More stories

  • in

    Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia

    1.Bonizzoni, M. et al. On the origins of medfly invasion and expansion in Australia. Mol. Ecol. 13, 3845–3855 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Tuda, M., Kagoshima, K., Toquenaga, Y. & Arnqvist, G. Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLoS ONE 9, e106268 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Karsten, M., van Vuuren, B. J., Addison, P. & Terblanche, J. S. Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: Are port interceptions and quarantine protocols successfully preventing new invasions?. Divers. Distrib. 21, 813–825 (2015).Article 

    Google Scholar 
    4.Rodriguero, M. S. et al. Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 6, 5431–5445 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Kébé, K. et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host Vigna unguiculata. J. Biogeogr. 44, 2515–2526 (2017).Article 

    Google Scholar 
    6.Lombaert, E. et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol. Invasions 20, 665–677 (2018).Article 

    Google Scholar 
    7.Tuda, M., Ronn, J., Buranapanichpan, S., Wasano, N. & Arnqvist, G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 15, 3541–3551 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).PubMed 
    Article 

    Google Scholar 
    9.Takano, S. et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc. Natl. Acad. Sci. USA 114, 6110–6115 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Radcliffe, E. B. & Flanders, K. L. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 3, 225–242 (1998).Article 

    Google Scholar 
    11.Kuwata, R., Tokuda, M., Yamaguchi, D. & Yukawa, J. Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae). J. Appl. Entomol. 129, 191–197 (2005).CAS 
    Article 

    Google Scholar 
    12.Skuhrovec, J. Host plants of weevils of the genus Hypera (Coleoptera: Curculionidae) occurring in the Czech Republic. Klapalekiana 41, 215–255 (2005).
    Google Scholar 
    13.Wood, K. A., Armbrust, E. J., Bartell, D. P. & Irwin, B. J. The literature of arthropods associated with alfalfa. V. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal), and the Egyptian alfalfa weevil, Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae). Illinois Agricultural Experimental Station, Special Publication, 54 (1978).14.Kimura, H., Okumura, M. & Yoshida, T. Emergence of and recent damage by the alfalfa weevil. Shokubutsu Boeki (Plant Protection) 42, 498–501 (in Japanese) (1988).15.CAB International crop protection compendium. CAB International. http://www.cabicompendium.org/cpc/home.asp (2013).16.Titus, E. G. On the life history of the alfalfa leaf-weevil. J. Econ. Entomol. 3, 459–470 (1910).Article 

    Google Scholar 
    17.Wehrle, L. P. The discovery of an alfalfa weevil (Hypera brunneipennis Boheman) in Arizona. J. Econ. Entomol. 33, 119–121 (1940).Article 

    Google Scholar 
    18.Poos, F. W. & Bissell, T. L. The alfalfa weevil in Maryland. J. Econ. Entomol. 46, 178–179 (1953).Article 

    Google Scholar 
    19.Volker, K. C. & Simpson, R. G. Behavior of alfalfa weevil larvae affecting the establishment of Tetrastichus incertus in Colorado. Environ. Entomol. 4, 742–744 (1975).Article 

    Google Scholar 
    20.Salt, G. & van den Bosch, R. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an Ichneumon wasp. J. Invertebr. Pathol. 9, 164–177 (1967).Article 

    Google Scholar 
    21.Maund, C. M. & Hsiao, T. H. Differential encapsulation of two Bathyplectes parasitoids among alfalfa weevil strains, Hypera postica (Gyllenhal). Can. Entomol. 123, 197–203 (1991).Article 

    Google Scholar 
    22.Hsiao, T. H. Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In The ecology of agricultural pests: biochemical approaches (eds, Symondson, W. O. C. & Liddell, J. E.). 57–71 (Chapman & Hall, 1996).23.Hsiao, T. H. & Stutz, J. M. Discrimination of alfalfa weevil strains by allozyme analysis. Entomol. Exp. Appl. 37, 113–121 (1985).CAS 
    Article 

    Google Scholar 
    24.Erney, S. J., Pruess, K. P., Danielson, S. D. & Powers, T. O. Molecular differentiation of alfalfa weevil strains (Coleoptera: Curculionidae). Ann. Entomol. Soc. Am. 89, 804–811 (1996).CAS 
    Article 

    Google Scholar 
    25.Böttger, J. A. A. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J. Econ. Entomol. 106, 426–436 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    26.Iwase, S., Nakahira, K., Tuda, M., Kagoshima, K. & Takagi, M. Host-plant dependent population genetics of the invading weevil Hypera postica. Bull. Entomol. Res. 105, 92–100 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.White, C. E., Armbrust, E. J. & Ashley, J. Cross-mating studies of eastern and western strains of alfalfa weevil. J. Econ. Entomol. 65, 85–89 (1972).Article 

    Google Scholar 
    28.Iwase, S. & Tani, S. New haplotype and inter-strain reproductive compatibility of Wolbachia-uninfected alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), in Japan. Entomol. Sci. 19, 72–76 (2016).Article 

    Google Scholar 
    29.Werren, J. H. Biology of Wolbachia. Annu. Rev. Entomol. 42, 587–609 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.LePage, D. P. et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature 543, 243–247 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Bailly-Bechet, M. et al. How long does Wolbachia remain on board?. Mol. Biol. Evol. 34, 1183–1193 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Hale, L. R. & Hoffmann, A. A. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution 44, 1383–1386 (1990).PubMed 
    Article 

    Google Scholar 
    33.Ballard, J. W. O. & Kreitman, M. Unravelling selection in the mitochondrial genome of Drosophila. Genetics 138, 757–772 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Johnstone, R. A. & Hurst, G. D. D. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol. J. Linn. Soc. 58, 453–470 (1996).Article 

    Google Scholar 
    35.Jiggins, F. M. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics 164, 5–12 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Shoemaker, D. D., Dyer, K. A., Ahrens, M., McAbee, K. & Jaenike, J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics 168, 2049–2058 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cariou, M., Duret, L. & Charlat, S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 30, 2204–2210 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Teixeira, L., Ferreira, A. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 
    Article 

    Google Scholar 
    40.Brownlie, J. C. et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Rand, D. M., Haney, R. A. & Fry, A. J. Cytonuclear coevolution: the genomics of cooperation. TRENDS Ecol. Evol. 19, 645–653 (2004).PubMed 
    Article 

    Google Scholar 
    42.Arnqvist, G. et al. The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution 64, 3354–3363 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Blickenstaff, C. C. Partial intersterility of eastern and western US strains of the alfalfa weevil. Ann. Entomol. Soc. Am. 58, 523–526 (1965).Article 

    Google Scholar 
    44.Hsiao, T. H. & Hsiao, C. Hybridization and cytoplasmic incompatibility among alfalfa weevil strains. Entomol. Exp. Appl. 37, 155–159 (1985).Article 

