More stories

  • in

    Meta-analytic evidence that animals rarely avoid inbreeding

    1.Kokko, H. & Ots, I. When not to avoid inbreeding. Evolution 60, 467–475 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Keller, L. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    5.Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).7.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Parker, G. A. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) 123–166 (Academic, 1979).9.Duthie, A. B. & Reid, J. M. Evolution of inbreeding avoidance and inbreeding preference through mate choice among interacting relatives. Am. Nat. 188, 651–667 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kokko, H. Give one species the task to come up with a theory that spans them all: what good can come out of that? Proc. Biol. Sci. 284, 20171652 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Parker, G. A. Sexual conflict over mating and fertilization: an overview. Philos. Trans. R. Soc. Lond. B 361, 235–259 (2006).CAS 
    Article 

    Google Scholar 
    13.Ihle, M. & Forstmeier, W. Revisiting the evidence for inbreeding avoidance in zebra finches. Behav. Ecol. 24, 1356–1362 (2013).Article 

    Google Scholar 
    14.Annavi, G. et al. Heterozygosity–fitness correlations in a wild mammal population: accounting for parental and environmental effects. Ecol. Evol. 4, 2594–2609 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Arct, A., Drobniak, S. M. & Cichoń, M. Genetic similarity between mates predicts extrapair paternity—a meta-analysis of bird studies. Behav. Ecol. 26, 959–968 (2015).Article 

    Google Scholar 
    16.Winternitz, J., Abbate, J. L., Huchard, E., Havlicek, J. & Garamszegi, L. Z. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol. Ecol. 26, 668–688 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Havlíček, J., Winternitz, J. & Roberts, S. C. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Philos. Trans. R. Soc. Lond. B 375, 20190260 (2020).Article 

    Google Scholar 
    18.Lizé, A., McKay, R. & Lewis, Z. Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J. 8, 469–477 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Heys, C. et al. Evidence that the microbiota counteracts male outbreeding strategy by inhibiting sexual signaling in females. Front. Ecol. Evol. 6, https://doi.org/10.3389/fevo.2018.00029 (2018)20.Ala-Honkola, O., Manier, M. K., Lupold, S. & Pitnick, S. No evidence for postcopulatory inbreeding avoidance in Drosophila melanogaster. Evolution 65, 2699–2705 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Mack, P. D., Hammock, B. A. & Promislow, D. E. Sperm competitive ability and genetic relatedness in Drosophila melanogaster: similarity breeds contempt. Evolution 56, 1789–1795 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Loyau, A., Cornuau, J. H., Clobert, J. & Danchin, E. Incestuous sisters: mate preference for brothers over unrelated males in Drosophila melanogaster. PLoS ONE 7, e51293 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tan, C. K. W., Løvlie, H., Pizzari, T. & Wigby, S. No evidence for precopulatory inbreeding avoidance in Drosophila melanogaster. Anim. Behav. 83, 1433–1441 (2012).Article 

    Google Scholar 
    24.Robinson, S. P., Kennington, W. J. & Simmons, L. W. Preference for related mates in the fruit fly, Drosophila melanogaster. Anim. Behav. 84, 1169–1176 (2012).Article 

    Google Scholar 
    25.Ala-Honkola, O., Veltsos, P., Anderson, H. & Ritchie, M. G. Copulation duration, but not paternity share, potentially mediates inbreeding avoidance in Drosophila montana. Behav. Ecol. Sociobiol. 68, 2013–2021 (2014).Article 

    Google Scholar 
    26.Nakamura, S. Inbreeding and rotational breeding of the parasitoid fly, Exorista japonica (Diptera: Tachinidae), for successive rearing. Appl. Entomol. Zool. 31, 433–441 (1996).Article 

    Google Scholar 
    27.Aluja, M., Rull, J., Perez-Staples, D., Diaz-Fleischer, F. & Sivinski, J. Random mating among Anastrepha ludens (Diptera: Tephritidae) adults of geographically distant and ecologically distinct populations in Mexico. Bull. Entomol. Res. 99, 207–214 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Fischer, K. et al. Kin recognition and inbreeding avoidance in a butterfly. Ethology 121, 977–984 (2015).Article 

    Google Scholar 
    29.Mongue, A. J., Ahmed, M. Z., Tsai, M. V. & de Roode, J. C. Testing for cryptic female choice in monarch butterflies. Behav. Ecol. 26, 386–395 (2014).Article 

    Google Scholar 
    30.Haikola, S., Singer, M. C. & Pen, I. Has inbreeding depression led to avoidance of sib mating in the Glanville fritillary butterfly (Melitaea cinxia)? Evol. Ecol. 18, 113–120 (2004).Article 

    Google Scholar 
    31.Välimäki, P., Kivelä, S. M. & Mäenpää, M. I. Mating with a kin decreases female remating interval: a possible example of inbreeding avoidance. Behav. Ecol. Sociobiol. 65, 2037–2047 (2011).Article 

    Google Scholar 
    32.Lewis, Z. & Wedell, N. Male moths reduce sperm investment in relatives. Anim. Behav. 77, 1547–1550 (2009).Article 

    Google Scholar 
    33.Harano, T. & Katsuki, M. Female seed beetles, Callosobruchus chinensis, remate more readily after mating with relatives. Anim. Behav. 83, 1007–1010 (2012).Article 

    Google Scholar 
    34.Edvardsson, M., Rodríguez-Muñoz, R. & Tregenza, T. No evidence that female bruchid beetles, Callosobruchus maculatus, use remating to reduce costs of inbreeding. Anim. Behav. 75, 1519–1524 (2008).Article 

    Google Scholar 
    35.Müller, T. & Müller, C. Consequences of mating with siblings and nonsiblings on the reproductive success in a leaf beetle. Ecol. Evol. 6, 3185–3197 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. Inbreeding avoidance or tolerance? Comparison of mating behavior between mass-reared and wild strains of the sweet potato weevil. Behav. Ecol. Sociobiol. 65, 1483–1489 (2011).Article 

    Google Scholar 
    37.Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. The effect of inbreeding on mating behaviour of West Indian sweet potato weevil Euscepes postfasciatus. Ethology 117, 822–828 (2011).Article 

    Google Scholar 
    38.Tyler, F. & Tregenza, T. Why do so many flour beetle copulations fail? Entomol. Exp. Appl. 146, 199–206 (2013).Article 

    Google Scholar 
    39.Mattey, S. N., Smiseth, P. T. & Herberstein, M. No inbreeding avoidance by female burying beetles regardless of whether they encounter males simultaneously or sequentially. Ethology 121, 1031–1038 (2015).Article 

    Google Scholar 
    40.De Luca, P. A. & Cocroft, R. B. The effects of age and relatedness on mating patterns in thornbug treehoppers: inbreeding avoidance or inbreeding tolerance? Behav. Ecol. Sociobiol. 62, 1869–1875 (2008).Article 

    Google Scholar 
    41.Poderoso, J. C. M. et al. Mating preferences and consequences of choosing sibling or non-sibling mates by females of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Fla. Entomol. 96, 419–423 (2013).Article 

    Google Scholar 
    42.Huang, M. H. & Caillaud, M. C. Inbreeding avoidance by recognition of close kin in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 12, 39 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    43.Stockley, P. Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition? Proc. R. Soc. Biol. Sci. Ser. B 266, 1663–1669 (1999).Article 

    Google Scholar 
    44.Weddle, C. B. et al. Cuticular hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecol. Lett. 16, 346–353 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Simmons, L. M. Female choice and the relatedness of mates in the field cricket, Gryllus bimaculatus. Anim. Behav. 41, 493–501 (1991).Article 

    Google Scholar 
    46.Bretman, A., Newcombe, D. & Tregenza, T. Promiscuous females avoid inbreeding by controlling sperm storage. Mol. Ecol. 18, 3340–3345 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Bretman, A., Wedell, N. & Tregenza, T. Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proc. Biol. Sci. 271, 159–164 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Simmons, L. W. Kin recognition and its influence on mating preferences of the field cricket, Gryllus bimaculatus (de Geer). Anim. Behav. 38, 68–77 (1989).Article 

    Google Scholar 
    49.Simmons, L. W., Beveridge, M., Wedell, N. & Tregenza, T. Postcopulatory inbreeding avoidance by female crickets only revealed by molecular markers. Mol. Ecol. 15, 3817–3824 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Simmons, L. W. & Thomas, M. L. No postcopulatory response to inbreeding by male crickets. Biol. Lett. 4, 183–185 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tuni, C., Beveridge, M. & Simmons, L. W. Female crickets assess relatedness during mate guarding and bias storage of sperm towards unrelated males. J. Evol. Biol. 26, 1261–1268 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Haneke-Reinders, M., Reinhold, K. & Schmoll, T. Sex-specific repeatabilities and effects of relatedness and mating status on copulation duration in an acridid grasshopper. Ecol. Evol. 7, 3414–3424 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Teng, Z. Q. & Kang, L. Egg-hatching benefits gained by polyandrous female locusts are not due to the fertilization advantage of nonsibling males. Evolution 61, 470–476 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bouchebti, S., Durier, V., Pasquaretta, C., Rivault, C. & Lihoreau, M. Subsocial cockroaches Nauphoeta cinerea mate indiscriminately with kin despite high costs of inbreeding. PLoS ONE 11, e0162548 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Lihoreau, M. & Rivault, C. German cockroach males maximize their inclusive fitness by avoiding mating with kin. Anim. Behav. 80, 303–309 (2010).Article 

    Google Scholar 
    56.Lihoreau, M., Zimmer, C. & Rivault, C. Kin recognition and incest avoidance in a group-living insect. Behav. Ecol. 18, 880–887 (2007).Article 

    Google Scholar 
    57.Lihoreau, M., Zimmer, C. & Rivault, C. Mutual mate choice: when it pays both sexes to avoid inbreeding. PLoS ONE 3, e3365 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Hedlund, K., Ek, H., Gunnarsson, T. & Svegborn, C. Mate choice and male competition in Orchesella cincta (Collembola). Experientia 46, 524–526 (1990).Article 

    Google Scholar 
    59.Palmer, C. A. & Edmands, S. Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus. Mar. Biol. 136, 693–698 (2000).Article 

    Google Scholar 
    60.Winsor, G. L. & Innes, D. J. Sexual reproduction in Daphnia pulex (Crustacea: Cladocera): observations on male mating behaviour and avoidance of inbreeding. Freshwat. Biol. 47, 441–450 (2002).Article 

    Google Scholar 
    61.Fortin, M., Vitet, C., Souty-Grosset, C. & Richard, F. J. How do familiarity and relatedness influence mate choice in Armadillidium vulgare? PLoS ONE 13, e0209893 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Tuni, C., Mestre, L., Berger-Tal, R., Lubin, Y. & Bilde, T. Mate choice in naturally inbred spiders: testing the role of relatedness. Anim. Behav. 157, 27–33 (2019).Article 

    Google Scholar 
    63.Ruch, J., Heinrich, L., Bilde, T. & Schneider, J. M. The evolution of social inbreeding mating systems in spiders: limited male mating dispersal and lack of pre-copulatory inbreeding avoidance in a subsocial predecessor. Biol. J. Linn. Soc. 98, 851–859 (2009).Article 

    Google Scholar 
    64.Bilde, T., Lubin, Y., Smith, D., Schneider, J. M. & Maklakov, A. A. The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution 59, 160–174 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Welke, K. W. & Schneider, J. M. Males of the orb-web spider Argiope bruennichi sacrifice themselves to unrelated females. Biol. Lett. 6, 585–588 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Welke, K. & Schneider, J. M. Inbreeding avoidance through cryptic female choice in the cannibalistic orb-web spider Argiope lobata. Behav. Ecol. 20, 1056–1062 (2009).Article 

