More stories

  • in

    Evaluation of the performance and gas emissions of a tractor diesel engine using blended fuel diesel and biodiesel to determine the best loading stages

    Performance evaluation of tractor engineThe performance of the direct-injection turbocharger diesel engine for the Kubota M-90 tractor was evaluated at different engine loads with the use of different biodiesel blends with mineral diesel to maximize the engine efficiencies of PTO torque, BP, BMEP, and BTE, while also minimizing specific fuel consumption, gas emissions, and, finally, fossil fuel consumption. The results in Table 1 showed a significant effect of engine load percentage and fuel blend percentage and their interaction on all the studied characters.Table 1 Effects of engine load percentage and fuel blends percentage on power take-off speed, power take-off power, power take-off torque, engine speed, brake power, brake specific fuel consumption, brake thermal efficiency, fuel consumption, brake mean effective pressure, O2 percentage, CO2 percentage, CO, NO, and SO2.Full size tableEngine speedFor the effects of engine load percentage on engine speed, the results in Table 1 indicated the relationship between engine load percentage and engine speed in rpm was inversely proportional. The maximum engine speed was recorded at a loading of 0%, and the lowest speed was at a loading of 100% (Table 1). Using 100% diesel fuel (B0) gave the highest engine speed among all treatments, and the lowest speed was recorded with 100% biodiesel fuel (B100). The significant interaction between engine load, percentage, and engine speed in rpm was inversely proportional, as shown in Fig. 2a. The maximum engine speed was 2854 rpm at the loading stage of 0% using 100% diesel fuel (B0), while the minimum speed was 276 rpm at the loading stage of 100% using 100% biodiesel fuel (B100), as shown in Table 2. At all loadings, stages with increased biodiesel percentages in the blended fuel samples resulted in decreased engine speed because the heating value of biodiesel is lower than that of mineral diesel32,33,34,35.Figure 2Effects of engine load on (a) engine speed, (b) PTO torque, (c) PTO speed on PTO torque, (d) engine load on brake power, (e) engine speed on brake power, (f) engine load on fuel consumption, (g) engine speed on fuel consumption, (h) engine load on (BSFC). (i) engine speed on (BSFC), (j) engine load on BMEP, (k) engine speed on BMEP, (l) engine speed on BTE and (m) engine load on BTE.Full size imageTable 2 Interaction effects between engine load percentage and fuel blends percentage on power take-off speed, power take-off power, power take-off torque, engine speed, brake power, brake specific fuel consumption, brake thermal efficiency, fuel consumption, brake mean effective pressure, O2 percentage, CO2 percentage, CO, NO, and SO2.Full size tablePTO torqueThe results presented in Table 1 showed the significant effect of load percentage on PTO torque, where a loading stage of 75% achieved the highest PTO torque among all loading stage percentages, and the lowest value for PTO torque was obtained with a loading stage of 0%. Regarding the effects of fuel blend percentage on PTO torque, the results in Table 1 indicated that the fuel blends significantly affected PTO torque, and the highest value of this trait was achieved with B0 blend (100% diesel fuel) in comparison to the other blend percentages, while the lowest PTO torque was given with 100% biodiesel. The relationship between the torque of PTO shaft, Nm, and PTO load in percentage, and speed in rpm are shown in Fig. 2b,c, respectively. Increased PTO load resulted in decreased PTO speed and increased PTO torque until maximum torque values were reached for all blended fuel samples at a loading stage of 75% and a speed between 316 and 332 rpm, and then the torque decreased incrementally until the maximum loading stage was reached at a minimum PTO speed. Table 2 presents the results of the interactions between engine load percentage and fuel blend percentage, indicating that the maximum PTO torque was 663 Nm at a loading stage of 75% and PTO speed of 332 rpm, using 100% diesel fuel (B0), and the minimum PTO torque was 98.51 Nm at loading stage of 0% and PTO speed of 699.19, rpm using 100% diesel fuel (B0). At all loading stages, increasing biodiesel percentage in the blended fuel samples resulted in decreased PTO torque, which, due to the heating value of biodiesel, was lower than that of diesel fuel34,35,36. The values for PTO torque were close at different biodiesel percentages at the loading stage 0%, but engine performance cannot be judged at the no load stage with minimum torque, so the PTO load should be increased to see the difference between fuel types.Engine brake powerData in Table 1 showed that engine load percentage significantly affected BP, kW, such that engine load of 50% achieved the highest BP, and the lowest value for BP was obtained with 100% load. The results given in Table 1 show that fuel blend percentage was significantly affected BP, whereas the highest value for this trait was achieved with the 0% blend (100% diesel fuel) in comparison to the other blend percentage, while the lowest BP was given with 100% biodiesel. The interactions among BP, engine load, and engine speed were significant and were as presented in Fig. 2d, e. Moreover, increased engine load resulted in decreased engine speed and increasing BP until the highest value was reached at the loading stage of (50%) at engine speeds of 2034–2137 rpm for all fuel types shown in Table 2, which was due to the increased mass of burning fuel. The BP decreased until engine stop at a maximum loading stage of 100%, which was due to the effects of higher frictional force at the maximum loading stage33,34,35,37. The maximum BP was 46.2 kW at a loading stage of 50% and a speed of 2137 rpm at 100% diesel fuel (B0), while the minimum BP was 5.82 kW at a maximum loading stage of 100% and a speed of 276 rpm using 100% biodiesel (B100). At all loading stages, increased biodiesel percentages resulted in decreased BP because the calorific value of biodiesel was lower than that of diesel, as noted.Fuel consumptionData in Table 1 showed that engine load percentage affected significantly fuel consumption; 50% load achieved the highest fuel consumption, and the lowest value for fuel consumption was obtained for 0% load. The results in Table 1 showed that fuel blends percentage significantly affected fuel consumption, and the highest value of fuel consumption was recorded with the B100 blend (100% biodiesel fuel), and the lowest was given with the B0 blend of 100% diesel fuel. The significant interaction between fuel consumption, kg/h (Kilogram per hour) and each of engine load and speed are shown in Fig. 2f,g and the interaction between engine load percentage and fuel blend percentage are shown in Table 2, such that increased engine load resulted in decreased engine speed and increased fuel consumption until reaching the maximum value at a loading stage of 50% at maximum BP, which was because of the increased mass of burning fuel at this stage, and then the fuel consumption decreasing until reaching maximum loading33,34,35. The maximum fuel consumption was 18.24 kg/h at an engine speed of 2034.35 rpm using 100% biodiesel B100 at a loading stage of 50%. The minimum fuel consumption was 9.76 kg/h at an engine speed of 2692.9 rpm using 100% biodiesel B100 at a no-load stage. At loading stages between 0 and 100%, increasing biodiesel percentage resulted in increased fuel consumption, which is because the density of biodiesel was higher than that of diesel fuel.Brake specific fuel consumptionThe results in Table 1 indicated that engine load percentage significantly affected BSFC, such that the highest BSFC was achieved with an engine load of 100%, while the lowest value was obtained with an engine load of 50%. Other results shown in Table 1 indicated that increased biodiesel percentage in fuel blends produced significantly increased BSFC, and the maximum value of BSFC was given with B100 (100% biodiesel fuel); the lowest was seen with B0 percentage (100% diesel fuel). The relationship of interaction between (BSFC), (Kilogram per kilowatt hour) kg/kWh, engine load, and engine speed are shown in Fig. 2h,i, indicating that increased engine load resulted in decreased engine speed and BSFC until the minimum value was reached at a loading stage of 50% at maximum BP and fuel consumption. Then, the BSFC increased until it reached maximum value at a maximum loading stage of 100%, which was due to the highest frictional force and the lowest BP occurring at this loading stage33,34,35. The maximum (BSFC) was 1.95 kg/kWh at a loading stage of 100% and an engine speed of 276 rpm using 100% biodiesel fuel (B100); the minimum BSFC was 0.32 kg/kWh at an engine speed of 2137 rpm and a loading stage of 50% using 100% diesel fuel (B0), as shown in Table 2. At all loading stages, increased biodiesel percentages resulted in increased BSFC, except at the no loading stage. This is because the fuel consumption for biodiesel was higher than that for mineral diesel. Additionally, the calorific value of biodiesel was lower than that for diesel fuel, and the viscosity of the biodiesel was higher than that for mineral diesel, which leads to unfavorable pumping and spray characteristics36,38.Brake mean effective pressureThe results in Table 1 indicated a significant effect of engine load percentage on BMEP, such that the highest BMEP was given by an engine load of 75%, and the other side the lowest value for BMEP was obtained for an engine load of 0%. The results given in the same table indicated that increased biodiesel percentage in fuel blends significantly decreased BMEP. The maximum value of BMEP was given with the 0 blend (100% diesel fuel), and the lowest BMEP was given with 100% biodiesel fuel. The interaction between BMEP, kPa, engine load, and engine speed are shown in Fig. 2j,k. The data in Table 2 show the interaction between engine load percentage and fuel blend percentage. It can be clearly seen that increased engine load resulted in decreased engine speed and increased BMEP until the maximum value was reached at a loading stage of 75% at engine speeds between 1293 and 1355 rpm. The BMEP decreased with slight values until reaching the maximum loading stage at minimum engine speeds between 276 and 288 rpm. The maximum BMEP was 625 kPa at an engine speed of 1355 rpm, using 100% diesel fuel (B0) at a loading stage of 75%. The minimum BMEP was 92 kPa at an engine speed of 2692 rpm, using 100% biodiesel (B100) at no loading stage. At all loading stages, increased biodiesel percentage resulted in decreased BMEP, except that there was no loading stage at which the BSFC did not change with different biodiesel percentages. This is because the effect of increased engine speed resulted in a decreased time remaining for combustion and resulted in an insufficient motion of air in the cylinder. Both effects decreased the combustion efficiency and the BMEP values, as shown in Fig. 2j according to33,34,35,39.Brake thermal efficiencyThe results shown in Table 1 cleared that engine load percentage significantly affected BTE; the highest BTE was recorded with a 50% load, and the lowest one was given with a 0% load percentage. Table 1 also indicated that fuel blend percentage significantly affected BTE, and the maximum value for BTE was given with 0 blend (100% diesel fuel). The lowest value was obtained with 100% biodiesel (B100). The relationship between BTE and engine load and engine speed are shown in Figs. 2l,m. Increased engine load caused decreased engine speed and increased BTE until the maximum value was reached at a loading stage of 50%; BTE decreased until a minimum value was reached at a maximum loading stage of 100% and minimum engine speeds between 276 and 288 rpm. The maximum BTE was 26% at a speed of 2137.17 rpm using 100% diesel fuel (B0) at loading stage of 50%. The minimum BTE was 4.4% at speed of 276 rpm, using 100% biodiesel (B100) at the maximum loading stage of 100%, as shown in Table 2. For all loadings stages increased biodiesel percentage resulted in decreased BTE, except at the no loading and maximum loading stages, where the BTE did not change with different biodiesel percentages. This is because the density of waste frying oil biodiesel was higher than that of diesel fuel, while its calorific value and volatility was lower, such that the combustion characteristics of biodiesel were lower than those of diesel fuel34,35,36,40.Gas emissions qualityThe results in Table 1 showed that an engine load of 0% significantly increased O2 emissions, and fuel blends of 100% biodiesel also increased O2 emissions relative to the other treatments. The relationships between O2 emissions, biodiesel percentage, engine load, and engine speed are shown in Fig. 3a,b. Increased engine load resulted in decreased O2 emissions because of the increased engine consumption of O2 to optimize fuel combustion, while increased engine speed resulted in increased O2 emissions. The maximum O2 emissions were 15.3% at the minimum loading stage for all fuel blends, while the minimum O2 emissions were 4.3% at maximum loading stage for 100% diesel fuel, as presented in Table 2. At all loading stages, increased biodiesel percentage in the blended fuel samples resulted in increased O2 emissions, except at the no loading stage, where the oxygen content in the biodiesel was about 10 to 12% higher than that of diesel fuel34,35,41,42.Figure 3Effects of engine load on (a) engine load on O2 emissions, (b) engine speed on O2 emissions, (c) engine load on CO2 emissions, (d) engine speed on CO2 emissions, (e) engine load on CO emissions, (f) engine speed on CO emissions, (g) engine load on NO emissions, (h) engine speed on NO emissions, (i) engine load on SO2 emissions and (j) engine speed on SO2 emissions.Full size imageThe results in Table 1 showed that engine loading of 100% significantly increased CO2 and CO emissions, and the fuel blend of 100% diesel fuel (B0) increased CO2 and CO emissions relative to other treatments. The relationship between CO2 emissions, engine load, and engine speed are presented in Fig. 3c,d and Table 2. Increased engine load resulted in increased CO2 emissions until a maximum loading stage of 100% was reached, while increased engine speed resulted in decreased CO2 emissions. The maximum value for CO2 emissions was 12.3% at the maximum loading stage using 100% diesel (B0), and the minimum CO2 emissions was 4.2% at the no loading stage for all fuel blends. At loading stages of 50, 75, and 100%, increased biodiesel percentage in the blended fuel samples resulted in decreased CO2 emissions, which due to the oxygen content in the biodiesel was about 10–12%. A higher oxygen content contributes to increasing ignition quality and decrease CO2 emissions35,36,41.The relationship between CO emissions, biodiesel percentage, engine load, and engine speed are shown in Fig. 3e,f. For all tested fuel samples, increased engine load resulted in a greater increase in CO emissions, until a maximum load was reached except at 100% biodiesel (B100), which increased slightly. Increased engine speed resulted in a sharp decrease in CO emissions until the maximum speed was reached, except at B100, which decreased slightly43,44,45. The maximum CO emissions value was 369 ppm at the maximum loading stage using 100% diesel fuel (B0), while the minimum CO emissions was 69 ppm at the minimum loading stage using 100% biodiesel fuel (B100). At all loading stages, increased biodiesel percentage resulted in decreased CO emissions except that at loading stages of 25% and 50%, for which the values of CO emissions were close. This was because high oxygen content in biodiesel increases ignition quality and decreases CO emissions, so increased biodiesel percentages reduce environmental pollution36,43,44,45,46. The results in Table 2 showed that an engine load of 75% significantly increased NO emissions, and 100% biodiesel fuel (B100) increased NO emissions relative to the other treatments.The relationship between NO emissions, engine load, and engine speed are shown in Fig. 3g,h. Increased engine load resulted in decreased engine speed and increased NO emissions until the maximum value was reached at a loading stage of 75%. NO emissions decreased until reach a loading stage of 100% was reached with a minimum engine speed. The maximum NO emissions were 593 ppm at a loading stage of 75% using 100% biodiesel fuel (B100), while the minimum NO emissions were 266 ppm at the minimum loading stage using (B100) as showed in Table 1. At all loading stages, increased biodiesel percentages in the blended fuel samples resulted in increased NO emissions, except at the no loading stage, which was due to the increased burned fuel, which resulted in increased cylinder temperature. This was responsible for thermal NOx formation. Higher flame and cylinder temperatures with high oxygen content in the biodiesel led to higher NOx36,43,44,45,46. Table 2 shows that the engine load of 100% significantly increased SO2 emissions, and 100% diesel fuel increased SO2 emissions, relative to the other treatments.The relationship between SO2 emissions, diesel percentage, engine load, and engine speed are shown in Fig. 3I,j and Table 1. Increased engine load resulted in increased SO2 emissions, and increased engine speed resulted in decreased SO2 emissions. There were no SO2 emissions by using 100% biodiesel (B100). The maximum SO2 emissions was 21 ppm at maximum loading stage using 100% diesel (B0). At all loading stages increasing biodiesel percentage in the blended fuel resulted in decreasing SO2 emissions43,44,45,46. More