    Google Scholar 
    45.Laven, H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216, 383–384 (1967).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Iwase, S. et al. Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment. Biol. Invasions 17, 3639–3648 (2015).Article 

    Google Scholar 
    47.Sanaei, E. et al. Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae). Ecol. Evol. 9, 9546–9563 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Ros, V. I. D., Fleming, V. M., Feil, E. J. & Breeuwer, J. A. J. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae). Appl. Environ. Microbiol. 75, 1036–1043 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Avise, J. C. Phylogeography: The history and formation of species (Harvard University Press, 2000).
    Google Scholar 
    50.Narita, S., Nomura, M., Kato, Y. & Fukatsu, T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol. Ecol. 15, 1095–1108 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Raychoudhury, R. et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity 104, 318–326 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Jäckel, R., Mora, D. & Dobler, S. Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol. Ecol. 22, 4241–4255 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Jiang, W. et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae). Infect. Genet. Evol. 27, 202–211 (2014).PubMed 
    Article 

    Google Scholar 
    54.Jansen, V. A. A., Turelli, M. & Godfray, H. C. J. Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B Biol. Sci. 275, 2769–2776 (2008).
    Google Scholar 
    55.Clancy, D. J. & Hoffmann, A. A. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 86, 13–24 (1998).Article 

    Google Scholar 
    56.Bordenstein, S. R. & Bordenstein, S. R. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE 6, e29106 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Kamo, T. et al. Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry 69, 1166–1172 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Megías, C., Cortes-Giraldo, I., Giron-Calle, J., Alaiz, M. & Vioque, J. Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatal. Agric. Biotechnol. 8, 126–129 (2016).Article 

    Google Scholar 
    59.Rosenthal, G. A. & Dahlman, D. L. Incorporation of L-canavanine into proteins and the expression of its antimetabolic effects. J. Agric. Food Chem. 39, 987–990 (1991).CAS 
    Article 

    Google Scholar 
    60.Kamo, T., Tokuoka. Y. & Miyazaki, M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: Effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 38, 1552–1560 (2012).61.Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    62.Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Taberlet, P., Fumagalli, L., Wust-Saucy, A. G. & Cosson, J. F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Jordal, B. H. & Kambestad, M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol. Ecol. Resour. 14, 7–17 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Quiros, C. F. & Bauchan, G. R. The genus Medicago and the origin of the Medicago sativa complex. In Alfalfa and alfalfa improvement (eds, Hanson, A. A., Barnes, D. K. & Hill, R. R.). 93–124 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1988).66.Small, E. Alfalfa and Relatives: Evolution and Classification of Medicago (NRC Research Press, 2011).
    Google Scholar 
    67.FAO Statistics Division. FAOSTAT: Crops and livestock products. http://www.fao.org/faostat/en/#data/TP (2017).68.Simon, C. A. et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).CAS 
    Article 

    Google Scholar 
    69.Kim, C. G. et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Mol. Biol. Evol. 17, 137–145 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Holden, P. R., Brookfield, J. F. Y. & Jones, P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 240, 213–220 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Kondo, N. I. et al. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zool. Sci. 28, 501–508 (2011).ADS 
    Article 

    Google Scholar 
    72.Baldo, L. et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 72, 7098–7110 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Huelsenbeck, J. P. & Ronquist, F. MrBayes: Bayesian inference of phylogeny. Biometrics 17, 754–755 (2001).CAS 

    Google Scholar 
    74.Nylander, J. A. A. MrAIC.pl. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University (2004).75.Rambaut, A. & Drummond, A. J. Tracer v1.5, http://beast.bio.ed.ac.uk/ (2009).76.Tajima, F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fu, Y.-X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Yang, Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Song, H., Buhay, J. E., Whiting, M. F. & Crandall, K. A. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA 105, 13486–13491 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Haran, J., Koutroumpa, F., Magnoux, E., Roques, A. & Roux, G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J. Zoolog. Syst. Evol. Res. 53, 109–115 (2015).Article 

    Google Scholar 
    82.Clement, M., Snell, Q., Walker, P., Posada, D. & Crandall, K. TCS: Estimating gene genealogies. Parallel Distrib. Proces. Symp. Int. Proc. 2, 184 (2002).
    Google Scholar 
    83.Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    85.Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).CAS 
    PubMed 

    Google Scholar 
    87.Raymond, M. & Rousset, F. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    88.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    89.Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 5, e1000520 (2009).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Bielejec, F. et al. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 33, 2167–2169 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Dynamic global monitoring needed to use restoration of forest cover as a climate solution

    1.Griscom, B. W. et al. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    Article 

    Google Scholar 
    2.Anderson, C. M. et al. Science 363, 933–934 (2019).CAS 
    Article 

    Google Scholar 
    3.Bastin, J.-F. et al. Science 365, 6–9 (2019).Article 

    Google Scholar 
    4.Cook-Patton, S. C. et al. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. S. Science 368, 580–582 (2020).CAS 
    Article 

    Google Scholar 
    6.Fargione, J. et al. Front. For. Glob. Change (in the press).7.West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).CAS 
    Article 

    Google Scholar 
    8.Brancalion, P. H. S. et al. L. Degrad. Dev. 32, 830–841 (2020).Article 

    Google Scholar 
    9.Sills, E. O. et al. PLoS ONE 10, e0132590 (2015).Article 

    Google Scholar 
    10.Ferraro, P. J. & Hanauer, M. M. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    11.Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    12.Reytar, K. et al. The challenge of tracking how a trillion trees grow. World Resources Institute https://www.wri.org/blog/2020/07/trillion-trees-tracking-challenges (2020).13.Shoch, D. et al. Methodology For Improved Forest Management (Family Forest Carbon Program, 2020).14.McDowell, N. G. et al. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    15.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018). More

  • in

    Woody-biomass projections and drivers of change in sub-Saharan Africa

    1.Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).CAS 
    Article 

    Google Scholar 
    2.Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).CAS 
    Article 

    Google Scholar 
    3.Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).CAS 
    Article 

    Google Scholar 
    4.Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).Article 

    Google Scholar 
    5.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    Article 

    Google Scholar 
    6.Bond, W. J. & Keane, R. E. Fires, Ecological Effects of☆. In Reference Module in Life Sciences (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-809633-8.02098-77.Valentini, R. et al. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014).Article 
    CAS 

    Google Scholar 
    8.Williams, C. A. et al. Africa and the global carbon cycle. Carbon Balance Manag. 2, 3 (2007).Article 
    CAS 

    Google Scholar 
    9.Hanan, N. P. Agroforestry in the Sahel. Nat. Geosci. 11, 296–297 (2018).Article 
    CAS 

    Google Scholar 
    10.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).Article 

    Google Scholar 
    11.Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).CAS 
    Article 

    Google Scholar 
    12.Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).CAS 
    Article 

