar 
    52.Rogers, D. J. Dengue: recent past and future threats. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–18 (2015).Article 

    Google Scholar  More

  • in

    Diversity and distribution of viruses inhabiting the deepest ocean on Earth

    1.Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 2019;177:1109–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008;454:1084–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Danovaro R, Dell’Anno A, Corinaldesi C, EugenioRastelli, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv 2016;2:e1600492.10.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014;344:757–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.He T, Li H, Zhang X. Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus–host interactions. mBio 2017;8:e00893–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ pacific ocean virome. ISME J. 2015;9:472–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E9.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.16.Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.17.Tangherlini M, Dell’Anno A, Allen LZ, Riccioni G, Corinaldesi C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci Rep. 2016;6:28428.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Yang Y, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.Article 

    Google Scholar 
    19.Tang K, Lin D, Zheng Q, Liu K, Yang Y, Han Y, et al. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. BMC Genomics. 2017;18:485.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Corte DD, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Corte DD, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Blankenship-Williams LE, Levin LA. Living deep: a synopsis of hadal trench ecology. Mar Technol Soc J. 2009;43:137–43.Article 

    Google Scholar 
    23.Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol. 2010;25:190–7.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Jamieson AJ. Ecology of deep oceans: hadal trenches. eLS. Chichester: Wiley; 2001.25.Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 2013;6:284–8.CAS 
    Article 

    Google Scholar 
    26.Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 2015;112:E1230–E6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome 2020;8:78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Liu J, Zheng Y, Lin H, Wang X, Li M, Liu Y, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019;7:47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tamegai H, Li L, Nasui N, Kato C. A denitrifying bacterium from the deep sea at 11000-m depth. Extremophiles 1997;1:207–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K. Extremely barophilic bacteria isolated from the Mariana Trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol. 1998;64:1510–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 1999;3:71–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol. 2007;57:1360–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Wei Y, Fang J, Xu Y, Zhao W, Cao J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:1474–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Ahmad W, Zheng Y, Li Y, Sun W, Hu Y, He X, et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol. 2020;70:3794–800.37.Zhao X, Liu J, Zhou S, Zheng Y, Wu Y, Kogure K, et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Mar Life Sci Technol. 2020;2:181–93.Article 

    Google Scholar 
    38.Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol. 2015;166:668–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K. Metagenomic analysis of viral communities in (Hado)pelagic sediments. PLoS ONE. 2013;8:e57271.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Manea E, Dell’Anno A, Rastelli E, Tangherlini M, Nunoura T, Nomaki H, et al. Viral infections boost prokaryotic biomass production and organic C cycling in Hadal Trench sediments. Front Microbiol. 2019;10:1952.41.Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a Hadal biosphere at the Yap Trench. Front Microbiol. 2018;9:2402.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, et al. Microbial community diversity within sediments from two geographically separated Hadal Trenches. Front Microbiol. 2019;10:347.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS ONE. 2018;13:e0195102.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.NA J, JN F. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). https://github.com/najoshi/sickle2011.45.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ 2015;3:e985.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017;5:69.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45:39–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    51.Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat Protoc. 2017;12:1673–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature 2016;536:425–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Song W, Sun H-X, Zhang C, Cheng L, Peng Y, Deng Z, et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 2019;47:W74–W80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D45.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    56.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering CV, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–D8.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–D205.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.El-Gebali S, Mistry J, Bateman A, Eddy SR, Ae L, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol. 2019;37:29–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D86.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Pritchard L, Glover RH, Humphris S, Elphinstone JG, Tothc IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.Article 

    Google Scholar 
    66.Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, et al. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol. 2016;18:2064–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Aylward FO, Moniruzzaman M. ViralRecall-a flexible command-line tool for the detection of giant virus signatures in Omic Data. Viruses 2021;13:150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.Article 
    CAS 

    Google Scholar 
    69.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Hurwitz BL, Sullivan MB. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Corte DD, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front Microbiol. 2019;10:1801.72.Ghai R, Mehrshad M, Mizuno CM, Rodriguez-Valera F. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria. ISME J. 2017;11:304–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    77.Getz EW, Tithi SS, Zhang L, Aylward FO. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio 2018;9:e01089–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Karst SM, Kirkegaard RH, Albertsen M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv. 2016.79.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lin BY, Chan PP, Lowe TM. tRNAviz: explore and visualize tRNA sequence features. Nucleic Acids Res. 2019;47:W542–W7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8:209.Article 
    CAS 

    Google Scholar 
    83.Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    85.Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood treesfor large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 2015;12:164.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.89.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Hulo C, Castro ED, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2011;39:D576–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Takahashi S, Furukawara M, Omae K, Tadokoro N, Saito Y, Abe K, et al. A highly stable D-amino acid oxidase of the thermophilic bacterium Rubrobacter xylanophilus. Appl Environ Microbiol. 2014;80:7219–29.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Brister JR, Ako-adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43:D571–D7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Al-Shayeb B, Sachdeva R, Chen L-X, Ward F, Munk P, Devoto A, et al. Clades of huge phages from across Earth’s ecosystems. Nature 2020;578:425–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 2019;13:618–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA. 2019;116:15645–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Kioka A, Schwestermann T, Moernaut J, Ikehara K, Kanamatsu T, McHugh CM, et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci Rep. 2019;9:1553.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Mestrea M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018;115:E6799–E807.Article 
    CAS 

