More stories

  • in

    Lagged recovery of fish spatial distributions following a cold-water perturbation

    1.Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Lenoir, J. & Svenning, J. C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography (Cop.) 38, 15–28 (2015).Article 

    Google Scholar 
    3.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 
    Article 

    Google Scholar 
    4.Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    5.Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).Article 

    Google Scholar 
    6.Chuine, I. Why does phenology drive species distribution? Philos. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).Article 

    Google Scholar 
    7.Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).ADS 
    PubMed 
    Article 

    Google Scholar 
    8.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).ADS 
    Article 

    Google Scholar 
    9.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    Article 

    Google Scholar 
    10.Fey, S. B. et al. Opportunities for behavioral rescue under rapid environmental change. Glob. Change Biol. 25, 3110–3120 (2019).ADS 
    Article 

    Google Scholar 
    11.Pinsky, M., Worm, B., Fogarty, M., Sarmiento, J. & Levin, S. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–656 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Harley, C. D. G. & Paine, R. T. Contingencies and compounded rare perturbations dictate sudden distributional shifts during periods of gradual climate change. Proc. Natl. Acad. Sci. U.S.A. 106, 11172–11176 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B Biol. Sci. 372, 1–13 (2017).Article 

    Google Scholar 
    15.Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Smith, K. A., Dowling, C. E. & Brown, J. Simmered then boiled: multi-decadal poleward shift in distribution by a temperate fish accelerates during marine heatwave. Front. Mar. Sci. 6, 1–16 (2019).CAS 
    Article 

    Google Scholar 
    17.Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).Article 

    Google Scholar 
    18.Davies, R. W. D. & Rangeley, R. Banking on cod: exploring economic incentives for recovering Grand Banks and North Sea cod fisheries. Mar. Policy 34, 92–98 (2010).Article 

    Google Scholar 
    19.Dempsey, D. P., Koen-Alonso, M., Gentleman, W. C. & Pepin, P. Compilation and discussion of driver, pressure, and state indicators for the Grand Bank ecosystem, Northwest Atlantic. Ecol. Indic. 75, 331–339 (2017).Article 

    Google Scholar 
    20.Dempsey, D. P., Gentleman, W. C., Pepin, P. & Koen-Alonso, M. Explanatory power of human and environmental pressures on the fish community of the Grand Bank before and after the biomass collapse. Front. Mar. Sci. 5, 1–16 (2018).Article 

    Google Scholar 
    21.Hutchinson, G. Concluding remarks. Cold Spring Harbor Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    22.Garrison, L. & Link, J. Fishing effects on spatial distribution and trophic guild structure of the fish community in the Georges Bank region. ICES J. Mar. Sci. 57, 723–730 (2002).Article 

    Google Scholar 
    23.Hsieh, C., Yamauchi, A., Nakazawa, T. & Wang, W. F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 72, 165–178 (2010).Article 

    Google Scholar 
    24.Borregaard, M. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).PubMed 
    Article 

    Google Scholar 
    25.Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography (Cop.) 28, 403–416 (2005).Article 

    Google Scholar 
    26.Thorson, J. T., Rindorf, A., Gao, J., Hanselman, D. & Winker, H. Density-dependent changes in effective area occupied for bottom-associated marine fishes. Philos. Trans. R. Soc. B Biol. Sci. 283, 20161853 (2016).
    Google Scholar 
    27.MacCall, A. Dynamic Geography of Marine Fish Populations (Washington Sea Grant Program, 1990).
    Google Scholar 
    28.Myers, R. A. & Stokes, K. Density-dependent habitat utilization of groundfish and the improvement of research survey. In ICES Committee Meeting D15 (1989).29.Simpson, M. R. & Walsh, S. J. Changes in the spatial structure of Grand Bank yellowtail flounder: testing MacCall’s basin hypothesis. J. Sea Res. 51, 199–210 (2004).ADS 
    Article 

    Google Scholar 
    30.Colbourne, E., Narayanan, S. & Prinsenberg, S. Climatic changes and environmental conditions in the Northwest Atlantic, 1970–1993. ICES J. Mar. Sci. Symp. 198, 311–322 (1994).
    Google Scholar 
    31.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).Article 

    Google Scholar 
    32.Pascual, M. & Guichard, F. Criticality and disturbance in spatial ecological systems. Trends Ecol. Evol. 20, 88–95 (2005).PubMed 
    Article 

    Google Scholar 
    33.Walsh, S. J., Simpson, M. & Morgan, M. J. Continental shelf nurseries and recruitment variability in American plaice and yellowtail flounder on the Grand Bank: insights into stock resiliency. J. Sea Res. 51, 271–286 (2004).ADS 
    Article 

    Google Scholar 
    34.Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).Article 

    Google Scholar 
    35.Revilla, E. & Wiegand, T. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations. Proc. Natl. Acad. Sci. U.S.A. 105, 19120–19125 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Hastings, A. & Botsford, L. W. Persistence of spatial populations depends on returning home. Proc. Natl. Acad. Sci. U.S.A. 103, 6067–6072 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Vuilleumier, S., Wilcox, C., Cairns, B. J. & Possingham, H. P. How patch configuration affects the impact of disturbances on metapopulation persistence. Theor. Popul. Biol. 72, 77–85 (2007).PubMed 
    MATH 
    Article 

    Google Scholar 
    38.Kallimanis, A. S., Kunin, W. E., Halley, J. M. & Sgardelis, S. P. Metapopulation extinction risk under spatially autocorrelated disturbance. Conserv. Biol. 19, 534–546 (2005).Article 

    Google Scholar 
    39.Eliason, E. J. et al. Differences in thermal tolerance among sockeye salmon populations. Science 332, 109–112 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Sorte, C. J. B., Jones, S. J. & Miller, L. P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. J. Exp. Mar. Biol. Ecol. 400, 209–217 (2011).Article 

    Google Scholar 
    41.Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 
    Article 

    Google Scholar 
    43.Morin, P. Communities: basic patterns and elementary processes. In Community Ecology 1–23 (Blackwell Science, 2011).44.Noble, I. & Slatyer, R. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).Article 

    Google Scholar 
    45.Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article 

    Google Scholar 
    46.Mullowney, D. R. J., Dawe, E. G., Colbourne, E. B. & Rose, G. A. A review of factors contributing to the decline of Newfoundland and Labrador snow crab (Chionoecetes opilio). Rev. Fish Biol. Fish. 24, 639–657 (2014).Article 

    Google Scholar 
    47.Morin, P. Causes and consequences of diversity. In Community Ecology 283–318 (Blackwell Science, 2011).48.Rietkerk, B. M., Dekker, S. C., De Ruiter, P. C. & Van De Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: a call for experimental macroecology. Trends Ecol. Evol. 31, 831–841 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Wheeland, L. J. & Morgan, M. J. Age-specific shifts in Greenland halibut (Reinhardtius hippoglossoides) distribution in response to changing ocean climate. ICES J. Mar. Sci. 77, 230–240 (2020).
    Google Scholar 
    52.Runge, C. A., Tulloch, A. I. T., Possingham, H. P., Tulloch, V. J. D. & Fuller, R. A. Incorporating dynamic distributions into spatial prioritization. Divers. Distrib. 22, 332–343 (2016).Article 

    Google Scholar 
    53.Van Teeffelen, A. J. A., Vos, C. C. & Opdam, P. Species in a dynamic world: consequences of habitat network dynamics on conservation planning. Biol. Conserv. 153, 239–253 (2012).Article 

    Google Scholar 
    54.Shepard, S., Greenstreet, S., Piet, G., Rindorf, A. & Dickey-Collas, M. Surveillance indicators and their use in implementation of the marine strategy framework directive. ICES J. Mar. Sci. 72, 2269–2277 (2015).Article 

    Google Scholar 
    55.Link, J. S., Nye, J. A. & Hare, J. A. Guidelines for incorporating fish distribution shifts into a fisheries management context. Fish Fish. 12, 461–469 (2011).Article 

    Google Scholar 
    56.Ockendon, N. et al. Mechanisms underpinning climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob. Change Biol. 20, 2221–2229 (2014).ADS 
    Article 

    Google Scholar 
    57.Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).Article 

    Google Scholar 
    58.Healey, B., Brodie, W., Ings, D. & Power, D. Performance and description of Canadian multi-species surveys in NAFO subarea 2+ Divisions 3KLMNO, with emphasis on 2009–2011. Scientific Council Reports (2012).59.Doubleday, W. Manual on groundfish surveys in the Northwest Atlantic. Scientific Council Studies (1981).60.Hiemstra, P. Automatic interpolation package. (2015).61.Oliver, M. A. & Webster, R. Basic Steps in Geostatistics: The Variogram and Kriging (Springer, 2015).
    Google Scholar 
    62.Thorson, J. T. Guidance for decisions using the vector autoregressive spatio-temporal (VAST) package in stock, ecosystem, habitat and climate assessments. Fish. Res. 210, 143–161 (2019).Article 

