More stories

  • in

    Diversity and distribution of viruses inhabiting the deepest ocean on Earth

    1.Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 2019;177:1109–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008;454:1084–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Danovaro R, Dell’Anno A, Corinaldesi C, EugenioRastelli, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv 2016;2:e1600492.10.Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014;344:757–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.He T, Li H, Zhang X. Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus–host interactions. mBio 2017;8:e00893–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ pacific ocean virome. ISME J. 2015;9:472–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E9.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.16.Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.17.Tangherlini M, Dell’Anno A, Allen LZ, Riccioni G, Corinaldesi C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci Rep. 2016;6:28428.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Yang Y, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.Article 

    Google Scholar 
    19.Tang K, Lin D, Zheng Q, Liu K, Yang Y, Han Y, et al. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. BMC Genomics. 2017;18:485.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Corte DD, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Corte DD, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Blankenship-Williams LE, Levin LA. Living deep: a synopsis of hadal trench ecology. Mar Technol Soc J. 2009;43:137–43.Article 

    Google Scholar 
    23.Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol. 2010;25:190–7.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Jamieson AJ. Ecology of deep oceans: hadal trenches. eLS. Chichester: Wiley; 2001.25.Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 2013;6:284–8.CAS 
    Article 

    Google Scholar 
    26.Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 2015;112:E1230–E6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome 2020;8:78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Liu J, Zheng Y, Lin H, Wang X, Li M, Liu Y, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019;7:47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tamegai H, Li L, Nasui N, Kato C. A denitrifying bacterium from the deep sea at 11000-m depth. Extremophiles 1997;1:207–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K. Extremely barophilic bacteria isolated from the Mariana Trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol. 1998;64:1510–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 1999;3:71–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol. 2007;57:1360–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Wei Y, Fang J, Xu Y, Zhao W, Cao J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:1474–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Ahmad W, Zheng Y, Li Y, Sun W, Hu Y, He X, et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol. 2020;70:3794–800.37.Zhao X, Liu J, Zhou S, Zheng Y, Wu Y, Kogure K, et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Mar Life Sci Technol. 2020;2:181–93.Article 

    Google Scholar 
    38.Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol. 2015;166:668–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K. Metagenomic analysis of viral communities in (Hado)pelagic sediments. PLoS ONE. 2013;8:e57271.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Manea E, Dell’Anno A, Rastelli E, Tangherlini M, Nunoura T, Nomaki H, et al. Viral infections boost prokaryotic biomass production and organic C cycling in Hadal Trench sediments. Front Microbiol. 2019;10:1952.41.Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a Hadal biosphere at the Yap Trench. Front Microbiol. 2018;9:2402.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, et al. Microbial community diversity within sediments from two geographically separated Hadal Trenches. Front Microbiol. 2019;10:347.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS ONE. 2018;13:e0195102.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.NA J, JN F. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). https://github.com/najoshi/sickle2011.45.Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ 2015;3:e985.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017;5:69.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45:39–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    51.Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat Protoc. 2017;12:1673–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature 2016;536:425–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Song W, Sun H-X, Zhang C, Cheng L, Peng Y, Deng Z, et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 2019;47:W74–W80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D45.PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    Article 

    Google Scholar 
    56.Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering CV, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–D8.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–D205.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.El-Gebali S, Mistry J, Bateman A, Eddy SR, Ae L, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol. 2019;37:29–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D86.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Pritchard L, Glover RH, Humphris S, Elphinstone JG, Tothc IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.Article 

    Google Scholar 
    66.Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, et al. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol. 2016;18:2064–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Aylward FO, Moniruzzaman M. ViralRecall-a flexible command-line tool for the detection of giant virus signatures in Omic Data. Viruses 2021;13:150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.Article 
    CAS 

    Google Scholar 
    69.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Hurwitz BL, Sullivan MB. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE. 2013;8:e57355.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Corte DD, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front Microbiol. 2019;10:1801.72.Ghai R, Mehrshad M, Mizuno CM, Rodriguez-Valera F. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria. ISME J. 2017;11:304–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    77.Getz EW, Tithi SS, Zhang L, Aylward FO. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio 2018;9:e01089–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Karst SM, Kirkegaard RH, Albertsen M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv. 2016.79.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lin BY, Chan PP, Lowe TM. tRNAviz: explore and visualize tRNA sequence features. Nucleic Acids Res. 2019;47:W542–W7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8:209.Article 
    CAS 

    Google Scholar 
    83.Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    85.Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood treesfor large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 2015;12:164.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.89.Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017;11:1511–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Hulo C, Castro ED, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2011;39:D576–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Takahashi S, Furukawara M, Omae K, Tadokoro N, Saito Y, Abe K, et al. A highly stable D-amino acid oxidase of the thermophilic bacterium Rubrobacter xylanophilus. Appl Environ Microbiol. 2014;80:7219–29.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    94.Brister JR, Ako-adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43:D571–D7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Al-Shayeb B, Sachdeva R, Chen L-X, Ward F, Munk P, Devoto A, et al. Clades of huge phages from across Earth’s ecosystems. Nature 2020;578:425–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 2019;13:618–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA. 2019;116:15645–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Kioka A, Schwestermann T, Moernaut J, Ikehara K, Kanamatsu T, McHugh CM, et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci Rep. 2019;9:1553.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Mestrea M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018;115:E6799–E807.Article 
    CAS 

    Google Scholar 
    101.Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    102.Tamsitt V, Drake HF, Morrison AK, Talley LD, Dufour CO, Gray AR, et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat Commun. 2017;8:172.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    103.Fukamachi Y, Rintoul SR, Church JA, Aoki S, Sokolov S, Rosenberg MA, et al. Strong export of Antarctic bottom water east of the Kerguelen plateau. Nat Geosci. 2010;3:327–31.CAS 
    Article 

    Google Scholar 
    104.Garabato ACN, Frajka-Williams EE, Spingys CP, Legg S, Polzin KL, Forryan A, et al. Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc Natl Acad Sci USA. 2019;116:13233–8.Article 
    CAS 

    Google Scholar 
    105.Stewart HA, Jamieson AJ. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog Oceanogr. 2018;161:47–65.Article 

    Google Scholar 
    106.Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Xu Y, Ge H, Fang J. Biogeochemistry of hadal trenches: recent developments and future perspectives. Deep Sea Res Part II. 2018;155:19–26.CAS 
    Article 

    Google Scholar 
    109.Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 2009;461:258–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741.CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Takahashi S, Abe K, Kera Y. Bacterial d-amino acid oxidases: recent findings and future perspectives. Bioengineered 2015;6:237–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr. 2008;53:99–112.CAS 
    Article 

    Google Scholar 
    113.Zhang Z, Zheng Q, Jiao N. Microbial D-amino acids and marine carbon storage. Sci China Earth Sci. 2016;59:17–24.Article 
    CAS 

    Google Scholar  More

  • in

    Vibratory behaviour produces different vibrations patterns in presence of reproductives in a subterranean termite species

    1.Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
    Google Scholar 
    2.Wiley, R. H. Signal detection and animal communication. In Advances in the Study of Behavior Vol. 36 217–247 (Academic Press, 2006).3.Brumm, H. Animal Communication and Noise Vol. 2 (Springer, 2013).Book 

    Google Scholar 
    4.Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Tannure-Nascimento, I. C., Nascimento, F. S. & Zucchi, R. The look of royalty: Visual and odour signals of reproductive status in a paper wasp. Proc. R. Soc. B Biol. Sci. 275, 2555–2561 (2008).Article 

    Google Scholar 
    6.Higham, J. P. & Hebets, E. A. An introduction to multimodal communication. Behav. Ecol. Sociobiol. 67, 1381–1388 (2013).Article 

    Google Scholar 
    7.Hölldobler, B. Multimodal signals in ant communication. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 129–141 (1999).Article 

    Google Scholar 
    8.Partan, S. R. & Marler, P. Issues in the classification of multimodal communication signals. Am. Nat. 166, 231–245 (2005).PubMed 
    Article 

    Google Scholar 
    9.Delattre, O. et al. Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae). Insectes Soc. 66, 265–272 (2019).Article 

    Google Scholar 
    10.Vander Meer, R. K., Breed, M. D., Winston, M. & Espelie, K. E. Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Termites (CRC Press, 1998).
    Google Scholar 
    11.Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990).Book 

    Google Scholar 
    12.Cohen, E. & Moussian, B. Extracellular Composite Matrices in Arthropods (Springer, 2016).Book 

    Google Scholar 
    13.Tibbetts, E. A. & Lindsay, R. Visual signals of status and rival assessment in Polistes dominulus paper wasps. Biol. Lett. 4, 237–239 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Chiu, Y.-K., Mankin, R. W. & Lin, C.-C. Context-dependent stridulatory responses of Leptogenys kitteli (Hymenoptera: Formicidae) to social, prey, and disturbance stimuli. Ann. Entomol. Soc. Am. 104, 1012–1020 (2011).Article 

    Google Scholar 
    15.Schneider, S. S. & Lewis, L. A. The vibration signal, modulatory communication and the organization of labor in honey bees, Apis mellifera. Apidologie 35, 117–131 (2004).Article 

    Google Scholar 
    16.Hrncir, M., Maia-Silva, C., Cabe, S. I. M. & Farina, W. M. The recruiter’s excitement—Features of thoracic vibrations during the honey bee’s waggle dance related to food source profitability. J. Exp. Biol. 214, 4055–4064 (2011).PubMed 
    Article 

    Google Scholar 
    17.Evans, T. A., Inta, R., Lai, J. C. S. & Lenz, M. Foraging vibration signals attract foragers and identify food size in the drywood termite, Cryptotermes secundus. Insectes Soc. 54, 374–382 (2007).Article 

    Google Scholar 
    18.Kweskin, M. P. Jigging in the fungus-growing ant Cyphomyrmex costatus: A response to collembolan garden invaders?. Insectes Soc. 51, 158–162 (2004).Article 

    Google Scholar 
    19.Stuart, A. M. Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol. Zool. 36, 85–96 (1963).Article 

    Google Scholar 
    20.Howse, P. E. On the significance of certain oscillatory movements of termites. Insectes Soc. 12, 335–345 (1965).Article 

    Google Scholar 
    21.Delattre, O. et al. Complex alarm strategy in the most basal termite species. Behav. Ecol. Sociobiol. 69, 1945–1955 (2015).Article 

    Google Scholar 
    22.Reinhard, J. & Clément, J.-L. Alarm reaction of European reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J. Insect Behav. 15, 95–107 (2002).Article 

    Google Scholar 
    23.Whitman, J. G. & Forschler, B. T. Observational notes on short-lived and infrequent behaviors displayed by Reticulitermes flavipes (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 100, 763–771 (2007).Article 

    Google Scholar 
    24.Hertel, H., Hanspach, A. & Plarre, R. Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J. Insect Behav. 24, 106–115 (2011).Article 

    Google Scholar 
    25.Rosengaus, R. B., Jordan, C., Lefebvre, M. L. & Traniello, J. F. A. Pathogen alarm behavior in a termite: A new form of communication in social insects. Naturwissenschaften 86, 544–548 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sun, Q., Hampton, J. D., Haynes, K. F. & Zhou, X. Cooperative policing behavior regulates reproductive division of labor in a termite. bioRxiv https://doi.org/10.1101/2020.02.04.934315 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Park, Y. I. & Raina, A. K. Light sensitivity in workers and soldiers of the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 45, 367–376 (2005).
    Google Scholar 
    28.Hager, F. A. & Kirchner, W. H. Vibrational long-distance communication in the termites Macrotermes natalensis and Odontotermes sp. J. Exp. Biol. 216, 3249–3256 (2013).PubMed 
    Article 

    Google Scholar 
    29.Mignini, M. & Lorenzi, M. C. Vibratory signals predict rank and offspring caste ratio in a social insect. Behav. Ecol. Sociobiol. 69, 1739–1748 (2015).Article 

    Google Scholar 
    30.Holman, L., Jørgensen, C. G., Nielsen, J. & d’Ettorre, P. Identification of an ant queen pheromone regulating worker sterility. Proc. Biol. Sci. 277, 3793–3800 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Sun, Q., Haynes, K. F., Hampton, J. D. & Zhou, X. Sex-specific inhibition and stimulation of worker-reproductive transition in a termite. Naturwissenschaften 104, 79 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Manfredini, F. et al. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23, 660–672 (2014).PubMed 
    Article 

    Google Scholar 
    33.Lockett, G. A., Almond, E. J., Huggins, T. J., Parker, J. D. & Bourke, A. F. G. Gene expression differences in relation to age and social environment in queen and worker bumble bees. Exp. Gerontol. 77, 52–61 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Sun, Q., Hampton, J. D., Merchant, A., Haynes, K. F. & Zhou, X. Cooperative policing behaviour regulates reproductive division of labour in a termite. Proc. R. Soc. B Biol. Sci. 287, 20200780 (2020).Article 

