More stories

  • in

    The presence of Pseudogymnoascus destructans, a fungal pathogen of bats, correlates with changes in microbial metacommunity structure

    1.Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Article 

    Google Scholar 
    2.Brown, J. H. & Kodric-Brown, A. Turnover rates in insular biogeography: Effect of immigration on extinction. Ecology 58, 445–449 (1977).Article 

    Google Scholar 
    3.Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    4.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Presley, S. J., Higgins, C. L. & Willig, M. R. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119, 908–917 (2010).Article 

    Google Scholar 
    6.Leibold, M. A. & Mikkelson, G. M. Coherence, species turnover, and boundary clumping: Elements of metacommunity structure. Oikos 97, 237–250 (2002).Article 

    Google Scholar 
    7.Clements, F. E. Plant Succession: An Analysis of the Development of Vegetation (Carnegie Institution of Washington, Washington, DC, 1916).Book 

    Google Scholar 
    8.Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28, 65–82 (1986).Article 

    Google Scholar 
    9.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).Article 

    Google Scholar 
    10.Tornero, I. et al. Dispersal mode and spatial extent influence distance-decay patterns in pond metacommunities. PLOS ONE 13, e0203119. https://doi.org/10.1371/journal.pone.0203119 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Heino, J. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biol. Rev. 88, 166–178 (2013).PubMed 
    Article 

    Google Scholar 
    12.Walker, D. M. et al. Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J. 13, 2209–2222 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Presley, S. J., Cisneros, L. M., Patterson, B. D. & Willig, M. R. Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: A comparison of bats, rodents and birds. Glob. Ecol. Biogeogr. 21, 968–976 (2012).Article 

    Google Scholar 
    14.Heino, J. et al. Elements of metacommunity structure and community-environment relationships in stream organisms. Freshw. Biol. 60, 973–988 (2015).Article 

    Google Scholar 
    15.Hernández-Gómez, O., Hoverman, J. T. & Williams, R. N. Cutaneous microbial community variation across populations of eastern hellbenders (Cryptobranchus alleganiensis alleganiensis). Front. Microbiol. 8, 1379. https://doi.org/10.3389/fmicb.2017.01379 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Wilber, M. Q., Jani, A. J., Mihaljevic, J. R. & Briggs, C. J. Fungal infection alters the selection, dispersal and drift processes structuring the amphibian skin microbiome. Ecol. Lett. 23, 88–98 (2020).PubMed 
    Article 

    Google Scholar 
    17.Brown, J. J. et al. Metacommunity theory for transmission of heritable symbionts within insect communities. Ecol. Evol. 10, 1703–1721 (2020).PubMed 
    Article 

    Google Scholar 
    18.Belden, L. K. & Harris, R. N. Infectious diseases in wildlife: The community ecology context. Front. Ecol. Environ. 5, 533–539 (2007).Article 

    Google Scholar 
    19.Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Frick, W. F., Puechmaille, S. J. & Willis, C. K. R. White-nose syndrome in bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 245–262 (Springer, New York, 2016). https://doi.org/10.1007/978-3-319-25220-9_9
    Google Scholar 
    22.Langwig, K. E. et al. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B. 372, 20160044. (2017).Article 

    Google Scholar 
    23.Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett. 15, 1050–1057 (2012).PubMed 
    Article 

    Google Scholar 
    24.Grisnik, M. et al. The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiol. Ecol. 96, fiz193. https://doi.org/10.1093/femsex/fitz193 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Wickham H. ggplot2: Elegant Graphics for Data Analysis. R package version 3.2.2. https://CRAN.R-project.org/package=ggplot2 (2020).26.Dallas, T. metacom: An R package for the analysis of metacommunity structure. Ecography 37, 402–405 (2014).Article 

    Google Scholar 
    27.Alves, A. T., Petsch, D. K. & Barros, F. Drivers of benthic metacommunity structure along tropical estuaries. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    28.Risely, A. Applying the core microbiome to understand host–microbe systems. J Anim. Ecol. 89, 1549–1558 (2020).PubMed 
    Article 

    Google Scholar 
    29.Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Lemieux-Labonté, V., Simard, A., Willis, C. K. & Lapointe, F. J. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 5, 115 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A. & Thies, J. E. Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl Environ Microbiol 72, 4522–4531 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Zimmermann, J., Gonzalez, J. M., Saiz-Jimenez, C. & Ludwig, W. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in altamira cave using 23s rRNA sequence analysis. Geomicrobiol. J. 22, 379–388 (2005).CAS 
    Article 

    Google Scholar 
    33.Wilder, A. P., Kunz, T. H. & Sorenson, M. D. Population genetic structure of a common host predicts the spread of white-nose syndrome, an emerging infectious disease in bats. Mol. Ecol. 24, 5495–5506 (2015).PubMed 
    Article 

    Google Scholar 
    34.Martin, A. M. Historical Demography and Dispersal Patterns in the Eastern Pipistrelle Bat (Perimyotis subflavus). MS Thesis Grand Valley State University (2014).35.Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat Ecol. Evol. 3, 116–124 (2019).PubMed 
    Article 

    Google Scholar 
    36.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Liu, L., Yang, J., Yu, Z. & Wilkinson, D. M. The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J. 9, 2068–2077 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Reche, I., Pulido-Villena, E., Morales-Baquero, R. & Casamayor, E. O. Does ecosystem size determine aquatic bacterial richness?. Ecology 86, 1715–1722 (2005).Article 

    Google Scholar 
    39.Hillebrand, H., Watermann, F., Karez, R. & Berninger, U. G. Differences in species richness patterns between unicellular and multicellular organisms. Oecologia 126, 114–124 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Avena, C. V. et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7, 1–14 (2016).MathSciNet 
    Article 

    Google Scholar 
    41.Lemieux-Labonté, V., Tromas, N., Shapiro, B. J. & Lapointe, F. J. Environment and host species shape the skin microbiome of captive neotropical bats. PeerJ 4, e2430 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Goldenberg Vilar, A. et al. Eutrophication decreases distance decay of similarity in diatom communities. Freshw. Biol. 59, 1522–1531 (2014).Article 

    Google Scholar 
    43.Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. U.S.A. 104, 17430–17434 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Muletz-Wolz, C. R., Fleischer, R. C. & Lips, K. R. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol. Ecol. 2, 2917–3293 (2019).
    Google Scholar 
    45.Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. MSystems 4, e00186-e219 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Muller, L. K. et al. Bat white-nose syndrome: A real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans. Mycologia 105, 253–259 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Janicki, A. F. et al. Efficacy of visual surveys for white-nose syndrome at bat hibernacula. PLoS ONE 10, e01333902015 (2015).Article 
    CAS 

    Google Scholar 
    49.Ellison, S. L., English, C. A., Burns, M. J. & Keer, J. T. Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC Biotechnol. 6, 33 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2012).Article 
    CAS 

    Google Scholar 
    52.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Schloss, P. D. & Westcott, S. L. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77, 3219–3226 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Glassman, S.I., & Martiny, J.B. Broadscale ecological patterns are robust to use of exact sequence variants versus operational taxonomic units. MSphere, 3, (2018).
    55.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).57.De Caceres, M., Jansen, F. & De Caceres, M.M. ‘indicspecies’. R package version 1.7.9. https://CRAN.R-project.org/package=indicspecies (2020).58.Bates, D., Sarkar, D., Bates, M.D. & Matrix, L. The lme4 package. R package version 1–1.26. https://CRAN.R-project.org/package=lme4 (2020).59.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).Article 

    Google Scholar 
    61.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5–2. https://CRAN.R-project.org/package=vegan (2019).62.Fox, J. et al. ‘car’. R package version 2.1-4. https://CRAN.R-project.org/package=car (2016).63.Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).Article 

    Google Scholar  More

  • in

    Reply to: Empirical pressure-response relations can benefit assessment of safe operating spaces

    1.Lade, S. J., Wang-Erlandsson, L., Staal, A. & Rocha, J. C. Empirical pressure-response relations can benefit assessment of safe operating spaces. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01481-5 (2021).2.Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).Article 

    Google Scholar 
    3.Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta-Analysis (eds Borenstein M. et al.) 277–292 (John Wiley & Sons, 2009).4.Barto, E. K. & Rillig, M. C. Dissemination biases in ecology: effect sizes matter more than quality. Oikos 121, 228–235 (2012).Article 

    Google Scholar 
    5.Carpenter, G., Kleinjans, R., Villasante, S. & O’Leary, B. C. Landing the blame: the influence of EU Member States on quota setting. Mar. Policy 64, 9–15 (2016).Article 

    Google Scholar 
    6.Galland, G. R., Nickson, A. E. M., Hopkins, R. & Miller, S. K. On the importance of clarity in scientific advice for fisheries management. Mar. Policy 87, 250–254 (2018).Article 

    Google Scholar 
    7.Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3, 17008 (2017).Article 

    Google Scholar 
    8.Gaba, S., Gabriel, E., Chadœuf, J., Bonneu, F. & Bretagnolle, V. Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci. Rep. 6, 30112 (2016).CAS 
    Article 

    Google Scholar 
    9.Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585 (2020).Article 

    Google Scholar 
    10.Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).CAS 
    Article 

    Google Scholar 
    11.Hillebrand, H. et al. Biodiversity change is uncoupled from species richness trends: consequences for conservation and monitoring. J. Appl. Ecol. 55, 169–184 (2018).Article 

    Google Scholar 
    12.Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).CAS 
    Article 

    Google Scholar 
    13.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).CAS 
    Article 

    Google Scholar 
    14.Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Environmental and spatial risk factors for the larval habitats of Plasmodium knowlesi vectors in Sabah, Malaysian Borneo

    1.Fornace, K. M. et al. Exposure and infection to Plasmodium knowlesi in case study communities in Northern Sabah, Malaysia and Palawan, The Philippines. PLoS Negl. Trop. Dis. 12, e0006432 (2018).Article 

    Google Scholar 
    2.Singh, B. et al. A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363, 1017–1024 (2004).Article 

    Google Scholar 
    3.Chin, A. Z. et al. Malaria elimination in Malaysia and the rising threat of Plasmodium knowlesi. J. Physiol. Anthropol. https://doi.org/10.1186/s40101-020-00247-5 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Cooper, D. J. et al. Plasmodium knowlesi Malaria in Sabah, Malaysia, 2015–2017: Ongoing increase in incidence despite nearelimination of the human-only plasmodium species. Clin. Infect. Dis. 70, 361–367 (2020).Article 

    Google Scholar 
    5.William, T. et al. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax malaria in Sabah, Malaysia. PLoS Negl. Trop. Dis. 7, e2026 (2013).Article 

    Google Scholar 
    6.Fornace, K. M. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).CAS 
    Article 

    Google Scholar 
    7.Gunggut, H., Saufi, D. S. N. S. A. M., Zaaba, Z. & Liu, M.S.-M. Where have all the forests gone? Deforestation in land below the wind. Procedia Soc. Behav. Sci. 153, 363–369 (2014).Article 

    Google Scholar 
    8.Brock, P. M. et al. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. B Biol. Sci. 286, 20182913 (2019).Article 

    Google Scholar 
    9.World Health Organization. WHO|Larval Source Management: A Supplementary Measure for Malaria Vector Control (WHO, 2013).
    Google Scholar 
    10.Wong, M. L. et al. Incrimination of Anopheles balabacensis as the vector for simian malaria in Kudat Division, Sabah, Malaysia. J. Microbiol. Immunol. Infect. 48, S47–S48 (2015).Article 

    Google Scholar 
    11.Vythilingam, I. & Hii, J. Simian malaria parasites: Special emphasis on Plasmodium knowlesi and their anopheles vectors in Southeast Asia. in Anopheles mosquitoes: New insights into malaria vectors (InTech, 2013). https://doi.org/10.5772/54491.Article 

    Google Scholar 
    12.Loh, E., Murray, K., Nava, K., Aguirre, A. & Daszak, A. Evaluating the links between biodiversity, land-use change, and infectious disease emergence. in Tropical Conservation (eds. Aguirre, A. & Sukumar, R.) 79–88. (Oxford, 2016).
    Google Scholar 
    13.Brant, H. L. et al. Vertical stratification of adult mosquitoes (Diptera: Culicidae) within a tropical rainforest in Sabah, Malaysia. Malar. J. 15, 1–10 (2016).Article 

    Google Scholar 
    14.Chua, T. H., Manin, B. O., Vythilingam, I., Fornace, K. & Drakeley, C. J. Effect of different habitat types on abundance and biting times of Anopheles balabacensis Baisas (Diptera: Culicidae) in Kudat district of Sabah, Malaysia. Parasit. Vectors 12, 364 (2019).Article 