    Google Scholar 
    13.Anchang, J. Y. et al. Trends in woody and herbaceous vegetation in the savannas of West Africa. Remote Sens. 11, 576 (2019).Article 

    Google Scholar 
    14.Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).Article 

    Google Scholar 
    15.Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).Article 
    CAS 

    Google Scholar 
    16.Schneider, S. H. The greenhouse effect: science and policy. Science 243, 771–781 (1989).CAS 
    Article 

    Google Scholar 
    17.Walsh, J. et al. Climate Change Impacts in the United States: The Third National Climate Assessment Ch. 2 (US Global Change Research Program, 2014); https://doi.org/10.7930/J0KW5CXT18.Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).Article 

    Google Scholar 
    19.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 
    Article 

    Google Scholar 
    20.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).CAS 
    Article 

    Google Scholar 
    21.Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    22.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    CAS 

    Google Scholar 
    23.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    CAS 

    Google Scholar 
    24.Hanan, N. P., Prihodko, L., Ross, C. W., Bucini, G. & Tredennick, A. T. Gridded Estimates of Woody Cover and Biomass across Sub-Saharan Africa, 2000-2004 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/177725.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    26.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).Article 

    Google Scholar 
    27.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    28.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).CAS 
    Article 

    Google Scholar 
    29.Anchang, J. Y. et al. Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.00004 (2020).30.Kahiu, M. N. & Hanan, N. P. Fire in sub-Saharan Africa: the fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 27, 946–957 (2018).Article 

    Google Scholar 
    31.Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    32.Ross, C. W. et al. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 5, 180091 (2018).Article 

    Google Scholar 
    33.Lüdeke, M. K. B., Moldenhauer, O. & Petschel-Held, G. Rural poverty driven soil degradation under climate change: the sensitivity of the disposition towards the Sahel Syndrome with respect to climate. Environ. Model. Assess. 4, 315–326 (1999).Article 

    Google Scholar 
    34.Hansfort, S. L. & Mertz, O. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39, 583 (2011).Article 

    Google Scholar 
    35.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    36.Wei, F. et al. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Glob. Change Biol. 26, 4495–4505 (2020).Article 

    Google Scholar 
    37.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).Article 

    Google Scholar 
    38.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article 

    Google Scholar 
    39.Potapov, P. et al. Mapping the World’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 2 (2008).Article 

    Google Scholar 
    40.Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A. & Schmullius, C. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556 (2008).Article 

    Google Scholar 
    41.Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 

    Google Scholar 
    42.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    43.Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    44.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).CAS 
    Article 

    Google Scholar 
    45.Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    46.Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    49.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    50.Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).Article 

    Google Scholar 
    51.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe: version 4: data grid (CGIAR Consortium for Spatial Information, 2008).52.Ross, C. W. et al. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/156653.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. https://doi.org/10.1029/2011JG001708 (2011).54.Jucker, T. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23, 177–190 (2017).Article 

    Google Scholar 
    55.Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).Article 

    Google Scholar 
    56.Molnar, C., Bischl, B. & Casalicchio, G. iml: an R package for interpretable machine learning. J. Open Source Softw. 3, 786 (2018).Article 

    Google Scholar 
    57.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’ (CRAN, 2017).58.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling (CRAN, 2016).59.Perpiñán, O. & Hijmans, R. rasterVis (CRAN, 2018).60.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).61.Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Soft. https://doi.org/10.18637/jss.v096.i01 (2020).62.Neuwirth, E. RColorBrewer: ColorBrewer Palettes (CRAN, 2014).63.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (CRAN, 2017).64.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    65.Ross, C. W., Hanan, N. P. & Prihodko, L. Prediction Maps: Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14150210.V266.Ross, C. W. R Code for Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14143799.V1 More

  • in

    Carbon tariffs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems

    1.Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).Article 

    Google Scholar 
    2.Zimmerman, J. B., Mihelcic, J. R. & Smith, J. Global stressors on water quality and quantity. Environ. Sci. Technol. 42, 4247–4254 (2008).Article 

    Google Scholar 
    3.Banwart, S. A., Nikolaidis, N. P., Zhu, Y.-G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting Earth’s critical zone. Annu. Rev. Earth Planet. Sci. Lett. 47, 333–359 (2019).Article 

    Google Scholar 
    4.Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).5.Knorr, K. H., Lischeid, G. & Blodau, C. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153, 379–392 (2009).Article 

    Google Scholar 
    6.McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).Article 

    Google Scholar 
    7.Yabusaki, S. B. et al. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ. Sci. Technol. 51, 3307–3317 (2017).Article 

    Google Scholar 
    8.Krause, S. et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 53, 6359–6376 (2017).Article 

    Google Scholar 
    9.Stumm W. & Morgan J. J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley & Sons, 1996).10.Aeschbacher, M., Vergari, D., Schwarzenbach, R. P. & Sander, M. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45, 8385–8394 (2011).Article 

    Google Scholar 
    11.Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–84 (2000).Article 

    Google Scholar 
    12.Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).Article 

    Google Scholar 
    13.Piepenbrock, A., Dippon, U., Porsch, K., Appel, E. & Kappler, A. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Acta 75, 6844–6858 (2011).Article 

    Google Scholar 
    14.Amstaetter, K., Borch, T., Larese-Casanova, P. & Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).Article 

    Google Scholar 
    15.Ilgen, A. G., Foster, A. L. & Trainor, T. P. Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochim. Cosmochim. Acta 94, 128–145 (2012).Article 

    Google Scholar 
    16.Lan, S. et al. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Res. 128, 92–101 (2018).Article 

    Google Scholar 
    17.Lovley, D. R. et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch. Hydrob. 26, 152–157 (1998).Article 

    Google Scholar 
    18.Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).Article 

    Google Scholar 
    19.Peretyazhko, T. & Sposito, G. Reducing capacity of terrestrial humic acids. Geoderma 137, 140–146 (2006).Article 

    Google Scholar 
    20.Heitmann, T. & Blodau, C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 235, 12–20 (2006).Article 

    Google Scholar 
    21.Yu, Z. G., Peiffer, S., Goettlicher, J. & Knorr, K. H. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ. Sci. Technol. 49, 5441–5449 (2015).Article 

    Google Scholar 
    22.Rose, A. L. & Waite, T. D. Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar. Chem. 84, 85–103 (2003).Article 

    Google Scholar 
    23.Bauer, I. & Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43, 4902–4908 (2009).Article 

    Google Scholar 
    24.Uchimiya, M. & Stone, A. T. Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77, 451–458 (2009).Article 

    Google Scholar 
    25.Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).Article 

    Google Scholar 
    26.Ilgen, A. G., Kukkadapu, R. K., Leung, K. & Washington, R. E. ‘Switching on’ iron in clay minerals. Environ. Sci. Nano 6, 1704–1715 (2019).Article 