    Google Scholar 
    35.Funaro, C. F., Böröczky, K., Vargo, E. L. & Schal, C. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc. Natl. Acad. Sci. U. S. A. 115, 3888–3893 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ruhland, F., Moulin, M., Choppin, M., Meunier, J. & Lucas, C. Reproductives and eggs trigger worker vibration in a subterranean termite. Ecol. Evol. 10, 5892–5898 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sieber, R. & Leuthold, R. H. Behavioural elements and their meaning in incipient laboratory colonies of the fungus-growing Termite Macrotermes michaelseni (Isoptera: Macrotermitinae). Insectes Soc. 28, 371–382 (1981).Article 

    Google Scholar 
    38.Maistrello, L. & Sbrenna, G. Frequency of some behavioural patterns in colonies of Kalotermes flavicollis (Isoptera Kalotermitidae): The importance of social interactions and vibratory movements as mechanisms for social integration. Ethol. Ecol. Evol. 8, 365–375 (1996).Article 

    Google Scholar 
    39.Šobotník, J., Hanus, R. & Roisin, Y. Agonistic Behavior of the termite Prorhinotermes canalifrons (Isoptera: Rhinotermitidae). J. Insect Behav. 21, 521–534 (2008).Article 

    Google Scholar 
    40.Cristaldo, P. F. et al. The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoidea: Termitidae): The integration of chemical and vibroacoustic signals. Biol. Open 4, 1649–1659 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Yamanaka, Y., Iwata, R. & Kiriyama, S. Cannibalism associated with artificial wounds on the bodies of Reticulitermes speratus workers and soldiers (Isoptera: Rhinotermitidae). Insectes Soc. 66, 107–117 (2019).Article 

    Google Scholar 
    42.Funaro, C. F., Schal, C. & Vargo, E. L. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLoS ONE 14, 3888–3893 (2019).Article 
    CAS 

    Google Scholar 
    43.Perdereau, E., Bagnères, A.-G., Dupont, S. & Dedeine, F. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc. 57, 393–402 (2010).Article 

    Google Scholar 
    44.Brossette, L. et al. Termite’s royal cradle: Does colony foundation success differ between two subterranean species?. Insectes Soc. 64, 515–523 (2017).Article 

    Google Scholar 
    45.Lucas, C. et al. When predator odour makes groups stronger: Effects on behavioural and chemical adaptations in two termite species. Ecol. Entomol. 43, 513–524 (2018).Article 

    Google Scholar 
    46.Miyaguni, Y., Sugio, K. & Tsuji, K. Refinement of methods for sexing instars and caste members in Neotermes koshunensis (Isoptera, Kalotermitidae). Sociobiology 59, 1217–1222 (2012).
    Google Scholar 
    47.Friard, O. & Gamba, M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    48.Gamboa, G. J., Reeve, H. K. & Holmes, W. G. Conceptual issues and methodology in kin-recognition research: A critical discussion. Ethology 88, 109–127 (2010).Article 

    Google Scholar 
    49.Oberst, S., Nava-Baro, E., Lai, J. C. S. & Evans, T. A. An innovative signal processing method to extract ants’ walking signals. Acoust. Aust. 43, 87–96 (2015).Article 

    Google Scholar 
    50.Oberst, S., Lai, J. C. S. & Evans, T. A. Physical basis of vibrational behaviour: Channel properties, noise and excitation signal extraction. In Biotremology: Studying Vibrational Behavior (ed. Hill, P. S. M.) 53–78 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-22293-2_5.
    Google Scholar 
    51.Stanley, D. W. & Nelson, D. R. Insect Lipids: Chemistry, Biochemistry, and Biology (U of Nebraska Press, 1993).
    Google Scholar 
    52.Wyatt, T. D. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, 2003).Book 

    Google Scholar 
    53.Matsuura, K. et al. Identification of a pheromone regulating caste differentiation in termites. Proc. Natl. Acad. Sci. 107, 12963–12968 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Nguyen, T. T. & Akino, T. Worker aggression of ant Lasius japonicus enhanced by termite soldier—Specific secretion as an alarm pheromone of Reticulitermes speratus. Entomol. Sci. 15, 422–429 (2012).Article 

    Google Scholar 
    55.Šobotník, J., Jirošová, A. & Hanus, R. Chemical warfare in termites. J. Insect Physiol. 56, 1012–1021 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Evans, T. A. et al. Termites assess wood size by using vibration signals. Proc. Natl. Acad. Sci. USA 102, 3732–3737 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.George, E. A. & Brockmann, A. Social modulation of individual differences in dance communication in honey bees. Behav. Ecol. Sociobiol. 73, 41 (2019).Article 

    Google Scholar 
    58.Tautz, J., Roces, F. & Hölldobler, B. Use of a sound-based vibratome by leaf-cutting ants. Science 267, 84–87 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Hill, P. S. M. How do animals use substrate-borne vibrations as an information source?. Naturwissenschaften 96, 1355–1371 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Röhrig, A., Kirchner, W. H. & Leuthold, R. H. Vibrational alarm communication in the African fungus-growing termite genus Macrotermes (Isoptera, Termitidae). Insectes Soc. 46, 71–77 (1999).Article 

    Google Scholar 
    61.Hill, P. S. M. Vibrational Communication in Animals (Harvard University Press, 2008).
    Google Scholar 
    62.Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    63.Korb, J., Weil, T., Hoffmann, K., Foster, K. R. & Rehli, M. A gene necessary for reproductive suppression in termites. Science 324, 758 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Penick, C. A., Trobaugh, B., Brent, C. S. & Liebig, J. Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J. Insect Behav. 26, 23–34 (2013).Article 

    Google Scholar 
    65.Ishikawa, Y. & Miura, T. Hidden aggression in termite workers: Plastic defensive behaviour dependent upon social context. Anim. Behav. 83, 737–745 (2012).Article 

    Google Scholar  More

  • in

    Bycatch levies could reconcile trade-offs between blue growth and biodiversity conservation

    1.Golden, C. D. et al. Nutrition: Fall in fish catch threatens human health. Nature 534, 317–320 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).3.The Ocean Economy in 2030 (OECD, 2016).4.Boonstra, W. J., Valman, M. & Björkvik, E. A sea of many colours – how relevant is blue growth for capture fisheries in the global north, and vice versa? Mar. Policy 87, 340–349 (2018).Article 

    Google Scholar 
    5.Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    6.Nash, K. L. et al. Planetary boundaries for a blue planet. Nat. Ecol. Evol. 1, 1625–1634 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Maxwell, S. M. et al. Cumulative human impacts on marine predators. Nat. Commun. 4, 2688 (2013).8.Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).9.Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, 2020).10.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    11.Leclere, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2020).Article 

    Google Scholar 
    14.Davies, R. W. D., Cripps, S. J. J., Nickson, A. & Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 33, 661–672 (2009).Article 

    Google Scholar 
    15.Hall, M. A., Alverson, D. L. & Metuzals, K. I. By-catch: problems and solutions. Mar. Pollut. Bull. 41, 204–219 (2000).CAS 
    Article 

    Google Scholar 
    16.Crowder, L. B. & Murawski, S. A. Fisheries bycatch: implications for management. Fisheries 23, 8–17 (1998).Article 

    Google Scholar 
    17.Branch, T. A., Rutherford, K. & Hilborn, R. Replacing trip limits with individual transferable quotas: implications for discarding. Mar. Policy 30, 281–292 (2006).Article 

    Google Scholar 
    18.Lewison, R. L., Crowder, L. B., Read, A. J. & Freeman, S. A. Understanding impacts of fisheries bycatch on marine megafauna. Trends Ecol. Evol. 19, 598–604 (2004).Article 

    Google Scholar 
    19.Gilman, E. et al. Reducing sea turtle interactions in the Hawaii-based longline swordfish fishery. Biol. Conserv. 139, 19–28 (2007).Article 

    Google Scholar 
    20.Watson, J. T., Essington, T. E., Lennert-Cody, C. E. & Hall, M. A. Trade-offs in the design of fishery closures: management of silky shark bycatch in the eastern Pacific Ocean tuna fishery. Conserv. Biol. 23, 626–635 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Campbell, L. M. & Cornwell, M. L. Human dimensions of bycatch reduction technology: current assumptions and directions for future research. Endang. Species Res. 5, 325–334 (2008).Article 

    Google Scholar 
    22.Hall, M. A. On bycatches. Rev. Fish Biol. Fish. 6, 319–352 (1996).Article 

    Google Scholar 
    23.Smith, V. L. On models of commercial fishing. J. Polit. Econ. 77, 181–198 (1969).Article 

    Google Scholar 
    24.Innes, J., Pascoe, S., Wilcox, C., Jennings, S. & Paredes, S. Mitigating undesirable impacts in the marine environment: a review of market-based management measures. Front. Mar. Sci. 2, 76 (2015).Article 

    Google Scholar 
    25.Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bowles, S. & Polanía-Reyes, S. Economic incentives and social preferences: substitutes or complements? J. Econ. Lit. 50, 368–425 (2012).Article 

    Google Scholar 
    27.Gneezy, U., Meier, S. & Rey-Biel, P. When and why incentives (don’t) work to modify behavior. J. Econ. Perspect. 25, 191–210 (2011).Article 

    Google Scholar 
    28.Fulton, E. A., Smith, A. D. M., Smith, D. C. & Van Putten, I. E. Human behaviour: the key source of uncertainty in fisheries management. Fish Fish. 12, 2–17 (2011).Article 

    Google Scholar 
    29.Sumaila, U. R., Lam, V., Le Manach, F., Swartz, W. & Pauly, D. Global fisheries subsidies: an updated estimate. Mar. Policy 69, 189–193 (2016).Article 

    Google Scholar 
    30.Bladon, A. J., Short, K. M., Mohammed, E. Y. & Milner-Gulland, E. J. Payments for ecosystem services in developing world fisheries. Fish Fish. 17, 839–859 (2016).Article 

    Google Scholar 
    31.Deutza, A. et al. Financing Nature: Closing the Global Biodiversity Financing Gap (The Paulson Institute, The Nature Conservancy, and the Cornell Atkinson Center for Sustainability, 2020).32.Dutton, P. H. & Squires, D. Reconciling biodiversity with fishing: a holistic strategy for Pacific sea turtle recovery. Ocean Dev. Int. Law 39, 200–222 (2008).Article 

    Google Scholar 
    33.Pascoe, S. et al. Use of incentive-based management systems to limit bycatch and discarding. Int. Rev. Environ. Resour. Econ. 4, 123–161 (2010).Article 

    Google Scholar 
    34.Wilcox, C. & Donlan, C. J. Compensatory mitigation as a solution to fisheries bycatch–biodiversity conservation conflicts. Front. Ecol. Environ. 5, 325–331 (2007).Article 

    Google Scholar 
    35.Dutton, P. H. & Squires, D. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 37–59 (Univ. Hawaii Press, 2011).36.Sumaila, U. R. et al. Ocean Finance: Financing the Transition to a Sustainable Ocean Economy (World Resources Institute, 2020).37.Squires, D., Restrepo, V., Garcia, S. & Dutton, P. Fisheries bycatch reduction within the least-cost biodiversity mitigation hierarchy: conservatory offsets with an application to sea turtles. Mar. Policy 93, 55–61 (2018).Article 

    Google Scholar 
    38.Finkelstein, M. et al. Evaluating the potential effectiveness of compensatory mitigation strategies for marine bycatch. PLoS ONE 3, e2480 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Žydelis, R., Wallace, B. P., Gilman, E. L. & Werner, T. B. Conservation of marine megafauna through minimization of fisheries bycatch. Conserv. Biol. 23, 608–616 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Blomquist, J., Bartolino, V. & Waldo, S. Price premiums for providing eco-labelled seafood: evidence from MSC-certified cod in Sweden. J. Agric. Econ. 66, 690–704 (2015).Article 

    Google Scholar 
    41.Roheim, C. A., Bush, S. R., Asche, F., Sanchirico, J. N. & Uchida, H. Evolution and future of the sustainable seafood market. Nat. Sustain. 1, 392–398 (2018).Article 

    Google Scholar 
    42.Shumway, N., Watson, J. E. M., Saunders, M. I. & Maron, M. The risks and opportunities of translating terrestrial biodiversity offsets to the marine realm. BioScience 68, 125–133 (2018).Article 

    Google Scholar 
    43.Bull, J. W. & Strange, N. The global extent of biodiversity offset implementation under no net loss policies. Nat. Sustain. 1, 790–798 (2018).Article 

    Google Scholar 
    44.Gjertsen, H., Squires, D., Dutton, P. H. & Eguchi, T. Cost-effectiveness of alternative conservation strategies with application to the Pacific leatherback turtle. Conserv. Biol. 28, 140–149 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Segerson, K. in Conservation of Pacific Sea Turtles (eds Dutton, P. H. et al.) 370–395 (Univ. Hawaii Press, 2011).46.Bull, J. W., Suttle, K. B., Gordon, A., Singh, N. J. & Milner-Gulland, E. J. Biodiversity offsets in theory and practice. Oryx 47, 369–380 (2013).Article 