  • in

    Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish

    Allendorf FW (2017) Genetics and the conservation of natural populations: allozymes to genomes. Mol Ecol 26(2):420–430CAS 
    PubMed 
    Article 

    Google Scholar 
    Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11(10):697–709CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, Oxford, UK
    Google Scholar 
    Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd ed. Blackwell Publishing, Oxford, UK
    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Searsh Tool. J Mol Biol 215(3):403–410CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ArtDatabanken (2020) Mal Silurus glanis. https://artfakta.se/naturvard/taxon/100131Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, Hahn MW et al. (2007) Population genomics: Whole-genome analysis of polymorphism and divergence in Drosophila simulans. PLOS Biol 5(11):2534–2559CAS 
    Article 

    Google Scholar 
    Borger T, Kjellberg A (2006) Malprovfiske i Emån 2006 [Fish survey for wels catfish in Emån 2006; in Swedish]. Länsstyrelsen i Kalmar län informerar. Meddelande 2006:16. Länsstyrelsen i Kalmar Län
    Google Scholar 
    Brandies P, Peel E, Hogg CJ, Belov K (2019) The value of reference genomes in the conservation of threatened species. Genes 10(11):846CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Bylak A, Kukuła K (2018) Importance of peripheral basins: implications for the conservation of fish assemblages. Aquat Conserv Mar Freshw Ecosyst 28:1055–1066Article 

    Google Scholar 
    Bylak A, Kukuła K (2020) Conservation of fish communities: Extending the ‘research life cycle’ by achieving practical effects. Aquat Conserv Mar Freshw Ecosyst 30:1741–1746Article 

    Google Scholar 
    Calles EO, Greenberg LA (2005) Evaluation of nature-like fishways for re-establishing connectivity in fragmented salmonid populations in the River Emån. River Res Appl 21:951–960Article 

    Google Scholar 
    Carol J, Zamora L, García-Berthou E (2007) Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecol Freshw Fish 16:450–456Article 

    Google Scholar 
    Ceballos FC, Joshi PK, Clark DW, Ramsay M, Wilson JF (2018) Runs of homozygosity: windows into population history and trait architecture. Nat Rev Genet 19(4):220–235CAS 
    PubMed 
    Article 

    Google Scholar 
    Channell R (2004) The conservation value of peripheral populations: The supporting science. In: Hooper TD (ed.) Proceedings of the species at risk. Pathways to Recovery Conference. Conference Organizing Committee, Victoria, BCChannell R, Lomolino MV (2000) Dynamic biogeography and conservation of endangered species. Nature 403:84–86CAS 
    PubMed 
    Article 

    Google Scholar 
    Copp GH, Britton JR, Cucherousset J, Garcia-Berthou E, Kirk R, Peeler E et al. (2009) Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish Fish 10(3):252–282Article 

    Google Scholar 
    Cucherousset J, Horky P, Slavik O, Ovidio M, Arlinghaus R, Bouletreau S et al. (2018) Ecology, behaviour and management of the European catfish. Rev Fish Biol Fish 28(1):177–190Article 

    Google Scholar 
    Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA et al. (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2 edn. Cambridge University Press, CambridgeBook 

    Google Scholar 
    Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR et al. (2011) Predicting the probability of outbreeding depression. Conserv Biol 25(3):465–475PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10(12):2741–2752CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Freyhof J (2010). Silurus glanis (errata version published in 2018). The IUCN red list of threatened species. https://www.iucnredlist.org/species/40713/136595620#errataGarcía-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S et al. (2012) Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28:2678–2679PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Garner BA, Hand BK, Amish SJ, Bernatchez L, Foster JT, Miller KM et al. (2016) Genomics in conservation: case studies and bridging the gap between data and application. Trends Ecol Evol 31(2):81–83PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gibson J, Newton ME, Collins A (2006) Extended tracts of homozygosity in outbred human populations. Hum Mol Genet 15(5):789–795CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Guillerault N, Delmotte S, Bouletreau S, Lauzeral C, Poulet N, Santoul F (2015) Does the non-native European catfish Silurus glanis threaten French river fish populations? Freshw Biol 60(5):922–928Article 

    Google Scholar 
    Havs-och-vattenmyndighetens. (2017) Åtgärdsprogram för mal (Silurus glanis). [Swedish Agency for Marine and Water Management. Action plan for wels catfish in Sweden; in Swedish]. Havs- och Vattenmyndighetens Rapp 2017:33
    Google Scholar 
    Helyar SJ, Hemmer-Hansen J, Bekkevold D, Taylor MI, Ogden R, Limborg MT et al. (2011) Application of SNPs for population genetics of nonmodel organisms: new opportunities and challenges. Mol Ecol Resour 11:123–136PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hendricks S, Anderson EC, Antao T, Bernatchez L, Forester BR, Garner B et al. (2018) Recent advances in conservation and population genomics data analysis. Evol Appl 11(8):1197–1211PubMed Central 
    Article 

    Google Scholar 
    Hohenlohe PA, Funk WC, Rajora OP (2020) Population genomics for wildlife conservation and management. Mol Ecol 30:62–82PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hohenlohe PA, Rajora OP (eds) (2020) Population genomics: wildlife. Population Genomics. Springer, ChamHöglund J (2009) Evolutionary Conservation Genetics. Oxford University Press, OxfordBook 

    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeBook 

    Google Scholar 
    Krieg F, Triantafyllidis A, Guyomard R (2000) Mitochondrial DNA variation in European populations of Silurus glanis. J Fish Biol 56(3):713–724CAS 
    Article 

    Google Scholar 
    Lamichhaney S, Fuentes-Pardo AP, Rafati N, Ryman N, McCracken GR, Bourne C et al. (2017) Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc Natl Acad Sci USA 114(17):E3452–E3461CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh JW, Bryant D (2015) popart: full-feature software for haplotype network construction (S Nakagawa, Ed.). Methods Ecol Evol 6:1110–1116Article 

    Google Scholar 
    Lesica P, Allendorf FW (1995) When are peripheral-populations valuable for conservation. Conserv Biol 9(4):753–760Article 

    Google Scholar 
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMahon BJ, Teeling EC, Hoglund J (2014) How and why should we implement genomics into conservation? Evol Appl 7(9):999–1007PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyermans R, Gorssen W, Buys N, Janssens S (2020) How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genomics 21:94CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nathanson JE (1987). Malens utbredning i Sverige. English summary: Distribution of the sheatfish (Silurus glanis) in Sweden. Information från Sötvattenslaboratoriet (Institute of Freshwater Research), DrottningholmPalm S, Prestegaard T, Dannewitz J, Petersson E, Nathanson JE (2008). Genetisk kartläggning av svenska malbestånd [Genetic survey of swedish populations of wels catfish]. Fiskeriverkets Sötvattenslaboratorium, Drottningholm & Uppsala UniversitetPalm S, Vinterstare J, Nathanson JE, Triantafyllidis A, Petersson E (2019) Reduced genetic diversity and low effective size in peripheral northern European catfish Silurus glanis populations. J Fish Biol 95(6):1407–1421PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/Savolainen O, Lascoux M, Merilä J (2013) Ecological genomics of local adaptation. Nat Rev Genet 14(11):807–820CAS 
    PubMed 
    Article 

    Google Scholar 
    Schiffels S, Durbin R (2014) Inferring human population size and separation history from multiple genome sequences. Nat Genet 46(8):919–925CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shafer ABA, Wolf JBW, Alves PC, Bergström L, Bruford MW, Brannstrom I et al. (2015) Genomics and the challenging translation into conservation practice. Trends Ecol Evol 30(2):78–87PubMed 
    Article 

    Google Scholar 
    Shafer ABA, Wolf JBW, Alves PC, Bergström L, Colling G, Dalen L et al. (2016) Genomics in conservation: case studies and bridging the gap between data and application reply. Trends Ecol Evol 31(2):83–84PubMed 
    Article 

    Google Scholar 
    Shendure J, Ji HL (2008) Next-generation DNA sequencing. Nat Biotech 26(10):1135–1145CAS 
    Article 

    Google Scholar 
    Svensson M, Kjellberg A, Lessmark O, Nathanson JE, Almer B, Wagnström J (2013). Beskrivning av förväntade effekter av återintroduktion av mal i nedre delen av Skräbeåns vattensystem [Description of expected effects of reintroduction of wels catfish in the lower parts of Skräbeåns watersystem]. Ivösjöns FiskevårdsföreningTallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19(9):489–496PubMed 
    Article 

    Google Scholar 
    Taylor HR, Dussex N, van Heezik Y (2017) Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Global Ecol Conserv 10:231–242Article 

    Google Scholar 
    Triantafyllidis A, Abatzopoulos TJ, Economidis PS (1999a) Genetic differentiation and phylogenetic relationships among Greek Silurus glanis and Silurus aristotelis (Pisces, Siluridae) populations, assessed by PCR-RFLP analysis of mitochondrial DNA segments. Heredity 82:503–509CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantafyllidis A, Krieg F, Cottin C, Abatzopoulos TJ, Triantaphyllidis C, Guyomard R (2002) Genetic structure and phylogeography of European catfish (Silurus glanis) populations. Mol Ecol 11(6):1039–1055CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantafyllidis A, Ozouf-Costaz C, Rab P, Suciu R, Karakousis Y (1999b) Allozyme variation in European silurid catfishes, Silurus glanis and Silurus aristotelis. Biochem Syst Ecol 27(5):487–498CAS 
    Article 

