More stories

  • in

    Adaptation to chronic drought modifies soil microbial community responses to phytohormones

    1.Bardgett, R. D. Plant-soil interactions in a changing world. F1000 Biol. Rep. 3, 16 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Faure, D., Vereecke, D. & Leveau, J. H. Molecular communication in the rhizosphere. Plant Soil 321, 279–303 (2009).CAS 
    Article 

    Google Scholar 
    3.de Zelicourt, A., Al-Yousif, M. & Hirt, H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol. Plant 6, 242–245 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. Ecology 84, 2281–2291 (2003).Article 

    Google Scholar 
    5.Jones, P., Garcia, B., Furches, A., Tuskan, G. & Jacobson, D. Plant host-associated mechanisms for microbial selection. Front. Plant Sci. 10, 862 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.de Vries, F. T. et al. Changes in root‐exudate‐induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. N. Phytol. 224, 132–145 (2019).Article 
    CAS 

    Google Scholar 
    7.Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. & Belimov, A. A. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157, 361–379 (2010).CAS 
    Article 

    Google Scholar 
    8.Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Abd-Allah, E. F. & Hashem, A. Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front. Microbiol. 8, 2104 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Xu, L. & Coleman-Derr, D. Causes and consequences of a conserved bacterial root microbiome response to drought stress. Curr. Opin. Microbiol. 49, 1–6 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Wittenmeyer, L. & Merbach, W. Plant responses to drought and phosphorus deficiency: contribution of phytohormones in root-related processes. J. Plant Nutr. Soil Sci. 168, 531–540 (2005).Article 
    CAS 

    Google Scholar 
    12.Borghi, L., Kang, J., Ko, D., Lee, Y. & Martinoia, E. The role of ABCG-type ABC transporters in phytohormone transport. Biochem. Soc. Trans. 43, 924–930 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    14.Hamer, U. & Marschner, B. Priming effects in different soil types induced by fructose, alanine, oxalic acid and catechol additions. Soil Biol. Biochem. 37, 445–454 (2005).CAS 
    Article 

    Google Scholar 
    15.Mondini, C., Cayuela, M. L., Sanchez-Monedero, M. A., Roig, A. & Brookes, P. C. Soil microbial biomass activation by trace amounts of readily available substrate. Biol. Fertil. Soils 42, 542–549 (2006).Article 

    Google Scholar 
    16.Hu, L. et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 9, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    17.Fahad, S. et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci. Pollut. Res. 22, 4907–4921 (2015).Article 

    Google Scholar 
    18.Speirs, J., Binney, A., Collins, M., Edwards, E. & Loveys, B. Expression of ABA synthesis and metabolism genes under different irrigation strategies and atmospheric VPDs is associated with stomatal conductance in grapevine (Vitis vinifera L. cv Cabernet Sauvignon). J. Exp. Bot. 64, 1907–1916 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.McAdam, S. A., Brodribb, T. J. & Ross, J. J. Shoot‐derived abscisic acid promotes root growth. Plant Cell Environ. 39, 652–659 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Ibort, P., Molina, S., Ruiz-Lozano, J. M. & Aroca, R. Molecular insights into the involvement of a never ripe receptor in the interaction between two beneficial soil bacteria and tomato plants under well-watered and drought conditions. Mol. Plant Microbe Interact. 31, 633–650 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Timmusk, S. et al. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 6, e17968 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ghosh, D., Gupta, A. & Mohapatra, S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 77, 265–278 (2019).CAS 
    Article 

    Google Scholar 
    23.Carvalhais, L. C., Dennis, P. G. & Schenk, P. M. Plant defence inducers rapidly influence the diversity of bacterial communities in a potting mix. Appl. Soil Ecol. 84, 1–5 (2014).Article 

    Google Scholar 
    24.Olds, C. L., Glennon, E. K. & Luckhart, S. Abscisic acid: new perspectives on an ancient universal stress signaling molecule. Microbes Infect. 20, 484–492 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hartung, W., Sauter, A., Turner, N. C., Fillery, I. & Heilmeier, H. Abscisic acid in soils: what is its function and which factors and mechanisms influence its concentration? Plant Soil 184, 105–110 (1996).CAS 
    Article 

    Google Scholar 
    26.Belimov, A. A. et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol. Biochem. 74, 84–91 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Glick, B. R., Penrose, D. M. & Li, J. P. A model for the lowering of plant ethylene concentrations by plant growth-promoting rhizobacteria. J. Theor. Biol. 190, 63–68 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 20, 219–229 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.de Ollas, C. & Dodd, I. C. Physiological impacts of ABA–JA interactions under water-limitation. Plant Mol. Biol. 91, 641–650 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Carvalhais, L. C. et al. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol. Plant Microbe Interact. 28, 1049–1058 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ngumbi, E. & Kloepper, J. Bacterial-mediated drought tolerance: current and future prospects. Appl. Soil Ecol. 105, 109–125 (2016).Article 

    Google Scholar 
    32.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Kudoyarova, G. et al. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses. Front. Plant Sci. 10, 1368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Wallenstein, M. D. & Hall, E. K. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry 109, 35–47 (2012).Article 

    Google Scholar 
    35.Martiny, J. B. et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 11, 490–499 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Grime, J. P. et al. The response of two contrasting limestone grasslands to simulated climate change. Science 289, 762–765 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).Article 

    Google Scholar 
    38.Sayer, E. J. et al. Links between soil microbial communities and plant traits in a species‐rich grassland under long‐term climate change. Ecol. Evol. 7, 855–862 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Trinder, S., Askew, A. P. & Whitlock, R. Climate‐driven evolutionary change in reproductive and early‐acting life‐history traits in the perennial grass Festuca ovina. J. Ecol. 108, 1398–1410 (2020).CAS 
    Article 

    Google Scholar 
    40.Fridley, J. D., Grime, J. P., Askew, A. P., Moser, B. & Stevens, C. J. Soil heterogeneity buffers community response to climate change in species‐rich grassland. Glob. Change Biol. 17, 2002–2011 (2011).Article 

    Google Scholar 
    41.Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress‐response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).CAS 
    Article 

    Google Scholar 
    43.Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).CAS 
    Article 

    Google Scholar 
    44.Chanclud, E. & Morel, J. B. Plant hormones: a fungal point of view. Mol. Plant Pathol. 17, 1289–1297 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Sembdner, G. A. P. B. & Parthier, B. The biochemistry and the physiological and molecular actions of jasmonates. Annu. Rev. Plant Biol. 44, 569–589 (1993).CAS 
    Article 

    Google Scholar 
    46.Eng, F. et al. Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ 9, e10873 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Fuchslueger, L. et al. Drought history affects grassland plant and microbial carbon turnover during and after a subsequent drought event. J. Ecol. 104, 1453–1465 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).Article 

    Google Scholar 
    49.Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long‐term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    51.Van Gestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting: the fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    52.Belimov, A. A. et al. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. N. Phytol. 181, 413–423 (2009).CAS 
    Article 

    Google Scholar 
    53.Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Kakumanu, M. L., Ma, L. & Williams, M. A. Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Sci. Rep. 9, 1–12 (2019).CAS 

    Google Scholar 
    56.Puertolas, J., Alcobendas, R., Alarcón, J. J. & Dodd, I. C. Long‐distance abscisic acid signalling under different vertical soil moisture gradients depends on bulk root water potential and average soil water content in the root zone. Plant Cell Environ. 36, 1465–1475 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Axtell, C. A. & Beattie, G. A. Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl. Environ. Microbiol. 68, 4604–4612 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Wesener, F. & Tietjen, B. Primed to be strong, primed to be fast: modeling benefits of microbial stress responses. FEMS Microbiol. Ecol. 95, 114 (2019).Article 
    CAS 

    Google Scholar 
    59.Andrade‐Linares, D. R., Lehmann, A. & Rillig, M. C. Microbial stress priming: a meta‐analysis. Environ. Microbiol. 18, 1277–1288 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Grime, J. P. et al. Long-term resistance to simulated climate change in an infertile grassland. Proc. Natl Acad. Sci. USA 105, 10028–10032 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Giannetta, B., Plaza, C., Zaccone, C., Vischetti, C. & Rovira, P. Ecosystem type effects on the stabilization of organic matter in soils: combining size fractionation with sequential chemical extractions. Geoderma 353, 423–434 (2019).CAS 
    Article 

    Google Scholar 
    62.Campbell, C. D., Chapman, S. J., Cameron, C. M., Davidson, M. S. & Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tworkoski, T., Wisniewski, M. & Artlip, T. Application of BABA and s-ABA for drought resistance in apple. J. Appl. Hortic. 13, 95–90 (2011).Article 

    Google Scholar 
    64.Rohwer, C. L. & Erwin, J. E. Horticultural applications of jasmonates: a review. J. Hortic. Sci. Biotechnol. 83, 283–304 (2008).CAS 
    Article 

    Google Scholar 
    65.Creamer, R. E. et al. An inter-laboratory comparison of multi-enzyme and multiple substrate-induced respiration assays to assess method consistency in soil monitoring. Biol. Fertil. Soils 45, 623–633 (2009).CAS 
    Article 

    Google Scholar 
    66.Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. Soil Health Technical Note No. 450-03. (U.S. Department of Agriculture, Natural Resources Conservation Service, 2019).67.Buyer, J. S. & Sasser, M. High throughput phospholipid fatty acid analysis of soils. Appl. Soil Ecol. 61, 127–130 (2012).Article 

    Google Scholar 
    68.Bardgett, R. D. & McAlister, E. The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol. Fertil. Soils 29, 282–290 (1999).Article 

