More stories

  • in

    Leadership – not followership – determines performance in ant teams

    1.Wilson, E. O. The insect societies. (Harvard University Press, Cambridge, Massachusetts, USA, 1971).
    Google Scholar 
    2.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robson, S. K. & Traniello, J. F. Key individuals and the organisation of labor in ants. In Information processing in social insects, 239–259 (Springer, 1999).4.Smith, A. The wealth of nations (London, Methuen & Co, 1776).5.Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects (Princeton University Press, 1978).6.Jeanne, R. L. The evolution of the organization of work in social insects. Italian J. Zool. 20, 119–133 (1986).
    Google Scholar 
    7.Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).Article 

    Google Scholar 
    8.Franks, N. R. The organization of working teams in social insects. Trends Ecol. Evol. 2, 72–75 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Robinson, G. E. Regulation of division of labor in insect societies. Ann. Rev. Entomol. 37, 637–665 (1992).CAS 
    Article 

    Google Scholar 
    10.O’Donnell, S. & Jeanne, R. L. Forager specialization and the control of nest repair in Polybia occidentalis olivier (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 27, 359–364 (1990).Article 

    Google Scholar 
    11.Wahl, L. Evolving the division of labour: generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Jaffé, R., Kronauer, D. J., Bernhard Kraus, F., Boomsma, J. J. & Moritz, R. F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).Article 

    Google Scholar 
    14.Wilson, E. O. Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 157–165 (1980).Article 

    Google Scholar 
    15.Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant solenopsis invicta buren. Animal Behav. 29, 410–420 (1981).Article 

    Google Scholar 
    16.Detrain, C. & Pasteels, J. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera: Myrmicinae). J. Insect behav. 4, 157–176 (1991).Article 

    Google Scholar 
    17.Theraulaz, G., Bonabeau, E. & Denuebourg, J. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    18.Johnson, B. R. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 147–152 (2003).Article 

    Google Scholar 
    19.Dukas, R. & Visscher, P. K. Lifetime learning by foraging honey bees. Animal Behav. 48, 1007–1012 (1994).Article 

    Google Scholar 
    20.Richardson, T. O., Mullon, C., Marshall, J. A., Franks, N. R. & Schlegel, T. The influence of the few: a stable ‘oligarchy’ controls information flow in house-hunting ants. Proc. R. Soc. B 285, 20172726 (2018).PubMed 
    Article 

    Google Scholar 
    21.Trumbo, S. T. & Robinson, G. E. Learning and task interference by corpse-removal specialists in honey bee colonies. Ethology 103, 966–975 (1997).Article 

    Google Scholar 
    22.Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behav. 58, 437–442 (1999).CAS 
    Article 

    Google Scholar 
    23.Dukas, R. Life history of learning: performance curves of honeybees in settings that minimize the role of learning. Animal Behav. 75, 1125–1130 (2008).Article 

    Google Scholar 
    24.Charbonneau, D., Sasaki, T. & Dornhaus, A. Who needs ‘lazy’workers? inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PloS one 12, e0184074 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F. & Sumpter, D. J. Information flow, opinion polling and collective intelligence in house–hunting social insects. Philosop. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1567–1583 (2002).Article 

    Google Scholar 
    27.Pratt, S. C., Mallon, E. B., Sumpter, D. J. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).Article 

    Google Scholar 
    28.Möglich, M. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25, 205–225 (1978).Article 

    Google Scholar 
    29.Visscher, P. K. Group decision making in nest-site selection among social insects. Ann. Rev. Entomol. 52, 255–275 (2007).CAS 
    Article 

    Google Scholar 
    30.McGlynn, T. P. The ecology of nest movement in social insects. Ann. Rev. Entomol. 57, 291–308 (2012).CAS 
    Article 

    Google Scholar 
    31.Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Richardson, T. O., Sleeman, P. A., McNamara, J. M., Houston, A. I. & Franks, N. R. Teaching with evaluation in ants. Curr. Biol. 17, 1520–1526 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Franklin, E. L., Richardson, T. O., Sendova-Franks, A. B., Robinson, E. J. & Franks, N. R. Blinkered teaching: tandem running by visually impaired ants. Behav. Ecol. Sociobiol. 65, 569–579 (2011).Article 

    Google Scholar 
    34.Franks, N. R. et al. Ant search strategies after interrupted tandem runs. J. Exper. Biol. 213, 1697–1708 (2010).Article 

    Google Scholar 
    35.Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B Biol. Sci. 272, 1091–1099 (2005).Article 

    Google Scholar 
    36.Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    37.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer Science & Business Media, 2003).38.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    39.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    41.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. 112, 4690–4695 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Pratt, S. C., Sumpter, D. J., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behav. 70, 1023–1036 (2005).Article 

    Google Scholar 
    43.Volny, V. P. & Gordon, D. M. Genetic basis for queen–worker dimorphism in a social insect. Proc. Natl Acad. Sci. 99, 6108–6111 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Walsh, J. T., Warner, M. R., Kase, A., Cushing, B. J. & Linksvayer, T. A. Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Animal Behav. 141, 161–169 (2018).Article 

    Google Scholar 
    45.Seeley, T. D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12, 253–259 (1983).Article 

    Google Scholar 
    46.Boesch, C. Cooperative hunting roles among tai chimpanzees. Human Nat. 13, 27–46 (2002).Article 

    Google Scholar 
    47.Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).Article 

    Google Scholar 
    48.Gazda, S. K., Connor, R. C., Edgar, R. K. & Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (tursiops truncatus) off cedar key, florida. Proc. R. Soc. B Biol. Sci. 272, 135–140 (2005).Article 

    Google Scholar 
    49.Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Nagy, M. et al. Context-dependent hierarchies in pigeons. Proc. Natl Acad. Sci. USA 110, 13049–13054 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. Basketball teams as strategic networks. PloS One 7, e47445 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Alleman, A., Stoldt, M., Feldmeyer, B. & Foitzik, S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol. Ecol. 28, 2342–2359 (2019).PubMed 
    Article 

    Google Scholar 
    53.Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Collett, T. S., Graham, P. & Durier, V. Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).CAS 
    Article 

    Google Scholar 
    56.Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).Article 

    Google Scholar 
    57.Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. & Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Chittka, L. & Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2, 151–154 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova-Franks, A. B. & Franks, N. R. Do ants need to be old and experienced to teach? J. Exp. Biol. 215, 1287–1292 (2012).PubMed 
    Article 

    Google Scholar 
    60.Westhus, C., Kleineidam, C. J., Roces, F. & Weidenmüller, A. Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Animal Behav. 85, 27–34 (2013).Article 

    Google Scholar 
    61.Dukas, R. Animal expertise: mechanisms, ecology and evolution. Animal Behav. 147, 199–210 (2019).Article 

    Google Scholar 
    62.Carter, C. E. & Grahn, J. A. Optimizing music learning: exploring how blocked and interleaved practice schedules affect advanced performance. Front. Psychol. 7, 1251 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Stroeymeyt, N., Franks, N. R. & Giurfa, M. Knowledgeable individuals lead collective decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).PubMed 
    Article 

