Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia
1.Bonizzoni, M. et al. On the origins of medfly invasion and expansion in Australia. Mol. Ecol. 13, 3845–3855 (2004).CAS
PubMed
Article
Google Scholar
2.Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLoS ONE 9, e106268 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
3.Karsten, M., van Vuuren, B. J., Addison, P. & Terblanche, J. S. Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: Are port interceptions and quarantine protocols successfully preventing new invasions?. Divers. Distrib. 21, 813–825 (2015).Article
Google Scholar
4.Rodriguero, M. S. et al. Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 6, 5431–5445 (2016).PubMed
PubMed Central
Article
Google Scholar
5.Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).Article
Google Scholar
6.Lombaert, E. et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol. Invasions 20, 665–677 (2018).Article
Google Scholar
7.Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS
PubMed
Article
Google Scholar
8.Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).PubMed
Article
Google Scholar
9.Takano, S. et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc. Natl. Acad. Sci. USA 114, 6110–6115 (2017).CAS
PubMed
Article
Google Scholar
10.Radcliffe, E. B. & Flanders, K. L. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 3, 225–242 (1998).Article
Google Scholar
11.Kuwata, R., Tokuda, M., Yamaguchi, D. & Yukawa, J. Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae). J. Appl. Entomol. 129, 191–197 (2005).CAS
Article
Google Scholar
12.Skuhrovec, J. Host plants of weevils of the genus Hypera (Coleoptera: Curculionidae) occurring in the Czech Republic. Klapalekiana 41, 215–255 (2005).
Google Scholar
13.Wood, K. A., Armbrust, E. J., Bartell, D. P. & Irwin, B. J. The literature of arthropods associated with alfalfa. V. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal), and the Egyptian alfalfa weevil, Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae). Illinois Agricultural Experimental Station, Special Publication, 54 (1978).14.Kimura, H., Okumura, M. & Yoshida, T. Emergence of and recent damage by the alfalfa weevil. Shokubutsu Boeki (Plant Protection) 42, 498–501 (in Japanese) (1988).15.CAB International crop protection compendium. CAB International. http://www.cabicompendium.org/cpc/home.asp (2013).16.Titus, E. G. On the life history of the alfalfa leaf-weevil. J. Econ. Entomol. 3, 459–470 (1910).Article
Google Scholar
17.Wehrle, L. P. The discovery of an alfalfa weevil (Hypera brunneipennis Boheman) in Arizona. J. Econ. Entomol. 33, 119–121 (1940).Article
Google Scholar
18.Poos, F. W. & Bissell, T. L. The alfalfa weevil in Maryland. J. Econ. Entomol. 46, 178–179 (1953).Article
Google Scholar
19.Volker, K. C. & Simpson, R. G. Behavior of alfalfa weevil larvae affecting the establishment of Tetrastichus incertus in Colorado. Environ. Entomol. 4, 742–744 (1975).Article
Google Scholar
20.Salt, G. & van den Bosch, R. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an Ichneumon wasp. J. Invertebr. Pathol. 9, 164–177 (1967).Article
Google Scholar
21.Maund, C. M. & Hsiao, T. H. Differential encapsulation of two Bathyplectes parasitoids among alfalfa weevil strains, Hypera postica (Gyllenhal). Can. Entomol. 123, 197–203 (1991).Article
Google Scholar
22.Hsiao, T. H. Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In The ecology of agricultural pests: biochemical approaches (eds, Symondson, W. O. C. & Liddell, J. E.). 57–71 (Chapman & Hall, 1996).23.Hsiao, T. H. & Stutz, J. M. Discrimination of alfalfa weevil strains by allozyme analysis. Entomol. Exp. Appl. 37, 113–121 (1985).CAS
Article
Google Scholar
24.Erney, S. J., Pruess, K. P., Danielson, S. D. & Powers, T. O. Molecular differentiation of alfalfa weevil strains (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 89, 804–811 (1996).CAS
Article
Google Scholar
25.Böttger, J. A. A. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J. Econ. Entomol. 106, 426–436 (2013).PubMed
Article
CAS
Google Scholar
26.Iwase, S., Nakahira, K., Tuda, M., Kagoshima, K. & Takagi, M. Host-plant dependent population genetics of the invading weevil Hypera postica. Bull. Entomol. Res. 105, 92–100 (2015).CAS
PubMed
Article
Google Scholar
27.White, C. E., Armbrust, E. J. & Ashley, J. Cross-mating studies of eastern and western strains of alfalfa weevil. J. Econ. Entomol. 65, 85–89 (1972).Article
Google Scholar
28.Iwase, S. & Tani, S. New haplotype and inter-strain reproductive compatibility of Wolbachia-uninfected alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), in Japan. Entomol. Sci. 19, 72–76 (2016).Article
Google Scholar
29.Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).CAS
PubMed
Article
Google Scholar
30.LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
31.Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).CAS
PubMed
Article
Google Scholar
32.Hale, L. R. & Hoffmann, A. A. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution 44, 1383–1386 (1990).PubMed
Article
Google Scholar
33.Ballard, J. W. O. & Kreitman, M. Unravelling selection in the mitochondrial genome of Drosophila. Genetics 138, 757–772 (1994).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Johnstone, R. A. & Hurst, G. D. D. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol. J. Linn. Soc. 58, 453–470 (1996).Article
Google Scholar
35.Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS
PubMed
Article
Google Scholar
37.Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K. & Jaenike, J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 2049–2058 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).CAS
PubMed
Article
Google Scholar
39.Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS
Article
Google Scholar
40.Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
41.Rand, D. M., Haney, R. A. & Fry, A. J. Cytonuclear coevolution: the genomics of cooperation. TRENDS Ecol. Evol. 19, 645–653 (2004).PubMed
Article
Google Scholar
42.Arnqvist, G. et al. The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64, 3354–3363 (2010).CAS
PubMed
Article
Google Scholar
43.Blickenstaff, C. C. Partial intersterility of eastern and western US strains of the alfalfa weevil. Ann. Entomol. Soc. Am. 58, 523–526 (1965).Article
Google Scholar
44.Hsiao, T. H. & Hsiao, C. Hybridization and cytoplasmic incompatibility among alfalfa weevil strains. Entomol. Exp. Appl. 37, 155–159 (1985).Article
Google Scholar
45.Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216, 383–384 (1967).ADS
CAS
PubMed
Article
Google Scholar
46.Iwase, S. et al. Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment. Biol. Invasions 17, 3639–3648 (2015).Article
Google Scholar
47.Sanaei, E. et al. Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol. Evol. 9, 9546–9563 (2019).PubMed
PubMed Central
Article
Google Scholar
48.Ros, V. I. D., Fleming, V. M., Feil, E. J. & Breeuwer, J. A. J. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036–1043 (2009).CAS
PubMed
Article
Google Scholar
49.Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).