    Google Scholar 
    69.Bardgett, R. D., Hobbs, P. J. & Frostegård, Å. Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22, 261–264 (1996).Article 

    Google Scholar 
    70.Zhu, Z. et al. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil-part 2: turnover and microbial utilization. Plant Soil 416, 243–257 (2017).CAS 
    Article 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (R Foundation for Statistical Computing, 2019).72.Bates, D. M., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    73.Cohen, J. The effect size index: d. Stat. Power Anal. Behav. Sci. 2, 284–288 (1988).
    Google Scholar 
    74.Anderson, T. H. & Domsch, A. K. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 25, 393–395 (1993).Article 

    Google Scholar 
    75.Pinheiro, J.C., Bates, D.M. Mixed-Effects Models in S and S-PLUS (Springer, 2000).76.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).Article 

    Google Scholar 
    77.Sayer, E. J. et al. Data from: Adaptation to chronic drought modifies soil microbial community responses to phytohormones. figshare https://doi.org/10.6084/m9.figshare.14130065 (2021). More

  • in

    The game changing role of traditional ecological knowledge based Agri amendment systems in nutrient dynamics in the stress prone semi arid tropics

    1.Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115(3), 407–425 (2019).CAS 
    Article 

    Google Scholar 
    2.Arora, N. K. & Mishra, J. Prospecting the roles of metabolites and additives in future bioformulations for sustainable agriculture. Appl. Soil. Ecol. 107, 405–407 (2016).Article 

    Google Scholar 
    3.Bellakki, M. A. & Badanur, V. P. Long-term effect of integrated nutrient management on properties of Vertisol under dryland agriculture. J. Indian Soc. Soil Sci. 45, 438–442 (1997).CAS 

    Google Scholar 
    4.Bowman, R. A. A rapid method to determine phosphorus in soils. Soil Sci. Soc. Am. J. 52, 1301–1304 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Bulluck, L. R., Brosius, M., Evanylo, G. K. & Ristaino, J. B. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 19(2), 147–160 (2002).Article 

    Google Scholar 
    6.CBD. Convention on Biological Diversity. Traditional knowledge and the Convention on Biological Diversity; Article 8(j) Traditional Knowledge, Innovations and Practices (2016).7.Das, B. B. & Dkhar, M. S. Rhizosphere microbial populations and physico chemical properties as affected by organic and inorganic farming practices. Am.-Eur. J. Agric. Environ. Sci. 10(2), 140–150 (2011).
    Google Scholar 
    8.De Oliveira Freitas, N., Yano-Melo, A.M., da Silva, F.S.B., de Melo, N.F., & Maia, L. C. Soil biochemistry and microbial activity in vineyards under conventional and organic management at Northeast Brazil. Sci. Agric. (Piracicaba, Braz.) 68(2), 223–229 (2011).9.Fabre, A., Pinay, G. & Ruffinoni, C. Seasonal changes in inorganic and organic phosphorus in the soil of a riparian forest. Biogeochem. 35, 419–432 (1996).Article 

    Google Scholar 
    10.Gangopadhyay, S. K., Sarkar, D., Sahu, A. K. & Das, K. Forms and distribution of potassium in some soils of Ranchi Plateau. J. Indian Soc. Soil Sci. 53(3), 413–416 (2005).CAS 

    Google Scholar 
    11.Gupta, P. K. Soil, Plant, Water and Fertilizer Analysis (Agrobios, 2009).
    Google Scholar 
    12.Ishaq, M., Ibrahim, M. & Lal, R. Tillage effect on soil properties at different levels of fertilizer application in Punjab. Pak. Soil Tillage Res. 68, 93–99 (2002).Article 

    Google Scholar 
    13.Jackson, M. L. Soil Chemical Analysis 111–203 (Prentice Hall India P Limited, 1967).
    Google Scholar 
    14.Jagadeesan, S., Kumar, M. D., & Sivamohan, M. V. K. (2016). Positive Externalities of Surface Irrigation on Farm Wells and Drinking Water Supplies in Large Water Systems: The Case of Sardar Sarovar Project. In: Rural Water Systems for Multiple Uses and Livelihood Security (pp. 229–252). Elsevier.15.Kamali, F. P., Borges, J. A., Meuwissen, M. P., de Boer, I. J. & Lansink, A. G. O. Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis. Agric. Syst. 157, 118–128 (2017).Article 

    Google Scholar 
    16.Kang, B. T. Nitrogennitrogen cycling in the multiple cropping systems. In Advances in Nitrogen Cycling in Agriculture Ecosystems (ed. Wilson, J. R.) 333–348 (CAB International, 1988).
    Google Scholar 
    17.Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways?. Glob. Food Secur. 24, 100347 (2020).Article 

    Google Scholar 
    18.Lawanprasert, A., Kunket, K., Arayarangsarit, L., and Prasertsak, A. Comparison between Conventional and Organic Paddy Fields in Irrigated Rice Ecosystem. 4th INWEPF Steering Meeting and Symposium, 2, 1–9 (2007).19.Maurya, D.M., Thakkar, M.G., Chamyal, L.S. Quaternary geology of the arid zone of Kachchh: Terra incognita. Proc. Ind. Nat. Sci. Acad. 69, A, No.2, March 03. pp. 123–135 (2003).20.McGrath, D. A., Comeford, N. B. & Duryea, M. L. Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. Forest Ecol. Manag. 131, 167–181 (2000).Article 

    Google Scholar 
    21.Mpai, T., Jaiswal, S.K., & Dakora, F.D. Accumulation of phosphorus and carbon and the dependency on biological N-2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. SYMBIOSIS (2020).22.NBSS and LUP circular. Guide to land use planning for kachchh and north Gujarat. National bureau of soil science and land use planning, western zone, Udaipur, 2005.23.Olsen, S. R., Cole, C, V., Watanabe, F. S., and Dean, L. A.. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. National Agricultural Society, USA. 939 (1954).24.Palekar, S. The Philosophy of Spiritual Farming. Zero Budget Natural Farming Research, Development & Extension Movement, Amravati (Maharashtra) (2006).25.Parry ML et al. (eds). Cross-chapter case studies. Indigenous knowledge for adaptation to climate change. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007).26.Pasricha, N. S. Potassiumpotassium dynamics in soils in relation to crop nutrition. J. Indian Soc. Soil Sci. 50, 333–334 (2002).CAS 

    Google Scholar 
    27.Patidar, A. K., Maurya, D. M., Thakkar, M. G. & Chamyal, L. S. Fluvial geomorphology and neotectonic activity based on field and GPR data Katrol hill range, Kachchh, western India. Quaternary Int. 159(2007), 74–92 (2007).ADS 
    Article 

    Google Scholar 
    28.Preparation of Soil Sampling Protocols: Sampling Techniques and Strategies, 1992. EPA/600/R-92/128 July.29.Reganold, J. P. et al. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLoS ONE 5(9), e12346. https://doi.org/10.1371/journal.pone.0012346 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Saxena, R. C., Chaudhary, S. L. & Nene, Y. L. A Textbook on Ancient History of Indian Agriculture, Asian Agri-History Foundation (AAHF) (Secunderabad; and Rajasthan chapter of AAHF, 2009).
    Google Scholar 
    31.Sharma S.B., and Gobi, T.A. Impact of drought on soil and microbial diversity in different agro ecosystems of the semi arid zones. In: Plant, Soil and Microbes – Interactions and Implications in Crop Science (Editors: Dr. Khalid Rehman Hakeem, Dr.MohdSayeedAkhtarandDr.Siti Nor Akmar Abdullah), Springer International Publishing Switzerland. (ISBN 978–3–319–27453–9 ISBN 978–3–319–27455–3 (eBook) DOI https://doi.org/10.1007/978-3-319-27455-3) (2016).32.Sharma, S.B. The relevance of Traditional Ecological Knowledge (TEK) in agricultural sustainability of the semi arid tropics. In:Adaptive Soil Management: from theory to practices. (Rakshit A, Abhilash P. C., Singh H. B., Ghosh S.(Eds.). Springer nature, Singapore. ISBN 978–981–10–3637–8 ISBN 978–981–10–3638–5 (eBook) (2017a). https://doi.org/10.1007/978-981-10-3638-533.Sharma S. B. Traditional Ecological Knowledge-Based Practices and Bio-formulations: Key to Agricultural Sustainability. In: Probiotics in Agroecosystem (Eds. Vivek Kumar, Manoj Kumar, Shivesh Sharma). Springer Nature. ISBN 978–981–10–4058–0 ISBN 978–981–10–4059–7 (eBook). DOI https://doi.org/10.1007/978-981-10-4059-7 (2017b)34.Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. & Thivakaran, G. A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus. 2, 587. https://doi.org/10.1186/2193-1801-2-587 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Subbiah, B. V. & Asija, G. L. A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 25, 259–260 (1956).CAS 

    Google Scholar 
    36.Sugiyama, A., Vivanco, J. M., Jayanty, S. S. & Manter, D. K. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant. Dis. 94, 1329–1335 (2010).CAS 
    Article 

    Google Scholar 
    37.Tandon, H. L. S.. Phosphorusphosphorus research and agriculture production in India. New Delhi: Fertilization Development and Consultation Organisation 160p (1987).38.The UN Sustainable Development Goals. United Nations, New York, 2015. Available at :http://www.un.org/sustainabledevelopment/summit/.39.Topp, C. F., Watson, C. A., & Stockdale, E. Utilising the concept of nutrients as a currency within organic farming system. In Proceedings of the UK Organic Research 2002 Conference (pp. 157–160). Organic Centre Wales, Institute of Rural Studies, University of Wales Aberystwyth (2002)..40.United Nations World Population Prospects, 2019. World Population Prospects (2019)41.Walkley, A. & Black, I. A. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Sharma, S. B. & Thivakaran, G. A. Microbial dynamics in traditional eco-knowledge vis-à-vis chemical-intensive agri-amendment systems of stress prone semi-arid tropics. Appl. Soil. Ecol. 155, 103668 (2020).Article 

    Google Scholar  More

  • in

    Co-existence of AMF with different putative MAT-alleles induces genes homologous to those involved in mating in other fungi: a reply to Malar et al.