    Google Scholar 
    Vittas S, Drosopoulou E, Kappas I, Pantzartzi CN, Scouras ZG (2011) The mitochondrial genome of the European catfish Silurus glanis (Siluriformes, Siluridae). J Biol Res 15:25–35CAS 

    Google Scholar 
    Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB (2017) Direct determination of diploid genome sequences. Genome Res 27(5):757–767CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zoonomia Consortium (2020) A comparative genomics multitool for scientific discovery and conservation. Nature 597:240–245Article 
    CAS 

    Google Scholar  More

  • in

    Multiple social network influences can generate unexpected environmental outcomes

    1.Amel, E., Manning, C., Scott, B. & Koger, S. Beyond the roots of human inaction: Fostering collective effort toward ecosystem conservation. Science 356, 275–279 (2017).
    Google Scholar 
    2.Bodin, Ö. Collaborative environmental governance: Achieving collective action in social-ecological systems. Science 357, eaan1114 (2017).
    Google Scholar 
    3.Cinner, J. E. How behavioral science can help conservation. Science 362, 889–891 (2018).
    Google Scholar 
    4.Abrahamse, W. & Steg, L. Social influence approaches to encourage resource conservation: A meta-analysis. Glob. Environ. Chang. 23, 1773–1785 (2013).
    Google Scholar 
    5.Christoff, Z., Hansen, J. U. & Proietti, C. Reflecting on social influence in networks. J. Logic Lang. Inf. 25, 299–333 (2016).
    Google Scholar 
    6.Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl. Acad. Sci. USA. 107, 5334–5338 (2010).
    Google Scholar 
    7.Friedkin, N. E. & Johnsen, E. C. Social positions in influence networks. Soc. Netw. 19, 209–222 (1997).
    Google Scholar 
    8.Christakis, N. A. & Fowler, J. H. The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358, 2249–2258 (2008).
    Google Scholar 
    9.Barnes, M. L., Lynham, J., Kalberg, K. & Leung, P. Social networks and environmental outcomes. Proc. Natl. Acad. Sci. 113, 6466–6471 (2016).
    Google Scholar 
    10.McPherson, M., Smith-lovin, L. & Cook, J. M. Homophily in social networks. Annu. Rev. Sociol. 27, 415–444 (2001).
    Google Scholar 
    11.Bodin, Ö., Mancilla García, M. & Robins, G. Reconciling conflict and cooperation in environmental governance: A social network perspective. Annu. Rev. Environ. Resour. 45, 471–495 (2020).
    Google Scholar 
    12.Bodin, Ö. & Prell, C. Social Networks and Natural Resource. Management Uncovering the Social Fabric of Environmental Governance (Cambridge University Press, 2011).
    Google Scholar 
    13.Small, B., Brown, P. & Montes de Oca Munguia, O. Values, trust, and management in New Zealand agriculture. Int. J. Agric. Sustain. 14, 282–306 (2016).
    Google Scholar 
    14.Friedman, R. S. et al. Beyond the community in participatory forest management: A governance network perspective. Land Use Policy 97, 104738 (2020).
    Google Scholar 
    15.Schill, C. et al. A more dynamic understanding of human behaviour for the Anthropocene. Nat. Sustain. 2, 1075–1082 (2019).
    Google Scholar 
    16.Yletyinen, J., Hentati-Sundberg, J., Blenckner, T. & Bodin, O. Fishing strategy diversification and fishers’ ecological dependency. Ecol. Soc. 23, 28 (2018).
    Google Scholar 
    17.Grêt-Regamey, A., Huber, S. H. & Huber, R. Actors’ diversity and the resilience of social-ecological systems to global change. Nat. Sustain. 2, 290–297 (2019).
    Google Scholar 
    18.Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).
    Google Scholar 
    19.de Lange, E., Milner-Gulland, E. J. & Keane, A. Improving environmental interventions by understanding information flows. Trends Ecol. Evol. 34, 1034–1047 (2019).
    Google Scholar 
    20.Vainio, A., Paloniemi, R. & Hujala, T. How are forest owners’ objectives and social networks related to successful conservation?. J. Rural Stud. 62, 21–28 (2018).
    Google Scholar 
    21.de Snoo, G. R. et al. Toward effective nature conservation on farmland: Making farmers matter. Conserv. Lett. 6, 66–72 (2013).
    Google Scholar 
    22.Hanski, I. Habitat loss, the dynamics of biodiversity, and a perspective on conservation. Ambio 40, 248–255 (2011).
    Google Scholar 
    23.Wintle, B. A. et al. Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proc. Natl. Acad. Sci. 116, 909–914 (2018).
    Google Scholar 
    24.Hill, R. et al. A social-ecological systems analysis of impediments to delivery of the Aichi 2020 Targets and potentially more effective pathways to the conservation of biodiversity. Glob. Environ. Chang. 34, 22–34 (2015).
    Google Scholar 
    25.Bengtsson, J. et al. Reserves, resilience and dynamic landscapes. AMBIO J. Hum. Environ. 32, 389–396 (2016).
    Google Scholar 
    26.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
    Google Scholar 
    27.Miller, B. W., Caplow, S. C. & Leslie, P. W. Feedbacks between conservation and social-ecological systems. Conserv. Biol. 26, 218–227 (2012).
    Google Scholar 
    28.Larrosa, C., Carrasco, L. R. & Milner-Gulland, E. J. Unintended feedbacks: Challenges and opportunities for improving conservation effectiveness. Conserv. Lett. 9, 316–326 (2016).
    Google Scholar 
    29.Reyers, B. & Selig, E. R. Global targets that reveal the social–ecological interdependencies of sustainable development. Nat. Ecol. Evol. 4, 1011–1019 (2020).
    Google Scholar 
    30.Brehony, P., Tyrrell, P., Kamanga, J., Waruingi, L. & Kaelo, D. Incorporating social-ecological complexities into conservation policy. Biol. Conserv. 248, 108697 (2020).
    Google Scholar 
    31.Jacob, U. et al. Marine conservation: Towards a multi-layered network approach. Philos. Trans. R. Soc. B. Biol. Sci. 375, 20190459 (2020).
    Google Scholar 
    32.Hoole, A. & Berkes, F. Breaking down fences: Recoupling social-ecological systems for biodiversity conservation in Namibia. Geoforum 41, 304–317 (2010).
    Google Scholar 
    33.Dajka, J. et al. Red and green loops help uncover missing feedbacks in a coral reef social–ecological system. People Nat. 2, 608–618 (2020).
    Google Scholar 
    34.Yletyinen, J. et al. Understanding and managing social-ecological tipping points in primary industries. Bioscience 69, 335–347 (2019).
    Google Scholar 
    35.Mason, W. A., Conrey, F. R. & Smith, E. R. Situating social influence processes: Dynamic, multidirectional flows of influence within social networks. Personal. Soc. Psychol. Rev. 11, 279–300 (2007).
    Google Scholar 
    36.Niemiec, R. M., Willer, R., Ardoin, N. M. & Brewer, F. K. Motivating landowners to recruit neighbors for private land conservation. Conserv. Biol. 33, 930–941 (2019). 
    Google Scholar 
    37.Brown, P. Survey of rural decision makers. Manaaki Whenua Landcare Res. https://doi.org/10.7931/J2736P2D (2015).
    Google Scholar 
    38.Burt, R. S. & Doreian, P. Testing a structural model of perception: Conformity and deviance with respect to Journal norms in elite sociological methodology. Qual. Quant. 16, 109–150 (1982).
    Google Scholar 
    39.Zhang, B., Pavlou, P. A. & Krishnan, R. On direct vs. indirect peer influence in large social networks. Inf. Syst. Res. 29, 292–314 (2018).
    Google Scholar 
    40.Pinheiro, F. L., Santos, M. D., Santos, F. C. & Pacheco, J. M. Origin of peer influence in social networks. Phys. Rev. Lett. 112, 1–5 (2014).
    Google Scholar 
    41.Lewis, K., Gonzalez, M. & Kaufman, J. Social selection and peer influence in an online social network. Proc. Natl. Acad. Sci. 109, 68–72 (2012).
    Google Scholar 
    42.Stein, C., Barron, J. & Ernstson, H. A social network approach to analyze multi-stakeholders governance arrangement in water resources management: Three case studies from catchments in Burkina Faso, Tanzania and Zambia. In Proceedings of the XIVth World Water Congress, 25–29 September, at Porto de Galinhas, Pernambuco, Brazil. (2011).43.Autant-bernard, C., Mairesse, J. & Massard, N. Spatial knowledge diffusion through collaborative networks. Pap. Reg. Sci. 86, 341–350 (2007).
    Google Scholar 
    44.Ward, P. S. & Pede, V. O. Capturing social network effects in technology adoption: The spatial diffusion of hybrid rice in Bangladesh. Aust. J. Agric. Resour. Econ. 59, 225–241 (2015).
    Google Scholar 
    45.Kuhfuss, L. et al. Nudges, social norms, and permanence in agri-environmental schemes. Land Econ. 92, 641–655 (2016).
    Google Scholar 
    46.Fehr, E. & Schurtenberger, I. Normative foundations of human cooperation. Nat. Hum. Behav. 2, 458–468 (2018).
    Google Scholar 
    47.Delaroche, M. Adoption of conservation practices: What have we learned from two decades of social-psychological approaches?. Curr. Opin. Environ. Sustain. 45, 25–35 (2020).
    Google Scholar 
    48.Knowler, D. & Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 32, 25–48 (2007).
    Google Scholar 
    49.O’Sullivan, D. & Perry, G. L. W. Spatial Simulation. Exploring Pattern and Process (Wiley, 2013).
    Google Scholar 
    50.Will, M., Groeneveld, J., Frank, K. & Müller, B. Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review. Socio-Environ. Syst. Model. 2, 16325 (2020).
    Google Scholar 
    51.Bodin, Ö. & Crona, B. I. The role of social networks in natural resource governance: What relational patterns make a difference?. Glob. Environ. Chang. 19, 366–374 (2009).
    Google Scholar 
    52.Erdős, P. & Rényi, A. On random graphs. Publ. Math. 6, 290–297 (1959).
    Google Scholar 
    53.Hanski, I. Dynamics of regional distribution: The core and satellite species hypothesis. Oikos 38, 210–221 (1982).
    Google Scholar 
    54.Groce, J. E., Farrelly, M. A., Jorgensen, B. S. & Cook, C. N. Using social-network research to improve outcomes in natural resource management. Conserv. Biol. 33, 53-65 (2018).
    Google Scholar 
    55.Schill, C., Wijermans, N., Schlüter, M. & Lindahl, T. Cooperation is not enough – Exploring social-ecological micro-foundations for sustainable common-pool resource use. PLoS ONE 11, e0165009 (2016).
    Google Scholar 
    56.Valente, T. W. Network interventions. Science 337, 49–53 (2012).
    Google Scholar 
    57.Valente, T. W. Putting the network in network interventions. Proc. Natl. Acad. Sci. USA. 114, 9500–9501 (2017).
    Google Scholar 
    58.Kossinets, G. & Watts, D. J. Empirical analysis of an evolving social network. Science 311, 88–90 (2006).
    Google Scholar 
    59.De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S. & Arenas, A. Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015).
    Google Scholar 
    60.Prell, C. Social Network Analysis (SAGE publications Ltd, 2012).
    Google Scholar 
    61.Thampi, V. A., Anand, M. & Bauch, C. T. Socio-ecological dynamics of Caribbean coral reef ecosystems and conservation opinion propagation. Sci. Rep. 8, 2597 (2018).
    Google Scholar 
    62.Dannenberg, A. & Barrett, S. Cooperating to avoid catastrophe. Nat. Hum. Behav. 2, 435–437 (2018).
    Google Scholar 
    63.Rasoulkhani, K., Logasa, B., Reyes, M. P. & Mostafavi, A. Understanding fundamental phenomena affecting the water conservation technology adoption of residential consumers using agent-based modeling. Water 10, 993 (2018).
    Google Scholar 
    64.Wang, P., Robins, G., Pattison, P. & Lazega, E. Exponential random graph models for multilevel networks. Soc. Netw. 35, 96–115 (2013).
    Google Scholar 
    65.Kivelä, M. et al. Multilayer networks. J. Complex Networks 2, 203–271 (2014).
    Google Scholar 
    66.Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2011).
    Google Scholar 
    67.May, R. M., Levin, S. A. & Sugihara, G. Complex systems: Ecology for bankers. Nature 451, 893–895 (2008).
    Google Scholar 
    68.Grimm, V. et al. The ODD protocol for describing agent-based models: a second update to improve clarity, replication and structural realism. J. Artif. Soc. Soc. Simul. 23(2), 7 (2020).
    Google Scholar 
    69.Alexander, S. M., Bodin, Ö. & Barnes, M. L. Untangling the drivers of community cohesion in small-scale fisheries. Int. J. Commons 12, 519–547 (2018).
    Google Scholar 
    70.QE II National Trust. QE II National Trust. Ngā Kiarauhi Papa|Forever protected. https://qeiinationaltrust.org.nz.71.Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).
    Google Scholar 
    72.Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857–871 (1971).
    Google Scholar 
    73.Aral, S., Muchnik, L. & Sundararajan, A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl. Acad. Sci. US. A. 106, 21544–21549 (2009).
    Google Scholar 
    74.Stefano, A. D. et al. Quantifying the role of homophily in human cooperation using multiplex evolutionary game theory. PLoS ONE 10, e0140646 (2015).
    Google Scholar 
    75.Wilensky, U. NetLogo. http://ccl.northwestern.edu/netlogo/. (Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL, 1999).76.Thiele, J. C. R Marries NetLogo: Introduction to the RNetLogo Package. J. Stat. Softw. 58, 1–41 (2014).
    Google Scholar 
    77.R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, 2018).78.Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Softw. Code Snippets 28, 1–9 (2008).
    Google Scholar 
    79.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data. R package version 3.0.1. (2016).80.Csardi, G. & Nepusz, T. The igraph software package for complex network research. Interjournal Complex Syst. 1695, 1–9 (2006).
    Google Scholar  More