    Google Scholar 
    67.Chen, Z. et al. Inbreeding produces trade-offs between maternal fecundity and offspring survival in a monandrous spider. Anim. Behav. 132, 253–259 (2017).Article 

    Google Scholar 
    68.Zeh, J. A. & Zeh, D. W. Outbred embryos rescue inbred half-siblings in mixed-paternity broods of live-bearing females. Nature 439, 201–203 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.McCarthy, T. M. & Sih, A. Relatedness of mates influences mating behaviour and reproductive success of the hermaphroditic freshwater snail Physa gyrina. Evol. Ecol. Res. 10, 77–94 (2008).
    Google Scholar 
    70.Facon, B., Ravigné, V. & Goudet, J. Experimental evidence of inbreeding avoidance in the hermaphroditic snail Physa acuta. Evol. Ecol. 20, 395–406 (2006).Article 

    Google Scholar 
    71.Baur, B. & Baur, A. Random mating with respect to relatedness in the simultaneously hermaphroditic land snail Arianta arbustorum. Invertebr. Biol. 116, 294–298 (1997).Article 

    Google Scholar 
    72.Ng, T. P. T. & Johannesson, K. No precopulatory inbreeding avoidance in the intertidal snail Littorina saxatilis. J. Mollusca. Stud. 82, 213–215 (2015).
    Google Scholar 
    73.Burgess, S. C., Sander, L. & Bueno, M. How relatedness between mates influences reproductive success: an experimental analysis of self-fertilization and biparental inbreeding in a marine bryozoan. Ecol. Evol. 9, 11353–11366 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Peters, A. & Michiels, N. K. Evidence for lack of inbreeding avoidance by selective mating in a simultaneous hermaphrodite. Invertebr. Biol. 115, 99–103 (1996).Article 

    Google Scholar 
    75.Boyd, S. K. & Blaustein, A. R. Familiarity and inbreeding avoidance in the gray-tailed vole (Microtus canicaudus). J. Mammal. 66, 348–352 (1985).Article 

    Google Scholar 
    76.Bollinger, E. K., Harper, S. J., Kramer, J. M. & Barrett, G. W. Avoidance of inbreeding in the meadow vole (Microtus pennsylvanicus). J. Mammal. 72, 419–421 (1991).Article 

    Google Scholar 
    77.Sun, P., Zhu, W. & Zhao, X. Opposite-sex sibling recognition in adult root vole, Microtus Oeconomus pallas: phenotype matching or association. Pol. J. Ecol. 56, 701–708 (2008).
    Google Scholar 
    78.Fadao, T., Ruyong, S. & Tingzheng, W. Does low fecundity reflect kin recognition and inbreeding avoidance in the mandarin vole (Microtus mandarinus)? Can. J. Zool. 80, 2150–2155 (2002).Article 

    Google Scholar 
    79.Fadao, T., Tingzheng, W. & Yajun, Z. Inbreeding avoidance and mate choice in the mandarin vole (Microtus mandarinus). Can. J. Zool. 78, 2119–2125 (2000).Article 

    Google Scholar 
    80.Yu, X., Sun, R. & Fang, J. Effect of kinship on social behaviors in Brandt’s voles (Microtus brandti). J. Ethol. 22, 17–22 (2004).Article 

    Google Scholar 
    81.Lucia, K. E. & Keane, B. A field test of the effects of familiarity and relatedness on social associations and reproduction in prairie voles. Behav. Ecol. Sociobiol. 66, 13–27 (2011).Article 

    Google Scholar 
    82.Gavish, L., Hofmann, J. E. & Getz, L. L. Sibling recognition in the prairie vole, Microtus ochrogaster. Anim. Behav. 32, 362–366 (1984).Article 

    Google Scholar 
    83.Ylӧnen, H. & Haapakoski, M. Risk of inbreeding: problem of mate choice and fitness effects? Isr. J. Ecol. Evol. 62, 155–161 (2016).Article 

    Google Scholar 
    84.Kruczek, M. & Golas, A. Behavioural development of conspecific odour preferences in bank voles, Clethrionomys glareolus. Behav. Process. 64, 31–39 (2003).Article 

    Google Scholar 
    85.Lemaître, J.-F., Ramm, S. A., Hurst, J. L. & Stockley, P. Inbreeding avoidance behaviour of male bank voles in relation to social status. Anim. Behav. 83, 453–457 (2012).Article 

    Google Scholar 
    86.Kruczek, M. Recognition of kin in bank voles (Clethrionomys glareolus). Physiol. Behav. 90, 483–489 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Rao, X., Zhang, J.-X., Liu, D. & Cong, L. Kinship alters the effects of forced cohabitation on body weight, mate choice and fitness in the rat-like hamster Tscheskia triton. Curr. Zool. 55, 41–47 (2009).Article 

    Google Scholar 
    88.Mateo, J. M. & Johnston, R. E. Kin recognition and the ‘armpit effect’: evidence of self-referent phenotype matching. Proc. Biol. Sci. 267, 695–700 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Grau, H. J. Kin recognition in white-footed deermice (Peromyscus leucopus). Anim. Behav. 30, 497–505 (1982).Article 

    Google Scholar 
    90.Pillay, N. Father–daughter recognition and inbreeding avoidance in the striped mouse, Rhabdomys pumilio. Mamm. Biol. 67, 212–218 (2002).Article 

    Google Scholar 
    91.Pillay, N. & Rymer, T. L. Preference for outbreeding in inbred Littledale’s whistling rats Parotomys littledalei. Evol. Biol. 44, 21–30 (2016).Article 

    Google Scholar 
    92.Pillay, N. Inbreeding in Littledale’s whistling rat Parotomys littledalei. J. Exp. Zool. 293, 171–178 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Firman, R. C. & Simmons, L. W. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Firman, R. C. & Simmons, L. W. Gametic interactions promote inbreeding avoidance in house mice. Ecol. Lett. 18, 937–943 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Barnard, C. J. & Fitzsimons, J. Kin recognition and mate choice in mice: the effects of kinship, familiarity and social interference on intersexual interaction. Anim. Behav. 36, 1078–1090 (1988).Article 

    Google Scholar 
    96.Krackow, S. & Matuschak, B. Mate choice for non-siblings in wild house mice: evidence from a choice test and a reproductive test. Ethology 88, 99–108 (2010).Article 

    Google Scholar 
    97.Musolf, K., Hoffmann, F. & Penn, D. J. Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Anim. Behav. 79, 757–764 (2010).Article 

    Google Scholar 
    98.Bolton, J. L. et al. Kin discrimination in prepubescent and adult Long-Evans rats. Behav. Process. 90, 415–419 (2012).Article 

    Google Scholar 
    99.Valsecchi, P., Razzoli, M. & Choleris, E. Influence of kinship and familiarity on the social and reproductive behaviour of female Mongolian gerbils. Ethol. Ecol. Evol. 14, 239–253 (2002).Article 

    Google Scholar 
    100.Smith, B. A. & Block, M. L. Male saliva cues and female social choice in Mongolian gerbils. Physiol. Behav. 50, 379–384 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Ågren, G. Two laboratory experiments on inbreeding avoidance in the Mongolian gerbil. Behav. Process. 6, 291–297 (1981).Article 

    Google Scholar 
    102.Ågren, G. Incest avoidance and bonding between siblings in gerbils. Behav. Ecol. Sociobiol. 14, 161–169 (1984).Article 

    Google Scholar 
    103.Ågren, G. Alternative mating strategies in the Mongolian gerbil. Behaviour 91, 229–243 (1984).Article 

    Google Scholar 
    104.Heth, G., Todrank, J., Begall, S., Wegner, R. E. & Burda, H. Genetic relatedness discrimination in eusocial Cryptomys anselli mole-rats, Bathyergidae, Rodentia. Folia Zool. 53, 269–278 (2004).
    Google Scholar 
    105.Bennett, N. C., Faulkes, C. G. & Molteno, A. J. Reproductive suppression in subordinate, non-breeding female Damaraland mole-rats: two components to a lifetime of socially induced infertility. Proc. Biol. Sci. 263, 1599–1603 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Carter, S. N., Goldman, B. D., Goldman, S. L. & Freeman, D. A. Social cues elicit sexual behavior in subordinate Damaraland mole-rats independent of gonadal status. Horm. Behav. 65, 14–21 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Greeff, J. M. & Bennett, N. C. Causes and consequences of incest avoidance in the cooperatively breeding mole-rat, Cryptomys darlingi (Bathyergidae). Ecol. Lett. 3, 318–328 (2000).Article 

    Google Scholar 
    108.Clarke, F. M. & Faulkes, C. G. Kin discrimination and female mate choice in the naked mole-rat Heterocephalus glaber. Proc. Biol. Sci. 266, 1995–2002 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Marcinkowska, U. M., Moore, F. R. & Rantala, M. J. An experimental test of the Westermarck effect: sex differences in inbreeding avoidance. Behav. Ecol. 24, 842–845 (2013).Article 

    Google Scholar 
    110.Lass-Hennemann, J. et al. Effects of stress on human mating preferences: stressed individuals prefer dissimilar mates. Proc. Biol. Sci. 277, 2175–2183 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    111.Lass-Hennemann, J. et al. Effect of facial self-resemblance on the startle response and subjective ratings of erotic stimuli in heterosexual men. Arch. Sex. Behav. 40, 1007–1014 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Krupp, D. B., DeBruine, L. M., Jones, B. C. & Lalumiere, M. L. Kin recognition: evidence that humans can perceive both positive and negative relatedness. J. Evol. Biol. 25, 1472–1478 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Kocsor, F., Rezneki, R., Juhasz, S. & Bereczkei, T. Preference for facial self-resemblance and attractiveness in human mate choice. Arch. Sex. Behav. 40, 1263–1270 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Finke, J. B., Zhang, X., Best, D. R., Lass-Hennemann, J. & Schächinger, H. Self-resemblance modulates processing of socio-emotional pictures in a context-sensitive manner. J. Psychophysiol. 33, 127–138 (2019).Article 

    Google Scholar 
    115.Fraley, R. C. & Marks, M. J. Westermarck, Freud, and the incest taboo: does familial resemblance activate sexual attraction? Pers. Soc. Psychol. Bull. 36, 1202–1212 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.1527 (2018)117.Pfefferle, D., Kazem, A. J., Brockhausen, R. R., Ruiz-Lambides, A. V. & Widdig, A. Monkeys spontaneously discriminate their unfamiliar paternal kin under natural conditions using facial cues. Curr. Biol. 24, 1806–1810 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Pfefferle, D., Ruiz-Lambides, A. V. & Widdig, A. Male rhesus macaques use vocalizations to distinguish female maternal, but not paternal, kin from non-kin. Behav. Ecol. Sociobiol. 69, 1677–1686 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Erhart, E. M., Coelho, A. M. Jr. & Bramblett, C. A. Kin recognition by paternal half-siblings in captive Papio cynocephalus. Am. J. Primatol. 43, 147–157 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Craul, M., Zimmermann, E. & Radespiel, U. First experimental evidence for female mate choice in a nocturnal primate. Primates 45, 271–274 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Mossotti, R. H. et al. Reactions of female cheetahs (Acinonyx jubatus) to urine volatiles from males of varying genetic distance. Zoo Biol. 37, 229–235 (2018).Article 