    Google Scholar 
    101.Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Tamsitt V, Drake HF, Morrison AK, Talley LD, Dufour CO, Gray AR, et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat Commun. 2017;8:172.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    103.Fukamachi Y, Rintoul SR, Church JA, Aoki S, Sokolov S, Rosenberg MA, et al. Strong export of Antarctic bottom water east of the Kerguelen plateau. Nat Geosci. 2010;3:327–31.CAS 
    Article 

    Google Scholar 
    104.Garabato ACN, Frajka-Williams EE, Spingys CP, Legg S, Polzin KL, Forryan A, et al. Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc Natl Acad Sci USA. 2019;116:13233–8.Article 
    CAS 

    Google Scholar 
    105.Stewart HA, Jamieson AJ. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog Oceanogr. 2018;161:47–65.Article 

    Google Scholar 
    106.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Xu Y, Ge H, Fang J. Biogeochemistry of hadal trenches: recent developments and future perspectives. Deep Sea Res Part II. 2018;155:19–26.CAS 
    Article 

    Google Scholar 
    109.Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 2009;461:258–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741.CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Takahashi S, Abe K, Kera Y. Bacterial d-amino acid oxidases: recent findings and future perspectives. Bioengineered 2015;6:237–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr. 2008;53:99–112.CAS 
    Article 

    Google Scholar 
    113.Zhang Z, Zheng Q, Jiao N. Microbial D-amino acids and marine carbon storage. Sci China Earth Sci. 2016;59:17–24.Article 
    CAS 

    Google Scholar  More

  • in

    Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species

    1.Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
    Google Scholar 
    2.Wiley, R. H. Signal detection and animal communication. In Advances in the Study of Behavior Vol. 36 217–247 (Academic Press, 2006).3.Brumm, H. Animal Communication and Noise Vol. 2 (Springer, 2013).Book 

    Google Scholar 
    4.Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Tannure-Nascimento, I. C., Nascimento, F. S. & Zucchi, R. The look of royalty: Visual and odour signals of reproductive status in a paper wasp. Proc. R. Soc. B Biol. Sci. 275, 2555–2561 (2008).Article 

    Google Scholar 
    6.Higham, J. P. & Hebets, E. A. An introduction to multimodal communication. Behav. Ecol. Sociobiol. 67, 1381–1388 (2013).Article 

    Google Scholar 
    7.Hölldobler, B. Multimodal signals in ant communication. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 129–141 (1999).Article 

    Google Scholar 
    8.Partan, S. R. & Marler, P. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245 (2005).PubMed 
    Article 

    Google Scholar 
    9.Delattre, O. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insectes Soc. 66, 265–272 (2019).Article 

    Google Scholar 
    10.Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. E. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (CRC Press, 1998).
    Google Scholar 
    11.Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990).Book 

    Google Scholar 
    12.Cohen, E. & Moussian, B. Extracellular Composite Matrices in Arthropods (Springer, 2016).Book 

    Google Scholar 
    13.Tibbetts, E. A. & Lindsay, R. Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol. Lett. 4, 237–239 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Chiu, Y.-K., Mankin, R. W. & Lin, C.-C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).Article 

    Google Scholar 
    15.Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).Article 

    Google Scholar 
    16.Hrncir, M., Maia-Silva, C., Cabe, S. I. M. & Farina, W. M. The recruiter’s excitement—Features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J. Exp. Biol. 214, 4055–4064 (2011).PubMed 
    Article 

    Google Scholar 
    17.Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc. 54, 374–382 (2007).Article 

    Google Scholar 
    18.Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insectes Soc. 51, 158–162 (2004).Article 

    Google Scholar 
    19.Stuart, A. M. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85–96 (1963).Article 

    Google Scholar 
    20.Howse, P. E. On the significance of certain oscillatory movements of termites. Insectes Soc. 12, 335–345 (1965).Article 

    Google Scholar 
    21.Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69, 1945–1955 (2015).Article 

    Google Scholar 
    22.Reinhard, J. & Clément, J.-L. Alarm reaction of European reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95–107 (2002).Article 

    Google Scholar 
    23.Whitman, J. G. & Forschler, B. T. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 100, 763–771 (2007).Article 

    Google Scholar 
    24.Hertel, H., Hanspach, A. & Plarre, R. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106–115 (2011).Article 

    Google Scholar 
    25.Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sun, Q., Hampton, J. D., Haynes, K. F. & Zhou, X. Cooperative policing behavior regulates reproductive division of labor in a termite. bioRxiv https://doi.org/10.1101/2020.02.04.934315 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Park, Y. I. & Raina, A. K. Light sensitivity in workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 45, 367–376 (2005).
    Google Scholar 
    28.Hager, F. A. & Kirchner, W. H. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249–3256 (2013).PubMed 
    Article 

    Google Scholar 
    29.Mignini, M. & Lorenzi, M. C. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 69, 1739–1748 (2015).Article 

    Google Scholar 
    30.Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277, 3793–3800 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Naturwissenschaften 104, 79 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Manfredini, F. et al. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23, 660–672 (2014).PubMed 
    Article 

    Google Scholar 
    33.Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. & Bourke, A. F. G. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 77, 52–61 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780 (2020).Article 

    Google Scholar 
    35.Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U. S. A. 115, 3888–3893 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sieber, R. & Leuthold, R. H. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing Termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Soc. 28, 371–382 (1981).Article 