    Google Scholar 
    15.Wong, M. L. et al. Seasonal and spatial dynamics of the primary vector of Plasmodium knowlesi within a major transmission focus in Sabah, Malaysia. PLoS Negl. Trop. Dis. 9, e0004153 (2015).Article 

    Google Scholar 
    16.Brown, R. et al. Human exposure to zoonotic malaria vectors in village, farm and forest habitats in Sabah, Malaysian Borneo. PLoS Negl. Trop. Dis. 14, 1–18 (2020).Article 

    Google Scholar 
    17.Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).Article 

    Google Scholar 
    18.Manin, B. O. et al. Investigating the contribution of peri-domestic transmission to risk of zoonotic malaria infection in humans. PLoS Negl. Trop. Dis. 10, e0000506 (2016).Article 

    Google Scholar 
    19.Rohani, A. et al. Characterization of the larval breeding sites of Anopheles balabacensis (Baisas), in Kudat, Sabah Malaysia. Southeast Asian. J. Trop. Med. Public Health 49, 566–579 (2018).
    Google Scholar 
    20.Ageep, T. B. et al. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: Influence of environmental factors and implications for vector control. Malar. J. 8, 123 (2009).Article 

    Google Scholar 
    21.Roleček, J., Chytrý, M., Hájek, M., Lvončík, S. & Tichý, L. Sampling design in large-scale vegetation studies: Do not sacrifice ecological thinking to statistical purism!. Folia Geobot. 42, 199–208 (2007).Article 

    Google Scholar 
    22.Bellier, E., Monestiez, P., Durbec, J.-P. & Candau, J.-N. Identifying spatial relationships at multiple scales: Principal coordinates of neighbour matrices (PCNM) and geostatistical approaches. Ecography 30, 385–399 (2007).Article 

    Google Scholar 
    23.Brock, P. M. et al. Plasmodium knowlesi transmission: Integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 143, 389–400 (2016).CAS 
    Article 

    Google Scholar 
    24.Fornace, K. M., Drakeley, C. J., William, T., Espino, F. & Cox, J. Mapping infectious disease landscapes: Unmanned aerial vehicles and epidemiology. Trends Parasitol. 30, 514–519 (2014).Article 

    Google Scholar 
    25.GES DISC. Tropical Rainfall Measurement Mission (TRMM). TRMM (TMPA) Rainfall Estimate L3 3 hour 0.25 degree x 0.25 degree V7, Greenbelt. https://doi.org/10.5067/TRMM/TMPA/3H/7 (2011).Article 

    Google Scholar 
    26.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 NASA EOSDIS Land Processes DAAC. USGS 5, 2002–2015 (2015).
    Google Scholar 
    27.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. NASA EOSDIS Land Processes DAAC. 5, 2002–2015. https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).Article 

    Google Scholar 
    28.NASA/METI/AIST/Japan Spacesystems, and U. S. /Japa. A. S. T. ASTER Global Digital Elevation Model V003. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/astgtmv003 (2019).29.Fornace, K. M. et al. Environmental risk factors and exposure to the zoonotic malaria parasite Plasmodium knowlesi across northern Sabah, Malaysia: A population-based cross-sectional survey. Lancet Planet. Heal. 3, e179–e186 (2019).Article 

    Google Scholar 
    30.Stark, D. J. et al. Long-tailed macaque response to deforestation in a plasmodium knowlesi-endemic area. EcoHealth 16, 638–646 (2019).Article 

    Google Scholar 
    31.Davidson, G., Chua, T. H., Cook, A., Speldewinde, P. & Weinstein, P. Defining the ecological and evolutionary drivers of Plasmodium knowlesi transmission within a multi-scale framework. Malar. J. 18, 1–13 (2019).Article 

    Google Scholar 
    32.Diuk-Wasser, M. A. et al. Effect of rice cultivation patterns on malaria vector abundance in rice-growing villages in Mali. Am. J. Trop. Med. Hyg. 76, 869–874 (2007).Article 

    Google Scholar 
    33.Stefani, A., Roux, E., Fotsing, J. M. & Carme, B. Studying relationships between environment and malaria incidence in Camopi (French Guiana) through the objective selection of buffer-based landscape characterisations. Int. J. Health Geogr. 10, 65 (2011).Article 

    Google Scholar 
    34.Wang, X., Blanchet, F. G. & Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12198 (2014).Article 

    Google Scholar 
    35.McGarigal, K., Cushman, S. & Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html. https://doi.org/10.1049/oap-cired.2017.1227 (2012).Book 

    Google Scholar 
    36.TuckerLima, J. M., Vittor, A., Rifai, S. & Valle, D. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence. Philos. Trans. R. Soc. B. 372, 20160125 (2017).Article 

    Google Scholar 
    37.Sallum, M. A. M., Peyton, E. L. & Wilkerson, R. C. Six new species of the Anopheles leucosphyrus group, reinterpretation of An. elegans and vector implications. Med. Vet. Entomol. 19, 158–199 (2005).CAS 
    Article 

    Google Scholar 
    38.Stoops, C. A. et al. Remotely-sensed land use patterns and the presence of Anopheles larvae (Diptera: Culicidae) in Sukabumi, West Java, Indonesia. J. Vector Ecol. 33, 30–39 (2008).Article 

    Google Scholar 
    39.Singh, J. & Tham, A. S. Case history on malaria vector control through the application of environmental management in Malaysia. World Health Org. 88, 1–70 (1988).
    Google Scholar 
    40.Tangena, J. A. A., Thammavong, P., Wilson, A. L., Brey, P. T. & Lindsay, S. W. Risk and control of mosquito-borne diseases in southeast asian rubber plantations. Trends Parasitol. 32, 402–415 (2016).Article 

    Google Scholar 
    41.Kaewwaen, W. & Bhumiratana, A. Landscape ecology and epidemiology of malaria associated with rubber plantations in Thailand: Integrated approaches to malaria ecotoping. Interdiscipl. Perspect. Infect. Dis. 2015, 1–15 (2015).Article 

    Google Scholar 
    42.Foley, D. H., Torres, E. P. & Mueller, I. Stream-bank shade and larval distribution of the Philippine malaria vector Anopheles flavirostris. Med. Vet. Entomol. 16, 347–355 (2002).CAS 
    Article 

    Google Scholar 
    43.Service, M. W. & Service, M. W. Sampling the Larval Population. in Mosquito Ecology 75–209 (Springer, 1993). https://doi.org/10.1007/978-94-015-8113-4_2.Article 
    MATH 

    Google Scholar 
    44.Sallum, M. A. M., Peyton, E. L., Harrison, B. A. & Wilkerson, R. C. Revision of the Leucosphyrus group of Anopheles (Cellia) (Diptera, Culicidae). Rev. Bras. Entomol. 49, 1–152 (2005).Article 

    Google Scholar 
    45.Rattanarithikul, R., Harrison, B. A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. J. Trop. Med. Public Health 37, 1–26 (2006).
    Google Scholar 
    46.R Core Team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2020).47.Borremans, B., Faust, C., Manlove, K. R., Sokolow, S. H. & Lloyd-Smith, J. O. Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0344 (2019).Article 