    Although Malar et al. “do not exclude the possibility that the genes identified by Mateus et al. are involved in mating,” they qualify the homology inference between genes differentially expressed in the co-inoculation treatment and genes involved in mating in other fungal species as “spurious evolutionary relationships” or “not the best ortholog”. Those statements imply that they attach no importance to the demonstrated sequence homology relationships identified in Mateus et al. Orthology does not necessarily imply conservation of gene function and genes with equivalent functions are not necessarily orthologs [3]. Therefore, it is misleading to assume that two genes have the same function when interpreting the role of a “best candidate ortholog” identified in silico. Moreover, relying only on an in silico search for exploring orthologs can lead to serious problems for inferring function as none of the search algorithms are free from bias if subfunctionalization or neofunctionalization events occurred among the homologs.Malar et al. have not considered, or have misunderstood, the experimental evidence on gene expression in interpreting their homology search. It is not surprising that their “best homologs” were not upregulated, because we already saw that those genes were not upregulated in the original dataset. Our approach comprised performing an experiment to identify genes that were specifically upregulated when two isolates coexisted in planta. We then identified their putative function by homology. We did not look at whether the genes were the closest orthologs. However, we discussed the limitations of an homology approach to identify gene function [2]. To our surprise, a consistent set of 20 genes was upregulated in the co-inoculation treatment in different host plants, and 9 of these 20 (upregulated in more than one host plant) shared the common feature of homology to genes involved in different steps of mating in other fungal species (Figs. 3 and 4 of Mateus et al.).Malar et al. claim the identification of hundreds of hits of the 18 genes differentially expressed in Mateus et al. “against the high-quality protein databases from the JGI Mycocosm Rhiir2” (referring to the protein database “Rhiir2” of R. irregularis). In fact, Malar et al. compared the 18 genes against “all protein gene catalogs of fungal species from the JGI fungal genomic resource” comprising 1318 taxa. The interpretation of the number of hits on a such large dataset is misleading because if a gene is highly conserved across the fungal kingdom, we would expect hundreds of hits in this database. In contrast, if an R. irregularis gene is highly specific to the Glomeromycotina taxa, we would expect very few hits (because there are less Glomeromycotina genomes in the database). Consequently, the number of hits in Table 1 from Malar et al. reflect the size of the database used and how conserved a given gene is, rather than whether a gene is from a large gene family. Malar et al. identified the so-called “closest ortholog” in R. irregularis of fungal mating genes from other fungal species by showing the “best hit” using OrthoMCL. However, differentiating paralogs from orthologs is a complicated task, in very distant species, especially if the organisms are highly paralogous. A more cautious analysis for each gene, including a confirmation that they are located in similar genomic locations, would lend more certitude that a given gene could be an ortholog. Consequently, the evaluation of RNA expression of their “best hit” remains incomplete in terms of the effort to find the best orthologs. More

  • in

    Bacterial communities in larger islands have reduced temporal turnover

    The underpinning method employed to construct a STR may affect the shape, scaling exponent (w), and fit of the STR power function. Here we used three differing approaches to construct STRs; including, what we term in this study, the ‘every possible window’ (EPW) [10], ‘cumulative moving window’ (CMW) [8], and ‘moving window’ (MW) approaches. The differences in each method are extensively detailed in the Material and Methods. The STRs for the bacterial communities within each of the tree-hole islands were plotted, of which all relationships were significant (Fig. 1 and Table S1). Overall, the resulting STR power law exponents (w) were found to range from 0.048 to 0.350 (Fig. 1) and were typically within the exponent ranges observed from meta-analyses of STRs for a wide range of animals, plants, and microbial communities [9,10,11]. However, these values varied by the approach used to construct STRs (Fig. 2A). The EPW based w values ranged from 0.048 to 0.128, with a mean w of 0.088 ± 0.029 (mean ± SD). The CMW w values ranged from 0.073 to 0.150, with a mean w = 0.111 ± 0.029. Whereas, the MW minimum and maximum w values were 0.223 ± 0.350, with a mean of 0.289 ± 0.044 (Fig. 2A). The EPW and CMW w values were significantly lower than the MW w values (Fig. 2A). However, they were not significantly different from each other, despite that EPW values were uniformly lower (Fig. 2A).Fig. 1: Species-time relationships for the tree-hole bacterial communities.A, B, and C represent species–time relationships (STR) constructed using every possible window, cumulative moving window, and moving window approaches, respectively. Given in each instance is the tree-hole number (TH1–TH10) and the STR power law equation. All STRs were significant (P  More

  • in

    Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem

    1.Wilson DS, Yoshimura J. On the coexistence of specialists and generalists. Am Nat. 1994;144:692–707.Article 

    Google Scholar 
    2.Slatyer RA, Hirst M, Sexton JP. Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett. 2013;16:1104–14.PubMed 
    Article 

    Google Scholar 
    3.Büchi L, Vuilleumier S. Coexistence of specialist and generalist species is shaped by dispersal and environmental factors. Am Nat. 2014;183:612–24.PubMed 
    Article 

    Google Scholar 
    4.Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 

    Google Scholar 
    5.Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol. 2002;15:173–90.Article 

    Google Scholar 
    6.Devictor V, Julliard R, Jiguet F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos. 2008;117:507–14.Article 

    Google Scholar 
    7.Clavel J, Julliard R, Devictor V. Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ. 2011;9:222–8.Article 

    Google Scholar 
    8.Marvier M, Kareiva P, Neubert MG. Habitat destruction, fragmentation, and disturbance promote invasion by habitat generalists in a multispecies metapopulation. Risk Anal Int J. 2004;24:869–78.Article 

    Google Scholar 
    9.Loehle C. Strategy space and the disturbance spectrum: a life-history model for tree species coexistence. Am Nat. 2000;156:14–33.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Székely AJ, Langenheder S. The importance of species sorting differs between habitat generalists and specialists in bacterial communities. FEMS Microbiol Ecol. 2014;87:102–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    11.Mariadassou M, Pichon S, Ebert D. Microbial ecosystems are dominated by specialist taxa. Ecol Lett. 2015;18:974–82.PubMed 
    Article 

    Google Scholar 
    12.Carbonero F, Oakley BB, Purdy KJ. Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PLoS ONE. 2014;9:e85105.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: Deterministic versus stochastic processes. ISME J. 2013;7:1310–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Caruso T, Chan Y, Lacap DC, Lau MCY, McKay CP, Pointing SB. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J. 2011;5:1406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Sriswasdi S, Yang C, Iwasaki W. Generalist species drive microbial dispersion and evolution. Nat Commun. 2017;8:1162.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Nicholls DG, Ferguson S. Bioenergetics. Academic Press; Cambridge, Massachusetts, USA; 2013.20.Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci USA. 2010;107:5881–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA, et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Mußmann M, Pjevac P, Krüger K, Dyksma S. Genomic repertoire of the Woeseiaceae/JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments. ISME J. 2017;11:1276.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Tsementzi D, Wu J, Deutsch S, Nath S, Rodriguez-R LM, Burns AS, et al. SAR11 bacteria linked to ocean anoxia and nitrogen loss. Nature. 2016;536:179.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Greening C, Grinter R, Chiri E. Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches. mSystems. 2019;4:e00107–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Rodriguez-r LM, Overholt WA, Hagan C, Huettel M, Kostka JE, Konstantinidis KT. Microbial community successional patterns in beach sands impacted by the Deepwater Horizon oil spill. ISME J. 2015;9:1928–40.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Herold M, Arbas SM, Narayanasamy S, Sheik AR, Kleine-Borgmann LAK, Lebrun LA, et al. Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance. Nat Commun. 2020;11:1–14.Article 
    CAS 

    Google Scholar 
    29.Muller EEL. Determining microbial niche breadth in the environment for better ecosystem fate predictions. mSystems. 2019;4:e00080–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Huettel M, Berg P, Kostka JE. Benthic exchange and biogeochemical cycling in permeable sediments. Ann Rev Mar Sci. 2014;6:23–51.PubMed 
    Article 

    Google Scholar 
    31.Boudreau BP, Huettel M, Forster S, Jahnke RA, McLachlan A, Middelburg JJ, et al. Permeable marine sediments: overturning an old paradigm. EOS, Trans Am Geophys Union. 2001;82:133–6.
    Google Scholar 
    32.Devol AH. Denitrification, anammox, and N2 production in marine sediments. Ann Rev Mar Sci. 2015;7:403–23.PubMed 
    Article 

    Google Scholar 
    33.Reimers CE, Stecher HA III, Taghon GL, Fuller CM, Huettel M, Rusch A, et al. In situ measurements of advective solute transport in permeable shelf sands. Cont Shelf Res. 2004;24:183–201.Article 

    Google Scholar 
    34.Santos IR, Eyre BD, Huettel M. The driving forces of porewater and groundwater flow in permeable coastal sediments: a review. Estuar Coast Shelf Sci. 2012;98:1–15.Article 

    Google Scholar 
    35.Huettel M, Ziebis W, Forster S. Flow‐induced uptake of particulate matter in permeable sediments. Limnol Oceanogr. 1996;41:309–22.Article 