  • in

    Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau

    1.Cerdà, A., González Pelayo, Ó., Pereira, P., Novara, A., Iserloh, T. et al. The wildgeographer avatar shows how to measure soil erosion rates by means of a rainfall simulator. In Geophysical Research (2015).2.Fu, B. J. Soil erosion and its control in the Loess Plateau of China. Soil Use Manag. 5, 76–81 (1989).Article 

    Google Scholar 
    3.Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304(5677), 1623–1627 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Govers, G., Van Oost, K. & Wang, Z. Scratching the critical zone: the global footprint of agricultural soil erosion. Procedia Earth Planet. Sci. 10, 313–318 (2014).ADS 
    Article 

    Google Scholar 
    5.Zhou, P., Wen, A., Zhang, X. & He, X. Soil conservation and sustainable eco-environment in the Loess Plateau of China. Environ. Earth Sci. 68(3), 633–639 (2012).
    Google Scholar 
    6.Aldaood, A., Bouasker, M. & Al-Mukhtar, M. Soil–water characteristic curve of lime treated gypseous soil. Appl. Clay Sci. 102, 128–138 (2014).CAS 
    Article 

    Google Scholar 
    7.Satyanaga, A., Rahardjo, H., Leong, E. C. & Wang, J. Y. Water characteristic curve of soil with bimodal grain-size distribution. Comput. Geotech. 48(4), 51–61 (2013).Article 

    Google Scholar 
    8.Li, X., Li, J. H. & Zhang, L. M. Predicting bimodal soil–water characteristic curves and permeability functions using physically based parameters. Comput. Geotech. 57(4), 85–96 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    9.Breda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006).Article 

    Google Scholar 
    10.Zhao, J., Lin, L., Yang, K., Liu, Q. & Qian, G. Influences of land use on water quality in a reticular river network area: a case study in Shanghai, China. Landsc. Urban Plan. 137, 20–29 (2015).Article 

    Google Scholar 
    11.McIntosh, J. C. & Horne, D. J. Causes of repellency: I. The nature of the hydrophobic compounds found in a New Zealand development sequence of yellow-brown sands. In Proceedings of the 2nd National Water Repellency Workshop, 1–5 August, Perth, Western Australia, 8–12 (1994).12.de Jonge, L. W., Moldrup, P. & Jacobsen, O. H. Soil-water content dependency of water repellency in soils: effect of crop type, soil management, and physical–chemical parameters. Soil Sci. 172, 577–588 (2007).ADS 
    Article 

    Google Scholar 
    13.Hallett, P. D., Ritz, K. & Wheatley, R. E. Microbial derived water repellency in golf course soil. Int. Turfgrass Soc. Res. J. 9, 518–524 (2001).
    Google Scholar 
    14.Caravaca, F., Masciandaro, G. & Ceccanti, B. Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment. Soil Till. Res. 68(1), 23–30 (2002).Article 

    Google Scholar 
    15.Li, H., Yan, F. C., Jiao, J. Y., Tang, B. Z. & Zhang, Y. F. Soil water availability and holding capacity of different vegetation types in hilly-gullied region of the loess plateau. Acta Ecol. Sin. 38(11) (2018).16.Ritchie, J. T. Soil water availability. Plant Soil 58(58), 327–338 (1981).Article 

    Google Scholar 
    17.Wan, S., Norby, R. J., Ledford, J. & Weltzin, J. F. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland. Glob. Change Biol. 13(11), 2411–2424 (2007).ADS 
    Article 

    Google Scholar 
    18.An, S. et al. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling area, China. CATENA 75(3), 248–256 (2008).Article 

    Google Scholar 
    19.Wang, K. B., Shao, R. X. & Shangguan, Z. P. Changes in species richness and community productivity during succession on the Loess Plateau (China). Pol. J. Ecol. 58(3), 501–510 (2010).
    Google Scholar 
    20.Wang, Y., Shao, M. & Shao, H. A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. J. Hydrol. 381(1–2), 9–17 (2010).ADS 
    Article 

    Google Scholar 
    21.Reatto, A., Silva, E. M. D., Bruand, A., Martins, E. S. & Lima, J. E. F. W. Validity of the centrifuge method for determining the water retention properties of tropical soils. Soil Sci. Soc. Am. J. 72(6), 1547–1553 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Jia, G. M., Cao, J., Wang, C. Y. & Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwuling northwest China. For. Ecol. Manag. 217, 117–125 (2005).Article 

    Google Scholar 
    23.Ghanbarian-Alavijeh, B. & Millán, H. The relationship between surface fractal dimension and soil water content at permanent wilting point. Geoderma 151(3–4), 224–232 (2009).ADS 
    Article 

    Google Scholar 
    24.Wang, M. B., Chai, B. F., Li, H. J. & Feng, C. P. Soil water holding capacity and soil available water in plantations in the loess region. Sci. Silvae Sin. 35(2), 7–14 (1999).
    Google Scholar 
    25.Yang, L., Wei, W., Chen, L. D. & Mo, B. Response of deep soil moisture to land use and afforestation in the semi-arid Loess Plateau, China. J. Hydrol. 475(6), 111–122 (2012).ADS 
    Article 

    Google Scholar 
    26.Huang, J. H., Liao, Y. C., Gao, M. S. & Yin, R. J. Effects of tillage and mulching on orchard soil moisture content and temperature in Loess Plateau. Chin. J. Appl. Ecol. 20(11), 2652–2658 (2009).
    Google Scholar 
    27.Borken, W., Savage, K., Davidson, E. A. & Trumbore, S. E. Effects experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob. Change Biol. 12, 177–193 (2006).ADS 
    Article 

    Google Scholar 
    28.Scott-Denton, L. E., Rosenstiel, T. N. & Monson, R. K. Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob. Change Biol. 12(12), 205–216 (2006).ADS 
    Article 

    Google Scholar 
    29.Zhang, Y. W., Deng, L., Yan, W. M. & Shangguan, Z. P. Interaction of soil water storage dynamics and long-term natural vegetation succession on the Loess Plateau, China. CATENA 137, 52–60 (2016).Article 

    Google Scholar 
    30.Zhao, S. W., Zhao, Y. G. & Wu, J. S. Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau. Sci. China Earth Sci. 53, 617–625 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Udawatta, R. P. & Anderson, S. H. Ct-measured pore characteristics of surface and subsurface soils influenced by agroforestry and grass buffers. Geoderma 145(3–4), 381–389 (2008).ADS 
    Article 

    Google Scholar 
    32.Honda, E. A. & Durigan, G. Woody encroachment and its consequences on hydrological processes in the Savannah. Philos. Trans. R. Soc. B 371(1703), 20150313 (2016).Article 

    Google Scholar 
    33.Zhang, Y. W. & Shangguan, Z. P. Interaction of soil water storage and stoichiometrical characteristics in the long-term natural vegetation restoration on the Loess Plateau. Ecol. Eng. 116, 7–13 (2018).Article 

    Google Scholar 
    34.Wang, Z. H. et al. Effects of plant species diversity on soil conservation and stability in the secondary succession phases of a semi-humid evergreen broadleaf forest in China. J. Soil Water Conserv. 67, 311–320 (2012).Article 

    Google Scholar 
    35.Yang, L., Wei, W., Chen, L. D. & Wang, J. L. Response of temporal variation of soil moisture to vegetation restoration in semi-arid Loess Plateau, China. CATENA 115, 123–133 (2014).Article 

    Google Scholar 
    36.Wang, L., Mu, Y., Zhang, Q. F. & Jia, Z. K. Effects of vegetation restoration on soil physical properties in the wind–water erosion region of the northern Loess Plateau of China. Clean: Soil, Air, Water 40(1), 7–15 (2012).
    Google Scholar 
    37.Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).CAS 
    Article 

    Google Scholar 
    38.Zhang, Y. W. & Shangguan, Z. P. The coupling interaction of soil water and organic carbon storage in the long vegetation restoration on the Loess Plateau. Ecol. Eng. 91, 574–581 (2016).Article 

    Google Scholar 
    39.Luo, Y. Q. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).Article 

    Google Scholar  More

  • in

    Evidence for self-sustaining populations of Arcuatula senhousia in the UK and a review of this species’ potential impacts within Europe

    1.Crooks, J. A. The population ecology of an exotic mussel, Musculista senhousia, in a Southern California bay. Estuaries 19, 42–50 (1996).Article 

    Google Scholar 
    2.Huber, M. Compendium of Bivalves: A Full-Color Guide to 3,300 of the World’s Marine Bivalves: A Status on Bivalvia After 250 Years of Research. (ConchBooks, 2010).3.Kulikova, V. A. Morphology, seasonal population dynamics, and settlement of larvae of the bivalve mollusc Musculista senhousia in Busse Lagoon (South Sakhalin). Sov. J. Mar. Biol. 4, 769–773 (1978).
    Google Scholar 
    4.Chuang, S. H. On Malayan shores: a log cabin book. (Muwu Shosa, 1961).5.CABI. Arcuatula senhousia [original text by A. Zenetos]. In: Invasive Species Compendium. CAB International, Wallingford, UK. www.cabi.org/isc (2019).6.Kincaid, T. The acclimitization of marine animals in Pacific northwest waters. Min. Conchol Club South. Calif. 72, 1–3 (1947).
    Google Scholar 
    7.Willan, R. C. Successful establishment of the Asian mussel Musculista senhousia (Benson in Cantor, 1842) in New Zealand. Rec. Auckl. Inst. Museum 22, 85–96 (1985).
    Google Scholar 
    8.Willan, R. C. The mussel Musculista senhousia in Australasia; another aggressive alien highlights the need for quarantine at ports. Bull. Mar. Sci. 41, 475–489 (1987).ADS 

    Google Scholar 
    9.Hoenselaar, H. J. & Hoenselaar, J. Musculista senhousia (Benson in Cantor, 1842) in the western Mediterranean (Bivalvia, Mytilidae). Basteria 53, 73–76 (1989).
    Google Scholar 
    10.Mastrototaro, F., Matarrese, A. & D’Onghia, G. Occurrence of Musculista senhousia (Mollusca: Bivalvia) in the Taranto seas (eastern-central Mediterranean Sea). J. Mar. Biol. Ass. UK 83, 1279–1280 (2003).Article 