    Google Scholar  More

  • in

    Climate change drives widespread shifts in lake thermal habitat

    OverviewWe used long-term time series of lake temperature profiles to determine the magnitude of thermal habitat change in 139 widely distributed lakes. Time series were interpolated across depth and season to generate data with consistent resolutions across lakes. To assess temperature change, we used a metric, ‘thermal non-overlap’, based on the percentage of two kernel density estimations of lake temperature which are non-overlapping. We calculated the metric for a range of plausible seasonal and depth habitat restrictions for aquatic species in the face of climate change. We used BRT to explain variability across lakes in their thermal habitat non-overlap as a function of lake characteristics (mean depth and latitude), characteristics of the time series for each lake (starting day of the year, ending day of the year, starting year and ending year, average number of sampling dates per year, long-term trend in the number of sampling dates per year, long-term trend in the yearly seasonal range of sampling dates), the habitat restriction values (season and depth) and the location of the time series delineation for thermal non-overlap calculations (30th, 50th and/or 70th quantiles of the years included in each lake’s time series).Study sitesWe compiled long-term lake temperature data from 139 lakes across the globe. Temperature variations in many of these lakes have already been linked to climate change1,2,19,20,57,58, but temperature change in at least one lake may be partially due to background climate variation in addition to anthropogenic climate change (Atlantic Multidecadal Oscillation in Lake Annie)59. The lakes included in our analysis represent a wide range of surface area (0.02 to 68,800 km2), maximum depth (2.3 to 1,642 m), latitude (60 °S to 69 °N) and elevation (−212 to 1,987 m above sea level) (see Supplementary Table 1 for more information).Temperature dataIn total, we used more than 32 million lake temperature measurements for our analyses. The number of observations per lake ranged from 368 (Lake Stensjon) to 7,636,767 (Lake Superior) with approximately 232,000 observations per lake on average. Temperature data from each lake came from in situ temperature profiles60,61,62,63,64 for lakes smaller than 169 km2 and from a combination of in situ temperature profiles and remotely sensed surface water temperatures for 21 larger lakes. Remote sensing data were used in recognition that temperature and warming rates can vary substantially across latitude and longitude for large lakes19,20,21.The mean length of the temperature time series was 36 years with a range from 15 to 101 years. All lakes had temperature data which started in the year 2000 or earlier and ended in 2000 or later. Lakes had on average 29 temperature profiles per year (inner quartile range: 7–26). In situ temperature data were measured using a wide variety of temperature sensors. Data collection methods included regularly collected discrete temperature profiles, high-resolution thermistor chains and other commonly accepted tools for measuring aquatic temperature. The in situ data are publicly available through the environmental data initiative60.Remotely sensed lake surface temperatures were measured using the Advanced Very High-Resolution Radiometer (AVHRR) and processed by the Group for High Resolution Sea Surface Temperature (GHRSST) project65. AVHRR data have been validated against buoy data from the North American Great Lakes and found to have a root mean squared error of 0.55 °C compared with in situ measurements2. AVHRR temperature data were included to capture horizontal variability in temperature and warming in 21 of the 139 lakes that would not be captured by temperature profiles from a single central location19,20,21. AVHRR data were pooled with in situ data for temperature interpolation.Temperature interpolationTemperature data were spatially and temporally interpolated for each lake. All temperature profile data were first linearly interpolated across depth because temperature variability with depth is highly constrained by lake physics and typically allows for robust interpolations. The largest data gap over which depth interpolation occurred was 0.1 × mean depth of each lake. Following interpolation across depth, data were interpolated across time using standard spline interpolation models with a Kalman filter66. The model output was used to fill data gaps to produce a continuous, daily time series over the day of the year range for which temperature profiles had been regularly measured. Some times of the year were excluded from specific lakes because they lacked regular measurements throughout the length of the long-term time series. Thus, the same starting and ending day of the year was used for each lake throughout its time series, and was often shorter than the full annual cycle (Supplementary Table 1). The largest gap in time over which interpolation occurred was 30 days and this included extrapolations for lakes with missing data at the beginning or end of seasonal coverage in a specific year. Years with longer gaps were omitted from the analysis and the length of the seasonal coverage was optimized to minimize the number of years that needed to be removed. For large lakes with many sampling points (for example, Baikal, Superior, Victoria), temperature data were divided into 1,000 km2 latitude–longitude bins and interpolated across depth and across time separately for each bin. The mean seasonal coverage of the interpolated lake time series was 245 days per year with a minimum of 17 days per year and a maximum of 365 days per year.The interpolated temperature output had a daily temporal resolution and a depth resolution which varied continuously over depth. At the lake surface, we interpolated temperatures every 0.1 m (for example, 0 m, 0.1 m, 0.2 m), to every 1 m starting at a depth of 10 m (for example, 10 m, 11 m, 12 m) and every 100 m starting at a depth of 1,000 m (for example, 1,000 m, 1,100 m, 1,200 m). These depth increments were used because they consistently gave good coverage over all major lake strata, regardless of each lake’s morphometric characteristics, while minimizing computational intensity by eliminating redundancy within lake strata.Thermal habitat non-overlap calculationsAfter interpolating the temperature data across depth and season for each lake, we bisected it into an early part (part a) and a later part (part b). Parts a and b were iteratively delineated at three points positioned serially along the time series—at the 30th, 50th and 70th quantiles. We averaged the final non-overlap values across these three delineations for each lake so that the results depended less on the somewhat arbitrary decision of where to split the time series. For each delineation, we randomly sampled 10,000 temperature values from each of parts a and b. This was repeated ten times resulting in a total of 300,000 temperature values across all three time series delineations and all ten repetitions for each lake (10,000 × 3 × 10). The sampling probability for temperature values in each comparison was weighted by the volume increment associated with each temperature value (depth increment (Id) × cross-sectional area at each depth (Cd)). Id was calculated as the difference between the depth of the sampled temperature value and the next depth in the depth resolution of the interpolated temperatures. Cd at each depth for each lake was calculated using standard, three-parameter models for estimating lake cross-sectional area based on surface area, maximum depth and mean depth67. For large lakes with temperature data at multiple locations across latitude and longitude, Cd was divided by the number of latitude–longitude bins used for each lake. Temperature values from large lakes were sampled regardless of their associated latitude–longitude bins. As a result of the volume-weighting procedure, temperature measurements were sampled in proportion to the volume of water represented by each value, with temperatures representing larger volumes being sampled more often. As a consequence of this volume-weighting procedure, the resulting temperature distributions were robust to moderate changes in the depths used for the temperature interpolation (Supplementary Fig. 1).We defined thermal non-overlap (TNO) as the symmetric difference (Ө) between the kernel density estimations of temperature values from parts a and b of the time series as a proportion of the union (∪) of both kernel density estimations, following an established method42. Conversely, we defined the thermal habitat overlap (as opposed to non-overlap) as the intersection (∩) of the kernel density estimations as a proportion of the union (∪) of both distributions. All values were converted to percentages by multiplying by 100.$${mathrm{TNO}}left( % right) = 100 times frac{{{{T}}_{{mathrm{recent}}},ominus,{{T}}_{{mathrm{baseline}}}}}{{{{T}}_{{mathrm{recent}}} cup {{T}}_{{mathrm{baseline}}}}} = 100 times left( {1 – frac{{{{T}}_{{mathrm{recent}}} cap {{T}}_{{mathrm{baseline}}}}}{{{{T}}_{{mathrm{recent}}} cup {{T}}_{{mathrm{baseline}}}}}} right)$$
    (1)
    We used simulations to test the sensitivity of TNO to changes in mean and s.d. of temperature. We primed these simulations with three baseline temperature distributions all with a mean of 15 °C but with varying s.d. (4, 6, 8 °C). We simulated a range of additional temperature distributions by increasing and decreasing the mean and s.d. of the baseline temperature distributions and then calculated the corresponding values of TNO. The simulated change in both mean and s.d. varied from −3 to +3 °C. We found that TNO was sensitive to changes in mean and s.d. but was slightly more sensitive to reductions in s.d. compared with increases. TNO values also depended on the baseline s.d., such that lower starting s.d. elevates values of non-overlap given an equivalent change in temperature (Extended Data Fig. 1).We also quantified null values of thermal non-overlap (TNOo) by repeating the thermal non-overlap calculations but where parts a and b were defined by randomly dividing the individual years of data into two separate groups as opposed to sequentially dividing them along the time series.$${mathrm{TNO}}_{mathrm{o}}(% ) = 100 times frac{{{{T}}_{{mathrm{random}},{{a}}},ominus,{{T}}_{{mathrm{random}},{{b}}}}}{{{{T}}_{{mathrm{random}},{{a}}} cup {{T}}_{{mathrm{random}},{{b}}}}}$$
    (2)
    To calculate standardized thermal non-overlap (TNOs), we subtracted TNOo from TNO thereby setting the null expectation to zero.$${mathrm{TNO}}_{mathrm{s}}left( {mathrm{% }} right) = {mathrm{TNO}} – {mathrm{TNO}}_{mathrm{o}}$$
    (3)
    In this case, if the temperature distributions in the recent and baseline time periods were identical, the TNOs would equal approximately zero. Values different from zero reflect a combination of random noise and long-term temperature change. All non-overlap values described in the main text and shown in Figs. 2–6 reflect values of TNOs. A comparison between raw values of TNO and TNOo can be found in Extended Data Fig. 5. Thermal non-overlap values and the null values were calculated using the ‘overlap’ function from the ‘overlapping’ package42 in the R environment for statistical computing and visualization. In the function, we set the number of equally spaced points at which the overlapping kernel density estimation is evaluated to 100 for all comparisons because it minimized the values of TNOo (we considered a range of values from 5 to 10,000).To assess the effect of seasonal habitat restrictions (Slimit) and volumetric habitat restrictions (Vlimit), we modified equations (1)–(3) by comparing temperature values only from a specified range of depths and/or days of the year. We considered a range of habitat restrictions scaled from 0 to 0.95, where 0.95 is the most restrictive (temperature values were compared from within bins equivalent to 1/20th of the available seasonal and volumetric habitat) and 0 is the least restrictive (temperature values were compared regardless of season and depth). We focused our interpretations on the unitless habitat restrictions (scaled from 0 to 0.95) instead of in units of days or m3 so that habitat restrictions could be more readily compared across lakes. Comparing a Vlimit value of 0.8 across lakes of different sizes assumes that a habitat restriction of 2 m3 in a 10 m3 lake would be comparable to a 20 m3 habitat delineation in a 200 m3 lake. The actual size of the seasonal habitat restrictions for each lake in units of days were calculated using the value of Slimit as follows:$$S = left( {mathrm{doy}}_{mathrm{max}} – {mathrm{doy}}_{mathrm{min}}right)left( {1 – S_{mathrm{limit}}} right)$$where S is the seasonal habitat restriction in units of days, doymax is the maximum day of the year of the lakes’ seasonal coverage, doymin is the minimum day of the year of the lakes’ seasonal coverage and Slimit is the seasonal habitat restriction scaled from 0 to 0.95. For example, in a lake with a seasonal coverage from day of the year 1 to day of the year 365, with an Slimit value of 0.75, we compared randomly selected temperatures from time periods a and b separately for four seasonal bins (days of the year 1–91, 92–183, 184–273 and 274–365). Similarly, the actual size of the volumetric habitat restrictions (V) for each lake in units of m3 were calculated using the value of Vlimit as follows:$$V = left( {mathrm{volume}} right) times left( {1 – V_{mathrm{limit}}} right)$$where V is the volumetric habitat restriction in units of m3, volume is the lake’s total volume and Vlimit is the volumetric habitat restriction value scaled from 0 to 0.95. For example, if a lake with a volume of 100 m3 had a Vlimit value of 0.75, we randomly selected temperature values from time periods a and b which were within four 25 m3 (100 m3 × (1 − 0.8)) bins. Volume bins were subsequently translated into sequential depth bins for the purpose of temperature value selection, making them functionally depth limits, and they are presented as such in the main text.We factorially combined a discrete series of values for Slimit and Vlimit (0, 1/2, 2/3, 5/6, 8/9, 12/13 and 19/20) to test a range of combined seasonal and volumetric habitat restrictions that do not require the overlap or truncation of bins. For reference, habitat restrictions are presented visually for hypothetical ‘Species 1’ (Slimit = 0, Vlimit = 0.8), ‘Species 2’ (Slimit = 0.8, Vlimit = 0) and ‘Species 3’ (Slimit = 0.8, Vlimit = 0.8) examples (Fig. 1). These limits reflect hypothetical restrictions in a species’ habitat due to ecological factors and approximate the habitat available for a low-light specialist phytoplankton (species 1), a spring migratory fish (species 2) and a diapausing benthic invertebrate (species 3). In Fig. 6, the species habitat restriction values for P. rubescens were Slimit = 0.74, Vlimit = 0.89 (Fig. 6).Explaining variability in thermal habitat non-overlapWe used BRT to explain lake-to-lake variability in thermal habitat change (percentage of non-overlap) while accounting for differences in the temporal coverage of each lake’s time series. The predictor variables in the BRT were the starting year of the time series, ending year of the time series, starting day of the year of the seasonal coverage, ending day of the year of the seasonal coverage, average number of sampling dates per year, linear trend (Theil–Sen slope) in the average number of sampling dates per year, linear trend (Theil–Sen slope) in the yearly extent of the time series’ seasonal coverage, lake mean depth, absolute latitude (degrees from the Equator), seasonal habitat restriction, depth habitat restriction and time series delineation. Geospatial and morphometric data for each lake is available from the previously published HydroLAKES database41. Of the available lake characteristics, we used latitude and mean depth because they were most strongly correlated to TNOs values and because they were least correlated to the other predictors in the model. We used a 100-fold cross-validation with a 70–30% split by lake (that is, 70% of lakes were used in each BRT). Model results were averaged to ensure that the patterns described therein were robust to the exclusion of some lakes. We optimized the learning rate for each BRT by iteratively running the model with smaller and smaller learning rates (from 0.8, 0.4, 0.2, 0.1, 0.05 to 0.025) until the number of trees in the model was greater than 1,000, as suggested in previous literature68. We found that the BRT performed well in cross-validation—the correlation between predicted and observed values in the test datasets from the 100-fold cross-validation was moderate on average across models (r = 0.56, Kendall’s rank correlation; see full goodness-of-fit summary statistics in Extended Data Fig. 6). The correlation between the predicted and the observed values was high (r = 0.76, Kendall’s rank correlation) when predictions were averaged across BRT. We found minimal patterning in the model residuals when comparing the model residuals with each predictor variable used in the BRT (Extended Data Fig. 7).To calculate lake-specific mean thermal non-overlap values and facilitate comparison across lakes, we used the BRT to remove the variation in thermal non-overlap attributable to the starting year of the time series, ending year of the time series, starting day of the year of the seasonal coverage, ending day of the year of the seasonal coverage, average number of sampling dates per year, linear trend (Theil–Sen slope) in the average number of sampling dates per year and the linear trend (Theil–Sen slope) in the yearly extent of the time series’ seasonal coverage of each lake’s time series, following previously published work24. We did this by setting the values for these variables to their median and using the BRT to make a prediction for each lake with these medians as predictors, along with each lake’s observed values for mean depth, absolute latitude, seasonal habitat restriction, depth habitat restriction and time series delineation. The residuals from the BRT were then added back to the predicted values used in further analyses and plotting. The mean lake-specific thermal dissimilarities were calculated as the average across all seasonal habitat restrictions (Slimit), depth habitat restrictions (Vlimit) (0, 1/2, 2/3, 5/6, 8/9, 12/13 and 19/20) and all three time series delineations. The statistical significance of these lake-specific thermal non-overlap values was estimated on a continuous gradient and calculated using a Wilcoxon signed-rank test. In the test, we compared TNO values to TNOo values separately for each combination of time series delineation, seasonal habitat restriction and depth habitat restriction (n = 108). The average P values from these tests for each lake are shown in Supplementary Table 1.We compared thermal non-overlap values to a more widely used metric of whole-lake thermal change—whole-lake temperature trends. Whole-lake temperature trends were calculated based on the annual averages of all temperature values sampled for the pairwise thermal non-overlap calculations to maximize the comparability of the resulting temperature trends and thermal non-overlap values. Due to the temperature sampling probability being volume-weighted, the temperature trend was also indirectly volume-weighted. Temperature trends were calculated using Theil–Sen slopes applied to annual mean temperatures and the statistical significance of each trend (P value) was calculated using a bootstrapped one sample Wilcoxon signed-rank test with 1,000 repetitions. The input data for the Wilcoxon signed-rank test were the complete list of all slopes derived from all pairwise combinations of points in the time series. The number of pairwise slopes used in each repetition of the Wilcoxon signed-rank test was equal to the number of years of temperature data for each lake. Whole-lake temperature trends and thermal non-overlap values were not strongly correlated (r = 0.10, Kendall’s rank correlation coefficient; Extended Data Fig. 4). All statistics and graphics were produced in the R statistical computing environment69.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    First dynamics of bacterial community during development of Acropora humilis larvae in aquaculture

    1.Chavanich, S., Viyakarn, V., Loyjiw, T., Pattaratamrong, P. & Chankong, A. Mass bleaching of soft coral, Sarcophyton spp. in Thailand and the role of temperature and salinity stress. ICES J. Mar. Sci. 66, 1515–1519 (2009).2.Phongsuwan, N. et al. Status and changing patterns on coral reefs in Thailand during the last two decades. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 96, 19–24 (2013).ADS 
    Article 

    Google Scholar 
    3.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.De´ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109, 17995–17999 (2012).6.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    7.Sheppard, C. et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 60, 13–38 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Cruz-Trinidad, A., Aliño, P. M., Geronimo, R. C. & Cabral, R. B. Linking food security with coral reefs and fisheries in the coral triangle. Coast Manag. 42, 160–182 (2014).Article 