    Google Scholar 
    36.Cook PL, Frank W, Glud R, Felix J, Markus H. Benthic solute exchange and carbon mineralization in two shallow subtidal sandy sediments: Effect of advective pore‐water exchange. Limnol Oceanogr. 2007;52:1943–63.CAS 
    Article 

    Google Scholar 
    37.Glud RN. Oxygen dynamics of marine sediments. Mar Biol Res. 2008;4:243–89.Article 

    Google Scholar 
    38.Gobet A, Böer SI, Huse SM, Van Beusekom JEE, Quince C, Sogin ML, et al. Diversity and dynamics of rare and of resident bacterial populations in coastal sands. ISME J. 2012;6:542.PubMed 
    Article 

    Google Scholar 
    39.Böer SI, Arnosti C, Van Beusekom JEE, Boetius A. Temporal variations in microbial activities and carbon turnover in subtidal sandy sediments. Biogeosciences. 2009;6:1149–65.Article 

    Google Scholar 
    40.Hunter EM, Mills HJ, Kostka JE. Microbial community diversity associated with carbon and nitrogen cycling in permeable shelf sediments. Appl Environ Microbiol. 2006;72:5689–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Probandt D, Knittel K, Tegetmeyer HE, Ahmerkamp S, Holtappels M, Amann R. Permeability shapes bacterial communities in sublittoral surface sediments. Environ Microbiol. 2017;19:1584–99.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Probandt D, Eickhorst T, Ellrott A, Amann R, Knittel K. Microbial life on a sand grain: from bulk sediment to single grains. ISME J. 2017;12:623–33.43.Kessler AJ, Chen Y-J, Waite DW, Hutchinson T, Koh S, Popa ME, et al. Bacterial fermentation and respiration processes are uncoupled in permeable sediments. Nat Microbiol. 2019;4:1014–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Dyksma S, Pjevac P, Ovanesov K, Mussmann M. Evidence for H2 consumption by uncultured Desulfobacterales in coastal sediments. Environ Microbiol. 2018;20:450–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Bourke MF, Marriott PJ, Glud RN, Hasler-Sheetal H, Kamalanathan M, Beardall J, et al. Metabolism in anoxic permeable sediments is dominated by eukaryotic dark fermentation. Nat Geosci. 2017;10:30–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Canfield D, Kristensen E, Thamdrup B. Aquatic geomicrobiology. Academic Press; Cambridge, Massachusetts, USA; 2005.47.Bell TH, Bell T. Many roads to bacterial generalism. FEMS Microbiol Ecol. 2021; 97: fiaa240.48.Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, et al. Defining and measuring ecological specialization. J Appl Ecol. 2010;47:15–25.Article 

    Google Scholar 
    49.Lowe MK, Kennedy DM. Stability of artificial beaches in Port Phillip Bay, Victoria, Australia. J Coast Res. 2016;75:253–7.50.Paulin MM, Nicolaisen MH, Jacobsen CS, Gimsing AL, Sørensen J, Bælum J. Improving Griffith’s protocol for co-extraction of microbial DNA and RNA in adsorptive soils. Soil Biol Biochem. 2013;63:37–49.CAS 
    Article 

    Google Scholar 
    51.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:2584.Article 

    Google Scholar 
    53.Amir A, Daniel M, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2:e00191–16.PubMed 
    PubMed Central 

    Google Scholar 
    54.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R Packag Version. 2018;2:4–6.
    Google Scholar 
    59.Wickham H. ggplot2. WIREs Comp Stats. 2011;3:180–5.60.Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 2011;5:169.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Latombe G, Hui C, McGeoch MA. Multi‐site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol Evol. 2017;8:431–42.Article 

    Google Scholar 
    62.Lorenzen CJ. Determination of chlorophyll and pheo‐pigments: spectrophotometric equations 1. Limnol Oceanogr. 1967;12:343–6.CAS 
    Article 

    Google Scholar 
    63.Li DH, Luo RB, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2015;32:605–7.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Kang D, Li F, Kirton ES, Thomas A, Egan RS, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.69.Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    73.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59.PubMed 
    Article 
    CAS 

    Google Scholar 
    74.Greening C, Geier R, Wang C, Woods LC, Morales SE, McDonald MJ, et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 2019;13:2617–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Darling AE, Jospin G, Lowe E, Matsen FA IV, Bik HM, Eisen JA. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Zhou Z, Tran P, Liu Y, Kieft K, Anantharaman K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv. 2019; 761643. https://www.biorxiv.org/content/10.1101/761643v2.79.Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Kumar S, Stecher G, Tamura K. MEGA7: molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.81.Islam ZF, Cordero PRF, Feng J, Chen Y-J, Bay SK, Gleadow RM, et al. Two Chloroflexi classes independently evolved the ability to persist on atmospheric hydrogen and carbon monoxide. ISME J. 2019;13:1801–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Fonselius S, Dyrssen D, Yhlen B. Determination of hydrogen sulphide. Methods of Seawater Analysis. Wiley-VCH; Weinheim, Germany. Third Ed 2007. p. 91–100.83.Hui C, McGeoch MA. Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. Am Nat. 2014;184:684–94.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Bay SK, McGeoch MA, Gillor O, Wieler N, Palmer DJ, Baker DJ, et al. Soil bacterial communities exhibit strong biogeographic patterns at fine taxonomic resolution. mSystems. 2020;5:e00540–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Büchi L, Vuilleumier S. Ecological strategies in stable and disturbed environments depend on species specialisation. Oikos. 2016;125:1408–20.86.Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems. 2016;1:e00009–15.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Lencina AM, Ding Z, Schurig-Briccio LA, Gennis RB. Characterization of the type III sulfide: quinone oxidoreductase from Caldivirga maquilingensis and its membrane binding. Biochim Biophys Acta (BBA)-Bioenerg. 2013;1827:266–75.CAS 
    Article 

    Google Scholar 
    88.Han Y, Perner M. Sulfide consumption in Sulfurimonas denitrificans and heterologous expression of its three sulfide-quinone reductase homologs. J Bacteriol. 2016;198:1260–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Ramel F, Amrani A, Pieulle L, Lamrabet O, Voordouw G, Seddiki N, et al. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation. Microbiology. 2013;159:2663–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Ramel F, Brasseur G, Pieulle L, Valette O, Hirschler-Réa A, Fardeau ML, et al. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases. PLoS ONE. 2015;10:e0123455.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Shibl AA, Isaac A, Ochsenkühn MA, Cárdenas A, Fei C, Behringer G, et al. Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci. 2020;117:27445–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Yurkov VV, Beatty JT. Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev. 1998;62:695–724.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Kamp A, de Beer D, Nitsch JL, Lavik G, Stief P. Diatoms respire nitrate to survive dark and anoxic conditions. Proc Natl Acad Sci USA. 2011;108:5649–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Pianka ER. On r-and K-selection. Am Nat. 1970;104:592–7.Article 

    Google Scholar 
    95.Andrews JH, Harris RF. r-and K-selection and microbial ecology. Advances in microbial ecology. Springer; Berlin, Germany; 1986. p. 99–147.96.Shade A, Dunn RR, Blowes SA, Keil P, Bohannan BJM, Herrmann M, et al. Macroecology to unite all life, large and small. Trends Ecol Evol. 2018;33:731–44.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Algar CK, Vallino JJ. Predicting microbial nitrate reduction pathways in coastal sediments. Aquat Micro Ecol. 2014;71:223–38.Article 

    Google Scholar 
    98.Graham EB, Knelman JE, Schindlbacher A, Siciliano S, Breulmann M, Yannarell A, et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front Microbiol. 2016;7:214.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts

    1.Ewald PW. Transmission modes and evolution of the parasitism-mutualism continuum. Ann NY Acad Sci. 1987;503:295–306.CAS 
    PubMed 

    Google Scholar 
    2.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 

    Google Scholar 
    3.Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;51:505–10.
    Google Scholar 
    4.Salem H, Florez L, Gerardo N, Kaltenpoth M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc B. 2015;282:1804.
    Google Scholar 
    5.Ebert D. The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst. 2013;44:623–43.
    Google Scholar 
    6.Webster JP, Borlase A, Rudge JW. Who acquires infection from whom and how? Disentangling multi-host and multimode transmission dynamics in the ‘elimination’ era. Philos Trans R Soc B Biol Sci. 2017;372:20160091.7.Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.CAS 
    PubMed 

    Google Scholar 
    8.Law R, Dieckmann U. Symbiosis through exploitation and the merger of lineages in evolution. Proc R Soc B. 1998;265:1245–53.
    Google Scholar 
    9.Cordaux R, Michel-Salzat A, Bouchon D. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol. 2001;14:237–43.CAS 

    Google Scholar 
    10.Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–75.CAS 
    PubMed 

    Google Scholar 
    11.Zug R, Koehncke A, Hammerstein P. Epidemiology in evolutionary time: the case of Wolbachia horizontal transmission between arthropod host species. J Evol Biol. 2012;25:2149–60.PubMed 

    Google Scholar 
    12.Werren JH, O’Neill SL. The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH (eds). Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. 1997. Oxford University Press, Oxford, pp 1–41.13.Parratt SR, Frost CL, Schenkel MA, Rice A, Hurst GDD, King KC. Superparasitism drives heritable symbiont epidemiology and host sex ratio in a wasp. PLoS Pathog. 2016;12:1–22.
    Google Scholar 
    14.Gordon ERL, McFrederick QS, Weirauch C. Comparative phylogenetic analysis of bacterial associates in Pyrrhocoroidea and evidence for ancient and persistent environmental symbiont reacquisition in Largidae (Hemiptera: Heteroptera). Appl Environ Microbiol. 2016;82:064022.
    Google Scholar 
    15.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308 LP–4316.
    Google Scholar 
    16.Buchner P. Endosymbiosis of animals with plant microorganisms. Z Für Allg Mikrobiol. 1967;7:168.
    Google Scholar 
    17.Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982;85:211–426.
    Google Scholar 
    18.Frank SA. Host-symbiont conflict over the mixing of symbiotic lineages. Proc Biol Sci. 1996;263:339–44.CAS 
    PubMed 