    Google Scholar 
    47.zu Ermgassen, S. O. S. E. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).48.zu Ermgassen, S. O. S. E. et al. Exploring the ecological outcomes of mandatory biodiversity net gain using evidence from early-adopter jurisdictions in England. Preprint at SocArXiv https://doi.org/10.31235/osf.io/tw6nr (2021).49.Segerson, K. Voluntary approaches to environmental protection and resource management. Annu. Rev. Resour. Econ. 5, 161–180 (2013).Article 

    Google Scholar 
    50.Kotchen, M. J. Voluntary- and information-based approaches to environmental management: a public economics perspective. Rev. Environ. Econ. Policy 7, 276–295 (2013).Article 

    Google Scholar 
    51.Janisse, C., Squires, D., Seminoff, J. A. & Dutton, P. H. in Handbook of Marine Fisheries Conservation and Management, (eds Grafton, Q. et al.) 231–240 (Oxford Univ. Press, 2010).52.Squires, D. & Garcia, S. The least-cost biodiversity impact mitigation hierarchy with a focus on marine fisheries and bycatch issues. Conserv. Biol. 32, 989–997 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Jacob, C. et al. Marine biodiversity offsets: pragmatic approaches toward better conservation outcomes. Conserv Lett. 13, 1–12 (2020).Article 

    Google Scholar 
    54.Lent, R. & Squires, D. Reducing marine mammal bycatch in global fisheries: an economics approach. Deep Sea Res. Pt II 140, 268–277 (2017).Article 

    Google Scholar 
    55.Zhou, R. & Segerson, K. Individual vs. collective approaches to fisheries management. Mar. Resour. Econ. 31, 165–192 (2016).Article 

    Google Scholar 
    56.Yagi, N., Clark, M. L., Anderson, L. G., Arnason, R. & Metzner, R. Applicability of individual transferable quotas (ITQs) in Japanese fisheries: a comparison of rights-based fisheries management in Iceland, Japan, and United States. Mar. Policy 36, 241–245 (2012).Article 

    Google Scholar 
    57.Kotchen, M. J. & Segerson, K. On the use of group performance and rights for environmental protection and resource management. Proc. Natl Acad. Sci. USA 116, 5285–5292 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Stewart, A. J. & Plotkin, J. B. Collapse of cooperation in evolving games. Proc. Natl Acad. Sci. USA 111, 17558–17563 (2014).59.Mani, A., Rahwan, I. & Pentland, A. Inducing peer pressure to promote cooperation. Sci. Rep. 3, 1735 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kroeger, T. The quest for the ‘optimal’ payment for environmental services program: ambition meets reality, with useful lessons. Policy Econ. 37, 65–74 (2013).Article 

    Google Scholar 
    61.Ledoux, L. & Turner, R. K. Valuing ocean and coastal resources: a review of practical examples and issues for further action. Ocean Coast. Manag. 45, 583–616 (2002).Article 

    Google Scholar 
    62.Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: a risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish. 21, 269–289 (2019).Article 

    Google Scholar 
    63.Bull, J. W. & Milner-Gulland, E. Choosing prevention or cure when mitigating biodiversity loss: trade-offs under ‘no net loss’ policies. J. Appl. Ecol. 57, 354–366 (2020).Article 

    Google Scholar 
    64.Norton, D. A. & Warburton, B. The potential for biodiversity offsetting to fund effective invasive species control. Conserv. Biol. 29, 5–11 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Holmes, N. D. et al. The potential for biodiversity offsetting to fund invasive species eradications on islands. Conserv. Biol. 30, 425–427 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Gallagher, A. J. & Hammerschlag, N. Global shark currency: the distribution frequency and economic value of shark ecotourism. Curr. Issues Tour. 14, 797–812 (2011).Article 

    Google Scholar 
    67.Mustika, P. L. K., Ichsan, M. & Booth, H. The economic value of shark and ray tourism in Indonesia and its role in delivering conservation outcomes. Front. Mar. Sci. 7, 261 (2020).Article 

    Google Scholar 
    68.O’Malley, M. P., Lee-Brooks, K. & Medd, H. B. The global economic impact of manta ray watching tourism. PLoS ONE 8, e65051 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Vianna, G. M. S. et al. Shark-diving tourism as a financing mechanism for shark conservation strategies in Malaysia. Mar. Policy 94, 220–226 (2018).Article 

    Google Scholar 
    70.Swimmer, Y. et al. Sea turtle bycatch mitigation in U.S. longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article 

    Google Scholar 
    71.Croll, D. A. et al. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 562–575 (2016).Article 

    Google Scholar 
    72.Anderson, R. C., Adam, M. S., Kitchen-Wheeler, A. M. & Stevens, G. Extent and economic value of manta ray watching in Maldives. Tour. Mar. Environ. 7, 15–27 (2011).Article 

    Google Scholar 
    73.Farley, J. Ecosystem services: the economics debate. Ecosyst. Serv. 1, 40–49 (2012).Article 

    Google Scholar 
    74.Kenter, J. O., Hyde, T., Christie, M. & Fazey, I. The importance of deliberation in valuing ecosystem services in developing countries—evidence from the Solomon Islands. Glob. Environ. Change 21, 505–521 (2011).Article 

    Google Scholar 
    75.Gilman, E. et al. Robbing Peter to pay Paul: replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    76.Dissou, Y. & Siddiqui, M. S. Can carbon taxes be progressive?. Energy Econ. 42, 88–100 (2014).Article 

    Google Scholar 
    77.Engel, S., Pagiola, S. & Wunder, S. Designing payments for environmental services in theory and practice: an overview of the issues. Ecol. Econ. 65, 663–674 (2008).Article 

    Google Scholar 
    78.Bene, C. Small-Scale Fisheries: Assessing Their Contribution to Rural Livelihoods in Developing Countries FAO Fisheries Circular No. 1008 (FAO, 2006).79.Arlidge, W. N. S. et al. A mitigation hierarchy approach for managing sea turtle captures in small-scale fisheries. Front. Mar. Sci. 7, 49 (2020).Article 

    Google Scholar 
    80.Levi, M., Sacks, A. & Tyler, T. Conceptualizing legitimacy, measuring legitimating beliefs. Am. Behav. Sci. 53, 354–375 (2009).Article 

    Google Scholar 
    81.Oyanedel, R., Gelcich, S. & Milner-Gulland, E. J. Motivations for (non-)compliance with conservation rules by small-scale resource users. Conserv. Lett. 15, e12725 (2020).
    Google Scholar 
    82.Pakiding, F. et al. Community engagement: an integral component of a multifaceted conservation approach for the transboundary western Pacific leatherback. Front. Mar. Sci. 7, 756 (2020).Article 

    Google Scholar 
    83.Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework Report No. CBD/COP/14/9 (CBD, 2018).84.Berkes, F. et al. Globalization, roving bandits, and marine resources. Science 311, 1557–1558 (2006).CAS 
    Article 

    Google Scholar 
    85.Ban, N. C., Adams, V., Pressey, R. L. & Hicks, J. Promise and problems for estimating management costs of marine protected areas. Conserv. Lett. 4, 241–252 (2011).Article 

    Google Scholar 
    86.Arias, A., Pressey, R. L., Jones, R. E., Álvarez-Romero, J. G. & Cinner, J. E. Optimizing enforcement and compliance in offshore marine protected areas: a case study from Cocos Island, Costa Rica. Oryx 50, 18–26 (2016).Article 

    Google Scholar 
    87.Bartholomew, D. C. et al. Remote electronic monitoring as a potential alternative to on-board observers in small-scale fisheries. Biol. Conserv. 219, 35–45 (2018).Article 

    Google Scholar 
    88.Mangi, S. C., Dolder, P. J., Catchpole, T. L., Rodmell, D. & de Rozarieux, N. Approaches to fully documented fisheries: practical issues and stakeholder perceptions. Fish Fish. 16, 426–452 (2015).Article 

    Google Scholar 
    89.Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).90.Russo, T. et al. All is fish that comes to the net: metabarcoding for rapid fisheries catch assessment. Ecol. Appl. 31, e02273 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Cardeñosa, D., Gollock, M. J. & Chapman, D. D. Development and application of a novel real‐time polymerase chain reaction assay to detect illegal trade of the European eel (Anguilla anguilla). Conserv. Sci. Prac. 1, e39 (2019).Article 

    Google Scholar 
    92.Griffiths, V. F., Bull, J. W., Baker, J. & Milner-Gulland, E. J. No net loss for people and biodiversity. Conserv. Biol. 33, 76–87 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Milner-Gulland, E. J. et al. Translating the terrestrial mitigation hierarchy to marine megafauna by-catch. Fish Fish. 19, 547–561 (2018).Article 

    Google Scholar 
    94.Republic of Namibia Ministry of Fisheries and Marine Resources Annual Report 2012–2013 (MFMR, 2013).95.Sanchirico, J. N., Holland, D., Quigley, K. & Fina, M. Catch-quota balancing in multispecies individual fishing quotas. Mar. Policy 30, 767–785 (2006).Article 

    Google Scholar 
    96.Walker, S. & Townsend, R. Economic analysis of New Zealand’s deemed value system. In Proc. of the Fourteenth Biennial Conference of the International Institute of Fisheries Economics & Trade, July 22–25, 2008, Nha Trang, Vietnam: Achieving a Sustainable Future: Managing Aquaculture, Fishing, Trade and Development 1–11 (Oregon State Univ., 2008).97.Sanchirico, J. N. Managing marine capture fisheries with incentive based price instruments. Public Finance Manag. 3, 67–93 (2003).
    Google Scholar 
    98.Pascoe, S., Wilcox, C. & Donlan, C. J. Biodiversity offsets: a cost-effective interim solution to seabird bycatch in fisheries? PLoS ONE 6, e25762 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Mukherjee, Z. Controlling stochastic externalities with penalty threats: the case of bycatch. Environ. Econ. Policy Stud. 18, 93–113 (2016).Article 

    Google Scholar 
    100.Androkovich, R. A. & Stollery, K. R. A stochastic dynamic programming model of bycatch control in fisheries. Mar. Resour. Econ. 9, 19–30 (1994).Article 

    Google Scholar 
    101.Herrera, G. E. Stochastic bycatch, informational asymmetry, and discarding. J. Environ. Econ. Manag. 49, 463–483 (2005).Article 

    Google Scholar 
    102.Singh, R. & Weninger, Q. Bioeconomies of scope and the discard problem in multiple-species fisheries. J. Environ. Econ. Manag. 58, 72–92 (2009).Article 

    Google Scholar 
    103.Pascoe, S., Cannard, T. & Steven, A. Offset payments can reduce environmental impacts of urban development. Environ. Sci. Policy 100, 205–210 (2019).Article 

    Google Scholar 
    104.Schouten, G. & Glasbergen, P. Creating legitimacy in global private governance: the case of the roundtable on sustainable palm oil. Ecol. Econ. 70, 1891–1899 (2011).Article 

    Google Scholar 
    105.Ruysschaert, D. & Salles, D. in The Anthropology of Conservation NGOs (eds Larsen, P. B. & Brockington, D.) 121–149 (Palgrave Macmillan, 2018).106.Right Whales and Entanglements: More on How NOAA Makes Decisions (NOAA Fisheries, 2019); https://www.fisheries.noaa.gov/new-england-mid-atlantic/marine-mammal-protection/right-whales-and-entanglements-more-how-noaa#right-whales-and-the-lobster-fishery107.Jouffray, J. B., Crona, B., Wassénius, E., Bebbington, J. & Scholtens, B. Leverage points in the financial sector for seafood sustainability. Sci. Adv. 5, eaax3324 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Österblom, H. et al. Emergence of a global science-business initiative for ocean stewardship. Proc. Natl Acad. Sci. USA 114, 9038–9043 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    109.Deforestation-Free Supply Chains: From Commitments to Action (CDP, 2014).110.Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).111.Österblom, H. et al. Transnational corporations as ‘keystone actors’ in marine ecosystems. PLoS ONE 10, e0127533 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Galland, G., Rogers, A. & Nickson, A. Netting Billions: A Global Valuation of Tuna (The Pew Charitible Trusts, 2016).113.Zeller, D., Cashion, T., Palomares, M. & Pauly, D. Global marine fisheries discards: a synthesis of reconstructed data. Fish Fish. 19, 30–39 (2018).Article 

    Google Scholar 
    114.Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    115.Engel, S. & Palmer, C. Payments for environmental services as an alternative to logging under weak property rights: the case of Indonesia. Ecol. Econ. 65, 799–809 (2008).Article 