    Google Scholar 
    9.Chavanich, S. et al. A tunicate from a Thai coral reef: A potential source of new anticancer compounds. Coral Reefs 24, 621. https://doi.org/10.1007/s00338-005-0036-y (2005).ADS 
    Article 

    Google Scholar 
    10.Rocha, J., Peixe, L., Gomes, N. & Calado, R. Cnidarians as a source of new marine bioactive compounds-an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Cooper, E. L., Hirabayashi, K., Strychar, K. B. & Sammarco, P. W. Corals and their potential applications to integrative medicine. Evid. Based Complement. Alternat. Med. 2014, 184959. https://doi.org/10.1155/2014/184959 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Petersen, D. et al. The application of sexual coral recruits for the sustainable management of ex situ populations in public aquariums to promote coral reef conservation-SECORE Project. Aquat. Conserv. 16, 167–179 (2006).Article 

    Google Scholar 
    13.Chavanich, S. & Viyakarn, V. Conservation and restoration of coral reefs under climate change: Strategies and practice. in The Cnidaria, Past, Present and Future. 787–792. (Springer, 2016).14.Boström-Einarsson, L. et al. Coral restoration–A systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631. https://doi.org/10.1371/journal.pone.0226631 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Webster, N. S. & Reusch, T. B. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167–2174 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Chimetto, L. A. et al. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst. Appl. Microbiol. 31, 312–319 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ceh, J. et al. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol. Evol. 3, 2393–2400 (2013).Article 

    Google Scholar 
    20.Gochfeld, D. J. & Aeby, G. S. Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar. Ecol. Prog. Ser. 362, 119–128 (2008).ADS 
    Article 

    Google Scholar 
    21.Kirkwood, M., Todd, J. D., Rypien, K. L. & Johnston, A. W. The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J. 4, 147–150 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Raina, J.-B. et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4, e2275. https://doi.org/10.7717/peerj.2275 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lodwig, E. M. et al. Amino-acid cycling drives nitrogen fixation in the legume—Rhizobium symbiosis. Nature 422, 722–726 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: Current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).PubMed 
    Article 

    Google Scholar 
    26.Lema, K. A., Willis, B. L. & Bourne, D. G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 78, 3136–3144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Ann. Rev. Microbiol. 70, 317–340 (2016).CAS 
    Article 

    Google Scholar 
    28.Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zhou, G. et al. Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO2. Environ. Microbiol. 19, 3342–3352 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529. https://doi.org/10.3389/fmicb.2019.01529 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Damjanovic, K., Menéndez, P., Blackall, L. L. & van Oppen, M. J. H. Early life stages of a common broadcast spawning coral associate with specific bacterial communities despite lack of internalized bacteria. Microb. Ecol. 79, 706–719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635. https://doi.org/10.7717/peerj.9635 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Chamberland, V. F. et al. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull. Mar. Sci. 92, 263–264 (2016).Article 

    Google Scholar 
    34.Baria-Rodriguez, M. V., dela Cruz, D. W., Dizon, R. M., Yap, H. T. & Villanueva, R. D. Performance and cost-effectiveness of sexually produced Acropora granulosa juveniles compared with asexually generated coral fragments in restoring degraded reef areas. Aquat. Conserv. Mar. Freshwater Ecosyst. 29, 891–900 (2019).35.Henry, J. A., O’Neil, K. L. & Patterson, J. T. Native herbivores improve sexual propagation of threatened staghorn coral Acropora cervicornis. Front. Mar. Sci. 6, 713. https://doi.org/10.3389/fmars.2019.00713 (2019).36.Ligson, C. A., Tabalanza, T. D., Villanueva, R. D. & Cabaitan, P. C. Feasibility of early outplanting of sexually propagated Acropora verweyi for coral reef restoration demonstrated in the Philippines. Restor. Ecol. 28, 244–251 (2019).Article 

    Google Scholar 
    37.Tabalanza, T. D. et al. Successfully cultured and reared coral embryos from wild caught spawn slick in the Philippines. Aquaculture 525, 735354. https://doi.org/10.1016/j.aquaculture.2020.735354 (2020).Article 

    Google Scholar 
    38.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl. Environ. Microbiol. 78, 7467–7475 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M. & Lin, C. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of the zooxanthellae in coral tissues. Ocean Sci. J. 50, 263–268 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Kuanui, P. et al. Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estuar. Coast Shelf Sci. 235, 106515. https://doi.org/10.1016/j.ecss.2019.106515 (2020).Article 

    Google Scholar 
    41.Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bulan, D. E. et al. Spatial and seasonal variability of reef bacterial communities in the upper Gulf of Thailand. Front Mar. Sci. 5, 441. https://doi.org/10.3389/fmars.2018.00441 (2018).Article 

    Google Scholar 
    43.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl. Environ. Microbiol. 84. https://doi.org/10.1128/AEM.02627-17 (2018).47.Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 22, 178–193. https://doi.org/10.1093/bib/bbz155 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    48.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020).50.Olson, N., Ainsworth, T., Gates, R. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 371, 140–146 (2009).CAS 
    Article 

    Google Scholar 
    51.Sharp, K. H., Sneed, J., Ritchie, K., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol. Bull. 228, 98–107 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sharp, K. H., Distel, D. & Paul, V. J. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6, 790–801 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).PubMed 
    Article 

    Google Scholar 
    54.Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle, F. J. III. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).PubMed 
    Article 

    Google Scholar 
    55.Baquiran, J. I. P. et al. The prokaryotic microbiome of Acropora digitifera is stable under short-term artificial light pollution. Microorganisms 8, 1566. https://doi.org/10.3390/microorganisms8101566 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    56.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    57.Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Franco, Á. G., Cadavid, L. F. & Arévalo-Ferro, C. Biofilms and extracts from bacteria producing “quorum sensing” signaling molecules protomote chemotaxis and settlement behaviors in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa) larvae. Acta Biol. Colomb. 24, 150–162 (2019).Article 

    Google Scholar 
    59.Jayaprakash, N. et al. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems. Dis. Aquat. Org. 68, 39–45 (2005).CAS 
    Article 

    Google Scholar 
    60.Tsai, S., Chang, W.-C., Chavanich, S., Viyakarn, V. & Lin, C. Ultrastructural observation of oocytes in six types of stony corals. Tissue Cell 48, 349–355 (2016).PubMed 
    Article 

    Google Scholar 
    61.Lin, C., Kup, F.-W., Chavanich, S. & Viyakarn, V. Membrane lipid phase transition behavior of oocytes from three gorgonian corals in relation to chilling injury. PLoS ONE 9, e92812. https://doi.org/10.1371/journal.pone.0092812 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Shnit-Orland, M. & Kushmaro, A. Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiol. Ecol. 67, 371–380 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Leite, D. C., Salles, J. F., Calderon, E. N., van Elsas, J. D. & Peixoto, R. S. Specific plasmid patterns and high rates of bacterial co-occurrence within the coral holobiont. Ecol. Evol. 8, 1818–1832 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rypien, K. L., Ward, J. R. & Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28–39 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.ElAhwany, A. M., Ghozlan, H. A., ElSharif, H. A. & Sabry, S. A. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J. Basic Microbiol. 55, 2–10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Damjanovic, K., van Oppen, M. J., Menéndez, P. & Blackall, L. L. Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tenuis and Platygyra daedalea. Front. Microbiol. 10, 1702. https://doi.org/10.3389/fmicb.2019.01702 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Damjanovic, K., Blackall, L. L., Menéndez, P. & van Oppen, M. J. H. Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs 39, 189–202 (2020).Article 

    Google Scholar 
    68.Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579. https://doi.org/10.1038/srep40579 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. MBio 9, e00812. https://doi.org/10.1128/mBio.00812-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Zinc isotopes from archaeological bones provide reliable tropic level information for marine mammals

    1.Horstmann‐Dehn, L., Follmann, E. H., Rosa, C., Zelensky, G. & George, C. Stable carbon and nitrogen isotope ratios in muscle and epidermis of arctic whales. Mar. Mamm. Sci. 28, E173–E190 (2012).Article 

    Google Scholar 
    2.Winder, M. & Schindler, D. E. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85, 2100–2106 (2004).Article 

    Google Scholar 
    3.Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).Article 

    Google Scholar 
    4.Szpak, P., Buckley, M., Darwent, C. M. & Richards, M. P. Long-term ecological changes in marine mammals driven by recent warming in northwestern Alaska. Glob. Chang. Biol. 24, 490–503 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Michener, R. H. & Kaufman, L. in Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.), 238–282 (Oxford, 2007).6.Dunton, K. H., Saupe, S. M., Golikov, A. N., Schell, D. M. & Schonberg, S. V. Trophic relationships and isotopic gradients among arctic and subarctic marine fauna. Mar. Ecol. Prog. Ser. 56, 89–97 (1989).Article 

    Google Scholar 
    7.Ramsay, M. A. & Hobson, K. A. Polar bears make little use of terrestrial food webs: evidence from stable-carbon isotope analysis. Oecologia 86, 598–600 (1991).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Hobson, K. A. & Welch, H. E. Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 84, 9–18 (1992).Article 
    CAS 

    Google Scholar 
    9.Evershed, R. P. et al. in Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 480–540 (Oxford, 2007).10.Jaouen, K. et al. Exceptionally high δ15N values in collagen single amino acids confirm Neandertals as high-trophic level carnivores. Proc. Natl Acad. Sci. USA 116, 4928–4933 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Heuser, A., Tütken, T., Gussone, N. & Galer, S. J. Calcium isotopes in fossil bones and teeth − Diagenetic versus biogenic origin. Geochim. Cosmochim. Acta 75, 3419–3433 (2011).Article 
    CAS 

    Google Scholar 
    12.Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).Article 
    CAS 

    Google Scholar 
    13.Jaouen, K., Beasley, M., Schoeninger, M., Hublin, J. J. & Richards, M. P. Zinc isotope ratios of bones and teeth as new dietary indicators: results from a modern food web (Koobi Fora, Kenya). Sci. Rep. 6, 26281 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Martin, J. E., Tacail, T., Adnet, S., Girard, C. & Balter, V. Calcium isotopes reveal the trophic position of extant and fossil elasmobranchs. Chem. Geol. 415, 118–125 (2015).Article 
    CAS 

    Google Scholar 
    15.Jaouen, K., Szpak, P. & Richards, M. P. Zinc isotope ratios as indicators of diet and trophic level in arctic marine mammals. PLoS ONE 11, e0152299 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Bourgon, N. et al. Zinc isotopes in Late Pleistocene fossil teeth from a Southeast Asian cave setting preserve paleodietary information. Proc. Natl Acad. Sci. USA 117, 4675–4681 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Jaouen, K. What is our toolbox of analytical chemistry for exploring ancient hominin diets in the absence of organic preservation? Quat. Sci. Rev. 197, 307–318 (2018).Article 

    Google Scholar 
    18.Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140 (1984).Article 
    CAS 

    Google Scholar 
    19.Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).Article 

    Google Scholar 
    20.Post, D. M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    21.Moynier, F., Fujii, T., Shaw, A. S. & Le Borgne, M. Heterogeneous distribution of natural zinc isotopes in mice. Metallomics 5, 693–699 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.Mahan, B., Moynier, F., Jørgensen, A. L., Habekost, M. & Siebert, J. Examining the homeostatic distribution of metals and Zn isotopes in Göttingen minipigs. Metallomics 10, 1264–1281 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Jaouen, K. et al. Dynamic homeostasis modeling of Zn isotope ratios in the human body. Metallomics 11, 1049–1059 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    25.Jaouen, K. et al. Zinc isotope variations in archeological human teeth (Lapa do Santo, Brazil) reveal dietary transitions in childhood and no contamination from gloves. PLoS ONE 15, e0232379 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. Ocean ecogeochemistry: a review. Oceanogr. Mar. Biol. 51, 327–374 (2013).
    Google Scholar 
    27.Rau, G. H., Sweeney, R. E. & Kaplan, I. R. Plankton 13C:12C ratio changes with latitude: differences between northern and southern oceans. Deep Sea Res. Part I Oceanogr. Res. 29, 1035–1039 (1982).Article 
    CAS 

    Google Scholar 
    28.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).Article 
    CAS 

    Google Scholar 
    29.Hedges, R. E., Clement, J. G., Thomas, C. D. L. & O’Connell, T. C. Collagen turnover in the adult femoral mid‐shaft: modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 133, 808–816 (2007).PubMed 
    Article 

    Google Scholar 
    30.Szpak, P., Savelle, J. M., Conolly, J. & Richards, M. P. Variation in late Holocene marine environments in the Canadian Arctic Archipelago: evidence from ringed seal bone collagen stable isotope compositions. Quat. Sci. Rev. 211, 136–155 (2019).Article 