    Google Scholar 
    19.Sachs JL, Essenberg CJ, Turcotte MM. New paradigms for the evolution of beneficial infections. Trends Ecol Evol. 2011;26:202–9.PubMed 

    Google Scholar 
    20.Shapiro JW, Turner PE. The impact of transmission mode on the evolution of benefits provided by microbial symbionts. Ecol Evol. 2014;4:3350–61.PubMed 
    PubMed Central 

    Google Scholar 
    21.Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, Von AC, et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect—bacterial symbioses. Plos Genet. 2012;8:11.
    Google Scholar 
    22.Duron O, Noël V, Mccoy KD, Bonazzi M, Sidi K, Morel O, et al. The recent evolution of a maternally- inherited endosymbiont of ticks led to the emergence of the Q fever pathogen Coxiella burnetii. Plos Pathog. 2015;11:1–23.CAS 

    Google Scholar 
    23.Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 2016;40:855–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Toft C, Andersson SGE. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010;11:465–75.CAS 
    PubMed 

    Google Scholar 
    25.Wilkes TE, Duron O, Darby AC, Hypša V, Nováková E, Hurst GDD. The Genus Arsenophonus. In: Bourtzis K, Zchori-Fein E, editors. Manipulative tenants: bacteria associated with arthropods. Boca Raton: CRC Press; 2011. p. 225–44.26.Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6:1–12.
    Google Scholar 
    27.Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:1–14.
    Google Scholar 
    28.Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, et al. Notes: Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol. 1991;41:563–5.
    Google Scholar 
    29.Qu LY, Lou YH, Fan HW, Ye YX, Huang HJ, Hu MQ, et al. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens. Symbiosis. 2013;61:47–53.
    Google Scholar 
    30.Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA. 2010;107:12168–73.CAS 
    PubMed 

    Google Scholar 
    31.Nováková E, Hypša V, Nguyen P, Husník F, Darby AC. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Stand Genom Sci. 2016;11:72.
    Google Scholar 
    32.Perotti MA, Allen JM, Reed DL, Braig HR. Host-symbiont interactions of the primary endosymbiont of human head and body lice. FASEB J. 2007;21:1058–66.CAS 
    PubMed 

    Google Scholar 
    33.Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: An analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 2015;81:6189–99.PubMed 
    PubMed Central 

    Google Scholar 
    34.Duron O, Wilkes TE, Hurst GDD. Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett. 2010;13:1139–48.PubMed 

    Google Scholar 
    35.Huger AM, Skinner SW, Werren JH. Bacterial infections associated with the son-killer trait in the parasitoid wasp Nasonia (= Mormoniella) vitripennis (Hymenoptera: Pteromalidae). J Invertebr Pathol. 1985;46:272–80.CAS 
    PubMed 

    Google Scholar 
    36.Bressan A. Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens. Infect Genet Evol. 2014;22:81–90.PubMed 

    Google Scholar 
    37.Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Micro Ecol. 2012;63:628–38.
    Google Scholar 
    38.Bressan A, Sémétey O, Arneodo J, Lherminier J, Boudon-Padieu E. Vector transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathology. 2009;99:1289–96.CAS 
    PubMed 

    Google Scholar 
    39.Aizenberg-Gershtein Y, Izhaki I, Halpern M. Do honeybees shape the bacterial community composition in floral nectar? PLoS ONE. 2013;8:e67556.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol. 2007;59:600–10.CAS 
    PubMed 

    Google Scholar 
    41.Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE. 2014;9:e95056.PubMed 
    PubMed Central 

    Google Scholar 
    42.Donkersley P, Rhodes G, Pickup RW, Jones KC, Wilson K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol Evol. 2018;8:4743–56.PubMed 
    PubMed Central 

    Google Scholar 
    43.Yañez O, Gauthier L, Chantawannakul P, Neumann P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol Lett. 2016;363:1–7.
    Google Scholar 
    44.Budge GE, Adams I, Thwaites R, Pietravalle S, Drew GC, Hurst GDD, et al. Identifying bacterial predictors of honey bee health. J Invertebr Pathol. 2016;141:41–4.PubMed 

    Google Scholar 
    45.Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, et al. Pathogen webs in collapsing honey bee colonies. PLoS ONE. 2012;7:e43562.46.Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.PubMed 

    Google Scholar 
    47.Schmid-Hempel P. Parasites and their social hosts. Trends Parasitol. 2017;33:453–62.PubMed 

    Google Scholar 
    48.Wilson EO. The insect societies. Harvard University Press: Cambridge, MA, 1971.49.Onchuru TO, Javier Martinez A, Ingham CS, Kaltenpoth M. Transmission of mutualistic bacteria in social and gregarious insects. Curr Opin Insect Sci. 2018;28:50–58.PubMed 

    Google Scholar 
    50.Rubin BER, Sanders JG, Turner KM, Pierce NE, Kocher SD. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R Soc Open Sci. 2018;5:180369.51.Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE, Hu Y, et al. Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol. 2012;21:2282–96.PubMed 

    Google Scholar 
    52.Frost CL, FernÁndez-MarÍn H, Smith JE, Hughes WOH. Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Mol Ecol. 2010;19:4077–85.CAS 
    PubMed 

    Google Scholar 
    53.Keller L, Liautard C, Reuter MAX, Brown WD, Chapuisat M, Sundstro L. Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity. 2001;87:227–33.CAS 
    PubMed 

    Google Scholar 
    54.Van Borm S, Wenseleers T, Billen J, Boomsma JJ. Wolbachia in leafcutter ants: a widespread symbiont that may induce male killing or incompatible matings. J Evol Biol. 2001;14:805–14.
    Google Scholar 
    55.Wenseleers T, Sundström L, Billen J. Deleterious Wolbachia in the ant Formica truncorum. Proc R Soc B Biol Sci. 2002;269:623–9.CAS 

    Google Scholar 
    56.Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, De Miranda JR, et al. The Apis mellifera filamentous virus genome. Viruses. 2015;7:3798–815.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    58.Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.PubMed 

    Google Scholar 
    59.Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques. 1991;10:506–13.CAS 
    PubMed 

    Google Scholar 
    60.Lourenço AP, Mackert A, Cristino A, dos S, Simões ZLP. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie. 2008;39:372–85.
    Google Scholar 
    61.Boncristiani H, Li J, Evans JD, Pettis J, Chen Y. Scientific note on PCR inhibitors in the compound eyes of honey bees, Apis mellifera. Apidologie. 2011;42:457–60.
    Google Scholar 
    62.Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008;22:2591–9.CAS 
    PubMed 

    Google Scholar 
    63.Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.R Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.R-project.org/.65.Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models Using lme4. J Stat Softw. 2015;1:1–48.66.Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.
    Google Scholar 
    67.Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media: New York, NY, 2003.68.Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2009;1:3–14.
    Google Scholar 
    69.Frost CL, Siozios S, Nadal-Jimenez P, Brockhurst MA, King KC, Darby AC, et al. The hypercomplex genome of an insect reproductive parasite highlights the importance of lateral gene transfer in symbiont biology. mBio. 2020;11:e02590–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Smith AH, Łukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol. 2015;24:1135–49.
    Google Scholar 
    71.Nadal-Jimenez P, Griffin JS, Davies L, Frost CL, Marcello M, Hurst GDD. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ Microbiol. 2019;21:3172–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Perlman SJ, Hunter MS, Zchori-Fein E. The emerging diversity of Rickettsia. Proc Biol Sci. 2006;273:2097–106.PubMed 
    PubMed Central 

    Google Scholar 
    73.Sachs JL, Skophammer RG, Regus JU. Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA. 2011;108:10800–7.CAS 
    PubMed 

    Google Scholar 
    74.Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84.CAS 
    PubMed 

    Google Scholar 
    75.Chrudimský T, Husník F, Nováková E, Hypša V. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS ONE. 2012;7:e40354.PubMed 
    PubMed Central 

    Google Scholar 
    76.Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol. 1999;1:267–75.
    Google Scholar 
    77.Kenyon LJ, Meulia T, Sabree ZL. Habitat visualization and genomic analysis of ‘Candidatus Pantoea carbekii,’ the primary symbiont of the brown marmorated stink bug. Genome Biol Evol. 2015;7:620–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Evol Microbiol. 1999;49:1645–56.
    Google Scholar 
    79.Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol. 1997;51:47–72.CAS 
    PubMed 

    Google Scholar 
    80.Costa SCP, Girard PA, Brehélin M, Zumbihl R. The emerging human pathogen Photorhabdus asymbiotica is a facultative intracellular bacterium and induces apoptosis of macrophage-like cells. Infect Immun. 2009;77:1022–30.CAS 
    PubMed 

    Google Scholar 
    81.Gerrard J, Waterfield N, Vohra R, ffrench-Constant R. Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect. 2004;6:229–37.CAS 
    PubMed 