    Google Scholar 
    64.Stroeymeyt, N., Giurfa, M. & Franks, N. R. Information certainty determines social and private information use in ants. Sci. Rep. 7, 43607 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    65.Hansen, M. J., Schaerf, T. M. & Ward, A. J. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    66.Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Leca, J.-B., Gunst, N., Thierry, B. & Petit, O. Distributed leadership in semifree-ranging white-faced capuchin monkeys. Animal Behav. 66, 1045–1052 (2003).Article 

    Google Scholar 
    68.McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).Article 

    Google Scholar 
    69.Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).PubMed 
    Article 

    Google Scholar 
    70.Cook, C. N. et al. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J. Animal Ecol. 88, 236–246 (2019).Article 

    Google Scholar 
    71.Eyer, P.-A., Freyer, J. & Aron, S. Genetic polyethism in the polyandrous desert ant cataglyphis cursor. Behav. Ecol. 24, 144–151 (2013).Article 

    Google Scholar 
    72.Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav. 65, 215–223 (2003).Article 

    Google Scholar 
    73.Dornhaus, A., Franks, N. R., Hawkins, R. & Shere, H. Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behav. 67, 959–963 (2004).Article 

    Google Scholar 
    74.Planqué, R., Dechaume-Moncharmont, F.-X., Franks, N. R., Kovacs, T. & Marshall, J. A. Why do house-hunting ants recruit in both directions? Naturwissenschaften 94, 911–918 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia

    1.Bonizzoni, M. et al. On the origins of medfly invasion and expansion in Australia. Mol. Ecol. 13, 3845–3855 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLoS ONE 9, e106268 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Karsten, M., van Vuuren, B. J., Addison, P. & Terblanche, J. S. Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: Are port interceptions and quarantine protocols successfully preventing new invasions?. Divers. Distrib. 21, 813–825 (2015).Article 

    Google Scholar 
    4.Rodriguero, M. S. et al. Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 6, 5431–5445 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).Article 

    Google Scholar 
    6.Lombaert, E. et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol. Invasions 20, 665–677 (2018).Article 

    Google Scholar 
    7.Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).PubMed 
    Article 

    Google Scholar 
    9.Takano, S. et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc. Natl. Acad. Sci. USA 114, 6110–6115 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Radcliffe, E. B. & Flanders, K. L. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 3, 225–242 (1998).Article 

    Google Scholar 
    11.Kuwata, R., Tokuda, M., Yamaguchi, D. & Yukawa, J. Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae). J. Appl. Entomol. 129, 191–197 (2005).CAS 
    Article 

    Google Scholar 
    12.Skuhrovec, J. Host plants of weevils of the genus Hypera (Coleoptera: Curculionidae) occurring in the Czech Republic. Klapalekiana 41, 215–255 (2005).
    Google Scholar 
    13.Wood, K. A., Armbrust, E. J., Bartell, D. P. & Irwin, B. J. The literature of arthropods associated with alfalfa. V. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal), and the Egyptian alfalfa weevil, Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae). Illinois Agricultural Experimental Station, Special Publication, 54 (1978).14.Kimura, H., Okumura, M. & Yoshida, T. Emergence of and recent damage by the alfalfa weevil. Shokubutsu Boeki (Plant Protection) 42, 498–501 (in Japanese) (1988).15.CAB International crop protection compendium. CAB International. http://www.cabicompendium.org/cpc/home.asp (2013).16.Titus, E. G. On the life history of the alfalfa leaf-weevil. J. Econ. Entomol. 3, 459–470 (1910).Article 

    Google Scholar 
    17.Wehrle, L. P. The discovery of an alfalfa weevil (Hypera brunneipennis Boheman) in Arizona. J. Econ. Entomol. 33, 119–121 (1940).Article 

    Google Scholar 
    18.Poos, F. W. & Bissell, T. L. The alfalfa weevil in Maryland. J. Econ. Entomol. 46, 178–179 (1953).Article 

    Google Scholar 
    19.Volker, K. C. & Simpson, R. G. Behavior of alfalfa weevil larvae affecting the establishment of Tetrastichus incertus in Colorado. Environ. Entomol. 4, 742–744 (1975).Article 

    Google Scholar 
    20.Salt, G. & van den Bosch, R. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an Ichneumon wasp. J. Invertebr. Pathol. 9, 164–177 (1967).Article 

    Google Scholar 
    21.Maund, C. M. & Hsiao, T. H. Differential encapsulation of two Bathyplectes parasitoids among alfalfa weevil strains, Hypera postica (Gyllenhal). Can. Entomol. 123, 197–203 (1991).Article 

    Google Scholar 
    22.Hsiao, T. H. Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In The ecology of agricultural pests: biochemical approaches (eds, Symondson, W. O. C. & Liddell, J. E.). 57–71 (Chapman & Hall, 1996).23.Hsiao, T. H. & Stutz, J. M. Discrimination of alfalfa weevil strains by allozyme analysis. Entomol. Exp. Appl. 37, 113–121 (1985).CAS 
    Article 

    Google Scholar 
    24.Erney, S. J., Pruess, K. P., Danielson, S. D. & Powers, T. O. Molecular differentiation of alfalfa weevil strains (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 89, 804–811 (1996).CAS 
    Article 

    Google Scholar 
    25.Böttger, J. A. A. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J. Econ. Entomol. 106, 426–436 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Iwase, S., Nakahira, K., Tuda, M., Kagoshima, K. & Takagi, M. Host-plant dependent population genetics of the invading weevil Hypera postica. Bull. Entomol. Res. 105, 92–100 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.White, C. E., Armbrust, E. J. & Ashley, J. Cross-mating studies of eastern and western strains of alfalfa weevil. J. Econ. Entomol. 65, 85–89 (1972).Article 

    Google Scholar 
    28.Iwase, S. & Tani, S. New haplotype and inter-strain reproductive compatibility of Wolbachia-uninfected alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), in Japan. Entomol. Sci. 19, 72–76 (2016).Article 

    Google Scholar 
    29.Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hale, L. R. & Hoffmann, A. A. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution 44, 1383–1386 (1990).PubMed 
    Article 

    Google Scholar 
    33.Ballard, J. W. O. & Kreitman, M. Unravelling selection in the mitochondrial genome of Drosophila. Genetics 138, 757–772 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Johnstone, R. A. & Hurst, G. D. D. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol. J. Linn. Soc. 58, 453–470 (1996).Article 

    Google Scholar 
    35.Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K. & Jaenike, J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 2049–2058 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 
    Article 

    Google Scholar 
    40.Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Rand, D. M., Haney, R. A. & Fry, A. J. Cytonuclear coevolution: the genomics of cooperation. TRENDS Ecol. Evol. 19, 645–653 (2004).PubMed 
    Article 

    Google Scholar 
    42.Arnqvist, G. et al. The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64, 3354–3363 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Blickenstaff, C. C. Partial intersterility of eastern and western US strains of the alfalfa weevil. Ann. Entomol. Soc. Am. 58, 523–526 (1965).Article 