    Google Scholar 
    31.Szpak, P. & Buckley, M. Sulfur isotopes (δ34S) in Arctic marine mammals: indicators of benthic vs. pelagic foraging? Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13493 (2020).32.Reeves, R. R. in Ringed Seals in the North Atlantic (eds Heide-Jørgensen, M. P. & Lydersen, C.) 9–45 (NAMMCO Scientific Publications, 1998).33.Koehler, G., Kardynal, K. J. & Hobson, K. A. Geographical assignment of polar bears using multi-element isoscapes. Sci. Rep. 9, 9390 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Moody, J. F. & Hodgetts, L. M. Subsistence practices of pioneering Thule–Inuit: a faunal analysis of Tiktalik. Arct. Anthropol. 50, 4–24 (2013).Article 

    Google Scholar 
    35.Dyke, A. S. et al. An assessment of marine reservoir corrections for radiocarbon dates on walrus from the Foxe Basin region of Arctic Canada. Radiocarbon 61, 67–81 (2019).Article 
    CAS 

    Google Scholar 
    36.Derocher, A. E., Wiig, Ø. & Andersen, M. Diet composition of polar bears in Svalbard and the western Barents Sea. Polar Biol. 25, 448–452 (2002).Article 

    Google Scholar 
    37.Hobson, K. A. et al. A stable isotope (δ13C, δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5131–5150 (2002).Article 
    CAS 

    Google Scholar 
    38.Iverson, S. J., Stirling, I. & Lang, S. L. C. in Top Predators in Marine Ecosystems (eds Boyd, I. L., Wanless, S. & Camphuysen, C. J.) 98–117 (Cambridge University Press, 2006).39.Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecol. Monogr. 78, 591–613 (2008).Article 

    Google Scholar 
    40.Stein, R. & MacDonald, R. W. The Organic Carbon Cycle in the Arctic Ocean (Springer, 2004).41.Lynch‐Stieglitz, J., Stocker, T. F., Broecker, W. S. & Fairbanks, R. G. The influence of air‐sea exchange on the isotopic composition of oceanic carbon: Observations and modeling. Glob. Biogeochem. Cycles 9, 653–665 (1995).Article 

    Google Scholar 
    42.Hobson, K. A., Ambrose, W. G. Jr & Renaud, P. E. Sources of primary production, benthic-pelagic coupling, and trophic relationships within the Northeast Water Polynya: insights from δ13C and δ15N analysis. Mar. Ecol. Prog. Ser. 128, 1–10 (1995).Article 

    Google Scholar 
    43.France, R., Loret, J., Mathews, R. & Springer, J. Longitudinal variation in zooplankton δ13C through the Northwest Passage: inference for incorporation of sea-ice POM into pelagic foodwebs. Polar Biol. 20, 335–341 (1998).Article 

    Google Scholar 
    44.Søreide, J. E., Hop, H., Carroll, M. L., Falk-Petersen, S. & Hegseth, E. N. Seasonal food web structures and sympagic–pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Prog. Oceanogr. 71, 59–87 (2006).Article 

    Google Scholar 
    45.Saupe, S. M., Schell, D. M. & Griffiths, W. B. Carbon-isotope ratio gradients in western arctic zooplankton. Mar. Biol. 103, 427–432 (1989).Article 
    CAS 

    Google Scholar 
    46.Schell, D. M., Barnett, B. A. & Vinette, K. A. Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Mar. Ecol. Prog. Ser. 162, 11–23 (1998).Article 
    CAS 

    Google Scholar 
    47.Tamelander, T., Kivimäe, C., Bellerby, R. G., Renaud, P. E. & Kristiansen, S. Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton. Hydrobiologia 630, 63–73 (2009).Article 
    CAS 

    Google Scholar 
    48.Pomerleau, C. et al. Spatial patterns in zooplankton communities across the eastern Canadian sub-Arctic and Arctic waters: insights from stable carbon (δ13C) and nitrogen (δ15N) isotope ratios. J. Plankton Res. 33, 1779–1792 (2011).Article 
    CAS 

    Google Scholar 
    49.Pomerleau, C. et al. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in marine zooplankton. Sci. Total Environ. 551, 92–100 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.De la Vega, C., Jeffreys, R. M., Tuerena, R., Ganeshram, R. & Mahaffey, C. Temporal and spatial trends in marine carbon isotopes in the Arctic Ocean and implications for food web studies. Glob. Chang. Biol. 25, 4116–4130 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Goni, M. A., Yunker, M. B., Macdonald, R. W. & Eglinton, T. I. Distribution and sources of organic biomarkers in arctic sediments from the Mackenzie River and Beaufort Shelf. Mar. Chem. 71, 23–51 (2000).Article 
    CAS 

    Google Scholar 
    52.Parsons, T. R. et al. Autotrophic and heterotrophic production in the Mackenzie River/Beaufort Sea estuary. Polar Biol. 9, 261–266 (1989).Article 

    Google Scholar 
    53.Dehn, L. A. et al. Feeding ecology of phocid seals and some walrus in the Alaskan and Canadian Arctic as determined by stomach contents and stable isotope analysis. Polar Biol. 30, 167–181 (2007).Article 

    Google Scholar 
    54.Butt, C. M., Mabury, S. A., Kwan, M., Wang, X. & Muir, D. C. Spatial trends of perfluoroalkyl compounds in ringed seals (Phoca hispida) from the Canadian Arctic. Environ. Toxicol. Chem. 27, 542–553 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Dittmar, T. & Kattner, G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: a review. Mar. Chem. 83, 103–120 (2003).Article 
    CAS 

    Google Scholar 
    56.Pons, M. L. et al. A Zn isotope perspective on the rise of continents. Geobiology 11, 201–214 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    57.Isson, T. T. et al. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes. Geobiology 16, 341–352 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    58.Samanta, M., Ellwood, M. J. & Strzepek, R. F. Zinc isotope fractionation by Emiliania huxleyi cultured across a range of free zinc ion concentrations. Limnol. Oceanogr. 63, 660–671 (2018).Article 
    CAS 

    Google Scholar 
    59.Köbberich, M. & Vance, D. Zn isotope fractionation during uptake into marine phytoplankton: implications for oceanic zinc isotopes. Chem. Geol. 523, 154–161 (2019).Article 
    CAS 

    Google Scholar 
    60.Maréchal, C. N., Nicolas, E., Douchet, C. & Albarède, F. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochem. Geophys. Geosyst. 1, 1015 (2000).Article 

    Google Scholar 
    61.John, S. G. The Marine Biogeochemistry of Zinc Isotopes. [Doctoral Thesis]. (Massachusetts Institute of Technology, 2007).62.Conway, T. M. & John, S. G. The biogeochemical cycling of zinc and zinc isotopes in the North Atlantic Ocean. Glob. Biogeochem. Cycles 28, 1111–1128 (2014).Article 
    CAS 

    Google Scholar 
    63.Wyatt, N. J. et al. Biogeochemical cycling of dissolved zinc along the GEOTRACES South Atlantic transect GA10 at 40°S. Glob. Biogeochem. Cycles 28, 44–56 (2014).Article 
    CAS 

    Google Scholar 
    64.John, S. G. & Conway, T. M. A role for scavenging in the marine biogeochemical cycling of zinc and zinc isotopes. Earth Planet. Sci. Lett. 394, 159–167 (2014).Article 
    CAS 

    Google Scholar 
    65.Sieber, M. et al. Cycling of zinc and its isotopes across multiple zones of the Southern Ocean: insights from the Antarctic Circumnavigation Expedition. Geochim. Cosmochim. Acta 268, 310–324 (2020).Article 
    CAS 

    Google Scholar 
    66.Samanta, M., Ellwood, M. J., Sinoir, M. & Hassler, C. S. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Mar. Chem. 192, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    67.Little, S. H., Vance, D., Walker-Brown, C. & Landing, W. M. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochim. Cosmochim. Acta 125, 673–693 (2014).Article 
    CAS 

    Google Scholar 
    68.Zhao, Y., Vance, D., Abouchami, W. & De Baar, H. J. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–672 (2014).Article 
    CAS 

    Google Scholar 
    69.Liao, W. H. et al. Zn isotope composition in the water column of the Northwestern Pacific Ocean: the importance of external sources. Glob. Biogeochem. Cycles 34, e2019GB006379 (2020).CAS 

    Google Scholar 
    70.Vance, D., de Souza, G. F., Zhao, Y., Cullen, J. T. & Lohan, M. C. The relationship between zinc, its isotopes, and the major nutrients in the North-East Pacific. Earth Planet. Sci. Lett. 525, 115748 (2019).Article 
    CAS 

    Google Scholar 
    71.Jensen, L. T. et al. Biogeochemical cycling of dissolved zinc in the Western Arctic (Arctic GEOTRACES GN01). Glob. Biogeochem. Cycles 33, 343–369 (2019).Article 
    CAS 

    Google Scholar 
    72.DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).Article 
    CAS 

    Google Scholar 
    73.Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).Article 

    Google Scholar 
    74.Muir, D. C. G. et al. Can seal eating explain elevated levels of PCBs and organochlorine pesticides in walrus blubber from eastern Hudson Bay (Canada)? Environ. Pollut. 90, 335–348 (1995).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    75.Young, B. G. & Ferguson, S. H. Seasons of the ringed seal: pelagic open-water hyperphagy, benthic feeding over winter and spring fasting during molt. Wildl. Res. 40, 52–60 (2013).Article 
    CAS 

    Google Scholar 
    76.Matley, J. K., Fisk, A. T. & Dick, T. A. Foraging ecology of ringed seals (Pusa hispida), beluga whales (Delphinapterus leucas) and narwhals (Monodon monoceros) in the Canadian High Arctic determined by stomach content and stable isotope analysis. Polar Res. 34, 24295 (2015).Article 
    CAS 

    Google Scholar 
    77.Michel, C., Ingram, R. G. & Harris, L. R. Variability in oceanographic and ecological processes in the Canadian Arctic Archipelago. Prog. Oceanogr. 71, 379–401 (2006).Article 

    Google Scholar 
    78.Tremblay, J. É., Gratton, Y., Carmack, E. C., Payne, C. D. & Price, N. M. Impact of the large‐scale Arctic circulation and the North Water Polynya on nutrient inventories in Baffin Bay. J. Geophys. Res. 107, 3112 (2002).Article 

    Google Scholar 
    79.Ingram, R. G., Bâcle, J., Barber, D. G., Gratton, Y. & Melling, H. An overview of physical processes in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4893–4906 (2002).Article 

    Google Scholar 
    80.Pauly, D., Trites, A. W., Capuli, E. & Christensen, V. Diet composition and trophic levels of marine mammals. ICES J. Mar. Sci. 55, 467–481 (1998).Article 

    Google Scholar 
    81.Woollett, J. Oakes Bay 1: a preliminary reconstruction of a Labrador Inuit seal hunting economy in the context of climate change. Geogr. Tidsskr. 110, 245–259 (2010).Article 

    Google Scholar 
    82.Stirling, I. & Archibald, W. R. Aspects of predation of seals by polar bears. J. Fish. Res. Board Can. 34, 1126–1129 (1977).Article 

    Google Scholar 
    83.Pilfold, N. W., Derocher, A. E., Stirling, I. & Richardson, E. Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Popul. Ecol. 56, 129–138 (2014).Article 

    Google Scholar 
    84.Elorriaga-Verplancken, F., Aurioles-Gamboa, D., Newsome, S. D. & Martínez-Díaz, S. F. δ15N and δ13C values in dental collagen as a proxy for age-and sex-related variation in foraging strategies of California sea lions. Mar. Biol. 160, 641–652 (2013).Article 
    CAS 

    Google Scholar 
    85.Hauser, D. D., Laidre, K. L., Suydam, R. S. & Richard, P. R. Population-specific home ranges and migration timing of Pacific Arctic beluga whales (Delphinapterus leucas). Polar Biol. 37, 1171–1183 (2014).Article 

    Google Scholar 
    86.Harwood, L. A., Smith, T. G., Auld, J., Melling, H. & Yurkowski, D. J. Seasonal movements and diving of ringed seals, Pusa hispida, in the Western Canadian Arctic, 1999–2001 and 2010–11. Arctic 68, 193–209 (2015).Article 

    Google Scholar 
    87.Ferguson, S. H., Taylor, M. K., Born, E. W., Rosing-Asvid, A. & Messier, F. Activity and movement patterns of polar bears inhabiting consolidated versus active pack ice. Arctic 54, 49–54. (2001).Article 