    Google Scholar 
    82.Schmid-Hempel P. Parasites in social insects. Princeton University Press: Princeton, NJ, 1998.83.Frost CL, Pollock SW, Smith JE, Hughes WOH. Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes. PLoS ONE. 2014;9:e95122.84.Graystock P, Goulson D, Hughes WOH. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B Biol Sci. 2015;282:1471–2954.
    Google Scholar 
    85.Graystock P, Goulson D, Hughes WOH. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ. 2014;2:e522.PubMed 
    PubMed Central 

    Google Scholar 
    86.Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol. 2013;22:2028–44.CAS 
    PubMed 

    Google Scholar 
    87.McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, et al. Flowers and wild megachilid bees share microbes. Micro Ecol. 2017;73:188–200.
    Google Scholar 
    88.Satterfield DA, Altizer S, Williams MK, Hall RJ. Environmental persistence influences infection dynamics for a butterfly pathogen. PLoS ONE. 2017;12:1–16.
    Google Scholar 
    89.Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GDD, et al. Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol Biol. 2010;19:75–89.CAS 
    PubMed 

    Google Scholar 
    90.Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of ‘Candidatus Arsenophonus arthropodicus,’ an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Appl Environ Microbiol. 2006;72:2997–3004.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Clark T. Honeybee spiroplasmosis, a new problem for beekeepers. Am Bee J. 1978;118:18–19.
    Google Scholar 
    92.Schwarz RS, Teixeira ÉW, Tauber JP, Birke JM, Martins MF, Fonseca I, et al. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen. 2014;3:341–55.PubMed 
    PubMed Central 

    Google Scholar 
    93.Levin MD. Interactions among foraging honey bees from different apiaries in the same field. Insectes Sociaux. 1961;8:195–201.
    Google Scholar 
    94.Parmentier A, Billiet A, Smagghe G, Vandamme P, Deforce D, Van Nieuwerburgh F, et al. A prokaryotic–eukaryotic relation in the fat body of Bombus terrestris. Environ Microbiol Rep. 2018;10:644–50.CAS 
    PubMed 

    Google Scholar 
    95.Nussbaumer AD, Fisher CR, Bright M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature. 2006;441:345–8.CAS 
    PubMed 

    Google Scholar 
    96.Werren JH, Skinner SW, Huger AM. Male-killing bacteria in a parasitic wasp. Science. 1986;231:990–2.CAS 
    PubMed 

    Google Scholar 
    97.Gerth M, Saeed A, White JA, Bleidorn C. Extensive screen for bacterial endosymbionts reveals taxon-specific distribution patterns among bees (Hymenoptera, Anthophila). FEMS Microbiol Ecol. 2015;91:1–12.
    Google Scholar 
    98.McFrederick QS, Mueller UG, James RR. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc R Soc B Biol Sci. 2014;281:1471–2954.
    Google Scholar 
    99.Saeed A, White JA. Surveys for maternally-inherited endosymbionts reveal novel and variable infections within solitary bee species. J Invertebr Pathol. 2015;132:111–4.PubMed 

    Google Scholar  More

  • in

    Meta-analytic evidence that animals rarely avoid inbreeding

    1.Kokko, H. & Ots, I. When not to avoid inbreeding. Evolution 60, 467–475 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Keller, L. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    5.Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).7.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Parker, G. A. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) 123–166 (Academic, 1979).9.Duthie, A. B. & Reid, J. M. Evolution of inbreeding avoidance and inbreeding preference through mate choice among interacting relatives. Am. Nat. 188, 651–667 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kokko, H. Give one species the task to come up with a theory that spans them all: what good can come out of that? Proc. Biol. Sci. 284, 20171652 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Parker, G. A. Sexual conflict over mating and fertilization: an overview. Philos. Trans. R. Soc. Lond. B 361, 235–259 (2006).CAS 
    Article 

    Google Scholar 
    13.Ihle, M. & Forstmeier, W. Revisiting the evidence for inbreeding avoidance in zebra finches. Behav. Ecol. 24, 1356–1362 (2013).Article 

    Google Scholar 
    14.Annavi, G. et al. Heterozygosity–fitness correlations in a wild mammal population: accounting for parental and environmental effects. Ecol. Evol. 4, 2594–2609 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Arct, A., Drobniak, S. M. & Cichoń, M. Genetic similarity between mates predicts extrapair paternity—a meta-analysis of bird studies. Behav. Ecol. 26, 959–968 (2015).Article 

    Google Scholar 
    16.Winternitz, J., Abbate, J. L., Huchard, E., Havlicek, J. & Garamszegi, L. Z. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol. Ecol. 26, 668–688 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Havlíček, J., Winternitz, J. & Roberts, S. C. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Philos. Trans. R. Soc. Lond. B 375, 20190260 (2020).Article 

    Google Scholar 
    18.Lizé, A., McKay, R. & Lewis, Z. Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J. 8, 469–477 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Heys, C. et al. Evidence that the microbiota counteracts male outbreeding strategy by inhibiting sexual signaling in females. Front. Ecol. Evol. 6, https://doi.org/10.3389/fevo.2018.00029 (2018)20.Ala-Honkola, O., Manier, M. K., Lupold, S. & Pitnick, S. No evidence for postcopulatory inbreeding avoidance in Drosophila melanogaster. Evolution 65, 2699–2705 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Mack, P. D., Hammock, B. A. & Promislow, D. E. Sperm competitive ability and genetic relatedness in Drosophila melanogaster: similarity breeds contempt. Evolution 56, 1789–1795 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Loyau, A., Cornuau, J. H., Clobert, J. & Danchin, E. Incestuous sisters: mate preference for brothers over unrelated males in Drosophila melanogaster. PLoS ONE 7, e51293 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tan, C. K. W., Løvlie, H., Pizzari, T. & Wigby, S. No evidence for precopulatory inbreeding avoidance in Drosophila melanogaster. Anim. Behav. 83, 1433–1441 (2012).Article 

    Google Scholar 
    24.Robinson, S. P., Kennington, W. J. & Simmons, L. W. Preference for related mates in the fruit fly, Drosophila melanogaster. Anim. Behav. 84, 1169–1176 (2012).Article 

    Google Scholar 
    25.Ala-Honkola, O., Veltsos, P., Anderson, H. & Ritchie, M. G. Copulation duration, but not paternity share, potentially mediates inbreeding avoidance in Drosophila montana. Behav. Ecol. Sociobiol. 68, 2013–2021 (2014).Article 

    Google Scholar 
    26.Nakamura, S. Inbreeding and rotational breeding of the parasitoid fly, Exorista japonica (Diptera: Tachinidae), for successive rearing. Appl. Entomol. Zool. 31, 433–441 (1996).Article 

    Google Scholar 
    27.Aluja, M., Rull, J., Perez-Staples, D., Diaz-Fleischer, F. & Sivinski, J. Random mating among Anastrepha ludens (Diptera: Tephritidae) adults of geographically distant and ecologically distinct populations in Mexico. Bull. Entomol. Res. 99, 207–214 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Fischer, K. et al. Kin recognition and inbreeding avoidance in a butterfly. Ethology 121, 977–984 (2015).Article 

    Google Scholar 
    29.Mongue, A. J., Ahmed, M. Z., Tsai, M. V. & de Roode, J. C. Testing for cryptic female choice in monarch butterflies. Behav. Ecol. 26, 386–395 (2014).Article 

    Google Scholar 
    30.Haikola, S., Singer, M. C. & Pen, I. Has inbreeding depression led to avoidance of sib mating in the Glanville fritillary butterfly (Melitaea cinxia)? Evol. Ecol. 18, 113–120 (2004).Article 

    Google Scholar 
    31.Välimäki, P., Kivelä, S. M. & Mäenpää, M. I. Mating with a kin decreases female remating interval: a possible example of inbreeding avoidance. Behav. Ecol. Sociobiol. 65, 2037–2047 (2011).Article 

    Google Scholar 
    32.Lewis, Z. & Wedell, N. Male moths reduce sperm investment in relatives. Anim. Behav. 77, 1547–1550 (2009).Article 

    Google Scholar 
    33.Harano, T. & Katsuki, M. Female seed beetles, Callosobruchus chinensis, remate more readily after mating with relatives. Anim. Behav. 83, 1007–1010 (2012).Article 

    Google Scholar 
    34.Edvardsson, M., Rodríguez-Muñoz, R. & Tregenza, T. No evidence that female bruchid beetles, Callosobruchus maculatus, use remating to reduce costs of inbreeding. Anim. Behav. 75, 1519–1524 (2008).Article 

    Google Scholar 
    35.Müller, T. & Müller, C. Consequences of mating with siblings and nonsiblings on the reproductive success in a leaf beetle. Ecol. Evol. 6, 3185–3197 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. Inbreeding avoidance or tolerance? Comparison of mating behavior between mass-reared and wild strains of the sweet potato weevil. Behav. Ecol. Sociobiol. 65, 1483–1489 (2011).Article 

    Google Scholar 
    37.Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. The effect of inbreeding on mating behaviour of West Indian sweet potato weevil Euscepes postfasciatus. Ethology 117, 822–828 (2011).Article 

    Google Scholar 
    38.Tyler, F. & Tregenza, T. Why do so many flour beetle copulations fail? Entomol. Exp. Appl. 146, 199–206 (2013).Article 

    Google Scholar 
    39.Mattey, S. N., Smiseth, P. T. & Herberstein, M. No inbreeding avoidance by female burying beetles regardless of whether they encounter males simultaneously or sequentially. Ethology 121, 1031–1038 (2015).Article 

    Google Scholar 
    40.De Luca, P. A. & Cocroft, R. B. The effects of age and relatedness on mating patterns in thornbug treehoppers: inbreeding avoidance or inbreeding tolerance? Behav. Ecol. Sociobiol. 62, 1869–1875 (2008).Article 