    Google Scholar 
    122.Hamilton, J. & Vonk, J. Do dogs (Canis lupus familiaris) prefer family? Behav. Process. 119, 123–134 (2015).Article 

    Google Scholar 
    123.Orihuela, A. & Vázquez, R. Mating preferences of Saint Croix rams to related or unrelated ewes. Small Rumin. Res. 83, 82–84 (2009).Article 

    Google Scholar 
    124.Fracasso, G., Tuliozi, B., Hoi, H. & Griggio, M. Can house sparrows recognize familiar or kin-related individuals by scent? Curr. Zool. 65, 53–59 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Schielzeth, H., Burger, C., Bolund, E. & Forstmeier, W. Assortative versus disassortative mating preferences of female zebra finches based on self-referent phenotype matching. Anim. Behav. 76, 1927–1934 (2008).Article 

    Google Scholar 
    126.Miller, D. B. Long-term recognition of father’s song by female zebra finches. Nature 280, 389–391 (1979).Article 

    Google Scholar 
    127.Burley, N., Minor, C. & Strachan, C. Social preference of zebra finches for siblings, cousins and non-kin. Anim. Behav. 39, 775–784 (1990).Article 

    Google Scholar 
    128.Kato, Y., Hasegawa, T. & Okanoya, K. Song preference of female Bengalese finches as measured by operant conditioning. J. Ethol. 28, 447–453 (2010).Article 

    Google Scholar 
    129.Schubert, C. A., Ratcliffe, L. M. & Boag, P. T. A test of inbreeding avoidance in the zebra finch. Ethology 82, 265–274 (2010).Article 

    Google Scholar 
    130.Slater, P. J. B. & Clements, F. A. Incestuous mating in zebra finches. Z. Tierpsychol. 57, 201–208 (2010).Article 

    Google Scholar 
    131.Arct, A., Rutkowska, J., Martyka, R., Drobniak, S. M. & Cichon, M. Kin recognition and adjustment of reproductive effort in zebra finches. Biol. Lett. 6, 762–764 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    133.Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    134.Bateson, P. Preferences for cousins in Japanese quail. Nature 295, 236–237 (1982).Article 

    Google Scholar 
    135.Løvlie, H., Gillingham, M. A., Worley, K., Pizzari, T. & Richardson, D. S. Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proc. Biol. Sci. 280, 20131296 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    136.Pizzari, T., Lovlie, H. & Cornwallis, C. K. Sex-specific, counteracting responses to inbreeding in a bird. Proc. Biol. Sci. 271, 2115–2121 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Denk, A. G., Holzmann, A., Peters, A., Vermeirssen, E. L. M. & Kempenaers, B. Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav. Ecol. 16, 825–833 (2005).Article 

    Google Scholar 
    138.Jansson, N., Uller, T. & Olsson, M. Female dragons, Ctenophorus pictus, do not prefer scent from unrelated males. Aust. J. Zool. 53, 279–282 (2005).Article 

    Google Scholar 
    139.Ala-Honkola, O., Tuominen, L. & Lindström, K. Inbreeding avoidance in a poeciliid fish (Heterandria formosa). Behav. Ecol. Sociobiol. 64, 1403–1414 (2010).Article 

    Google Scholar 
    140.Vega-Trejo, R., Head, M. L. & Jennions, M. D. Evidence for inbreeding depression in a species with limited opportunity for maternal effects. Ecol. Evol. 5, 1398–1404 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    141.Pitcher, T. E., Rodd, F. H. & Rowe, L. Female choice and the relatedness of mates in the guppy (Poecilia reticulata): mate choice and inbreeding depression. Genetica 134, 137–146 (2008).PubMed 
    Article 

    Google Scholar 
    142.Daniel, M. J. & Rodd, F. H. Female guppies can recognize kin but only avoid incest when previously mated. Behav. Ecol. 27, 55–61 (2016).Article 

    Google Scholar 
    143.Fitzpatrick, L. J., Gasparini, C., Fitzpatrick, J. L. & Evans, J. P. Male–female relatedness and patterns of male reproductive investment in guppies. Biol. Lett. 10, 20140166 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.Viken, A., Fleming, I. A. & Rosenqvist, G. Premating avoidance of inbreeding absent in female guppies (Poecilia reticulata). Ethology 112, 716–723 (2006).Article 

    Google Scholar 
    145.Gasparini, C. & Pilastro, A. Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proc. Biol. Sci. 278, 2495–2501 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    146.Evans, J. P., Brooks, R. C., Zajitschek, S. R. & Griffith, S. C. Does genetic relatedness of mates influence competitive fertilization success in guppies? Evolution 62, 2929–2935 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    147.Fitzpatrick, J. L. & Evans, J. P. Postcopulatory inbreeding avoidance in guppies. J. Evol. Biol. 27, 2585–2594 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Speechley, E. M., Gasparini, C. & Evans, J. P. Female guppies increase their propensity for polyandry as an inbreeding avoidance strategy. Anim. Behav. 157, 87–93 (2019).Article 

    Google Scholar 
    149.Thünken, T., Bakker, T. C. M., Baldauf, S. A. & Kullmann, H. Active inbreeding in a cichlid fish and its adaptive significance. Curr. Biol. 17, 225–229 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    150.Thünken, T., Bakker, T. C. M., Baldauf, S. A. & Kullmann, H. Direct familiarity does not alter mating preference for sisters in male Pelvicachromis taeniatus (Cichlidae). Ethology 113, 1107–1112 (2007).Article 

    Google Scholar 
    151.Thünken, T., Meuthen, D., Bakker, T. C. M. & Baldauf, S. A. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice. Proc. Biol. Sci. 279, 2959–2964 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    152.Thünken, T., Bakker, T. C. M. & Baldauf, S. A. ‘Armpit effect’ in an African cichlid fish: self-referent kin recognition in mating decisions of male Pelvicachromis taeniatus. Behav. Ecol. Sociobiol. 68, 99–104 (2013).Article 

    Google Scholar 
    153.Frommen, J. G. & Bakker, T. C. Inbreeding avoidance through non-random mating in sticklebacks. Biol. Lett. 2, 232–235 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    154.Butts, I. A., Johnson, K., Wilson, C. C. & Pitcher, T. E. Ovarian fluid enhances sperm velocity based on relatedness in lake trout, Salvelinus namaycush. Theriogenology 78, 2105–2109 e2101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    155.Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).Article 

    Google Scholar 
    156.Kueffer, C. et al. Fame, glory and neglect in meta-analyses. Trends Ecol. Evol. 26, 493–494 (2011).PubMed 
    Article 

    Google Scholar 
    157.Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd edn (Lawrence Erlbaum, 1988).158.Blouin, M. S. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18, 503–511 (2003).Article 

    Google Scholar 
    159.Brown, J. L. & Eklund, A. Kin recognition and the major histocompatibility complex: an integrative review. Am. Nat. 143, 435–461 (1994).Article 

    Google Scholar 
    160.Penn, D. J. The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108, 1–21 (2002).Article 

    Google Scholar 
    161.Kokko, H. & Mappes, J. Sexual selection when fertilization is not guaranteed. Evolution 59, 1876–1885 (2005).PubMed 
    Article 

    Google Scholar 
    162.Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat. Med. 26, 4544–4562 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    164.Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).PubMed 
    Article 

    Google Scholar 
    165.Zeh, J. A. & Zeh, D. W. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).Article 

    Google Scholar 
    166.Carleial, R. et al. Temporal dynamics of competitive fertilization in social groups of red junglefowl (Gallus gallus) shed new light on avian sperm competition. Philos. Trans. R. Soc. Lond. B 375, 20200081 (2020).Article 

    Google Scholar 
    167.Antfolk, J. et al. Opposition to inbreeding between close kin reflects inclusive fitness costs. Front. Psychol. 9, 2101 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    168.Kresanov, P. et al. Intergenerational incest aversion: self-reported sexual arousal and disgust to hypothetical sexual contact with family members. Evol. Hum. Behav. 39, 664–674 (2018).Article 

    Google Scholar 
    169.Richardson, J., Comin, P. & Smiseth, P. T. Inbred burying beetles suffer fitness costs from making poor decisions. Proc. R. Soc. B 285, 20180419 (2018).PubMed 
    Article 

    Google Scholar 
    170.Long, T. A. F., Rowe, L. & Agrawal, A. F. The effects of selective history and environmental heterogeneity on inbreeding depression in experimental populations of Drosophila melanogaster. Am. Nat. 181, 532–544 (2013).PubMed 
    Article 

    Google Scholar 
    171.Johnson, A. M. et al. Inbreeding depression and inbreeding avoidance in a natural population of guppies (Poecilia reticulata). Ethology 116, 448–457 (2010).Article 

    Google Scholar 
    172.Barson, N., Cable, J. & Van Oosterhout, C. Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source–sink metapopulation structure, founder events and population bottlenecks. J. Evol. Biol. 22, 485–497 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    173.Lindholm, A. K. et al. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol. Ecol. 14, 3671–3682 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    174.Hosken, D. J. & Blanckenhorn, W. U. Female multiple mating, inbreeding avoidance, and fitness: it is not only the magnitude of costs and benefits that counts. Behav. Ecol. 10, 462–464 (1999).Article 

    Google Scholar 
    175.Duthie, A. B. & Reid, J. M. What happens after inbreeding avoidance? Inbreeding by rejected relatives and the inclusive fitness benefit of inbreeding avoidance. PLoS ONE 10, e0125140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    176.Taylor, H. R. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol. Evol. 5, 3140–3150 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    177.Galla, S. J. et al. A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: implications for conservation breeding programmes worldwide. Evol. Appl. 13, 991–1008 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    178.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA. 93, 6140 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    179.Janicke, T., Vellnow, N., Sarda, V. & David, P. Sex-specific inbreeding depression depends on the strength of male–male competition. Evolution 67, 2861–2875 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    180.Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity (Edinb.) 95, 235–242 (2005).CAS 
    Article 

    Google Scholar 
    181.Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L. & Fitzpatrick, J. L. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos. Trans. R. Soc. Lond. B 375, 20200064 (2020).Article 

    Google Scholar 
    182.Martin-Wintle, M. S. et al. Free mate choice enhances conservation breeding in the endangered giant panda. Nat. Commun. 6, 10125 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    183.Martin-Wintle, M. S., Wintle, N. J. P., Díez-León, M., Swaisgood, R. R. & Asa, C. S. Improving the sustainability of ex situ populations with mate choice. Zoo Biol. 38, 119–132 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    184.Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    185.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan–a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    186.Pick, J. L., Nakagawa, S., Noble, D. W. A. & Price, S. Reproducible, flexible and high-throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2019).Article 

    Google Scholar 
    187.R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).188.Hedges, L. & Olkin, I. Statistical Methods for Meta-analysis (Academic, 1985).189.Rosenberg, M. S., Rothstein, H. R. & Gurevitch, J. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton Univ. Press, 2013).190.Viechtbauer, W. Conducting meta‐analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    191.Del Re, A. compute.es: compute effect sizes, R package version 0.2-2 (2013).192.Michonneau, F., Brown, J. W., Winter, D. J. & Fitzjohn, R. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    193.Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85, 935–956 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    194.Higgins, J. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions (Wiley-Blackwell, 2009).195.Kossmeier, M., Tran, U. S. & Voracek, M. metaviz: forest plots, funnel plots, and visual funnel plot inference for meta-analysis, R package version 0.3.0 https://CRAN.R-project.org/package=metaviz (2018).196.Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    197.Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).CAS 
    Article 

