More stories

  • in

    Dynamic global monitoring needed to use restoration of forest cover as a climate solution

    1.Griscom, B. W. et al. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS 
    Article 

    Google Scholar 
    2.Anderson, C. M. et al. Science 363, 933–934 (2019).CAS 
    Article 

    Google Scholar 
    3.Bastin, J.-F. et al. Science 365, 6–9 (2019).Article 

    Google Scholar 
    4.Cook-Patton, S. C. et al. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    5.Holl, K. D. & Brancalion, P. S. Science 368, 580–582 (2020).CAS 
    Article 

    Google Scholar 
    6.Fargione, J. et al. Front. For. Glob. Change (in the press).7.West, T. A. P., Börner, J., Sills, E. O. & Kontoleon, A. Proc. Natl Acad. Sci. USA 117, 24188–24194 (2020).CAS 
    Article 

    Google Scholar 
    8.Brancalion, P. H. S. et al. L. Degrad. Dev. 32, 830–841 (2020).Article 

    Google Scholar 
    9.Sills, E. O. et al. PLoS ONE 10, e0132590 (2015).Article 

    Google Scholar 
    10.Ferraro, P. J. & Hanauer, M. M. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    11.Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    12.Reytar, K. et al. The challenge of tracking how a trillion trees grow. World Resources Institute https://www.wri.org/blog/2020/07/trillion-trees-tracking-challenges (2020).13.Shoch, D. et al. Methodology For Improved Forest Management (Family Forest Carbon Program, 2020).14.McDowell, N. G. et al. Science 368, eaaz9463 (2020).CAS 
    Article 

    Google Scholar 
    15.IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018). More

  • in

    Woody-biomass projections and drivers of change in sub-Saharan Africa

    1.Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).CAS 
    Article 

    Google Scholar 
    2.Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).CAS 
    Article 

    Google Scholar 
    3.Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).CAS 
    Article 

    Google Scholar 
    4.Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).Article 

    Google Scholar 
    5.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).CAS 
    Article 

    Google Scholar 
    6.Bond, W. J. & Keane, R. E. Fires, Ecological Effects of☆. In Reference Module in Life Sciences (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-809633-8.02098-77.Valentini, R. et al. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014).Article 
    CAS 

    Google Scholar 
    8.Williams, C. A. et al. Africa and the global carbon cycle. Carbon Balance Manag. 2, 3 (2007).Article 
    CAS 

    Google Scholar 
    9.Hanan, N. P. Agroforestry in the Sahel. Nat. Geosci. 11, 296–297 (2018).Article 
    CAS 

    Google Scholar 
    10.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).Article 

    Google Scholar 
    11.Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).CAS 
    Article 

    Google Scholar 
    12.Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).CAS 
    Article 

    Google Scholar 
    13.Anchang, J. Y. et al. Trends in woody and herbaceous vegetation in the savannas of West Africa. Remote Sens. 11, 576 (2019).Article 

    Google Scholar 
    14.Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).Article 

    Google Scholar 
    15.Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).Article 
    CAS 

    Google Scholar 
    16.Schneider, S. H. The greenhouse effect: science and policy. Science 243, 771–781 (1989).CAS 
    Article 

    Google Scholar 
    17.Walsh, J. et al. Climate Change Impacts in the United States: The Third National Climate Assessment Ch. 2 (US Global Change Research Program, 2014); https://doi.org/10.7930/J0KW5CXT18.Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).Article 

    Google Scholar 
    19.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).CAS 
    Article 

    Google Scholar 
    20.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).CAS 
    Article 

    Google Scholar 
    21.Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).Article 

    Google Scholar 
    22.Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).Article 
    CAS 

    Google Scholar 
    23.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).Article 
    CAS 

    Google Scholar 
    24.Hanan, N. P., Prihodko, L., Ross, C. W., Bucini, G. & Tredennick, A. T. Gridded Estimates of Woody Cover and Biomass across Sub-Saharan Africa, 2000-2004 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/177725.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    26.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).Article 

    Google Scholar 
    27.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    28.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).CAS 
    Article 

    Google Scholar 
    29.Anchang, J. Y. et al. Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.00004 (2020).30.Kahiu, M. N. & Hanan, N. P. Fire in sub-Saharan Africa: the fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 27, 946–957 (2018).Article 

    Google Scholar 
    31.Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    32.Ross, C. W. et al. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 5, 180091 (2018).Article 

    Google Scholar 
    33.Lüdeke, M. K. B., Moldenhauer, O. & Petschel-Held, G. Rural poverty driven soil degradation under climate change: the sensitivity of the disposition towards the Sahel Syndrome with respect to climate. Environ. Model. Assess. 4, 315–326 (1999).Article 

    Google Scholar 
    34.Hansfort, S. L. & Mertz, O. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39, 583 (2011).Article 

    Google Scholar 
    35.Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    36.Wei, F. et al. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Glob. Change Biol. 26, 4495–4505 (2020).Article 

    Google Scholar 
    37.Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).Article 

    Google Scholar 
    38.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article 

    Google Scholar 
    39.Potapov, P. et al. Mapping the World’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 2 (2008).Article 

    Google Scholar 
    40.Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A. & Schmullius, C. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556 (2008).Article 

    Google Scholar 
    41.Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 

    Google Scholar 
    42.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    43.Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).CAS 
    Article 

    Google Scholar 
    44.Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).CAS 
    Article 

    Google Scholar 
    45.Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).Article 

    Google Scholar 
    46.Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    49.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    50.Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).Article 

    Google Scholar 
    51.Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe: version 4: data grid (CGIAR Consortium for Spatial Information, 2008).52.Ross, C. W. et al. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/156653.Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. https://doi.org/10.1029/2011JG001708 (2011).54.Jucker, T. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23, 177–190 (2017).Article 

    Google Scholar 
    55.Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).Article 

    Google Scholar 
    56.Molnar, C., Bischl, B. & Casalicchio, G. iml: an R package for interpretable machine learning. J. Open Source Softw. 3, 786 (2018).Article 

    Google Scholar 
    57.Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’ (CRAN, 2017).58.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling (CRAN, 2016).59.Perpiñán, O. & Hijmans, R. rasterVis (CRAN, 2018).60.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).61.Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Soft. https://doi.org/10.18637/jss.v096.i01 (2020).62.Neuwirth, E. RColorBrewer: ColorBrewer Palettes (CRAN, 2014).63.Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (CRAN, 2017).64.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    65.Ross, C. W., Hanan, N. P. & Prihodko, L. Prediction Maps: Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14150210.V266.Ross, C. W. R Code for Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14143799.V1 More

  • in

    Carbon tariffs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems

    1.Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).Article 

    Google Scholar 
    2.Zimmerman, J. B., Mihelcic, J. R. & Smith, J. Global stressors on water quality and quantity. Environ. Sci. Technol. 42, 4247–4254 (2008).Article 

    Google Scholar 
    3.Banwart, S. A., Nikolaidis, N. P., Zhu, Y.-G., Peacock, C. L. & Sparks, D. L. Soil functions: connecting Earth’s critical zone. Annu. Rev. Earth Planet. Sci. Lett. 47, 333–359 (2019).Article 

    Google Scholar 
    4.Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (Cambridge Univ. Press, 2013).5.Knorr, K. H., Lischeid, G. & Blodau, C. Dynamics of redox processes in a minerotrophic fen exposed to a water table manipulation. Geoderma 153, 379–392 (2009).Article 

    Google Scholar 
    6.McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).Article 

    Google Scholar 
    7.Yabusaki, S. B. et al. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environ. Sci. Technol. 51, 3307–3317 (2017).Article 

    Google Scholar 
    8.Krause, S. et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 53, 6359–6376 (2017).Article 

    Google Scholar 
    9.Stumm W. & Morgan J. J. Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters 3rd edn (John Wiley & Sons, 1996).10.Aeschbacher, M., Vergari, D., Schwarzenbach, R. P. & Sander, M. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45, 8385–8394 (2011).Article 

    Google Scholar 
    11.Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments. Adv. Microb. Ecol. 16, 41–84 (2000).Article 

    Google Scholar 
    12.Kostka, J. E. & Nealson, K. H. Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29, 2535–2540 (1995).Article 

    Google Scholar 
    13.Piepenbrock, A., Dippon, U., Porsch, K., Appel, E. & Kappler, A. Dependence of microbial magnetite formation on humic substance and ferrihydrite concentrations. Geochim. Cosmochim. Acta 75, 6844–6858 (2011).Article 

    Google Scholar 
    14.Amstaetter, K., Borch, T., Larese-Casanova, P. & Kappler, A. Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 44, 102–108 (2010).Article 