    Google Scholar 
    11.Micu, D. First record of Musculista senhousia (Brenson in Cantor, 1842) from the Black Sea. (Abstracts of the International Symposium of Malacology, 19–22 Aug 2004, Sibiu, Romania. p. 47, 2004).12.Ruci, S., Kasemi, D. & Beqiraj, S. Data on macrozoobenthos in rocky areas of the Adriatic Sea of Albania. IMPACT Int. J. Res. Appl. Nat. Soc. Sci. 2, 63–70 (2014).13.Kovalev, E. A., Zhivoglyadova, L. A., Revkov, N. K., Frolenko, L. N. & Afanasyev, D. F. First record of the bivalve Arcuatula senhousia (Benson, 1842) in the Russian part of the the Azov-Black Sea basin. Russ. J. Biol. Invasions 8, 316–320 (2017).Article 

    Google Scholar 
    14.Lourenço, P. M., Henriques, M., Catry, I., Pedro, J. & Catry, T. First record of the invasive Asian date mussel Arcuatula senhousia (Benson, 1842) (Mollusca: Bivalvia: Mytilidae) in West Africa. J. Nat. Hist. 52, 2567–2571 (2018).15.Barash, A. & Danin, Z. The Indo-Pacific species of Mollusca in the Mediterranean and notes on a collection from the Suez Canal. Isrl. J. Zool. 21, 301–374 (1972).
    Google Scholar 
    16.George, E. L. & Nair, N. B. The growth rates of the estuarine mollusc Musculista arcuatula Yamamoto and Habe (Bivalvia: Mytilidae). Hydrobiologia 45, 239–248 (1974).Article 

    Google Scholar 
    17.Morton, B. Life-history characteristics and sexual strategy of Mytilopsis sallei (Bivalvia: Dreissenacea), introduced into Hong Kong. J. Zool. 219, 469–485 (1989).Article 

    Google Scholar 
    18.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    19.Sgro, L., Turolla, E., Rossi, R. & Mistri, M. Sexual maturation and larval development of the immigrant Asian date mussel, Musculista senhousia, in a Po River deltaic lagoon. Ital. J. Zool. 69, 223–228 (2002).Article 

    Google Scholar 
    20.CIESM. Musculista senhousia. In: Atlas of Exotic Species in the Mediterranean. The Mediterranean Science Commission (CIESM). https://www.ciesm.org/atlas (2005).21.Cohen, A. N. Musculista senhousia. In: The Exotics Guide: Non-native Marine Species of the North American Pacific Coast. Centre for Research on Aquatic Bioinvasions; San Francisco Estuary Institute. www.exoticsguide.org (2011).22.Morton, B. Some aspects of the biology, population dynamics, and functional morphology of Musculista senhousia Benson (Bivalvia, Mytilidae). Pac. Sci. 28, 19–33 (1974).
    Google Scholar 
    23.Mistri, M. Ecological characteristics of the invasive Asian date mussel, Musculista senhousia, in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25, 431–440 (2002).Article 

    Google Scholar 
    24.Bachelet, G. et al. A round-the-world tour almost completed: first records of the invasive mussel Musculista senhousia in the north-east Atlantic (southern Bay of Biscay). Mar. Biodivers. Rec. 2, e119 (2009).Article 

    Google Scholar 
    25.Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    26.Barfield, P., Holmes, A., Watson, G. & Rowe, G. First evidence of Arcuatula senhousia (Benson, 1842), the Asian date mussel in UK waters. J. Conchol. 43, 217–222 (2018).
    Google Scholar 
    27.ICES. Maps: ICES statistical rectangles. https://www.ices.dk/data/maps/Pages/ICES-statistical-rectangles.aspx (2020).28.World Sea Temperature. Southampton Sea Temperature. https://www.seatemperature.org/europe/united-kingdom/southampton.htm (2020).29.Natural England. Solent Maritime EMS. Natural England, UK. http://publications.naturalengland.org.uk/publication/3194402 (2001).30.Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E. & Çinar, M. E. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat. Invas. 9, 391–423 (2014).Article 

    Google Scholar 
    31.Bouma, T. J., Olenin, S. & Reise, K. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol. Mar. Res. 63, 95–106 (2009).ADS 
    Article 

    Google Scholar 
    32.NCC. Towards a Framework for Defining and Measuring Change in Natural Capital. Working Paper 1. (Natural Capital Committee (NCC), 2014).33.Jeschke, J. M. et al. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Reusch, T. B. H. & Williams, S. L. Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113, 428–441 (1998).35.Albentosa, M. Effect of food concentration inside eelgrass beds on the energy balance of the invasive mussel Musculista senhousia. Mar. Fresh. Behav. Physiol. 35, 247–260 (2002).CAS 
    Article 

    Google Scholar 
    36.Allen, B. J. & Williams, S. L. Native eelgrass Zostera marina controls growth and reproduction of an invasive mussel through food limitation. Mar. Ecol. Prog. Ser. 254, 57–67 (2003).37.Lau, S. C. Y., Brettell, D. L. D. F. & Astudillo, J. C. Rapid assessment of the invasive Xenostrobus securis on cultured oysters in Hong Kong. Reg. Stud. Mar. Sci. 17, 11–16 (2018).Article 

    Google Scholar 
    38.Mistri, M., Rossi, R. & Fano, E. A. The spread of the alien bivalve (Musculista senhousia) in the Sacca Di Goro lagoon (Adriatic Sea, Italy). J. Moll. Stud. 70, 257–261 (2004).Article 

    Google Scholar 
    39.Hosozawa, T. et al. Temporal change in the spatial distribution of Asian bag mussel Arcuatula senhousia (Bivalvia, Mytilidae) population in Ohashi-River, Shimane Prefecture. . Japanese J. Benthol. 70, 1–12 (2015).
    Google Scholar 
    40.Crooks, J. A. Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar. Ecol. Prog. Ser. 162, 137–152 (1998).41.Crooks, J. A. & Khim, H. S. Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J. Exp. Mar. Bio. Ecol. 240, 53–75 (1999).42.Watson, G. J., Murray, J. M., Schaefer, M. & Bonner, A. Bait worms: a valuable and important fishery with implications for fisheries and conservation management. Fish Fish. 18, 374–388 (2016).Article 

    Google Scholar 
    43.Clarke, L. J. et al. Using remote sensing to quantify fishing effort and predict shorebird conflicts in an intertidal fishery. Ecol. Inform. 50, 136–148 (2019).Article 

    Google Scholar 
    44.European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. (2000).45.Siah, A., Pellerin, J., Amiard, J. C., Pelletier, E. & Viglino, L. Delayed gametogenesis and progesterone levels in soft-shell clams (Mya arenaria) in relation to in situ contamination to organotins and heavy metals in the St. Lawrence River (Canada). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 145–156 (2003).46.Harding, S., Nelson, L. & Glover, T. Solent Oyster Restoration Project Management Plan (Blue Marine Foundation (BLUE), 2016).
    Google Scholar 
    47.Hooper, T. et al. Application of the natural capital approach to the marine environment to aid decision-making. Ecosyst. Serv. 38, 100947 (2019).MathSciNet 
    Article 

    Google Scholar 
    48.Thornton, A. et al. Initial natural capital accounts for the UK marine and coastal environment. Final Report. Report prepared for the Department for Environment Food and Rural Affairs. (Joint Nature Conservation Committee (JNCC); Centre for Environment, Fisheries and Aquaculture Science (CEFAS), 2019).49.Worsfold, T. M., Pennisi, N. & Ashelby, C. W. Theora lubrica Gould, 1861 (Bivalvia: Semelidae), new to the UK, with notes on associated non-native species, and an earlier date of introduction for Arcuatula senhousia (Bivalvia: Mytilidae) to the UK. J. Conchol. 43, 665–674 (2020).
    Google Scholar 
    50.Wolff, W. J. & Reise, K. Oyster Imports as a Vector for the Introduction of Alien Species into Northern and Western European Coastal Waters. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management (eds. Leppäkoski, E., Gollasch, S. & Olenin, S.) 193–205 (Springer, 2002).51.Slack-Smith, S. M. & Brearley, A. Musculista senhousia (Benson, 1842); a mussel recently introduced into the Swan River estuary, Western Australia (Mollusca: Mytilidae). Rec. West. Aust. Museum 13, 225–230 (1987).
    Google Scholar 
    52.Slijkerman, D. M. E. et al. Monitoring Groningen Sea Ports. Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl. Wageningen Marine Research report C045/17 A. (University of Wageningen, 2017).53.Kim, H. M. et al. Epibionts associated with floating Sargassum horneri in the Korea strait. Algae 34, 303–313 (2019).CAS 
    Article 

    Google Scholar 
    54.Reusch, T. B. H. & Williams, S. L. Macrophyte canopy structure and the success of an invasive bivalve. Oikos 84, 398–416 (1999).Article 

    Google Scholar 
    55.Mastrototaro, F., Matarrese, A. & D’Onghia, G. Observations on the recruitment of Musculista senhousia (Mollusca, Bivalvia) in the Taranto seas (Eastern-Central Mediterranean Sea). Biogeographia 25, 55–63 (2004).
    Google Scholar 
    56.Verween, A., Vincx, M. & Degraer, S. The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits. J. Exp. Mar. Bio. Ecol. 348, 111–120 (2007).Article 

    Google Scholar 
    57.Pilditch, C. A. & Grant, J. Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopecten magellanicus). Mar. Biol. 134, 235–248 (1999).Article 

    Google Scholar 
    58.Vélez, A. & Epifanio, C. E. Effects of temperature and ration on gametogenesis and growth in the tropical mussel Perna perna (L.). Aquaculture 22, 21–26 (1981).Article 

    Google Scholar 
    59.Liang, Z. L., Kim, Y. H., Zhang, Z. F., Lim, S. M. & Kang, K. H. Water temperature and salinity tolerance of embryos and spat of the mussel, Musculista senhousia. Korean J. Malacol. 25, 179–187 (2009).
    Google Scholar 
    60.Inoue, T. & Yamamuro, M. Respiration and ingestion rates of the filter-feeding bivalve Musculista senhousia: implications for water-quality control. J. Mar. Syst. 26, 183–192 (2000).Article 

    Google Scholar 
    61.Asif, J. H. & Krug, P. J. Lineage distribution and barriers to gene flow among populations of the globally invasive marine mussel Musculista senhousia. Biol. Invas. 14, 1431–1444 (2012).Article 

    Google Scholar 
    62.Creese, R., Hooker, S., de Luca, S. & Wharton, Y. Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. New Zeal. J. Mar. Freshw. Res. 31, 225–236 (1997).Article 

    Google Scholar 
    63.Crooks, J. A. & Soulé, M. Lag times in population explosions of invasive species: causes and implications. in Invasive Species and Biodiversity Management (eds. Sandlund, O. T., Schei, P. J. & Viken, A.) 103–125 (Kluwer Academic Publishers, 1999).64.Yamamuro, M. & Jun, Æ. What prevents Musculista senhousia from constructing byssal thread mats in estuarine environments? A case study focusing on Lake Shinji and nearby estuarine waters. Lanscape Ecol Eng 6, 23–28 (2010).Article 

    Google Scholar 
    65.Scirocco, T. & Urbano, F. The population of the non-indigenous bivalve Arcuatula senhousia of the Varano Lagoon (Adriatic Sea, Italy). J. Environ. Sci. Eng. 7, 345–353 (2018).
    Google Scholar 
    66.Yamamuro, M., Oka, N. & Hiratsuka, J. Predation by diving ducks on the biofouling mussel Musculista senhousia in a eutrophic estuarine lagoon. Mar. Ecol. Prog. Ser. 174, 101–106 (1998).ADS 
    Article 

    Google Scholar 
    67.Reusch, T. B. H. Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, USA. . Mar. Ecol. Prog. Ser. 170, 159–168 (1998).ADS 
    Article 

    Google Scholar 
    68.Kushner, R. B. & Hovel, K. A. Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. J. Exp. Mar. Biol. Ecol. 332, 166–177 (2006).Article 

    Google Scholar 
    69.Sugawara, K., Ebihara, T., Ishii, T., Aoki, K. & Uchida, A. Outbreak of a mussel Brachidontes senhousia in Urayasu shellfish rearing ground. Rep. Chiba Prefect. Inshore Fish. Exp. Stn. 3, 83–92 (1961).
    Google Scholar 
    70.Uchida, A. Growth of a mussel Musculista senhousia and the influence of Musculista senhousia on the clam Tapes philippinarum. Rep. Chiba Prefect. Inshore Fish. Exp. Stn. 7, 69–78 (1965).
    Google Scholar 
    71.Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).Article 