    Google Scholar 
    27.Peiffer, S., dos Santos Afonso, M., Wehrli, B. & Gaechter, R. Kinetics and mechanism of the reaction of hydrogen sulfide with lepidocrocite. Environ. Sci. Technol. 26, 2408–2413 (1992).Article 

    Google Scholar 
    28.Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).Article 

    Google Scholar 
    29.Hellige, K., Pollok, K., Larese-Casanova, P., Behrends, T. & Peiffer, S. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. Geochim. Cosmochim. Acta 81, 69–81 (2012).Article 

    Google Scholar 
    30.Wan, M., Shchukarev, A., Lohmayer, R., Planer-Friedrich, B. & Peiffer, S. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environ. Sci. Technol. 48, 5076–5084 (2014).Article 

    Google Scholar 
    31.Hedderich, R. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22, 353–381 (1998).Article 

    Google Scholar 
    32.Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).Article 

    Google Scholar 
    33.Poser, A. et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17, 1003–1012 (2013).Article 

    Google Scholar 
    34.Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).Article 

    Google Scholar 
    35.Aeppli, M. et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environ. Sci. Technol. 53, 3568–3578 (2019).Article 

    Google Scholar 
    36.Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).Article 

    Google Scholar 
    37.Blodau, C. Carbon cycling in peatlands—a review of processes and controls. Environ. Rev. 10, 111–134 (2002).Article 

    Google Scholar 
    38.Gao, C., Sander, M., Agethen, S. & Knorr, K.-H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta 245, 266–277 (2019).Article 

    Google Scholar 
    39.Schaefer, M. V., Gorski, C. A. & Scherer, M. M. Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral. Environ. Sci. Technol. 45, 540–545 (2011).Article 

    Google Scholar 
    40.Pentrakova, L., Su, K., Pentrak, M. & Stucko, J. W. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48, 543–560 (2013).Article 

    Google Scholar 
    41.Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S. & Stucki, J. W. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68, 6256–6262 (2002).Article 

    Google Scholar 
    42.Li, Y. L. et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim. Cosmochim. Acta 68, 3251–3260 (2004).Article 

    Google Scholar 
    43.Liu, D. et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim. Cosmochim. Acta 75, 1057–1071 (2011).Article 

    Google Scholar 
    44.Zhang, J., Dong, H., Liu, D. & Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilicmethanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 106, 203–215 (2013).Article 

    Google Scholar 
    45.Shelobolina, E. et al. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 78, 5746–5752 (2012).Article 

    Google Scholar 
    46.Gorski, C. A. et al. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46, 9360–9368 (2012).Article 

    Google Scholar 
    47.Blodau, C., Mayer, B., Peiffer, S. & Moore, T. R. Support for an anaerobic sulfur cycle in two Canadian peatland soils. J. Geophys. Res. 112, G000364 (2007).
    Google Scholar 
    48.Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 16, GB001370 (2002).Article 

    Google Scholar 
    49.Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).Article 

    Google Scholar 
    50.Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015).Article 

    Google Scholar 
    51.Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).Article 

    Google Scholar 
    52.Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).Article 

    Google Scholar 
    53.Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015b).Article 

    Google Scholar 
    54.Findlay, A. J. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw103(2016).55.Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).Article 

    Google Scholar 
    56.Peng, C., Bryce, C., Sundman, A. & Kappler, A.Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826-18 (2019).Article 

    Google Scholar 
    57.Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210 (2011).Article 

    Google Scholar 
    58.Otte, J. M. et al. The distribution of active iron cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ. Microbiol. 20, 2483–2499 (2018).Article 

    Google Scholar 
    59.Steefel, C. I. & van Cappellen, P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990).Article 

    Google Scholar 
    60.Vinson, D. S., Block, S. E., Crossey, L. J. & Dahm, C. N. Biogeochemistry at the zone of intermittent saturation: field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico. Geosphere 3, 366–380 (2007).Article 

    Google Scholar 
    61.Frei, S., Knorr, K., Peiffer, S. & Fleckenstein, J. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: a virtual modeling experiment. J. Geophys. Res. Biogeosciences 117, G00N12 (2012).Article 

    Google Scholar 
    62.Briggs, M. A. et al. A physical explanation for the development of redox microzones in hyporheic flow. Geophys. Res. Lett. 42, 4402–4410 (2015).Article 

    Google Scholar 
    63.Stockdale, A., Davison, W. & Zhang, H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth Sci. Rev. 92, 81–97 (2009).Article 

    Google Scholar 
    64.Sawyer, A. H. Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys. Res. Lett. 42, 403–410 (2015).Article 

    Google Scholar 
    65.Arora, B., Dwivedi, D., Hubbard, S. S., Steefel, C. I. & Williams, K. H. Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 85, 27–41 (2016).Article 

    Google Scholar 
    66.Sawyer, A. H., Kaplan, L. A., Lazareva, O. & Michael, H. A. Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resour. Res. 50, 4877–4892 (2014).Article 

    Google Scholar 
    67.Posth, N., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).Article 

    Google Scholar 
    68.Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The role of dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides during redox cycling. Chem. Geol. 438, 163–170 (2016).Article 

    Google Scholar 
    69.Bishop, M. E. et al. Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochim. Cosmochim. Acta 252, 88–106 (2019).Article 

    Google Scholar 
    70.Bartsch, S. et al. River–aquifer exchange fluxes under monsoonal climate conditions. J. Hydrol. 509, 601–614 (2014).Article 

    Google Scholar 
    71.McAllister, S. M. et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329–345 (2015).Article 

    Google Scholar 
    72.Goldberg, S. D., Knorr, K. ‐H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Change Biol. 16, 220–233 (2010).Article 

    Google Scholar 
    73.Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue bog, Southern Canada. Ecosystems 14, 646–657 (2011).Article 

    Google Scholar 
    74.Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T. & Lafleur, P. M. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. J. Geophys. Res. Biogeosciences 119, 826–835 (2014).Article 

    Google Scholar 
    75.Estop-Aragonés, C., Zając, K. & Blodau, C. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition. Glob. Change Biol. 22, 2285–2300 (2016).Article 

    Google Scholar 
    76.Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Change Biol. 24, 4107–4121 (2018).Article 

    Google Scholar 
    77.Arora, B. et al. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127, 367–396 (2016).Article 

    Google Scholar 
    78.Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in Riparian Wetlands. J. Hydrol. 543, 182–196 (2016).Article 

    Google Scholar 
    79.Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B. & Versteeg, R. Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour. Res. 54, 205–222 (2018).Article 

    Google Scholar 
    80.Peiffer, S., Klemm, O., Pecher, K. & Hollerung, R. Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J. Contam. Hydrol. 10, 1–18 (1992).Article 

    Google Scholar 
    81.Wainwright, H. M. et al. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour. Res. 52, 533–551 (2016).Article 

    Google Scholar 
    82.Mellage, A. et al. Sensing coated iron-oxide nanoparticles with spectral induced polarization (SIP): experiments in natural sand packed flow-through columns. Environ. Sci. Technol. 52, 14256–14265 (2018).Article 