    Google Scholar 
    15.Ilgen, A. G., Foster, A. L. & Trainor, T. P. Role of structural Fe in nontronite NAu-1 and dissolved Fe(II) in redox transformations of arsenic and antimony. Geochim. Cosmochim. Acta 94, 128–145 (2012).Article 

    Google Scholar 
    16.Lan, S. et al. Efficient catalytic As(III) oxidation on the surface of ferrihydrite in the presence of aqueous Mn(II). Water Res. 128, 92–101 (2018).Article 

    Google Scholar 
    17.Lovley, D. R. et al. Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydroch. Hydrob. 26, 152–157 (1998).Article 

    Google Scholar 
    18.Lovley, D. R., Fraga, J. L., Coates, J. D. & Blunt-Harris, E. L. Humics as an electron donor for anaerobic respiration. Environ. Microbiol. 1, 89–98 (1999).Article 

    Google Scholar 
    19.Peretyazhko, T. & Sposito, G. Reducing capacity of terrestrial humic acids. Geoderma 137, 140–146 (2006).Article 

    Google Scholar 
    20.Heitmann, T. & Blodau, C. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chem. Geol. 235, 12–20 (2006).Article 

    Google Scholar 
    21.Yu, Z. G., Peiffer, S., Goettlicher, J. & Knorr, K. H. Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter. Environ. Sci. Technol. 49, 5441–5449 (2015).Article 

    Google Scholar 
    22.Rose, A. L. & Waite, T. D. Kinetics of iron complexation by dissolved natural organic matter in coastal waters. Mar. Chem. 84, 85–103 (2003).Article 

    Google Scholar 
    23.Bauer, I. & Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43, 4902–4908 (2009).Article 

    Google Scholar 
    24.Uchimiya, M. & Stone, A. T. Reversible redox chemistry of quinones: impact on biogeochemical cycles. Chemosphere 77, 451–458 (2009).Article 

    Google Scholar 
    25.Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).Article 

    Google Scholar 
    26.Ilgen, A. G., Kukkadapu, R. K., Leung, K. & Washington, R. E. ‘Switching on’ iron in clay minerals. Environ. Sci. Nano 6, 1704–1715 (2019).Article 

    Google Scholar 
    27.Peiffer, S., dos Santos Afonso, M., Wehrli, B. & Gaechter, R. Kinetics and mechanism of the reaction of hydrogen sulfide with lepidocrocite. Environ. Sci. Technol. 26, 2408–2413 (1992).Article 

    Google Scholar 
    28.Poulton, S. W., Krom, M. D. & Raiswell, R. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68, 3703–3715 (2004).Article 

    Google Scholar 
    29.Hellige, K., Pollok, K., Larese-Casanova, P., Behrends, T. & Peiffer, S. Pathways of ferrous iron mineral formation upon sulfidation of lepidocrocite surfaces. Geochim. Cosmochim. Acta 81, 69–81 (2012).Article 

    Google Scholar 
    30.Wan, M., Shchukarev, A., Lohmayer, R., Planer-Friedrich, B. & Peiffer, S. Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environ. Sci. Technol. 48, 5076–5084 (2014).Article 

    Google Scholar 
    31.Hedderich, R. et al. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22, 353–381 (1998).Article 

    Google Scholar 
    32.Milucka, J. et al. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491, 541–546 (2012).Article 

    Google Scholar 
    33.Poser, A. et al. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 17, 1003–1012 (2013).Article 

    Google Scholar 
    34.Aeppli, M. et al. Decreases in iron oxide reducibility during microbial reductive dissolution and transformation of ferrihydrite. Environ. Sci. Technol. 53, 8736–8746 (2019).Article 

    Google Scholar 
    35.Aeppli, M. et al. Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite transformation into goethite and magnetite. Environ. Sci. Technol. 53, 3568–3578 (2019).Article 

    Google Scholar 
    36.Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).Article 

    Google Scholar 
    37.Blodau, C. Carbon cycling in peatlands—a review of processes and controls. Environ. Rev. 10, 111–134 (2002).Article 

    Google Scholar 
    38.Gao, C., Sander, M., Agethen, S. & Knorr, K.-H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta 245, 266–277 (2019).Article 

    Google Scholar 
    39.Schaefer, M. V., Gorski, C. A. & Scherer, M. M. Spectroscopic evidence for interfacial Fe(II)–Fe(III) electron transfer in a clay mineral. Environ. Sci. Technol. 45, 540–545 (2011).Article 

    Google Scholar 
    40.Pentrakova, L., Su, K., Pentrak, M. & Stucko, J. W. A review of microbial redox interactions with structural Fe in clay minerals. Clay Miner. 48, 543–560 (2013).Article 

    Google Scholar 
    41.Kostka, J. E., Dalton, D. D., Skelton, H., Dollhopf, S. & Stucki, J. W. Growth of iron(III)-reducing bacteria on clay minerals as the sole electron acceptor and comparison of growth yields on a variety of oxidized iron forms. Appl. Environ. Microbiol. 68, 6256–6262 (2002).Article 

    Google Scholar 
    42.Li, Y. L. et al. Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium. Geochim. Cosmochim. Acta 68, 3251–3260 (2004).Article 

    Google Scholar 
    43.Liu, D. et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri. Geochim. Cosmochim. Acta 75, 1057–1071 (2011).Article 

    Google Scholar 
    44.Zhang, J., Dong, H., Liu, D. & Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilicmethanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 106, 203–215 (2013).Article 

    Google Scholar 
    45.Shelobolina, E. et al. Microbial lithotrophic oxidation of structural Fe(II) in biotite. Appl. Environ. Microbiol. 78, 5746–5752 (2012).Article 

    Google Scholar 
    46.Gorski, C. A. et al. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46, 9360–9368 (2012).Article 

    Google Scholar 
    47.Blodau, C., Mayer, B., Peiffer, S. & Moore, T. R. Support for an anaerobic sulfur cycle in two Canadian peatland soils. J. Geophys. Res. 112, G000364 (2007).
    Google Scholar 
    48.Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 16, GB001370 (2002).Article 

    Google Scholar 
    49.Pester, M., Knorr, K. H., Friedrich, M. W., Wagner, M. & Loy, A. Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front. Microbiol. 3, 72 (2012).Article 

    Google Scholar 
    50.Hansel, C. M., Ferdelman, T. G. & Tebo, B. M. Cryptic cross-linkages among biogeochemical cycles: novel insights from reactive intermediates. Elements 11, 409–414 (2015).Article 

    Google Scholar 
    51.Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).Article 

    Google Scholar 
    52.Holmkvist, L., Ferdelman, T. G. & Jørgensen, B. B. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim. Cosmochim. Acta 75, 3581–3599 (2011).Article 

    Google Scholar 
    53.Hansel, C. M. et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments. ISME J. 9, 2400–2412 (2015b).Article 

    Google Scholar 
    54.Findlay, A. J. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw103(2016).55.Berg, J. S. et al. Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno. Environ. Microbiol. 18, 5288–5302 (2016).Article 

    Google Scholar 
    56.Peng, C., Bryce, C., Sundman, A. & Kappler, A.Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826-18 (2019).Article 

    Google Scholar 
    57.Bethke, C. M., Sanford, R. A., Kirk, M. F., Jin, Q. & Flynn, T. M. The thermodynamic ladder in geomicrobiology. Am. J. Sci. 311, 183–210 (2011).Article 

    Google Scholar 
    58.Otte, J. M. et al. The distribution of active iron cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ. Microbiol. 20, 2483–2499 (2018).Article 

    Google Scholar 
    59.Steefel, C. I. & van Cappellen, P. A new kinetic approach to modeling water–rock interaction: the role of nucleation, precursors, and Ostwald ripening. Geochim. Cosmochim. Acta 54, 2657–2677 (1990).Article 

    Google Scholar 
    60.Vinson, D. S., Block, S. E., Crossey, L. J. & Dahm, C. N. Biogeochemistry at the zone of intermittent saturation: field-based study of the shallow alluvial aquifer, Rio Grande, New Mexico. Geosphere 3, 366–380 (2007).Article 

    Google Scholar 
    61.Frei, S., Knorr, K., Peiffer, S. & Fleckenstein, J. Surface micro-topography causes hot spots of biogeochemical activity in wetland systems: a virtual modeling experiment. J. Geophys. Res. Biogeosciences 117, G00N12 (2012).Article 

    Google Scholar 
    62.Briggs, M. A. et al. A physical explanation for the development of redox microzones in hyporheic flow. Geophys. Res. Lett. 42, 4402–4410 (2015).Article 