    Google Scholar 
    44.Hsiao, T. H. & Hsiao, C. Hybridization and cytoplasmic incompatibility among alfalfa weevil strains. Entomol. Exp. Appl. 37, 155–159 (1985).Article 

    Google Scholar 
    45.Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216, 383–384 (1967).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Iwase, S. et al. Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment. Biol. Invasions 17, 3639–3648 (2015).Article 

    Google Scholar 
    47.Sanaei, E. et al. Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol. Evol. 9, 9546–9563 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ros, V. I. D., Fleming, V. M., Feil, E. J. & Breeuwer, J. A. J. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036–1043 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).
    Google Scholar 
    50.Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Jäckel, R., Mora, D. & Dobler, S. Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol. Ecol. 22, 4241–4255 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).PubMed 
    Article 

    Google Scholar 
    54.Jansen, V. A. A., Turelli, M. & Godfray, H. C. J. Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B Biol. Sci. 275, 2769–2776 (2008).
    Google Scholar 
    55.Clancy, D. J. & Hoffmann, A. A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 86, 13–24 (1998).Article 

    Google Scholar 
    56.Bordenstein, S. R. & Bordenstein, S. R. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6, e29106 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Kamo, T. et al. Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry 69, 1166–1172 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Megías, C., Cortes-Giraldo, I., Giron-Calle, J., Alaiz, M. & Vioque, J. Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatal. Agric. Biotechnol. 8, 126–129 (2016).Article 

    Google Scholar 
    59.Rosenthal, G. A. & Dahlman, D. L. Incorporation of L-canavanine into proteins and the expression of its antimetabolic effects. J. Agric. Food Chem. 39, 987–990 (1991).CAS 
    Article 

    Google Scholar 
    60.Kamo, T., Tokuoka. Y. & Miyazaki, M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: Effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 38, 1552–1560 (2012).61.Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    62.Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Jordal, B. H. & Kambestad, M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol. Ecol. Resour. 14, 7–17 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Quiros, C. F. & Bauchan, G. R. The genus Medicago and the origin of the Medicago sativa complex. In Alfalfa and alfalfa improvement (eds, Hanson, A. A., Barnes, D. K. & Hill, R. R.). 93–124 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1988).66.Small, E. Alfalfa and Relatives: Evolution and Classification of Medicago (NRC Research Press, 2011).
    Google Scholar 
    67.FAO Statistics Division. FAOSTAT: Crops and livestock products. http://www.fao.org/faostat/en/#data/TP (2017).68.Simon, C. A. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 
    Article 

    Google Scholar 
    69.Kim, C. G. et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Mol. Biol. Evol. 17, 137–145 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Holden, P. R., Brookfield, J. F. Y. & Jones, P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 240, 213–220 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Kondo, N. I. et al. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zool. Sci. 28, 501–508 (2011).ADS 
    Article 

    Google Scholar 
    72.Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogeny. Biometrics 17, 754–755 (2001).CAS 

    Google Scholar 
    74.Nylander, J. A. A. MrAIC.pl. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University (2004).75.Rambaut, A. & Drummond, A. J. Tracer v1.5, http://beast.bio.ed.ac.uk/ (2009).76.Tajima, F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Yang, Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Haran, J., Koutroumpa, F., Magnoux, E., Roques, A. & Roux, G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J. Zoolog. Syst. Evol. Res. 53, 109–115 (2015).Article 

    Google Scholar 
    82.Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Proces. Symp. Int. Proc. 2, 184 (2002).
    Google Scholar 
    83.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    85.Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    87.Raymond, M. & Rousset, F. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    88.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    89.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Bielejec, F. et al. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Dynamic global monitoring needed to use restoration of forest cover as a climate solution

    1.Griscom, B. W. et al. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    Article 

    Google Scholar 
    2.Anderson, C. M. et al. Science 363, 933–934 (2019).CAS 
    Article 

    Google Scholar 
    3.Bastin, J.-F. et al. Science 365, 6–9 (2019).Article 

    Google Scholar 
    4.Cook-Patton, S. C. et al. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. S. Science 368, 580–582 (2020).CAS 
    Article 

    Google Scholar 
    6.Fargione, J. et al. Front. For. Glob. Change (in the press).7.West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).CAS 
    Article 

    Google Scholar 
    8.Brancalion, P. H. S. et al. L. Degrad. Dev. 32, 830–841 (2020).Article 

    Google Scholar 
    9.Sills, E. O. et al. PLoS ONE 10, e0132590 (2015).Article 

    Google Scholar 
    10.Ferraro, P. J. & Hanauer, M. M. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    11.Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    12.Reytar, K. et al. The challenge of tracking how a trillion trees grow. World Resources Institute https://www.wri.org/blog/2020/07/trillion-trees-tracking-challenges (2020).13.Shoch, D. et al. Methodology For Improved Forest Management (Family Forest Carbon Program, 2020).14.McDowell, N. G. et al. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    15.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018). More

  • in

    Woody-biomass projections and drivers of change in sub-Saharan Africa

    1.Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).CAS 
    Article 

    Google Scholar 
    2.Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).CAS 
    Article 

    Google Scholar 
    3.Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).CAS 
    Article 

    Google Scholar 
    4.Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).Article 

    Google Scholar 
    5.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    Article 

    Google Scholar 
    6.Bond, W. J. & Keane, R. E. Fires, Ecological Effects of☆. In Reference Module in Life Sciences (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-809633-8.02098-77.Valentini, R. et al. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014).Article 
    CAS 

    Google Scholar 
    8.Williams, C. A. et al. Africa and the global carbon cycle. Carbon Balance Manag. 2, 3 (2007).Article 
    CAS 

    Google Scholar 
    9.Hanan, N. P. Agroforestry in the Sahel. Nat. Geosci. 11, 296–297 (2018).Article 
    CAS 

    Google Scholar 
    10.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).Article 

    Google Scholar 
    11.Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).CAS 
    Article 

    Google Scholar 
    12.Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).CAS 
    Article 

    Google Scholar 
    13.Anchang, J. Y. et al. Trends in woody and herbaceous vegetation in the savannas of West Africa. Remote Sens. 11, 576 (2019).Article 

    Google Scholar 
    14.Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).Article 

    Google Scholar 
    15.Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).Article 
    CAS 

    Google Scholar 
    16.Schneider, S. H. The greenhouse effect: science and policy. Science 243, 771–781 (1989).CAS 
    Article 

    Google Scholar 
    17.Walsh, J. et al. Climate Change Impacts in the United States: The Third National Climate Assessment Ch. 2 (US Global Change Research Program, 2014); https://doi.org/10.7930/J0KW5CXT18.Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).Article 

    Google Scholar 
    19.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 
    Article 

    Google Scholar 
    20.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).CAS 
    Article 

    Google Scholar 
    21.Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    22.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    CAS 

    Google Scholar 
    23.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    CAS 

    Google Scholar 
    24.Hanan, N. P., Prihodko, L., Ross, C. W., Bucini, G. & Tredennick, A. T. Gridded Estimates of Woody Cover and Biomass across Sub-Saharan Africa, 2000-2004 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/177725.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    26.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).Article 

    Google Scholar 
    27.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    28.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).CAS 
    Article 