    Google Scholar 
    83.Revil, A., Florsch, N. & Mao, D. Induced polarization response of porous media with metallic particles—part 1: a theory for disseminated semiconductors. Geophysics 80, D525–D538 (2015).Article 

    Google Scholar 
    84.Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D. & Florsch, N. Induced polarization response of porous media with metallic particles—part 2: comparison with a broad database of experimental data. Geophysics 80, D539–D552 (2015).Article 

    Google Scholar 
    85.Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).Article 

    Google Scholar 
    86.Dwivedi, D. et al. Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River mountainous watershed, Colorado. Water Resour. Res. 54, 8456–8477 (2018).Article 

    Google Scholar 
    87.Jin, Q. & Bethke, C. M. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677 (2007).Article 

    Google Scholar 
    88.Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam—effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total Environ. 502, 526–536 (2015).Article 

    Google Scholar 
    89.Appelo, C. A. J. & Postma, D. Geochemistry, Groundwater and Pollution (CRC Press, 2004).90.Brazhkin, V. V. Metastable phases and ‘metastable’ phase diagrams. J. Phys. Condens. Matter 18, 9643–9650 (2006).Article 

    Google Scholar 
    91.Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, 2006).92.Ahmed, I. A. M. & Maher, B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proc. Natl Acad. Sci. USA 115, 1736–1741 (2018).Article 

    Google Scholar 
    93.Engel, M. H. & Macko, S. A. Organic Geochemistry. Principles and Applications (Springer, 1993).94.Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).Article 

    Google Scholar 
    95.Gorski, C. A. & Scherer, M. M. in Aquatic Redox Chemistry (eds Tratnyek, P. G. et al.) 315–343 (ACS, 2011).96.Orsetti, S., Laskov, C. & Haderlein, S. B. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)–goethite surface from AQDS speciation. Environ. Sci. Technol. 47, 14161–14168 (2013).Article 

    Google Scholar 
    97.Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016).Article 

    Google Scholar 
    98.Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).Article 

    Google Scholar  More

  • in

    How trees and forests reduce risks from climate change

    Lisa Palmer is a journalist and author of Hot, Hungry Planet: The Fight to Stop a Global Food Crisis in the Face of Climate Change (St. Martin’s Press, 2017), and the National Geographic Visiting Professor of Science Communication at the George Washington University in Washington DC. More

  • in

    Environmental conditions, diel period, and fish size influence the horizontal and vertical movements of red snapper