    Google Scholar 
    63.Stockdale, A., Davison, W. & Zhang, H. Micro-scale biogeochemical heterogeneity in sediments: a review of available technology and observed evidence. Earth Sci. Rev. 92, 81–97 (2009).Article 

    Google Scholar 
    64.Sawyer, A. H. Enhanced removal of groundwater-borne nitrate in heterogeneous aquatic sediments. Geophys. Res. Lett. 42, 403–410 (2015).Article 

    Google Scholar 
    65.Arora, B., Dwivedi, D., Hubbard, S. S., Steefel, C. I. & Williams, K. H. Identifying geochemical hot moments and their controls on a contaminated river floodplain system using wavelet and entropy approaches. Environ. Model. Softw. 85, 27–41 (2016).Article 

    Google Scholar 
    66.Sawyer, A. H., Kaplan, L. A., Lazareva, O. & Michael, H. A. Hydrologic dynamics and geochemical responses within a floodplain aquifer and hyporheic zone during Hurricane Sandy. Water Resour. Res. 50, 4877–4892 (2014).Article 

    Google Scholar 
    67.Posth, N., Canfield, D. E. & Kappler, A. Biogenic Fe(III) minerals: from formation to diagenesis and preservation in the rock record. Earth Sci. Rev. 135, 103–121 (2014).Article 

    Google Scholar 
    68.Tomaszewski, E. J., Cronk, S. S., Gorski, C. A. & Ginder-Vogel, M. The role of dissolved Fe(II) concentration in the mineralogical evolution of Fe (hydr)oxides during redox cycling. Chem. Geol. 438, 163–170 (2016).Article 

    Google Scholar 
    69.Bishop, M. E. et al. Reactivity of redox cycled Fe-bearing subsurface sediments towards hexavalent chromium reduction. Geochim. Cosmochim. Acta 252, 88–106 (2019).Article 

    Google Scholar 
    70.Bartsch, S. et al. River–aquifer exchange fluxes under monsoonal climate conditions. J. Hydrol. 509, 601–614 (2014).Article 

    Google Scholar 
    71.McAllister, S. M. et al. Dynamic hydrologic and biogeochemical processes drive microbially enhanced iron and sulfur cycling within the intertidal mixing zone of a beach aquifer. Limnol. Oceanogr. 60, 329–345 (2015).Article 

    Google Scholar 
    72.Goldberg, S. D., Knorr, K. ‐H., Blodau, C., Lischeid, G. & Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Change Biol. 16, 220–233 (2010).Article 

    Google Scholar 
    73.Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue bog, Southern Canada. Ecosystems 14, 646–657 (2011).Article 

    Google Scholar 
    74.Brown, M. G., Humphreys, E. R., Moore, T. R., Roulet, N. T. & Lafleur, P. M. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth. J. Geophys. Res. Biogeosciences 119, 826–835 (2014).Article 

    Google Scholar 
    75.Estop-Aragonés, C., Zając, K. & Blodau, C. Effects of extreme experimental drought and rewetting on CO2 and CH4 exchange in mesocosms of 14 European peatlands with different nitrogen and sulfur deposition. Glob. Change Biol. 22, 2285–2300 (2016).Article 

    Google Scholar 
    76.Chamberlain, S. D. et al. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob. Change Biol. 24, 4107–4121 (2018).Article 

    Google Scholar 
    77.Arora, B. et al. Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127, 367–396 (2016).Article 

    Google Scholar 
    78.Frei, S. & Peiffer, S. Exposure times rather than residence times control redox transformation efficiencies in Riparian Wetlands. J. Hydrol. 543, 182–196 (2016).Article 

    Google Scholar 
    79.Dwivedi, D., Arora, B., Steefel, C. I., Dafflon, B. & Versteeg, R. Hot spots and hot moments of nitrogen in a riparian corridor. Water Resour. Res. 54, 205–222 (2018).Article 

    Google Scholar 
    80.Peiffer, S., Klemm, O., Pecher, K. & Hollerung, R. Redox measurements in aqueous solutions—a theoretical approach to data interpretation, based on electrode kinetics. J. Contam. Hydrol. 10, 1–18 (1992).Article 

    Google Scholar 
    81.Wainwright, H. M. et al. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging. Water Resour. Res. 52, 533–551 (2016).Article 

    Google Scholar 
    82.Mellage, A. et al. Sensing coated iron-oxide nanoparticles with spectral induced polarization (SIP): experiments in natural sand packed flow-through columns. Environ. Sci. Technol. 52, 14256–14265 (2018).Article 

    Google Scholar 
    83.Revil, A., Florsch, N. & Mao, D. Induced polarization response of porous media with metallic particles—part 1: a theory for disseminated semiconductors. Geophysics 80, D525–D538 (2015).Article 

    Google Scholar 
    84.Revil, A., Abdel Aal, G. Z., Atekwana, E. A., Mao, D. & Florsch, N. Induced polarization response of porous media with metallic particles—part 2: comparison with a broad database of experimental data. Geophysics 80, D539–D552 (2015).Article 

    Google Scholar 
    85.Pausch, J. & Kuzyakov, Y. Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob. Change Biol. 24, 1–12 (2018).Article 

    Google Scholar 
    86.Dwivedi, D. et al. Geochemical exports to river from the intrameander hyporheic zone under transient hydrologic conditions: East River mountainous watershed, Colorado. Water Resour. Res. 54, 8456–8477 (2018).Article 

    Google Scholar 
    87.Jin, Q. & Bethke, C. M. The thermodynamics and kinetics of microbial metabolism. Am. J. Sci. 307, 643–677 (2007).Article 

    Google Scholar 
    88.Nitzsche, K. S. et al. Arsenic removal from drinking water by a household sand filter in Vietnam—effect of filter usage practices on arsenic removal efficiency and microbiological water quality. Sci. Total Environ. 502, 526–536 (2015).Article 

    Google Scholar 
    89.Appelo, C. A. J. & Postma, D. Geochemistry, Groundwater and Pollution (CRC Press, 2004).90.Brazhkin, V. V. Metastable phases and ‘metastable’ phase diagrams. J. Phys. Condens. Matter 18, 9643–9650 (2006).Article 

    Google Scholar 
    91.Cornell, R. M. & Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses (Wiley-VCH, 2006).92.Ahmed, I. A. M. & Maher, B. A. Identification and paleoclimatic significance of magnetite nanoparticles in soils. Proc. Natl Acad. Sci. USA 115, 1736–1741 (2018).Article 

    Google Scholar 
    93.Engel, M. H. & Macko, S. A. Organic Geochemistry. Principles and Applications (Springer, 1993).94.Lovley, D. R. & Phillips, E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472–1480 (1988).Article 

    Google Scholar 
    95.Gorski, C. A. & Scherer, M. M. in Aquatic Redox Chemistry (eds Tratnyek, P. G. et al.) 315–343 (ACS, 2011).96.Orsetti, S., Laskov, C. & Haderlein, S. B. Electron transfer between iron minerals and quinones: estimating the reduction potential of the Fe(II)–goethite surface from AQDS speciation. Environ. Sci. Technol. 47, 14161–14168 (2013).Article 

    Google Scholar 
    97.Gorski, C. A., Edwards, R., Sander, M., Hofstetter, T. B. & Stewart, S. M. Thermodynamic characterization of iron oxide–aqueous Fe2+ redox couples. Environ. Sci. Technol. 50, 8538–8547 (2016).Article 

    Google Scholar 
    98.Byrne, J. M. et al. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347, 1473–1476 (2015).Article 

    Google Scholar  More

  • in

    How trees and forests reduce risks from climate change

    Lisa Palmer is a journalist and author of Hot, Hungry Planet: The Fight to Stop a Global Food Crisis in the Face of Climate Change (St. Martin’s Press, 2017), and the National Geographic Visiting Professor of Science Communication at the George Washington University in Washington DC. More

  • in

    Evidence for self-sustaining populations of Arcuatula senhousia in the UK and a review of this species’ potential impacts within Europe

    1.Crooks, J. A. The population ecology of an exotic mussel, Musculista senhousia, in a Southern California bay. Estuaries 19, 42–50 (1996).Article 