    Google Scholar 
    38.Maistrello, L. & Sbrenna, G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): The importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 8, 365–375 (1996).Article 

    Google Scholar 
    39.Šobotník, J., Hanus, R. & Roisin, Y. Agonistic Behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J. Insect Behav. 21, 521–534 (2008).Article 

    Google Scholar 
    40.Cristaldo, P. F. et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): The integration of chemical and vibroacoustic signals. Biol. Open 4, 1649–1659 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Yamanaka, Y., Iwata, R. & Kiriyama, S. Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae). Insectes Soc. 66, 107–117 (2019).Article 

    Google Scholar 
    42.Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, 3888–3893 (2019).Article 
    CAS 

    Google Scholar 
    43.Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).Article 

    Google Scholar 
    44.Brossette, L. et al. Termite’s royal cradle: Does colony foundation success differ between two subterranean species?. Insectes Soc. 64, 515–523 (2017).Article 

    Google Scholar 
    45.Lucas, C. et al. When predator odour makes groups stronger: Effects on behavioural and chemical adaptations in two termite species. Ecol. Entomol. 43, 513–524 (2018).Article 

    Google Scholar 
    46.Miyaguni, Y., Sugio, K. & Tsuji, K. Refinement of methods for sexing instars and caste members in Neotermes koshunensis (Isoptera, Kalotermitidae). Sociobiology 59, 1217–1222 (2012).
    Google Scholar 
    47.Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    48.Gamboa, G. J., Reeve, H. K. & Holmes, W. G. Conceptual issues and methodology in kin-recognition research: A critical discussion. Ethology 88, 109–127 (2010).Article 

    Google Scholar 
    49.Oberst, S., Nava-Baro, E., Lai, J. C. S. & Evans, T. A. An innovative signal processing method to extract ants’ walking signals. Acoust. Aust. 43, 87–96 (2015).Article 

    Google Scholar 
    50.Oberst, S., Lai, J. C. S. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (ed. Hill, P. S. M.) 53–78 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_5.
    Google Scholar 
    51.Stanley, D. W. & Nelson, D. R. Insect Lipids: Chemistry, Biochemistry, and Biology (U of Nebraska Press, 1993).
    Google Scholar 
    52.Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, 2003).Book 

    Google Scholar 
    53.Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Nguyen, T. T. & Akino, T. Worker aggression of ant Lasius japonicus enhanced by termite soldier—Specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429 (2012).Article 

    Google Scholar 
    55.Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Evans, T. A. et al. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732–3737 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.George, E. A. & Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav. Ecol. Sociobiol. 73, 41 (2019).Article 

    Google Scholar 
    58.Tautz, J., Roces, F. & Hölldobler, B. Use of a sound-based vibratome by leaf-cutting ants. Science 267, 84–87 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Hill, P. S. M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Röhrig, A., Kirchner, W. H. & Leuthold, R. H. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc. 46, 71–77 (1999).Article 

    Google Scholar 
    61.Hill, P. S. M. Vibrational Communication in Animals (Harvard University Press, 2008).
    Google Scholar 
    62.Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    63.Korb, J., Weil, T., Hoffmann, K., Foster, K. R. & Rehli, M. A gene necessary for reproductive suppression in termites. Science 324, 758 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Penick, C. A., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).Article 

    Google Scholar 
    65.Ishikawa, Y. & Miura, T. Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Anim. Behav. 83, 737–745 (2012).Article 

    Google Scholar  More

  • in

    Bycatch levies could reconcile trade-offs between blue growth and biodiversity conservation

    1.Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).3.The Ocean Economy in 2030 (OECD, 2016).4.Boonstra, W. J., Valman, M. & Björkvik, E. A sea of many colours – how relevant is blue growth for capture fisheries in the global north, and vice versa? Mar. Policy 87, 340–349 (2018).Article 

    Google Scholar 
    5.Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    6.Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Maxwell, S. M. et al. Cumulative human impacts on marine predators. Nat. Commun. 4, 2688 (2013).8.Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).9.Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).10.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    11.Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2020).Article 

    Google Scholar 
    14.Davies, R. W. D., Cripps, S. J. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 33, 661–672 (2009).Article 

    Google Scholar 
    15.Hall, M. A., Alverson, D. L. & Metuzals, K. I. By-catch: problems and solutions. Mar. Pollut. Bull. 41, 204–219 (2000).CAS 
    Article 

    Google Scholar 
    16.Crowder, L. B. & Murawski, S. A. Fisheries bycatch: implications for management. Fisheries 23, 8–17 (1998).Article 

    Google Scholar 
    17.Branch, T. A., Rutherford, K. & Hilborn, R. Replacing trip limits with individual transferable quotas: implications for discarding. Mar. Policy 30, 281–292 (2006).Article 

    Google Scholar 
    18.Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19, 598–604 (2004).Article 

    Google Scholar 
    19.Gilman, E. et al. Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. Biol. Conserv. 139, 19–28 (2007).Article 

    Google Scholar 
    20.Watson, J. T., Essington, T. E., Lennert-Cody, C. E. & Hall, M. A. Trade-offs in the design of fishery closures: management of silky shark bycatch in the eastern Pacific Ocean tuna fishery. Conserv. Biol. 23, 626–635 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Campbell, L. M. & Cornwell, M. L. Human dimensions of bycatch reduction technology: current assumptions and directions for future research. Endang. Species Res. 5, 325–334 (2008).Article 