    Google Scholar 
    72.Castorani, M. C. N. & Hovel, K. A. Invasive prey indirectly increase predation on their native competitors. Ecology 96, 1911–1922 (2015).PubMed 
    Article 

    Google Scholar 
    73.FAO. Fisheries Global Information System (FIGIS). Food and Agriculture Organization (FAO). http://www.fao.org/figis/servlet/TabSelector (2017).74.CEFAS. Sanitary survey of the Solent. CEFAS report on behalf of the Food Standards Agency, to demonstrate compliance with the requirements for classification of bivalve mollusc production areas in England and Wales under of EC Regulation No. 854/2004. (Centre for Environment, Fisheries and Aquaculture Science (CEFAS), 2013).75.Humphreys, J., Caldow, R. W. G., Mcgrorty, S., West, A. D. & Jensen, A. C. Population dynamics of naturalised manila clams Ruditapes philippinarum in british coastal waters. Mar. Biol. 151, 2255–2270 (2007).Article 

    Google Scholar 
    76.Pranovi, F. et al. An ecological imbalance induced by a non-native species: The Manila clam in the Venice Lagoon. Biol. Invasions 8, 595–609 (2006).Article 

    Google Scholar 
    77.Kikuchi, T. & Peres, J. M. Consumer ecology of seagrass beds. In Seagrass Ecosystems A Scientific Perspective (eds McRoy, C. P. & Helffrich, C.) (Marcel Dekker Inc, 1977).
    Google Scholar 
    78.Kikuchi, T. Ecology and biological production of Lake Naka-umi and adjacent regions. 3. Macro-benthic communities of Lake Shinji-ko and Lake Naka-umi. Spec. Publ. from Seto Mar. Biol. Lab. 2, 21–44 (1964).79.Jackson, E. L., Rees, S. E., Wilding, C. & Attrill, M. J. Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service. Conserv. Biol. 29, 899–909 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Peters, J. R., McCloskey, R. M., Hinder, S. L. & Unsworth, R. K. F. Motile fauna of sub-tidal Zostera marina meadows in England and Wales. Mar. Biodivers. 45, 647–654 (2015).Article 

    Google Scholar 
    81.Unsworth, R. K. F., Nordlund, L. M. & Cullen-Unsworth, L. C. Seagrass meadows support global fisheries production. Conserv. Lett. 12, 1–8 (2019).Article 

    Google Scholar 
    82.Bertelli, C. M. & Unsworth, R. K. F. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83, 425–429 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.UNEP. Out of Blue: The value of seagrasses to the enviroment and to people. (United Nations Environment Programme (UNEP), 2020).84.Jones, B. L. & Unsworth, R. K. F. The perilous state of seagrass in the British Isles. R. Soc. Open Sci. 3, 1–14 (2016).
    Google Scholar 
    85.de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 1–8 (2019).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    86.Project Seagrass. Project Seagrass. https://www.projectseagrass.org/ (2018).87.Claereboudt, M. R., Bureau, D., Côté, J. & Himmelman, J. H. Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture. Aquaculture 121, 327–342 (1994).Article 

    Google Scholar 
    88.Lacoste, E. & Gaertner-Mazouni, N. Biofouling impact on production and ecosystem functioning: a review for bivalve aquaculture. Rev. Aquac. 7, 187–196 (2015).Article 

    Google Scholar 
    89.Renault, T. Appearance and spread of diseases among bivalve molluscs in the northern hemisphere in relation to international trade. OIE Rev. Sci. Tech. 15, 551–561 (1996).CAS 
    Article 

    Google Scholar 
    90.Beaumont, A. R., Hawkins, M. P., Doig, F. L., Davies, I. M. & Snow, M. Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders?. J. Exp. Mar. Bio. Ecol. 367, 100–110 (2008).Article 

    Google Scholar 
    91.Miller, A., Inglis, G. J., Poulin, R. & Inglis, G. J. Use of the introduced bivalve, Musculista senhousia, by generalist parasites of native New Zealand bivalves. New Zeal. J. Mar. Freshw. Res. 42, 143–151 (2008).Article 

    Google Scholar 
    92.Bierbaum, R. & Shumway, S. E. Filtration and oxygen consumption in mussels, Mytilus edulis, with and without pea crabs, Pinnotheres maculatus. Estuaries 11, 264–271 (1988).CAS 
    Article 

    Google Scholar 
    93.Sun, W., Sun, S., Yuqi, W., Baowen, Y. & Weibo, S. The prevalence of the pea crab, Pinnotheres sinensis, and its impact on the condition of the cultured mussel, Mytilus galloprovincialis, in Jiaonan waters (Shandong Province, China). Aquaculture 253, 57–63 (2006).Article 

    Google Scholar 
    94.Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aquac. 11, 42–57 (2019).Article 

    Google Scholar 
    95.Carlton, J. T. History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific coast of North America. PhD Thesis. (University of California, 1979).96.Michalek, K., Ventura, A. & Sanders, T. Mytilus hybridisation and impact on aquaculture: A minireview. Mar. Genomics 27, 3–7 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Seed, R. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. Oecologia 3, 277–316 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    98.King, P. A., McGrath, D. & Gosling, E. M. Reproduction and settlement of Mytilus edulis on an exposed rocky shore in Galway bay, west coast of Ireland. J. Mar. Biol. Assoc. United Kingdom 69, 355–365 (1989).Article 

    Google Scholar 
    99.van der Schatte Olivier, A. et al. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquac. 1, 1–23. https://doi.org/10.1111/raq.12301 (2018).Article 

    Google Scholar 
    100.Yamamuro, M. & Ishitobi, Y. Seasonal change in a filter-feeding bivalve Musculista senhousia population of a eutrophic estuarine lagoon. J. Mar. Syst. 26, 117–126 (2000).Article 

    Google Scholar 
    101.Broszeit, S., Hattam, C. & Beaumont, N. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis. Mar. Pollut. Bull. 103, 5–14 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Valipour, R., Boegman, L., Bouffard, D. & Rao, Y. R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 62, 1045–1065 (2017).ADS 
    Article 

    Google Scholar 
    103.Mistri, M. & Munari, C. The invasive bag mussel Arcuatula senhousia is a CO2 generator in near-shore coastal ecosystems. J. Exp. Mar. Bio. Ecol. 440, 164–168 (2013).Article 

    Google Scholar 
    104.Filgueira, R. et al. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system. Mar. Ecol. Prog. Ser. 518, 281–287 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    105.Reaugh, K. E., Harris, J. M. & Branch, G. M. Further refutation of the primary-secondary settlement hypothesis for the brown mussel Perna perna. African J. Mar. Sci. 29, 545–549 (2007).Article 

    Google Scholar 
    106.Cohen, A. N. Guide to the Exotic Species of San Francisco Bay. San Francisco Estuary Institute, Oakland, California, USA. http://www.exoticsguide.org (2005).107.Como, S. et al. Assessing the impact of the Asian mussel Arcuatula senhousia in the recently invaded Oristano Lagoon-Gulf system (W Sardinia, Italy). Estuar. Coast. Shelf Sci. 201, 123–131 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    108.Ragnarsson, S. Á. & Raffaelli, D. Effects of the mussel Mytilus edulis L. on the invertebrate fauna of sediments. J. Exp. Mar. Bio. Ecol. 241, 31–43 (1999).Article 

    Google Scholar 
    109.Barash, A. L. & Danin, Z. Mollusca from the stomach of Sparus auratus fished in the lagoon or Bardwall. Argamon 2, 97–104 (1971).
    Google Scholar 
    110.Taylor, D. et al. Facilitation effects of invasive and farmed bivalves on native populations of the sea slug Pleurobranchaea maculata. Mar. Ecol. Prog. Ser. 537, 39–48 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    111.Herbert, R. J. H., Stillman, R. A., Davies, C. J., Bowgen, K. M. & Hatton, J. The importance of nonnative Pacific oyster reefs as supplementary feeding areas for coastal birds on estuary mudflats. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1294–1307 (2018).Article 

    Google Scholar 
    112.Hanna, G. D. Introduced mollusks of western North America. Occ. Pap. Calif. Acad. Sci. 48, 1–108 (1966).
    Google Scholar 
    113.Vilariño, M. L. et al. Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int. Microbiol. 12, 145–151 (2009).PubMed 

    Google Scholar 
    114.Vilà, M. & Hulme, P. E. Impact of Biological Invasions on Ecosystem Services. (Springer International Publishing Switzerland, 2017). https://doi.org/10.1007/978-3-319-45121-3_5.115.Williams, F. et al. The Economic Cost of Invasive Non-Native Species on Great Britain. Cent. Agric. Biosci. Int. CAB/001/09, 1–199 (2010).116.Watson, S. C. L., Preston, J., Beaumont, N. J. & Watson, G. J. Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. Sci. Total Environ. (2020)117.Farber, S. C., Costanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).Article 

    Google Scholar 
    118.Melathopoulos, A. P. & Stoner, A. M. Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms. Ecol. Econ. 117, 173–181 (2015).Article 

    Google Scholar 
    119.Faasse, M. A record of the Asian mussel Arcuatula senhousia (Benson in Cantor, 1842) from NW Europe (the Netherlands). Spirula 416, 14–15 (2018).
    Google Scholar 
    120.Tepolt, C. K. & Somero, G. N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 217, 1129–1138 (2014).PubMed 
    Article 

    Google Scholar 
    121.Guardiola, M., Frotscher, J. & Uriz, M. J. High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Mar. Biol. 163, 1–16 (2016).Article 

    Google Scholar 
    122.Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 
    Article 

    Google Scholar 
    123.Tabak, M. A., Webb, C. T. & Miller, R. S. Propagule size and structure, life history, and environmental conditions affect establishment success of an invasive species. Sci. Rep. 8, 1–9 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Brain size and neuron numbers drive differences in yawn duration across mammals and birds

    1.Barbizet, J. Yawning. J. Neurol. Neurosurg. Psychiatry 21, 203–209 (1958).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Baenninger, R. Some comparative aspects of yawning in Betta splendens, Homo sapiens, Panthera leo, and Papio sphinx. J. Comp. Psychol. 101, 349 (1987).Article 

    Google Scholar 
    3.de Vries, J. I. P., Visser, G. H. A. & Prechtl, H. F. R. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 7, 301–322 (1982).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Provine, R. R. Yawning as a stereotyped action pattern and releasing stimulus. Ethology 72, 109–122 (1986).Article 

    Google Scholar 
    5.Tesfaye, Y. & Lal, S. Hazard of yawning. Can. Med. Assoc. J. 142, 15 (1990).CAS 

    Google Scholar 
    6.Smith, E. O. Yawning: an evolutionary perspective. Hum. Evol. 14, 191–198 (1999).Article 

    Google Scholar 
    7.Guggisberg, A. G., Mathis, J., Schnider, A. & Hess, C. W. Why do we yawn? Neurosci. Biobehav. Rev. 34, 1267–1276 (2010).PubMed 
    Article 

    Google Scholar 
    8.Gallup, A. C. Why do we yawn? Primitive versus derived features. Neurosci. Biobehav. Rev. 35, 765–769 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Provine, R. R., Tate, B. C. & Geldmacher, L. L. Yawning: no effect of 3–5% CO2, 100% O2, and exercise. Behav. Neural Biol. 48, 382–393 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Gallup, A. C. & Gallup, G. G. Jr. Yawning as a brain cooling mechanism: nasal breathing and forehead cooling diminish the incidence of contagious yawning. Evol. Psychol. 5, 92–101 (2007).Article 

    Google Scholar 
    11.Gallup, A. C. & Gallup, G. G. Jr. Yawning and thermoregulation. Physiol. Behav. 95, 10–16 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Gallup, A. C. & Eldakar, O. T. The thermoregulatory theory of yawning: what we know from over 5 years of research. Front. Neurosci. 6, 188 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Shoup-Knox, M. L., Gallup, A. C., Gallup, G. & McNay, E. C. Yawning and stretching predict brain temperature changes in rats: support for the thermoregulatory hypothesis. Front. Evol. Neurosci. 2, 108 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Gallup, G. G. & Gallup, A. C. Excessive yawning and thermoregulation: two case histories of chronic, debilitating bouts of yawning. Sleep Breath. 14, 157–159 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Eguibar, J. R., Uribe, C. A., Cortes, C., Bautista, A. & Gallup, A. C. Yawning reduces facial temperature in the high-yawning subline of Sprague-Dawley rats. BMC Neurosci. 18, 3 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Ramirez, V., Ryan, C. P., Eldakar, O. T. & Gallup, A. C. Manipulating neck temperature alters contagious yawning in humans. Physiol. Behav. 207, 86–89 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gallup, A. C., Miller, R. R. & Clark, A. B. Changes in ambient temperature trigger yawning but not stretching in rats. Ethology 117, 145–153 (2011).Article 