    Google Scholar 
    88.Lunn, N. J. et al. Polar bear management in Canada 1997–2000. In: Proc. 13th Working Meeting of the IUCN/SSC Polar Bear Specialist Group, 23–28 June 2001, Nuuk, Greenland. Occasional Paper 26 (eds Lunn, N. J., Schliebe, S. & Born, E. W.) 41–52 (IUCN, 2002).89.Ronald, K. & Dougan, J. L. The ice lover: biology of the harp seal (Phoca groenlandica). Science 215, 928–933 (1982).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    90.Sergeant, D. E. Harp seals, man and ice. Can. Spec. Publ. Fish. Aquat. Sci. 114, (1991).91.Ogloff, W. R., Yurkowski, D. J., Davoren, G. K. & Ferguson, S. H. Diet and isotopic niche overlap elucidate competition potential between seasonally sympatric phocids in the Canadian Arctic. Mar. Biol. 166, 103 (2019).Article 
    CAS 

    Google Scholar 
    92.Mansfield, A. W. Seals of arctic and eastern Canada. Fish. Res. Board Canada Bull. 137 (1963).93.Sergeant, D. E. Migrations of harp seals Pagophilus groenlandicus (Erxleben) in the Northwest Atlantic. J. Fish. Res. Board Can. 22, 433–464 (1965).Article 

    Google Scholar 
    94.Richard, P. R., Heide-Jørgensen, M. P., Orr, J. R., Dietz, R. & Smith, T. G. Summer and autumn movements and habitat use by belugas in the Canadian High Arctic and adjacent areas. Arctic 54, 207–222 (2001).
    Google Scholar 
    95.Maréchal, C. N., Télouk, P. & Albarède, F. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chem. Geol. 156, 251–273 (1999).Article 

    Google Scholar 
    96.Moynier, F., Albarède, F. & Herzog, G. F. Isotopic composition of zinc, copper, and iron in lunar samples. Geochim. Cosmochim. Acta 70, 6103–6117 (2006).Article 
    CAS 

    Google Scholar 
    97.Toutain, J. P. et al. Evidence for Zn isotopic fractionation at Merapi volcano. Chem. Geol. 253, 74–82 (2008).Article 
    CAS 

    Google Scholar 
    98.Copeland, S. R. et al. Strontium isotope ratios (87Sr/86Sr) of tooth enamel: a comparison of solution and laser ablation multicollector inductively coupled plasma mass spectrometry methods. Rapid Commun. Mass Spectrom. 22, 3187–3194 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    99.Brown, T. A., Nelson, D. E., Vogel, J. S. & Southon, J. R. Improved collagen extraction by modified Longin method. Radiocarbon 30, 171–177 (1988).Article 
    CAS 

    Google Scholar 
    100.Qi, H., Coplen, T. B., Geilmann, H., Brand, W. A. & Böhlke, J. K. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom. 17, 2483–2487 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    101.Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    102.R Core Team, R version 3.6.1 (R Foundation for Statistical Computing, Vienna, Austria, 2018).103.Haug, T. et al. Trophic level and fatty acids in harp seals compared with common minke whales in the Barents Sea. Mar. Biol. Res. 13, 919–932 (2017).Article 

    Google Scholar  More

  • in

    Some biological properties of spiny eel (Mastacembelus mastacembelus, Banks & Solander, 1794) living in the Upper Euphrates River Basin, Turkey

    1.Eschmeyer, W. N. & Fong, J. D. Species of fish by family/subfamily. https://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp#Mastacembelidae [Accessed 10 February 2021] (2021).2.Johnson, G. D. & Patterson, C. Percomorph phylogeny: A survey of Acanthomorphs and a new proposal. Bull. Mar. Sci. 52, 554–626 (1993).
    Google Scholar 
    3.Britz, R. & Kottelat, M. Descriptive osteology of the family Chaudhuriidae (Teleostei, Synbranchiformes, Mastacembeloidei), with a discussion of its relationships. Am. Mus. Novit. 3418, 1–62 (2003).Article 

    Google Scholar 
    4.Brown, K. J., Britz, R., Bills, R., Rüber, L. & Day, J. J. Pectoral fin loss in the Mastacembelidae: A new species from Lake Tanganyika. J. Zool. 284, 286–293 (2011).Article 

    Google Scholar 
    5.Kara, C., Güneş, H., Gürlek, M. E. & Alp, A. Adıyaman bölgesi akarsularında dikenli yılan balığı (Mastacembelus mastacembelus Banks & Solander 1794)’nın dağılımı ve bazı morfometrik özellikleri. AquaSt. 3, 3–11 (2014) (in Turkish).
    Google Scholar 
    6.Dağlı, M. & Erdemli, A. Ü. An investigation on the fish fauna of Balıksuyu Stream (Kilis, Turkey). Int. J. Nat. Eng. Sci. 3, 19–24 (2009).
    Google Scholar 
    7.Geldiay, R. & Balık, S. Türkiye Tatlısu Balıkları. VI. Baskı, Ege Üniversitesi Su Ürünleri Yayınları, (Ege Üniversitesi Basımevi, Bornova-Izmir, 2009) (in Turkish).8.Vreven, E. J. & Teugels, G. G. Redescription of Mastacembelus liberiensis Baulenger, 1898 and description of a new West African spiny-eel (Synbranchiformes: Mastacembelidae) from the Konkoure River basin, Guinea. J. Fish Biol. 67, 332–369 (2005).Article 

    Google Scholar 
    9.Jalali, B., Barzegar, M. & Nezamabadi, H. Parasitic fauna of the spiny eel, Mastacembelus mastacembelus Banks et Solander (Teleostei: Mastacembelidae) in Iran. Iran. J. Vet. Res. 9, 158–161 (2008).
    Google Scholar 
    10.Çakmak, E. Dikenli yılan balığı (Mastacembelus mastacembelus)’nın morfolojik ve moleküler özelliklerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi, Fen Bilimleri Enstitüsü, Master Thesis, (Kahramanmaraş, 2008) (in Turkish).11.Çakmak, E. & Alp, A. Morphological differences among the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), populations. Turk. J. Fish. Aquat. Sci. 10, 7–92 (2010).Article 

    Google Scholar 
    12.Şahinöz, E., Doğu, Z. & Aral, F. Development of embryos in Mastacembelus mastacembelus (Bank & Solender, 1794) (Mesopotamian spiny eel) (Mastacembelidae). Aquac. Res. 37, 1611–1616 (2006).Article 

    Google Scholar 
    13.Pala, G., Tellioğlu, A., Eroğlu, M. & Şen, D. The digestive system content of Mastacembelus mastacembelus (Banks & Solander, 1794) inhabiting in Karakaya Dam Lake (Malatya-Turkey). Turk. J. Fish. Aquat. Sci. 10, 229–233 (2010).Article 

    Google Scholar 
    14.Eroğlu, M. & Şen, D. Otolith size-total length relationship in spiny eel, Mastacembelus mastacembelus (Banks & Solander, 1794) inhabiting in Karakaya Dam Lake (Malatya, Turkey). J. FisheriesSciences.com 3, 342–351 (2009).
    Google Scholar 
    15.Eroğlu, M. & Şen, D. Relationships between fish age and otolith size in spiny eel: Mastacembelus mastacembelus (Banks & Solander, 1794). Bitlis Eren Univ. J. Sci. Technol. 2, 15–18 (2012).Article 

    Google Scholar 
    16.Eroğlu, M. & Şen, D. Reproduction biology of Mastacembelus simack (Walbaum, 1792) inhabiting Karakaya Dam Lake (Malatya, Turkey). Int. J. Nat. Eng. Sci. 1, 69–73 (2007).
    Google Scholar 
    17.Oymak, S. A., Kırankaya, ŞG. & Doğan, N. Growth and reproduction of Mesopotamian spiny eel (Mastacembelus mastacembelus Banks and Solander, 1794) in Ataturk Dam Lake (Şanlıurfa), Turkey. J. Appl. Ichthyol. 25, 488–490 (2009).Article 

    Google Scholar 
    18.Gümüş, A., Şahinöz, E., Doğu, Z. & Polat, N. Age and growth of the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solender, 1794), from southeastern Anatolia. Turk. Zool. Derg. 34, 399–407 (2010).
    Google Scholar 
    19.Anonymous. Keban Baraj Gölü limnoloji raporu. DSİ 9. Bölge Müdürlüğü, Su Ürünleri Başmühendisliği. (Keban-Elazığ, 1994) (in Turkish).20.Yüksel, F., Demirol, F. & Gündüz, F. Leslie population estimation for Turkish crayfish (Astacus leptodactylus Esch., 1823) in the Keban Dam Lake, Turkey. Turk. J. Fish. Aquat. Sci. 13, 835–839 (2013).Article 

    Google Scholar 
    21.Google Maps. https://www.google.com/maps/@38.8025012,38.9170508,9z [Accessed 10 February 2021] (2021).22.Lagler, K. F., Bardach, J. E., Miller, R. R. & Passino, D. R. M. Ichthyology (Wiley, 1977).23.Zar, J. H. Biostatistical Analysis 4th edn. (Prentice-Hall, 1999).24.Pauly, D. Some Simple Methods for the Assessment of Tropical Fish Stocks (FAO, 1984).25.Sparre, P. & Venema, S. C. Introduction to Tropical Fish Stock Assessment. FAO Fisheries Technical Paper, 306/1, Rev. 2, (Rome, 1998).26.Munro, J. L. & Pauly, D. A simple method for comparing the growth of fishes and invertebrates. FishByte 1, 5–6 (1983).
    Google Scholar 
    27.Gayanilo, F. C., Sparre, P. & Pauly, D. FAO-ICLARM Stock Assessment Tools II (FiSAT II). User’s Guide. FAO Computerized Information Series (Fisheries). No. 8, Revised version, (FAO, Rome, 2005).28.Kılıç, H. M. Sultansuyu Deresi, Beyler Deresi ve Karakaya Barajı’nda yaşayan dikenli yılanbalığı (Mastacembelus simack)’nın biyoloik özelliklerinin incelenmesi. Osmangazi Universitesi, Fen Bilimleri Enstitüsü, Master Thesis, (Eskişehir, 2002) (in Turkish).29.Pazira, A., Abdoli, A., Kouhgardi, E. & Yousefifard, P. Age structure and growth of the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander in Russell, 1974) (Mastacembelidae), in southern Iran. Zool. Middle East 35, 43–47 (2005).Article 

    Google Scholar 
    30.Korkut, A. Y., Kop, A., Demirtaş, N. & Cihaner, A. Balık beslemede gelişim performansının izlenme yöntemleri. EgeJFAS 24, 201–205 (2007) (in Turkish).
    Google Scholar  More

  • in

    Nitrogen fixation and denitrification activity differ between coral- and algae-dominated Red Sea reefs

    1.Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).
    Google Scholar 
    2.Mackenzie, F. T. Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change (1998). https://downloads.globalchange.gov/ocp/ocp1998/ocp1998.pdf3.Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur?. Biogeochemistry 13, 87–115 (1991).
    Google Scholar 
    4.Webb, K. L., DuPaul, W. D., Wiebe, W., Sottile, W. & Johannes, R. E. Enewetak (Eniwetok) Atoll: aspects of the nitrogen cycle on a coral reef. Limnol. Oceanogr. 20, 198–210 (1975).ADS 
    CAS 

    Google Scholar 
    5.Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).ADS 
    CAS 

    Google Scholar 
    6.Hoegh-Guldberg, O. Environmental and economic importance of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).
    Google Scholar 
    7.Bell, P. R. F. Eutrophication and coral reefs-some examples in the Great Barrier Reef lagoon. Water Res. 26, 553–568 (1992).CAS 

    Google Scholar 
    8.Sorokin, Y. I. Microbiological Aspects of the Productivity of Coral Reefs. In Biology and Geology of Coral Reefs (eds. Jones, O. A. & Endean, R.) 17–46 (Academic press, Inc., 1973).9.O’Neil, J. M. & Capone, D. G. Nitrogen Cycling in Coral Reef Environments. In Nitrogen in the Marine Environment 949–989 (2008). https://doi.org/10.1016/B978-0-12-372522-6.00021-910.Cardini, U. et al. Budget of primary production and dinitrogen fixation in a highly seasonal red sea coral reef. Ecosystems 19, 771–785 (2016).
    Google Scholar 
    11.Scheffers, S. R., Nieuwland, G., Bak, R. P. M. & Van Duyl, F. C. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs 23, 413–422 (2004).
    Google Scholar 
    12.Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).PubMed 