    Google Scholar 
    116.Bonham, C. et al. Conservation trust funds, protected area management effectiveness and conservation outcomes: lessons from the global conservation fund. Parks 20, 89–100 (2014).Article 

    Google Scholar 
    117.Angelsen, A. et al. (eds) Realising REDD+: National Strategy and Policy Options (CIFOR, 2009).118.Spergel, B. & Mikitin, K. Practice Standards for Conservation Trust Funds (CFA, 2013).119.Progress Summary of 2014–15 ISSF Funded Marine Turtle Projects (ISSF, 2016). More

  • in

    Plant scientists’ research attention is skewed towards colourful, conspicuous and broadly distributed flowers

    1.Schaal, B. Plants and people: our shared history and future. Plants People Planet 1, 14–19 (2019).Article 

    Google Scholar 
    2.Bates, D. M. People, plants and genes: the story of crops and humanity. Q. Rev. Biol. 84, 206–207 (2009).3.Nedelcheva, A., Dogan, Y., Obratov-Petkovic, D. & Padure, I. M. The traditional use of plants for handicrafts in southeastern Europe. Hum. Ecol. Interdiscip. J. 39, 813–828 (2011).Article 

    Google Scholar 
    4.Willes, M. A Shakespearean Botanical (Bodleian Library, 2015).5.Shoemaker, C. A. Plants and human culture. J. Home Consum. Hortic. 1, 3–7 (1994).Article 

    Google Scholar 
    6.Alfred, J. & Baldwin, I. T. The natural history of model organisms: new opportunities at the wild frontier. eLife 4, e06956 (2015).PubMed Central 
    Article 

    Google Scholar 
    7.Hedges, S. B. The origin and evolution of model organisms. Nat. Rev. Genet. 3, 838–849 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Clark, J. A. Taxonomic bias in conservation research. Science 297, 191–192 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Mammola, S. et al. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166 (2020).PubMed 
    Article 

    Google Scholar 
    10.Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in the world and its annual increase. Phytotaxa 261, 201–217 (2016).Article 

    Google Scholar 
    11.Quijas, S., Schmid, B. & Balvanera, P. Plant diversity enhances provision of ecosystem services: a new synthesis. Basic Appl. Ecol. 11, 582–593 (2010).Article 

    Google Scholar 
    12.Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. & Tilman, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042–2050 (2003).Article 

    Google Scholar 
    13.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    15.Ripple, W. J. et al. World scientists’ warning to humanity: a second notice. Bioscience 67, 1026–1028 (2017).Article 

    Google Scholar 
    16.Balding, M. & Williams, K. J. H. Plant blindness and the implications for plant conservation. Conserv. Biol. 30, 1192–1199 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Fukushima, C. S., Mammola, S. & Cardoso, P. Global wildlife trade permeates the Tree of Life. Biol. Conserv. 247, 108503 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wandersee, J. H. & Schussler, E. E. Preventing plant blindness. Am. Biol. Teach. 61, 82–86 (1999).Article 

    Google Scholar 
    19.Parsley, K. M. Plant awareness disparity: a case for renaming plant blindness. Plants People Planet 2, 598–601 (2020).Article 

    Google Scholar 
    20.Villemant, C. et al. The Mercantour/Alpi Marittime All Taxa Biodiversity Inventory (ATBI): achievements and prospects. Zoosystema 37, 667–679 (2015).Article 

    Google Scholar 
    21.Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article 

    Google Scholar 
    22.Médail, F. & Verlaque, R. Ecological characteristics and rarity of endemic plants from Southeast France and Corsica: implications for biodiversity conservation. Biol. Conserv. 80, 269–281 (1997).Article 

    Google Scholar 
    23.Noble, V. & Diadema, K. in La flore des Alpes-Maritimes et de la Principauté de Monaco (eds Noble, V. & Diadema, K.) 57–72 (Naturalia, 2011).24.Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    25.Horiguchi, H., Winawer, J., Dougherty, R. F. & Wandell, B. A. Human trichromacy revisited. Proc. Natl Acad. Sci. USA 110, E260–E269 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gerl, E. J. & Morris, M. R. The causes and consequences of color vision. Evol. Educ. Outreach 1, 476–486 (2008).Article 

    Google Scholar 
    27.Bompas, A., Kendall, G. & Sumner, P. Spotting fruit versus picking fruit as the selective advantage of human colour vision. i-Perception 4, 84–94 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Elliot, A. J. & Maier, M. A. Color psychology: effects of perceiving color on psychological functioning in humans. Annu. Rev. Psychol. 65, 95–120 (2014).PubMed 
    Article 

    Google Scholar 
    29.Chiao, J. Y. et al. Dynamic cultural influences on neural representations of the self. J. Cogn. Neurosci. 22, 1–11 (2010).PubMed 
    Article 

    Google Scholar 
    30.Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Costa, G. C., Nogueira, C., Machado, R. B. & Colli, G. R. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. Biodivers. Conserv. 19, 883–899 (2010).Article 

    Google Scholar 
    32.Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. Camb. Philos. Soc. 92, 698–715 (2017).PubMed 
    Article 

    Google Scholar 
    33.De Boeck, H. J., Liberloo, M., Gielen, B., Nijs, I. & Ceulemans, R. The observer effect in plant science. New Phytol. 177, 579–583 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Morrison, L. W. Observer error in vegetation surveys: a review. J. Plant Ecol. 9, 367–379 (2016).Article 

    Google Scholar 
    35.Kéry, M. & Gregg, K. B. Effects of life-state on detectability in a demographic study of the terrestrial orchid Cleistes bifaria. J. Ecol. 91, 265–273 (2003).Article 

    Google Scholar 
    36.Allioni, C. Flora Pedemontana: Sive Enumeratio Methodica Stirpium Indigenarum Pedemontii Vol. 1 (Joannes Michael Briolus, 1785).37.Aeschimann, D., Rasolofo, N. & Theurillat, J.-P. Analyse de la flore des alpes. 1: Historique et biodiversité. Candollea 66, 27–55 (2011).Article 

    Google Scholar 
    38.Boakes, E. H. et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLoS Biol. 8, e1000385 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Julve, P. Baseflor. Index Botanique, Ecologique et Chorologique de la Flore de France http://philippe.julve.pagesperso-orange.fr/baseflor.xlsx (1998).40.Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152, 179–303 (2018).Article 

    Google Scholar 
    41.Web of Science (Clarivate Analytics, accessed 16 March 2020); https://www.webofknowledge.com42.Kalwij, J. M. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 23, 998–1002 (2012).Article 

    Google Scholar 
    43.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).44.Heaton, L., Millerand, F. & Proulx, S. Tela Botanica: une fertilisation croisée des amateurs et des experts. Hermès 57, 61–68 (2010).45.Lauber, K., Wagner, G. & Gygax, A. Flora Helvetica: Illustrierte Flora der Schweiz (Haupt Verlag, 2018).46.Landolt, E. et al. Flora Indicativa: Okologische Zeigerwerte und Biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).47.The IUCN Red List of Threatened Species (IUCN, 2020).48.Global Biodiversity Information Facility (2020); https://www.gbif.org49.Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    50.Shirey, V., Belitz, M. W., Barve, V. & Guralnick, R. A complete inventory of North American butterfly occurrence data: narrowing data gaps, but increasing bias. Ecography 44, 537–547 (2021).Article 

    Google Scholar 
    51.R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).52.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    53.Brooks, T. M. et al. Measuring terrestrial area of habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    54.Bartoń, K. MuMIn: multi-model inference. R package version 1.43.17 https://cran.r-project.org/package=MuMIn (2020).55.Barbosa, A. M., Real, R., Munoz, A. R. & Brown, J. A. New measures for assessing model equilibrium and prediction mismatch in species distribution models. Divers. Distrib. 19, 1333–1338 (2013).Article 

    Google Scholar 
    56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1 (2015).Article 

    Google Scholar 
    57.Blasco-Moreno, A., Pérez-Casany, M., Puig, P., Morante, M. & Castells, E. What does a zero mean? Understanding false, random and structural zeros in ecology. Methods Ecol. Evol. 10, 949–959 (2019).Article 

    Google Scholar 
    58.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Assessment, testing and comparison of statistical models using R. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/vtq8f (2021). More

  • in

    The severity and extent of the Australia 2019–20 Eucalyptus forest fires are not the legacy of forest management

    1.Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Davis, K. T. et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl Acad. Sci. USA 116, 6193–6198 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Enright, N. J., Fontaine, J. B., Bowman, D. M. J. S., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265–272 (2015).Article 

    Google Scholar 
    4.Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    6.Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Lindenmayer, D. B., Kooyman, R. M., Taylor, C., Ward, M. & Watson, J. E. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 4, 898–900 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).Article 

    Google Scholar 
    9.Poulos, H. M., Barton, A. M., Slingsby, J. A. & Bowman, D. M. J. S. Do mixed fire regimes shape plant flammability and post-fire recovery strategies? Fire 1, 39 (2018).Article 

    Google Scholar 
    10.Cawson, J. G. et al. Exploring the key drivers of forest flammability in wet eucalypt forests using expert-derived conceptual models. Landsc. Ecol. 35, 1775–1798 (2020).Article 

    Google Scholar 
    11.Thomas, P. B., Watson, P. J., Bradstock, R. A., Penman, T. D. & Price, O. Modelling surface fine fuel dynamics across climate gradients in eucalypt forests of south‐eastern Australia. Ecography 37, 827–837 (2014).Article 

    Google Scholar 
    12.Bennett, L. T. et al. Mortality and recruitment of fire-tolerant eucalypts as influenced by wildfire severity and recent prescribed fire. For. Ecol. Manag. 380, 107–117 (2016).Article 

    Google Scholar 
    13.Fairman, T. A., Bennett, L. T., Tupper, S. & Nitschke, C. R. Frequent wildfires erode tree persistence and alter stand structure and initial composition of a fire‐tolerant sub‐alpine forest. J. Veg. Sci. 28, 1151–1165 (2017).Article 

    Google Scholar 
    14.Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Aust. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    15.Bassett, O. D., Prior, L. D., Slijkerman, C. M., Jamieson, D. & Bowman, D. M. J. S. Aerial sowing stopped the loss of alpine ash (Eucalyptus delegatensis) forests burnt by three short-interval fires in the Alpine National Park, Victoria, Australia. For. Ecol. Manag. 342, 39–48 (2015).Article 

    Google Scholar 
    16.Bowman, D. et al. Wildfires: Australia needs national monitoring agency. Nature 584, 188–191 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Change 10, 177–179 (2020).Article 

    Google Scholar 
    18.Sharples, J. J. et al. Natural hazards in Australia: extreme bushfire. Clim. Change 139, 85–99 (2016).Article 

    Google Scholar 
    19.Bowman, D. M. J. S., Williamson, G. J., Price, O. F., Ndalila, M. N. & Bradstock, R. A. Australian forests, megafires and the risk of dwindling carbon stocks. Plant, Cell Environ. 44, 347–355 (2020).20.Khaykin, S. et al. The 2019/20 Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude. Commun. Earth Environ. 1, 22 (2020).Article 

    Google Scholar 
    21.Borchers Arriagada, N. et al. Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med. J. Aust. 213, 282–283 (2020).22.Johnston, F. H. et al. Unprecedented health costs of smoke-related PM2.5 from the 2019–20 Australian megafires. Nat. Sustain. 4, 42–47 (2021).Article 

    Google Scholar 
    23.Ward, M. et al. Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evol. 4, 1321–1326 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bowman, D. M. J. S., Williamson, G. J., Prior, L. D. & Murphy, B. P. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Glob. Ecol. Biogeogr. 25, 1166–1172 (2016).Article 

    Google Scholar 
    25.Povak, N. A., Kane, V. R., Collins, B. M., Lydersen, J. M. & Kane, J. T. Multi-scaled drivers of severity patterns vary across land ownerships for the 2013 Rim Fire, California. Landsc. Ecol. 35, 293–318 (2020).Article 

    Google Scholar 
    26.Parks, S. A. et al. High-severity fire: evaluating its key drivers and mapping its probability across western US forests. Environ. Res. Lett. 13, 044037 (2018).Article 

    Google Scholar 
    27.Fang, L., Yang, J., Zu, J., Li, G. & Zhang, J. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. For. Ecol. Manag. 356, 2–12 (2015).Article 

    Google Scholar 
    28.Thompson, J. R. & Spies, T. A. Vegetation and weather explain variation in crown damage within a large mixed-severity wildfire. For. Ecol. Manag. 258, 1684–1694 (2009).Article 

    Google Scholar 
    29.Stephens, S. L. et al. Fire and climate change: conserving seasonally dry forests is still possible. Front. Ecol. Environ. 18, 354–360 (2020).Article 

    Google Scholar 
    30.Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: implications for a warming world. Glob. Change Biol. 26, 6062–6079 (2020).Article 