    Google Scholar 
    22.Hall, M. A. On bycatches. Rev. Fish Biol. Fish. 6, 319–352 (1996).Article 

    Google Scholar 
    23.Smith, V. L. On models of commercial fishing. J. Polit. Econ. 77, 181–198 (1969).Article 

    Google Scholar 
    24.Innes, J., Pascoe, S., Wilcox, C., Jennings, S. & Paredes, S. Mitigating undesirable impacts in the marine environment: a review of market-based management measures. Front. Mar. Sci. 2, 76 (2015).Article 

    Google Scholar 
    25.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    27.Gneezy, U., Meier, S. & Rey-Biel, P. When and why incentives (don’t) work to modify behavior. J. Econ. Perspect. 25, 191–210 (2011).Article 

    Google Scholar 
    28.Fulton, E. A., Smith, A. D. M., Smith, D. C. & Van Putten, I. E. Human behaviour: the key source of uncertainty in fisheries management. Fish Fish. 12, 2–17 (2011).Article 

    Google Scholar 
    29.Sumaila, U. R., Lam, V., Le Manach, F., Swartz, W. & Pauly, D. Global fisheries subsidies: an updated estimate. Mar. Policy 69, 189–193 (2016).Article 

    Google Scholar 
    30.Bladon, A. J., Short, K. M., Mohammed, E. Y. & Milner-Gulland, E. J. Payments for ecosystem services in developing world fisheries. Fish Fish. 17, 839–859 (2016).Article 

    Google Scholar 
    31.Deutza, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap (The Paulson Institute, The Nature Conservancy, and the Cornell Atkinson Center for Sustainability, 2020).32.Dutton, P. H. & Squires, D. Reconciling biodiversity with fishing: a holistic strategy for Pacific sea turtle recovery. Ocean Dev. Int. Law 39, 200–222 (2008).Article 

    Google Scholar 
    33.Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).Article 

    Google Scholar 
    34.Wilcox, C. & Donlan, C. J. Compensatory mitigation as a solution to fisheries bycatch–biodiversity conservation conflicts. Front. Ecol. Environ. 5, 325–331 (2007).Article 

    Google Scholar 
    35.Dutton, P. H. & Squires, D. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 37–59 (Univ. Hawaii Press, 2011).36.Sumaila, U. R. et al. Ocean Finance: Financing the Transition to a Sustainable Ocean Economy (World Resources Institute, 2020).37.Squires, D., Restrepo, V., Garcia, S. & Dutton, P. Fisheries bycatch reduction within the least-cost biodiversity mitigation hierarchy: conservatory offsets with an application to sea turtles. Mar. Policy 93, 55–61 (2018).Article 

    Google Scholar 
    38.Finkelstein, M. et al. Evaluating the potential effectiveness of compensatory mitigation strategies for marine bycatch. PLoS ONE 3, e2480 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Žydelis, R., Wallace, B. P., Gilman, E. L. & Werner, T. B. Conservation of marine megafauna through minimization of fisheries bycatch. Conserv. Biol. 23, 608–616 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Blomquist, J., Bartolino, V. & Waldo, S. Price premiums for providing eco-labelled seafood: evidence from MSC-certified cod in Sweden. J. Agric. Econ. 66, 690–704 (2015).Article 

    Google Scholar 
    41.Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N. & Uchida, H. Evolution and future of the sustainable seafood market. Nat. Sustain. 1, 392–398 (2018).Article 

    Google Scholar 
    42.Shumway, N., Watson, J. E. M., Saunders, M. I. & Maron, M. The risks and opportunities of translating terrestrial biodiversity offsets to the marine realm. BioScience 68, 125–133 (2018).Article 

    Google Scholar 
    43.Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    44.Gjertsen, H., Squires, D., Dutton, P. H. & Eguchi, T. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle. Conserv. Biol. 28, 140–149 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Segerson, K. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 370–395 (Univ. Hawaii Press, 2011).46.Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    47.zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).48.zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early-adopter jurisdictions in England. Preprint at SocArXiv https://doi.org/10.31235/osf.io/tw6nr (2021).49.Segerson, K. Voluntary approaches to environmental protection and resource management. Annu. Rev. Resour. Econ. 5, 161–180 (2013).Article 

    Google Scholar 
    50.Kotchen, M. J. Voluntary- and information-based approaches to environmental management: a public economics perspective. Rev. Environ. Econ. Policy 7, 276–295 (2013).Article 

    Google Scholar 
    51.Janisse, C., Squires, D., Seminoff, J. A. & Dutton, P. H. in Handbook of Marine Fisheries Conservation and Management, (eds Grafton, Q. et al.) 231–240 (Oxford Univ. Press, 2010).52.Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Jacob, C. et al. Marine biodiversity offsets: pragmatic approaches toward better conservation outcomes. Conserv Lett. 13, 1–12 (2020).Article 

    Google Scholar 
    54.Lent, R. & Squires, D. Reducing marine mammal bycatch in global fisheries: an economics approach. Deep Sea Res. Pt II 140, 268–277 (2017).Article 

    Google Scholar 
    55.Zhou, R. & Segerson, K. Individual vs. collective approaches to fisheries management. Mar. Resour. Econ. 31, 165–192 (2016).Article 