    Study siteThis study took place at a temperate reef called the “Chicken Rock” in waters off the coast of North Carolina, USA, between Cape Hatteras and Cape Lookout (Raleigh Bay; Fig. 1). The seafloor of the Chicken Rock is composed of low-relief hardbottom and sand. The Chicken Rock is approximately 37 m deep (Fig. 2) and is an ideal location for this study for three reasons. First, it has a relatively flat seafloor that allows for a high detection rate of acoustically tagged fish49. Second, a high-resolution bathymetric map was available for the area (C. Taylor, National Centers for Coastal Ocean Science). Third, many red snapper occupy the area, allowing us to catch and tag fish relatively easily. Recreational and commercial fishing occurs at the Chicken Rock year-round for a variety of species, but red snapper can only be retained during short open seasons that have occurred periodically since 2010.Data collectionWe quantified the fine-scale movements and distance off bottom for red snapper using VPS (Innovasea, Nova Scotia, Canada). VPS uses a time-difference-of-arrival algorithm to determine the location of coded acoustic transmitters that have been detected by at least three submersible acoustic receivers50. Highly precise fish positions (~ 1 m resolution) are possible if time is synchronized exactly across all receivers, which is accomplished by using sync tags that are either deployed independently throughout the receiver array or built into the receivers themselves. One downside of VPS is that data are not available in real time; receivers must be physically recovered to download data, and then data have to be sent to Vemco to determine fish positions. The advantages of VPS, however, are immense, especially in providing highly precise spatial positions each time acoustic signals are emitted from transmitters. VPS has been used many times to successfully quantify demersal fish movements27,28,49,50,54, and three-dimensional movements can be determined if pressure sensors are built into transmitters23,42.We deployed an array of 20 submersible VR2AR receivers at the Chicken Rock on 17 April 2019. Receivers were deployed in three rows of seven receivers, except for a single receiver in the northeast corner of the grid. Based on previously estimated detection distances of 200–400 m49,55, receivers were separated 200 m from each other, so the entire receiver grid occupied an area of approximately 400 × 1200 m (0.48 km2; Fig. 2). Each receiver was connected to a line between a 36-kg steel weight and a 28-cm diameter plastic float with 8.8 kg of buoyancy, with each receiver positioned approximately 3 m off the seafloor. Each VR2AR included its own sync tag for time synchronization and acoustic release so receivers could be retrieved at the end of the study. A TCM-1 current probe (Lowell Instruments) was attached to each of three receiver buoys spread out across our receiver array (Fig. 2) to collect minute-by-minute current speed and bottom water temperature.We also deployed a reference transmitter (Vemco V13T-1x) in the receiver array on 17 April 2019 (Fig. 2) to calculate sound speed velocity for VPS analyses and quantify positional error of transmitters in the receiver array by comparing its known location to its estimated positions over the course of the study. The reference transmitter was connected to a line with a weight at one end and a buoy at the other, had a 550–650 s random ping interval, and operated on a frequency of 69 kHz.A total of 44 red snapper were tagged in this study. Twenty-three red snapper were tagged on 7 May 2019, nineteen were tagged on 13 August 2019, one was tagged on 30 August 2019, and one was tagged on 22 September 2019 (Table 1). Most of these red snapper (N = 43) were caught via hook-and-line using either circle or J-style hooks, but one red snapper (tagged on 30 August 2019) was caught in a baited fish trap. Fish in good condition (i.e., no visible signs of barotrauma, jaw hooked, active) were tagged externally because external attachment is fast (i.e., greatly reducing surface time56) and externally attached transmitters are detected better than surgically implanted transmitters57. The downside is that transmitter retention is typically lower for externally attached transmitters compared to surgically implanted transmitters.We tagged red snapper with Vemco V13P-1 × transmitters that were 13 mm wide, 46 mm long, weighed 13 g in air, had a 130–230 s pulse interval, a 613 d battery life, and operated on a frequency of 69 kHz. Each transmitter also contained a pressure sensor, which was used to determine the depth of fish for each acoustic signal (accuracy = 1.7 m). Before field work began, stainless steel wire (0.89-mm diameter) was wrapped around the non-transmitting end of the transmitter, glued with marine adhesive (3 M 5200), and covered in heat shrink tubing. Approximately 15 cm of stainless steel wire that extended beyond the transmitter was straightened, and the end was sharpened.Upon capture, red snapper had their head and eyes covered in a wet towel and were measured for total length (mm). The sharpened transmitter wire was inserted laterally through the dorsal musculature of the fish approximately 2.5 cm posterior to, and 2.5 cm below, the insertion of the fish’s first dorsal spine. The wire was pushed laterally through the fish until the transmitter was pulled firmly against the fish’s left side, while the sharpened end emerged from the same spot on the right side of the fish. An aluminum washer was threaded onto the protruding wire, followed by a #1 double sleeve steel crimp, which was crimped onto the wire once the washer and crimp were held firmly on the right side of the fish. The wire beyond the crimp and wet towel were removed, the fish was attached to a weighted SeaQualizer fish release tool, and the fish was descended to a depth of approximately 31 m before being released by the device. The total surface time for each tagged red snapper was approximately 1.5 min.Data analysesWe first assessed whether potential error in red snapper positions could influence study results. For each reference tag position estimated by VPS, we calculated horizontal positional error as the difference between the known reference tag location and its estimated position based on VPS. We visualized daily horizontal positional error of the reference transmitter with a boxplot. Daily values were provided to determine if any changes in positional error occurred over time.Next, we used positional and depth data from fish that were monitored to determine the fate of each individual and classified them based on four events: tag loss, emigration, harvest, or predation48. Fish were assumed to have lost transmitters if the transmitter stopped moving; they were assumed to have emigrated if the transmitter moved to the edge of the receiver array before disappearing. Harvest was assumed if fish disappeared from within the receiver array. Predation (e.g., by sharks) was inferred from VPS data in one of three ways: (1) transmitters moved horizontally much faster than normal red snapper swimming speeds, (2) transmitters moved quickly across a wide range of depths, typically from the bottom to the surface and back, and (3) a reduced frequency of detections, as might be expected for transmitters in the abdominal cavity of a shark. VPS data were censored after the point at which any fish experienced tag loss, harvest, or predation, and only fish with 100 or more spatial positions were included in the analyses.We then estimated movement rates of each fish over time. Movement rate (m s−1) was quantified as the distance moved between each successive pair of spatial positions divided by the time between detections. One challenge with using movement rates is that straight-line movements are assumed between detections, when in reality fish may not move in straight lines. Red snapper were detected on average every 2–4 min, so this issue is less of a problem in our study compared to those using longer time intervals between detections51, but our movement rates can be considered minimum estimates. To further prevent negatively biased movement rate estimates, we excluded movement rate estimates for time intervals longer than 20 min; this decision had negligible effects on results (see Discussion).We also estimated the distance off the seafloor for all detections of acoustically tagged red snapper. We calculated distance off the bottom (m) for each fish position as the depth of the seafloor at that location minus the depth of the fish. We encountered an issue with some transmitters after tag loss whereby depth readings appeared to slowly drift towards shallower readings even though the transmitter was sitting on the bottom and not moving horizontally; in a few instances, this same depth drift issue was detected for transmitters attached to fish alive in the study area (i.e., distance off bottom was greater than zero for long periods of time, which never occurred for red snapper with working pressure sensors). We do not know the reason for these rare instances of depth drift by the pressure sensors, but out of caution we censored depth data for fish whose transmitters provided dubious depth data.We evaluated whether individual differences in movement rates or distance off the bottom were apparent. We created boxplots of movement rate and distance off bottom for each fish in the study, and tested for differences among individuals using a linear model where fish number was included as a categorical variable. We compared the Akaike information criterion (AIC) values of models including fish number with an intercept-only model where fish number was excluded, and models with the lowest AIC value (ΔAIC = 0) were considered the most parsimonious formulations58. Movement rate was positively skewed, so it was log-transformed to improve model fit. Model diagnostics (i.e., quantile–quantile, histogram of residuals, residuals versus linear predictions, response versus fitted values plots) were used to confirm that final models met assumptions of equal variance and normal residuals. We used R version 3.6.359 to carry out all statistical tests and to create all figures.Ideally, we would then test for the effects of environmental conditions and fish size on red snapper horizontal and vertical movements using a single, integrated analysis. However, models accounting for temporal autocorrelation and incorporating individual movement rate estimates from each fish as the response variable (i.e., including fish number as a random effect) did not converge, possibly due to large sample sizes (N = 346,363), so we used mean hourly values instead. The downside of this approach is that fish size had to be evaluated separately from the effects of environmental conditions, as described below. However, note that covariate relationships changed very little across a wide variety of model formulations.We tested for the effects of fish size on movement rate and distance off the bottom using generalized additive models60 (GAMs). GAMs are a regression modeling approach that relate a response variable to a single or multiple predictor variables using nonlinear, linear, or categorical functions. Mean log-transformed movement rate or distance off bottom were the response variables of these models and cubic-spline-smoothed fish total length (mm) was included as the predictor variable. As above, we compared the AIC values of models including fish size with an intercept-only model where fish size was excluded, and the model with the lowest AIC value was selected as the best model.We then assessed the influence of various environmental factors (see below) on red snapper movement rate and distance off bottom using GAMs. For these analyses, choosing the appropriate time scale for binning response and predictor data was critical. Longer time steps (i.e., day) were problematic because response and predictor variables frequently varied over much shorter time frames, while extremely short time steps (i.e., minute) were often lacking response and predictor variable information. Therefore, we used an hourly time step for this procedure. The main concern of using an hourly step is that any particular hourly time bin is likely to be more similar to the time bin nearest in time compared to a randomly selected time bin; in other words, time bins are not truly independent of one another61 (i.e., data are temporally autocorrelated). Not accounting for temporal autocorrelation that is present often leads to a negative bias in estimated regression coefficients and confidence intervals. To account for temporal autocorrelation, we used generalized additive mixed models (GAMMs) that included an autoregressive term for model errors. We used a likelihood ratio test to compare our GAMM to a GAM that did not include autoregressive errors, and in both cases GAMMs were selected over GAMs so they were used for movement and distance off bottom models.We limited our GAMMs to five predictor variables based on previous work. The first predictor variable was time of day, which we included because red snapper movements have been shown to vary over diel periods29. We included time of day (tod) as a categorical variable with three levels: day, crepuscular period, and night. Because sunrise and sunset times varied over the course of our 8-mo study, we defined crepuscular periods as a one hour period of time spanning 30 min before sunrise or sunset to 30 min after sunrise or sunset for each day of the study. Day was defined as 30 min after sunrise to 30 min before sunset, and night was defined as 30 min after sunset to 30 min before sunrise.Bottom water temperature has been shown to be strongly correlated with red snapper movements and home range size28,29, so it was included as our second predictor variable. We calculated bottom water temperature (temp; °C) as the mean bottom temperature measured across the three current probes deployed in the receiver array. Cold bottom water temperatures were observed near the conclusion of our study (December 2019) due to declining air temperatures and water column mixing, but also during periodic upwelling events that occurred from late May through early August. Upwelling is a common oceanographic feature of the region, occurring when upwelling-favorable winds are observed concurrent with the Gulf Stream being in a relatively inshore position62,63. Upwelled water that is cold and nutrient-rich is generally only found near the bottom, which tends to cause phytoplankton blooms near the bottom that decrease water clarity. From preliminary analyses of red snapper VPS data, we observed differing behaviors of fish during periods of upwelling than periods lacking upwelling. Therefore, we developed an upwelling index as our third predictor variable, which was calculated as the difference between the surface water temperature and mean bottom water temperature (upwel; °C). Surface water temperature was not available at the study site, so we obtained hourly surface temperature data from the nearest NOAA buoy (#41159), which was located ~ 85 km southwest of the study site in a similar water depth (Fig. 1). We assume that surface water temperature at the study site could be approximated with data from this buoy, which is a reasonable assumption given surface water temperature and wave heights from this buoy were strongly correlated with values from another buoy (NOAA buoy #41025) ~ 70 km northeast of the study site.The last two predictor variables involved properties of water movement at the seafloor in the study area. The fourth predictor variable was wave orbital velocity (wov; m s−1), which is a measure of the wave-generated oscillatory flow (“sloshing”) of water at the seabed. Wave orbital velocity was included because it was much more strongly correlated with gray triggerfish (Balistes capriscus) movement rates at the Chicken Rock area than either barometric pressure or bottom water temperature43, the latter of which have been shown to be more important for organisms in shallow water64,65. Wave orbital velocity was calculated following Bacheler et al.43 using the properties of surface wave period and height, which were also obtained from NOAA buoy 41159. The last predictor variable included in models was current speed (cur; cm s−1), which was calculated as the mean horizontal current speed from the three current probes deployed on the bottom in the receiver array.The GAMMs were formulated as:$$y = upalpha + f(tod) + s_{1} (temp) + s_{2} (upwel) + s_{3}(wov) + s_{4} (cur) + varepsilon ,$$
    (1)
    where y is either acoustically tagged red snapper log-transformed movement rate (m s−1) or distance off the bottom (m), α is the intercept, f is a categorical function, s1-4 are cubic spline smoothing functions, and (varepsilon) is the autoregressive error term accounting for temporal autocorrelation in the data.We employed model selection techniques to assess the importance of predictor variables. Specifically, we compared full models that included all five predictor variables to reduced models that included fewer predictor variables. Model comparisons were made using AIC, and models with the lowest AIC value (ΔAIC = 0) were again considered the most parsimonious. Various diagnostics of final models were examined using the “gam.check” function in the mgcv library to ensure model fit was suitable.Given the importance of upwelling to the vertical movements of red snapper (see Results section), we last include results from a conductivity-temperature-depth (CTD) cast taken in the study area from the NOAA Ship Pisces on 29 June 2019 (07:40 EDT), which occurred during a time when bottom upwelling was present. This CTD cast was conducted using a Sea-Bird SBE 9 deployed from the surface to within 1.5 m of the bottom, and depth-specific water temperature and beam transmission data were provided to highlight the vertical extent of upwelling on this particular day. Beam transmission is the fraction of a light source reaching a light detector set a distance away and is a quantitative measure of water clarity; a common feature of upwelling in the region (in addition to cold water) is declining clarity due to increased production within nutrient-rich, upwelled water near the bottom. We combine these water temperature and beam transmission data with a boxplot of red snapper distances off the bottom by hour throughout the same day the CTD cast was taken (29 June 2019).Ethics approvalThe tagging protocol was approved by the Institutional Animal Care and Use Committee (# NCA19-002) of the North Carolina Aquariums on 20 March 2019. All research activities were carried out under a Scientific Research Permit issued to Nathan Bacheler on 10 April 2017 by the Southeast Regional Office of the U.S. National Marine Fisheries Service, in accordance with the relevant guidelines and regulations on the ethical use of animals as experimental subjects. More

