Lagged recovery of fish spatial distributions following a cold-water perturbation
1.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS
CAS
PubMed
Article
Google Scholar
2.Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography (Cop.) 38, 15–28 (2015).Article
Google Scholar
3.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS
Article
Google Scholar
4.Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article
Google Scholar
5.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).Article
Google Scholar
6.Chuine, I. Why does phenology drive species distribution? Philos. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).Article
Google Scholar
7.Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).ADS
PubMed
Article
Google Scholar
8.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).ADS
Article
Google Scholar
9.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed
Article
Google Scholar
10.Fey, S. B. et al. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25, 3110–3120 (2019).ADS
Article
Google Scholar
11.Pinsky, M., Worm, B., Fogarty, M., Sarmiento, J. & Levin, S. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS
CAS
PubMed
Article
Google Scholar
12.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–656 (2011).ADS
CAS
PubMed
Article
Google Scholar
13.Harley, C. D. G. & Paine, R. T. Contingencies and compounded rare perturbations dictate sudden distributional shifts during periods of gradual climate change. Proc. Natl. Acad. Sci. U.S.A. 106, 11172–11176 (2009).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
14.Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–13 (2017).Article
Google Scholar
15.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2015).ADS
Article
CAS
Google Scholar
16.Smith, K. A., Dowling, C. E. & Brown, J. Simmered then boiled: multi-decadal poleward shift in distribution by a temperate fish accelerates during marine heatwave. Front. Mar. Sci. 6, 1–16 (2019).CAS
Article
Google Scholar
17.Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).Article
Google Scholar
18.Davies, R. W. D. & Rangeley, R. Banking on cod: exploring economic incentives for recovering Grand Banks and North Sea cod fisheries. Mar. Policy 34, 92–98 (2010).Article
Google Scholar
19.Dempsey, D. P., Koen-Alonso, M., Gentleman, W. C. & Pepin, P. Compilation and discussion of driver, pressure, and state indicators for the Grand Bank ecosystem, Northwest Atlantic. Ecol. Indic. 75, 331–339 (2017).Article
Google Scholar
20.Dempsey, D. P., Gentleman, W. C., Pepin, P. & Koen-Alonso, M. Explanatory power of human and environmental pressures on the fish community of the Grand Bank before and after the biomass collapse. Front. Mar. Sci. 5, 1–16 (2018).Article
Google Scholar
21.Hutchinson, G. Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article
Google Scholar
22.Garrison, L. & Link, J. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2002).Article
Google Scholar
23.Hsieh, C., Yamauchi, A., Nakazawa, T. & Wang, W. F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 72, 165–178 (2010).Article
Google Scholar
24.Borregaard, M. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).PubMed
Article
Google Scholar
25.Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography (Cop.) 28, 403–416 (2005).Article
Google Scholar
26.Thorson, J. T., Rindorf, A., Gao, J., Hanselman, D. & Winker, H. Density-dependent changes in effective area occupied for bottom-associated marine fishes. Philos. Trans. R. Soc. B Biol. Sci. 283, 20161853 (2016).
Google Scholar
27.MacCall, A. Dynamic Geography of Marine Fish Populations (Washington Sea Grant Program, 1990).
Google Scholar
28.Myers, R. A. & Stokes, K. Density-dependent habitat utilization of groundfish and the improvement of research survey. In ICES Committee Meeting D15 (1989).29.Simpson, M. R. & Walsh, S. J. Changes in the spatial structure of Grand Bank yellowtail flounder: testing MacCall’s basin hypothesis. J. Sea Res. 51, 199–210 (2004).ADS
Article
Google Scholar
30.Colbourne, E., Narayanan, S. & Prinsenberg, S. Climatic changes and environmental conditions in the Northwest Atlantic, 1970–1993. ICES J. Mar. Sci. Symp. 198, 311–322 (1994).