    Google Scholar 
    31.Nolan, R. H. et al. Causes and consequences of eastern Australia’s 2019–20 season of mega‐fires. Glob. Change Biol. 26, 1039–1041 (2020).32.Boer, M. M., Resco de Dios, V. & Bradstock, R. A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change 10, 171–172 (2020).Article 

    Google Scholar 
    33.van Oldenborgh, G. J. et al. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat. Hazards Earth Syst. Sci. 21, 941–960 (2021).Article 

    Google Scholar 
    34.Adams, M. A., Shadmanroodposhti, M. & Neumann, M. Letter to the Editor. Causes and consequences of Eastern Australia’s 2019‐20 season of mega‐fires: a broader perspective. Glob. Change Biol. 26, 3756–3758 (2020).35.Lindenmayer, D. B. & Taylor, C. New spatial analyses of Australian wildfires highlight the need for new fire, resource, and conservation policies. Proc. Natl Acad. Sci. USA 117, 12481–12485 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lindenmayer, D. B., Hobbs, R. J., Likens, G. E., Krebs, C. J. & Banks, S. C. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl Acad. Sci. USA 108, 15887–15891 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Taylor, C., McCarthy, M. A. & Lindenmayer, D. B. Nonlinear effects of stand age on fire severity. Conserv. Lett. 7, 355–370 (2014).Article 

    Google Scholar 
    38.Collins, L., Griffioen, P., Newell, G. & Mellor, A. The utility of Random Forests for wildfire severity mapping. Remote Sens. Environ. 216, 374–384 (2018).Article 

    Google Scholar 
    39.Gibson, R., Danaher, T., Hehir, W. & Collins, L. A remote sensing approach to mapping fire severity in south-eastern Australia using sentinel 2 and random forest. Remote Sens. Environ. 240, 111702 (2020).Article 

    Google Scholar 
    40.Collins, L., Bradstock, R. & Penman, T. Can precipitation influence landscape controls on wildfire severity? A case study within temperate eucalypt forests of south-eastern Australia. Int. J. Wildland Fire 23, 9–20 (2014).Article 

    Google Scholar 
    41.Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manag. 113, 146–157 (2012).Article 

    Google Scholar 
    42.Storey, M., Price, O. & Tasker, E. The role of weather, past fire and topography in crown fire occurrence in eastern Australia. Int. J. Wildland Fire 25, 1048–1060 (2016).Article 

    Google Scholar 
    43.Bradstock, R. A., Hammill, K. A., Collins, L. & Price, O. Effects of weather, fuel and terrain on fire severity in topographically diverse landscapes of south-eastern Australia. Landsc. Ecol. 25, 607–619 (2010).Article 

    Google Scholar 
    44.Taylor, C., Blanchard, W. & Lindenmayer, D. B. Does forest thinning reduce fire severity in Australian eucalypt forests? Conserv. Lett. https://doi.org/10.1111/conl.12766 (2020).45.Lydersen, J. M. et al. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol. Appl. 27, 2013–2030 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).Article 

    Google Scholar 
    47.Bowman, D. M. J. S. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48, 350–362 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Jackson, W. Fire, air, water and earth–an elemental ecology of Tasmania. Proc. Ecol. Soc. Aust. 3, 9–16 (1968).
    Google Scholar 
    49.Tolhurst, K. G. & McCarthy, G. Effect of prescribed burning on wildfire severity: a landscape-scale case study from the 2003 fires in Victoria. Aust. For. 79, 1–14 (2016).Article 

    Google Scholar 
    50.Gammage, B. The Biggest Estate on Earth: How Aborigines Made Australia (Allen & Unwin, 2011).51.Dargavel, J. Views and perspectives: why does Australia have ‘forest wars’? Int. Rev. Environ. Hist. 4, 33–51 (2018).Article 

    Google Scholar 
    52.Kanowski, P. J. Australia’s forests: contested past, tenure-driven present, uncertain future. For. Policy Econ. 77, 56–68 (2017).Article 

    Google Scholar 
    53.Australian Forest and Wood Products Statistics Mar-Jun 2019 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2019).54.Ferguson, I. Australian plantations: mixed signals ahead. Int. For. Rev. 16, 160–171 (2014).
    Google Scholar 
    55.Raison, R. & Squire, R. Forest Management in Australia: Implications for Carbon Budgets Technical Report 32 (Australian Greenhouse Office, 2008).56.Proctor, E. & McCarthy, G. Changes in fuel hazard following thinning operations in mixed-species forests in East Gippsland, Victoria. Aust. For. 78, 195–206 (2015).Article 

    Google Scholar 
    57.NSW Regional Forest Agreements Assessment of Matters Pertaining to Renewal of Regional Forest Agreements (NSW Department of Primary Industries, 2018).58.Evans, J. spatialEco_. R package version 1.3-1 https://github.com/jeffreyevans/spatialEco (2020).59.Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. https://doi.org/10.1029/2005RG000183 (2007).60.Dowdy, A. J. Climatological variability of fire weather in Australia. J. Appl. Meteorol. Climatol. 57, 221–234 (2018).Article 

    Google Scholar 
    61.Hodges, J. S. & Reich, B. J. Adding spatially-correlated errors can mess up the fixed effect you love. Am. Stat. 64, 325–334 (2010).Article 

    Google Scholar 
    62.Rabus, B., Eineder, M., Roth, A. & Bamler, R. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 57, 241–262 (2003).Article 

    Google Scholar 
    63.Kuhn, M. et al. caret: Classification and regression training. R package version 6.0-77 (2018).64.De Reu, J. et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 186, 39–49 (2013).Article 

    Google Scholar  More

  • in

    Multiple social network influences can generate unexpected environmental outcomes

    1.Amel, E., Manning, C., Scott, B. & Koger, S. Beyond the roots of human inaction: Fostering collective effort toward ecosystem conservation. Science 356, 275–279 (2017).
    Google Scholar 
    2.Bodin, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 357, eaan1114 (2017).
    Google Scholar 
    3.Cinner, J. E. How behavioral science can help conservation. Science 362, 889–891 (2018).
    Google Scholar 
    4.Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Chang. 23, 1773–1785 (2013).
    Google Scholar 
    5.Christoff, Z., Hansen, J. U. & Proietti, C. Reflecting on social influence in networks. J. Logic Lang. Inf. 25, 299–333 (2016).
    Google Scholar 
    6.Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl. Acad. Sci. USA. 107, 5334–5338 (2010).
    Google Scholar 
    7.Friedkin, N. E. & Johnsen, E. C. Social positions in influence networks. Soc. Netw. 19, 209–222 (1997).
    Google Scholar 
    8.Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).
    Google Scholar 
    9.Barnes, M. L., Lynham, J., Kalberg, K. & Leung, P. Social networks and environmental outcomes. Proc. Natl. Acad. Sci. 113, 6466–6471 (2016).
    Google Scholar 
    10.McPherson, M., Smith-lovin, L. & Cook, J. M. Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).
    Google Scholar 
    11.Bodin, Ö., Mancilla García, M. & Robins, G. Reconciling conflict and cooperation in environmental governance: A social network perspective. Annu. Rev. Environ. Resour. 45, 471–495 (2020).
    Google Scholar 
    12.Bodin, Ö. & Prell, C. Social Networks and Natural Resource. Management Uncovering the Social Fabric of Environmental Governance (Cambridge University Press, 2011).
    Google Scholar 
    13.Small, B., Brown, P. & Montes de Oca Munguia, O. Values, trust, and management in New Zealand agriculture. Int. J. Agric. Sustain. 14, 282–306 (2016).
    Google Scholar 
    14.Friedman, R. S. et al. Beyond the community in participatory forest management: A governance network perspective. Land Use Policy 97, 104738 (2020).
    Google Scholar 
    15.Schill, C. et al. A more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. 2, 1075–1082 (2019).
    Google Scholar 
    16.Yletyinen, J., Hentati-Sundberg, J., Blenckner, T. & Bodin, O. Fishing strategy diversification and fishers’ ecological dependency. Ecol. Soc. 23, 28 (2018).
    Google Scholar 
    17.Grêt-Regamey, A., Huber, S. H. & Huber, R. Actors’ diversity and the resilience of social-ecological systems to global change. Nat. Sustain. 2, 290–297 (2019).
    Google Scholar 
    18.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).
    Google Scholar 
    19.de Lange, E., Milner-Gulland, E. J. & Keane, A. Improving environmental interventions by understanding information flows. Trends Ecol. Evol. 34, 1034–1047 (2019).
    Google Scholar 
    20.Vainio, A., Paloniemi, R. & Hujala, T. How are forest owners’ objectives and social networks related to successful conservation?. J. Rural Stud. 62, 21–28 (2018).
    Google Scholar 
    21.de Snoo, G. R. et al. Toward effective nature conservation on farmland: Making farmers matter. Conserv. Lett. 6, 66–72 (2013).
    Google Scholar 
    22.Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40, 248–255 (2011).
    Google Scholar 
    23.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909–914 (2018).
    Google Scholar 
    24.Hill, R. et al. A social-ecological systems analysis of impediments to delivery of the Aichi 2020 Targets and potentially more effective pathways to the conservation of biodiversity. Glob. Environ. Chang. 34, 22–34 (2015).
    Google Scholar 
    25.Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. AMBIO J. Hum. Environ. 32, 389–396 (2016).
    Google Scholar 
    26.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
    Google Scholar 
    27.Miller, B. W., Caplow, S. C. & Leslie, P. W. Feedbacks between conservation and social-ecological systems. Conserv. Biol. 26, 218–227 (2012).
    Google Scholar 
    28.Larrosa, C., Carrasco, L. R. & Milner-Gulland, E. J. Unintended feedbacks: Challenges and opportunities for improving conservation effectiveness. Conserv. Lett. 9, 316–326 (2016).
    Google Scholar 
    29.Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).
    Google Scholar 
    30.Brehony, P., Tyrrell, P., Kamanga, J., Waruingi, L. & Kaelo, D. Incorporating social-ecological complexities into conservation policy. Biol. Conserv. 248, 108697 (2020).
    Google Scholar 
    31.Jacob, U. et al. Marine conservation: Towards a multi-layered network approach. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190459 (2020).
    Google Scholar 
    32.Hoole, A. & Berkes, F. Breaking down fences: Recoupling social-ecological systems for biodiversity conservation in Namibia. Geoforum 41, 304–317 (2010).
    Google Scholar 
    33.Dajka, J. et al. Red and green loops help uncover missing feedbacks in a coral reef social–ecological system. People Nat. 2, 608–618 (2020).
    Google Scholar 
    34.Yletyinen, J. et al. Understanding and managing social-ecological tipping points in primary industries. Bioscience 69, 335–347 (2019).
    Google Scholar 
    35.Mason, W. A., Conrey, F. R. & Smith, E. R. Situating social influence processes: Dynamic, multidirectional flows of influence within social networks. Personal. Soc. Psychol. Rev. 11, 279–300 (2007).
    Google Scholar 
    36.Niemiec, R. M., Willer, R., Ardoin, N. M. & Brewer, F. K. Motivating landowners to recruit neighbors for private land conservation. Conserv. Biol. 33, 930–941 (2019). 
    Google Scholar 
    37.Brown, P. Survey of rural decision makers. Manaaki Whenua Landcare Res. https://doi.org/10.7931/J2736P2D (2015).
    Google Scholar 
    38.Burt, R. S. & Doreian, P. Testing a structural model of perception: Conformity and deviance with respect to Journal norms in elite sociological methodology. Qual. Quant. 16, 109–150 (1982).
    Google Scholar 
    39.Zhang, B., Pavlou, P. A. & Krishnan, R. On direct vs. indirect peer influence in large social networks. Inf. Syst. Res. 29, 292–314 (2018).
    Google Scholar 
    40.Pinheiro, F. L., Santos, M. D., Santos, F. C. & Pacheco, J. M. Origin of peer influence in social networks. Phys. Rev. Lett. 112, 1–5 (2014).
    Google Scholar 
    41.Lewis, K., Gonzalez, M. & Kaufman, J. Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. 109, 68–72 (2012).
    Google Scholar 
    42.Stein, C., Barron, J. & Ernstson, H. A social network approach to analyze multi-stakeholders governance arrangement in water resources management: Three case studies from catchments in Burkina Faso, Tanzania and Zambia. In Proceedings of the XIVth World Water Congress, 25–29 September, at Porto de Galinhas, Pernambuco, Brazil. (2011).43.Autant-bernard, C., Mairesse, J. & Massard, N. Spatial knowledge diffusion through collaborative networks. Pap. Reg. Sci. 86, 341–350 (2007).
    Google Scholar 
    44.Ward, P. S. & Pede, V. O. Capturing social network effects in technology adoption: The spatial diffusion of hybrid rice in Bangladesh. Aust. J. Agric. Resour. Econ. 59, 225–241 (2015).
    Google Scholar 
    45.Kuhfuss, L. et al. Nudges, social norms, and permanence in agri-environmental schemes. Land Econ. 92, 641–655 (2016).
    Google Scholar 
    46.Fehr, E. & Schurtenberger, I. Normative foundations of human cooperation. Nat. Hum. Behav. 2, 458–468 (2018).
    Google Scholar 
    47.Delaroche, M. Adoption of conservation practices: What have we learned from two decades of social-psychological approaches?. Curr. Opin. Environ. Sustain. 45, 25–35 (2020).
    Google Scholar 
    48.Knowler, D. & Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 32, 25–48 (2007).
    Google Scholar 
    49.O’Sullivan, D. & Perry, G. L. W. Spatial Simulation. Exploring Pattern and Process (Wiley, 2013).
    Google Scholar 
    50.Will, M., Groeneveld, J., Frank, K. & Müller, B. Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review. Socio-Environ. Syst. Model. 2, 16325 (2020).
    Google Scholar 
    51.Bodin, Ö. & Crona, B. I. The role of social networks in natural resource governance: What relational patterns make a difference?. Glob. Environ. Chang. 19, 366–374 (2009).
    Google Scholar 
    52.Erdős, P. & Rényi, A. On random graphs. Publ. Math. 6, 290–297 (1959).
    Google Scholar 
    53.Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 38, 210–221 (1982).
    Google Scholar 
    54.Groce, J. E., Farrelly, M. A., Jorgensen, B. S. & Cook, C. N. Using social-network research to improve outcomes in natural resource management. Conserv. Biol. 33, 53-65 (2018).
    Google Scholar 
    55.Schill, C., Wijermans, N., Schlüter, M. & Lindahl, T. Cooperation is not enough – Exploring social-ecological micro-foundations for sustainable common-pool resource use. PLoS ONE 11, e0165009 (2016).
    Google Scholar 
    56.Valente, T. W. Network interventions. Science 337, 49–53 (2012).
    Google Scholar 
    57.Valente, T. W. Putting the network in network interventions. Proc. Natl. Acad. Sci. USA. 114, 9500–9501 (2017).
    Google Scholar 
    58.Kossinets, G. & Watts, D. J. Empirical analysis of an evolving social network. Science 311, 88–90 (2006).
    Google Scholar 
    59.De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).
    Google Scholar 
    60.Prell, C. Social Network Analysis (SAGE publications Ltd, 2012).
    Google Scholar 
    61.Thampi, V. A., Anand, M. & Bauch, C. T. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation. Sci. Rep. 8, 2597 (2018).
    Google Scholar 
    62.Dannenberg, A. & Barrett, S. Cooperating to avoid catastrophe. Nat. Hum. Behav. 2, 435–437 (2018).
    Google Scholar 
    63.Rasoulkhani, K., Logasa, B., Reyes, M. P. & Mostafavi, A. Understanding fundamental phenomena affecting the water conservation technology adoption of residential consumers using agent-based modeling. Water 10, 993 (2018).
    Google Scholar 
    64.Wang, P., Robins, G., Pattison, P. & Lazega, E. Exponential random graph models for multilevel networks. Soc. Netw. 35, 96–115 (2013).
    Google Scholar 
    65.Kivelä, M. et al. Multilayer networks. J. Complex Networks 2, 203–271 (2014).
    Google Scholar 
    66.Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2011).
    Google Scholar 
    67.May, R. M., Levin, S. A. & Sugihara, G. Complex systems: Ecology for bankers. Nature 451, 893–895 (2008).
    Google Scholar 
    68.Grimm, V. et al. The ODD protocol for describing agent-based models: a second update to improve clarity, replication and structural realism. J. Artif. Soc. Soc. Simul. 23(2), 7 (2020).
    Google Scholar 
    69.Alexander, S. M., Bodin, Ö. & Barnes, M. L. Untangling the drivers of community cohesion in small-scale fisheries. Int. J. Commons 12, 519–547 (2018).
    Google Scholar 
    70.QE II National Trust. QE II National Trust. Ngā Kiarauhi Papa|Forever protected. https://qeiinationaltrust.org.nz.71.Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).
    Google Scholar 
    72.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).
    Google Scholar 
    73.Aral, S., Muchnik, L. & Sundararajan, A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. US. A. 106, 21544–21549 (2009).
    Google Scholar 
    74.Stefano, A. D. et al. Quantifying the role of homophily in human cooperation using multiplex evolutionary game theory. PLoS ONE 10, e0140646 (2015).
    Google Scholar 
    75.Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/. (Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1999).76.Thiele, J. C. R Marries NetLogo: Introduction to the RNetLogo Package. J. Stat. Softw. 58, 1–41 (2014).
    Google Scholar 
    77.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, 2018).78.Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Softw. Code Snippets 28, 1–9 (2008).
    Google Scholar 
    79.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1. (2016).80.Csardi, G. & Nepusz, T. The igraph software package for complex network research. Interjournal Complex Syst. 1695, 1–9 (2006).
    Google Scholar  More