    Google Scholar 
    29.Anchang, J. Y. et al. Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.00004 (2020).30.Kahiu, M. N. & Hanan, N. P. Fire in sub-Saharan Africa: the fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 27, 946–957 (2018).Article 

    Google Scholar 
    31.Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    32.Ross, C. W. et al. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 5, 180091 (2018).Article 

    Google Scholar 
    33.Lüdeke, M. K. B., Moldenhauer, O. & Petschel-Held, G. Rural poverty driven soil degradation under climate change: the sensitivity of the disposition towards the Sahel Syndrome with respect to climate. Environ. Model. Assess. 4, 315–326 (1999).Article 

    Google Scholar 
    34.Hansfort, S. L. & Mertz, O. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39, 583 (2011).Article 

    Google Scholar 
    35.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    36.Wei, F. et al. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Glob. Change Biol. 26, 4495–4505 (2020).Article 

    Google Scholar 
    37.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).Article 

    Google Scholar 
    38.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article 

    Google Scholar 
    39.Potapov, P. et al. Mapping the World’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 2 (2008).Article 

    Google Scholar 
    40.Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A. & Schmullius, C. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556 (2008).Article 

    Google Scholar 
    41.Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 

    Google Scholar 
    42.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    43.Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    44.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).CAS 
    Article 

    Google Scholar 
    45.Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    46.Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    49.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    50.Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).Article 

    Google Scholar 
    51.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe: version 4: data grid (CGIAR Consortium for Spatial Information, 2008).52.Ross, C. W. et al. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/156653.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. https://doi.org/10.1029/2011JG001708 (2011).54.Jucker, T. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23, 177–190 (2017).Article 

    Google Scholar 
    55.Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).Article 

    Google Scholar 
    56.Molnar, C., Bischl, B. & Casalicchio, G. iml: an R package for interpretable machine learning. J. Open Source Softw. 3, 786 (2018).Article 

    Google Scholar 
    57.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’ (CRAN, 2017).58.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling (CRAN, 2016).59.Perpiñán, O. & Hijmans, R. rasterVis (CRAN, 2018).60.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).61.Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Soft. https://doi.org/10.18637/jss.v096.i01 (2020).62.Neuwirth, E. RColorBrewer: ColorBrewer Palettes (CRAN, 2014).63.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (CRAN, 2017).64.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    65.Ross, C. W., Hanan, N. P. & Prihodko, L. Prediction Maps: Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14150210.V266.Ross, C. W. R Code for Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14143799.V1 More

  • in

    Cooperative root graft networks benefit mangrove trees under stress

    1.Yli-Vakkuri, P. Studies on physical root connections between the trees in Scots pine stands in Finland. Acta Fenn. 60, 5–117 (1953).Article 

    Google Scholar 
    2.Graham, B. F. & Bormann, F. H. Natural root grafts. Bot. Rev. 32, 255–292 (1966).Article 

    Google Scholar 
    3.Keeley, J. Population variation in root grafting and a hypothesys. Oikos 52, 364–366 (1988).Article 

    Google Scholar 
    4.Epstein, A. Root graft transmission of tree pathogens. Annu. Rev. Phitopathol. 196, 181–192 (1978).Article 

    Google Scholar 
    5.Stokes, A. et al. Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 278, 107–117 (2005).CAS 
    Article 

    Google Scholar 
    6.Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Deslippe, J. R., Hartmann, M., Grayston, S. J., Simard, S. W. & Mohn, W. W. Stable isotope probing implicates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal mycelial networks in Arctic tundra. N. Phytol. 210, 383–390 (2016).Article 

    Google Scholar 
    8.Klein, T., Siegwolf, R. T. & Kröner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Fraser, E. C., Lieffers, V. J. & Landhäusser, S. M. Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol. 26, 1019–1023 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Gaspard, D. T. & DesRochers, A. Natural root grafting in hybrid poplar clones. Trees Struct. Funct. 34, 881–890 (2020).CAS 
    Article 

    Google Scholar 
    11.Quer, E., Baldy, V. & DesRochers, A. Ecological drivers of root grafting in balsam fir natural stands. Forest Ecol. Manag. 475, 118388 (2020).Article 

    Google Scholar 
    12.Tarroux, E. & DesRochers, A. Effect of natural root grafting on growth response of jack pine (Pinus banksiana; Pinaceae). Am. J. Bot. 98, 967–974 (2011).PubMed 
    Article 

    Google Scholar 
    13.Salomón, R. L., Tarroux, E. & DesRochers, A. Natural root grafting in Picea mariana to cope with spruce budworm outbreaks. Can. J. Forest Res. 46, 1059–1066 (2016).Article 
    CAS 

    Google Scholar 
    14.Adonsou, K. E., Drobyshev, I., DesRochers, A. & Tremblay, F. Root connections affect radial growth of balsam poplar trees. Trees Struct. Funct. 30, 1775–1783 (2016).CAS 
    Article 

    Google Scholar 
    15.Vovides, A. G. et al. Change in drivers of mangrove crown displacement along a salinity stress gradient. Funct. Ecol. 32, 2753–2765 (2018).Article 

    Google Scholar 
    16.McKee, K. L. Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? J. Ecol. 89, 876–887 (2001).Article 

    Google Scholar 
    17.Adonsou, K. E., DesRochers, A. & Tremblay, F. Physiological integration of connected balsam poplar ramets. Tree Physiol. 36, 797–806 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Noble, A. E., Rosenstock, T. S., Brown, P. H., Machta, J. & Hastings, A. Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology. Proc. Natl Acad. Sci. USA 115, 1825–1830 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tarroux, E. & DesRochers, A. Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics. Can. J. Forest Res. 40, 861–871 (2010).Article 

    Google Scholar 
    20.Jelínková, H., Tremblay, F. & DesRochers, A. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae). Am. J. Bot. 96, 1500–1505 (2009).PubMed 
    Article 

    Google Scholar 
    21.Bormann, F. H. The structure, function, and ecological significance of root grafts in Pinus strobus L. Ecol. Monogr. 36, 1–26 (1966).Article 

    Google Scholar 
    22.Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Huxham, M., Berger, U., Skov, M. W. & Sousa, W. P. Kropotkin’s Garden: facilitation in mangrove ecosystems in Interactions in the Marine Benthos (eds. Hawkins, S. J., Bohn, K., Firth, L. B. & Williams, G. A.) 431–447 (Cambridge University Press, 2019)24.Ball, M. C. & Farquhar, G. D. Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity consitions. Plant Physiol. 74, 7–11 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lin, Y., Berger, U., Grimm, V., Huth, F. & Weiner, J. Plant interactions alter the predictions of metabolic scaling theory. PLoS ONE 8, e57612 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Osland, M. J., Day, R. H., Larriviere, J. C. & From, A. S. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE 9, e99604 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Menezes, M., Berger, U. & Worbes, M. Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetl. Ecol. Manag. 11, 233–242 (2003).Article 

    Google Scholar 
    28.Delay, E. & Piou, C. Mutual aid: when does resource scarcity favour group cooperation? Ecol. Complex. 40, 100790 (2019).Article 