Google Scholar
31.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).Article
Google Scholar
32.Pascual, M. & Guichard, F. Criticality and disturbance in spatial ecological systems. Trends Ecol. Evol. 20, 88–95 (2005).PubMed
Article
Google Scholar
33.Walsh, S. J., Simpson, M. & Morgan, M. J. Continental shelf nurseries and recruitment variability in American plaice and yellowtail flounder on the Grand Bank: insights into stock resiliency. J. Sea Res. 51, 271–286 (2004).ADS
Article
Google Scholar
34.Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).Article
Google Scholar
35.Revilla, E. & Wiegand, T. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proc. Natl. Acad. Sci. U.S.A. 105, 19120–19125 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. U.S.A. 103, 6067–6072 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Vuilleumier, S., Wilcox, C., Cairns, B. J. & Possingham, H. P. How patch configuration affects the impact of disturbances on metapopulation persistence. Theor. Popul. Biol. 72, 77–85 (2007).PubMed
MATH
Article
Google Scholar
38.Kallimanis, A. S., Kunin, W. E., Halley, J. M. & Sgardelis, S. P. Metapopulation extinction risk under spatially autocorrelated disturbance. Conserv. Biol. 19, 534–546 (2005).Article
Google Scholar
39.Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
40.Sorte, C. J. B., Jones, S. J. & Miller, L. P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 400, 209–217 (2011).Article
Google Scholar
41.Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).ADS
CAS
PubMed
Article
Google Scholar
42.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed
Article
Google Scholar
43.Morin, P. Communities: basic patterns and elementary processes. In Community Ecology 1–23 (Blackwell Science, 2011).44.Noble, I. & Slatyer, R. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).Article
Google Scholar
45.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article
Google Scholar
46.Mullowney, D. R. J., Dawe, E. G., Colbourne, E. B. & Rose, G. A. A review of factors contributing to the decline of Newfoundland and Labrador snow crab (Chionoecetes opilio). Rev. Fish Biol. Fish. 24, 639–657 (2014).Article
Google Scholar
47.Morin, P. Causes and consequences of diversity. In Community Ecology 283–318 (Blackwell Science, 2011).48.Rietkerk, B. M., Dekker, S. C., De Ruiter, P. C. & Van De Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).ADS
CAS
PubMed
Article
Google Scholar
49.Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: a call for experimental macroecology. Trends Ecol. Evol. 31, 831–841 (2016).PubMed
PubMed Central
Article
Google Scholar
50.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed
PubMed Central
Article
Google Scholar
51.Wheeland, L. J. & Morgan, M. J. Age-specific shifts in Greenland halibut (Reinhardtius hippoglossoides) distribution in response to changing ocean climate. ICES J. Mar. Sci. 77, 230–240 (2020).
Google Scholar
52.Runge, C. A., Tulloch, A. I. T., Possingham, H. P., Tulloch, V. J. D. & Fuller, R. A. Incorporating dynamic distributions into spatial prioritization. Divers. Distrib. 22, 332–343 (2016).Article
Google Scholar
53.Van Teeffelen, A. J. A., Vos, C. C. & Opdam, P. Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol. Conserv. 153, 239–253 (2012).Article
Google Scholar
54.Shepard, S., Greenstreet, S., Piet, G., Rindorf, A. & Dickey-Collas, M. Surveillance indicators and their use in implementation of the marine strategy framework directive. ICES J. Mar. Sci. 72, 2269–2277 (2015).Article
Google Scholar
55.Link, J. S., Nye, J. A. & Hare, J. A. Guidelines for incorporating fish distribution shifts into a fisheries management context. Fish Fish. 12, 461–469 (2011).Article
Google Scholar
56.Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).ADS
Article
Google Scholar
57.Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).Article
Google Scholar
58.Healey, B., Brodie, W., Ings, D. & Power, D. Performance and description of Canadian multi-species surveys in NAFO subarea 2+ Divisions 3KLMNO, with emphasis on 2009–2011. Scientific Council Reports (2012).59.Doubleday, W. Manual on groundfish surveys in the Northwest Atlantic. Scientific Council Studies (1981).60.Hiemstra, P. Automatic interpolation package. (2015).61.Oliver, M. A. & Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging (Springer, 2015).
Google Scholar
62.Thorson, J. T. Guidance for decisions using the vector autoregressive spatio-temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).Article
Google Scholar
63.Thorson, J. T. VAST model structure and user interface. 1–19 (2019).64.Thorson, J. T., Shelton, A. O., Ward, E. J. & Skaug, H. J. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72, 1297–1310 (2015).Article
Google Scholar
65.Thorson, J. T. Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Can. J. Fish. Aquat. Sci. 75, 1369–1382 (2017).Article
CAS
Google Scholar
66.Shackell, N. L., Frank, K. T. & Brickman, D. W. Range contraction may not always predict core areas: an example from marine fish. Ecol. Appl. 15, 1440–1449 (2005).Article
Google Scholar
67.Swain, D. P. & Morin, R. Relationships between geographic distribution and abundance of American plaice (Hippoglossoides platessoides) in the southern Gulf of St. Lawrence. Oceanogr. Lit. Rev. 11, 1155 (1996).
Google Scholar
68.Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: automatic differentiation and Laplace approximation. J. Stat. Softw. 70, 21 (2016).Article
Google Scholar
69.R Core Team. R: A language and environment for statistical computing. (2018).70.Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS
CAS
PubMed
Article
Google Scholar
71.Pebesma, E. & Bivand, R. Classes and methods for spatial data in R. (2005).72.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library (2019).73.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2016).74.Pante, E. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
75.Murrell, P. gridBase: Integration of Base and Grid Graphics (2014).76.Bivand, R. S. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects (2019).77.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2009).78.Thorson, J. T. & Barnett, L. A. K. Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES J. Mar. Sci. 74, 1311–1321 (2017).Article
Google Scholar
79.Nychka, D., Furrer, R. & Paige, J. & Sain. S. Fields: Tools for spatial data. https://doi.org/10.5065/D6W957CT (2017).Article
Google Scholar
80.Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014). More