  • in

    Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau

    1.Cerdà, A., González Pelayo, Ó., Pereira, P., Novara, A., Iserloh, T. et al. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator. In Geophysical Research (2015).2.Fu, B. J. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 5, 76–81 (1989).Article 

    Google Scholar 
    3.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304(5677), 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Govers, G., Van Oost, K. & Wang, Z. Scratching the critical zone: the global footprint of agricultural soil erosion. Procedia Earth Planet. Sci. 10, 313–318 (2014).ADS 
    Article 

    Google Scholar 
    5.Zhou, P., Wen, A., Zhang, X. & He, X. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ. Earth Sci. 68(3), 633–639 (2012).
    Google Scholar 
    6.Aldaood, A., Bouasker, M. & Al-Mukhtar, M. Soil–water characteristic curve of lime treated gypseous soil. Appl. Clay Sci. 102, 128–138 (2014).CAS 
    Article 

    Google Scholar 
    7.Satyanaga, A., Rahardjo, H., Leong, E. C. & Wang, J. Y. Water characteristic curve of soil with bimodal grain-size distribution. Comput. Geotech. 48(4), 51–61 (2013).Article 

    Google Scholar 
    8.Li, X., Li, J. H. & Zhang, L. M. Predicting bimodal soil–water characteristic curves and permeability functions using physically based parameters. Comput. Geotech. 57(4), 85–96 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    9.Breda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).Article 

    Google Scholar 
    10.Zhao, J., Lin, L., Yang, K., Liu, Q. & Qian, G. Influences of land use on water quality in a reticular river network area: a case study in Shanghai, China. Landsc. Urban Plan. 137, 20–29 (2015).Article 

    Google Scholar 
    11.McIntosh, J. C. & Horne, D. J. Causes of repellency: I. The nature of the hydrophobic compounds found in a New Zealand development sequence of yellow-brown sands. In Proceedings of the 2nd National Water Repellency Workshop, 1–5 August, Perth, Western Australia, 8–12 (1994).12.de Jonge, L. W., Moldrup, P. & Jacobsen, O. H. Soil-water content dependency of water repellency in soils: effect of crop type, soil management, and physical–chemical parameters. Soil Sci. 172, 577–588 (2007).ADS 
    Article 

    Google Scholar 
    13.Hallett, P. D., Ritz, K. & Wheatley, R. E. Microbial derived water repellency in golf course soil. Int. Turfgrass Soc. Res. J. 9, 518–524 (2001).
    Google Scholar 
    14.Caravaca, F., Masciandaro, G. & Ceccanti, B. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Till. Res. 68(1), 23–30 (2002).Article 

    Google Scholar 
    15.Li, H., Yan, F. C., Jiao, J. Y., Tang, B. Z. & Zhang, Y. F. Soil water availability and holding capacity of different vegetation types in hilly-gullied region of the loess plateau. Acta Ecol. Sin. 38(11) (2018).16.Ritchie, J. T. Soil water availability. Plant Soil 58(58), 327–338 (1981).Article 

    Google Scholar 
    17.Wan, S., Norby, R. J., Ledford, J. & Weltzin, J. F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol. 13(11), 2411–2424 (2007).ADS 
    Article 

    Google Scholar 
    18.An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. CATENA 75(3), 248–256 (2008).Article 

    Google Scholar 
    19.Wang, K. B., Shao, R. X. & Shangguan, Z. P. Changes in species richness and community productivity during succession on the Loess Plateau (China). Pol. J. Ecol. 58(3), 501–510 (2010).
    Google Scholar 
    20.Wang, Y., Shao, M. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381(1–2), 9–17 (2010).ADS 
    Article 

    Google Scholar 
    21.Reatto, A., Silva, E. M. D., Bruand, A., Martins, E. S. & Lima, J. E. F. W. Validity of the centrifuge method for determining the water retention properties of tropical soils. Soil Sci. Soc. Am. J. 72(6), 1547–1553 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Jia, G. M., Cao, J., Wang, C. Y. & Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwuling northwest China. For. Ecol. Manag. 217, 117–125 (2005).Article 

    Google Scholar 
    23.Ghanbarian-Alavijeh, B. & Millán, H. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma 151(3–4), 224–232 (2009).ADS 
    Article 

    Google Scholar 
    24.Wang, M. B., Chai, B. F., Li, H. J. & Feng, C. P. Soil water holding capacity and soil available water in plantations in the loess region. Sci. Silvae Sin. 35(2), 7–14 (1999).
    Google Scholar 
    25.Yang, L., Wei, W., Chen, L. D. & Mo, B. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 475(6), 111–122 (2012).ADS 
    Article 

    Google Scholar 
    26.Huang, J. H., Liao, Y. C., Gao, M. S. & Yin, R. J. Effects of tillage and mulching on orchard soil moisture content and temperature in Loess Plateau. Chin. J. Appl. Ecol. 20(11), 2652–2658 (2009).
    Google Scholar 
    27.Borken, W., Savage, K., Davidson, E. A. & Trumbore, S. E. Effects experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob. Change Biol. 12, 177–193 (2006).ADS 
    Article 

    Google Scholar 
    28.Scott-Denton, L. E., Rosenstiel, T. N. & Monson, R. K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob. Change Biol. 12(12), 205–216 (2006).ADS 
    Article 

    Google Scholar 
    29.Zhang, Y. W., Deng, L., Yan, W. M. & Shangguan, Z. P. Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China. CATENA 137, 52–60 (2016).Article 

    Google Scholar 
    30.Zhao, S. W., Zhao, Y. G. & Wu, J. S. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau. Sci. China Earth Sci. 53, 617–625 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Udawatta, R. P. & Anderson, S. H. Ct-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma 145(3–4), 381–389 (2008).ADS 
    Article 

    Google Scholar 
    32.Honda, E. A. & Durigan, G. Woody encroachment and its consequences on hydrological processes in the Savannah. Philos. Trans. R. Soc. B 371(1703), 20150313 (2016).Article 

    Google Scholar 
    33.Zhang, Y. W. & Shangguan, Z. P. Interaction of soil water storage and stoichiometrical characteristics in the long-term natural vegetation restoration on the Loess Plateau. Ecol. Eng. 116, 7–13 (2018).Article 

    Google Scholar 
    34.Wang, Z. H. et al. Effects of plant species diversity on soil conservation and stability in the secondary succession phases of a semi-humid evergreen broadleaf forest in China. J. Soil Water Conserv. 67, 311–320 (2012).Article 

    Google Scholar 
    35.Yang, L., Wei, W., Chen, L. D. & Wang, J. L. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. CATENA 115, 123–133 (2014).Article 

    Google Scholar 
    36.Wang, L., Mu, Y., Zhang, Q. F. & Jia, Z. K. Effects of vegetation restoration on soil physical properties in the wind–water erosion region of the northern Loess Plateau of China. Clean: Soil, Air, Water 40(1), 7–15 (2012).
    Google Scholar 
    37.Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).CAS 
    Article 

    Google Scholar 
    38.Zhang, Y. W. & Shangguan, Z. P. The coupling interaction of soil water and organic carbon storage in the long vegetation restoration on the Loess Plateau. Ecol. Eng. 91, 574–581 (2016).Article 

    Google Scholar 
    39.Luo, Y. Q. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).Article 