    Google Scholar 
    29.Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Vovides, A. G., Marín-Castro, B., Barradas, G., Berger, U. & López-Portillo, J. A simple and cost-effective method for cable root detection and extension measurement in estuary wetland forests. Estuar. Coast. Shelf Sci. 183, 117–122 (2016).Article 

    Google Scholar 
    31.West, P. W. Tree and Forest Measurement. (Springer-Verlag, 2009).32.Fraser, E. C., Lieffers, V. J. & Landhäusser, S. M. Age, stand density, and tree size as factors in root and basal grafting of lodgepole pine. Can. J. Bot. 83, 983–988 (2005).Article 

    Google Scholar 
    33.Bormann, F. H. & Graham, B. F. The occurrence of natural root grafting in eastern White pine, Pinus strobus L., and Its ecological implications. Ecology 40, 677–691 (1959).Article 

    Google Scholar 
    34.Westoby, M. The place of the self-thinning rule in population dynamics. Am. Nat. 118, 581–587 (2008).Article 

    Google Scholar 
    35.Wang, Y., Titus, S. J. & LeMay, V. M. Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Can. J. Forest Res. 28, 1171–1183 (1998).36.MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).Article 

    Google Scholar 
    37.Brüchert, F. & Gardiner, B. The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 93, 1512–1521 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Graham, B. F. Transfer of dye through natural root grafts of Pinus strobus L. Ecology 41, 56–64 (1960).Article 

    Google Scholar 
    39.Barabási, A.-L. & Réka, A. Emergence of scaling in random networks. Science 286, 509–513 (1999).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Allen, B. et al. Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 536, 238–238 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Basnet, K., Scatena, F. N., Likens, G. E. & Lugo, A. E. Ecological consequences of root grafting in Tabonuco (Dacryodes excelsa) trees in the Luquillo Experimental Forest, Puert Rico. Biotropica 25, 28–35 (1993).Article 

    Google Scholar 
    43.Kropotkin, P. Mutual Aid: a factor of evolution. https://doi.org/10.2307/2140787. (1902).44.López-Portillo, J. A., Ewers, F. W. & Angeles, G. Sap salinity effects on xylem conductivity in two mangrove species. Plant Cell Environ. 28, 1285–1292 (2005).Article 

    Google Scholar 
    45.RAMSAR. La Mancha y El Llano: Ramsar sites information service.  https://rsis.ramsar.org/ris/1336?language=en (2004).46.Gulfbase. Laguna La Mancha. Harte Research Institute for Gulf of Mexcio Studies. https://www.gulfbase.org/. (2021).47.Hernández, C. M. A., Zaragoza, C. G., Iriarte-Vivar, S., Flores-Verdugo, F. J. & Casasola, P. M. Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetl. Ecol. Manag. 19, 273–293 (2011).Article 

    Google Scholar 
    48.Méndez-Alonzo, R., Hernández-Trejo, H. & López-Portillo, J. A. Salinity constrains size inequality and allometry in two contrasting mangrove habitats in the Gulf of Mexico. J. Trop. Ecol. 28, 171–179 (2012).Article 

    Google Scholar 
    49.López-Portillo, J. A., Ezcurra, E., Lopez-Portillo, J. & Ezcurra, E. Response of three mangroves to salinity in two Geoforms. Funct. Ecol. 3, 355–361 (1989).Article 

    Google Scholar 
    50.Vovides, A. G., Berger, U. & López-Portillo-Portillo, J. Data from: Change in drivers of mangrove crown displacement along a salinity stress gradient. https://doi.org/10.5525/gla.researchdata.657. (2018).51.Pretzsch, H. Forest dynamics growth and yield. From Measurement to Model vol. 1, (Springer-Verlag, 2009).52.McKee, K. L., Mendelssohn, I. A. & Hester, M. W. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am. J. Bot. 75, 1352–1359 (1988).Article 

    Google Scholar 
    53.Myron L Company. ULTRAMETER IITM. Oper. Manual, Ver. Model. 6Pfc 4P. http://www.myronl.com/products/ultrameter_II.htm (2011).54.Sommet, N. & Morselli, D. Keep calm and learn multilevel logistic modeling: a simplified three-step procedure using stata, R, Mplus, and SPSS. Int. Rev. Soc. Psychol. 30, 203–218 (2017).Article 

    Google Scholar 
    55.Barabási, A. L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–45 (2015).Article 

    Google Scholar 
    58.Hartig, F. DHARMa:residual diagnostics for hierarchical (multi-level /mMixed) regression models. R package version 0.2.7. http://florianhartig.github.io/DHARMa/ (2020).59.Wood, S. & Scheipl, F. gamm4:Generalized additive mixed models using ‘mgcv’ and ‘lme4’. https://cran.r-project.org/web/packages/gamm4/index.html (2017).60.Csardi, G. & Nepusz, T. The igraphsoftware package for complex network research. InterJournal, Complex Sy, 1965 (2006). 61.Colin, S. G. Fitting Heavy Tailed Distributions: The poweRlaw Package. J. Stat. Softw. 64, 1–16 (2015).
    Google Scholar 
    62.Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Use R!). https://doi.org/10.1007/978-0-387-98141-3. (2016). More

  • in

    Insight into the function and evolution of the Wood–Ljungdahl pathway in Actinobacteria

    1.Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci USA. 2018;115:E1166–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber CM, et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol. 2019;4:603–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. BBA-Proteins Proteom. 2008;1784:1873–98.CAS 
    Article 

    Google Scholar 
    4.Müller B, Sun L, Schnürer A. First insights into the syntrophic acetate‐oxidizing bacteria–a genetic study. MicrobiologyOpen. 2013;2:35–53.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Schuchmann K, Müller V. Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol. 2016;82:4056–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol. 2014;12:809–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome. 2018;6:1–18.Article 

    Google Scholar 
    9.Liu YF, Chen J, Liu ZL, Shou LB, Lin DD, Zhou L, et al. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions. Environ Sci Technol. 2020;54:10610–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Zhang Y, Wu G, Jiang H, Yang J, She W, Khan I, et al. Abundant and rare microbial biospheres respond differently to environmental and spatial factors in tibetan hot springs. Front Microbiol. 2018;9:2096.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ, et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 2015;9:1280–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    16.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    17.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Carnevali PBM, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat Commun. 2019;10:1–15.Article 
    CAS 

    Google Scholar 
    25.Jaffe AL, Castelle CJ, Dupont CL, Banfield JF. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol Biol Evol. 2019;36:435–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:1–8.Article 
    CAS 

    Google Scholar 
    29.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.CAS 
    Article 

    Google Scholar 
    30.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Csűös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.Article 
    CAS 

    Google Scholar 
    34.Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat Commun. 2019;10:1–11.Article 
    CAS 

    Google Scholar 
    35.Jiao JY, Liu L, Hua ZS, Fang BZ, Zhou EM, Salam N, et al. Microbial dark matter coming to light: challenges and opportunities. Natl Sci Rev. 2021;8:nwaa280.36.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.Article 
    CAS 

    Google Scholar 
    41.Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 
    CAS 