    Google Scholar 
    63.Thorson, J. T. VAST model structure and user interface. 1–19 (2019).64.Thorson, J. T., Shelton, A. O., Ward, E. J. & Skaug, H. J. Geostatistical delta-generalized linear mixed models improve precision for estimated abundance indices for West Coast groundfishes. ICES J. Mar. Sci. 72, 1297–1310 (2015).Article 

    Google Scholar 
    65.Thorson, J. T. Three problems with the conventional delta-model for biomass sampling data, and a computationally efficient alternative. Can. J. Fish. Aquat. Sci. 75, 1369–1382 (2017).Article 
    CAS 

    Google Scholar 
    66.Shackell, N. L., Frank, K. T. & Brickman, D. W. Range contraction may not always predict core areas: an example from marine fish. Ecol. Appl. 15, 1440–1449 (2005).Article 

    Google Scholar 
    67.Swain, D. P. & Morin, R. Relationships between geographic distribution and abundance of American plaice (Hippoglossoides platessoides) in the southern Gulf of St. Lawrence. Oceanogr. Lit. Rev. 11, 1155 (1996).
    Google Scholar 
    68.Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: automatic differentiation and Laplace approximation. J. Stat. Softw. 70, 21 (2016).Article 

    Google Scholar 
    69.R Core Team. R: A language and environment for statistical computing. (2018).70.Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Pebesma, E. & Bivand, R. Classes and methods for spatial data in R. (2005).72.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library (2019).73.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2016).74.Pante, E. marmap: a package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Murrell, P. gridBase: Integration of Base and Grid Graphics (2014).76.Bivand, R. S. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects (2019).77.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (2009).78.Thorson, J. T. & Barnett, L. A. K. Comparing estimates of abundance trends and distribution shifts using single- and multispecies models of fishes and biogenic habitat. ICES J. Mar. Sci. 74, 1311–1321 (2017).Article 

    Google Scholar 
    79.Nychka, D., Furrer, R. & Paige, J. & Sain. S. Fields: Tools for spatial data. https://doi.org/10.5065/D6W957CT (2017).Article 

    Google Scholar 
    80.Neuwirth, E. RColorBrewer: ColorBrewer Palettes. (2014). More

  • in

    Author Correction: WOODIV, a database of occurrences, functional traits, and phylogenetic data for all Euro-Mediterranean trees

    These authors contributed equally: Anne-Christine Monnet, Kévin Cilleros, Agathe Leriche.Aix Marseille Univ, Avignon Univ, CNRS, IRD, IMBE. Technopôle de l’Arbois-Méditerranée, cedex 4, BP 80, 13 545, Aix-en-Provence, FranceAnne-Christine Monnet, Kévin Cilleros, Frédéric Médail, Manuel Cartereau, Aggeliki Doxa, Daniel Pavon & Agathe LericheInstitut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle (MNHN), CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, FranceMarwan Cheikh AlbassatnehDepartment of Plant Biology and Ecology, University of Seville, Seville, SpainJuan Arroyo, Marcial Escudero & Estefania Santos BareaDepartment of Life and Environmental Sciences, University of Cagliari, Viale Sant’Ignazio da Laconi 13, Cagliari, ItalyGianluigi BacchettaNational Research Council, Institute of Biosciences and Bioresources, 50019, Sesto Fiorentino, (FI), ItalyFrancesca Bagnoli, Ilaria Spanu & Giovanni Giuseppe VendraminDepartment of Botany, Hungarian Natural History Museum, Pf. 137, Budapest, 1431, HungaryZoltán BarinaFRB-CESAB, 5 rue de l’Ecole de Médecine, 34000, Montpellier, FranceNicolas CasajusDepartment of Biology, Laboratory of Botany, University of Patras, 26504, Patras, GreecePanayotis DimopoulosDepartment of Agriculture, Food and Forest Sciences, University of Palermo, Viale delle Scienze bldg. 4, 90128, Palermo, ItalyGianniantonio DominaStatistical Learning Lab, Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas (FORTH), Ν. Plastira 100, Vassilika Vouton, GR – 700 13, Heraklion, Crete, GreeceAggeliki DoxaINRAE, UR629, Ecologie des forêts méditerranéennes, Avignon, FranceBruno Fady & Anne RoigINRAE, Univ. Bordeaux, BIOGECO, F-33610, Cestas, FranceArndt HampeMacedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000, Skopje, Republic of MacedoniaVlado MatevskiEcoGozo, Regional Development Directorate – Ministry for Gozo, Flat 6, Sunset Court B, Triq Marsalforn, Xaghra, Gozo, MaltaStephen MisfudDepartment of Botany, Faculty of Science, University of Zagreb, Zagreb, CroatiaToni NikolicBakkevej 6, 5853, Ørbæk, DenmarkArne Strid More

  • in

    Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs

    1.Collar, D. C., Schulte, J. A., O’Meara, B. C. & Losos, J. B. Habitat use affects morphological diversification in dragon lizards. J. Evol. Biol. 23, 1033–1049 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 1–11 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Vidal-García, M. & Keogh, J. S. Phylogenetic conservatism in skulls and evolutionary lability in limbs – morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing. BMC Evol. Biol. 17, 1–15 (2017).Article 

    Google Scholar 
    4.Fabre, A.-C., Cornette, R., Goswami, A. & Peigné, S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J. Anat. 226, 596–610 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Dumont, M. et al. Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biol. J. Linn. Soc. 117, 858–878 (2015).Article 

    Google Scholar 
    6.Baeckens, S., Goeyers, C. & Van Damme, R. Convergent evolution of claw shape in a transcontinental lizard radiation. Integr. Comp. Biol. https://doi.org/10.1093/icb/icz151 (2019).7.Price, S. A., Holzman, R., Near, T. J. & Wainwright, P. C. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol. Lett. 14, 462–469 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).CAS 

    Google Scholar 
    10.Salvidio, S., Crovetto, F. & Adams, D. C. Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave. J. Evol. Biol. 28, 1403–1409 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Ledbetter, N. M. & Bonett, R. M. Terrestriality constrains salamander limb diversification: implications for the evolution of pentadactyly. J. Evol. Biol. 32, 642–652 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    12.McGhee Jr, G. R. Convergent Evolution: Limited Forms Most Beautiful (MIT Press, 2011).13.Vullo, R., Allain, R. & Cavin, L. Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels. Acta Palaeontol. Pol. 61, 825–828 (2016).Article 

    Google Scholar 
    14.Stayton, C. T. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60, 824–841 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–5 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sears, K. E. Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58, 2353–2370 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    17.Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol. 11, 1–14 (2013).Article 

    Google Scholar 
    18.Goswami, A. et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr. Comp. Biol. 56, 404–415 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Wake, D. B. & Larson, A. Multidimensional analysis of an evolving lineage. Science 238, 42–48 (1987).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bonett, R. M. & Blair, A. L. Evidence for complex life cycle constraints on salamander body form diversification. Proc. Natl Acad. Sci. USA 114, 9936–9941 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Bardua, C., Wilkinson, M., Gower, D. J., Sherratt, E. & Goswami, A. Morphological evolution and modularity of the caecilian skull. BMC Evol. Biol. 19, 1–23 (2019).Article 

    Google Scholar 
    23.Schlosser, G. in Modularity: Understanding the Development and Evolution of Natural Complex Systems (eds. Callebaut, W. & Rasskin-Gutman, D.) (MIT Press, 2005).24.Moran, N. A. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 25, 573–600 (1994).Article 

    Google Scholar 
    25.Ebenman, B. Evolution in organisms that change their niches during the life cycle. Am. Nat. 139, 990–1021 (1992).Article 

    Google Scholar 
    26.Mallarino, R. et al. Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proc. Natl Acad. Sci. USA 108, 4057–4062 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. B Biol. Sci. 284, 20162598 (2017).Article 
    CAS 

    Google Scholar 
    28.Harrington, S. M., Harrison, L. B. & Sheil, C. A. Ossification sequence heterochrony among amphibians. Evol. Dev. 15, 344–364 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Bonett, R. M., Phillips, J. G., Ledbetter, N. M., Martin, S. D. & Lehman, L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc. R. Soc. B Biol. Sci. 285, 20172304 (2018).Article 
    CAS 

    Google Scholar 
    30.Laurent, R. F. Adaptive modifications in frogs of an isolated highland fauna in Central Africa. Evolution 18, 458–467 (1964).Article 