  • in

    Cooperative root graft networks benefit mangrove trees under stress

    1.Yli-Vakkuri, P. Studies on physical root connections between the trees in Scots pine stands in Finland. Acta Fenn. 60, 5–117 (1953).Article 

    Google Scholar 
    2.Graham, B. F. & Bormann, F. H. Natural root grafts. Bot. Rev. 32, 255–292 (1966).Article 

    Google Scholar 
    3.Keeley, J. Population variation in root grafting and a hypothesys. Oikos 52, 364–366 (1988).Article 

    Google Scholar 
    4.Epstein, A. Root graft transmission of tree pathogens. Annu. Rev. Phitopathol. 196, 181–192 (1978).Article 

    Google Scholar 
    5.Stokes, A. et al. Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 278, 107–117 (2005).CAS 
    Article 

    Google Scholar 
    6.Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Deslippe, J. R., Hartmann, M., Grayston, S. J., Simard, S. W. & Mohn, W. W. Stable isotope probing implicates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal mycelial networks in Arctic tundra. N. Phytol. 210, 383–390 (2016).Article 

    Google Scholar 
    8.Klein, T., Siegwolf, R. T. & Kröner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Fraser, E. C., Lieffers, V. J. & Landhäusser, S. M. Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol. 26, 1019–1023 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Gaspard, D. T. & DesRochers, A. Natural root grafting in hybrid poplar clones. Trees Struct. Funct. 34, 881–890 (2020).CAS 
    Article 

    Google Scholar 
    11.Quer, E., Baldy, V. & DesRochers, A. Ecological drivers of root grafting in balsam fir natural stands. Forest Ecol. Manag. 475, 118388 (2020).Article 

    Google Scholar 
    12.Tarroux, E. & DesRochers, A. Effect of natural root grafting on growth response of jack pine (Pinus banksiana; Pinaceae). Am. J. Bot. 98, 967–974 (2011).PubMed 
    Article 

    Google Scholar 
    13.Salomón, R. L., Tarroux, E. & DesRochers, A. Natural root grafting in Picea mariana to cope with spruce budworm outbreaks. Can. J. Forest Res. 46, 1059–1066 (2016).Article 
    CAS 

    Google Scholar 
    14.Adonsou, K. E., Drobyshev, I., DesRochers, A. & Tremblay, F. Root connections affect radial growth of balsam poplar trees. Trees Struct. Funct. 30, 1775–1783 (2016).CAS 
    Article 

    Google Scholar 
    15.Vovides, A. G. et al. Change in drivers of mangrove crown displacement along a salinity stress gradient. Funct. Ecol. 32, 2753–2765 (2018).Article 

    Google Scholar 
    16.McKee, K. L. Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? J. Ecol. 89, 876–887 (2001).Article 