    Google Scholar 
    41.Poderoso, J. C. M. et al. Mating preferences and consequences of choosing sibling or non-sibling mates by females of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Fla. Entomol. 96, 419–423 (2013).Article 

    Google Scholar 
    42.Huang, M. H. & Caillaud, M. C. Inbreeding avoidance by recognition of close kin in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 12, 39 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    43.Stockley, P. Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition? Proc. R. Soc. Biol. Sci. Ser. B 266, 1663–1669 (1999).Article 

    Google Scholar 
    44.Weddle, C. B. et al. Cuticular hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecol. Lett. 16, 346–353 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Simmons, L. M. Female choice and the relatedness of mates in the field cricket, Gryllus bimaculatus. Anim. Behav. 41, 493–501 (1991).Article 

    Google Scholar 
    46.Bretman, A., Newcombe, D. & Tregenza, T. Promiscuous females avoid inbreeding by controlling sperm storage. Mol. Ecol. 18, 3340–3345 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Bretman, A., Wedell, N. & Tregenza, T. Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proc. Biol. Sci. 271, 159–164 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Simmons, L. W. Kin recognition and its influence on mating preferences of the field cricket, Gryllus bimaculatus (de Geer). Anim. Behav. 38, 68–77 (1989).Article 

    Google Scholar 
    49.Simmons, L. W., Beveridge, M., Wedell, N. & Tregenza, T. Postcopulatory inbreeding avoidance by female crickets only revealed by molecular markers. Mol. Ecol. 15, 3817–3824 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Simmons, L. W. & Thomas, M. L. No postcopulatory response to inbreeding by male crickets. Biol. Lett. 4, 183–185 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tuni, C., Beveridge, M. & Simmons, L. W. Female crickets assess relatedness during mate guarding and bias storage of sperm towards unrelated males. J. Evol. Biol. 26, 1261–1268 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Haneke-Reinders, M., Reinhold, K. & Schmoll, T. Sex-specific repeatabilities and effects of relatedness and mating status on copulation duration in an acridid grasshopper. Ecol. Evol. 7, 3414–3424 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Teng, Z. Q. & Kang, L. Egg-hatching benefits gained by polyandrous female locusts are not due to the fertilization advantage of nonsibling males. Evolution 61, 470–476 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bouchebti, S., Durier, V., Pasquaretta, C., Rivault, C. & Lihoreau, M. Subsocial cockroaches Nauphoeta cinerea mate indiscriminately with kin despite high costs of inbreeding. PLoS ONE 11, e0162548 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Lihoreau, M. & Rivault, C. German cockroach males maximize their inclusive fitness by avoiding mating with kin. Anim. Behav. 80, 303–309 (2010).Article 

    Google Scholar 
    56.Lihoreau, M., Zimmer, C. & Rivault, C. Kin recognition and incest avoidance in a group-living insect. Behav. Ecol. 18, 880–887 (2007).Article 

    Google Scholar 
    57.Lihoreau, M., Zimmer, C. & Rivault, C. Mutual mate choice: when it pays both sexes to avoid inbreeding. PLoS ONE 3, e3365 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Hedlund, K., Ek, H., Gunnarsson, T. & Svegborn, C. Mate choice and male competition in Orchesella cincta (Collembola). Experientia 46, 524–526 (1990).Article 

    Google Scholar 
    59.Palmer, C. A. & Edmands, S. Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus. Mar. Biol. 136, 693–698 (2000).Article 

    Google Scholar 
    60.Winsor, G. L. & Innes, D. J. Sexual reproduction in Daphnia pulex (Crustacea: Cladocera): observations on male mating behaviour and avoidance of inbreeding. Freshwat. Biol. 47, 441–450 (2002).Article 

    Google Scholar 
    61.Fortin, M., Vitet, C., Souty-Grosset, C. & Richard, F. J. How do familiarity and relatedness influence mate choice in Armadillidium vulgare? PLoS ONE 13, e0209893 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Tuni, C., Mestre, L., Berger-Tal, R., Lubin, Y. & Bilde, T. Mate choice in naturally inbred spiders: testing the role of relatedness. Anim. Behav. 157, 27–33 (2019).Article 

    Google Scholar 
    63.Ruch, J., Heinrich, L., Bilde, T. & Schneider, J. M. The evolution of social inbreeding mating systems in spiders: limited male mating dispersal and lack of pre-copulatory inbreeding avoidance in a subsocial predecessor. Biol. J. Linn. Soc. 98, 851–859 (2009).Article 

    Google Scholar 
    64.Bilde, T., Lubin, Y., Smith, D., Schneider, J. M. & Maklakov, A. A. The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution 59, 160–174 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Welke, K. W. & Schneider, J. M. Males of the orb-web spider Argiope bruennichi sacrifice themselves to unrelated females. Biol. Lett. 6, 585–588 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Welke, K. & Schneider, J. M. Inbreeding avoidance through cryptic female choice in the cannibalistic orb-web spider Argiope lobata. Behav. Ecol. 20, 1056–1062 (2009).Article 

    Google Scholar 
    67.Chen, Z. et al. Inbreeding produces trade-offs between maternal fecundity and offspring survival in a monandrous spider. Anim. Behav. 132, 253–259 (2017).Article 

    Google Scholar 
    68.Zeh, J. A. & Zeh, D. W. Outbred embryos rescue inbred half-siblings in mixed-paternity broods of live-bearing females. Nature 439, 201–203 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.McCarthy, T. M. & Sih, A. Relatedness of mates influences mating behaviour and reproductive success of the hermaphroditic freshwater snail Physa gyrina. Evol. Ecol. Res. 10, 77–94 (2008).
    Google Scholar 
    70.Facon, B., Ravigné, V. & Goudet, J. Experimental evidence of inbreeding avoidance in the hermaphroditic snail Physa acuta. Evol. Ecol. 20, 395–406 (2006).Article 

    Google Scholar 
    71.Baur, B. & Baur, A. Random mating with respect to relatedness in the simultaneously hermaphroditic land snail Arianta arbustorum. Invertebr. Biol. 116, 294–298 (1997).Article 

    Google Scholar 
    72.Ng, T. P. T. & Johannesson, K. No precopulatory inbreeding avoidance in the intertidal snail Littorina saxatilis. J. Mollusca. Stud. 82, 213–215 (2015).
    Google Scholar 
    73.Burgess, S. C., Sander, L. & Bueno, M. How relatedness between mates influences reproductive success: an experimental analysis of self-fertilization and biparental inbreeding in a marine bryozoan. Ecol. Evol. 9, 11353–11366 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Peters, A. & Michiels, N. K. Evidence for lack of inbreeding avoidance by selective mating in a simultaneous hermaphrodite. Invertebr. Biol. 115, 99–103 (1996).Article 

    Google Scholar 
    75.Boyd, S. K. & Blaustein, A. R. Familiarity and inbreeding avoidance in the gray-tailed vole (Microtus canicaudus). J. Mammal. 66, 348–352 (1985).Article 

    Google Scholar 
    76.Bollinger, E. K., Harper, S. J., Kramer, J. M. & Barrett, G. W. Avoidance of inbreeding in the meadow vole (Microtus pennsylvanicus). J. Mammal. 72, 419–421 (1991).Article 

    Google Scholar 
    77.Sun, P., Zhu, W. & Zhao, X. Opposite-sex sibling recognition in adult root vole, Microtus Oeconomus pallas: phenotype matching or association. Pol. J. Ecol. 56, 701–708 (2008).
    Google Scholar 
    78.Fadao, T., Ruyong, S. & Tingzheng, W. Does low fecundity reflect kin recognition and inbreeding avoidance in the mandarin vole (Microtus mandarinus)? Can. J. Zool. 80, 2150–2155 (2002).Article 

    Google Scholar 
    79.Fadao, T., Tingzheng, W. & Yajun, Z. Inbreeding avoidance and mate choice in the mandarin vole (Microtus mandarinus). Can. J. Zool. 78, 2119–2125 (2000).Article 

    Google Scholar 
    80.Yu, X., Sun, R. & Fang, J. Effect of kinship on social behaviors in Brandt’s voles (Microtus brandti). J. Ethol. 22, 17–22 (2004).Article 

    Google Scholar 
    81.Lucia, K. E. & Keane, B. A field test of the effects of familiarity and relatedness on social associations and reproduction in prairie voles. Behav. Ecol. Sociobiol. 66, 13–27 (2011).Article 

    Google Scholar 
    82.Gavish, L., Hofmann, J. E. & Getz, L. L. Sibling recognition in the prairie vole, Microtus ochrogaster. Anim. Behav. 32, 362–366 (1984).Article 

    Google Scholar 
    83.Ylӧnen, H. & Haapakoski, M. Risk of inbreeding: problem of mate choice and fitness effects? Isr. J. Ecol. Evol. 62, 155–161 (2016).Article 

    Google Scholar 
    84.Kruczek, M. & Golas, A. Behavioural development of conspecific odour preferences in bank voles, Clethrionomys glareolus. Behav. Process. 64, 31–39 (2003).Article 

    Google Scholar 
    85.Lemaître, J.-F., Ramm, S. A., Hurst, J. L. & Stockley, P. Inbreeding avoidance behaviour of male bank voles in relation to social status. Anim. Behav. 83, 453–457 (2012).Article 

    Google Scholar 
    86.Kruczek, M. Recognition of kin in bank voles (Clethrionomys glareolus). Physiol. Behav. 90, 483–489 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Rao, X., Zhang, J.-X., Liu, D. & Cong, L. Kinship alters the effects of forced cohabitation on body weight, mate choice and fitness in the rat-like hamster Tscheskia triton. Curr. Zool. 55, 41–47 (2009).Article 