    Google Scholar 
    43.Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. 2019;35:421–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol. 2020;70:1331–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Micr. 2018;68:461–6.CAS 
    Article 

    Google Scholar 
    47.Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, et al. Single-cell genomics of novel actinobacteria with the Wood–Ljungdahl pathway discovered in a serpentinizing system. Front Microbiol. 2020;11:1031.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Coleman GA, Davín AA, Mahendrarajah T, Spang AA, Hugenholtz P, Szöllősi GJ, et al. A rooted phylogeny resolves early bacterial evolution. 2020. https://doi.org/10.1101/2020.07.15.205187.49.Spear JR, Walker JJ, McCollom TM, Pace NR. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA. 2005;102:2555–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev. 2007;107:4206–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Marreiros BC, Batista AP, Duarte AM, Pereira MM. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. BBA-Bioenerg. 2013;1827:198–209.CAS 
    Article 

    Google Scholar 
    52.Martin WF. Older than genes: the acetyl CoA pathway and origins. Front Microbiol. 2020;11:817.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Daniel SL, Hsu T, Dean SI, Drake HL. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol. 1990;172:4464–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ. A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol. 1942;43:701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Drake HL, Daniel SL. Physiology of the thermophilic acetogen Moorella thermoacetica. Microbiol Res. 2004;155:869–83.Article 

    Google Scholar 
    56.Hügler M, Hube H, Molyneaux SJ, Vetriani C, Sievert SM. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol. 2007;9:81–92.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Hou J, Sievert SM, Wang Y, Seewald JS, Natarajan VP, Xiao X, et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome. 2020;8:102.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases. ISME J. 2015;9:1152–65.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019;4:1138–48.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696–705.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Orsi WD, Vuillemin A, Rodriguez P, Coskun ÖK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2020;5:248–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Raymann K, Brochier-Armanet C, Gribaldo S. The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci USA. 2015;112:6670–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Revisiting the hyperdominance of Neotropical tree species under a taxonomic, functional and evolutionary perspective