    Google Scholar 
    56.Yagi, N., Clark, M. L., Anderson, L. G., Arnason, R. & Metzner, R. Applicability of individual transferable quotas (ITQs) in Japanese fisheries: a comparison of rights-based fisheries management in Iceland, Japan, and United States. Mar. Policy 36, 241–245 (2012).Article 

    Google Scholar 
    57.Kotchen, M. J. & Segerson, K. On the use of group performance and rights for environmental protection and resource management. Proc. Natl Acad. Sci. USA 116, 5285–5292 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Stewart, A. J. & Plotkin, J. B. Collapse of cooperation in evolving games. Proc. Natl Acad. Sci. USA 111, 17558–17563 (2014).59.Mani, A., Rahwan, I. & Pentland, A. Inducing peer pressure to promote cooperation. Sci. Rep. 3, 1735 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kroeger, T. The quest for the ‘optimal’ payment for environmental services program: ambition meets reality, with useful lessons. Policy Econ. 37, 65–74 (2013).Article 

    Google Scholar 
    61.Ledoux, L. & Turner, R. K. Valuing ocean and coastal resources: a review of practical examples and issues for further action. Ocean Coast. Manag. 45, 583–616 (2002).Article 

    Google Scholar 
    62.Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2019).Article 

    Google Scholar 
    63.Bull, J. W. & Milner-Gulland, E. Choosing prevention or cure when mitigating biodiversity loss: trade-offs under ‘no net loss’ policies. J. Appl. Ecol. 57, 354–366 (2020).Article 

    Google Scholar 
    64.Norton, D. A. & Warburton, B. The potential for biodiversity offsetting to fund effective invasive species control. Conserv. Biol. 29, 5–11 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Holmes, N. D. et al. The potential for biodiversity offsetting to fund invasive species eradications on islands. Conserv. Biol. 30, 425–427 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Gallagher, A. J. & Hammerschlag, N. Global shark currency: the distribution frequency and economic value of shark ecotourism. Curr. Issues Tour. 14, 797–812 (2011).Article 

    Google Scholar 
    67.Mustika, P. L. K., Ichsan, M. & Booth, H. The economic value of shark and ray tourism in Indonesia and its role in delivering conservation outcomes. Front. Mar. Sci. 7, 261 (2020).Article 

    Google Scholar 
    68.O’Malley, M. P., Lee-Brooks, K. & Medd, H. B. The global economic impact of manta ray watching tourism. PLoS ONE 8, e65051 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Vianna, G. M. S. et al. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 94, 220–226 (2018).Article 

    Google Scholar 
    70.Swimmer, Y. et al. Sea turtle bycatch mitigation in U.S. longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article 

    Google Scholar 
    71.Croll, D. A. et al. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 562–575 (2016).Article 

    Google Scholar 
    72.Anderson, R. C., Adam, M. S., Kitchen-Wheeler, A. M. & Stevens, G. Extent and economic value of manta ray watching in Maldives. Tour. Mar. Environ. 7, 15–27 (2011).Article 

    Google Scholar 
    73.Farley, J. Ecosystem services: the economics debate. Ecosyst. Serv. 1, 40–49 (2012).Article 

    Google Scholar 
    74.Kenter, J. O., Hyde, T., Christie, M. & Fazey, I. The importance of deliberation in valuing ecosystem services in developing countries—evidence from the Solomon Islands. Glob. Environ. Change 21, 505–521 (2011).Article 

    Google Scholar 
    75.Gilman, E. et al. Robbing Peter to pay Paul: replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    76.Dissou, Y. & Siddiqui, M. S. Can carbon taxes be progressive?. Energy Econ. 42, 88–100 (2014).Article 

    Google Scholar 
    77.Engel, S., Pagiola, S. & Wunder, S. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65, 663–674 (2008).Article 

    Google Scholar 
    78.Bene, C. Small-Scale Fisheries: Assessing Their Contribution to Rural Livelihoods in Developing Countries FAO Fisheries Circular No. 1008 (FAO, 2006).79.Arlidge, W. N. S. et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Article 

    Google Scholar 
    80.Levi, M., Sacks, A. & Tyler, T. Conceptualizing legitimacy, measuring legitimating beliefs. Am. Behav. Sci. 53, 354–375 (2009).Article 

    Google Scholar 
    81.Oyanedel, R., Gelcich, S. & Milner-Gulland, E. J. Motivations for (non-)compliance with conservation rules by small-scale resource users. Conserv. Lett. 15, e12725 (2020).
    Google Scholar 
    82.Pakiding, F. et al. Community engagement: an integral component of a multifaceted conservation approach for the transboundary western Pacific leatherback. Front. Mar. Sci. 7, 756 (2020).Article 

    Google Scholar 
    83.Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework Report No. CBD/COP/14/9 (CBD, 2018).84.Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).CAS 
    Article 

    Google Scholar 
    85.Ban, N. C., Adams, V., Pressey, R. L. & Hicks, J. Promise and problems for estimating management costs of marine protected areas. Conserv. Lett. 4, 241–252 (2011).Article 

    Google Scholar 
    86.Arias, A., Pressey, R. L., Jones, R. E., Álvarez-Romero, J. G. & Cinner, J. E. Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica. Oryx 50, 18–26 (2016).Article 

    Google Scholar 
    87.Bartholomew, D. C. et al. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 219, 35–45 (2018).Article 