    Google Scholar 
    2.Huber, M. Compendium of Bivalves: A Full-Color Guide to 3,300 of the World’s Marine Bivalves: A Status on Bivalvia After 250 Years of Research. (ConchBooks, 2010).3.Kulikova, V. A. Morphology, seasonal population dynamics, and settlement of larvae of the bivalve mollusc Musculista senhousia in Busse Lagoon (South Sakhalin). Sov. J. Mar. Biol. 4, 769–773 (1978).
    Google Scholar 
    4.Chuang, S. H. On Malayan shores: a log cabin book. (Muwu Shosa, 1961).5.CABI. Arcuatula senhousia [original text by A. Zenetos]. In: Invasive Species Compendium. CAB International, Wallingford, UK. www.cabi.org/isc (2019).6.Kincaid, T. The acclimitization of marine animals in Pacific northwest waters. Min. Conchol Club South. Calif. 72, 1–3 (1947).
    Google Scholar 
    7.Willan, R. C. Successful establishment of the Asian mussel Musculista senhousia (Benson in Cantor, 1842) in New Zealand. Rec. Auckl. Inst. Museum 22, 85–96 (1985).
    Google Scholar 
    8.Willan, R. C. The mussel Musculista senhousia in Australasia; another aggressive alien highlights the need for quarantine at ports. Bull. Mar. Sci. 41, 475–489 (1987).ADS 

    Google Scholar 
    9.Hoenselaar, H. J. & Hoenselaar, J. Musculista senhousia (Benson in Cantor, 1842) in the western Mediterranean (Bivalvia, Mytilidae). Basteria 53, 73–76 (1989).
    Google Scholar 
    10.Mastrototaro, F., Matarrese, A. & D’Onghia, G. Occurrence of Musculista senhousia (Mollusca: Bivalvia) in the Taranto seas (eastern-central Mediterranean Sea). J. Mar. Biol. Ass. UK 83, 1279–1280 (2003).Article 

    Google Scholar 
    11.Micu, D. First record of Musculista senhousia (Brenson in Cantor, 1842) from the Black Sea. (Abstracts of the International Symposium of Malacology, 19–22 Aug 2004, Sibiu, Romania. p. 47, 2004).12.Ruci, S., Kasemi, D. & Beqiraj, S. Data on macrozoobenthos in rocky areas of the Adriatic Sea of Albania. IMPACT Int. J. Res. Appl. Nat. Soc. Sci. 2, 63–70 (2014).13.Kovalev, E. A., Zhivoglyadova, L. A., Revkov, N. K., Frolenko, L. N. & Afanasyev, D. F. First record of the bivalve Arcuatula senhousia (Benson, 1842) in the Russian part of the the Azov-Black Sea basin. Russ. J. Biol. Invasions 8, 316–320 (2017).Article 

    Google Scholar 
    14.Lourenço, P. M., Henriques, M., Catry, I., Pedro, J. & Catry, T. First record of the invasive Asian date mussel Arcuatula senhousia (Benson, 1842) (Mollusca: Bivalvia: Mytilidae) in West Africa. J. Nat. Hist. 52, 2567–2571 (2018).15.Barash, A. & Danin, Z. The Indo-Pacific species of Mollusca in the Mediterranean and notes on a collection from the Suez Canal. Isrl. J. Zool. 21, 301–374 (1972).
    Google Scholar 
    16.George, E. L. & Nair, N. B. The growth rates of the estuarine mollusc Musculista arcuatula Yamamoto and Habe (Bivalvia: Mytilidae). Hydrobiologia 45, 239–248 (1974).Article 

    Google Scholar 
    17.Morton, B. Life-history characteristics and sexual strategy of Mytilopsis sallei (Bivalvia: Dreissenacea), introduced into Hong Kong. J. Zool. 219, 469–485 (1989).Article 

    Google Scholar 
    18.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    19.Sgro, L., Turolla, E., Rossi, R. & Mistri, M. Sexual maturation and larval development of the immigrant Asian date mussel, Musculista senhousia, in a Po River deltaic lagoon. Ital. J. Zool. 69, 223–228 (2002).Article 

    Google Scholar 
    20.CIESM. Musculista senhousia. In: Atlas of Exotic Species in the Mediterranean. The Mediterranean Science Commission (CIESM). https://www.ciesm.org/atlas (2005).21.Cohen, A. N. Musculista senhousia. In: The Exotics Guide: Non-native Marine Species of the North American Pacific Coast. Centre for Research on Aquatic Bioinvasions; San Francisco Estuary Institute. www.exoticsguide.org (2011).22.Morton, B. Some aspects of the biology, population dynamics, and functional morphology of Musculista senhousia Benson (Bivalvia, Mytilidae). Pac. Sci. 28, 19–33 (1974).
    Google Scholar 
    23.Mistri, M. Ecological characteristics of the invasive Asian date mussel, Musculista senhousia, in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25, 431–440 (2002).Article 

    Google Scholar 
    24.Bachelet, G. et al. A round-the-world tour almost completed: first records of the invasive mussel Musculista senhousia in the north-east Atlantic (southern Bay of Biscay). Mar. Biodivers. Rec. 2, e119 (2009).Article 

    Google Scholar 
    25.Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    26.Barfield, P., Holmes, A., Watson, G. & Rowe, G. First evidence of Arcuatula senhousia (Benson, 1842), the Asian date mussel in UK waters. J. Conchol. 43, 217–222 (2018).
    Google Scholar 
    27.ICES. Maps: ICES statistical rectangles. https://www.ices.dk/data/maps/Pages/ICES-statistical-rectangles.aspx (2020).28.World Sea Temperature. Southampton Sea Temperature. https://www.seatemperature.org/europe/united-kingdom/southampton.htm (2020).29.Natural England. Solent Maritime EMS. Natural England, UK. http://publications.naturalengland.org.uk/publication/3194402 (2001).30.Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E. & Çinar, M. E. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat. Invas. 9, 391–423 (2014).Article 

    Google Scholar 
    31.Bouma, T. J., Olenin, S. & Reise, K. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol. Mar. Res. 63, 95–106 (2009).ADS 
    Article 

    Google Scholar 
    32.NCC. Towards a Framework for Defining and Measuring Change in Natural Capital. Working Paper 1. (Natural Capital Committee (NCC), 2014).33.Jeschke, J. M. et al. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Reusch, T. B. H. & Williams, S. L. Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113, 428–441 (1998).35.Albentosa, M. Effect of food concentration inside eelgrass beds on the energy balance of the invasive mussel Musculista senhousia. Mar. Fresh. Behav. Physiol. 35, 247–260 (2002).CAS 
    Article 

    Google Scholar 
    36.Allen, B. J. & Williams, S. L. Native eelgrass Zostera marina controls growth and reproduction of an invasive mussel through food limitation. Mar. Ecol. Prog. Ser. 254, 57–67 (2003).37.Lau, S. C. Y., Brettell, D. L. D. F. & Astudillo, J. C. Rapid assessment of the invasive Xenostrobus securis on cultured oysters in Hong Kong. Reg. Stud. Mar. Sci. 17, 11–16 (2018).Article 

    Google Scholar 
    38.Mistri, M., Rossi, R. & Fano, E. A. The spread of the alien bivalve (Musculista senhousia) in the Sacca Di Goro lagoon (Adriatic Sea, Italy). J. Moll. Stud. 70, 257–261 (2004).Article 

    Google Scholar 
    39.Hosozawa, T. et al. Temporal change in the spatial distribution of Asian bag mussel Arcuatula senhousia (Bivalvia, Mytilidae) population in Ohashi-River, Shimane Prefecture. . Japanese J. Benthol. 70, 1–12 (2015).
    Google Scholar 
    40.Crooks, J. A. Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar. Ecol. Prog. Ser. 162, 137–152 (1998).41.Crooks, J. A. & Khim, H. S. Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J. Exp. Mar. Bio. Ecol. 240, 53–75 (1999).42.Watson, G. J., Murray, J. M., Schaefer, M. & Bonner, A. Bait worms: a valuable and important fishery with implications for fisheries and conservation management. Fish Fish. 18, 374–388 (2016).Article 

    Google Scholar 
    43.Clarke, L. J. et al. Using remote sensing to quantify fishing effort and predict shorebird conflicts in an intertidal fishery. Ecol. Inform. 50, 136–148 (2019).Article 

    Google Scholar 
    44.European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. (2000).45.Siah, A., Pellerin, J., Amiard, J. C., Pelletier, E. & Viglino, L. Delayed gametogenesis and progesterone levels in soft-shell clams (Mya arenaria) in relation to in situ contamination to organotins and heavy metals in the St. Lawrence River (Canada). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 145–156 (2003).46.Harding, S., Nelson, L. & Glover, T. Solent Oyster Restoration Project Management Plan (Blue Marine Foundation (BLUE), 2016).
    Google Scholar 
    47.Hooper, T. et al. Application of the natural capital approach to the marine environment to aid decision-making. Ecosyst. Serv. 38, 100947 (2019).MathSciNet 
    Article 