    Google Scholar  More

  • in

    Balanced imitation sustains song culture in zebra finches

    We recorded the songs of 160 zebra finch tutor–pupil pairs (68 tutors and 160 pupils; 228 birds overall) at the Rockefeller University Field Research Center colony, which consisted of over 800 birds during the 1-year period of recording. Of the 160 pupils, 130 pupils were housed with their biological parents, and 30 pupils with foster parents. We also analyzed song imitation across three generations including 14 grand-tutors and 35 grand-pupils. All birds were housed in individual breeding cages with parents (either biological or foster) and other offspring, and kept visually isolated from adjacent breeding cages. With this social regimen, we found no evidence of song imitation across families (Supplementary Fig. 1). From each bird, we recorded undirected songs (produced in isolation) for over a week to obtain a sample of at least 1000 song syllables per bird. Directed songs to females were also recorded, but not analyzed for this study.Imitation outcome varied across familiesWe first measured similarity27 between tutor and pupil songs based on acoustic features (pitch, frequency modulation, Wiener entropy, and spectral continuity)28. We observed considerable variability in the distribution of song similarities between pupils and their individual tutors (mean = 69%; range 20–100%; CV = 0.28, Fig. 1a). To test for family influence, we identified 24 families that had multiple clutches with males, calculated the mean song similarity between pupils and their tutors of each clutch, which allowed us to normalize out the effect of song convergence between siblings20. We then calculated the coefficients of variance across clutches within families and compared it to the coefficient of variance across families (Fig. 1b). We found that imitation similarity was much more variable across families than within families (Kruskal–Wallis chi-squared = 44.727, df = 23, p-value = 0.006).Fig. 1: Distribution of song similarity between pupils and their tutors.a Histogram of song similarities between 160 pupils and their tutors. b Analysis of variance in song similarity between and within families. Data include 24 families with more than one clutch with males. Similarity scores were averaged within clutch members and coefficient of variance (CV = 0.14 ± 0.02) of similarity scores were calculated across clutches. CV of the same data (averaged within clutches) across families = 0.24 is presented as a dotted line. Source data for this figure is in Supplementary Data File 1.Full size imageIn certain families, across clutches, song imitation tended to be almost exclusively accurate (top quartile), in some modest (middle quartile), and others generally poor (Fig. 2a). To assess whether this variance in imitation outcome was genetic, we compared song imitation between biological and foster pupils. Foster pupils imitated their tutor as well as biological ones (biological similarity: 68.2 ± 1.7%, n = 130; foster similarity: 70.0 ± 3.6%, n = 30, mean ± S.E.M. hereafter). Therefore, the variability we observed in imitation outcomes across families cannot be explained by genetic variability. Instead, we noted that variability in imitation among pupils appeared to be associated with tutor song structure. For example, tutor Aq12 had a very simple song with one syllable-type containing two notes and none of his pupils imitated this syllable or song accurately. Instead, some pupils introduced apparently novel syllable types not found in the tutor in developing their own songs (Fig. 2b). In contrast, tutor DG1 had a more complex song, with five syllable types containing six notes, and all of his pupils imitated the syllables and the sequence much more accurately, with little to no introduction of novel syllables (Fig. 2c). In both cases, pupils still produced their syllables in repeated song motifs of 2–6 syllable types, as is typical of zebra finches (Fig. 2b, c). This suggested to us that pupils might more accurately imitate tutor songs that are rich in acoustic structure (i.e., acoustically diverse), while improvising upon impoverished tutor songs.Fig. 2: Imitation outcome varies across families.a 24 song tutoring lineages. All tutors had pupils in more than a single clutch. Each node represents one individual animal. Node shape represents pupils from the same clutch. Tutor nodes are presented on the bottom and pupil nodes on the top. Similarity scores are presented as quartiles (green for best imitations and red for poorest). Lineages are sorted according to the mean similarity between tutor and pupils from highest (top) to lowest (bottom). b, c Examples of song imitations from tutor AQ12 with a low similarity family (b) and from tutor DG1 with a high similarity family (c). Imitation outcomes are presented as percent acoustic similarity estimates on each sonogram. Red bars outline the repeated song motifs of the tutors. Source data for this figure is in Supplementary Data File 1.Full size imageSyllable-type diversity is not correlated between tutor and pupil songsIf this impoverished tutor song hypothesis were true, we would expect to find that as tutor syllable diversity decreases, pupil’ imitation similarity also decreases; conversely, we would expect to see biases in the correlation between tutor syllable diversity and pupil syllable diversity at extreme ranges of tutor diversity. To test this hypothesis quantitatively, we sought a measure of syllable acoustic and syntax diversity. We selected a random group of 80 adult tutor–pupil pairs, and segmented their songs into syllable units using an amplitude threshold27. Song syllables were automatically clustered into types based on their acoustic features (Fig. 3a, b)27. We then calculated the relative frequency (abundance) of each syllable-type and used Shannon information entropy27 to measure syllable acoustic diversity produced by each bird. Specifically, for each bird’s song, we calculated the proportion ({p}_{i}) of syllables produced for each syllable-type i, and computed entropy as (-sum {p}_{i}({{{log}}}_{2}({p}_{i}))). The measure weighs each vocal element (syllable) by its abundance, and presents the entropy (diversity) of the distribution in units of bits. We used the same Shannon information measure to also evaluate syllable transition diversity (song-syntax entropy29). The Shannon information entropy has limited bearing on capturing combinatorial complexity30, but it is a better estimate of diversity compared to just counting syllable types because it considers the frequencies (abundances) of each type. The more syllable types produced, and the more even their abundances are, the higher the entropy.Fig. 3: Syllable-type diversity.a Example sonograms of a tutor–pupil song pair. Syllable types are color-coded by lines above them. Color lines above each syllable indicate clusters computed separately for tutor and pupil in b. Note that syllable types are bird specific and color codes have no correspondence between tutor and pupil, e.g., green, yellow, and black labeled syllable types in tutor song merged into a single type (yellow labeled) in pupil’s song. b 2D scatter plots of syllable acoustic features: duration versus mean pitch, mean frequency modulation (FM), or mean Wiener entropy (a measure of the width of the power spectrum). The color of each marker indicates its computed syllable-type (type = cluster in feature space). Colors of clusters correspond to syllable-type colors shown in a. c Histogram of syllable-type diversity, pooled across all birds. d Regression analysis between tutor and pupil syllable-type diversity, showing no significant correlation for pupils with high or low imitation similarity of their tutors. e, f Tutor syllable diversity is not correlated with pupil song imitation similarity (e), or influence of tutors on pupils (f). g–k Examples of five tutor–pupil pairs with syllable recombination, namely merging in pupil songs. Source data for this figure is in Supplementary Data File 1.Full size imageThe distribution of syllable-type diversity of songs in the population was asymmetric, with most songs in the range of 2.5–3 bits and a left tail of rare songs with low syllable diversity (Fig. 3c). Surprisingly, there was no statistically significant correlation between tutor and pupil syllable diversity (R2 = 0.079, NS). Looking separately at pupils who imitated above (and below) average showed no correlations either (Fig. 3d). Further, there was no correlation between tutor syllable diversity and acoustic similarity between tutor and pupil songs (Fig. 3e). To better estimate how tutor syllable diversity may affect the cultural transmission, we calculated song acoustic similarity in reverse, from pupil to tutor. We call this a measure of “influence” because it tells us how much of the pupil’s song is influenced by the tutor. However, influence in pupils was not significantly correlated with tutor song (Fig. 3f). Near zero correlations were also observed for song-syntax (bigram) transitions between pairs of syllable types (Supplementary Fig. 1). In sum, our syllable-type diversity measure failed to capture any aspect of song learning, nullifying all our attempts to evaluate our impoverished tutor song hypothesis.Half of the pupils recombine syllablesPuzzled by the lack of even a weak correlation between tutor and pupil syllable and syntax diversity, we examined cases of most accurate imitation. We found frequent inconsistencies, as is typical of zebra finches in the boundaries of corresponding syllables in the songs of tutors and their pupils, even in cases of accurate imitation. This was not primarily due to measurement (segmentation) errors, but because pupils often modified or recombined the units they imitated (Fig. 3g). We assessed a lower bound estimate of similarity in the syllable boundaries of tutor and pupil songs, restricting the analysis to those syllables whose acoustic structure was clearly and fully imitated (either as a single unit or in parts) by the pupil (examples in Fig. 3g–k). With this strict criterion, analysis of syllable imitations in 33 randomly selected tutor–pupil pairs revealed modification of syllable boundaries in 47 cases (22%) of the copied syllables. Overall, 54% (18/33) of the pupils showed at least one case of altering syllables units. Interestingly, all 47 cases were of merging tutor syllables, rather than splitting. However, splitting might be more difficult to detect, and if so, our analyses would be an underestimate of the magnitude of syllable recombination (see “Methods” section).Vocal state measures capture balanced imitationGiven the extent of syllable recombination, we next sought an alternative quantitative measure that captures acoustic diversity at the sub-syllabic level, which would be, by design, insensitive to syllable recombination. For each of the 160 tutor–pupil pairs, we calculated continuously (in 10 ms FFT windows excluding silences, but without segmentation) three acoustic feature vectors: pitch, Wiener entropy (width of power spectrum), and frequency modulation28. Histograms of these features for all birdsongs in our sample reveal several concentrations, and we used the contours of these concentrations to partition the entire acoustic space of the songs into 10 regions. To visualize these concentrations, we present 2D slices of the feature space according to four peaks in the distribution of pitch (Fig. 4a), which we labeled very low, low, medium, and high. These four slices show distinct concentrations of the 10 regions, that we will call vocal states (Fig. 4b). The two concentrations in the highest and lowest pitch regions consisted of down-modulated and up-modulated sounds, respectively (vocal states 1 and 2, for lowest pitch, and 9 and 10 for highest pitch). The two central pitch regions (low and medium) consisted of similar types of vocal states, and two additional states (4 and 7) centered at zero frequency modulation represent non-modulated harmonic sounds. With the vocal states of the population categorized, we can consider each song as a long sequence of vocal states, calculated in small (10 ms) time windows. We next analyzed the distribution of vocal states, by calculating the relative abundances of sounds within each vocal state for each bird.Fig. 4: Vocal states and diversity in zebra finch songs.a Histogram of pitch, calculated in 10 ms windows and pooled for all songs31. Shadings show partitioning into four regions according to contours of the pitch distribution. b Two-dimensional heatmaps of frequency modulation and Wiener entropy for each of the four-pitch regions. Red circles outline 10 clusters around which vocal states are defined. c Histogram of song diversity for all male birds recorded. d Song diversity in tutor songs versus pupil songs. Colors show R2 separately for high and low similarity birds. e Tutor song diversities vs. similarity with pupil songs (R2 = 0.08, t = 1.9, Linear mixed-effects model NS). f Tutor song diversities vs. the influence of tutor song on pupils (R2 = 0.25, Linear mixed-effects model t = 4.8, p = 4.2e−6). Vertically aligned markers are often birds from the same lineage. The trend remains significant after removing the lowest diversity families (ABCDEF will give us 100% imitation similarity because all of the tutor’s sounds are present in pupil’s song, but only 50% influence because half of the pupil’s song is improvised. Indeed, for tutors with high song diversity, the diversity of pupil’ songs is centered on the diagonal (identity) line (Fig. 4d). However, for tutors with low song diversity, pupil song diversity, in most cases, above the diagonal (Fig. 4d). For example, out of 34 tutor songs with diversity below 3, only 5 pupil songs are below the diagonal. That is, pupils of tutors with low song diversity often imitated them, but were less influenced by them: they often made additions that increase song diversity. These “low influence” songs did not resemble neighboring birds’ songs (Supplementary Note 1). We, therefore, suspect that these additions are improvisations, namely they are likely to be either modified versions of tutor song elements, or innate syllable types.Assuming a natural trend to develop high-diversity songs either via imitation or improvisation, we wondered why songs of low diversity were not rarer in our colony. We tested which factors may sustain songs of low diversity across generations and found that pupils that imitated poorly, regardless of tutor song diversity, tended to have low-diversity songs (Fig. 4g, R2 = 0.20, t = 5.7, p = 6.2e−8). To directly test for interaction between imitation accuracy and song diversity, we ran a linear mixed-effect model to explain pupil song diversity with two fixed effects: the diversity of the tutor song, and the acoustic similarity to the tutor song (how much of it was copied). Results confirmed that both factors contribute about equally to pupil song diversity (imitation similarity: t = 5.0, p = 1.4e−6; tutor song diversity: t = 4.6, p = 7.9e−6).In sum, although our syllable diversity measure failed to capture any relationship with song imitation, bypassing syllable recombination by measuring song diversity based on vocal states (without segmentation) revealed two effects: First, low diversity in a tutor’s song was not associated with lower imitation similarity in the pupil but with lower influence on the pupil, indicating a tendency in pupils to increase song diversity, which we call “balanced imitation”. Second, low diversity in a pupil’s song (but not in tutor song) is associated with poor imitation similarity in the pupil. Together these effects can explain the stable polymorphism in song diversity across generations: on the one hand, pupils tend to increase song diversity when tutored by a low-diversity song