    Google Scholar 
    198.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    199.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    200.Shi, L. & Lin, L. The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Med. (Baltim.) 98, e15987 (2019).Article 

    Google Scholar 
    201.Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2000).
    Google Scholar 
    202.Møller, A. & Jennions, M. D. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132, 492–500 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    203.Szulkin, M. & Sheldon, B. C. The environmental dependence of inbreeding depression in a wild bird population. PLoS ONE 2, e1027 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    204.Zeh, D. W. & Zeh, J. A. Reproductive mode and speciation: the viviparity-driven conflict hypothesis. Bioessays 22, 938–946 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    205.Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).Article 

    Google Scholar 
    206.Puurtinen, M. Mate choice for optimal (k)inbreeding. Evolution 65, 1501–1505 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    207.Tregenza, T. & Wedell, N. Polyandrous females avoid costs of inbreeding. Nature 415, 71–73 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    208.Birkhead, T. R. & Pizzari, T. Postcopulatory sexual selection. Nat. Rev. Genet. 3, 262–273 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    209.Duthie, A. B., Bocedi, G., Germain, R. R. & Reid, J. M. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry. J. Evol. Biol. 31, 31–45 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    210.Barry, K. L. & Kokko, H. Male mate choice: why sequential choice can make its evolution difficult. Anim. Behav. 80, 163–169 (2010).Article 

    Google Scholar  More

  • in

    Consequences of spatial patterns for coexistence in species-rich plant communities

    Study areasNine large forest dynamics plots of areas between 20 and 50 ha were used in the present study (Supplementary Table 1). The forest plots are part of the ForestGEO network4 and are situated in Asia and the Americas at locations ranging in latitude from 9.15° N to 45.55° N. Tree species richness among the plots ranges from 36 to 468. All free-standing individuals with diameter at breast height (dbh) ≥1 cm were mapped, size measured and identified. We focused our analysis here on individuals with dbh ≥ 10 cm (resulting in a sample size of 131,582 individuals) and focal species with more than 50 individuals (resulting in 289 species). The 10 cm size threshold excludes most of the saplings and enables comparisons with previous spatial analyses20,35,47,48. Shrub species were also excluded.Some of our analyses require estimation of the ratio βfi/βff that describes the relative individual-level competitive effect18 of individuals of species i on an individual of the focal species f. We used for this purpose phylogenetic distances49 based on molecular data, given in Myr, that assume that functional traits are phylogenetically conserved19,26,27. In this case, close relatives are predicted to compete more strongly or to share more pests than distant relatives26. To obtain consistent measures among forest plots, phylogenetic similarities were scaled between 0 and 1, with conspecifics set to 1, and a similarity of 0 was assumed for a phylogenetic distance of 1,200 Myr, which was somewhat larger than the maximal observed distance (1,059 Myr). This was necessary to avoid discounting crowding effects from the most distantly related neighbours26.Observed spatial patterns at species-rich forestsFigure 1 and Supplementary Data Table 1 show the intraspecific variation in our three crowding indices nkff, nkfh and nkfβ that can be approximated by gamma distributions. To assess how well the gamma distribution described the observed distribution, we used an error index defined as the sum of the absolute differences of the two cumulative distributions divided by the number of bins (spanning the two distributions). The maximal value of the error index is one, and a smaller value indicates a better fit.Equations (6, 8 and 9) relate the measures of the emerging spatial patterns (that is, kff, kfh and Bf) to macroscale properties and conditions for species coexistence. Even though our multiscale model (equation (7)) is simplified, it allows for a direct comparison with the emerging patterns in our nine fully stem-mapped forest plots. We estimate the key quantities of equations (8) and (9) directly from the forest plot data (Fig. 4), with the exception of the carrying capacities Kf, which were indirectly estimated from the observed species abundances (assuming approximate equilibrium; equation (8) and Supplementary Data Table 1). This allowed us to estimate the feasibility index µf (equation (9)). Because statistical analyses with individual-based neighbourhood models19,26 based on neighbourhood crowding indices have shown that the performance of trees depends on their neighbours for R between 10 and 15 m, we estimate all measures of spatial neighbourhood patterns with a neighbourhood radius of R = 10 m. Analyses with R = 15 or R = 20 gave similar results.The spatial multispecies model and equilibriumWe use a general macroscale model to describe the dynamics of a community of S species:$$frac{{N_fleft( {t + {Delta}t} right) – N_fleft( t right)}}{{{Delta}t}} = N_fleft( t right)left[ {left( {r_f – 1} right) + s_fexp left( { – alpha _{ff}N_fleft( t right) – mathop {sum }limits_{i ne f} alpha _{fi}N_i(t)} right)} right]$$
    (11)
    where rf is the mean number of recruits per adult of species f within time step Δt, sf is a density-independent background survival rate of species f and the αfi are the population-level interaction coefficients, yielding αff = c γff kff βff and αfi = c γfβ kfh βff Bf (equation (6)). The βfi are the assumed individual-level interaction coefficients between individuals of species i and f; kff = Kff(R) / π R2 and kfh = Kfh(R) / π R2 measure intraspecific clustering and interspecific segregation, respectively, with Kff(R) being the univariate K function for species f and Kfh(R) the bivariate K function describing the pattern of all heterospecifics ‘h’ around individuals of species f. A is the area of the observation window.Following equation (5), Bf can be estimated as$$B_f = frac{{bar n_{fbeta }}}{{bar n_{f{mathrm{h}}}}} = frac{{mathop {sum }nolimits_{i ne f} left[ {ck_{fi}N_ileft( t right)} right]frac{{beta _{fi}}}{{beta _{ff}}}}}{{mathop {sum }nolimits_{i ne f} left[ {ck_{fi}N_ileft( t right)} right]}} = frac{{mathop {sum }nolimits_{i ne f} k_{fi}N_ileft( t right)frac{{beta _{fi}}}{{beta _{ff}}}}}{{k_{f{mathrm{h}}}mathop {sum }nolimits_{i ne f} N_ileft( t right)}},$$
    (12)
    and is the weighted average of the relative individual-level interaction coefficients βfi/βff between species i and the focal species f, weighted by the mean number of individuals of species i in the neighbourhoods of the individuals of the focal species (that is, c kfi Ni(t)). For competitive interactions, Bf ranges between zero and one; Bf = 1 indicates that heterospecific and conspecific neighbours compete equally, and smaller values of Bf indicate reduced competition with heterospecific neighbours. The denominator can be rewritten in terms of segregation kfh to all heterospecifics and the total number of heterospecifics ∑i≠f Ni(t).The analytical expression of the equilibrium (equation (8)) relies on the assumption that the values of Bf are approximately constant in time. This assumption may not apply in our model during the initial burn-in phase of the simulations if the βfi/βff show large intraspecific variability (Supplementary Text and Figs. 1–5). The underlying mechanism is the central niche effect introduced by Stump45 where a species has reduced average fitness if it has high niche overlap with competitors.Finally, the factors γff = ln(1 + bff βff) (bff βff)−1 and γfβ = ln(1+ bfβ βff) (bfβ βff)−1 describe the influence of the variance-to-mean ratios bff and bfβ of the gamma distribution of the crowding indices nkff and nkfβ, respectively. For high survival rates during one time step (for example, >85%), the values of γff and γfβ are close to one; in this case the exponential function in equation (1a) can be approximated by its linear expansion and γff = γfβ = 1.In equilibrium we have (Nf(t + Δt) ‒ Nf(t))/Δt = 0, which leads, with equation (7), to:$$N_f^{ast} = left( {K_f – frac{{alpha _{f{mathrm{h}}}}}{{alpha _{ff}}}J^{ast} } right) left( {1 – frac{{alpha _{f{mathrm{h}}}}}{{alpha _{ff}}}} right)^{-1}$$
    (13)
    with (K_f = – {mathrm{ln}}left( {frac{{1 – r_f}}{{s_f}}} right) left( alpha _{ff} right)^{-1}) and the total number of individuals being (J^{ast} = sum _iN_i^{ast}). Rewriting equation (13) yields (frac{K_f}{J^{ast}} = left( frac{N_f^{ast}}{J^{ast}} right) left(1- frac{alpha_{f{mathrm{h}}}}{alpha_{ff}}right) + frac{alpha_{f{mathrm{h}}}}{alpha_{ff}}). For αfh/αff  More

  • in

    Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning

    1.Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Nat. Resour. Environ. 34, (2020).2.Laureto, L. M. O., Cianciaruso, M. V. & Samia, D. S. M. Functional diversity: an overview of its history and applicability. Nat. Conserv. 13, 112–116 (2015).Article 

    Google Scholar 
    3.Gilbey, J. et al. Life in a drop: Sampling environmental DNA for marine fishery management and ecosystem monitoring. Mar. Policy 124, 104331 (2021).Article 

    Google Scholar 
    4.de Chazal, J. & Rounsevell, M. D. A. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Chang. 19, 306–315 (2009).Article 

    Google Scholar 
    5.Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).CAS 
    Article 

    Google Scholar 
    6.Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Leibold, M. A. & Miller, T. E. in Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 133–150 (Elsevier Academic Pres, 2004).8.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    9.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).PubMed 
    Article 

    Google Scholar 
    11.Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).PubMed 
    Article 

    Google Scholar 
    12.Young, R. G. & Collier, K. J. Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshw. Biol. 54, 2155–2170 (2009).CAS 
    Article 

    Google Scholar 
    13.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    14.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    15.de Oliveira, S. S. et al. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic. 111, 105994 (2020).Article 

    Google Scholar 
    16.Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Boivin-Delisle, D. et al. Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment. Environ. DNA 3, 105–120 (2020).18.Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management? Trends Ecol. Evol. 35, 668–678 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).Article 

    Google Scholar 
    20.Rees, H. C., Gough, K. C., Middleditch, D. J., Patmore, J. R. M. & Maddison, B. C. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. J. Appl. Ecol. 52, 827–831 (2015).Article 

    Google Scholar 
    21.Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 
    Article 

    Google Scholar 
    22.Seymour, M. Rapid progression and future of environmental DNA research. Commun. Biol 2, 80 (2019).
    Google Scholar 
    23.Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50, 10456–10464 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sales, N. G. et al. Fishing for mammals: landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).CAS 
    Article 

    Google Scholar 
    27.Riascos, L. et al. DNA-based monitoring of the alien invasive North American crayfish Procambarus clarkii in Andean lakes (Ecuador). Limnologica 70, 20–25 (2018).CAS 
    Article 

    Google Scholar 
    28.Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).29.Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Crookes, S. et al. Monitoring the silver carp invasion in Africa: a case study using environmental DNA (eDNA) in dangerous watersheds. NeoBiota 56, 31–47 (2020).Article 

    Google Scholar 
    31.Sigsgaard, E. E. et al. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv. Biol. 34, 697–710 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Holman, L. E., Hollenbeck, C. M., Ashton, T. J. & Johnston, I. A. Demonstration of the use of environmental DNA for the non-invasive genotyping of a Bivalve Mollusk, the European Flat Oyster (Ostrea edulis). Front. Genet. 10, 1159 (2019). vol.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Cindy, B. et al. Passive eDNA collection enhances aquatic biodiversity analysis. Commun. Biol. 4, 236 (2021).PubMed Central 
    Article 

    Google Scholar 
    34.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    35.Seymour, M., Fronhofer, E. A. & Altermatt, F. Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124, 908–916 (2015).Article 

    Google Scholar 
    36.Seymour, M., Deiner, K. & Altermatt, F. Scale and scope matter when explaining varying patterns of community diversity in riverine metacommunities. Basic Appl. Ecol. 17, 134–144 (2016).Article 