    Google Scholar 
    48.Thornton, A. et al. Initial natural capital accounts for the UK marine and coastal environment. Final Report. Report prepared for the Department for Environment Food and Rural Affairs. (Joint Nature Conservation Committee (JNCC); Centre for Environment, Fisheries and Aquaculture Science (CEFAS), 2019).49.Worsfold, T. M., Pennisi, N. & Ashelby, C. W. Theora lubrica Gould, 1861 (Bivalvia: Semelidae), new to the UK, with notes on associated non-native species, and an earlier date of introduction for Arcuatula senhousia (Bivalvia: Mytilidae) to the UK. J. Conchol. 43, 665–674 (2020).
    Google Scholar 
    50.Wolff, W. J. & Reise, K. Oyster Imports as a Vector for the Introduction of Alien Species into Northern and Western European Coastal Waters. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management (eds. Leppäkoski, E., Gollasch, S. & Olenin, S.) 193–205 (Springer, 2002).51.Slack-Smith, S. M. & Brearley, A. Musculista senhousia (Benson, 1842); a mussel recently introduced into the Swan River estuary, Western Australia (Mollusca: Mytilidae). Rec. West. Aust. Museum 13, 225–230 (1987).
    Google Scholar 
    52.Slijkerman, D. M. E. et al. Monitoring Groningen Sea Ports. Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl. Wageningen Marine Research report C045/17 A. (University of Wageningen, 2017).53.Kim, H. M. et al. Epibionts associated with floating Sargassum horneri in the Korea strait. Algae 34, 303–313 (2019).CAS 
    Article 

    Google Scholar 
    54.Reusch, T. B. H. & Williams, S. L. Macrophyte canopy structure and the success of an invasive bivalve. Oikos 84, 398–416 (1999).Article 

    Google Scholar 
    55.Mastrototaro, F., Matarrese, A. & D’Onghia, G. Observations on the recruitment of Musculista senhousia (Mollusca, Bivalvia) in the Taranto seas (Eastern-Central Mediterranean Sea). Biogeographia 25, 55–63 (2004).
    Google Scholar 
    56.Verween, A., Vincx, M. & Degraer, S. The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits. J. Exp. Mar. Bio. Ecol. 348, 111–120 (2007).Article 

    Google Scholar 
    57.Pilditch, C. A. & Grant, J. Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopecten magellanicus). Mar. Biol. 134, 235–248 (1999).Article 

    Google Scholar 
    58.Vélez, A. & Epifanio, C. E. Effects of temperature and ration on gametogenesis and growth in the tropical mussel Perna perna (L.). Aquaculture 22, 21–26 (1981).Article 

    Google Scholar 
    59.Liang, Z. L., Kim, Y. H., Zhang, Z. F., Lim, S. M. & Kang, K. H. Water temperature and salinity tolerance of embryos and spat of the mussel, Musculista senhousia. Korean J. Malacol. 25, 179–187 (2009).
    Google Scholar 
    60.Inoue, T. & Yamamuro, M. Respiration and ingestion rates of the filter-feeding bivalve Musculista senhousia: implications for water-quality control. J. Mar. Syst. 26, 183–192 (2000).Article 

    Google Scholar 
    61.Asif, J. H. & Krug, P. J. Lineage distribution and barriers to gene flow among populations of the globally invasive marine mussel Musculista senhousia. Biol. Invas. 14, 1431–1444 (2012).Article 

    Google Scholar 
    62.Creese, R., Hooker, S., de Luca, S. & Wharton, Y. Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. New Zeal. J. Mar. Freshw. Res. 31, 225–236 (1997).Article 

    Google Scholar 
    63.Crooks, J. A. & Soulé, M. Lag times in population explosions of invasive species: causes and implications. in Invasive Species and Biodiversity Management (eds. Sandlund, O. T., Schei, P. J. & Viken, A.) 103–125 (Kluwer Academic Publishers, 1999).64.Yamamuro, M. & Jun, Æ. What prevents Musculista senhousia from constructing byssal thread mats in estuarine environments? A case study focusing on Lake Shinji and nearby estuarine waters. Lanscape Ecol Eng 6, 23–28 (2010).Article 

    Google Scholar 
    65.Scirocco, T. & Urbano, F. The population of the non-indigenous bivalve Arcuatula senhousia of the Varano Lagoon (Adriatic Sea, Italy). J. Environ. Sci. Eng. 7, 345–353 (2018).
    Google Scholar 
    66.Yamamuro, M., Oka, N. & Hiratsuka, J. Predation by diving ducks on the biofouling mussel Musculista senhousia in a eutrophic estuarine lagoon. Mar. Ecol. Prog. Ser. 174, 101–106 (1998).ADS 
    Article 

    Google Scholar 
    67.Reusch, T. B. H. Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, USA. . Mar. Ecol. Prog. Ser. 170, 159–168 (1998).ADS 
    Article 

    Google Scholar 
    68.Kushner, R. B. & Hovel, K. A. Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. J. Exp. Mar. Biol. Ecol. 332, 166–177 (2006).Article 

    Google Scholar 
    69.Sugawara, K., Ebihara, T., Ishii, T., Aoki, K. & Uchida, A. Outbreak of a mussel Brachidontes senhousia in Urayasu shellfish rearing ground. Rep. Chiba Prefect. Inshore Fish. Exp. Stn. 3, 83–92 (1961).
    Google Scholar 
    70.Uchida, A. Growth of a mussel Musculista senhousia and the influence of Musculista senhousia on the clam Tapes philippinarum. Rep. Chiba Prefect. Inshore Fish. Exp. Stn. 7, 69–78 (1965).
    Google Scholar 
    71.Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).Article 

    Google Scholar 
    72.Castorani, M. C. N. & Hovel, K. A. Invasive prey indirectly increase predation on their native competitors. Ecology 96, 1911–1922 (2015).PubMed 
    Article 

    Google Scholar 
    73.FAO. Fisheries Global Information System (FIGIS). Food and Agriculture Organization (FAO). http://www.fao.org/figis/servlet/TabSelector (2017).74.CEFAS. Sanitary survey of the Solent. CEFAS report on behalf of the Food Standards Agency, to demonstrate compliance with the requirements for classification of bivalve mollusc production areas in England and Wales under of EC Regulation No. 854/2004. (Centre for Environment, Fisheries and Aquaculture Science (CEFAS), 2013).75.Humphreys, J., Caldow, R. W. G., Mcgrorty, S., West, A. D. & Jensen, A. C. Population dynamics of naturalised manila clams Ruditapes philippinarum in british coastal waters. Mar. Biol. 151, 2255–2270 (2007).Article 

    Google Scholar 
    76.Pranovi, F. et al. An ecological imbalance induced by a non-native species: The Manila clam in the Venice Lagoon. Biol. Invasions 8, 595–609 (2006).Article 

    Google Scholar 
    77.Kikuchi, T. & Peres, J. M. Consumer ecology of seagrass beds. In Seagrass Ecosystems A Scientific Perspective (eds McRoy, C. P. & Helffrich, C.) (Marcel Dekker Inc, 1977).
    Google Scholar 
    78.Kikuchi, T. Ecology and biological production of Lake Naka-umi and adjacent regions. 3. Macro-benthic communities of Lake Shinji-ko and Lake Naka-umi. Spec. Publ. from Seto Mar. Biol. Lab. 2, 21–44 (1964).79.Jackson, E. L., Rees, S. E., Wilding, C. & Attrill, M. J. Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service. Conserv. Biol. 29, 899–909 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Peters, J. R., McCloskey, R. M., Hinder, S. L. & Unsworth, R. K. F. Motile fauna of sub-tidal Zostera marina meadows in England and Wales. Mar. Biodivers. 45, 647–654 (2015).Article 

    Google Scholar 
    81.Unsworth, R. K. F., Nordlund, L. M. & Cullen-Unsworth, L. C. Seagrass meadows support global fisheries production. Conserv. Lett. 12, 1–8 (2019).Article 

    Google Scholar 
    82.Bertelli, C. M. & Unsworth, R. K. F. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83, 425–429 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.UNEP. Out of Blue: The value of seagrasses to the enviroment and to people. (United Nations Environment Programme (UNEP), 2020).84.Jones, B. L. & Unsworth, R. K. F. The perilous state of seagrass in the British Isles. R. Soc. Open Sci. 3, 1–14 (2016).
    Google Scholar 
    85.de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 1–8 (2019).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    86.Project Seagrass. Project Seagrass. https://www.projectseagrass.org/ (2018).87.Claereboudt, M. R., Bureau, D., Côté, J. & Himmelman, J. H. Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture. Aquaculture 121, 327–342 (1994).Article 

    Google Scholar 
    88.Lacoste, E. & Gaertner-Mazouni, N. Biofouling impact on production and ecosystem functioning: a review for bivalve aquaculture. Rev. Aquac. 7, 187–196 (2015).Article 