    Google Scholar 
    31.Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B Biol. Sci. 280, 1–9 (2013).
    Google Scholar 
    33.Duellman, W. E. & Trueb, L. Biology of the Amphibians (McGraw-Hill publishing company, 1986).34.LaBarbera, M. in Patterns and Processes in the History of Life (eds. Raup, D.M. & Jablonski, D.) (Springer, 1986).35.Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Ziermann, J. M. & Diogo, R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J. Morphol. 275, 398–413 (2013).Article 

    Google Scholar 
    38.McDiarmid, R. W. & Altig, R. (eds) Tadpoles: The Biology of Anuran Larvae (University of Chicago Press, 1999).39.Altig, R. & Johnston, G. F. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol. Monogr. 3, 81–109 (1989).Article 

    Google Scholar 
    40.Rose, C. S. & Reiss, J. O. in The Skull Volume 1: Development (eds. Hanken, J. & Hall, B. K.) (The University of Chicago Press, 1993).41.Callery, E. M., Fang, H. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Wake, D. B. & Roth, G. (eds). Complex Organismal Functions: Integration and Evolution in Vertebrates (Wiley, Chichester, UK, 1989).43.Weisbecker, V. & Mitgutsch, C. A large-scale survey of heterochrony in anuran cranial ossification patterns. J. Zool. Syst. Evol. Res. 48, 332–347 (2010).Article 

    Google Scholar 
    44.Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).Article 

    Google Scholar 
    45.Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs: larval and adult size evolution. Proc. R. Soc. B Biol. Sci. 287, 20201474 (2020).Article 

    Google Scholar 
    46.Werner, E. E. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128, 319–341 (1986).Article 

    Google Scholar 
    47.Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 15213 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Trueb, L. in The Skull: Patterns of Structural and Systematic Diversity (eds Hanken, J, & Hall, B. K.) (The University of Chicago Press, 1993).50.Trueb, L. in Evolutionary Biology of the Anurans: Contemporary Research on Major Problems (ed. Vial, J. L.) (University of Missouri Press, 1973).51.Reiss, J. O. The phylogeny of amphibian metamorphosis. Zoology 105, 85–96 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Moore, M. K. & Townsend, V. R. Jr Intraspecific variation in cranial ossification in the tailed frog, Ascaphus truei. J. Herpetol. 37, 714–717 (2003).Article 

    Google Scholar 
    53.Yeh, J. The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56, 2484–2498 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Schoch, R. R. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy. J. Exp. Zool. B Mol. Dev. Evol. 322B, 619–630 (2014).Article 

    Google Scholar 
    55.Pereyra, M. O. et al. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    56.Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. G. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Schlosser, G. Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui. Anat. Embryol. 206, 215–227 (2003).Article 

    Google Scholar 
    60.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Felice, R. N. et al. Evolutionary integration and modularity in the archosaur cranium. Integr. Comp. Biol. 59, 371–382 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl Acad. Sci. USA 116, 14688–14697 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Owen, R. On the Archaeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solnhofen. Philos. Trans. R. Soc. Lond. 153, 33–47 (1863).ADS 

    Google Scholar 
    64.Paluh, D. J., Stanley, E. L. & Blackburn, D. C. Evolution of hyperossification expands skull diversity in frogs. Proc. Natl Acad. Sci. USA 117, 8554–8562 (2020).65.Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Nevo, E. Adaptive convergence and divergence of subterranean mammals. Annu. Rev. Ecol. Syst. 10, 269–308 (1979).Article 

    Google Scholar 
    67.Nevo, E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol. 3, 9–31 (1995).Article 

    Google Scholar 
    68.Vogel, S. Life’s Devices: The Physical World of Animals and Plants (Princeton Univ. Press, 1988).69.Sansalone, G. et al. Impact of transition to a subterranean lifestyle on morphological disparity and integration in talpid moles (Mammalia, Talpidae). BMC Evol. Biol. 19, 1–15 (2019).CAS 
    Article 

    Google Scholar 
    70.Nauwelaerts, S., Ramsay, J. & Aerts, P. Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: no evidence for a design conflict. J. Anat. 210, 304–317 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).Article 

    Google Scholar 
    72.Cardini, A., Polly, P. D., Dawson, R. & Milne, N. Why the long face? Kangaroos and wallabies follow the same ‘rule’ of cranial evolutionary allometry (CREA) as placentals. Evol. Biol. 42, 169–176 (2015).Article 

    Google Scholar 
    73.Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56, 628–641 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).75.Emerson, S. B. Skull shape in frogs: correlations with diet. Herpetologica 41, 177–188 (1985).
    Google Scholar 
    76.Carreño, C. A. & Nishikawa, K. C. Aquatic feeding in pipid frogs: the use of suction for prey capture. J. Exp. Biol. 213, 2001–2008 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fernandez, E., Irish, F. & Cundall, D. How a frog, Pipa pipa, succeeds or fails in catching fish. Copeia 105, 108–119 (2017).Article 

    Google Scholar 
    78.Herrel, A. et al. in Feeding in Vertebrates: Evolution, Morphology, Behavior, Biomechanics (eds. Bels, V. & Whishaw, I. Q.) (Springer, 2019).79.Bardua, C. et al. Evolutionary integration of the frog cranium. Evolution 74, 1200–1215 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Bon, M., Bardua, C., Goswami, A. & Fabre, A.-C. Cranial integration in the fire salamander, Salamandra salamandra (Caudata: Salamandridae). Biol. J. Linn. Soc. 130, 178–194 (2020).81.Fabre, A. et al. Metamorphosis and the evolution of morphological diversity in salamanders. Nat. Ecol. Evol. 4, 1129–1140 (2020).82.Nishikawa, K. C. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) (Academic Press, 2000).83.Trueb, L. & Gans, C. Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). J. Zool. 199, 189–208 (1983).Article 

    Google Scholar 
    84.Nishikawa, K. C., Kier, W. M. & Smith, K. K. Morphology and mechanics of tongue movement in the African pig-nosed frog Hemisus marmoratum: a muscular hydrostatic model. J. Exp. Biol. 202, 771–80 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Henrici, A. C. Digging through the past: the evolutionary history of burrowing and underground feeding in rhinophrynid anurans. Palaeobiodivers. Palaeoenviron. 96, 97–109 (2015).Article 

    Google Scholar 
    86.Van Dijk, D. E. Osteology of the ranoid burrowing African anurans Breviceps and Hemisus. Afr. Zool. 36, 137–141 (2001).Article 

    Google Scholar 
    87.Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A. & Hoke, K. L. Sensitive high-frequency hearing in earless and partially eared harlequin frogs (Atelopus). J. Exp. Biol. 221, 1–8 (2018).Article 

    Google Scholar 
    88.Boistel, R. et al. How minute sooglossid frogs hear without a middle ear. Proc. Natl Acad. Sci. USA 110, 15360–15364 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Womack, M. C., Stynoski, J. L., Voyles, M. K., Coloma, L. A. & Hoke, K. L. Prolonged middle ear development in Rhinella horribilis. J. Morphol. 279, 1518–1523 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A., Chaparro, J. C. & Hoke, K. L. Earless toads sense low frequencies but miss the high notes. Proc. R. Soc. B Biol. Sci. 284, 20171670 (2017).Article 

    Google Scholar 
    91.Hetherington, T. E. in The Evolutionary Biology of Hearing (eds. Webster, D. B., Fay, R. R. & Popper, A. N.) (Springer, 1992).92.Hanken, J., Klymkowsky, M. W., Summers, C. H., Seufert, D. W. & Ingebrigtsen, N. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount lmmunohistochemistry. J. Morphol. 211, 95–118 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Hanken, J., Klymkowsky, M. W., Alley, K. E. & Jennings, D. H. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proc. R. Soc. B Biol. Sci. 264, 1349–1354 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Wray, G. A. & Raff, R. A. The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol. 6, 45–50 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Watkins, T. B. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution 55, 1668–1677 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Wilson, A. D. M. & Krause, J. Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav. Ecol. 23, 1316–1323 (2012).Article 

    Google Scholar 
    97.O’Reilly, J. C., Deban, S. M. & Nishikawa., K. C. in Topics in Functional and Ecological Vertebrate Morphology: A Tribute to Frits de Vree (eds. Aerts, P., D’Août, K., Herrel, A. & van Damme, R.) (Shaker Publishing, 2002).98.Philips, P. C. Genetic constraints at the metamorphic boundary: morphological development in the wood frog, Rana sylvatica. J. Evol. Biol. 11, 453–463 (1998).Article 

    Google Scholar 
    99.Johansson, F., Lederer, B. & Lind, M. I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. PLoS ONE 5, e11680 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Wassersug, R. J. The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Am. Zool. 15, 405–417 (1975).Article 