    Google Scholar 
    88.Mangi, S. C., Dolder, P. J., Catchpole, T. L., Rodmell, D. & de Rozarieux, N. Approaches to fully documented fisheries: practical issues and stakeholder perceptions. Fish Fish. 16, 426–452 (2015).Article 

    Google Scholar 
    89.Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).90.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Cardeñosa, D., Gollock, M. J. & Chapman, D. D. Development and application of a novel real‐time polymerase chain reaction assay to detect illegal trade of the European eel (Anguilla anguilla). Conserv. Sci. Prac. 1, e39 (2019).Article 

    Google Scholar 
    92.Griffiths, V. F., Bull, J. W., Baker, J. & Milner-Gulland, E. J. No net loss for people and biodiversity. Conserv. Biol. 33, 76–87 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Milner-Gulland, E. J. et al. Translating the terrestrial mitigation hierarchy to marine megafauna by-catch. Fish Fish. 19, 547–561 (2018).Article 

    Google Scholar 
    94.Republic of Namibia Ministry of Fisheries and Marine Resources Annual Report 2012–2013 (MFMR, 2013).95.Sanchirico, J. N., Holland, D., Quigley, K. & Fina, M. Catch-quota balancing in multispecies individual fishing quotas. Mar. Policy 30, 767–785 (2006).Article 

    Google Scholar 
    96.Walker, S. & Townsend, R. Economic analysis of New Zealand’s deemed value system. In Proc. of the Fourteenth Biennial Conference of the International Institute of Fisheries Economics & Trade, July 22–25, 2008, Nha Trang, Vietnam: Achieving a Sustainable Future: Managing Aquaculture, Fishing, Trade and Development 1–11 (Oregon State Univ., 2008).97.Sanchirico, J. N. Managing marine capture fisheries with incentive based price instruments. Public Finance Manag. 3, 67–93 (2003).
    Google Scholar 
    98.Pascoe, S., Wilcox, C. & Donlan, C. J. Biodiversity offsets: a cost-effective interim solution to seabird bycatch in fisheries? PLoS ONE 6, e25762 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Mukherjee, Z. Controlling stochastic externalities with penalty threats: the case of bycatch. Environ. Econ. Policy Stud. 18, 93–113 (2016).Article 

    Google Scholar 
    100.Androkovich, R. A. & Stollery, K. R. A stochastic dynamic programming model of bycatch control in fisheries. Mar. Resour. Econ. 9, 19–30 (1994).Article 

    Google Scholar 
    101.Herrera, G. E. Stochastic bycatch, informational asymmetry, and discarding. J. Environ. Econ. Manag. 49, 463–483 (2005).Article 

    Google Scholar 
    102.Singh, R. & Weninger, Q. Bioeconomies of scope and the discard problem in multiple-species fisheries. J. Environ. Econ. Manag. 58, 72–92 (2009).Article 

    Google Scholar 
    103.Pascoe, S., Cannard, T. & Steven, A. Offset payments can reduce environmental impacts of urban development. Environ. Sci. Policy 100, 205–210 (2019).Article 

    Google Scholar 
    104.Schouten, G. & Glasbergen, P. Creating legitimacy in global private governance: the case of the roundtable on sustainable palm oil. Ecol. Econ. 70, 1891–1899 (2011).Article 

    Google Scholar 
    105.Ruysschaert, D. & Salles, D. in The Anthropology of Conservation NGOs (eds Larsen, P. B. & Brockington, D.) 121–149 (Palgrave Macmillan, 2018).106.Right Whales and Entanglements: More on How NOAA Makes Decisions (NOAA Fisheries, 2019); https://www.fisheries.noaa.gov/new-england-mid-atlantic/marine-mammal-protection/right-whales-and-entanglements-more-how-noaa#right-whales-and-the-lobster-fishery107.Jouffray, J. B., Crona, B., Wassénius, E., Bebbington, J. & Scholtens, B. Leverage points in the financial sector for seafood sustainability. Sci. Adv. 5, eaax3324 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Österblom, H. et al. Emergence of a global science-business initiative for ocean stewardship. Proc. Natl Acad. Sci. USA 114, 9038–9043 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    109.Deforestation-Free Supply Chains: From Commitments to Action (CDP, 2014).110.Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).111.Österblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, e0127533 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Galland, G., Rogers, A. & Nickson, A. Netting Billions: A Global Valuation of Tuna (The Pew Charitible Trusts, 2016).113.Zeller, D., Cashion, T., Palomares, M. & Pauly, D. Global marine fisheries discards: a synthesis of reconstructed data. Fish Fish. 19, 30–39 (2018).Article 

    Google Scholar 
    114.Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Engel, S. & Palmer, C. Payments for environmental services as an alternative to logging under weak property rights: the case of Indonesia. Ecol. Econ. 65, 799–809 (2008).Article 

    Google Scholar 
    116.Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).Article 

    Google Scholar 
    117.Angelsen, A. et al. (eds) Realising REDD+: National Strategy and Policy Options (CIFOR, 2009).118.Spergel, B. & Mikitin, K. Practice Standards for Conservation Trust Funds (CFA, 2013).119.Progress Summary of 2014–15 ISSF Funded Marine Turtle Projects (ISSF, 2016). More

  • in

    Plant scientists’ research attention is skewed towards colourful, conspicuous and broadly distributed flowers