    Google Scholar 
    37.Haase, P., Pauls, S. U., Schindehütte, K. & Sundermann, A. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. J. North Am. Benthol. Soc. 29, 1279–1291 (2010).Article 

    Google Scholar 
    38.Altermatt, F., Seymour, M. & Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40, 2249–2260 (2013).Article 

    Google Scholar 
    39.Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10, 311–319 (2010).CAS 
    Article 

    Google Scholar 
    40.Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Barbour, M. T., Gerritsen, J., Snyder, B. D. & Stribling, J. B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Vol. 339 (US Environmental Protection Agency, Office of Water, 1999).42.Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. 1, 4 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Milner, A. M., Robertson, A. L., Monaghan, K. A., Veal, A. J. & Flory, E. A. Colonization and development of an Alaskan stream community over 28 years. Front. Ecol. Environ. 6, 413–419 (2008).Article 

    Google Scholar 
    44.Álvarez-Cabria, M., Barquín, J. & Antonio Juanes, J. Spatial and seasonal variability of macroinvertebrate metrics: do macroinvertebrate communities track river health? Ecol. Indic. 10, 370–379 (2010).Article 
    CAS 

    Google Scholar 
    45.Macher, J.-N. et al. Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Mol. Ecol. Resour. 18, 1456–1468 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Pereira-da-Conceicoa, L. et al. Metabarcoding unsorted kick-samples facilitates macroinvertebrate-based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. bioRxiv https://doi.org/10.1101/792333 (2019).47.Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA https://doi.org/10.1101/2020.04.27.063545 (2020).48.Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E. & Rinaldo, A. Estimating species distribution and abundance in river networks using environmental DNA. Proc. Natl Acad. Sci. 115, 11724 LP–11711729 (2018).Article 
    CAS 

    Google Scholar 
    49.Bussi, G. et al. Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales). J. Hydrol. 553, 248–261 (2017).Article 

    Google Scholar 
    50.Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Harvey, E., Gounand, I., Fronhofer, E. A. & Altermatt, F. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proc. R. Soc. B Biol. Sci. 285, 20182441 (2018).Article 

    Google Scholar 
    52.Townsend, C. R., Scarsbrook, M. R. & Dolédec, S. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol. Oceanogr. 42, 938–949 (1997).Article 

    Google Scholar 
    53.Cummins, K. W. & Klug, M. J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 10, 147–172 (1979).Article 

    Google Scholar 
    54.Wallace, J., Hutchens John, J. & Grubaugh, J. in Methods in Stream Ecology 249–271 https://doi.org/10.1016/B978-012332908-0.50014-0 (2007).55.Erman, D. C. & Chouteau, W. C. Fine Particulate Organic Carbon Output from Fens and Its Effect on Benthic Macroinvertebrates. Oikos 32, 409–415 (1979).CAS 
    Article 

    Google Scholar 
    56.Hart, D. D. & Robinson, C. T. Resource limitation in a stream community: phosphorus enrichment effects on Periphyton and Grazers. Ecology 71, 1494–1502 (1990).Article 

    Google Scholar 
    57.Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc. 30, 963–980 (2011).Article 

    Google Scholar 
    58.Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Agency, E. River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual: 2003 Version (Forest Research, 2003).60.Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).Article 

    Google Scholar 
    61.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinform 11, 341 (2010).Article 
    CAS 

    Google Scholar 
    64.Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).65.Coordinators, N. R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).Article 
    CAS 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).67.Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-plus (Springer, 2000).68.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).69.Seymour, M. Conwy eDNA data. https://doi.org/10.6084/m9.figshare.14159579.v1 (2021). More

  • in

    Aggressive behaviour is affected by demographic, environmental and behavioural factors in purebred dogs

    This large-scale survey study of over 9000 pet dogs suggests that aggressive behaviour toward people is affected by behaviour, demography, and environment. The studied factors daily time spent alone, and weaning age were novel, and factors living environment, family size, dogs in the family, dog experience, daily exercise, have previously been studied only in few articles14,15,20,21,22. Dogs showing aggressive behaviour were more often fearful, small-sized, males, owner’s first dogs and the only dogs in the family. In addition, probability of aggressive behaviour increased with age, and we found that the probability of aggressive behaviour differed between dog breeds. These findings suggest that improvements in the owner education and breeding practices of pet dogs could alleviate aggressive behaviour toward people. The identified factors should also be considered when planning studies that aim for the discovery of the associated hereditary factors.Fearfulness had the strongest association with aggressive behaviour. Fearful and noise-sensitive dogs have been found to behave more aggressively toward unfamiliar people than dogs with no anxieties11. In the study of Dinwoodie et al.28, the dogs with fear/anxiety problem had more biting incidences than other dogs, and they also found remarkable comorbidity between fear/anxiety and overall aggressive behaviour. Similarly, in the study of Salonen et al.12, comorbidity between fearfulness and aggressive behaviour was strong: aggressive dogs were over three times more often fearful than non-aggressive dogs. Aggressive behaviour commonly stems from fearfulness, as fear-related aggressive behaviour is a type of undesired aggressive behaviour13,29. Here, we could not separate fear-related aggressive behaviour from other types of aggressive behaviour. Therefore, it is possible that majority of the dogs in this study show fear-related aggressive behaviour.We found a significant association between sex and aggressive behaviour. Male dogs had a higher probability of aggressive behaviour than females. This association has been found before in some studies1,28,29, but Hsu et al.14 found this association only with aggressive behaviour toward the owner and Bennett and Rolf15 did not find association with unfriendliness/aggressiveness. In addition, in the study population of Guy et al.30, female dogs were more likely to have bitten than male dogs. Thus, more studies are needed to reveal the association of sex and aggressive behaviour.The probability of aggressive behaviour increased with age, and thus, older dogs were more likely aggressive than young dogs. A similar association between age and aggressiveness/unfriendliness has been found earlier10,15. However, in the study of Hsu and Sun14, age influenced only aggressive behaviour toward the owner, and the difference was significant only when comparing dogs over 10 years of age to dogs under 5 years of age. In contrast, in the study Casey et al.10, only the probability of aggressive behaviour toward strangers increased. Study of Col et al.1 found no association between age and aggressive behaviour, and it is possible that old dogs have had more opportunities to show aggressive behaviour, reflecting to our finding. As aggressive behaviour can be a sign of pain5, it is possible that older dogs have painful conditions or disorders which make them more aggressive. For example, hip dysplasia is a common disease which can cause pain-related aggressive behaviour in dogs7. In addition, some disorders, such as the blinding eye disease cataract which is common in older dogs31, can decrease the ability to perceive approaching people. This can make the dog feel insecure and increase the chance of an aggressive response. Thus, yearly health checks might reduce pain- or other disease-related aggressive behaviour.We found differences between dog breeds in the probabilities of aggressive behaviour toward people. From all the studied breeds, Rough Collie had the highest probability of aggressive behaviour. Rough Collies also commonly suffer from another behavioural problem, fearfulness32 and thus, it seems that Rough Collies would likely benefit from more behaviour-focused breeding. Besides Rough Collies, other breeds with high probability of aggressive behaviour included the Miniature Poodle, Miniature Schnauzer, German Shepherd Dog, Spanish Water Dog, and Lagotto Romagnolo. In previous studies (Miniature) Poodle19 and Miniature Schnauzer14 have scored above the average in aggressive behaviour toward strangers, and Lagotto Romagnolo in aggressive behaviour toward family members11. The two breeds having the lowest probabilities of aggressive behaviour in our study were Labrador and Golden Retrievers. These breeds have also scored low in previous studies14,19. However, some of our breed-wise results differ from previous studies. For example, in the study of Duffy et al.19, Chihuahua and Jack Russell Terrier exhibited the most severe signs of aggressive behaviour, such as biting, but in our study, when taking the other factors account (e.g. body size), these breeds were among the least aggressive breeds. Duffy et al.19 did not take other factors into account which probably explains the difference between these results. To be noted, Staffordshire Bull Terrier, which is one of the restricted breeds, for example, in Ireland2, was not among the most aggressive breeds in this study. In the future, we will also consider breeding lines among the breeds, for example, separate German Shepherd Dog to working and show line types, since the purpose that dogs were bred for can also affect behaviour33. Furthermore, some breeds are more prone to, for example, skeletal disorders, which can cause pain-related aggression34 and influence these observed breed differences.Small dogs were more prone to aggressive behaviour than large or medium-sized dogs. Association of small size and aggressive behaviour is in line with some previous studies: taller and heavier dogs were found to be less aggressive toward the owner and strangers than small dogs17, and Ley et al.35 reported that heavier dogs have higher amicability than lighter dogs. In contrast, Khoshnegah et al.9 found that large breeds displayed more aggressive behaviour toward strangers, and Bennett and Rohlf15 did not find any association between the dog’s body size and unfriendliness/aggressiveness. To be noted, however, both in our study and in the study of McGreevy et al.17, the body size estimates were based on the breed standards, not the actual height of the individuals, which can affect the results. Even though we found no multicollinearity between the breed and body size, we also ran the model without body size and obtained the same results. Thus, we think that the association of body size with aggression mainly comes from the “other breeds” group, which included 6360 individuals from breeds with different body sizes.Nevertheless, previous studies have also associated small size with fearfulness9,17,36 and thus, it seems that small dogs are more vulnerable to behavioural problems in general. Interestingly, owners handle small dogs differently than larger dogs, which can partly explain the higher proportion of behaviour problems in smaller dogs. Owners of small dogs play with and obedience train their dogs less frequently than owners of large dogs37,38, and small dogs are also less often house-trained39. We speculate that small size can make a dog easier to control even when they act aggressively, and people do not necessary feel threatened by small dogs. Therefore, the owners may not try to treat nor seek professional help for aggressive behaviour so willingly than owners of larger dogs. Professional help, however, have shown to decrease incidence of undesirable behaviours, such as aggression towards strangers, in young dogs40. In addition, we speculate that, as people may not feel threatened by small dogs, they might not consider behaviour important when making breeding decisions. Further, a recently published study associated several problematic behaviours with genetic variants known to cause small body size41.The dogs whose owners have had at least one dog before had a lower probability of aggressive behaviour than owners’ first dogs. This finding replicates previously found associations of owner’s dog experience and dominance-type aggressive behaviour21 as well as general aggressive behaviour20. It is possible that experienced owners are more aware of the importance of socialisation. Previous experience can also help owners to identify a problem at early stage, when the problem can be treated more efficiently. Furthermore, if the owners had problems with their first dogs, they may be more careful when choosing a new dog.Company of other dogs was associated with a lower probability of aggressive behaviour; dogs living with other dogs were less likely aggressive than dogs living without other dogs. Number of household dogs also decreased aggressive behaviour toward the owner in a study of Hsu and Sun14. They suggested that dogs in multi-dog families compete with each other for owners’ attention, with the best behaving dog acquiring more attention and thus, dogs are striving to be obedient. Similarly, dogs living in multi-dog households showed less aggressive behaviour toward the owner and other dogs in a more recent study of Serpell and Duffy20. Canine companions may offer something that owners cannot, such as the daily opportunity of intraspecific communication. For example, playing with other dogs could decrease aggressive behaviour emerging from frustration. On the other hand, owners of aggressive dogs may choose not to acquire another dog to avoid possible conflicts between the dogs and ease the handling of the aggressive dog.This study has some limitations. One of the limitations is that we could not examine aggressive behaviour towards family members and strangers separately due to a small number of dogs showing aggressive behaviour in many breeds. This may affect the reliability of the results, as the study of Salonen et al.12 showed distinct breed differences in the aggressive behaviour sub-traits. This also made comparisons between this study and previous ones challenging, because in many other studies aggressive behaviour was divided to sub-traits. In addition, as we did not have any health information from the dogs, we could not identify the individuals having health problems. Owners’ participation to the study was voluntary and thus, the data can be somewhat biased; owners of highly aggressive dog may have not wanted to participate to the study, or, on the other hand, they may have wanted to participate more willingly than owners of non-aggressively behaving dogs. It is also possible that owners did not report all information precisely, for example the breed of the dog. Moreover, as the questionnaire was available only online, participation required basic computer skills and access to the Internet. Finally, this study is cross-sectional and therefore, the causality of the associations discovered cannot be inferred. In the future, it is important to collect even larger datasets, to include health information and to design longitudinal studies, enabling the study of aggressive behaviour sub-traits, associations with health issues and the causal effects.Our results replicate findings of previous studies in an independent study population and suggest that aggressive behaviour is a complex trait associated with several demographic, environmental, and behavioural factors. The prevalence of aggressive behaviour could be decreased by preferring less aggressive individuals in breeding, since aggressive behaviour has been suggested to be heritable42,43. Furthermore, prevalence of aggressive behaviour could also be decreased by using only non-fearful dogs in breeding, as these traits were highly associated and may share a genetic component. Dog owners may decrease the chances of aggressive behaviour by carefully selecting the right breed for their lifestyle and by having multiple dogs. Since aggressive behaviour can be a consequence of pain, yearly health checks could also decrease aggressive behaviour especially in older dogs. More

  • in

    Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands

    1.Stocker, T. F. et al. Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (Cambridge University Press, 2014).2.IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019).3.Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    Article 

    Google Scholar 
    4.Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. 110, 19456–19459 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    5.DeMalach, N., Zaady, E. & Kadmon, R. Contrasting effects of water and nutrient additions on grassland communities: a global meta‐analysis. Glob. Ecol. Biogeogr. 26, 983–992 (2017).Article 

    Google Scholar 
    6.Gruner, D. S. et al. Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos 126, 8–17 (2017).Article 

    Google Scholar 
    7.Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. 116, 17867–17873 (2019).CAS 
    Article 

    Google Scholar 
    8.Korell, L., Auge, H., Chase, J. M., Harpole, S. & Knight, T. M. We need more realistic climate change experiments for understanding ecosystems of the future. Glob. Change Biol. 26, 325–327 (2020).ADS 
    Article 

    Google Scholar 
    9.Korell, L., Auge, H., Chase, J. M., Harpole, W. S. & Knight, T. M. Understanding plant communities of the future requires filling knowledge gaps. Glob. Change Biol. 26, 328–329 (2020).ADS 
    Article 

    Google Scholar 
    10.Yue, K. et al. Changes in plant diversity and its relationship with productivity in response to nitrogen addition, warming and increased rainfall. Oikos 129, 939–952 (2020).11.Chase, J. M. & Knight, T. M. Scale‐dependent effect sizes of ecological drivers on biodiversity: why standardised sampling is not enough. Ecol. Lett. 16, 17–26 (2013).Article 

    Google Scholar 
    12.Chase, J. M. et al. Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecol. Lett. 21, 1737–1751 (2018).Article 

    Google Scholar 
    13.Spake, R. et al. Implications of scale dependence for cross‐study syntheses of biodiversity differences. Ecol. Lett. 24, 374–390 (2020).Article 

    Google Scholar 
    14.Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).ADS 
    Article 

    Google Scholar 
    15.Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. 117, 4464–4470 (2020).CAS 
    Article 

    Google Scholar 
    16.Wilcox, K. R. et al. Asymmetric responses of primary productivity to precipitation extremes: a synthesis of grassland precipitation manipulation experiments. Glob. Change Biol. 23, 4376–4385 (2017).Article 

    Google Scholar 
    17.Beier, C. et al. Precipitation manipulation experiments–challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012).Article 

    Google Scholar 
    18.Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Knapp, A. K. et al. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments. Glob. Change Biol. 21, 2624–2633 (2015).ADS 
    Article 

    Google Scholar 
    20.Maestre, F. T. et al. Structure and functioning of dryland ecosystems in a changing world. Annu. Rev. Ecol. Evol. Syst. 47, 215–237 (2016).Article 

    Google Scholar 
    21.Stuart-Haëntjens, E. et al. Mean annual precipitation predicts primary production resistance and resilience to extreme drought. Sci. Total Environ. 636, 360–366 (2018).ADS 
    Article 

    Google Scholar 
    22.Adler, P. B. et al. Productivity is a poor predictor of plant species richness. Science 333, 1750–1753 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 

    Google Scholar 
    24.Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Thompson, P. L., Isbell, F., Loreau, M., O’connor, M. I. & Gonzalez, A. The strength of the biodiversity–ecosystem function relationship depends on spatial scale. Proc. R. Soc. B 285, 20180038 (2018).Article 

    Google Scholar 
    26.Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).Article 

    Google Scholar 
    27.McCluney, K. E. et al. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87, 563–582 (2012).Article 

    Google Scholar 
    28.Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).Article 

    Google Scholar 
    29.Maron, J. L., Baer, K. C. & Angert, A. L. Disentangling the drivers of context‐dependent plant–animal interactions. J. Ecol. 102, 1485–1496 (2014).Article 

    Google Scholar 
    30.Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93–96 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 
    Article 

    Google Scholar 
    33.Safriel, U. et al. in Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group (Island Press, 2005).34.Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).Article 

    Google Scholar 
    35.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    36.McGlinn, D. J. et al. Measurement of Biodiversity (MoB): a method to separate the scale‐dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods Ecol. Evolution 10, 258–269 (2019).Article 

    Google Scholar 
    37.Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    38.Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).Article 

    Google Scholar 
    39.Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    40.Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evolution 7, 1451–1456 (2016).Article 

    Google Scholar 
    41.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6 (2019).42.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    43.Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).44.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17 (2020).45.Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–25 (2020).46.R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).47.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).48.Fox, J. et al. Visualizing Fit and Lack of Fit in Complex Regression Models with Predictor Effect Plots and Partial Residuals. J. Stat. Softw. 87, 1–27 (2018).49.Gelman, A.& Su, Y. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. R package version 1.11–2 (2020). More

  • in

    Microbial iron and carbon metabolism as revealed by taxonomy-specific functional diversity in the Southern Ocean

    1.Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lechtenfeld OJ, Hertkorn N, Shen Y, Witt M, Benner R. Marine sequestration of carbon in bacterial metabolites. Nat Commun. 2015;6:6711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.DeLong E (ed). Microbial Metagenomics, Metatranscriptomics, and Metaproteomics, 1st edn. San Diego, CA, USA: Academic Press; 2013.5.White RA III, Callister SJ, Moore RJ, Baker ES, Jansson JK. The past, present and future of microbiome analyses. Nat Protoc. 2016;11:2049.CAS 
    Article 

    Google Scholar 
    6.Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lindh MV, Sjostedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ Microbiol. 2015;17:2459–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Ruiz‐González C, Logares R, Sebastián M, Mestre M, Rodríguez‐Martínez R, Galí M, et al. Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol Ecol. 2019;28:1930–45.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Ocean plankton. Struct Funct Glob Ocean Microbiome Sci. 2015;348:1261359.
    Google Scholar 
    13.Ibarbalz FM, Henry N, Brandao MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–97 e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–83 e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, et al. Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA. 2008;105:3805–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Metabolic architecture of the deep ocean microbiome. bioRxiv. 2019:635680. https://doi.org/10.1101/635680.19.Martin JH, Gordon RM, Fitzwater SE. Iron in Antarctic waters. Nature. 1990;345:156–8.CAS 
    Article 

    Google Scholar 
    20.Church MJ, Hutchins DA, Ducklow HW. Limitation of bacterial growth by dissolved organic matter and iron in the Southern ocean. Appl Environ Microbiol. 2000;66:455–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Obernosterer I, Fourquez M, Blain S. Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands. Biogeosciences. 2015;12:1983–92.Article 

    Google Scholar 
    22.Fourquez M, Obernosterer I, Blain S. A method for the use of the radiotracer 55Fe for microautoradiography and CARD-FISH of natural bacterial communities. FEMS Microbiol Lett. 2012;337:132–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Koedooder C, Gueneugues A, Van Geersdaële R, Vergé V, Bouget F-Y, Labreuche Y, et al. The role of the glyoxylate shunt in the acclimation to iron limitation in marine heterotrophic bacteria. Front Mar Sci. 2018;5:435.Article 

    Google Scholar 
    24.Blain S, Tagliabue A (eds). Iron Cycle in Oceans, 1st edn. London, UK: ISTE Ltd and John Wiley & Sons, Inc.; 2016.25.Dittmar T, Arnosti C. An inseparable liaison: marine microbes and nonliving organic matter. In: Gasol JM, Kirchman DL, editors. Microbial Ecology of the Oceans, 3rd edn. Hoboken NJ, USA: John Wiley and Sons, Inc.; 2018, pp 189–229.26.Blain S, Queguiner B, Armand L, Belviso S, Bombled B, Bopp L, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446:1070–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lasbleiz M, Leblanc K, Armand LK, Christaki U, Georges C, Obernosterer I, et al. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean. FEMS Microbiol Ecol. 2016;92:fiw171.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Obernosterer I, Catala P, Lebaron P, West NJ. Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the Southern Ocean. Limnol Oceanogr. 2011;56:2391–401.CAS 
    Article 

    Google Scholar 
    29.Blain S, Capparos J, Guéneuguès A, Obernosterer I, Oriol L. Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean). Biogeosciences. 2015;12:623–35.Article 

    Google Scholar 
    30.d’Ovidio F, Della Penna A, Trull TW, Nencioli F, Pujol M-I, Rio M-H, et al. The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau. Biogeosciences. 2015;12:5567–81.Article 
    CAS 

    Google Scholar 
    31.Landa M, Blain S, Christaki U, Monchy S, Obernosterer I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016;10:39–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Landa M, Blain S, Harmand J, Monchy S, Rapaport A, Obernosterer I. Major changes in the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved organic matter. FEMS Microbiol Ecol. 2018;94:8.Article 
    CAS 

    Google Scholar 
    33.Fourquez M, Beier S, Jongmans E, Hunter R, Obernosterer I. Uptake of Leucine, chitin, and iron by prokaryotic groups during spring phytoplankton blooms induced by natural iron fertilization off Kerguelen Island (Southern Ocean). Front Mar Sci. 2016;3:256.Article 

    Google Scholar 
    34.Debeljak P, Toulza E, Beier S, Blain S, Obernosterer I. Microbial iron metabolism as revealed by gene expression profiles in contrasted Southern Ocean regimes. Environ Microbiol. 2019;21:2360–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Christaki U, Gueneugues A, Liu Y, Blain S, Catala P, Colombet J, et al. Seasonal microbial food web dynamics in contrasting Southern Ocean productivity regimes. Limnol Oceanogr. 2021;66:108–22.CAS 
    Article 

    Google Scholar 
    36.Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bendall ML, Stevens SL, Chan LK, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    44.Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Kanehisa M, Sato Y. Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–2.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Saier MH Jr., Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The transporter classification database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dupont CL, Yang S, Palenik B, Bourne PE. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA. 2006;103:17822–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    59.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rodriguez RL, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:3.Article 

    Google Scholar 
    68.Pearson WR An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics. 2013;Chapter 3:Unit3 1.69.Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. Methods Enzymol. 2013;531:237–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA. Identification of Euglena gracilis beta-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem. 2018;293:2865–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ho A, Di Lonardo DP, Bodelier PL. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:3.
    Google Scholar 
    74.Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol. 2006;2:e163.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Rincon-Enriquez G, Crete P, Barras F, Py B. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol. 2008;67:1257–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Py B, Barras F. Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. Adv Bot Res. 2013;66:289–326.CAS 
    Article 

    Google Scholar 
    78.Jaggavarapu S, O’Brian MR. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function. Mol Microbiol. 2014;92:609–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.McAdams HH, Srinivasan B, Arkin AP. The evolution of genetic regulatory systems in bacteria. Nat Rev Genet. 2004;5:169–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Fourquez M, Devez A, Schaumann A, Guéneuguès A, Jouenne T, Obernosterer I, et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol Oceanogr. 2014;59:349–60.CAS 
    Article 

    Google Scholar 
    82.Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol. 2007;42:187–219.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA. High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol. 2001;183:545–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Hendrickson EL, Liu Y, Rosas-Sandoval G, Porat I, Soll D, Whitman WB, et al. Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J Bacteriol. 2008;190:2198–205.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Gifford SM, Sharma S, Booth M, Moran MA. Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J. 2013;7:281–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141:1241–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L, Vocadlo DJ, et al. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem. 2011;286:15586–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Matulewicz M, Cerezo A. Water-soluble sulfated polysaccharides from the red seaweed Chaetangium fastigiatum. Analysis of the system and the structures of the α-D-(1→3)-linked mannans. Carbohydr Polym. 1987;7:121–32.CAS 
    Article 

    Google Scholar 
    89.Kolender AA, Pujol CA, Damonte EB, Matulewicz MC, Cerezo AS. The system of sulfated α-(1→3)-linked D-mannans from the red seaweed Nothogenia fastigiata: structures, antiherpetic and anticoagulant properties. Carbohydr Res. 1997;304:53–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert WJAR. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    91.Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha‐and beta‐mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Biersmith A, Benner R. Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem. 1998;63:131–44.CAS 
    Article 

    Google Scholar 
    95.Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.DeLong EF, Beja O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol. 2010;8:e1000359.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 2018;12:1047–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Kim SY, Waschuk SA, Brown LS, Jung KH. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Biochim Biophys Acta. 2008;1777:504–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 2000;275:11915–20.Article 

    Google Scholar 
    101.Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10:336–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Intrataxonomic trends in herbivore enamel δ13C are decoupled from ecosystem woody cover

    1.Potts, R. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13 (2013).Article 

    Google Scholar 
    2.Kingston, J. D. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. Am. J. Phys. Anthropol. 134, 20–58 (2007).Article 

    Google Scholar 
    3.Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).CAS 
    Article 

    Google Scholar 
    4.Campisano, C. J. et al. The Hominin sites and Paleolakes Drilling Project: high-resolution paleoclimate records from the East African Rift system and their implications for understanding the environmental context of hominin evolution. PaleoAnthropology 2017, 1–43 (2017).
    Google Scholar 
    5.Lupien, R. L. et al. Vegetation change in the Baringo Basin, East Africa across the onset of Northern Hemisphere glaciation 3.3–2.6 Ma. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109426 (2019).Article 

    Google Scholar 
    6.Yost, C. L. et al. Phytoliths, pollen, and microcharcoal from the Baringo Basin, Kenya reveal savanna dynamics during the Plio-Pleistocene transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 570, 109779 (2020).Article 

    Google Scholar 
    7.Reed, K. E. Paleoecological patterns at the Hadar hominin site, Afar regional state, Ethiopia. J. Hum. Evol. 54, 743–768 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kovarovic, K., Su, D. F., Lintulaakso, K. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 351–372 (Springer, 2018).9.Barr, W. A. in Methods in Paleoecology (eds Croft, D. A., Su. D. F. & Simpson, S. W.) 339–349 (Springer, 2018).10.Fortelius, M. et al. An ecometric analysis of the fossil mammal record of the Turkana Basin. Philos. Trans. R. Soc. Lond. B 371, 20150232 (2016).Article 

    Google Scholar 
    11.Polly, P. D. et al. History matters: ecometrics and integrative climate change biology. Proc. R. Soc. Lond. B 278, 1131–1140 (2011).
    Google Scholar 
    12.Wang, Y. & Cerling, T. E. A model of fossil tooth enamel and bone diagenesis: implications for stable isotope studies and paleoenvironment reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 281–289 (1994).Article 

    Google Scholar 
    13.Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jaeger, J. J. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–318 (1996).Article 

    Google Scholar 
    14.Schoeninger, M. J., Reeser, H. & Hallin, K. Paleoenvironment of Australopithecus anamensis at Allia Bay, East Turkana, Kenya: evidence from mammalian herbivore enamel stable isotopes. J. Anthropol. Archaeol. 22, 200–207 (2003).Article 

    Google Scholar 
    15.Levin, N. E., Simpson, S. W., Quade, J., Cerling, T. E. & Frost, S. R. Herbivore enamel carbon isotopic composition and the environmental context of Ardipithecus at Gona, Ethiopia. The geology of early humans in the Horn of Africa. Geol. Soc. Am. Spec. Pap. 446, 215–234 (2008).
    Google Scholar 
    16.Levin, N. E., Haile-Selassie, Y., Frost, S. R. & Saylor, B. Z. Dietary change among hominins and cercopithecids in Ethiopia during the early Pliocene. Proc. Natl Acad. Sci. USA 112, 12304–12309 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kingston, J. D. in Paleontology and Geology of Laetoli: Human Evolution in Context (ed. Harrison, T.) 293–328 (Springer, 2011).18.Cerling, T. E. et al. Dietary changes of large herbivores in the Turkana Basin, Kenya from 4 to 1 Ma. Proc. Natl Acad. Sci. USA 112, 11467–11472 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Wynn, J. G. et al. Dietary flexibility of Australopithecus afarensis in the face of paleoecological change during the middle Pliocene: faunal evidence from Hadar, Ethiopia. J. Hum. Evol. 99, 93–106 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Robinson, J. R., Rowan, J., Campisano, C. J., Wynn, J. G. & Reed, K. E. Late Pliocene environmental change during the transition from Australopithecus to Homo. Nat. Ecol. Evol. 1, 0159 (2017).Article 

    Google Scholar 
    21.Ambrose, S. H. & DeNiro, M. J. The isotopic ecology of East African mammals. Oecologia 69, 395–406 (1986).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sponheimer, M. et al. Diets of southern African Bovidae: stable isotope evidence. J. Mammal. 84, 471–479 (2003).Article 

    Google Scholar 
    24.Tieszen, L. L., Senyimba, M. M., Imbaba, S. K. & Troughton, J. H. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37, 337–350 (1979).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Tiezsen, L. L., Boutton, T., Tesdahl, K. & Slade, N. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for the 13C analysis of diet. Oecologia 57, 32–37 (1983).Article 

    Google Scholar 
    26.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).Article 

    Google Scholar 
    27.Kingdon, J. et al. Mammals of Africa Vol. 1 (A&C Black, 2013).28.Kingston, J. D. & Harrison, T. Isotopic dietary reconstructions of Pliocene herbivores at Laetoli: implications for early hominin paleoecology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 272–306 (2007).Article 

    Google Scholar 
    29.Patterson, D. B. et al. Comparative isotopic evidence from East Turkana supports a dietary shift within the genus Homo. Nat. Ecol. Evol. 3, 1048–1056 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Sponheimer, M. & Lee-Thorp, J. A. Using carbon isotope data of fossil bovid communities for palaeoenvironmental reconstruction: research articles: human origins research in South Africa. S. Afr. J. Sci. 99, 273–275 (2003).CAS 

    Google Scholar 
    31.Lee-Thorp, J. A., Sponheimer, M. & Luyt, J. Tracking changing environments using stable carbon isotopes in fossil tooth enamel: an example from the South African hominin sites. J. Hum. Evol. 53, 595–601 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Bedaso, Z., Wynn, J. G., Alemseged, Z. & Geraads, D. Paleoenvironmental reconstruction of the Asbole fauna (Busidima Formation, Afar, Ethiopia) using stable isotopes. Geobios 43, 165–177 (2010).Article 

    Google Scholar 
    33.Bedaso, Z. K., Wynn, J. G., Alemseged, Z. & Geraads, D. Dietary and paleoenvironmental reconstruction using stable isotopes of herbivore tooth enamel from middle Pliocene Dikika, Ethiopia: implication for Australopithecus afarensis habitat and food resources. J. Hum. Evol. 64, 21–38 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Leichliter, J. N. et al. Small mammal insectivore carbon isotopes as environmental proxies in a South African savanna ecosystem. Am. J. Phys. Anthropol. 159, 206–207 (2016).
    Google Scholar 
    35.Codron, J. et al. Landscape-scale feeding patterns of African elephant inferred from carbon isotope analysis of feces. Oecologia 165, 89–99 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Marston, C. G. et al. ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape? PeerJ 8, e8622 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Hernandez-Fernández, M. & Vrba, E. S. Plio-Pleistocene climatic change in the Turkana Basin (East Africa): evidence from large mammal faunas. J. Hum. Evol. 50, 595–626 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Lintulaakso, K. & Kovarovic, K. Diet and locomotion, but not body size, differentiate mammal communities in worldwide tropical ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol. 454, 20–29 (2016).Article 

    Google Scholar 
    39.Barr, W. A. Bovid locomotor functional trait distributions reflect land cover and annual precipitation in sub-Saharan Africa. Evol. Ecol. Res. 18, 253–269 (2017).
    Google Scholar 
    40.Eronen, J. T. et al. Precipitation and large herbivorous mammals I: estimates from present-day communities. Evol. Ecol. Res. 12, 217–233 (2010).
    Google Scholar 
    41.Eronen, J. T. et al. Precipitation and large herbivorous mammals II: application to fossil data. Evol. Ecol. Res. 12, 235–248 (2010).
    Google Scholar 
    42.Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.White, T. D. et al. Macrovertebrate paleontology and the Pliocene habitat of Ardipithecus ramidus. Science 326, 67–93 (2009).Article 
    CAS 

    Google Scholar 
    44.Venter, Z. S., Cramer, M. D. & Hawkins, H. J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proc. Natl Acad. Sci. USA 107, 19691–19695 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Du, A., Robinson, J. R., Rowan, J., Lazagabaster, I. A. & Behrensmeyer, A. K. Stable carbon isotopes from paleosol carbonate and herbivore enamel document differing paleovegetation signals in the eastern African Plio-Pleistocene. Rev. Palaeobot. Palynol. 261, 41–52 (2019).Article 

    Google Scholar 
    47.Brown, F. H., McDougall, I. & Gathogo, P. N. in The Paleobiology of Australopithecus (eds Reed, K. E. et al.) 7–20 (Springer, 2013).48.McDougall, I. et al. New single crystal 40Ar/39Ar ages improve time scale for deposition of the Omo Group, Omo–Turkana Basin, East Africa. J. Geol. Soc. 169, 213–226 (2012).CAS 
    Article 