    Google Scholar 
    89.Renault, T. Appearance and spread of diseases among bivalve molluscs in the northern hemisphere in relation to international trade. OIE Rev. Sci. Tech. 15, 551–561 (1996).CAS 
    Article 

    Google Scholar 
    90.Beaumont, A. R., Hawkins, M. P., Doig, F. L., Davies, I. M. & Snow, M. Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders?. J. Exp. Mar. Bio. Ecol. 367, 100–110 (2008).Article 

    Google Scholar 
    91.Miller, A., Inglis, G. J., Poulin, R. & Inglis, G. J. Use of the introduced bivalve, Musculista senhousia, by generalist parasites of native New Zealand bivalves. New Zeal. J. Mar. Freshw. Res. 42, 143–151 (2008).Article 

    Google Scholar 
    92.Bierbaum, R. & Shumway, S. E. Filtration and oxygen consumption in mussels, Mytilus edulis, with and without pea crabs, Pinnotheres maculatus. Estuaries 11, 264–271 (1988).CAS 
    Article 

    Google Scholar 
    93.Sun, W., Sun, S., Yuqi, W., Baowen, Y. & Weibo, S. The prevalence of the pea crab, Pinnotheres sinensis, and its impact on the condition of the cultured mussel, Mytilus galloprovincialis, in Jiaonan waters (Shandong Province, China). Aquaculture 253, 57–63 (2006).Article 

    Google Scholar 
    94.Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aquac. 11, 42–57 (2019).Article 

    Google Scholar 
    95.Carlton, J. T. History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific coast of North America. PhD Thesis. (University of California, 1979).96.Michalek, K., Ventura, A. & Sanders, T. Mytilus hybridisation and impact on aquaculture: A minireview. Mar. Genomics 27, 3–7 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Seed, R. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. Oecologia 3, 277–316 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    98.King, P. A., McGrath, D. & Gosling, E. M. Reproduction and settlement of Mytilus edulis on an exposed rocky shore in Galway bay, west coast of Ireland. J. Mar. Biol. Assoc. United Kingdom 69, 355–365 (1989).Article 

    Google Scholar 
    99.van der Schatte Olivier, A. et al. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquac. 1, 1–23. https://doi.org/10.1111/raq.12301 (2018).Article 

    Google Scholar 
    100.Yamamuro, M. & Ishitobi, Y. Seasonal change in a filter-feeding bivalve Musculista senhousia population of a eutrophic estuarine lagoon. J. Mar. Syst. 26, 117–126 (2000).Article 

    Google Scholar 
    101.Broszeit, S., Hattam, C. & Beaumont, N. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis. Mar. Pollut. Bull. 103, 5–14 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Valipour, R., Boegman, L., Bouffard, D. & Rao, Y. R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 62, 1045–1065 (2017).ADS 
    Article 

    Google Scholar 
    103.Mistri, M. & Munari, C. The invasive bag mussel Arcuatula senhousia is a CO2 generator in near-shore coastal ecosystems. J. Exp. Mar. Bio. Ecol. 440, 164–168 (2013).Article 

    Google Scholar 
    104.Filgueira, R. et al. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system. Mar. Ecol. Prog. Ser. 518, 281–287 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    105.Reaugh, K. E., Harris, J. M. & Branch, G. M. Further refutation of the primary-secondary settlement hypothesis for the brown mussel Perna perna. African J. Mar. Sci. 29, 545–549 (2007).Article 

    Google Scholar 
    106.Cohen, A. N. Guide to the Exotic Species of San Francisco Bay. San Francisco Estuary Institute, Oakland, California, USA. http://www.exoticsguide.org (2005).107.Como, S. et al. Assessing the impact of the Asian mussel Arcuatula senhousia in the recently invaded Oristano Lagoon-Gulf system (W Sardinia, Italy). Estuar. Coast. Shelf Sci. 201, 123–131 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    108.Ragnarsson, S. Á. & Raffaelli, D. Effects of the mussel Mytilus edulis L. on the invertebrate fauna of sediments. J. Exp. Mar. Bio. Ecol. 241, 31–43 (1999).Article 

    Google Scholar 
    109.Barash, A. L. & Danin, Z. Mollusca from the stomach of Sparus auratus fished in the lagoon or Bardwall. Argamon 2, 97–104 (1971).
    Google Scholar 
    110.Taylor, D. et al. Facilitation effects of invasive and farmed bivalves on native populations of the sea slug Pleurobranchaea maculata. Mar. Ecol. Prog. Ser. 537, 39–48 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    111.Herbert, R. J. H., Stillman, R. A., Davies, C. J., Bowgen, K. M. & Hatton, J. The importance of nonnative Pacific oyster reefs as supplementary feeding areas for coastal birds on estuary mudflats. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1294–1307 (2018).Article 

    Google Scholar 
    112.Hanna, G. D. Introduced mollusks of western North America. Occ. Pap. Calif. Acad. Sci. 48, 1–108 (1966).
    Google Scholar 
    113.Vilariño, M. L. et al. Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int. Microbiol. 12, 145–151 (2009).PubMed 

    Google Scholar 
    114.Vilà, M. & Hulme, P. E. Impact of Biological Invasions on Ecosystem Services. (Springer International Publishing Switzerland, 2017). https://doi.org/10.1007/978-3-319-45121-3_5.115.Williams, F. et al. The Economic Cost of Invasive Non-Native Species on Great Britain. Cent. Agric. Biosci. Int. CAB/001/09, 1–199 (2010).116.Watson, S. C. L., Preston, J., Beaumont, N. J. & Watson, G. J. Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. Sci. Total Environ. (2020)117.Farber, S. C., Costanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).Article 

    Google Scholar 
    118.Melathopoulos, A. P. & Stoner, A. M. Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms. Ecol. Econ. 117, 173–181 (2015).Article 

    Google Scholar 
    119.Faasse, M. A record of the Asian mussel Arcuatula senhousia (Benson in Cantor, 1842) from NW Europe (the Netherlands). Spirula 416, 14–15 (2018).
    Google Scholar 
    120.Tepolt, C. K. & Somero, G. N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 217, 1129–1138 (2014).PubMed 
    Article 

    Google Scholar 
    121.Guardiola, M., Frotscher, J. & Uriz, M. J. High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Mar. Biol. 163, 1–16 (2016).Article 

    Google Scholar 
    122.Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 
    Article 

    Google Scholar 
    123.Tabak, M. A., Webb, C. T. & Miller, R. S. Propagule size and structure, life history, and environmental conditions affect establishment success of an invasive species. Sci. Rep. 8, 1–9 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Brain size and neuron numbers drive differences in yawn duration across mammals and birds

    1.Barbizet, J. Yawning. J. Neurol. Neurosurg. Psychiatry 21, 203–209 (1958).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Baenninger, R. Some comparative aspects of yawning in Betta splendens, Homo sapiens, Panthera leo, and Papio sphinx. J. Comp. Psychol. 101, 349 (1987).Article 

    Google Scholar 
    3.de Vries, J. I. P., Visser, G. H. A. & Prechtl, H. F. R. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 7, 301–322 (1982).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Provine, R. R. Yawning as a stereotyped action pattern and releasing stimulus. Ethology 72, 109–122 (1986).Article 

    Google Scholar 
    5.Tesfaye, Y. & Lal, S. Hazard of yawning. Can. Med. Assoc. J. 142, 15 (1990).CAS 

    Google Scholar 
    6.Smith, E. O. Yawning: an evolutionary perspective. Hum. Evol. 14, 191–198 (1999).Article 

    Google Scholar 
    7.Guggisberg, A. G., Mathis, J., Schnider, A. & Hess, C. W. Why do we yawn? Neurosci. Biobehav. Rev. 34, 1267–1276 (2010).PubMed 
    Article 

    Google Scholar 
    8.Gallup, A. C. Why do we yawn? Primitive versus derived features. Neurosci. Biobehav. Rev. 35, 765–769 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Provine, R. R., Tate, B. C. & Geldmacher, L. L. Yawning: no effect of 3–5% CO2, 100% O2, and exercise. Behav. Neural Biol. 48, 382–393 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Gallup, A. C. & Gallup, G. G. Jr. Yawning as a brain cooling mechanism: nasal breathing and forehead cooling diminish the incidence of contagious yawning. Evol. Psychol. 5, 92–101 (2007).Article 