    Based on extensive geographic sampling of morphological, ddRADseq and functional trait data, we have identified eight distinct evolutionary lineages within the putative hyperdominant taxon P. heptaphyllum. We are using a “traditional” species concept—a typological or morphological species concept where we expect different species to have discrete morphological differences but also represent monophyletic groups with limited genetic admixture. Morphological traits overlap at varying levels, but genetic data suggest that this widespread group represents distinct, independently adapted lineages that diverged over the past million years. We refute the hypothesis that P. heptaphyllum s.l. is a single species and instead find evidence for recognizing eight independently evolving species (or lineages, sensu20). Updates regarding the taxonomic treatment within P. heptaphyllum s.l. are in progress (e.g. Protium cordatum Huber sensu21) and detailed descriptions of new species are in preparation as part of a taxonomic revision (Table S2, Figure S2).Even though a large number of new species have been recently described in the Neotropics9,10,22, very few studies have attempted to resolve morphologically challenging species complexes (e.g.,13,15). In the sections below, we discuss the implications of our results in the context of: (i) revisiting the concept of hyperdominance for Amazonian trees, (ii) improving richness and diversity estimates, (iii) understanding diversification within dominant tropical lineages, and (iv) refining predictions for ecosystem function.Implications for the hyperdominance phenomenonThe fact that communities often harbor a small group of demographically abundant species in addition to a much larger number of rare species is not a recent discovery (e.g.,23 as cited in3). This pattern, also called a species oligarchy and hyperdominance, was first reported for western Amazonian forests in the early 2000s24,25 and again on the pan-Amazonian scale based on data from the ATDN, one of the largest tree community datasets ever compiled in the tropics1. Hyperdominant species have captured the imagination of many tropical ecologists. First, they have been thought to be more likely to be correctly identified than rare species22, allowing for people to use them as proxies for ecosystem-wide function. For example, Fauset et al.4 emphasized that hyperdominant species were responsible for half of carbon storage and productivity in the Amazon. Second, ecologists have proposed that hyperdominants have important shared demographic properties—they often have large geographic ranges but are only dominant in one or two regions and are often habitat specialists1. In contrast, our results suggest that the hyperdominant taxon P. heptaphyllum s.l. actually consists of several lineages warranting recognition as new species that have very different functional traits, that occupy distinct geographic ranges, and that can be rare or threatened. We postulate that similar conclusions could be reached with many of the other hyperdominant species, which are also thought to be members of species complexes (e.g., Iriartea deltoidea Ruiz and Pav.26; Eschweilera coriacea (DC.) S.A. Mori27). Further study is warranted prioritizing the study of these putative species complexes to refine our understanding of dominance across tropical regions28. If fewer species are found to be true hyperdominants, this will render conservation efforts and ecosystem modeling exercises more complicated than has been discussed to date.Taxonomic relevanceProtium is one of the best studied plant groups in the Neotropics (e.g.,17,18,19). Currently, the genus consists of approximately 200 species, and their systematics has been studied by a collaborative team of taxonomists and evolutionary biologists. Protium has a wide geographic range of specimen sampling, and genomic data are available for a number of species18,29,30. Also, current species descriptions in Protium are consistently founded on both morphological and molecular phylogenetic evidence19. Furthermore, the broad intraspecific sampling of key lineages/taxa within Protium heptaphyllum s.l. gives us high confidence in our results, in contrast to other plant groups that have not yet been subjected to similar intensive systematic study but often include diverse and abundant trees in the Amazon Basin. Here, we showed that a multidisciplinary effort and relatively short time investment on a hyperdominant species complex (3–5 years) has yielded the discovery of eight new lineages warranting species status.Multiple other tree families are relatively well studied in the Neotropics (e.g., Annonaceae, Sapotaceae, Lecythidaceae, Rubiaceae, Chrysobalanaceae, Fabaceae, Melastomataceae), but are also frequently cited as containing a few species complexes with incomplete genetic divergence and requiring detailed revision (e.g., Eschweilera27, Pouteria31). We acknowledge that the field of taxonomy is dynamic (ter Steege et al. 2019) in the sense that classification and species names are likely to change as new studies are performed. Besides that, the methods applied to describe, re-establish, or invalidate taxonomic entities are frequently inconsistent among taxonomists and experts, and can vary according to several species concepts and definitions32,33. Inconsistency in taxonomic methods has been the focus of recent debates about tree species richness in Amazonia9,10. While the authors of these studies disagreed about the number of Amazonian tree species, both sides agree that there is still much work to be done in order to improve taxonomy and to increase the pace of species discovery22. We propose that the establishment of a consensus prioritized list of other species complexes from putative hyperdominant taxa such as P. heptaphyllum, s.l. would represent a significant step to contribute to efficient progress of new species discovery. With the advent of cheaper and more rapid techniques for both molecular systematics and functional ecology, we expect that interdisciplinary approaches combined with an extensive populational sampling like we have done will be highly beneficial for the study of hyperdominant species complexes and to advance the estimates of Amazonian tree species diversity.Refining the understanding of trait variation and functional responseThe seven distinct lineages for the Central/West Amazon Basin and Northeast Amazonian regions showed substantial variation in leaf and wood traits (Fig. 4). Overall, more than half of the breadth of variation in these functional traits that has been observed across 2600 Amazonian species (e.g.,34,35,36) can be found within this single species complex.Moreover, the breadth of functional trait variation also varied markedly within lineages. The low within-lineage trait variation in the Amazonian TUC (orange) population (Fig. 4) is consistent with adaptation to dry savanna environments; that is, this lineage exhibits consistent high-water use efficiency (less negative 13C) and small, dense xylem vessels. In contrast, the CRS (red) population, which also exhibits low within-lineage functional trait variation, displays values of traits consistent with functional responses to flooding in Amazonian igapó habitats where it is found, and thus has low water use efficiency and large xylem vessels. Together, these lineages contribute to the broad variation observed in the species complex, while at the same time other lineages from Central Brazil and the Atlantic Coast (light and dark blue) show high within-lineage functional trait variation and broad distribution across habitats. Taken together across the phylogeny of the entire species complex, these functional traits can be considered to be highly labile, with some lineages adapting to contrasting extreme values whereas other sister lineages retain broad functional trait variation (Fig. 4).Importantly, this variation is consistent with the evolutionary histories of each distinct lineage within the species complex. For example, the P. heptaphyllum, P. “tucuruiense” and P. “aromaticum” (yellow, orange and blue) clades experienced a relatively recent population bottleneck and then expanded, likely with traits that permitted them to radiate into the drier savanna environments where they were then able to expand (Fig. 2). Some of these lineages have become adapted to distinct habitats and are responding very differently to current environmental conditions. Moreover, we suggest that these lineages will respond very differently to future changes in climatic conditions across the region, with some of them poorly equipped for the predicted increasing frequency and intensity of droughts37.Our results have important implications for ecosystem function. Since the advent of functional trait network studies (e.g., TRY Plant Trait Database38), understanding how plant species behave in terms of their physiological performance over large scales has led to important predictions of the consequences of future scenarios of climate and land-use change39,40,41. The importance of the Amazon region for the global climate and carbon cycle42,43 highlights the need to devote substantial effort to investigating the taxonomy of hyperdominant plant taxa. For instance, if some or most of the hyperdominant taxa actually represent multiple hidden evolutionary entities, as in P. heptaphyllum s.l., a larger fraction of Amazonian tree species would contribute proportionally more to carbon storage and cycling than described by Fauset et al.4, rendering modeling exercises and management much more nuanced. In addition, a comprehensive taxonomic review of dominant tree lineages with concomitant screening of functional traits as we conducted for this species complex, would greatly improve the understanding of climate-induced functional shifts, such as described by Esquivel‐Muelbert et al.41, and have potentially important consequences for the conservation of putative rare taxa that are nested within hyperdominant species complexes.Understanding diversification in dominant lineagesThe scenario of some hyperdominant or oligarchic taxa representing multiple diverged lineages is intriguing and relevant for understanding the processes of diversification in the Amazonian flora. Based on the demographic history of P. heptaphyllum s.l., older lineages tend to be habitat specialists and less morphologically and functionally variable. In contrast, recently evolved lineages have colonized new areas and frequently experience gene flow across very large geographic distances, and they are morphologically and functionally more variable. We hypothesize that large population sizes may be associated with higher diversification rates due to the process of population expansion followed by radiation into different habitats. Therefore, dominant lineages would have better chances to speciate via habitat specialization and generate large clades than non-dominant lineages. Habitat specialization is considered to have evolved in many tropical plant groups44,45 and many different tree genera have become specialized in contrasting environments46.According to our results, P. heptaphyllum s.l. diverged from its common ancestors around five million years ago and diversified first in the Amazon region followed by an increase in population size. Many lineages subsequently became specialized to white-sand habitats, seasonally flooded forests in the Rio Negro Basin (Igapó forests), and floodplain forests (várzea forests). However, more recently, lineages dispersed into neighboring floristic domains (e.g. Cerrado and Atlantic Forest) and ecotone areas, colonizing regions where the annual precipitation is currently lower and seasonal. These populations found in Central and Coastal Brazil are genetically very similar to each other despite the large geographical distances among them. Moreover, these populations are functionally more variable than the early-diverging lineages in the Amazon. In contrast, older lineages from the Amazon basin were found to be less morphologically plastic and more isolated in terms of gene flow. White-sand ecosystems in Amazonia are characterized by a patchy and geographically disjunct distribution47 that could have inhibited dispersal of habitat-specialist populations, resulting in repeated speciation in white-sand forests in different regions.Conservation implicationsWe show that at least four newly discovered lineages, including two “resurrected” species, are geographically restricted, demographically rare and endemic to white-sand vegetation in the Amazon (e.g. P. cordatum sensu Damasco et al. 2019a, P. “tucuruiense,” P. angustifolium Swart, and P. “reticuliflorum”). Future studies aiming to review potential species complexes among hyperdominant species could indicate other threatened lineages warranting taxonomic recognition as well as new geographic areas for conservation priority. While many studies have relied on datasets compiled by plot-inventory networks, more effort should be focused on increasing the pace of taxonomic research in the Neotropics22,28. Deforestation rates in Amazonia are likely to increase in the next few years; and yet one third of the total number of tree species are likely still undescribed or undiscovered1.We believe that reports that roughly half of all biomass and carbon storage in one of the most diverse areas on Earth is stored by a very small group of “hyperdominant” species may be misinforming policy makers and stakeholders. Based on our integrative review of P. heptaphyllum s.l., we showed that genetic diversity and functional responses to environmental gradients are much greater than expected by the hyperdominance principle. Our results revealed that a single “hyperdominant” taxon contains several lineages warranting recognition as distinct species that include great functional diversity, including at least three that are relatively rare and potentially threatened. Metapopulations of a hyperdominant taxon may be interpreted as much more resilient to future global changes than relatively rare lineages within a species complex. Thus, our findings suggest not only critical issues with species level conservation for lineages that should now be considered threatened taxa and not hyper- nor dominant, but also that some of these putatively new lineages might be at risk of extinction due to future climate change and increasing deforestation. Although the distinction between species and population delimitation may not be of consequence for calculating current carbon storage, we argue that multiple distinct lineages with limited gene flow such as we describe here will likely respond very differently to current and future global changes than a larger interbreeding metapopulation of a single lineage. We therefore caution against simplistic assumptions about biogeochemical processes and ecosystem services reliant on the attractive simplicity of a putative hyperdominance phenomenon. More

  • in

    Population dynamics of microbial cross-feeding are determined by co-localization probabilities and cooperation-independent cheater growth

    1.Bear A, Rand DG. Intuition, deliberation, and the evolution of cooperation. Proc Natl Acad Sci USA. 2016;113:936–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Athena Aktipis C, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, et al. Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos Trans R Soc B Biol Sci. 2015;370:20140219.Article 

    Google Scholar 
    3.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 

    Google Scholar 
    4.West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The social lives of microbes. Annu Rev Ecol Evol Syst. 2007;38:53–77.Article 