    Google Scholar 
    49.Herries, A. I. et al. in The Paleobiology of Australopithecus (eds Reed, K. E., Fleagle, J. G. & Leakey, R. E.) 21–40 (Springer, 2013).50.Pickering, R. et al. U–Pb-dated flowstones restrict South African early hominin record to dry climate phases. Nature 565, 226–229 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Erena, M. G., Bekele, A. & Debella, H. J. Diet composition of forest inhabiting Cape buffalo (Syncerus caffer caffer) in western Ethiopia. Int. J. Ecol. Environ. Sci. 45, 165–178 (2019).
    Google Scholar 
    52.Pianka, E. R. in Theoretical Ecology. Principles and Applications (ed. May, R. M.) 114–141 (Blackwell Scientific, 1976).53.Schoener, T. W. The controversy over interspecific competition: despite spirited criticism, competition continues to occupy a major domain in ecological thought. Am. Sci. 70, 586–595 (1982).
    Google Scholar 
    54.Gordon, I. J. & Prins, H. H. T. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 309–321 (Springer, 2008).55.O’Kane, C. A., Duffy, K. J., Page, B. R. & Macdonald, D. W. Effects of resource limitation on habitat usage by the browser guild in Hluhluwe-iMfolozi Park, South Africa. J. Trop. Ecol. 29, 39–47 (2013).Article 

    Google Scholar 
    56.Codron, J. et al. Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772 (2005).Article 

    Google Scholar 
    57.Codron, D., Codron, J., Lee-thorp, A. J., Sponheimer, M. & Brink, S. J. Dietary variation in impala Aepyceros melampus recorded by carbon isotope composition of feces. Acta Zool. Sin. 52, 1015–1025 (2006).CAS 

    Google Scholar 
    58.Uno, K. T. et al. High-resolution stable isotope profiles of modern elephant (Loxodonta africana) tusk dentin and tail hair from Kenya: implications for identifying seasonal variability in climate, ecology, and diet in ancient proboscideans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109962 (2020).Article 

    Google Scholar 
    59.Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Owen-Smith, R. N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).61.Uno, K. T. et al. Forward and inverse methods for extracting climate and diet information from stable isotope profiles in proboscidean molars. Quat. Intern. 557, 92–109 (2020).Article 

    Google Scholar 
    62.White, F. The Vegetation of Africa: A Descriptive Memoir to Accompany the UNESCO/AETFAT/UNSO Vegetation Map of Africa (3 plates), 1:5,000,000 (UNESCO, 1983).63.Uno, K. T. et al. A Pleistocene palaeovegetation record from plant wax biomarkers from the Nachukui Formation, West Turkana, Kenya. Philos. Trans. R. Soc. Lond. B 371, 20150235 (2016).Article 
    CAS 

    Google Scholar 
    64.Behrensmeyer, A. K., Kidwell, S. M. & Gastaldo, R. A. Taphonomy and paleobiology. Paleobiology 26, 103–147 (2000).Article 

    Google Scholar 
    65.Faith, J. T., Du, A. & Rowan, J. Addressing the effects of sampling on ecometric-based paleoenvironmental reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol 528, 175–185 (2019).Article 

    Google Scholar 
    66.Shorrocks, B. & Bates, W. The Biology of African Savannahs (Oxford Univ. Press, 2015).67.Tieszen, L. L. Natural variations in the carbon isotope values of plants: implications for archaeology, ecology, and paleoecology. J. Archaeol. Sci. 18, 227–248 (1991).Article 

    Google Scholar 
    68.Cornwell, W. K. et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Glob. Ecol. Biogeogr. 27, 1056–1067 (2018).Article 

    Google Scholar 
    69.Luyt, J., Hare, V. J. & Sealy, J. The relationship of ungulate δ13C and environment in the temperate biome of southern Africa, and its palaeoclimatic application. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 282–291 (2019).Article 

    Google Scholar 
    70.Protected Planet: The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.net71.ArcGIS Desktop Release 10 (Environmental Systems Research Institute, 2012).72.Ogutu, J. et al. Changing wildlife populations in Nairobi national park and adjoining Athi-Kaputiei plains: collapse of the migratory wildebeest. Open Conserv. Biol. J. 7, 11–26 (2013).Article 

    Google Scholar 
    73.Forest Atlas of the Democratic Republic of the Congo (Ministry of Environment and Sustainable Development of the Democratic Republic of the Congo and World Resources Institute, 2020); https://www.wri.org/resources/maps/forest-atlas-democratic-republic-congo74.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/75.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    Adaptation to chronic drought modifies soil microbial community responses to phytohormones

    1.Bardgett, R. D. Plant-soil interactions in a changing world. F1000 Biol. Rep. 3, 16 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Faure, D., Vereecke, D. & Leveau, J. H. Molecular communication in the rhizosphere. Plant Soil 321, 279–303 (2009).CAS 
    Article 

    Google Scholar 
    3.de Zelicourt, A., Al-Yousif, M. & Hirt, H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant 6, 242–245 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).Article 

    Google Scholar 
    5.Jones, P., Garcia, B., Furches, A., Tuskan, G. & Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 10, 862 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.de Vries, F. T. et al. Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).Article 
    CAS 

    Google Scholar 
    7.Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. & Belimov, A. A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157, 361–379 (2010).CAS 
    Article 

    Google Scholar 
    8.Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front. Microbiol. 8, 2104 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Xu, L. & Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 49, 1–6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wittenmeyer, L. & Merbach, W. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J. Plant Nutr. Soil Sci. 168, 531–540 (2005).Article 
    CAS 

    Google Scholar 
    12.Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    14.Hamer, U. & Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 37, 445–454 (2005).CAS 
    Article 

    Google Scholar 
    15.Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A. & Brookes, P. C. Soil microbial biomass activation by trace amounts of readily available substrate. Biol. Fertil. Soils 42, 542–549 (2006).Article 

    Google Scholar 
    16.Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    17.Fahad, S. et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921 (2015).Article 

    Google Scholar 
    18.Speirs, J., Binney, A., Collins, M., Edwards, E. & Loveys, B. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J. Exp. Bot. 64, 1907–1916 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McAdam, S. A., Brodribb, T. J. & Ross, J. J. Shoot‐derived abscisic acid promotes root growth. Plant Cell Environ. 39, 652–659 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ibort, P., Molina, S., Ruiz-Lozano, J. M. & Aroca, R. Molecular insights into the involvement of a never ripe receptor in the interaction between two beneficial soil bacteria and tomato plants under well-watered and drought conditions. Mol. Plant Microbe Interact. 31, 633–650 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Timmusk, S. et al. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, e17968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ghosh, D., Gupta, A. & Mohapatra, S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77, 265–278 (2019).CAS 
    Article 

    Google Scholar 
    23.Carvalhais, L. C., Dennis, P. G. & Schenk, P. M. Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl. Soil Ecol. 84, 1–5 (2014).Article 

    Google Scholar 
    24.Olds, C. L., Glennon, E. K. & Luckhart, S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect. 20, 484–492 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hartung, W., Sauter, A., Turner, N. C., Fillery, I. & Heilmeier, H. Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184, 105–110 (1996).CAS 
    Article 

    Google Scholar 
    26.Belimov, A. A. et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. 74, 84–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Glick, B. R., Penrose, D. M. & Li, J. P. A model for the lowering of plant ethylene concentrations by plant growth-promoting rhizobacteria. J. Theor. Biol. 190, 63–68 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.de Ollas, C. & Dodd, I. C. Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Carvalhais, L. C. et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant Microbe Interact. 28, 1049–1058 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ngumbi, E. & Kloepper, J. Bacterial-mediated drought tolerance: current and future prospects. Appl. Soil Ecol. 105, 109–125 (2016).Article 

    Google Scholar 
    32.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kudoyarova, G. et al. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 10, 1368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Wallenstein, M. D. & Hall, E. K. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109, 35–47 (2012).Article 

    Google Scholar 
    35.Martiny, J. B. et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 11, 490–499 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Grime, J. P. et al. The response of two contrasting limestone grasslands to simulated climate change. Science 289, 762–765 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).Article 

    Google Scholar 
    38.Sayer, E. J. et al. Links between soil microbial communities and plant traits in a species‐rich grassland under long‐term climate change. Ecol. Evol. 7, 855–862 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Trinder, S., Askew, A. P. & Whitlock, R. Climate‐driven evolutionary change in reproductive and early‐acting life‐history traits in the perennial grass Festuca ovina. J. Ecol. 108, 1398–1410 (2020).CAS 
    Article 

    Google Scholar 
    40.Fridley, J. D., Grime, J. P., Askew, A. P., Moser, B. & Stevens, C. J. Soil heterogeneity buffers community response to climate change in species‐rich grassland. Glob. Change Biol. 17, 2002–2011 (2011).Article 

    Google Scholar 
    41.Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).CAS 
    Article 

    Google Scholar 
    43.Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).CAS 
    Article 

    Google Scholar 
    44.Chanclud, E. & Morel, J. B. Plant hormones: a fungal point of view. Mol. Plant Pathol. 17, 1289–1297 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Sembdner, G. A. P. B. & Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Biol. 44, 569–589 (1993).CAS 
    Article 

    Google Scholar 
    46.Eng, F. et al. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ 9, e10873 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fuchslueger, L. et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 104, 1453–1465 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    49.Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    51.Van Gestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting: the fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    52.Belimov, A. A. et al. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).CAS 
    Article 

    Google Scholar 
    53.Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kakumanu, M. L., Ma, L. & Williams, M. A. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Sci. Rep. 9, 1–12 (2019).CAS 

    Google Scholar 
    56.Puertolas, J., Alcobendas, R., Alarcón, J. J. & Dodd, I. C. Long‐distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ. 36, 1465–1475 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Axtell, C. A. & Beattie, G. A. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68, 4604–4612 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wesener, F. & Tietjen, B. Primed to be strong, primed to be fast: modeling benefits of microbial stress responses. FEMS Microbiol. Ecol. 95, 114 (2019).Article 
    CAS 

    Google Scholar 
    59.Andrade‐Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming: a meta‐analysis. Environ. Microbiol. 18, 1277–1288 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Grime, J. P. et al. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl Acad. Sci. USA 105, 10028–10032 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Giannetta, B., Plaza, C., Zaccone, C., Vischetti, C. & Rovira, P. Ecosystem type effects on the stabilization of organic matter in soils: combining size fractionation with sequential chemical extractions. Geoderma 353, 423–434 (2019).CAS 
    Article 

    Google Scholar 
    62.Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tworkoski, T., Wisniewski, M. & Artlip, T. Application of BABA and s-ABA for drought resistance in apple. J. Appl. Hortic. 13, 95–90 (2011).Article 

    Google Scholar 
    64.Rohwer, C. L. & Erwin, J. E. Horticultural applications of jasmonates: a review. J. Hortic. Sci. Biotechnol. 83, 283–304 (2008).CAS 
    Article 

    Google Scholar 
    65.Creamer, R. E. et al. An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biol. Fertil. Soils 45, 623–633 (2009).CAS 
    Article 

    Google Scholar 
    66.Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).67.Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).Article 

    Google Scholar 
    68.Bardgett, R. D. & McAlister, E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).Article 

    Google Scholar 
    69.Bardgett, R. D., Hobbs, P. J. & Frostegård, Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).Article 

    Google Scholar 
    70.Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: turnover and microbial utilization. Plant Soil 416, 243–257 (2017).CAS 
    Article 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).72.Bates, D. M., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    73.Cohen, J. The effect size index: d. Stat. Power Anal. Behav. Sci. 2, 284–288 (1988).
    Google Scholar 
    74.Anderson, T. H. & Domsch, A. K. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 25, 393–395 (1993).Article 

    Google Scholar 
    75.Pinheiro, J.C., Bates, D.M. Mixed-Effects Models in S and S-PLUS (Springer, 2000).76.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).Article 

    Google Scholar 
    77.Sayer, E. J. et al. Data from: Adaptation to chronic drought modifies soil microbial community responses to phytohormones. figshare https://doi.org/10.6084/m9.figshare.14130065 (2021). More