    Google Scholar 
    17.Adonsou, K. E., DesRochers, A. & Tremblay, F. Physiological integration of connected balsam poplar ramets. Tree Physiol. 36, 797–806 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Noble, A. E., Rosenstock, T. S., Brown, P. H., Machta, J. & Hastings, A. Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology. Proc. Natl Acad. Sci. USA 115, 1825–1830 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tarroux, E. & DesRochers, A. Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics. Can. J. Forest Res. 40, 861–871 (2010).Article 

    Google Scholar 
    20.Jelínková, H., Tremblay, F. & DesRochers, A. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae). Am. J. Bot. 96, 1500–1505 (2009).PubMed 
    Article 

    Google Scholar 
    21.Bormann, F. H. The structure, function, and ecological significance of root grafts in Pinus strobus L. Ecol. Monogr. 36, 1–26 (1966).Article 

    Google Scholar 
    22.Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Huxham, M., Berger, U., Skov, M. W. & Sousa, W. P. Kropotkin’s Garden: facilitation in mangrove ecosystems in Interactions in the Marine Benthos (eds. Hawkins, S. J., Bohn, K., Firth, L. B. & Williams, G. A.) 431–447 (Cambridge University Press, 2019)24.Ball, M. C. & Farquhar, G. D. Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity consitions. Plant Physiol. 74, 7–11 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lin, Y., Berger, U., Grimm, V., Huth, F. & Weiner, J. Plant interactions alter the predictions of metabolic scaling theory. PLoS ONE 8, e57612 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Osland, M. J., Day, R. H., Larriviere, J. C. & From, A. S. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE 9, e99604 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Menezes, M., Berger, U. & Worbes, M. Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetl. Ecol. Manag. 11, 233–242 (2003).Article 

    Google Scholar 
    28.Delay, E. & Piou, C. Mutual aid: when does resource scarcity favour group cooperation? Ecol. Complex. 40, 100790 (2019).Article 

    Google Scholar 
    29.Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Vovides, A. G., Marín-Castro, B., Barradas, G., Berger, U. & López-Portillo, J. A simple and cost-effective method for cable root detection and extension measurement in estuary wetland forests. Estuar. Coast. Shelf Sci. 183, 117–122 (2016).Article 

    Google Scholar 
    31.West, P. W. Tree and Forest Measurement. (Springer-Verlag, 2009).32.Fraser, E. C., Lieffers, V. J. & Landhäusser, S. M. Age, stand density, and tree size as factors in root and basal grafting of lodgepole pine. Can. J. Bot. 83, 983–988 (2005).Article 

    Google Scholar 
    33.Bormann, F. H. & Graham, B. F. The occurrence of natural root grafting in eastern White pine, Pinus strobus L., and Its ecological implications. Ecology 40, 677–691 (1959).Article 

    Google Scholar 
    34.Westoby, M. The place of the self-thinning rule in population dynamics. Am. Nat. 118, 581–587 (2008).Article 

    Google Scholar 
    35.Wang, Y., Titus, S. J. & LeMay, V. M. Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Can. J. Forest Res. 28, 1171–1183 (1998).36.MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).Article 

    Google Scholar 
    37.Brüchert, F. & Gardiner, B. The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 93, 1512–1521 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Graham, B. F. Transfer of dye through natural root grafts of Pinus strobus L. Ecology 41, 56–64 (1960).Article 

    Google Scholar 
    39.Barabási, A.-L. & Réka, A. Emergence of scaling in random networks. Science 286, 509–513 (1999).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Allen, B. et al. Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 536, 238–238 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Basnet, K., Scatena, F. N., Likens, G. E. & Lugo, A. E. Ecological consequences of root grafting in Tabonuco (Dacryodes excelsa) trees in the Luquillo Experimental Forest, Puert Rico. Biotropica 25, 28–35 (1993).Article 

    Google Scholar 
    43.Kropotkin, P. Mutual Aid: a factor of evolution. https://doi.org/10.2307/2140787. (1902).44.López-Portillo, J. A., Ewers, F. W. & Angeles, G. Sap salinity effects on xylem conductivity in two mangrove species. Plant Cell Environ. 28, 1285–1292 (2005).Article 

    Google Scholar 
    45.RAMSAR. La Mancha y El Llano: Ramsar sites information service.  https://rsis.ramsar.org/ris/1336?language=en (2004).46.Gulfbase. Laguna La Mancha. Harte Research Institute for Gulf of Mexcio Studies. https://www.gulfbase.org/. (2021).47.Hernández, C. M. A., Zaragoza, C. G., Iriarte-Vivar, S., Flores-Verdugo, F. J. & Casasola, P. M. Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetl. Ecol. Manag. 19, 273–293 (2011).Article 

    Google Scholar 
    48.Méndez-Alonzo, R., Hernández-Trejo, H. & López-Portillo, J. A. Salinity constrains size inequality and allometry in two contrasting mangrove habitats in the Gulf of Mexico. J. Trop. Ecol. 28, 171–179 (2012).Article 

    Google Scholar 
    49.López-Portillo, J. A., Ezcurra, E., Lopez-Portillo, J. & Ezcurra, E. Response of three mangroves to salinity in two Geoforms. Funct. Ecol. 3, 355–361 (1989).Article 

    Google Scholar 
    50.Vovides, A. G., Berger, U. & López-Portillo-Portillo, J. Data from: Change in drivers of mangrove crown displacement along a salinity stress gradient. https://doi.org/10.5525/gla.researchdata.657. (2018).51.Pretzsch, H. Forest dynamics growth and yield. From Measurement to Model vol. 1, (Springer-Verlag, 2009).52.McKee, K. L., Mendelssohn, I. A. & Hester, M. W. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am. J. Bot. 75, 1352–1359 (1988).Article 

    Google Scholar 
    53.Myron L Company. ULTRAMETER IITM. Oper. Manual, Ver. Model. 6Pfc 4P. http://www.myronl.com/products/ultrameter_II.htm (2011).54.Sommet, N. & Morselli, D. Keep calm and learn multilevel logistic modeling: a simplified three-step procedure using stata, R, Mplus, and SPSS. Int. Rev. Soc. Psychol. 30, 203–218 (2017).Article 

    Google Scholar 
    55.Barabási, A. L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–45 (2015).Article 

    Google Scholar 
    58.Hartig, F. DHARMa:residual diagnostics for hierarchical (multi-level /mMixed) regression models. R package version 0.2.7. http://florianhartig.github.io/DHARMa/ (2020).59.Wood, S. & Scheipl, F. gamm4:Generalized additive mixed models using ‘mgcv’ and ‘lme4’. https://cran.r-project.org/web/packages/gamm4/index.html (2017).60.Csardi, G. & Nepusz, T. The igraphsoftware package for complex network research. InterJournal, Complex Sy, 1965 (2006). 61.Colin, S. G. Fitting Heavy Tailed Distributions: The poweRlaw Package. J. Stat. Softw. 64, 1–16 (2015).
    Google Scholar 
    62.Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Use R!). https://doi.org/10.1007/978-0-387-98141-3. (2016). More