    1.Schaal, B. Plants and people: our shared history and future. Plants People Planet 1, 14–19 (2019).Article 

    Google Scholar 
    2.Bates, D. M. People, plants and genes: the story of crops and humanity. Q. Rev. Biol. 84, 206–207 (2009).3.Nedelcheva, A., Dogan, Y., Obratov-Petkovic, D. & Padure, I. M. The traditional use of plants for handicrafts in southeastern Europe. Hum. Ecol. Interdiscip. J. 39, 813–828 (2011).Article 

    Google Scholar 
    4.Willes, M. A Shakespearean Botanical (Bodleian Library, 2015).5.Shoemaker, C. A. Plants and human culture. J. Home Consum. Hortic. 1, 3–7 (1994).Article 

    Google Scholar 
    6.Alfred, J. & Baldwin, I. T. The natural history of model organisms: new opportunities at the wild frontier. eLife 4, e06956 (2015).PubMed Central 
    Article 

    Google Scholar 
    7.Hedges, S. B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Clark, J. A. Taxonomic bias in conservation research. Science 297, 191–192 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166 (2020).PubMed 
    Article 

    Google Scholar 
    10.Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).Article 

    Google Scholar 
    11.Quijas, S., Schmid, B. & Balvanera, P. Plant diversity enhances provision of ecosystem services: a new synthesis. Basic Appl. Ecol. 11, 582–593 (2010).Article 

    Google Scholar 
    12.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).Article 

    Google Scholar 
    13.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    15.Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. Bioscience 67, 1026–1028 (2017).Article 

    Google Scholar 
    16.Balding, M. & Williams, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Fukushima, C. S., Mammola, S. & Cardoso, P. Global wildlife trade permeates the Tree of Life. Biol. Conserv. 247, 108503 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wandersee, J. H. & Schussler, E. E. Preventing plant blindness. Am. Biol. Teach. 61, 82–86 (1999).Article 

    Google Scholar 
    19.Parsley, K. M. Plant awareness disparity: a case for renaming plant blindness. Plants People Planet 2, 598–601 (2020).Article 

    Google Scholar 
    20.Villemant, C. et al. The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37, 667–679 (2015).Article 

    Google Scholar 
    21.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    22.Médail, F. & Verlaque, R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol. Conserv. 80, 269–281 (1997).Article 

    Google Scholar 
    23.Noble, V. & Diadema, K. in La flore des Alpes-Maritimes et de la Principauté de Monaco (eds Noble, V. & Diadema, K.) 57–72 (Naturalia, 2011).24.Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    25.Horiguchi, H., Winawer, J., Dougherty, R. F. & Wandell, B. A. Human trichromacy revisited. Proc. Natl Acad. Sci. USA 110, E260–E269 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ. Outreach 1, 476–486 (2008).Article 

    Google Scholar 
    27.Bompas, A., Kendall, G. & Sumner, P. Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception 4, 84–94 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Elliot, A. J. & Maier, M. A. Color psychology: effects of perceiving color on psychological functioning in humans. Annu. Rev. Psychol. 65, 95–120 (2014).PubMed 
    Article 

    Google Scholar 
    29.Chiao, J. Y. et al. Dynamic cultural influences on neural representations of the self. J. Cogn. Neurosci. 22, 1–11 (2010).PubMed 
    Article 

    Google Scholar 
    30.Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Costa, G. C., Nogueira, C., Machado, R. B. & Colli, G. R. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers. Conserv. 19, 883–899 (2010).Article 

    Google Scholar 
    32.Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).PubMed 
    Article 

    Google Scholar 
    33.De Boeck, H. J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. The observer effect in plant science. New Phytol. 177, 579–583 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Morrison, L. W. Observer error in vegetation surveys: a review. J. Plant Ecol. 9, 367–379 (2016).Article 

    Google Scholar 
    35.Kéry, M. & Gregg, K. B. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria. J. Ecol. 91, 265–273 (2003).Article 

    Google Scholar 
    36.Allioni, C. Flora Pedemontana: Sive Enumeratio Methodica Stirpium Indigenarum Pedemontii Vol. 1 (Joannes Michael Briolus, 1785).37.Aeschimann, D., Rasolofo, N. & Theurillat, J.-P. Analyse de la flore des alpes. 1: Historique et biodiversité. Candollea 66, 27–55 (2011).Article 

    Google Scholar 
    38.Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Julve, P. Baseflor. Index Botanique, Ecologique et Chorologique de la Flore de France http://philippe.julve.pagesperso-orange.fr/baseflor.xlsx (1998).40.Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).Article 

    Google Scholar 
    41.Web of Science (Clarivate Analytics, accessed 16 March 2020); https://www.webofknowledge.com42.Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).Article 

    Google Scholar 
    43.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).44.Heaton, L., Millerand, F. & Proulx, S. Tela Botanica: une fertilisation croisée des amateurs et des experts. Hermès 57, 61–68 (2010).45.Lauber, K., Wagner, G. & Gygax, A. Flora Helvetica: Illustrierte Flora der Schweiz (Haupt Verlag, 2018).46.Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).47.The IUCN Red List of Threatened Species (IUCN, 2020).48.Global Biodiversity Information Facility (2020); https://www.gbif.org49.Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    50.Shirey, V., Belitz, M. W., Barve, V. & Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography 44, 537–547 (2021).Article 