    Google Scholar 
    13.Koop, K. et al. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).CAS 
    PubMed 

    Google Scholar 
    14.Capone, D. G., Dunham, S. E., Horrigan, S. G. & Duguay, L. E. Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar. Ecol. Prog. Ser. 80, 75–88 (1992).ADS 
    CAS 

    Google Scholar 
    15.Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    PubMed 

    Google Scholar 
    16.Wiebe, W. J., Johannes, R. E. & Webb, K. L. Nitrogen fixation in a coral reef community. Science 188, 257–259 (1975).ADS 
    CAS 
    PubMed 

    Google Scholar 
    17.Larkum, A. W. D., Kennedy, I. R. & Muller, W. J. Nitrogen fixation on a coral reef. Mar. Biol. 98, 143–155 (1988).
    Google Scholar 
    18.Kimes, N. E., Van Nostrand, J. D., Weil, E., Zhou, J. & Morris, P. J. Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ. Microbiol. 12, 541–556 (2010).CAS 
    PubMed 

    Google Scholar 
    19.Yang, S., Sun, W., Zhang, F. & Li, Z. Phylogenetically diverse denitrifying and ammonia-oxidizing bacteria in corals Alcyonium gracillimum and Tubastraea coccinea. Mar. Biotechnol. 15, 540–551 (2013).CAS 

    Google Scholar 
    20.Tilstra, A. et al. Denitrification aligns with N2 fixation in red sea corals. Sci. Rep. 9, 19460 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.El-Khaled, Y. et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar. Ecol. Prog. Ser. 645, 55–66 (2020).ADS 
    CAS 

    Google Scholar 
    22.O’Neil, J. M. & Capone, D. G. Nitrogen cycling in coral reef environments. Nitrog. Mar. Environ. https://doi.org/10.1016/B978-0-12-372522-6.00021-9 (2008).Article 

    Google Scholar 
    23.Muscatine, L. & Porter, J. W. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 
    24.Wafar, M., Wafar, S. & David, J. J. Nitrification in reef corals. Limnol. Oceanogr. 35, 725–730 (1990).ADS 
    CAS 

    Google Scholar 
    25.Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science (80-) 333, 418–422 (2011).ADS 
    CAS 

    Google Scholar 
    26.Hughes, T. P. et al. Coral reefs in the anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Fabricius, K. E. Factors determining the resilience of coral reefs to eutrophication: a review and conceptual model. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 493–505 (2011). https://doi.org/10.1007/978-94-007-0114-4_28.28.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    29.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Marine Biology 166, (Springer, 2019).30.Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    PubMed 

    Google Scholar 
    31.Williams, I. D., Polunin, N. V. C. & Hendrick, V. J. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar. Ecol. Prog. Ser. 222, 187–196 (2001).ADS 

    Google Scholar 
    32.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    33.Roth, F. et al. High rates of carbon and dinitrogen fixation suggest a critical role of benthic pioneer communities in the energy and nutrient dynamics of coral reefs. Funct. Ecol. https://doi.org/10.1111/1365-2435.13625 (2020).Article 
    PubMed 

    Google Scholar 
    34.Done, T. J. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247, 121–132 (1992).
    Google Scholar 
    35.Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science (80-) 265, 1547–1551 (1994).ADS 
    CAS 

    Google Scholar 
    36.McManus, J. W. & Polsenberg, J. F. Coral-algal phase shifts on coral reefs: ecological and environmental aspects. Prog. Oceanogr. 60, 263–279 (2004).ADS 

    Google Scholar 
    37.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Google Scholar 
    38.White, A. T., Vogt, H. P. & Arin, T. Philippine coral reefs under threat: the economic losses caused by reef destruction. Mar. Pollut. Bull. 40, 598–605 (2000).CAS 

    Google Scholar 
    39.McClanahan, T. R., Hicks, C. C. & Darling, E. S. Malthusian overfishing and efforts to overcome it on Kenyan coral reefs. Ecol. Appl. 18, 1516–1529 (2008).PubMed 

    Google Scholar 
    40.Nyström, M. et al. Confronting feedbacks of degraded marine ecosystems. Ecosystems 15, 695–710 (2012).
    Google Scholar 
    41.Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Coral reef ecosystem services in the Anthropocene. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    42.McClanahan, T., Polunin, N. & Done, T. Ecological states and the resilience of coral reefs. Conserv. Ecol. 6 (2), 18, (2002).
    43.Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Chang. Biol. 10, 1642–1647 (2004).ADS 

    Google Scholar 
    44.Williams, G. J. & Graham, N. A. J. Rethinking coral reef functional futures. Funct. Ecol. 33, 942–947 (2019).
    Google Scholar 
    45.Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral-macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 293–306 (2009).ADS 

    Google Scholar 
    46.Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
    Google Scholar 
    47.Roth, F. et al. High summer temperatures amplify functional differences between coral- and algae-dominated reef communities. Ecology https://doi.org/10.1002/ecy.3226 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Bednarz, V. N., Cardini, U., Van Hoytema, N., Al-Rshaidat, M. M. D. & Wild, C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar. Ecol. Prog. Ser. 519, 141–152 (2015).ADS 

    Google Scholar 
    49.Rix, L. et al. Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the northern Red Sea. Mar. Ecol. Prog. Ser. 533, 79–92 (2015).ADS 
    CAS 

    Google Scholar 
    50.den Haan, J. et al. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef. Coral Reefs 33, 1003–1015 (2014).ADS 

    Google Scholar 
    51.Roth, F. et al. Coral reef degradation affects the potential for reef recovery after disturbance. Mar. Environ. Res. 142, 48–58 (2018).CAS 
    PubMed 

    Google Scholar 
    52.Holmes, G. & Johnstone, R. W. The role of coral mortality in nitrogen dynamics on coral reefs. J. Exp. Mar. Biol. Ecol. 387, 1–8 (2010).CAS 

    Google Scholar 
    53.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science (80-) 318, 1737–1742 (2007).ADS 
    CAS 

    Google Scholar 
    54.Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the Paris Agreement. Sci. Rep. 6, 1–8 (2016).
    Google Scholar 
    55.Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Chang. Biol. 23, 3869–3881 (2017).ADS 
    PubMed 

    Google Scholar 
    56.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    57.Pogoreutz, C. et al. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob. Chang. Biol. 23, 3838–3848 (2017).ADS 
    PubMed 

    Google Scholar 
    58.Bednarz, V. N. et al. Dinitrogen fixation and primary productivity by carbonate and silicate reef sand communities of the Northern Red Sea. Mar. Ecol. Prog. Ser. 527, 47–57 (2015).ADS 

    Google Scholar 
    59.Shashar, N., Feldstein, T., Cohen, Y. & Loya, Y. Nitrogen fixation (acetylene reduction) on a coral reef. Coral Reefs 13, 171–174 (1994).ADS 

    Google Scholar 
    60.Patriquin, D. G. & McClung, C. R. Nitrogen accretion, and the nature and possible significance of N2 fixation (acetylene reduction) in a Nova Scotian Spartina alterniflora Stand. Mar. Biol. 47, 227–242 (1978).
    Google Scholar 
    61.Shieh, W. Y. & Lin, Y. M. Nitrogen fixation (acetylene reduction) associated with the zoanthid Palythoa tuberculosa Esper. J. Exp. Mar. Biol. Ecol. 163, 31–41 (1992).CAS 

    Google Scholar 
    62.Bednarz, V. N. et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE 13, 1–13 (2018).
    Google Scholar 
    63.Schöttner, S. et al. Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ. Microbiol. 13, 1815–1826 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    64.Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Compaoré, J. & Stal, L. J. Effect of temperature on the sensitivity of nitrogenase to oxygen in two heterocystous cyanobacteria. J. Physcol. 46, 1172–1179 (2010).
    Google Scholar 
    66.Littler, M. & Littler, D. The nature of turf and boring algae and their interactions on reefs. Smithson. Contrib. to Mar. Sci. 213–217 (2013).67.Rosenberg, G. & Ramus, J. Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquat. Bot. 19, 65–72 (1984).CAS 

    Google Scholar 
    68.Fong, P., Rudnicki, R. & Zedler, J. B. Algal community response to nitrogen and phosphorus loading in experimental mesocosms: Management recommendations for southern California lagoons. (1987).69.Fong, C. R., Gaynus, C. J. & Carpenter, R. C. Complex interactions among stressors evolve over time to drive shifts from short turfs to macroalgae on tropical reefs. Ecosphere 11(5), e03130 (2020).70.Roth, F., Stuhldreier, I., Sánchez-Noguera, C., Morales-Ramírez, T. & Wild, C. Effects of simulated overfishing on the succession of benthic algae and invertebrates in an upwelling-influenced coral reef of Pacific Costa Rica. J. Exp. Mar. Bio. Ecol. 468, 55–66 (2015).
    Google Scholar 
    71.Stuhldreier, I., Bastian, P., Schönig, E. & Wild, C. Effects of simulated eutrophication and overfishing on algae and invertebrate settlement in a coral reef of Koh Phangan, Gulf of Thailand. Mar. Pollut. Bull. 92, 35–44 (2015).CAS 
    PubMed 

    Google Scholar 
    72.Yamamuro, M., Kayanne, H. & Minagawa, M. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol. Oceanogr. 40, 617–621 (1995).ADS 
    CAS 

    Google Scholar 
    73.Tilstra, A. et al. Seasonality affects dinitrogen fixation associated with two common macroalgae from a coral reef in the northern Red Sea. Mar. Ecol. Prog. Ser. 575, 69–80 (2017).ADS 
    CAS 

    Google Scholar 
    74.El-Khaled, Y. C. et al. Simultaneous measurements of dinitrogen fixation and denitrification associated with coral reef substrates: advantages and limitations of a combined acetylene assay. Front. Mar. Sci. 7, 411 (2020).
    Google Scholar 
    75.Davey, M., Holmes, G. & Johnstone, R. High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs 27, 227–236 (2008).ADS 

    Google Scholar 
    76.Larkum, A. W. D. High rates of nitrogen fixation on coral skeletons after predation by the crown of thorns starfish Acanthaster planci. Mar. Biol. 97, 503–506 (1988).CAS 

    Google Scholar 
    77.Pogoreutz, C. et al. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front. Microbiol. 8, 1–7 (2017).
    Google Scholar 
    78.Arrigo, K. K. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2004).ADS 

    Google Scholar 
    79.Mills, M. M., Ridame, C., Davey, M., La Roche, J. & Geider, R. J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature 429, 292–294 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    80.Redfield, A. C. The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958).CAS 

    Google Scholar 
    81.Porter, J. W., Muscatine, L., Dubinsky, Z. & Falkowski, P. G. Primary production and photoadaptation in light- and shade-adapted colonies of the symbiotic coral, stylophora pistillata. Proc. R. Soc. Lond. Ser. B. Biol. Sci. 222, 161–180 (1984).ADS 

    Google Scholar 
    82.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three dimensional shape measurement of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253 (2010).
    Google Scholar 
    83.Falkowski, P. P. G., Dubinsky, Z., Muscatine, L. & McCloskey, L. Population control in symbiotic corals. Bioscience 43, 606–611 (1993).
    Google Scholar 
    84.Eyre, B. D., Glud, R. N. & Patten, N. Mass coral spawning: a natural large-scale nutrient addition experiment. Limnol. Oceanogr. 53, 997–1013 (2008).ADS 
    CAS 

    Google Scholar 
    85.Tilstra et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability, Royal Society Open Science, https://doi.org/10.1098/rsos.201835 (2021).86.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).
    Google Scholar 
    87.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).ADS 
    CAS 

    Google Scholar 
    88.Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).
    Google Scholar 
    89.Muscatine, L., Falkowski, P. G., Porter, J. W. & Dubinsky, Z. Fate of photosynthetic fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 222, 181–202 (1984).ADS 
    CAS 

    Google Scholar 
    90.Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6(15), eaaz5443 (2020).91.Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. 84, 1–17 (2009).PubMed 

    Google Scholar 
    92.Muscatine, L., Porter, J. W. & Kaplan, I. R. Resource partitioning by reef corals as determined from stable isotope composition. Pac. Sci. 48, 304–312 (1994).
    Google Scholar 
    93.Her, J.-J. & Huang, J.-S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour. Technol. 54, 45–51 (1995).CAS 

    Google Scholar 
    94.Chen, S. et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone. Environ. Microbiol. 20, 980–992 (2018).CAS 
    PubMed 

    Google Scholar 
    95.Schlichter, D., Svoboda, A. & Kremer, B. P. Functional autotrophy of Heteroxenia fuscescens (Anthozoa: Alcyonaria): carbon assimilation and translocation of photosynthates from symbionts to host. Mar. Biol. 78, 29–38 (1983).CAS 