    Google Scholar 
    101.Vassilieva, A. B. Heterochronies in the cranial development of Asian tree frogs (Amphibia: Anura: Rhacophoridae) with different life histories. Dokl. Biol. Sci. 473, 110–113 (2017).Article 

    Google Scholar 
    102.Kerney, R., Meegaskumbura, M., Manamendra-Arachchi, K. & Hanken, J. Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans. J. Morphol. 268, 715–725 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Heatwole, H. & Davies, M. (eds.) Amphibian biology (volume 5), osteology. (Surrey Beatty & Sons, 2003).104.Hanken, J. & Hall, B. K. Skull development during anuran metamorphosis: I. Early development of the first three bones to form–the exoccipital, the parasphenoid, and the frontoparietal. J. Morphol. 195, 247–256 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Fink, W. L. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8, 254–264 (1982).Article 

    Google Scholar 
    106.Strathmann, R. R. in Echinoderm Phylogeny and Evolutionary Biology (eds. Paul, C. R. C. & Smith, A. B.) (Clarendon Press, 1988).107.Laloy, F. et al. A re-interpretation of the Eocene anuran Thaumastosaurus based on MicroCT examination of a “mummified” specimen. PLoS ONE 8, e74874 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Frost, D. R. et al. The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297, 1–370 (2006).109.Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 435–441 (2010).Article 

    Google Scholar 
    110.Slater, G. J. & Harmon, L. J. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Methods Ecol. Evol. 4, 699–702 (2013).Article 

    Google Scholar 
    111.Volume Graphics. VGStudio MAX v. 2.0 (Volume Graphics GmbH, 2001).112.Bardua, C., Felice, R. N., Watanabe, A., Fabre, A.-C. & Goswami, A. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integr. Org. Biol. 1, 1–34 (2019).
    Google Scholar 
    113.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    Article 

    Google Scholar 
    115.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    116.Wiley, D. F. et al. Evolutionary morphing. In Proc. Visualization Conference (IEEE, 2005).117.Schlager, S. in Statistical Shape and Deformation Analysis (eds. Zheng, G., Li, S. & Szekely, G.) (Academic Press, 2017).118.Cardini, A. Left, right or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. J. Zool. Syst. Evol. Res. 55, 1–10 (2016).Article 

    Google Scholar 
    119.Marshall, A. F. et al. High-density three-dimensional morphometric analyses support conserved static (intraspecific) modularity in caecilian (Amphibia: Gymnophiona) crania. Biol. J. Linn. Soc. 126, 721–742 (2019).Article 

    Google Scholar 
    120.Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl Acad. Sci. USA 97, 6585–90 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Young, J. E., Christian, K. A., Donnellan, S. C., Tracy, C. R. & Parry, D. Comparative analysis of cutaneous evaporative water loss in frogs demonstrates correlation with ecological habits. Physiol. Biochem. Zool. 78, 847–856 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    122.Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: a phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Scott, E. A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 21, 507–574 (2005).Article 

    Google Scholar 
    124.Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    125.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    126.Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article 

    Google Scholar 
    127.Clavel, J., Aristide, L. & Morlon, H. A penalized likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68, 93–116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    128.Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in phyllostomid bats. Syst. Biol. 69, 927–943 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Housworth, E. A., Martins, E. P. & Lynch, M. The phylogenetic mixed model. Am. Nat. 163, 84–96 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    130.Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).Article 

    Google Scholar 
    131.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.11 https://CRAN.R-project.org/package=Rphylopars (2019).133.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    134.Bardua, C. & Goswami, A. Frog skull shape data for modularity and macroevolution. https://doi.org/10.5281/zenodo.4619880 (2020). More

  • in

    The Holocene influence on the future evolution of the Venice Lagoon tidal marshes

    1.D’Alpaos, A., Da Lio, C. & Marani, M. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5, 550–562 (2012).Article 

    Google Scholar 
    2.Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Response of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    3.Murray, A. B., Knaapen, M. A. F., Tal, M. & Kirwan, M. L. Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour. Res. 44, W11301 (2008).4.Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf S. 82, 377 – 389 (2009).Article 
    CAS 

    Google Scholar 
    5.Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).CAS 
    Article 

    Google Scholar 
    6.Törnqvist, T. E. et al. Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1, 173–176 (2008).Article 
    CAS 

    Google Scholar 
    7.Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical Report (Ramsar Convention on Wetlands, Gland, Switzerland: Ramsar Convention Secretariat, 2018).8.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    9.Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).Article 

    Google Scholar 
    10.Sapkota, Y. & White, J. R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the united states: a review. Sci. Total Environ. 701, 134497 (2020).CAS 
    Article 

    Google Scholar 
    11.Brain, M. J. Past, present and future perspectives of sediment compaction as a driver of relative sea level and coastal change. Current Clim. Change Rep. 2, 75–85 (2016).Article 

    Google Scholar 
    12.Marani, M., D’Alpaos, A., Lanzoni, S. & Santalucia, M. Understanding and predicting wave erosion of marsh edges. Giophys. Res. Lett. 38, L21401 (2011).13.Houser, C. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment. J. Coast. Res. 26, 230–240 (2010).14.Anderson, F. E. Effect of wave-wash from personal watercraft on salt marsh channels. J. Coast. Res. 37, 33–49 (2002).15.Day, J. et al. Sustainability of mediterranean deltaic and lagoon wetlands with sea-level rise: the importance of river input. Estuaries Coasts 34, 483–493 (2011).16.Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).CAS 
    Article 

    Google Scholar 
    17.Schuerch, M., Spencer, T. & Temmerman, S. e. a. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).18.Tosi, L., Da Lio, C., Teatini, P. & Strozzi, T. Land subsidence in coastal environments: knowledge advance in the venice coastland by TerraSAR-X PSI. Remote Sens. 10, 1191 (2018).Article 

    Google Scholar 
    19.Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U. & Werner, C. Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surface 118, 1177–1191 (2013).Article 

    Google Scholar 
    20.Mariotti, G. Beyond marsh drowning: the many faces of marsh loss (and gain). Adv. Water Resour. 144, 103710 (2020).Article 

    Google Scholar 
    21.Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).CAS 
    Article 

    Google Scholar 
    22.D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).Article 

    Google Scholar 
    23.Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).24.Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Sci. Rev. 19, 1155–1231 (2000).Article 

    Google Scholar 
    25.Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. J. Geophys. Res. Earth Surface 115, 1–15 (2010).Article 

    Google Scholar 
    26.Da Lio, C., D’Alpaos, A. & Marani, M. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20120367 (2013).
    Google Scholar 
    27.Allen, J. R. L. Geological impact on coastal wetland landscapes: some general effects of sediment autocompaction in the Holocene of northwest Europe. Holocene 9, 1–12 (1999).Article 

    Google Scholar 
    28.Callaway, J. C., DeLaune, R. D. & Jr., W. H. P. Sediment accretion rates from four coastal wetlands along the gulf of Mexico. J. Coast. Res. 13, 181–191 http://www.jstor.org/stable/4298603 (1997).29.Rybczyk, J. M., Callaway, J. & Jr, J. D. A relative elevation model for a subsiding coastal forested wetland receiving wastewater effluent. Ecol. Model. 112, 23–44 https://doi.org/10.1016/S0304-3800(98)00125-2 (1998).30.Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).Article 

    Google Scholar 
    31.Brain, M. J. et al. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. Quat. Sci. Rev. 167, 96–111 (2017).32.Zoccarato, C. & Teatini, P. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Ad. Water Res. 110, 107–119 (2017).Article 

    Google Scholar 
    33.Da Lio, C., Teatini, P., Strozzi, T. & Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR interferometry and ground-based investigations. Remote Sens. Environ. 205, 56–70 (2018).
    Google Scholar 
    34.Cahoon, D. & Turner, R. E. Accretion and canal impacts in a rapidly subsiding wetland ii. feldspar marker horizon technique. Estuaries 12, 260–268 (1989).35.Cahoon, D. R. & Reed, D. J. W., D. J. Estimating shallow subsidence in microtidal salt marshes of the southeastern united states: Kaye and barghoorn revisited. Marine Geol. 128, 1–9 (1995).36.Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).CAS 
    Article 

    Google Scholar 
    37.Teatini, P. et al. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ. 98, 403–413 (2005).Article 

    Google Scholar 
    38.Tosi, L. et al. Ground surface dynamics in the northern adriatic coastland over the last two decades. Rendiconti Lincei 21, 115–129 (2010).Article 