    Google Scholar 
    18.Gallup, A. C. & Eldakar, O. T. Contagious yawning and seasonal climate variation. Front. Evolut. Neurosci. 3, 3 (2011).
    Google Scholar 
    19.Massen, J. J. M., Dusch, K., Eldakar, O. T. & Gallup, A. C. A thermal window for yawning in humans: yawning as a brain cooling mechanism. Physiol. Behav. 130, 145–148 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Eldakar, O. T. et al. Temperature-dependent variation in self-reported contagious yawning. Adapt. Hum. Behav. Physiol. 1, 460–466 (2015).Article 

    Google Scholar 
    21.Falk, D. Brain evolution in Homo: The “radiator” theory. Behav. Brain Sci. 13, 333–381 (1990).Article 

    Google Scholar 
    22.Kiyatkin, E. A., Brown, P. L. & Wise, R. A. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 16, 164–168 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Baker, M. A. Brain cooling in endotherms in heat and exercise. Annu. Rev. Physiol. 44, 85–85 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wang, H. et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci. 8, 307 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    25.Richie, J. M. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol. 26, 147–187 (1973).Article 

    Google Scholar 
    26.Gallup, A. C., Church, A. M. & Pelegrino, A. J. Yawn duration predicts brain weight and cortical neuron number in mammals. Biol. Lett. 12, 20160545 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Gallup, A. C., Crowe, B. & Yanchus, M. Yawn duration predicts brain volumes in wild cats (Felidae). Int. J. Comp. Psychol. 30, 1–5 (2017).Article 

    Google Scholar 
    28.Gallup, A. C., Moscatello, L. & Massen, J. J. M. Brain weight predicts yawn duration across domesticated dog breeds. Curr. Zool. 66, 401–405 (2020).29.Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J. Comp. Physiol. 110, 209–215 (1976).Article 

    Google Scholar 
    30.McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Bernstein, M. H., Sandoval, I., Curtis, M. B. & Hudson, D. M. Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol. 129, 115–118 (1979).Article 

    Google Scholar 
    32.Porter, W. R. & Witmer, L. M. Avian cephalic vascular anatomy, sites of thermal exchange, and the rete ophthalmicum. Anat. Rec. 299, 1461–1486 (2016).Article 

    Google Scholar 
    33.Gallup, A. C., Miller, M. L. & Clark, A. B. Yawning and thermoregulation in budgerigars, Melopsittacus undulatus. Anim. Behav. 77, 109–113 (2009).Article 

    Google Scholar 
    34.Gallup, A. C., Miller, M. L. & Clark, A. B. The direction and range of ambient temperature change influences yawning in budgerigars (Melopsittacus undulatus). J. Comp. Psychol. 124, 133 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Gallup, A. C. et al. Thermal imaging reveals sizable shifts in facial temperature surrounding yawning in budgerigars (Melopsittacus undulatus). Temperature 4, 429–435 (2017).Article 

    Google Scholar 
    36.Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Revell, L. J. Size‐correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    38.Prinzinger, R., Preßmar, A. & Schleucher, E. Body temperature in birds. Comp. Biochem. Phys. A 99, 499–506 (1991).Article 

    Google Scholar 
    39.Jessen, C. Temperature Regulation in Humans and Other Mammals (Springer, 2001).40.O’Brien, H. D. From anomalous arteries to selective brain cooling: parallel evolution of the artiodactyl carotid rete. Anat. Rec. 303, 308–317 (2020).Article 

    Google Scholar 
    41.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325, 468–470 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Iwaniuk, A. N., Dean, K. M. & Nelson, J. E. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav. Evol. 65, 40–59 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.von Eugen, K., Ströckens, F., Backes, H., Endepols, H., & Güntürkün, O. Glucose Metabolism of the Avian Brain: an FDG-PET Study in Pigeons (Columba livia) with Estimated Arterial Input Function of Anesthetized and Awake State. Poster # 068.12/QQ22 Neuroscience Meeting Planner (Online) (Society for Neuroscience, 2018).45.Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE 6, e17514 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Kverková, K. et al. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci. Rep. 8, 9203 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Buffenstein, R. & Yahav, S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 16, 227–232 (1991).Article 

    Google Scholar 
    48.Tucker, R. The digging behavior and skin differentiations in Heterocephalus glaber. J. Morphol. 168, 51–71 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.McNab, B. K. The metabolism of fossorial rodents: a study of convergence. Ecology 47, 712–733 (1966).Article 

    Google Scholar 
    50.Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 164, 143–172 (1960).
    Google Scholar 
    51.Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12138–12143 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Herculano-Houzel, S., Collins, C. E., Wong, P. & Kaas, J. K. Cellular scaling rules for primate brains. Proc. Natl Acad. Sci. USA 104, 3562–3567 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Herculano-Houzel, S. et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav. Evol. 78, 302–314 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Herculano-Houzel, S., Catania, K., Manger, P. R. & Kaas, J. H. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav. Evol. 86, 145–163 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dos Santos, S. E. et al. Cellular scaling rules for the brains of marsupials: not as “primitive” as expected. Brain Behav. Evol. 89, 48–63 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kazu, R. S., Maldonado, J., Mota, B., Manger, P. R. & Herculano-Houzel, S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front. Neuroanat. 8, 128 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Jardim-Messeder, D. et al. Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front. Neuroanat. 11, 118 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear-protein in vertebrates. Development 116, 201–211 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Rehkämper, G., Kart, E., Frahm, H. D. & Werner, C. W. Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav. Evol. 61, 59–69 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Horschler, D. J. et al. Absolute brain size predicts dog breed differences in executive function. Anim. Cogn. 22, 187–198 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Rogell, B., Dowling, D. K. & Husby, A. Controlling for body size leads to inferential biases in the biological sciences. Evol. Lett. 4, 73–82 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Gutierrez-Ibanez, C., Iwaniuk, A. N. & Wylie, D. R. Relative brain size is not correlated with display complexity in manakins: a reanalysis of Lindsay et al. (2015). Brain Behav. Evol. 87, 223–226 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    66.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Boil. Evol. 34, 1812–1819 (2017).CAS 
    Article 

    Google Scholar 
    68.Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L. Z.) 263–286 (Springer, 2014).69.Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).71.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).72.Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 6, 1171 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).Article 

    Google Scholar 
    74.Lemoine, N. P. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).Article 

    Google Scholar 
    75.Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    76.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 

    Google Scholar 
    77.McShane, B. B., Gal, D., Gelman, A., Robert, C. & Tackett, J. L. Abandon statistical significance. Am. Stat. 73, 235–245 (2019).Article 

    Google Scholar 
    78.Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8, 467–474 (2009).Article 

    Google Scholar  More

  • in

    Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon

    1.Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).
    Google Scholar 
    2.Klecka, J., Hadrava, J., Biella, P. & Akter, A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018, e6025 (2018).
    Google Scholar 
    3.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Google Scholar 
    4.Martínez-Adriano, C. A., Díaz-Castelazo, C. & Aguirre-Jaimes, A. Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ 2018, e5493 (2018).
    Google Scholar 
    5.Mertens, J. E. J. et al. Changes of pollinating community of Scadoxus cinnabarinus (Amaryllidaceae) along its elevational range on Mount Cameroon. Arthropod. Plant. Interact. 14, 215–226 (2020).
    Google Scholar 
    6.Wardhaugh, C. W. How many species of arthropods visit flowers?. Arthropod. Plant. Interact. 9, 547–565 (2015).
    Google Scholar 
    7.Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod. Plant. Interact. 10, 21–28 (2016).
    Google Scholar 
    8.Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).
    Google Scholar 
    9.Johnson, S. D. et al. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct. Ecol. 31, 101–115 (2017).
    Google Scholar 
    10.Darwin, C. On the Various Contrivances by Which British and Foreign Orchids are Fertilized (Murray, 1862).
    Google Scholar 
    11.Fox, K. et al. Nectar Robbery and Thievery in the hawk moth (Lepidoptera: Sphingidae)-Pollinated Western Prairie Fringed Orchid Platanthera praeclara. Ann. Entomol. Soc. Am. 108, 1000–1013 (2015).
    Google Scholar 
    12.Martins, D. J. & Johnson, S. D. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol. J. Linn. Soc. 110, 199–213 (2013).
    Google Scholar 
    13.Arroyo, M. T. K., Till-Bottraud, I., Torres, C., Henríquez, C. A. & Martínez, J. Display size preferences and foraging habits of high andean butterflies pollinating Chaetanthera lycopodioides (Asteraceae) in the subnival of the central Chilean Andes. Arctic Antarct. Alp. Res. 39, 347–352 (2007).
    Google Scholar 
    14.Santos, R. S., Milfont, M. O., Silva, M. M., Carneiro, L. T. & Castro, C. C. Butterflies provide pollination services to macadamia in northeastern Brazil. Sci. Hortic. (Amst.) 259, 108818 (2020).
    Google Scholar 
    15.Fleming, T. H. & Holland, J. N. The evolution of obligate pollination mutualisms: Senita cactus and senita moth. Oecologia 114, 368–375 (1998).
    Google Scholar 
    16.Skogen, K. A., Overson, R. P., Hilpman, E. T. & Fant, J. B. Hawkmoth pollination facilitates long-distance pollen dispersal and reduces isolation across a gradient of land-use change. Ann. Mo. Bot. Gard. 104, 495–511 (2019).
    Google Scholar 
    17.Corbet, S. A. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol. Exp. Appl. 96, 289–298 (2000).
    Google Scholar 
    18.Tiple, A. D., Khurad, A. M. & Dennis, R. L. H. Adult butterfly feeding-nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J. Nat. Hist. 43, 855–884 (2009).
    Google Scholar 
    19.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    20.Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: the case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).
    Google Scholar 
    21.Glover, B. J. Pollinator attraction: the importance of looking good and smelling nice. Curr. Biol. 21, R307–R309 (2011).
    Google Scholar 
    22.Kelber, A., Balkenius, A. & Warrant, E. J. Colour vision in diurnal and nocturnal hawkmoths. Integr. Comp. Biol. 43, 571–579 (2003).
    Google Scholar 
    23.Ômura, H. & Honda, K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142, 588–596 (2005).
    Google Scholar 
    24.Pohl, N. B., Van Wyk, J. & Campbell, D. R. Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecol. Entomol. 36, 290–300 (2011).
    Google Scholar 
    25.Yurtsever, S., Okyar, Z. & Guler, N. What colour of flowers do Lepidoptera prefer for foraging?. Biologia (Bratisl). 65, 1049–1056 (2010).
    Google Scholar 
    26.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 
    27.Klomberg, Y. et al. Spatiotemporal shifts in the role of floral traits in shaping tropical plant-pollinator interactions. bioRxiv 2020.10.16.342386. https://doi.org/10.1101/2020.10.16.342386 (2020).28.Ollerton, J., Johnson, S. D. & Hingston, A. B. Geographical variation in diversity and specificity of pollination systems. In Plant–Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J.) 283–308 (University of Chicago Press, 2006).
    Google Scholar 
    29.Maicher, V. et al. Flying between raindrops: strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecol. Evol. 8, 12761–12772 (2018).
    Google Scholar 
    30.Maicher, V. et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).
    Google Scholar 
    31.MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, 1972).
    Google Scholar 
    32.McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ed. John Wiley & Sons, Ltd), a0022548 (Wiley, Chichester, 2010) https://doi.org/10.1002/9780470015902.a0022548.33.Šmilauer, P. & Lepš, J. Multivariate analysis of ecological data using Canoco 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.
    Google Scholar 
    34.Kato, M. et al. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. Am. J. Bot. 95, 1375–1394 (2008).
    Google Scholar 
    35.Momose, K. et al. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am. J. Bot. 85, 1477–1501 (1998).
    Google Scholar 
    36.Ramirez, N. Biologia de Polinizacion en una Comunidad Arbustiva Tropical de la Alta Guayana Venezolana. Biotropica 21, 319 (1989).
    Google Scholar 
    37.Van Dulmen, A. Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecology. 153, 73–85 (2001).
    Google Scholar 
    38.Nsor, C. A. & Chapman, H. M. A preliminary investigation into the avian pollinators of three tree species in a Nigerian montane forest. Malimbus 35, 38–49 (2013).
    Google Scholar 
    39.Weber, N., Kalko, E. K. V. & Fahr, J. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest Reserve, Benin. Acta Chiropterol. 11, 317–329 (2009).
    Google Scholar 
    40.Borges, R. M., Gowda, V. & Zacharias, M. Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136, 571–573 (2003).
    Google Scholar 
    41.Mizusawa, L., Takimoto, G., Yamasaki, M., Isagi, Y. & Hasegawa, M. Comparison of pollination characteristics between the insular shrub Clerodendrum izuinsulare and its widespread congener C.trichotomum. Plant Species Biol. 29, 73–84 (2014).
    Google Scholar 
    42.Budumajji, U. & Solomon Raju, A. J. Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania 63, 89–100 (2018).
    Google Scholar 
    43.Valentin-Silva, A., Godinho, M. A. S., Cruz, K. C., Lelis, S. M. & Vieira, M. F. Three psychophilous Asteraceae species with distinct reproductive mechanisms in southeastern Brazil. New Zeal. J. Bot. 54, 498–510 (2016).
    Google Scholar 
    44.Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, art36 (2013).
    Google Scholar 
    45.Aizen, M. A. Down-facing flowers, hummingbirds and rain. Taxon 52, 675–680 (2003).
    Google Scholar 
    46.Janeček, Š, Bartoš, M. & Njabo, K. Y. Convergent evolution of sunbird pollination systems of Impatiens species in tropical Africa and hummingbird systems of the New World. Biol. J. Linn. Soc. 115, 127–133 (2015).
    Google Scholar 
    47.Bartoš, M. & Janeček, Š. Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr. Biol. 24, R793–R795 (2014).
    Google Scholar 
    48.Bärtschi, F. et al. Elevational richness patterns of sphingid moths support area effects over climatic drivers in a near-global analysis. Glob. Ecol. Biogeogr. 28, 917–927 (2019).
    Google Scholar 
    49.Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).
    Google Scholar 
    50.Hořák, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).
    Google Scholar 
    51.Ramos-Jiliberto, R. et al. Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    52.Bloch, D. & Erhardt, A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology 89, 2453–2460 (2008).
    Google Scholar 
    53.Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography (Cop.) 42, 632–642 (2019).
    Google Scholar 
    54.Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K. & Raguso, R. A. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct. Ecol. 26, 577–587 (2012).
    Google Scholar 
    55.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. 228, 1193–1213 (2020).
    Google Scholar 
    56.Larsen, T. Butterflies of West Africa (Apollo Books, 2005).
    Google Scholar 
    57.Ballesteros-Mejia, L., Kitching, I. J., Jetz, W., Nagel, P. & Beck, J. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob. Ecol. Biogeogr. 22, 586–595 (2013).
    Google Scholar 
    58.Cheek, M., Cable, S., Hepper, F. N., Ndam, N. & Watts, J. Mapping plant biodiversity on Mount Cameroon. In The Biodiversity of African Plants (eds van der Maesen, L. et al.) 110–120 (Springer, 1996). https://doi.org/10.1007/978-94-009-0285-5_16.
    Google Scholar 
    59.Weinstein, B. G. MotionMeerkat: integrating motion video detection and ecological monitoring. Methods Ecol. Evol. 6, 357–362 (2015).
    Google Scholar 
    60.Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing (2019).62.Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    63.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).
    Google Scholar 
    64.Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
    Google Scholar 
    65.Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Google Scholar 
    66.Bartoš, M. et al. Self-compatibility and autonomous selfing of plants in meadow communities. Plant Biol. 22, 120–128 (2020).
    Google Scholar 
    67.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
    Google Scholar 
    68.Hurvich, C. M. & Tsai, C.-L. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14, 271–279 (1993).
    Google Scholar 
    69.ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 50 (Microcomputer Power, 2012).
    Google Scholar  More