    Google Scholar 
    96.Babbin, A. R. et al. Discovery and quantification of anaerobic nitrogen metabolisms among oxygenated tropical stony corals. ISME J. https://doi.org/10.1038/s41396-020-00845-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    97.Pupier, C. A. et al. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front. Microbiol. 10, 1860 (2019).98.Muscatine, L. The role of symbiotic algae in carbon and energy flux in coral reefs. In Coral Reefs (ed. Dubinsky, Z.) 75–87 (1990).99.van Woesik, R., Irikawa, A., Anzai, R. & Nakamura, T. Effects of coral colony morphologies on mass transfer and susceptibility to thermal stress. Coral Reefs 31, 633–639 (2012).ADS 

    Google Scholar 
    100.Patterson, M. R. & Sebens, K. P. Forced convection modulates gas exchange in cnidarians. Proc. Natl. Acad. Sci. U. S. A. 86, 8833–8836 (1989).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).
    Google Scholar 
    102.Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).ADS 

    Google Scholar 
    103.Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    104.Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl. Acad. Sci. U. S. A. 103, 8425–8429 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Sano, M., Shimizu, M. & Nose, Y. Long-term effects of destruction of hermatypic corals by Acanthaster plana infestation on reef fish communities at Iriomote Island, Japan. Mar. Ecol. Prog. Ser. 37, 191–199 (1987).ADS 

    Google Scholar 
    106.Lindahl, U., Öhman, M. C. & Schelten, C. K. The 1997/1998 mass mortality of corals: effects on fish communities on a Tanzanian coral reef. Mar. Pollut. Bull. 42, 127–131 (2001).CAS 
    PubMed 

    Google Scholar 
    107.Jones, G. P., McCormick, M. I., Srinivasan, M. & Eagle, J. V. Coral decline threatens fish biodiversity in marine reserves. Proc. Natl. Acad. Sci. U. S. A. 101, 8251–8253 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    108.Idjadi, J. A. & Edmunds, P. J. Scleractinian corals as facilitators for other invertebrates on a Caribbean reef. Mar. Ecol. Prog. Ser. 319, 117–127 (2006).ADS 

    Google Scholar 
    109.Bracewell, S. A., Clark, G. F. & Johnston, E. L. Habitat complexity effects on diversity and abundance differ with latitude: an experimental study over 20 degrees. Ecology 99, 1964–1974 (2018).PubMed 

    Google Scholar 
    110.Cinner, J. E. et al. Linking social and ecological systems to sustain coral reef fisheries. Curr. Biol. 19, 206–212 (2009).CAS 
    PubMed 

    Google Scholar 
    111.Sheppard, C., Dixon, D. J., Gourlay, M., Sheppard, A. & Payet, R. Coral mortality increases wave energy reaching shores protected by reef flats: examples from the Seychelles. Estuar. Coast. Shelf Sci. 64, 223–234 (2005).ADS 

    Google Scholar 
    112.Karcher, D. B. et al. Nitrogen eutrophication particularly promotes turf algae in coral reefs of the central Red Sea. PeerJ 8, e8737 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    113.Adey, W. H. & Goertemiller, T. Coral reef algal turfs: master producers in nutrient poor seas. Phycologia 26, 374–386 (1987).
    Google Scholar 
    114.Fong, P. & Paul, V. J. Coral reef algae. In Coral Reefs: An Ecosystem in Transition (eds. Dubinsky, Z. & Stambler, N.) 241–272 (Springer, 2011). https://doi.org/10.1007/978-94-007-0114-4_17.115.Hoey, A. S. & Bellwood, D. R. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs?. Ecol. Lett. 14, 267–273 (2011).PubMed 

    Google Scholar 
    116.Jessen, C. & Wild, C. Herbivory effects on benthic algal composition and growth on a coral reef flat in the Egyptian Red Sea. Mar. Ecol. Prog. Ser. 476, 9–21 (2013).ADS 
    CAS 

    Google Scholar 
    117.Haas, A. F. & Wild, C. Composition analysis of organic matter released by cosmopolitan coral reef-associated green algae. Aquat. Biol. 10, 131–138 (2010).
    Google Scholar 
    118.Roth et al. Nutrient pollution enhances productivity and framework dissolution in algae- but not in coral-dominated reef communities. Marine Pollution Bulletin. 168, 112444 (2021).119.Haas, A. F. et al. Influence of coral and algal exudates on microbially mediated reef metabolism. PeerJ 2013, 1–28 (2013).
    Google Scholar 
    120.Roach, T. N. F. et al. A multiomic analysis of in situ coral-turf algal interactions. Proc. Natl. Acad. Sci. U. S. A. 117, 13588–13595 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    121.van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 

    Google Scholar 
    122.Liang, J. et al. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress. Front. Microbiol. 8, 1–10 (2017).ADS 

    Google Scholar 
    123.Fung, T., Seymour, R. M. & Johnson, C. R. Alternative stable states and phase shifts in coral reefs under anthropogenic stress. Ecology 92, 967–982 (2011).PubMed 

    Google Scholar 
    124.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecology 90, 1478–1484 (2009).PubMed 

    Google Scholar 
    125.Tilot, V., Leujak, W., Ormond, R. F. G., Ashworth, J. A. & Mabrouk, A. Monitoring of South Sinai coral reefs: influence of natural and anthropogenic factors. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.942 (2008).Article 

    Google Scholar 
    126.Riegl, B. & Piller, W. E. Coral frameworks revisited-reefs and coral carpets in the northern Red Sea. Coral Reefs 18, 241–253 (1999).
    Google Scholar 
    127.Benayahu, Y., Jeng, M. S., Perkol-Finkel, S. & Dai, C. F. Soft corals (Octocorallia: Alcyonacea) from Southern Taiwan. II. Species diversity and distributional patterns. Zool. Stud. 43, 548–560 (2004).
    Google Scholar 
    128.Ninio, R., Meekan, M., Done, T. & Sweatman, H. Temporal patterns in coral assemblages on the Great Barrier Reef from local to large spatial scales. Mar. Ecol. Prog. Ser. 194, 65–74 (2000).ADS 

    Google Scholar 
    129.Fox, H. E., Pet, J. S., Dahuri, R. & Caldwell, R. L. Recovery in rubble fields: long-term impacts of blast fishing. Mar. Pollut. Bull. 46, 1024–1031 (2003).CAS 
    PubMed 

    Google Scholar 
    130.Inoue, S., Kayanne, H., Yamamoto, S. & Kurihara, H. Spatial community shift from hard to soft corals in acidified water. Nat. Clim. Chang. 3, 683–687 (2013).ADS 
    CAS 

    Google Scholar 
    131.Rasser, M. W. & Riegl, B. Holocene coral reef rubble and its binding agents. Coral Reefs 21, 57–72 (2002).ADS 

    Google Scholar 
    132.Dalsgaard, T., Thamdrup, B. & Canfield, D. E. Anaerobic ammonium oxidation (anammox) in the marine environment. Res. Microbiol. 156, 457–464 (2005).CAS 
    PubMed 

    Google Scholar 
    133.Brunner, B. et al. Nitrogen isotope effects induced by anammox bacteria. Proc. Natl. Acad. Sci. 110, 18994–18999 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    134.Zhang, Y. et al. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci. Rep. 5, 1–11 (2015).
    Google Scholar 
    135.Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    136.Hill, J. & Wilkinson, C. Methods for ecological monitoring of coral reefs. Aust. Inst. Mar. Sci. Townsv. https://doi.org/10.1017/CBO9781107415324.004 (2004).Article 

    Google Scholar 
    137.Kohler, K. E. & Gill, S. M. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32, 1259–1269 (2006).ADS 

    Google Scholar 
    138.Haas, A., El-Zibdah, M. & Wild, C. Seasonal monitoring of coral-algae interactions in fringing reefs of the Gulf of Aqaba, Northern Red Sea. Coral Reefs 29, 93–103 (2010).ADS 

    Google Scholar 
    139.Bahartan, K. et al. Macroalgae in the coral reefs of Eilat (Gulf of Aqaba, Red Sea) as a possible indicator of reef degradation. Mar. Pollut. Bull. 60, 759–764 (2010).CAS 
    PubMed 

    Google Scholar 
    140.Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020).ADS 
    PubMed 

    Google Scholar 
    141.Hynes, R. K. & Knowles, R. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol. Lett. 4, 319–321 (1978).CAS 

    Google Scholar 
    142.Oremland, R. S. & Capone, D. G. Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. Adv. Microb. Ecol. https://doi.org/10.1007/978-1-4684-5409-3_8 (1988).Article 

    Google Scholar 
    143.Haines, J. R., Atlas, R. M., Griffiths, R. P. & Morita, R. Y. Denitrification and nitrogen fixation in Alaskan continental shelf sediments. Appl. Environ. Microbiol. 41, 412–421 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    144.Joye, S. B. & Paerl, H. W. Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events. Mar. Ecol. Prog. Ser. 94, 267–274 (1993).ADS 
    CAS 

    Google Scholar 
    145.Miyajima, T., Suzumura, M., Umezawa, Y. & Koike, I. Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar. Ecol. Prog. Ser. 217, 273–286 (2001).ADS 

    Google Scholar 
    146.Falkowski, P. G. Enzymology of Nitrogen Assimilation Nitrogen in the Marine Environment (Academic Press, 1983). https://doi.org/10.1016/b978-0-12-160280-2.50031-6.147.den Haan, J. et al. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse. Sci. Rep. 6, 28821 (2016).ADS 

    Google Scholar 
    148.Grover, R., Maguer, J. F., Allemand, D. & Ferrier-Pagès, C. Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 48, 2266–2274 (2003).ADS 
    CAS 

    Google Scholar 
    149.Knapp, A. N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3, 374 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Dilworth, M. J. Acetylene reduction by nitrogen-fixing preparations from Clostridium pasteurianum. Biochim. Biophys. Acta 127, 285–294 (1966).CAS 
    PubMed 

    Google Scholar 
    151.Schöllhorn, R. & Burris, R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proc. Natl. Acad. Sci. U. S. A. 58, 213–216 (1967).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    152.Balderston, W. L., Sherr, B. & Payne, W. J. Blockage by acetylene of nitrous-oxide reduction in pseudomonas-perfectomarinus. Appl. Environ. Microbiol. 31, 504–508 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    153.Yoshinari, T. & Knowles, R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun. 69, 705–710 (1976).CAS 
    PubMed 

    Google Scholar 
    154.Lavy, A. et al. A quick, easy and non-intrusive method for underwater volume and surface area evaluation of benthic organisms by 3D computer modelling. Methods Ecol. Evol. 6, 521–531 (2015).
    Google Scholar 
    155.Gutierrez-Heredia, L., Benzoni, F., Murphy, E. & Reynaud, E. G. End to end digitisation and analysis of three-dimensional coral models, from communities to corallites. PLoS ONE 11, e0149641 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    156.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).ADS 
    CAS 

    Google Scholar 
    157.Mulholland, M. R., Bronk, D. A. & Capone, D. G. Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat. Microb. Ecol. 37, 85–94 (2004).
    Google Scholar 
    158.Clarke, K. R. & Gorley, R. N. PRIMER v6: Use manual/Tutorial. PRIMER-E:Plymouth (2006).
    159.Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER. Guide to software and statistical methods. (2008).160.R Core Team. R: A language and environment for statistical computing. (2017).161.RStudio Team. RStudio: Integrated Development for R. (2020).162.Wilson, S. T., Böttjer, D., Church, M. J. & Karl, D. M. Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic north pacific ocean. Appl. Environ. Microbiol. 78, 6516–6523 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Yu, K., Seo, D. C. & Delaune, R. D. Incomplete acetylene inhibition of nitrous oxide reduction in potential denitrification assay as revealed by using 15N-Nitrate tracer. Commun. Soil Sci. Plant Anal. 41, 2201–2210 (2010).CAS 

    Google Scholar 
    164.Groffman, P. M. et al. Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol. Appl. 16, 2091–2122 (2006).PubMed 

    Google Scholar 
    165.Maldonado, M., Ribes, M. & van Duyl, F. C. Nutrient Fluxes Through Sponges. Biology, Budgets, and Ecological Implications. Advances in Marine Biology Vol. 62 (Elsevier Ltd., 2012).
    Google Scholar 
    166.Roth, F. et al. An in situ approach for measuring biogeochemical fluxes in structurally complex benthic communities. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13151 (2019).Article 

    Google Scholar  More