    Google Scholar 
    51.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).52.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    53.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    54.Bartoń, K. MuMIn: multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).55.Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).Article 

    Google Scholar 
    56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1 (2015).Article 

    Google Scholar 
    57.Blasco-Moreno, A., Pérez-Casany, M., Puig, P., Morante, M. & Castells, E. What does a zero mean? Understanding false, random and structural zeros in ecology. Methods Ecol. Evol. 10, 949–959 (2019).Article 

    Google Scholar 
    58.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Assessment, testing and comparison of statistical models using R. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/vtq8f (2021). More

  • in

    The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management

    1.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).Article 

    Google Scholar 
    4.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    6.Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).Article 

    Google Scholar 
    9.Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. J. S. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).Article 

    Google Scholar 
    10.Cawson, J. G. et al. Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models. Landsc. Ecol. 35, 1775–1798 (2020).Article 

    Google Scholar 
    11.Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D. & Price, O. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south‐eastern Australia. Ecography 37, 827–837 (2014).Article 

    Google Scholar 
    12.Bennett, L. T. et al. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 380, 107–117 (2016).Article 

    Google Scholar 
    13.Fairman, T. A., Bennett, L. T., Tupper, S. & Nitschke, C. R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest. J. Veg. Sci. 28, 1151–1165 (2017).Article 

    Google Scholar 
    14.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    15.Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. J. S. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).Article 

    Google Scholar 
    16.Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).Article 

    Google Scholar 
    18.Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).Article 

    Google Scholar 
    19.Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell Environ. 44, 347–355 (2020).20.Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).Article 

    Google Scholar 
    21.Borchers Arriagada, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 213, 282–283 (2020).22.Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).Article 

    Google Scholar 
    23.Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bowman, D. M. J. S., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 25, 1166–1172 (2016).Article 

    Google Scholar 
    25.Povak, N. A., Kane, V. R., Collins, B. M., Lydersen, J. M. & Kane, J. T. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Landsc. Ecol. 35, 293–318 (2020).Article 

    Google Scholar 
    26.Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).Article 

    Google Scholar 
    27.Fang, L., Yang, J., Zu, J., Li, G. & Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2–12 (2015).Article 

    Google Scholar 
    28.Thompson, J. R. & Spies, T. A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 258, 1684–1694 (2009).Article 

    Google Scholar 
    29.Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    30.Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: implications for a warming world. Glob. Change Biol. 26, 6062–6079 (2020).Article 

    Google Scholar 
    31.Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega‐fires. Glob. Change Biol. 26, 1039–1041 (2020).32.Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).Article 

    Google Scholar 
    33.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).Article 

    Google Scholar 
    34.Adams, M. A., Shadmanroodposhti, M. & Neumann, M. Letter to the Editor. Causes and consequences of Eastern Australia’s 2019‐20 season of mega‐fires: a broader perspective. Glob. Change Biol. 26, 3756–3758 (2020).35.Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).Article 

    Google Scholar 
    38.Collins, L., Griffioen, P., Newell, G. & Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384 (2018).Article 

    Google Scholar 
    39.Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).Article 

    Google Scholar 
    40.Collins, L., Bradstock, R. & Penman, T. Can precipitation influence landscape controls on wildfire severity? A case study within temperate eucalypt forests of south-eastern Australia. Int. J. Wildland Fire 23, 9–20 (2014).Article 

    Google Scholar 
    41.Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).Article 

    Google Scholar 
    42.Storey, M., Price, O. & Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 25, 1048–1060 (2016).Article 

    Google Scholar 
    43.Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).Article 

    Google Scholar 
    44.Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. https://doi.org/10.1111/conl.12766 (2020).45.Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).Article 

    Google Scholar 
    47.Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Jackson, W. Fire, air, water and earth–an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3, 9–16 (1968).
    Google Scholar 
    49.Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Aust. For. 79, 1–14 (2016).Article 

    Google Scholar 
    50.Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2011).51.Dargavel, J. Views and perspectives: why does Australia have ‘forest wars’? Int. Rev. Environ. Hist. 4, 33–51 (2018).Article 

    Google Scholar 
    52.Kanowski, P. J. Australia’s forests: contested past, tenure-driven present, uncertain future. For. Policy Econ. 77, 56–68 (2017).Article 

    Google Scholar 
    53.Australian Forest and Wood Products Statistics Mar-Jun 2019 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2019).54.Ferguson, I. Australian plantations: mixed signals ahead. Int. For. Rev. 16, 160–171 (2014).
    Google Scholar 
    55.Raison, R. & Squire, R. Forest Management in Australia: Implications for Carbon Budgets Technical Report 32 (Australian Greenhouse Office, 2008).56.Proctor, E. & McCarthy, G. Changes in fuel hazard following thinning operations in mixed-species forests in East Gippsland, Victoria. Aust. For. 78, 195–206 (2015).Article 

    Google Scholar 
    57.NSW Regional Forest Agreements Assessment of Matters Pertaining to Renewal of Regional Forest Agreements (NSW Department of Primary Industries, 2018).58.Evans, J. spatialEco_. R package version 1.3-1 https://github.com/jeffreyevans/spatialEco (2020).59.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).60.Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).Article 

    Google Scholar 
    61.Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334 (2010).Article 

    Google Scholar 
    62.Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57, 241–262 (2003).Article 

    Google Scholar 
    63.Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-77 (2018).64.De Reu, J. et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186, 39–49 (2013).Article 

    Google Scholar  More