  • in

    Leadership – not followership – determines performance in ant teams

    1.Wilson, E. O. The insect societies. (Harvard University Press, Cambridge, Massachusetts, USA, 1971).
    Google Scholar 
    2.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robson, S. K. & Traniello, J. F. Key individuals and the organisation of labor in ants. In Information processing in social insects, 239–259 (Springer, 1999).4.Smith, A. The wealth of nations (London, Methuen & Co, 1776).5.Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects (Princeton University Press, 1978).6.Jeanne, R. L. The evolution of the organization of work in social insects. Italian J. Zool. 20, 119–133 (1986).
    Google Scholar 
    7.Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).Article 

    Google Scholar 
    8.Franks, N. R. The organization of working teams in social insects. Trends Ecol. Evol. 2, 72–75 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Robinson, G. E. Regulation of division of labor in insect societies. Ann. Rev. Entomol. 37, 637–665 (1992).CAS 
    Article 

    Google Scholar 
    10.O’Donnell, S. & Jeanne, R. L. Forager specialization and the control of nest repair in Polybia occidentalis olivier (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 27, 359–364 (1990).Article 

    Google Scholar 
    11.Wahl, L. Evolving the division of labour: generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Jaffé, R., Kronauer, D. J., Bernhard Kraus, F., Boomsma, J. J. & Moritz, R. F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).Article 

    Google Scholar 
    14.Wilson, E. O. Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 157–165 (1980).Article 

    Google Scholar 
    15.Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant solenopsis invicta buren. Animal Behav. 29, 410–420 (1981).Article 

    Google Scholar 
    16.Detrain, C. & Pasteels, J. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera: Myrmicinae). J. Insect behav. 4, 157–176 (1991).Article 

    Google Scholar 
    17.Theraulaz, G., Bonabeau, E. & Denuebourg, J. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    18.Johnson, B. R. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 147–152 (2003).Article 

    Google Scholar 
    19.Dukas, R. & Visscher, P. K. Lifetime learning by foraging honey bees. Animal Behav. 48, 1007–1012 (1994).Article 

    Google Scholar 
    20.Richardson, T. O., Mullon, C., Marshall, J. A., Franks, N. R. & Schlegel, T. The influence of the few: a stable ‘oligarchy’ controls information flow in house-hunting ants. Proc. R. Soc. B 285, 20172726 (2018).PubMed 
    Article 

    Google Scholar 
    21.Trumbo, S. T. & Robinson, G. E. Learning and task interference by corpse-removal specialists in honey bee colonies. Ethology 103, 966–975 (1997).Article 

    Google Scholar 
    22.Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behav. 58, 437–442 (1999).CAS 
    Article 

    Google Scholar 
    23.Dukas, R. Life history of learning: performance curves of honeybees in settings that minimize the role of learning. Animal Behav. 75, 1125–1130 (2008).Article 

    Google Scholar 
    24.Charbonneau, D., Sasaki, T. & Dornhaus, A. Who needs ‘lazy’workers? inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PloS one 12, e0184074 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F. & Sumpter, D. J. Information flow, opinion polling and collective intelligence in house–hunting social insects. Philosop. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1567–1583 (2002).Article 

    Google Scholar 
    27.Pratt, S. C., Mallon, E. B., Sumpter, D. J. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).Article 

    Google Scholar 
    28.Möglich, M. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25, 205–225 (1978).Article 

    Google Scholar 
    29.Visscher, P. K. Group decision making in nest-site selection among social insects. Ann. Rev. Entomol. 52, 255–275 (2007).CAS 
    Article 

    Google Scholar 
    30.McGlynn, T. P. The ecology of nest movement in social insects. Ann. Rev. Entomol. 57, 291–308 (2012).CAS 
    Article 

    Google Scholar 
    31.Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Richardson, T. O., Sleeman, P. A., McNamara, J. M., Houston, A. I. & Franks, N. R. Teaching with evaluation in ants. Curr. Biol. 17, 1520–1526 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Franklin, E. L., Richardson, T. O., Sendova-Franks, A. B., Robinson, E. J. & Franks, N. R. Blinkered teaching: tandem running by visually impaired ants. Behav. Ecol. Sociobiol. 65, 569–579 (2011).Article 

    Google Scholar 
    34.Franks, N. R. et al. Ant search strategies after interrupted tandem runs. J. Exper. Biol. 213, 1697–1708 (2010).Article 

    Google Scholar 
    35.Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B Biol. Sci. 272, 1091–1099 (2005).Article 

    Google Scholar 
    36.Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    37.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer Science & Business Media, 2003).38.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    39.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    41.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. 112, 4690–4695 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Pratt, S. C., Sumpter, D. J., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behav. 70, 1023–1036 (2005).Article 

    Google Scholar 
    43.Volny, V. P. & Gordon, D. M. Genetic basis for queen–worker dimorphism in a social insect. Proc. Natl Acad. Sci. 99, 6108–6111 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Walsh, J. T., Warner, M. R., Kase, A., Cushing, B. J. & Linksvayer, T. A. Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Animal Behav. 141, 161–169 (2018).Article 

    Google Scholar 
    45.Seeley, T. D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12, 253–259 (1983).Article 

    Google Scholar 
    46.Boesch, C. Cooperative hunting roles among tai chimpanzees. Human Nat. 13, 27–46 (2002).Article 

    Google Scholar 
    47.Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).Article 

    Google Scholar 
    48.Gazda, S. K., Connor, R. C., Edgar, R. K. & Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (tursiops truncatus) off cedar key, florida. Proc. R. Soc. B Biol. Sci. 272, 135–140 (2005).Article 

    Google Scholar 
    49.Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Nagy, M. et al. Context-dependent hierarchies in pigeons. Proc. Natl Acad. Sci. USA 110, 13049–13054 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. Basketball teams as strategic networks. PloS One 7, e47445 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Alleman, A., Stoldt, M., Feldmeyer, B. & Foitzik, S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol. Ecol. 28, 2342–2359 (2019).PubMed 
    Article 

    Google Scholar 
    53.Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Collett, T. S., Graham, P. & Durier, V. Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).CAS 
    Article 

    Google Scholar 
    56.Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).Article 

    Google Scholar 
    57.Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. & Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Chittka, L. & Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2, 151–154 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova-Franks, A. B. & Franks, N. R. Do ants need to be old and experienced to teach? J. Exp. Biol. 215, 1287–1292 (2012).PubMed 
    Article 

    Google Scholar 
    60.Westhus, C., Kleineidam, C. J., Roces, F. & Weidenmüller, A. Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Animal Behav. 85, 27–34 (2013).Article 

    Google Scholar 
    61.Dukas, R. Animal expertise: mechanisms, ecology and evolution. Animal Behav. 147, 199–210 (2019).Article 

    Google Scholar 
    62.Carter, C. E. & Grahn, J. A. Optimizing music learning: exploring how blocked and interleaved practice schedules affect advanced performance. Front. Psychol. 7, 1251 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Stroeymeyt, N., Franks, N. R. & Giurfa, M. Knowledgeable individuals lead collective decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).PubMed 
    Article 

    Google Scholar 
    64.Stroeymeyt, N., Giurfa, M. & Franks, N. R. Information certainty determines social and private information use in ants. Sci. Rep. 7, 43607 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    65.Hansen, M. J., Schaerf, T. M. & Ward, A. J. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    66.Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Leca, J.-B., Gunst, N., Thierry, B. & Petit, O. Distributed leadership in semifree-ranging white-faced capuchin monkeys. Animal Behav. 66, 1045–1052 (2003).Article 

    Google Scholar 
    68.McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).Article 

    Google Scholar 
    69.Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).PubMed 
    Article 

    Google Scholar 
    70.Cook, C. N. et al. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J. Animal Ecol. 88, 236–246 (2019).Article 

    Google Scholar 
    71.Eyer, P.-A., Freyer, J. & Aron, S. Genetic polyethism in the polyandrous desert ant cataglyphis cursor. Behav. Ecol. 24, 144–151 (2013).Article 

    Google Scholar 
    72.Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav. 65, 215–223 (2003).Article 

    Google Scholar 
    73.Dornhaus, A., Franks, N. R., Hawkins, R. & Shere, H. Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behav. 67, 959–963 (2004).Article 

    Google Scholar 
    74.Planqué, R., Dechaume-Moncharmont, F.-X., Franks, N. R., Kovacs, T. & Marshall, J. A. Why do house-hunting ants recruit in both directions? Naturwissenschaften 94, 911–918 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More