    Google Scholar 
    11.Gallup, A. C. & Gallup, G. G. Jr. Yawning and thermoregulation. Physiol. Behav. 95, 10–16 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Gallup, A. C. & Eldakar, O. T. The thermoregulatory theory of yawning: what we know from over 5 years of research. Front. Neurosci. 6, 188 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Shoup-Knox, M. L., Gallup, A. C., Gallup, G. & McNay, E. C. Yawning and stretching predict brain temperature changes in rats: support for the thermoregulatory hypothesis. Front. Evol. Neurosci. 2, 108 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Gallup, G. G. & Gallup, A. C. Excessive yawning and thermoregulation: two case histories of chronic, debilitating bouts of yawning. Sleep Breath. 14, 157–159 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Eguibar, J. R., Uribe, C. A., Cortes, C., Bautista, A. & Gallup, A. C. Yawning reduces facial temperature in the high-yawning subline of Sprague-Dawley rats. BMC Neurosci. 18, 3 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Ramirez, V., Ryan, C. P., Eldakar, O. T. & Gallup, A. C. Manipulating neck temperature alters contagious yawning in humans. Physiol. Behav. 207, 86–89 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gallup, A. C., Miller, R. R. & Clark, A. B. Changes in ambient temperature trigger yawning but not stretching in rats. Ethology 117, 145–153 (2011).Article 

    Google Scholar 
    18.Gallup, A. C. & Eldakar, O. T. Contagious yawning and seasonal climate variation. Front. Evolut. Neurosci. 3, 3 (2011).
    Google Scholar 
    19.Massen, J. J. M., Dusch, K., Eldakar, O. T. & Gallup, A. C. A thermal window for yawning in humans: yawning as a brain cooling mechanism. Physiol. Behav. 130, 145–148 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Eldakar, O. T. et al. Temperature-dependent variation in self-reported contagious yawning. Adapt. Hum. Behav. Physiol. 1, 460–466 (2015).Article 

    Google Scholar 
    21.Falk, D. Brain evolution in Homo: The “radiator” theory. Behav. Brain Sci. 13, 333–381 (1990).Article 

    Google Scholar 
    22.Kiyatkin, E. A., Brown, P. L. & Wise, R. A. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 16, 164–168 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Baker, M. A. Brain cooling in endotherms in heat and exercise. Annu. Rev. Physiol. 44, 85–85 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wang, H. et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci. 8, 307 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    25.Richie, J. M. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol. 26, 147–187 (1973).Article 

    Google Scholar 
    26.Gallup, A. C., Church, A. M. & Pelegrino, A. J. Yawn duration predicts brain weight and cortical neuron number in mammals. Biol. Lett. 12, 20160545 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Gallup, A. C., Crowe, B. & Yanchus, M. Yawn duration predicts brain volumes in wild cats (Felidae). Int. J. Comp. Psychol. 30, 1–5 (2017).Article 

    Google Scholar 
    28.Gallup, A. C., Moscatello, L. & Massen, J. J. M. Brain weight predicts yawn duration across domesticated dog breeds. Curr. Zool. 66, 401–405 (2020).29.Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J. Comp. Physiol. 110, 209–215 (1976).Article 

    Google Scholar 
    30.McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Bernstein, M. H., Sandoval, I., Curtis, M. B. & Hudson, D. M. Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol. 129, 115–118 (1979).Article 

    Google Scholar 
    32.Porter, W. R. & Witmer, L. M. Avian cephalic vascular anatomy, sites of thermal exchange, and the rete ophthalmicum. Anat. Rec. 299, 1461–1486 (2016).Article 

    Google Scholar 
    33.Gallup, A. C., Miller, M. L. & Clark, A. B. Yawning and thermoregulation in budgerigars, Melopsittacus undulatus. Anim. Behav. 77, 109–113 (2009).Article 

    Google Scholar 
    34.Gallup, A. C., Miller, M. L. & Clark, A. B. The direction and range of ambient temperature change influences yawning in budgerigars (Melopsittacus undulatus). J. Comp. Psychol. 124, 133 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Gallup, A. C. et al. Thermal imaging reveals sizable shifts in facial temperature surrounding yawning in budgerigars (Melopsittacus undulatus). Temperature 4, 429–435 (2017).Article 

    Google Scholar 
    36.Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Revell, L. J. Size‐correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    38.Prinzinger, R., Preßmar, A. & Schleucher, E. Body temperature in birds. Comp. Biochem. Phys. A 99, 499–506 (1991).Article 

    Google Scholar 
    39.Jessen, C. Temperature Regulation in Humans and Other Mammals (Springer, 2001).40.O’Brien, H. D. From anomalous arteries to selective brain cooling: parallel evolution of the artiodactyl carotid rete. Anat. Rec. 303, 308–317 (2020).Article 

    Google Scholar 
    41.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325, 468–470 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Iwaniuk, A. N., Dean, K. M. & Nelson, J. E. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav. Evol. 65, 40–59 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.von Eugen, K., Ströckens, F., Backes, H., Endepols, H., & Güntürkün, O. Glucose Metabolism of the Avian Brain: an FDG-PET Study in Pigeons (Columba livia) with Estimated Arterial Input Function of Anesthetized and Awake State. Poster # 068.12/QQ22 Neuroscience Meeting Planner (Online) (Society for Neuroscience, 2018).45.Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE 6, e17514 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Kverková, K. et al. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci. Rep. 8, 9203 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Buffenstein, R. & Yahav, S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 16, 227–232 (1991).Article 

    Google Scholar 
    48.Tucker, R. The digging behavior and skin differentiations in Heterocephalus glaber. J. Morphol. 168, 51–71 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.McNab, B. K. The metabolism of fossorial rodents: a study of convergence. Ecology 47, 712–733 (1966).Article 

    Google Scholar 
    50.Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 164, 143–172 (1960).
    Google Scholar 
    51.Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12138–12143 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Herculano-Houzel, S., Collins, C. E., Wong, P. & Kaas, J. K. Cellular scaling rules for primate brains. Proc. Natl Acad. Sci. USA 104, 3562–3567 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Herculano-Houzel, S. et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav. Evol. 78, 302–314 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Herculano-Houzel, S., Catania, K., Manger, P. R. & Kaas, J. H. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav. Evol. 86, 145–163 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dos Santos, S. E. et al. Cellular scaling rules for the brains of marsupials: not as “primitive” as expected. Brain Behav. Evol. 89, 48–63 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kazu, R. S., Maldonado, J., Mota, B., Manger, P. R. & Herculano-Houzel, S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front. Neuroanat. 8, 128 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Jardim-Messeder, D. et al. Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front. Neuroanat. 11, 118 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear-protein in vertebrates. Development 116, 201–211 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Rehkämper, G., Kart, E., Frahm, H. D. & Werner, C. W. Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav. Evol. 61, 59–69 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Horschler, D. J. et al. Absolute brain size predicts dog breed differences in executive function. Anim. Cogn. 22, 187–198 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Rogell, B., Dowling, D. K. & Husby, A. Controlling for body size leads to inferential biases in the biological sciences. Evol. Lett. 4, 73–82 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Gutierrez-Ibanez, C., Iwaniuk, A. N. & Wylie, D. R. Relative brain size is not correlated with display complexity in manakins: a reanalysis of Lindsay et al. (2015). Brain Behav. Evol. 87, 223–226 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    66.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Boil. Evol. 34, 1812–1819 (2017).CAS 
    Article 

    Google Scholar 
    68.Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L. Z.) 263–286 (Springer, 2014).69.Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).71.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).72.Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 6, 1171 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).Article 

    Google Scholar 
    74.Lemoine, N. P. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).Article 

    Google Scholar 
    75.Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    76.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 

    Google Scholar 
    77.McShane, B. B., Gal, D., Gelman, A., Robert, C. & Tackett, J. L. Abandon statistical significance. Am. Stat. 73, 235–245 (2019).Article 

    Google Scholar 
    78.Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8, 467–474 (2009).Article 