    Google Scholar 
    39.Karegar, M., Dixon, T. & Malservisi, R. A three-dimensional surface velocity field for the mississippi delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).40.Brain, M. J. et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth Planet. Sci. Lett. 345–348, 180–193 (2012).Article 
    CAS 

    Google Scholar 
    41.Tosi, L., Teatini, P., Carbognin, L. & Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy. Tectonophysics 474, 271–284 (2009).Article 

    Google Scholar 
    42.Tosi, L. et al. Note illustrative della carta geologica d’italia alla scala 1: 50.000 foglio 128 venezia. APAT – Dipartimento Difesa del Suolo, Servizio Geologico d’Italia (2007).43.Rizzetto, F. & Tosi, L. Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology 39, 755–758 (2011).Article 

    Google Scholar 
    44.Cola, S., Sanavia, L., Simonini, P. & Schrefler, B. A. Coupled thermohydromechanical analysis of Venice lagoon salt marshes. Water Resour. Res. 44, 1–16 (2008).Article 

    Google Scholar 
    45.Carminati, E. & Di Donato, G. Separating natural and anthropogenic vertical movements in fast subsiding areas: the po plain (n. italy) case. Geophys. Res. Lett. 26, 2291–2294 (1999).Article 

    Google Scholar 
    46.Carbognin, L., Teatini, P. & Tosi, L. The impact of relative sea-level rise on the Northern Adriatic Sea coast, Italy. WIT Trans. Ecol. Environ. 127, 137–148 (2009).47.Tsimplis, M. et al. Recent developments in understanding sea level rise at the Adriatic coasts. Phys. Chem. Earth Parts A/B/C 40-41, 59 – 71 (2012).Article 

    Google Scholar 
    48.Antonioli, F. et al. Sea-level rise and potential drowning of the italian coastal plains: flooding risk scenarios for 2100. Quat. Sci. Rev. 158, 29 – 43 (2017).Article 

    Google Scholar 
    49.Zanchettin, D. et al. Review article: Sea-level rise in venice: historic and future trends. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–56 (2020).
    Google Scholar 
    50.Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriá, A., Nicolai, M., Okem, A., Petzold, J., Rama, B. & Weyer, N. M.) Ch. 4 (IPCC, 2019).51.Tsimplis, M. N. & Rixen, M. Sea level in the mediterranean sea: the contribution of temperature and salinity changes. Geophys. Res. Lett. 29, 51–1–51–4 (2002).Article 

    Google Scholar 
    52.Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B. & Losada, I. Likely and high-end impacts of regional sea-level rise on the shoreline change of european sandy coasts under a high greenhouse gas emissions scenario. Water 11, 2607 (2019).Article 
    CAS 

    Google Scholar 
    53.Zoccarato, C., Da Lio, C., Tosi, L. & Teatini, P. A coupled biomorpho-geomechanical model of tidal marsh evolution. Water Resour. Res. 55, 8330–8349 (2019).Article 

    Google Scholar 
    54.Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice Lagoon. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    55.Ferrarin, C. et al. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon. Hydrol. Earth Syst. Sci. 17, 1733–1748 (2013).Article 

    Google Scholar 
    56.Umgiesser, G. The impact of operating the mobile barriers in venice (mose) under climate change. J. Nat. Conserv. 54, 125783 (2020).Article 

    Google Scholar 
    57.Roner, M. et al. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the venice lagoon, italy. Ad. Water Res. 93, 276–287 (2016).CAS 
    Article 

    Google Scholar 
    58.Long, A. J., Waller, M. P. & Stupples, P. Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar. Geol. 225, 63–84 (2006).Article 

    Google Scholar 
    59.Karegar, M. A., Larson, K. M., Kusche, J. & Dixon, T. H. Novel quantification of shallow sediment compaction by gps interferometric reflectometry and implications for flood susceptibility. Geophys. Res. Lett. 47, e2020GL087807 (2020).
    Google Scholar 
    60.Zoccarato, C., Minderhoud, P. S. J. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega mekong delta, vietnam. Sci. Rep. 8, 11437 (2018).61.Brain, M. J., Long, A. J., Petley, D. N., Horton, B. P. & Allison, R. J. Compression behaviour of minerogenic low energy intertidal sediments. Sed. Geol. 233, 28–41 (2011).Article 

    Google Scholar 
    62.Guimond, J. A., Yu, X., Seyfferth, A. L. & Michael, H. A. Using hydrological-biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea-level rise. Water Resour. Res. 56, e2019WR026302 (2020).CAS 
    Article 

    Google Scholar 
    63.Teatini, P. et al. Characterizing marshland compressibility by an in-situ loading test: design and set-up of an experiment in the Venice Lagoon. Proc. IAHS 382, 345–351 (2020).64.Mazzia, A., Ferronato, M., Teatini, P. & Zoccarato, C. Virtual element method for the numerical simulation of long-term dynamics of transitional environments. J. Comput. Phys. 407, 109235 (2020).Article 

    Google Scholar 
    65.Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 1. The rigorous theory. Water Resour. Res. 9, 1022–1028 (1973).Article 

    Google Scholar 
    66.Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 2. Validity range of the diffusion equation. Water Resour. Res. 9, 1385–1395 (1973).Article 

    Google Scholar 
    67.Gambolati, G., Giunta, G. & Teatini, P. Numerical modeling of natural land subsidence over sedimentary basins undergoing large compaction. In Gambolati, G. (ed.) CENAS – Coastline evolution of the Upper Adriatic Sea due to sea level rise and natural and anthropogenic land subsidence, no. 28 in Water Science and Technology Library, 77–102 (Klwer Acedemic Publ., 1998). More

  • in

    African swine fever ravaging Borneo’s wild pigs

    African swine fever has breached the island of Borneo, where it is wiping out populations of the wild bearded pig Sus barbatus. First confirmed in early February, the outbreak has driven a precipitous decline in this species in less than two months. Field sites in the east of the Sabah region are reporting a complete absence of live pigs in forests. Local extinctions across swathes of Borneo are a realistic prospect.Bearded pigs are listed as vulnerable by the International Union for Conservation of Nature. They are seen as ‘ecosystem engineers’ in the Bornean rainforest, where they are one of the most abundant species of mammal. Bearded pigs can be legally hunted under permit, and are an important source of animal protein for many communities.The African swine fever virus is already island-hopping across southeast Asia, threatening 11 species of endemic pig, including the Sulawesi warty pig (Sus celebensis). Opportunities to control the disease in wild-pig populations are limited. Vaccines for domestic pigs are still in development, so the best hope for stemming loss of the wild animals could be to protect isolated populations in geographically defensible locations. More

  • in

    Physiological and biochemical responses of two precious Carpinus species to high-concentration NO2 stress and their natural recovery

    Morphological changes of the leavesThe influence of NO2 stress on the plants was first reflected by the morphological changes of the leaves (Fig. 1)20,22. Slight NO2 injury was manifested by slight green deficiency and light color. Moderate NO2 injury was manifested by irregular watery spots between leaf veins, which gradually developed into yellow necrotic spots followed by lesions at the leaf stalk and margins. When the exposure time extended to 72 h, the leaves turned yellow, and irreversible injury occurred, which led to leaf death. The damaged areas of the leaves of the two species at different time points of NO2 exposure are summarized in Table 1.Figure 1Leaf injury symptoms of Carpinus betulus (A) and Carpinus putoensis (B) under different NO2 exposure time and after recovery.Full size imageTable 1 The damaged areas (percentage) of the leaves of Carpinus betulus and Carpinus putoensis at different time points of NO2 stress.Full size tableChanges in MDA contentThe changes in the MDA content of C. betulus and C. putoensis at different time points of NO2 stress are shown in Fig. 2. With the prolongation of NO2 stress, the MDA content of C. betulus showed an increasing tendency with the variation range from 0.016 to 0.029 µmol g−1 fw. However, no significant differences were observed at different time points of NO2 exposure.Figure 2Changes in the MDA content of C. betulus and C. putoensis at different time points of NO2 stress and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageAs NO2 fumigation time extended, the MDA content of C. putoensis also showed an increasing tendency, with the variation range from 0.015 to 0.034 µmol g−1 fw. Compared with the control group, a significant difference was observed in the MDA content from 24 h, which peaked at 72 h. In C. putoensis, although the recover group and the control group did not show a significant difference, the MDA content of the former lay between 0.015 (6 h) and 0.019 µmol g−1 fw (12 h), which suggests that the plant did not recovered completely from the stress damage.Compared with C. putoensis, C. betulus exhibited a smaller variation amplitude in the MDA content under NO2 stress. The MDA content of C. betulus did not show noticeable changes at 1, 6, and 12 h, and it was till 24 h when a rapid increase occurred. These findings indicate a delayed injury response of C. betulus. In contrast, with the prolongation of NO2 stress, the MDA content of C. putoensis noticeably increased, which indicates an increase in the membrane lipid peroxidation activity of C. putoensis under NO2 stress.Changes in POD activityThe changes in POD activity of C. betulus and C. putoensis at different time points of NO2 stress are shown in Fig. 3. With the prolongation of NO2 stress, the POD activity of C. betulus showed an increasing tendency, with a variation range from 323 to 663 U (g * min)−1 fw. After 30-d self recovery, the POD activity returned to 409 U (g * min)−1 fw, which was comparable to that of the control.Figure 3Changes in POD activity of C. betulus and C. putoensis at different time points of NO2 stress and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageAs NO2 fumigation time extended, the POD value of C. putoensis also showed an increasing tendency, with a variation range from 385 to 596 U (g * min)−1 fw. The recovery group did not show a significant difference compared with the control group.In C. betulus, the POD activity value rapidly increased at 72 h of NO2 stress, which showed a significant difference compared with any other group (adjusted p  0.05).Figure 4Changes in the soluble protein content of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageIn C. putoensis, the soluble protein content also showed an increasing trend as the fumigation time prolonged. The variations ranged from 2.61 to 3.27 mg g−1 fw. Compared with the control group, the recovery group exhibited a lower soluble protein content, although no significant difference was observed between them.As shown in Fig. 4, the maximum difference in the soluble protein content of C. betulus was 2.33 mg g−1 fw, which was greatly larger than that of C. putoensis (0.66 mg g−1 fw). Particularly, C. betulus exhibited a rapid increase in the soluble protein content from 12 h of fumigation, which indicates that C. betulus increased protein synthesis when encountered with NO2 stress, whereas C. putoensis showed only weak resistance against the stress.Changes in NRAt 0 h of NO2 treatment, the NR activity of C. betulus was 1.43 ± 0.14 µmol NO2−·g−1fw·h−1. With the prolongation of NO2 exposure, the NR activity of C. betulus exhibited a gradual increase followed by a gradual decrease, and a significant difference (adjusted p  0.05). In C. putoensis, the NR activity of the control group was 0.58 ± 0.06 µmol NO2−·g−1fw·h−1. As the NO2 exposure time prolonged, NR activity exhibited a rapid increase (adjusted p  0.05). The results were shown in Fig. 5.Figure 5Changes in the NR activity of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageChanges in NO3
    −NAs the NO2 treatment time extended, the NO3−N content of C. betulus exhibited an increase followed by a gradual decrease, and a significant difference (adjusted p  0.05). In C. putoensis, the NO3−N content also exhibited an increase followed by a decrease after NO2 exposure. However, a significant difference was observed from 12 h. After 30-d recovery, the index returned to a normal level (adjusted p  > 0.05). The results were shown in Fig. 6.Figure 6Changes in the NO3−N content of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageChanges in mineral elementsThe changes in the mineral elements of C. betulus and C. putoensi under NO2 stress and after self recovery are summarized in Table 2.Table 2 Changes in the mineral element contents of C. betulus and C. putoensis under NO2 stress and after self recovery.Full size tableMacroelements(1) N. At 1 h of NO2 stress, the total nitrogen content of C. betulus increased slightly to 1.68 ± 0.17 g/kg; this value was higher than that of control (1.4 ± 0.13 g/kg), but no significant difference was observed (adjusted p  > 0.05). With the prolongation of the stress, the content decreased, with the variations ranging from 0.84 to 1.68 g/kg and the maximum difference of 0.84 g/kg. The recovery group did not show a significant difference compared with the control group (1.53 ± 0.15 vs. 1.4 ± 0.13; adjusted p = 1.00).Overall, the changes in the total nitrogen content of C. putoensis showed a similar trend with those of C. betulus. At 1 h of NO2 stress, the total nitrogen content of C. putoensis significantly increased compared with that of the control (1.68 ± 0.15 g/kg vs. 1.12 ± 0.11 g/kg; adjusted p  0.05).(4) Ca. With the prolongation of NO2 exposure, the Ca content of C. betulus exhibited an increase followed by a gradual decrease, and the variations ranged from 84 to 243 µg L−1 dw. A significant difference was observed at 72 h of NO2 exposure. In C. putoensis, significant differences in the Ca content were observed during NO2 exposure, except at 12 h. In both species, the Ca content of the recovery group did not show a significant difference compared with the control group. The variation amplitude of the Ca content of C. betulus (159 µg L−1 dw) was noticeably greater than that of C. putoensis (68 µg L−1 dw).(5) Mg. As the NO2 stress prolonged, the Mg content of C. betulus did not show a significant drop, except at 48 h. The variations ranged from 21.4 to 31.3 µg L−1 dw. In C. putoensis, the variations ranged from 12.2 to 32.2 µg L−1 dw. In both species, the Ca content of the recovery group did not show a significant difference compared with the control group. The variation amplitude of the Ca content of C. betulus (9.9 µg L−1 dw) was remarkably smaller than that of C. putoensis (20 µg L−1 dw).Microelements(1) Zn. With the prolongation of NO2 exposure, the Zn content of C. betulus exhibited an increase followed by a gradual decrease. Compared with the control, significant differences were observed at 1, 6, and 12 h. The variations anged from 7.1 to 10.6 µg L−1 dw. In C. putoensis, significant differences in the Zn content were observed at 6 h and 48 h, and the variations ranged from 5.7 to 11.2 µg L−1 dw. The variation amplitude of the Zn content of C. betulus (3.5 µg L−1 dw) was smaller than that of C. putoensis (5.5 µg L−1 dw). In each species, the Zn content of the recovery group showed a significant difference compared with the control group.(2) Mn. At 1 h of NO2 fumigation, a sharp drop was observed, compared with the control. Afterwards, the Mn content of C. betulus exhibited a general increase followed by a gradual decrease. However, at any time point during NO2 exposure, a significant lower Mn content was observed when compared to the control. The variations of the Mn content ranged from 11.2 to 78.1 µg L−1 dw. In C. putoensis, the Mn content during NO2 exposure significantly decreased compared with control, and the variations ranged from 9.4 to 85.5 µg L−1 dw. The variation amplitude of the Mn content of C. betulus (66.9 µg L−1 dw) was slightly smaller than that of C. putoensis (76.1 µg L−1 dw). In each species, the Mn content of the recovery group did not show a significant difference compared with the control group.Correlation analysisThe correlations between the investigated indices and NO2 exposure time were analyzed using the Pearson’s method (Table 3). POD and soluble protein had a strong positive correlation with NO2 exposure time (correlation coefficient: 0.891 and 0.799, respectively), and NR, NO3−N, N, K, and Ca had a strong negative correlation with NO2 exposure time (correlation coefficient: -0.691, -0.805, -0.744, -0.606 and -0.696, respectively). MDA and the Zn content were not correlated with the exposure time.Table 3 Correlations of the investigated indices with NO2 exposure time.Full size table More

  • in

    Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity

    1.Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dannemiller, K. C. et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24, 236–247 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Arleevskaya, M. I., Aminov, R., Brooks, W. H., Manukyan, G. & Renaudineau, Y. Shaping of human immune system and metabolic processes by viruses and microorganisms. Front Microbiol. 10, 816 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Rook, G. A., Raison, C. L. & Lowry, C. A. Microbiota, immunoregulatory old friends and psychiatric disorders. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease 2014 319–356 (Springer, 2014).
    Google Scholar 
    7.Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. 110, 18360–18367 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Schwinge, D. & Schramm, C. Sex-related factors in autoimmune liver diseases. In Seminars in Immunopathology, Voxl 41, No 2 165–175 (Springer, 2019).
    Google Scholar 
    9.Prescott, S. L. A butterfly flaps its wings: Extinction of biological experience and the origins of allergy. Ann. Allergy Asthma Immunol. 20, 20 (2020).
    Google Scholar 
    10.Prescott, S. L. et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Austvoll, C. T., Gallo, V. & Montag, D. Health impact of the Anthropocene: The complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob. Health Epidemiol. Genom. 5, 20 (2020).
    Google Scholar 
    12.Haahtela, T. A biodiversity hypothesis. Allergy 74, 1445–1456 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Haahtela, T. et al. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 6, 1–8 (2013).Article 

    Google Scholar 
    14.Donovan, G., Gatziolis, D., Mannetje, A. T., Weinkove, R., Fyfe, C., & Douwes, J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Available at SSRN 3559635 (2020).15.Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signalling and gut microbiota. Cancer Lett. 469, 456–467 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Du, Y. et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol. 177, 1754–1772 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Li, J. Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 20, 20 (2020).CAS 

    Google Scholar 
    18.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 1–4 (2017).CAS 
    Article 

    Google Scholar 
    19.Uetake, J. et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front Microbiol. 10, 1572 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urban airborne microbial communities are less abundant and less diverse than rural counterparts-but what does that mean for our health? A systematic review. Sci. Total Environ. 20, 140337 (2020).Article 
    CAS 

    Google Scholar 
    21.Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lymperopoulou, D. S., Adams, R. I. & Lindow, S. E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microbiol. 82, 3822–3833 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Abdelfattah, A. et al. Revealing cues for fungal interplay in the plant–air interface in vineyards. Front Plant Sci. 10, 922 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Stewart, J. et al. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci. Total Environ. 1, 138353 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Mhuireach, G. Á., Betancourt-Román, C. M., Green, J. L. & Johnson, B. R. Spatiotemporal controls on the urban aerobiome. Front Ecol. Evol. 7, 43 (2019).Article 

    Google Scholar 
    27.Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article 

    Google Scholar 
    28.Robinson, J. M. & Breed, M. F. Green prescriptions and their co-benefits: Integrative strategies for public and environmental health. Challenges 10, 9 (2019).Article 

    Google Scholar 
    29.Callaghan, A. et al. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 18, 1–5 (2020).Article 

    Google Scholar 
    30.Cameron, R. W. et al. Where the wild things are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans?. Urban Ecosyst. 23, 301–317 (2020).Article 

    Google Scholar 
    31.Robinson, J. M., Jorgensen, A., Cameron, R. & Brindley, P. Let nature be thy medicine: A socioecological exploration of green prescribing in the UK. Int. J. Environ. Res. Public Health 17, 3460 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    32.Yeh, C. T., Cheng, Y. Y. & Liu, T. Y. Spatial characteristics of urban green spaces and human health: An exploratory analysis of canonical correlation. Int. J. Environ. Res. Public Health 17, 3227 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Franconieri, F. et al. Rothia spp. infective endocarditis: A systematic literature review. Méd. Maladies Infect. 35, 1–8 (2020).
    Google Scholar 
    35.Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 1–12 (2020).
    Google Scholar 
    36.Robinson, J. M. & Jorgensen, A. Rekindling old friendships in new landscapes: The environment–microbiome–health axis in the realms of landscape research. People Nat. 2, 339–349 (2020).Article 

    Google Scholar 
    37.Baruch, Z. et al. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecol. 47, 100939 (2020).Article 

    Google Scholar 
    38.Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 20, 20 (2020).
    Google Scholar 
    39.Honeker, L. K. et al. Gut microbiota from amish but not hutterite children protect germ-free mice from experimental asthma. In D92. The Microbiome and Lung Disease A7022–A7022 (American Thoracic Society, 2019).
    Google Scholar 
    40.Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 2578 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    41.Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. MSystems 2, 6 (2017).Article 

    Google Scholar 
    42.Chen, J., Jin, S. & Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and night-time urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 89, 102060 (2020).Article 

    Google Scholar 
    43.Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front Ecol. Evol. 7, 91 (2019).Article 

    Google Scholar 
    44.Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 20, 20 (2020).
    Google Scholar 
    45.Astell-Burt, T. & Feng, X. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul. Health 10, 100497 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Woo, J. & Lee, C. J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 29, 120 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Ross, S. et al. i-Tree eco analysis of landscape vegetation on remediated areas of oak ridge national laboratory. Open J. Forest. 10, 412 (2020).Article 

    Google Scholar 
    48.Robinson, J. M., Mills, J. G. & Breed, M. F. Walking ecosystems in microbiome-inspired green infrastructure: An ecological perspective on enhancing personal and planetary health. Challenges 9, 40 (2018).Article 

    Google Scholar 
    49.Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol. 20, 20 (2020).
    Google Scholar 
    50.Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 9, 84 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Abrego, N. et al. Fungal communities decline with urbanization—more in air than in soil. ISME J. 20, 1–10 (2020).
    Google Scholar 
    52.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.JNCC. 2013. Handbook for Phase 1 Habitat Surveys. https://data.jncc.gov.uk/data/9578d07b-e018-4c66-9c1b-47110f14df2a/Handbook-Phase1-HabitatSurvey-Revised-2016.pdf. Accessed 28 Sep 2020.55.Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 02527–02614 (2015).Article 
    CAS 

    Google Scholar 
    56.Mbareche, H., Veillette, M., Pilote, J., Létourneau, V. & Duchaine, C. Bioaerosols play a major role in the nasopharyngeal microbiota content in agricultural environment. Int. J. Environ. Res. Public Health 16, 1375 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dettwyler, K. A. A time to wean: The hominid blueprint for the natural age of weaning in modern human populations. In Breastfeeding 39–74 (Routledge, 2017).
    Google Scholar 
    58.Jelenkovic, A. et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 6, 1–3 (2016).Article 

    Google Scholar 
    59.Milani, C. et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, 00036–00117 (2017).Article 

    Google Scholar 
    60.RCPCH. Growth Charts. 2020. https://www.rcpch.ac.uk/resources/uk-who-growth-charts-2-18-years. Accessed on 21 Jan 2020.61.Bae, S., Lyons, C. & Onstad, N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water Res. X. 2, 100026 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    63.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 9, 107 (2019).Article 
    CAS 

    Google Scholar 
    64.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Wickham, H., & Wickham, MH. . The ggplot package. (2007).66.Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., & Wagner, E. The vegan package in R. Online. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed on 20 Sep 2020.67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Revel, W. The Psych R Package. 2020. https://cran.r-project.org/web/pakages/psych/psych.pdf. Accessed on 20 Sep 2020.69.Canty, A, & Ripley, B. The Boot R Package. 2020. https://cran.r-project.org/web/packages/boot/boot.pdf. Accessed on 20 Sep 2020.70.Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 9, 1002687 (2012).Article 
    CAS 

    Google Scholar 
    71.Csárdi, G. The igraph Package in R. Online. 2020. https://cran.r-project.org/web/packages/igraph/igraph.pdf. Accessed on 10 Aug 20.72.Cusack, L., Larkin, A., Carozza, S. E. & Hystad, P. Associations between multiple green space measures and birth weight across two US cities. Health Place 47, 36–43 (2017).PubMed 
    Article 

    Google Scholar 
    73.Klompmaker, J. O. et al. Green space definition affects associations of green space with overweight and physical activity. Environ Res. 160, 531–540 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Lee, J. Y. et al. Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int. J. Environ. Res. Public Health 15, 102 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    75.i-Tree Canopy. i-Tree Canopy. 2020. https://canopy.itreetools.org/. Accessed on 15 May 2020.76.Richardson, J. J. & Moskal, L. M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forest. Urban Green. 13, 152–157 (2014).Article 

    Google Scholar 
    77.Soltani, A. & Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front Arch. Res. 6, 529–538 (2017).
    Google Scholar  More

  • in

    Microbial iron and carbon metabolism as revealed by taxonomy-specific functional diversity in the Southern Ocean

    1.Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lechtenfeld OJ, Hertkorn N, Shen Y, Witt M, Benner R. Marine sequestration of carbon in bacterial metabolites. Nat Commun. 2015;6:6711.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.DeLong E (ed). Microbial Metagenomics, Metatranscriptomics, and Metaproteomics, 1st edn. San Diego, CA, USA: Academic Press; 2013.5.White RA III, Callister SJ, Moore RJ, Baker ES, Jansson JK. The past, present and future of microbiome analyses. Nat Protoc. 2016;11:2049.CAS 
    Article 

    Google Scholar 
    6.Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lindh MV, Sjostedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling. Environ Microbiol. 2015;17:2459–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Ruiz‐González C, Logares R, Sebastián M, Mestre M, Rodríguez‐Martínez R, Galí M, et al. Higher contribution of globally rare bacterial taxa reflects environmental transitions across the surface ocean. Mol Ecol. 2019;28:1930–45.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Ocean plankton. Struct Funct Glob Ocean Microbiome Sci. 2015;348:1261359.
    Google Scholar 
    13.Ibarbalz FM, Henry N, Brandao MC, Martini S, Busseni G, Byrne H, et al. Global trends in marine plankton diversity across kingdoms of life. Cell. 2019;179:1084–97 e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh HJ, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell. 2019;179:1068–83 e21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Ghiglione JF, Galand PE, Pommier T, Pedros-Alio C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, et al. Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA. 2008;105:3805–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Acinas SG, Sánchez P, Salazar G, Cornejo-Castillo FM, Sebastián M, Logares R, et al. Metabolic architecture of the deep ocean microbiome. bioRxiv. 2019:635680. https://doi.org/10.1101/635680.19.Martin JH, Gordon RM, Fitzwater SE. Iron in Antarctic waters. Nature. 1990;345:156–8.CAS 
    Article 

    Google Scholar 
    20.Church MJ, Hutchins DA, Ducklow HW. Limitation of bacterial growth by dissolved organic matter and iron in the Southern ocean. Appl Environ Microbiol. 2000;66:455–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Obernosterer I, Fourquez M, Blain S. Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands. Biogeosciences. 2015;12:1983–92.Article 

    Google Scholar 
    22.Fourquez M, Obernosterer I, Blain S. A method for the use of the radiotracer 55Fe for microautoradiography and CARD-FISH of natural bacterial communities. FEMS Microbiol Lett. 2012;337:132–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Koedooder C, Gueneugues A, Van Geersdaële R, Vergé V, Bouget F-Y, Labreuche Y, et al. The role of the glyoxylate shunt in the acclimation to iron limitation in marine heterotrophic bacteria. Front Mar Sci. 2018;5:435.Article 

    Google Scholar 
    24.Blain S, Tagliabue A (eds). Iron Cycle in Oceans, 1st edn. London, UK: ISTE Ltd and John Wiley & Sons, Inc.; 2016.25.Dittmar T, Arnosti C. An inseparable liaison: marine microbes and nonliving organic matter. In: Gasol JM, Kirchman DL, editors. Microbial Ecology of the Oceans, 3rd edn. Hoboken NJ, USA: John Wiley and Sons, Inc.; 2018, pp 189–229.26.Blain S, Queguiner B, Armand L, Belviso S, Bombled B, Bopp L, et al. Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature. 2007;446:1070–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lasbleiz M, Leblanc K, Armand LK, Christaki U, Georges C, Obernosterer I, et al. Composition of diatom communities and their contribution to plankton biomass in the naturally iron-fertilized region of Kerguelen in the Southern Ocean. FEMS Microbiol Ecol. 2016;92:fiw171.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Obernosterer I, Catala P, Lebaron P, West NJ. Distinct bacterial groups contribute to carbon cycling during a naturally iron fertilized phytoplankton bloom in the Southern Ocean. Limnol Oceanogr. 2011;56:2391–401.CAS 
    Article 

    Google Scholar 
    29.Blain S, Capparos J, Guéneuguès A, Obernosterer I, Oriol L. Distributions and stoichiometry of dissolved nitrogen and phosphorus in the iron-fertilized region near Kerguelen (Southern Ocean). Biogeosciences. 2015;12:623–35.Article 

    Google Scholar 
    30.d’Ovidio F, Della Penna A, Trull TW, Nencioli F, Pujol M-I, Rio M-H, et al. The biogeochemical structuring role of horizontal stirring: Lagrangian perspectives on iron delivery downstream of the Kerguelen Plateau. Biogeosciences. 2015;12:5567–81.Article 
    CAS 

    Google Scholar 
    31.Landa M, Blain S, Christaki U, Monchy S, Obernosterer I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016;10:39–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Landa M, Blain S, Harmand J, Monchy S, Rapaport A, Obernosterer I. Major changes in the composition of a Southern Ocean bacterial community in response to diatom-derived dissolved organic matter. FEMS Microbiol Ecol. 2018;94:8.Article 
    CAS 

    Google Scholar 
    33.Fourquez M, Beier S, Jongmans E, Hunter R, Obernosterer I. Uptake of Leucine, chitin, and iron by prokaryotic groups during spring phytoplankton blooms induced by natural iron fertilization off Kerguelen Island (Southern Ocean). Front Mar Sci. 2016;3:256.Article 

    Google Scholar 
    34.Debeljak P, Toulza E, Beier S, Blain S, Obernosterer I. Microbial iron metabolism as revealed by gene expression profiles in contrasted Southern Ocean regimes. Environ Microbiol. 2019;21:2360–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Christaki U, Gueneugues A, Liu Y, Blain S, Catala P, Colombet J, et al. Seasonal microbial food web dynamics in contrasting Southern Ocean productivity regimes. Limnol Oceanogr. 2021;66:108–22.CAS 
    Article 

    Google Scholar 
    36.Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bendall ML, Stevens SL, Chan LK, Malfatti S, Schwientek P, Tremblay J, et al. Genome-wide selective sweeps and gene-specific sweeps in natural bacterial populations. ISME J. 2016;10:1589–601.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    44.Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 2016;44:D286–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Kanehisa M, Sato Y. Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2019;36:2251–2.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Saier MH Jr., Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The transporter classification database (TCDB): recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624–D32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Garber AI, Nealson KH, Okamoto A, McAllister SM, Chan CS, Barco RA, et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front Microbiol. 2020;11:37.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dupont CL, Yang S, Palenik B, Bourne PE. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA. 2006;103:17822–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    59.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rodriguez RL, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:3.Article 

    Google Scholar 
    68.Pearson WR An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinformatics. 2013;Chapter 3:Unit3 1.69.Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. Methods Enzymol. 2013;531:237–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Kuhaudomlarp S, Patron NJ, Henrissat B, Rejzek M, Saalbach G, Field RA. Identification of Euglena gracilis beta-1,3-glucan phosphorylase and establishment of a new glycoside hydrolase (GH) family GH149. J Biol Chem. 2018;293:2865–76.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Ho A, Di Lonardo DP, Bodelier PL. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:3.
    Google Scholar 
    74.Rodionov DA, Gelfand MS, Todd JD, Curson AR, Johnston AW. Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol. 2006;2:e163.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Rincon-Enriquez G, Crete P, Barras F, Py B. Biogenesis of Fe/S proteins and pathogenicity: IscR plays a key role in allowing Erwinia chrysanthemi to adapt to hostile conditions. Mol Microbiol. 2008;67:1257–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Py B, Barras F. Building Fe–S proteins: bacterial strategies. Nat Rev Microbiol. 2010;8:436–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. Adv Bot Res. 2013;66:289–326.CAS 
    Article 

    Google Scholar 
    78.Jaggavarapu S, O’Brian MR. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function. Mol Microbiol. 2014;92:609–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.McAdams HH, Srinivasan B, Arkin AP. The evolution of genetic regulatory systems in bacteria. Nat Rev Genet. 2004;5:169–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Fourquez M, Devez A, Schaumann A, Guéneuguès A, Jouenne T, Obernosterer I, et al. Effects of iron limitation on growth and carbon metabolism in oceanic and coastal heterotrophic bacteria. Limnol Oceanogr. 2014;59:349–60.CAS 
    Article 

    Google Scholar 
    82.Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol. 2007;42:187–219.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA. High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol. 2001;183:545–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Hendrickson EL, Liu Y, Rosas-Sandoval G, Porat I, Soll D, Whitman WB, et al. Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. J Bacteriol. 2008;190:2198–205.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Gifford SM, Sharma S, Booth M, Moran MA. Expression patterns reveal niche diversification in a marine microbial assemblage. ISME J. 2013;7:281–98.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam DN, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell. 2010;141:1241–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Gregg KJ, Zandberg WF, Hehemann JH, Whitworth GE, Deng L, Vocadlo DJ, et al. Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem. 2011;286:15586–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Matulewicz M, Cerezo A. Water-soluble sulfated polysaccharides from the red seaweed Chaetangium fastigiatum. Analysis of the system and the structures of the α-D-(1→3)-linked mannans. Carbohydr Polym. 1987;7:121–32.CAS 
    Article 

    Google Scholar 
    89.Kolender AA, Pujol CA, Damonte EB, Matulewicz MC, Cerezo AS. The system of sulfated α-(1→3)-linked D-mannans from the red seaweed Nothogenia fastigiata: structures, antiherpetic and anticoagulant properties. Carbohydr Res. 1997;304:53–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert WJAR. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    91.Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. Elife. 2016;5:e11888.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Chen J, Robb CS, Unfried F, Kappelmann L, Markert S, Song T, et al. Alpha‐and beta‐mannan utilization by marine Bacteroidetes. Environ Microbiol. 2018;20:4127–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Biersmith A, Benner R. Carbohydrates in phytoplankton and freshly produced dissolved organic matter. Mar Chem. 1998;63:131–44.CAS 
    Article 

    Google Scholar 
    95.Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.DeLong EF, Beja O. The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol. 2010;8:e1000359.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 2018;12:1047–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Kim SY, Waschuk SA, Brown LS, Jung KH. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Biochim Biophys Acta. 2008;1777:504–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.von Lintig J, Vogt K. Filling the gap in vitamin A research. Molecular identification of an enzyme cleaving beta-carotene to retinal. J Biol Chem. 2000;275:11915–20.Article 

    Google Scholar 
    101.Korotkov KV, Sandkvist M, Hol WG. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10:336–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More