    Google Scholar 
    5.Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in microbial populations: theory and experimental model systems. J Mol Biol. 2019;431:4599–644.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.West SA, Cooper GA. Division of labour in microorganisms: an evolutionary perspective. Nat Rev Microbiol. 2016;14:716–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Travisano M, Velicer GJ. Strategies of microbial cheater control. Trends Microbiol. 2004;12:72–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Birch J. Are kin and group selection rivals or friends? Curr Biol. 2019;29:R433–R438.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Harcombe W. Novel cooperation experimentally evolved between species. Evolution (N. Y). 2010;64:2166–72.
    Google Scholar 
    11.Dobay A, Bagheri HC, Messina A, Kümmerli R, Rankin DJ. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J Evol Biol. 2014;27:1869–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.MacLean RC, Gudelj I. Resource competition and social conflict in experimental populations of yeast. Nature. 2006;441:498–501.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pande S, Kaftan F, Lang S, Svatoš A, Germerodt S, Kost C. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 2016;10:1413–23.PubMed 
    Article 

    Google Scholar 
    14.Kreft J-U. Biofilms promote altruism. Microbiology. 2004;150:2751–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Chuang JS, Rivoire O, Leibler S. Simpson’s paradox in a synthetic microbial system. Science. 2009;323:272–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Hsu RH, Clark RL, Tan JW, Ahn JC, Gupta S, Romero PA, et al. Microbial interaction network inference in microfluidic droplets. Cell Syst. 2019;9:229–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Park J, Kerner A, Burns MA, Lin XN Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One. 2011;6:e17019.18.Wilson CE, Lopatkin AJ, Craddock TJA, Driscoll WW, Eldakar OT, Lopez JV, et al. Cooperation and competition shape ecological resistance during periodic spatial disturbance of engineered bacteria. Sci Rep. 2017;7:1–13.19.Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 2004;428:643–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Rebolleda-Gómez M, Travisano M The cost of being big: local competition, importance of dispersal, and experimental evolution of reversal to unicellularity. Am Nat. 2018;192:731–44.21.Sieuwerts S, Molenaar D, SAFT VanHijum, Beerthuyzen M, MJA Stevens, PWM Janssen, et al. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol. 2010;76:7775–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Blasche S, Kim Y, Mars R, Kafkia E, Maansson M, Machado D, et al. Emergence of stable coexistence in a complex microbial community through metabolic cooperation and spatio-temporal niche partitioning. bioRxiv 2019;541870.23.Gobbetti M, Corsetti A, Rossi J. The sourdough microflora. Interactions of lactic acid bacteria and yeasts: metabolism of amino acids. World J Microbiol Biotechnol. 1994;10:275–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Müller MJI, Neugeboren BI, Nelson DR, Murray AW. Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci USA. 2014;111:1037–42.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Inglis RF, Biernaskie JM, Gardner A, Kümmerli R. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities. Proc R Soc B Biol Sci. 2016;283:20152682.Article 
    CAS 

    Google Scholar 
    26.García J, Traulsen A. Leaving the loners alone: Evolution of cooperation in the presence of antisocial punishment. J Theor Biol. 2012;307:168–73.PubMed 
    Article 

    Google Scholar 
    27.Bachmann H, Fischlechner M, Rabbers I, Barfa N, Branco dos Santos F, Molenaar D, et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc Natl Acad Sci. 2013;110:14302–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Bull JJ, Harcombe WR Population dynamics constrain the cooperative evolution of cross-feeding. PLoS One. 2009;4:e4115.29.Smith JM. Group selection and kin selection. Nature. 1964;201:1145–7.Article 

    Google Scholar 
    30.Otto R, ten Brink B, Veldkamp H, Konings WN. The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS Microbiol Lett. 1983;16:69–74.Article 

    Google Scholar 
    31.Jarvis B, Wilrich C, Wilrich P-T. Reconsideration of the derivation of most probable numbers, their standard deviations, confidence bounds and rarity values. J Appl Microbiol. 2010;109:1660–7.CAS 
    PubMed 

    Google Scholar 
    32.Pool WA, Neves AR, Kok J, Santos H, Kuipers OP. Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Metab Eng. 2006;8:456–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Leenhouts KJ, Gietema J, Kok J, Venema G. Chromosomal stabilization of the proteinase genes in Lactococcus lactis. Appl Environ Microbiol. 1991;57:2568–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Bachmann H, Kleerebezem M, Van Hylckama Vlieg JET. High-throughput identification and validation of in situ-expressed genes of Lactococcus lactis. Appl Environ Microbiol. 2008;74:4727–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Nordkvist M, Jensen NBS, Villadsen J. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions. Appl Environ Microbiol. 2003;69:3462–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Price CE, Branco Dos Santos F, Hesseling A, Uusitalo JJ, Bachmann H, Benavente V, et al. Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. BMC Evol Biol. 2019;19:1–15.Article 

    Google Scholar 
    37.Wilson DS. A theory of group selection. Proc Natl Acad Sci USA. 1975;72:143–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Rumbaugh KP, Sauer K Biofilm dispersion. Nat Rev Microbiol. 2020;18:571–86.39.Morris JJ. Black queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 2015;31:475–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Bachmann H, Molenaar D, Kleerebezem M, van Hylckama Vlieg JET. High local substrate availability stabilizes a cooperative trait. ISME J. 2011;5:929–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Gore J, Youk H, van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science (80-). 2001;292:504–7.CAS 
    Article 

    Google Scholar 
    43.Marchal M, Goldschmidt F, Derksen-Müller SN, Panke S, Ackermann M, Johnson DR A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol Biol. 2017;17:1–14.44.Preussger D, Giri S, Muhsal LK, Oña L, Kost C Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:3580–90.45.Harcombe WR, Chacon J, Adamowicz E, Chubiz L, Marx C Evolution of bidirectional costly mutualism from byproduct consumption. PNAS 2018;115.46.Pacheco AR, Moel M, Segrè D Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun 2019;10:1–12.47.Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 2017;5:345–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Pillai P, Gouhier TC, Vollmer SV. The cryptic role of biodiversity in the emergence of host-microbial mutualisms. Ecol Lett. 2014;17:1437–46.PubMed 
    Article 

    Google Scholar 
    49.van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–701.50.Co AD, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4:366–75.Article 

    Google Scholar 
    51.Saleski TE, Kerner AR, Chung MT, Jackman CM, Khasbaatar A, Kurabayashi K, et al. Synthrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metab Eng. 2019;54:232–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sung YJ, Young JHK, Choi H Il, Kwak HS, Sim SJ Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains. Sci Rep. 2017;7:1–11.53.Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, et al. Cultivating the uncultured. Proc Natl Acad Sci USA. 2002;99:15681–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG, Sellers D, et al. Massively parallel screening of synthetic microbial communities. Proc Natl Acad Sci USA. 2019;116:12804–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Riehl C, Frederickson ME Cheating and punishment in cooperative animal societies. Philos Trans R Soc B Biol Sci. 2016;371:20150090.56.Nepi M, Grasso DA, Mancuso S. Nectar in plant–insect mutualistic relationships: From food reward to partner manipulation. Front Plant Sci. 2018;9:1–14.Article 

    Google Scholar  More