    Google Scholar  More

  • in

    Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon

    1.Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).
    Google Scholar 
    2.Klecka, J., Hadrava, J., Biella, P. & Akter, A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018, e6025 (2018).
    Google Scholar 
    3.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Google Scholar 
    4.Martínez-Adriano, C. A., Díaz-Castelazo, C. & Aguirre-Jaimes, A. Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ 2018, e5493 (2018).
    Google Scholar 
    5.Mertens, J. E. J. et al. Changes of pollinating community of Scadoxus cinnabarinus (Amaryllidaceae) along its elevational range on Mount Cameroon. Arthropod. Plant. Interact. 14, 215–226 (2020).
    Google Scholar 
    6.Wardhaugh, C. W. How many species of arthropods visit flowers?. Arthropod. Plant. Interact. 9, 547–565 (2015).
    Google Scholar 
    7.Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod. Plant. Interact. 10, 21–28 (2016).
    Google Scholar 
    8.Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).
    Google Scholar 
    9.Johnson, S. D. et al. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct. Ecol. 31, 101–115 (2017).
    Google Scholar 
    10.Darwin, C. On the Various Contrivances by Which British and Foreign Orchids are Fertilized (Murray, 1862).
    Google Scholar 
    11.Fox, K. et al. Nectar Robbery and Thievery in the hawk moth (Lepidoptera: Sphingidae)-Pollinated Western Prairie Fringed Orchid Platanthera praeclara. Ann. Entomol. Soc. Am. 108, 1000–1013 (2015).
    Google Scholar 
    12.Martins, D. J. & Johnson, S. D. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol. J. Linn. Soc. 110, 199–213 (2013).
    Google Scholar 
    13.Arroyo, M. T. K., Till-Bottraud, I., Torres, C., Henríquez, C. A. & Martínez, J. Display size preferences and foraging habits of high andean butterflies pollinating Chaetanthera lycopodioides (Asteraceae) in the subnival of the central Chilean Andes. Arctic Antarct. Alp. Res. 39, 347–352 (2007).
    Google Scholar 
    14.Santos, R. S., Milfont, M. O., Silva, M. M., Carneiro, L. T. & Castro, C. C. Butterflies provide pollination services to macadamia in northeastern Brazil. Sci. Hortic. (Amst.) 259, 108818 (2020).
    Google Scholar 
    15.Fleming, T. H. & Holland, J. N. The evolution of obligate pollination mutualisms: Senita cactus and senita moth. Oecologia 114, 368–375 (1998).
    Google Scholar 
    16.Skogen, K. A., Overson, R. P., Hilpman, E. T. & Fant, J. B. Hawkmoth pollination facilitates long-distance pollen dispersal and reduces isolation across a gradient of land-use change. Ann. Mo. Bot. Gard. 104, 495–511 (2019).
    Google Scholar 
    17.Corbet, S. A. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol. Exp. Appl. 96, 289–298 (2000).
    Google Scholar 
    18.Tiple, A. D., Khurad, A. M. & Dennis, R. L. H. Adult butterfly feeding-nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J. Nat. Hist. 43, 855–884 (2009).
    Google Scholar 
    19.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    20.Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: the case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).
    Google Scholar 
    21.Glover, B. J. Pollinator attraction: the importance of looking good and smelling nice. Curr. Biol. 21, R307–R309 (2011).
    Google Scholar 
    22.Kelber, A., Balkenius, A. & Warrant, E. J. Colour vision in diurnal and nocturnal hawkmoths. Integr. Comp. Biol. 43, 571–579 (2003).
    Google Scholar 
    23.Ômura, H. & Honda, K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142, 588–596 (2005).
    Google Scholar 
    24.Pohl, N. B., Van Wyk, J. & Campbell, D. R. Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecol. Entomol. 36, 290–300 (2011).
    Google Scholar 
    25.Yurtsever, S., Okyar, Z. & Guler, N. What colour of flowers do Lepidoptera prefer for foraging?. Biologia (Bratisl). 65, 1049–1056 (2010).
    Google Scholar 
    26.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 
    27.Klomberg, Y. et al. Spatiotemporal shifts in the role of floral traits in shaping tropical plant-pollinator interactions. bioRxiv 2020.10.16.342386. https://doi.org/10.1101/2020.10.16.342386 (2020).28.Ollerton, J., Johnson, S. D. & Hingston, A. B. Geographical variation in diversity and specificity of pollination systems. In Plant–Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J.) 283–308 (University of Chicago Press, 2006).
    Google Scholar 
    29.Maicher, V. et al. Flying between raindrops: strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecol. Evol. 8, 12761–12772 (2018).
    Google Scholar 
    30.Maicher, V. et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).
    Google Scholar 
    31.MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, 1972).
    Google Scholar 
    32.McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ed. John Wiley & Sons, Ltd), a0022548 (Wiley, Chichester, 2010) https://doi.org/10.1002/9780470015902.a0022548.33.Šmilauer, P. & Lepš, J. Multivariate analysis of ecological data using Canoco 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.
    Google Scholar 
    34.Kato, M. et al. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. Am. J. Bot. 95, 1375–1394 (2008).
    Google Scholar 
    35.Momose, K. et al. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am. J. Bot. 85, 1477–1501 (1998).
    Google Scholar 
    36.Ramirez, N. Biologia de Polinizacion en una Comunidad Arbustiva Tropical de la Alta Guayana Venezolana. Biotropica 21, 319 (1989).
    Google Scholar 
    37.Van Dulmen, A. Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecology. 153, 73–85 (2001).
    Google Scholar 
    38.Nsor, C. A. & Chapman, H. M. A preliminary investigation into the avian pollinators of three tree species in a Nigerian montane forest. Malimbus 35, 38–49 (2013).
    Google Scholar 
    39.Weber, N., Kalko, E. K. V. & Fahr, J. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest Reserve, Benin. Acta Chiropterol. 11, 317–329 (2009).
    Google Scholar 
    40.Borges, R. M., Gowda, V. & Zacharias, M. Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136, 571–573 (2003).
    Google Scholar 
    41.Mizusawa, L., Takimoto, G., Yamasaki, M., Isagi, Y. & Hasegawa, M. Comparison of pollination characteristics between the insular shrub Clerodendrum izuinsulare and its widespread congener C.trichotomum. Plant Species Biol. 29, 73–84 (2014).
    Google Scholar 
    42.Budumajji, U. & Solomon Raju, A. J. Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania 63, 89–100 (2018).
    Google Scholar 
    43.Valentin-Silva, A., Godinho, M. A. S., Cruz, K. C., Lelis, S. M. & Vieira, M. F. Three psychophilous Asteraceae species with distinct reproductive mechanisms in southeastern Brazil. New Zeal. J. Bot. 54, 498–510 (2016).
    Google Scholar 
    44.Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, art36 (2013).
    Google Scholar 
    45.Aizen, M. A. Down-facing flowers, hummingbirds and rain. Taxon 52, 675–680 (2003).
    Google Scholar 
    46.Janeček, Š, Bartoš, M. & Njabo, K. Y. Convergent evolution of sunbird pollination systems of Impatiens species in tropical Africa and hummingbird systems of the New World. Biol. J. Linn. Soc. 115, 127–133 (2015).
    Google Scholar 
    47.Bartoš, M. & Janeček, Š. Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr. Biol. 24, R793–R795 (2014).
    Google Scholar 
    48.Bärtschi, F. et al. Elevational richness patterns of sphingid moths support area effects over climatic drivers in a near-global analysis. Glob. Ecol. Biogeogr. 28, 917–927 (2019).
    Google Scholar 
    49.Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).
    Google Scholar 
    50.Hořák, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).
    Google Scholar 
    51.Ramos-Jiliberto, R. et al. Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    52.Bloch, D. & Erhardt, A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology 89, 2453–2460 (2008).
    Google Scholar 
    53.Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography (Cop.) 42, 632–642 (2019).
    Google Scholar 
    54.Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K. & Raguso, R. A. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct. Ecol. 26, 577–587 (2012).
    Google Scholar 
    55.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. 228, 1193–1213 (2020).
    Google Scholar 
    56.Larsen, T. Butterflies of West Africa (Apollo Books, 2005).
    Google Scholar 
    57.Ballesteros-Mejia, L., Kitching, I. J., Jetz, W., Nagel, P. & Beck, J. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob. Ecol. Biogeogr. 22, 586–595 (2013).
    Google Scholar 
    58.Cheek, M., Cable, S., Hepper, F. N., Ndam, N. & Watts, J. Mapping plant biodiversity on Mount Cameroon. In The Biodiversity of African Plants (eds van der Maesen, L. et al.) 110–120 (Springer, 1996). https://doi.org/10.1007/978-94-009-0285-5_16.
    Google Scholar 
    59.Weinstein, B. G. MotionMeerkat: integrating motion video detection and ecological monitoring. Methods Ecol. Evol. 6, 357–362 (2015).
    Google Scholar 
    60.Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing (2019).62.Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    63.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).
    Google Scholar 
    64.Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
    Google Scholar 
    65.Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Google Scholar 
    66.Bartoš, M. et al. Self-compatibility and autonomous selfing of plants in meadow communities. Plant Biol. 22, 120–128 (2020).
    Google Scholar 
    67.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
    Google Scholar 
    68.Hurvich, C. M. & Tsai, C.-L. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14, 271–279 (1993).
    Google Scholar 
    69.ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 50 (Microcomputer Power, 2012).
    Google Scholar  More