Google Scholar
50.Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).CAS
PubMed
Article
Google Scholar
51.Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).CAS
PubMed
Article
Google Scholar
52.Jäckel, R., Mora, D. & Dobler, S. Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol. Ecol. 22, 4241–4255 (2013).PubMed
Article
CAS
Google Scholar
53.Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).PubMed
Article
Google Scholar
54.Jansen, V. A. A., Turelli, M. & Godfray, H. C. J. Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B Biol. Sci. 275, 2769–2776 (2008).
Google Scholar
55.Clancy, D. J. & Hoffmann, A. A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 86, 13–24 (1998).Article
Google Scholar
56.Bordenstein, S. R. & Bordenstein, S. R. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6, e29106 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
57.Kamo, T. et al. Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry 69, 1166–1172 (2008).CAS
PubMed
Article
Google Scholar
58.Megías, C., Cortes-Giraldo, I., Giron-Calle, J., Alaiz, M. & Vioque, J. Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatal. Agric. Biotechnol. 8, 126–129 (2016).Article
Google Scholar
59.Rosenthal, G. A. & Dahlman, D. L. Incorporation of L-canavanine into proteins and the expression of its antimetabolic effects. J. Agric. Food Chem. 39, 987–990 (1991).CAS
Article
Google Scholar
60.Kamo, T., Tokuoka. Y. & Miyazaki, M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: Effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 38, 1552–1560 (2012).61.Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).Article
Google Scholar
62.Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).PubMed
PubMed Central
Article
Google Scholar
63.Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).CAS
PubMed
Article
Google Scholar
64.Jordal, B. H. & Kambestad, M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol. Ecol. Resour. 14, 7–17 (2013).PubMed
Article
CAS
Google Scholar
65.Quiros, C. F. & Bauchan, G. R. The genus Medicago and the origin of the Medicago sativa complex. In Alfalfa and alfalfa improvement (eds, Hanson, A. A., Barnes, D. K. & Hill, R. R.). 93–124 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1988).66.Small, E. Alfalfa and Relatives: Evolution and Classification of Medicago (NRC Research Press, 2011).
Google Scholar
67.FAO Statistics Division. FAOSTAT: Crops and livestock products. http://www.fao.org/faostat/en/#data/TP (2017).68.Simon, C. A. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS
Article
Google Scholar
69.Kim, C. G. et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Mol. Biol. Evol. 17, 137–145 (2000).CAS
PubMed
Article
Google Scholar
70.Holden, P. R., Brookfield, J. F. Y. & Jones, P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 240, 213–220 (1993).CAS
PubMed
Article
Google Scholar
71.Kondo, N. I. et al. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zool. Sci. 28, 501–508 (2011).ADS
Article
Google Scholar
72.Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogeny. Biometrics 17, 754–755 (2001).CAS
Google Scholar
74.Nylander, J. A. A. MrAIC.pl. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University (2004).75.Rambaut, A. & Drummond, A. J. Tracer v1.5, http://beast.bio.ed.ac.uk/ (2009).76.Tajima, F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS
PubMed
Article
Google Scholar
79.Yang, Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
80.Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).ADS
CAS
PubMed
Article
Google Scholar
81.Haran, J., Koutroumpa, F., Magnoux, E., Roques, A. & Roux, G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J. Zoolog. Syst. Evol. Res. 53, 109–115 (2015).Article
Google Scholar
82.Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Proces. Symp. Int. Proc. 2, 184 (2002).
Google Scholar
83.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).CAS
PubMed
PubMed Central
Article
Google Scholar
84.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed
Article
Google Scholar
85.Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS
PubMed
Google Scholar
87.Raymond, M. & Rousset, F. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article
Google Scholar
88.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).ADS
CAS
PubMed
MATH
Article
Google Scholar
89.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).ADS
MathSciNet
PubMed
PubMed Central
Article
CAS
Google Scholar
90.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed
PubMed Central
Article
Google Scholar
91.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
92.Bielejec, F. et al. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar More