Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up
1.Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
2.Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).Article
Google Scholar
3.Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).PubMed
Article
PubMed Central
Google Scholar
5.Visser, M. E., van Noordwijk, A. J., Tinbergen, J. M. & Lessells, C. M. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. B 265, 1867–1870 (1998).Article
Google Scholar
6.Stenseth, N. C. & Mysterud, A. Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. Proc. Natl Acad. Sci. USA 99, 13379–13381 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Blackford, C., Germain, R. M. & Gilbert, B. Species differences in phenology shape coexistence. Am. Nat. 195, E168–E180 (2020).PubMed
Article
PubMed Central
Google Scholar
8.Møller, A. P., Rubolini, D. & Lehikoinen, E. Populations of migratory bird species that did not show a phenological response to climate change are declining. Proc. Natl Acad. Sci. USA 105, 16195–16200 (2008).PubMed
Article
PubMed Central
Google Scholar
9.Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).PubMed
PubMed Central
Google Scholar
10.Mynott, J. Birds in the Ancient World: Winged Words (Oxford Univ. Press, 2018).11.Hurlbert, A. H. & Liang, Z. Spatiotemporal variation in avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7, e31662 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1902 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
13.Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).Article
Google Scholar
14.Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Sullivan, B. L. et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).Article
Google Scholar
16.Friedl, M., Gray, J. & Sulla-Menashe, D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 March 2020); https://doi.org/10.5067/MODIS/MCD12Q2.00617.Richardson, A. D., Hufkens, K., Milliman, T. & Frolking, S. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Sci. Rep. 8, 5679 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
18.Cole, E. F., Long, P. R., Zelazowski, P., Szulkin, M. & Sheldon, B. C. Predicting bird phenology from space: satellite-derived vegetation green-up signal uncovers spatial variation in phenological synchrony between birds and their environment. Ecol. Evol. 5, 5057–5074 (2015).PubMed
PubMed Central
Article
Google Scholar
19.Pettorelli, N. et al. The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim. Res. 46, 15–27 (2011).Article
Google Scholar
20.Winger, B. M., Auteri, G. G., Pegan, T. M. & Weeks, B. C. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol. Rev. 94, 737–752 (2019).21.Åkesson, S. et al. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos. Trans. R. Soc. B 372, 20160252 (2017).Article
Google Scholar
22.Helm, B. et al. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos. Trans. R. Soc. B 372, 20160246 (2017).Article
Google Scholar
23.Haest, B., Hüppop, O. & Bairlein, F. The influence of weather on avian spring migration phenology: what, where and when? Glob. Change Biol. 24, 5769–5788 (2018).Article
Google Scholar
24.Studds, C. E. & Marra, P. P. Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc. R. Soc. B 278, 3437–3443 (2011).PubMed
Article
PubMed Central
Google Scholar
25.Thorup, K. et al. Resource tracking within and across continents in long-distance bird migrants. Sci. Adv. 3, e1601360 (2017).PubMed
PubMed Central
Article
Google Scholar
26.Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 3927 (2018).27.Van der Graaf, A., Stahl, J., Klimkowska, A., Bakker, J. P. & Drent, R. H. Surfing on a green wave—how plant growth drives spring migration in the Barnacle Goose Branta leucopsis. Ardea Wagening. 94, 567 (2006).
Google Scholar
28.Schmaljohann, H. & Both, C. The limits of modifying migration speed to adjust to climate change. Nat. Clim. Change 7, 573–576 (2017).Article
Google Scholar
29.Marra, P. P., Francis, C. M., Mulvihill, R. S. & Moore, F. R. The influence of climate on the timing and rate of spring bird migration. Oecologia 142, 307–315 (2005).PubMed
Article
PubMed Central
Google Scholar
30.Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons? J. Biogeogr. 45, 1459–1468 (2018).Article
Google Scholar
31.Horton, K. G. et al. Holding steady: little change in intensity or timing of bird migration over the Gulf of Mexico. Glob. Change Biol. 25, 1106–1118 (2019).Article
Google Scholar
32.Charmantier, A. et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science 320, 800–803 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Curley, S. R., Manne, L. L. & Veit, R. R. Differential winter and breeding range shifts: implications for avian migration distances. Divers. Distrib. 26, 415–425 (2020).Article
Google Scholar
34.Root, T. Energy constraints on avian distributions and abundances. Ecology 69, 330–339 (1988).Article
Google Scholar
35.La Sorte, F. A., Fink, D., Hochachka, W. M., DeLong, J. P. & Kelling, S. Population-level scaling of avian migration speed with body size and migration distance for powered fliers. Ecology 94, 1839–1847 (2013).PubMed
Article
PubMed Central
Google Scholar
36.Somveille, M., Manica, A. & Rodrigues, A. S. L. Where the wild birds go: explaining the differences in migratory destinations across terrestrial bird species. Ecography 42, 225–236 (2019).Article
Google Scholar
37.Knudsen, E. et al. Challenging claims in the study of migratory birds and climate change. Biol. Rev. 86, 928–946 (2011).PubMed
Article
PubMed Central
Google Scholar
38.Allstadt, A. J. et al. Spring plant phenology and false springs in the conterminous US during the 21st century. Environ. Res. Lett. 10, 104008 (2015).Article
Google Scholar
39.Franks, S. E. et al. The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Glob. Change Biol. 24, 957–971 (2018).Article
Google Scholar
40.Both, C., Bouwhuis, S., Lessells, C. M. & Visser, M. E. Climate change and population declines in a long-distance migratory bird. Nature 441, 81–83 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).Article
Google Scholar
42.Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).PubMed
Article
PubMed Central
Google Scholar
43.Abdala‐Roberts, L. et al. Tri‐trophic interactions: bridging species, communities and ecosystems. Ecol. Lett. 22, 2151–2167 (2019).PubMed
PubMed Central
Article
Google Scholar
44.Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).PubMed
Article
PubMed Central
Google Scholar
45.Helm, B., Van Doren, B. M., Hoffmann, D. & Hoffmann, U. Evolutionary response to climate change in migratory pied flycatchers. Curr. Biol. 29, 3714–3719 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Newson, S. E. et al. Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158, 481–495 (2016).Article
Google Scholar
47.Townsend, A. K. et al. The interacting effects of food, spring temperature, and global climate cycles on population dynamics of a migratory songbird. Glob. Change Biol. 22, 544–555 (2016).Article
Google Scholar
48.Grüebler, M. U. & Naef-Daenzer, B. Fitness consequences of pre- and post-fledging timing decisions in a double-brooded passerine. Ecology 89, 2736–2745 (2008).PubMed
Article
PubMed Central
Google Scholar
49.Lany, N. K. et al. Breeding timed to maximumimize reproductive success for a migratory songbird: the importance of phenological asynchrony. Oikos 125, 656–666 (2016).Article
Google Scholar
50.Samplonius, J. M. & Both, C. Climate change may affect fatal competition between two bird species. Curr. Biol. 29, 327–331 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Potvin, D. A., Välimäki, K. & Lehikoinen, A. Differences in shifts of wintering and breeding ranges lead to changing migration distances in European birds. J. Avian Biol. 47, 619–628 (2016).Article
Google Scholar
52.Bassett, F. & Cubie, D. Wintering hummingbirds in Alabama and Florida: species diversity, sex and age ratios, and site fidelity. J. Field Ornithol. 80, 154–162 (2009).Article
Google Scholar
53.Socolar, J. B., Epanchin, P. N., Beissinger, S. R. & Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proc. Natl Acad. Sci. USA 114, 12976–12981 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Chmura, H. E. et al. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecol. Monogr. 89, e01337 (2019).Article
Google Scholar
55.Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Cressie, N., Calder, C. A., Clark, J. S., Hoef, J. M. V. & Wikle, C. K. Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol. Appl. 19, 553–570 (2009).PubMed
Article
PubMed Central
Google Scholar
57.Miller-Rushing, A. J., Inouye, D. W. & Primack, R. B. How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. J. Ecol. 96, 1289–1296 (2008).Article
Google Scholar
58.Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).Article
Google Scholar
59.Barnes, R. dggridR: Discrete global grids for R. R package version 0.1.12 https://github.com/r-barnes/dggri (2017).60.Data Zone (BirdLife International, 2019); http://datazone.birdlife.org/species/requestdis61.Sulla-Menashe, D. et al. Hierarchical mapping of Northern Eurasian land cover using MODIS data. Remote Sens. Environ. 115, 392–403 (2011).Article
Google Scholar
62.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid v.6 (NASA EOSDIS Land Processes DAAC, accessed 26 February 2020); https://doi.org/10.5067/MODIS/MCD12Q2.00663.Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177 (2002).Article
Google Scholar
64.Fink, D. et al. Spatiotemporal exploratory models for broad-scale survey data. Ecol. Appl. 20, 2131–2147 (2010).PubMed
Article
PubMed Central
Google Scholar
65.Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003).Article
Google Scholar
66.Lindén, A., Meller, K. & Knape, J. An empirical comparison of models for the phenology of bird migration. J. Avian Biol. 48, 255–265 (2017).Article
Google Scholar
67.Goodrich, B., Gabry, J., Ali, I. & Brilleman, S. rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).68.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. https://www.jstatsoft.org/v076/i01 (2017).69.Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434 (1998).
Google Scholar
70.Besag, J. & Kooperberg, C. On conditional and intrinsic autoregression. Biometrika 82, 733 (1995).
Google Scholar
71.Banerjee, S., Carlin, B. P. & Gelfand, A. E. Hierarchical Modeling and Analysis for Spatial Data (Chapman & Hall/CRC, 2004).72.Morris, M. et al. Bayesian hierarchical spatial models: implementing the Besag York Mollié model in stan. Spat. Spatiotemporal Epidemiol. 31, 100301 (2019).PubMed
PubMed Central
Article
Google Scholar
73.Stan Development Team. RStan: the R interface to Stan. R package version 2.17.3 http://mc-stan.org (2018).74.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).75.Monnahan, C. C., Thorson, J. T. & Branch, T. A. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol. Evol. 8, 339–348 (2017).Article
Google Scholar
76.Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389–402 (2019).Article
Google Scholar
77.Gelman, A., Carlin, J. B, Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman & Hall/CRC, 2014).78.Finley, A. O. Comparing spatially-varying coefficients models for analysis of ecological data with non-stationary and anisotropic residual dependence: spatially-varying coefficients models. Methods Ecol. Evol. 2, 143–154 (2011).Article
Google Scholar
79.Stan Modeling Language Users Guide and Reference Manual v. 2.18.0 (Stan Development Team, 2018).80.Menzel, A., von Vopelius, J., Estrella, N., Schleip, C. & Dose, V. Farmers’ annual activities are not tracking the speed of climate change. Clim. Res. 32, 201–207 (2006).
Google Scholar More