model, but on the other hand, poor imitation is associated with a decrease of song diversity in pupils’ songs. Consistent with this interpretation, when we plotted song diversity of each tutor against the mean song diversity of all of his pupils, the mean song diversity in pupils of low-diversity (below median) tutors was often higher than that of their tutors, and vice versa (Fig. 4h). That is, despite the overall positive correlation between tutor and pupil song diversity, we see frequent reversals such that a large proportion (42%) of pupils with low song diversity had tutors with high (above median) song diversity, and vice versa.Balanced imitation across multiple generationsWe further explored reversals across multiple generations, and analyzed 14 family branches, where we had song imitation data across two generations of pupils. We found that in the families where the first-generation pupils imitated poorly, there was often some recovery in imitation accuracy in the second-generation, the grand-pupils (Fig. 5a). For example, in the two lineages (HP10 and DG4) with the greatest number of first-generation pupils that imitated poorly, all of the second-generation (grand) pupils imitated the song of their tutor more accurately than the tutor’s imitation of the grand tutor. Sonograms revealed that, in both lineages, the grand-tutor songs were unbalanced: Tutor HP10 had a very high-pitched song (Fig. 5b), whereas tutor DG4’s song included numerous harmonic stacks (Fig. 5c). In both cases, their pupils developed songs that appear to be more acoustically “balanced,” and ones that the grand-pupils imitated accurately (Fig. 5b, c). In other cases, however, low similarity was simply due to partial imitation, e.g., in the lineage (LB12), where the song imitation became worse because a grand–pupil dropped a syllable during imitation (Fig. 5d). These findings suggest that grand-pupils of impoverished-song grand tutors imitate some elements from the deficient songs of their tutors, but they also further “balance” them, thus increasing the diversity of their songs.Fig. 5: Song diversity across generations.a Song similarity across two generations of pupils (colors represent quartiles (as in Fig. 1a)) in 14 family lineages. b An example from lineage HP10 showing a transition from poor imitation in a first-generation pupil to accurate imitation in a grand pupil. c Same as b for lineage DG4. d A counter example in lineage LB12, where the grand pupil imitated poorly. Source data for this figure is in Supplementary Data File 1.Full size imageBalanced imitation of vocal state abundancesOur measures up to now summarize the distribution of vocal states within a song. We next looked at each vocal state separately and measured how frequencies (abundances) of vocal states are imitated. In prior studies, we noted that vocal imitation in zebra finches is inversely related to model abundance. That is, too much exposure to a tutored song could inhibit learning31. Here we test if this is the case also for abundances of vocal states within a song.We partitioned the vocal state data into quartiles based on the overall acoustic similarity between tutor and pupil songs. For each tutor–pupil pair, in each quartile, we then plotted the relative abundances of all 10 corresponding vocal states in the tutor’s song versus his pupil’s song (Fig. 6a–d). We found that relative abundances of all 10 states were correlated, for each quartile. As expected, tutor–pupil vocal state abundances were more strongly associated when imitations were accurate; for example, the residual coefficient of determination was much higher in the top similarity quartile, explaining about 35% of the variance in cases of highest song similarity (Fig. 6a), and only about 9% of the variance in the bottom quartile (Fig. 6d). We noted that in all quartiles, the slope of the correlation was less than one (Fig. 6a–d), meaning that when tutor’s vocal state was low in abundance, pupil’s vocal states tended to be higher (above the diagonal) and vice versa.Fig. 6: Imitation of vocal state abundances.a–d Scatter plots of tutor vs. corresponding pupil vocal state abundances according to quartiles of song similarities. Note that each bird is represented by 10 markers, which are not statistically independent. The residual correlations were computed after removing trends with bird identities included as random factors. Dashed lines are identity, slope = 1. Colored lines are regression of the data. e Same data as in a–d combined, comparing vocal states abundances  > 20% in tutor vs. pupil songs. f Median imitation gains for all state abundances, according to imitation quartiles. Gain of 1 indicates no bias, gain of 2 indicates doubling of abundance, and gain of 0.5 halving. Y axis is log-scale. g–i Examples of song diversity balancing. We simplified the 10 vocal states into 4 groups: yellow for high pitch states 9–10; mustard for medium pitch, high entropy states 6 and 8; light blue for non-modulated states 4 and 7; and dark blue for the rest 1, 2, 3, and 5. In i, we present two generations of pupils. Note the more uniform pie charts in pupils compared to their tutors. j, Vocal state abundances in biological tutors vs. pupils’ songs. k Vocal state abundances in foster tutors vs. pupils’ songs. l Vocal state abundances in fostered pupils vs. their biological fathers, who did not raise them, which did not raise them. Dashed lines are identity, slope = 1. Red lines are regression of the data. Source data for this figure is in Supplementary Data File 1.Full size imageWe next tested for statistical significance of this bias across the entire data set. Our null hypothesis is that when the abundance of a vocal state in the tutor’s song is high, his pupil is not more likely than chance to deviate from the model in a manner that “balances” his song. In other words, if deviations (imitation “errors”) are random, then the likelihood of deviations (errors) to increase or decrease song diversity should be determined by the overall distribution of errors in our sample. In a previous study2, some of us presented evidence that imitation of isolated tutors is biased: syllables with high abundance in abnormal isolate tutor song ( >20%) were often less abundant is pupil’s songs. Using the same 20% threshold we found that the distribution of tutor vs. pupil vocal state abundances is asymmetric (Fig. 6e): when tutor’s vocal state abundance is above 20%, about 14% of corresponding pupil’s states are above the diagonal (hence 86% of the errors increase song diversity). But looking in reverse, we found that when a pupil’s vocal state is above 20%, a higher proportion of corresponding tutor’s states (23%) are to the right of the diagonal. To overcome dependencies between vocal states, we treated each tutor–pupil pair as a statistic. We randomly shuffled the direction tutor- >pupil vs. pupil- >tutor (without breaking the pairs) to obtain a random distribution of biases. We found that the observed bias to increase song diversity (namely in the direction that decreases the abundance of vocal states that are already of high abundance) is higher than expected by chance (bootstrap direct p-value = 0.032).We wondered if this bias is stronger in cases of poor imitation, due to the inclusion of non-tutor syllables (via improvisation or innate vocalization). To evaluate if this was the case, we divided the tutors’ vocal states into 0.1 abundance bins, then calculated the median abundance of pupil vocal states for each bin. For each bin, we calculated the abundance ratio for that median. For example, if at the window centered at 0.1 tutor abundance, the median pupil vocal state abundance was 0.2, then the gain ratio would be 2. A gain value of 1 (y axis in Fig. 6f) represents the identical abundance of all 10 vocal states in pupil and tutor. A gain value of 2 indicates a doubling of abundances in the pupil (amplification), and a value of 0.5 halving (attenuation). Interestingly, the gain-loss curves have similar shapes and magnitude across all four quartile groups (Fig. 6f). In all cases, a gain of 1 (where abundance tends to be identical across pupils and their tutors), was at 11–12% abundance, which is fairly close to the center of the distribution (=10%, since we have 10 vocal states). These findings suggest that the regression we noted is not an entirely random effect. For example, in Q1, where the mean similarity is 93%, we see that when tutor state abundance is above 0.2, the corresponding pupil abundance is lower in 10 out of 11 cases (Fig. 6a). In all these cases, the corresponding vocal sounds were imitated, but produced either less often, or with biased features, by the pupil.To visually compare vocal state abundances in tutor vs pupil songs, we reduced the ten vocal states into four color codes, and graphed them along with the sonograms of each bird (Fig. 6g–i). In cases where the tutors’ songs included many high-pitched vocalizations (vocal states 9 and 10), their pupils imitated, but lowered the pitch, thereby decreasing the abundance of those states (Fig. 6g, h). In another example, where the tutor’s song had a high abundance of harmonic stacks (states 4 and 7), their pupil imitated only a subset of these sounds (Fig. 6i). In turn, in the following generation, the pupil’s pupil further differentiated his song to include more balanced vocal states (Fig. 6i). Taken together, song imitation appears to be highly sensitive to the relative abundances of vocal states, suggesting a balancing mechanism that prevents song diversity from becoming too low, perhaps independently of imitation.Finally, we asked whether fostered pupils imitate their tutor’s song vocal states as accurately as biological pupils. Analysis at the level of vocal states allowed us to compare how abundances of vocal states are influenced by foster vs. biological fathers. For reference, imitation of vocal state abundances between the 130 biological pupils and their fathers had a residual R2 = 0.16 (Fig. 6j; t = 5.9, p = 3.9e−09). The 30 foster pupils relative to their foster fathers had a similar R2 = 0.19 (Fig. 6k; t = 2.5, p = 0.01). This is supported by a near-zero correlation between fostered pupils and their biological fathers (Fig. 6l, residual R2 = 0.01, t = 0.46, NS). Therefore, the similarities we observed in vocal state abundances between tutors and their pupils reflect learning with no detectable genetic effect at this level of analysis.How balanced imitation constrains distributions of song featuresWe first tested if abundances of specific vocal states are similar across low-diversity and high-diversity tutor songs. We pooled together songs from tutors that had the lowest diversity (bottom quartile) and calculated the diversity of their “pooled song”. We found that the diversity increased from a mean of 2.99 bits to 3.17 bits, which is similar to the mean diversity in the top quartile (mean = 3.16 bits) but lower than the pooled diversity of the top quartile (=3.27 bits). This outcome indicates that the distribution of vocal states pooled across low-diversity songs is fairly broad, but not as broad as that across songs of high diversity. The distribution of abundances of pooled vocal states (Fig. 7a) explained this difference: As opposed to the nearly flat distribution of vocal state abundances in the high-diversity songs, low-diversity songs tend to have a higher proportion of states 9 and 10, which correspond to high pitch sounds. This is interesting because, in this respect, the low-diversity songs are structurally similar to isolate songs, which are often of higher pitch32. As expected, comparing top and bottom quartiles of influence on the pupil show a similar outcome (Fig. 7b). This outcome suggests that mean song features of low and high influence songs should differ. Further, the variance should also differ: High-diversity songs by definition cannot be extreme in their mean feature values. Low-diversity songs can, in principle, have average features that are close to the population mean, but are more likely to have extreme mean feature values. For example, a song containing mostly high-pitched sounds is both low diversity and extreme in its mean pitch (see for example tutor HP10 in Fig. 5b).Fig. 7: Song diversity versus imitation.a Vocal state abundances in pupils pooled over birds with lowest (bottom quartile) song diversity (dotted line) vs. top quartile (solid line). b Same as a for the bottom (red) and top (green) quartiles of tutor song influence. c–e Mean tutor’s song features versus pupil’s song features for pitch (c), frequency modulation (d), and Wiener entropy (e) for the top influences (green dots, top quartile) and for bottom influences (red dots, bottom quartile). Plotted at the bottom are histogram lines of tutor features for top and bottom quartiles. f–h Box plot distribution of mean song features in four colonies for pitch (f), frequency modulation (g), and Wiener entropy (h). Each marker represents the mean value for one bird. Green shaded areas correspond to top influence feature ranges in colony RU 2019 (this study), whereas red shaded areas correspond to bottom influence feature ranges in colony RU 2019 (n = 149 birds). In the box plots themselves, the red line is the median; Orange fill are the upper and lower quartiles; Blue fill is the minima and maxima. About 20% of the RU 2019 colony are descendants from the RU 2002 colony (Rockefeller Nottebohm Lab; n = 42 birds). The remainder of the 2019 colony originated from Duke University. Colony 3 is from the University of Southern California (Bottjer Lab; n = 48) and Colony 4 is from Cornell University (Regan Lab; n = 77). Source data for this figure is in Supplementary Data File 1.Full size imageWe asked whether we can predict imitation outcomes based on the mean features of a tutor song. If songs of low diversity were culturally transmitted less than high-diversity songs, then songs with extreme mean features—which are typically of low diversity—should be transmitted less. To evaluate this, we plotted the mean pitch of tutor songs against the pitch of their pupil’s songs. Indeed, the distribution of mean song pitch was tighter for the top quartile of tutor–pupil song imitation (Fig. 7c). For example, all tutor songs with a mean pitch above 2000 Hz were of low influence (Fig. 7c, histogram red symbols); these extreme songs were also of low diversity. A similar effect can be seen in Wiener entropy (Fig. 7d) and frequency modulation (Fig. 7e): in both cases the distributions were broader for low-diversity songs. Further, for mean pitch, top influence (green line) is equal or higher than low influence (red line) between 795 Hz and 1885Hz (Fig. 7c). Bottom influence is higher between 1885 and 3000 Hz (red line above green line, Fig. 7c).We superimposed these empirically determined pitch intervals (for top and bottom influence) on ranges of mean song pitches obtained in a database of four zebra finch colonies including the current one, and shaded the intervals values green (presumably top influence) and red (presumably low influence; Fig. 7f). We then did the same for frequency modulation (Fig. 7g), and Weiner entropy (Fig. 7h). Across the colonies, the distribution of mean song features was to a large extent confined within the range of high influence in our colony. Therefore, the range of mean feature values of highest imitation influences in our colony, but not of lowest influences, seems consistent across zebra finch colonies. This range, in turn, can be explained by balanced imitation as high influences are associated with high tutor song diversity. In sum, this outcome is consistent with the notion that over generations, songs of high feature diversity are more influential, and therefore shape the overall distribution of mean song features in a similar manner across colonies. More