    Google Scholar 
    88.Mateo, J. M. & Johnston, R. E. Kin recognition and the ‘armpit effect’: evidence of self-referent phenotype matching. Proc. Biol. Sci. 267, 695–700 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Grau, H. J. Kin recognition in white-footed deermice (Peromyscus leucopus). Anim. Behav. 30, 497–505 (1982).Article 

    Google Scholar 
    90.Pillay, N. Father–daughter recognition and inbreeding avoidance in the striped mouse, Rhabdomys pumilio. Mamm. Biol. 67, 212–218 (2002).Article 

    Google Scholar 
    91.Pillay, N. & Rymer, T. L. Preference for outbreeding in inbred Littledale’s whistling rats Parotomys littledalei. Evol. Biol. 44, 21–30 (2016).Article 

    Google Scholar 
    92.Pillay, N. Inbreeding in Littledale’s whistling rat Parotomys littledalei. J. Exp. Zool. 293, 171–178 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Firman, R. C. & Simmons, L. W. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Firman, R. C. & Simmons, L. W. Gametic interactions promote inbreeding avoidance in house mice. Ecol. Lett. 18, 937–943 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Barnard, C. J. & Fitzsimons, J. Kin recognition and mate choice in mice: the effects of kinship, familiarity and social interference on intersexual interaction. Anim. Behav. 36, 1078–1090 (1988).Article 

    Google Scholar 
    96.Krackow, S. & Matuschak, B. Mate choice for non-siblings in wild house mice: evidence from a choice test and a reproductive test. Ethology 88, 99–108 (2010).Article 

    Google Scholar 
    97.Musolf, K., Hoffmann, F. & Penn, D. J. Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Anim. Behav. 79, 757–764 (2010).Article 

    Google Scholar 
    98.Bolton, J. L. et al. Kin discrimination in prepubescent and adult Long-Evans rats. Behav. Process. 90, 415–419 (2012).Article 

    Google Scholar 
    99.Valsecchi, P., Razzoli, M. & Choleris, E. Influence of kinship and familiarity on the social and reproductive behaviour of female Mongolian gerbils. Ethol. Ecol. Evol. 14, 239–253 (2002).Article 

    Google Scholar 
    100.Smith, B. A. & Block, M. L. Male saliva cues and female social choice in Mongolian gerbils. Physiol. Behav. 50, 379–384 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Ågren, G. Two laboratory experiments on inbreeding avoidance in the Mongolian gerbil. Behav. Process. 6, 291–297 (1981).Article 

    Google Scholar 
    102.Ågren, G. Incest avoidance and bonding between siblings in gerbils. Behav. Ecol. Sociobiol. 14, 161–169 (1984).Article 

    Google Scholar 
    103.Ågren, G. Alternative mating strategies in the Mongolian gerbil. Behaviour 91, 229–243 (1984).Article 

    Google Scholar 
    104.Heth, G., Todrank, J., Begall, S., Wegner, R. E. & Burda, H. Genetic relatedness discrimination in eusocial Cryptomys anselli mole-rats, Bathyergidae, Rodentia. Folia Zool. 53, 269–278 (2004).
    Google Scholar 
    105.Bennett, N. C., Faulkes, C. G. & Molteno, A. J. Reproductive suppression in subordinate, non-breeding female Damaraland mole-rats: two components to a lifetime of socially induced infertility. Proc. Biol. Sci. 263, 1599–1603 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Carter, S. N., Goldman, B. D., Goldman, S. L. & Freeman, D. A. Social cues elicit sexual behavior in subordinate Damaraland mole-rats independent of gonadal status. Horm. Behav. 65, 14–21 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Greeff, J. M. & Bennett, N. C. Causes and consequences of incest avoidance in the cooperatively breeding mole-rat, Cryptomys darlingi (Bathyergidae). Ecol. Lett. 3, 318–328 (2000).Article 

    Google Scholar 
    108.Clarke, F. M. & Faulkes, C. G. Kin discrimination and female mate choice in the naked mole-rat Heterocephalus glaber. Proc. Biol. Sci. 266, 1995–2002 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Marcinkowska, U. M., Moore, F. R. & Rantala, M. J. An experimental test of the Westermarck effect: sex differences in inbreeding avoidance. Behav. Ecol. 24, 842–845 (2013).Article 

    Google Scholar 
    110.Lass-Hennemann, J. et al. Effects of stress on human mating preferences: stressed individuals prefer dissimilar mates. Proc. Biol. Sci. 277, 2175–2183 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    111.Lass-Hennemann, J. et al. Effect of facial self-resemblance on the startle response and subjective ratings of erotic stimuli in heterosexual men. Arch. Sex. Behav. 40, 1007–1014 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Krupp, D. B., DeBruine, L. M., Jones, B. C. & Lalumiere, M. L. Kin recognition: evidence that humans can perceive both positive and negative relatedness. J. Evol. Biol. 25, 1472–1478 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Kocsor, F., Rezneki, R., Juhasz, S. & Bereczkei, T. Preference for facial self-resemblance and attractiveness in human mate choice. Arch. Sex. Behav. 40, 1263–1270 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Finke, J. B., Zhang, X., Best, D. R., Lass-Hennemann, J. & Schächinger, H. Self-resemblance modulates processing of socio-emotional pictures in a context-sensitive manner. J. Psychophysiol. 33, 127–138 (2019).Article 

    Google Scholar 
    115.Fraley, R. C. & Marks, M. J. Westermarck, Freud, and the incest taboo: does familial resemblance activate sexual attraction? Pers. Soc. Psychol. Bull. 36, 1202–1212 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.1527 (2018)117.Pfefferle, D., Kazem, A. J., Brockhausen, R. R., Ruiz-Lambides, A. V. & Widdig, A. Monkeys spontaneously discriminate their unfamiliar paternal kin under natural conditions using facial cues. Curr. Biol. 24, 1806–1810 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Pfefferle, D., Ruiz-Lambides, A. V. & Widdig, A. Male rhesus macaques use vocalizations to distinguish female maternal, but not paternal, kin from non-kin. Behav. Ecol. Sociobiol. 69, 1677–1686 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Erhart, E. M., Coelho, A. M. Jr. & Bramblett, C. A. Kin recognition by paternal half-siblings in captive Papio cynocephalus. Am. J. Primatol. 43, 147–157 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Craul, M., Zimmermann, E. & Radespiel, U. First experimental evidence for female mate choice in a nocturnal primate. Primates 45, 271–274 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Mossotti, R. H. et al. Reactions of female cheetahs (Acinonyx jubatus) to urine volatiles from males of varying genetic distance. Zoo Biol. 37, 229–235 (2018).Article 

    Google Scholar 
    122.Hamilton, J. & Vonk, J. Do dogs (Canis lupus familiaris) prefer family? Behav. Process. 119, 123–134 (2015).Article 

    Google Scholar 
    123.Orihuela, A. & Vázquez, R. Mating preferences of Saint Croix rams to related or unrelated ewes. Small Rumin. Res. 83, 82–84 (2009).Article 

    Google Scholar 
    124.Fracasso, G., Tuliozi, B., Hoi, H. & Griggio, M. Can house sparrows recognize familiar or kin-related individuals by scent? Curr. Zool. 65, 53–59 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Schielzeth, H., Burger, C., Bolund, E. & Forstmeier, W. Assortative versus disassortative mating preferences of female zebra finches based on self-referent phenotype matching. Anim. Behav. 76, 1927–1934 (2008).Article 

    Google Scholar 
    126.Miller, D. B. Long-term recognition of father’s song by female zebra finches. Nature 280, 389–391 (1979).Article 

    Google Scholar 
    127.Burley, N., Minor, C. & Strachan, C. Social preference of zebra finches for siblings, cousins and non-kin. Anim. Behav. 39, 775–784 (1990).Article 

    Google Scholar 
    128.Kato, Y., Hasegawa, T. & Okanoya, K. Song preference of female Bengalese finches as measured by operant conditioning. J. Ethol. 28, 447–453 (2010).Article 

    Google Scholar 
    129.Schubert, C. A., Ratcliffe, L. M. & Boag, P. T. A test of inbreeding avoidance in the zebra finch. Ethology 82, 265–274 (2010).Article 

    Google Scholar 
    130.Slater, P. J. B. & Clements, F. A. Incestuous mating in zebra finches. Z. Tierpsychol. 57, 201–208 (2010).Article 

    Google Scholar 
    131.Arct, A., Rutkowska, J., Martyka, R., Drobniak, S. M. & Cichon, M. Kin recognition and adjustment of reproductive effort in zebra finches. Biol. Lett. 6, 762–764 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    133.Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    134.Bateson, P. Preferences for cousins in Japanese quail. Nature 295, 236–237 (1982).Article 

    Google Scholar 
    135.Løvlie, H., Gillingham, M. A., Worley, K., Pizzari, T. & Richardson, D. S. Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proc. Biol. Sci. 280, 20131296 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    136.Pizzari, T., Lovlie, H. & Cornwallis, C. K. Sex-specific, counteracting responses to inbreeding in a bird. Proc. Biol. Sci. 271, 2115–2121 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Denk, A. G., Holzmann, A., Peters, A., Vermeirssen, E. L. M. & Kempenaers, B. Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav. Ecol. 16, 825–833 (2005).Article 

    Google Scholar 
    138.Jansson, N., Uller, T. & Olsson, M. Female dragons, Ctenophorus pictus, do not prefer scent from unrelated males. Aust. J. Zool. 53, 279–282 (2005).Article 

    Google Scholar 
    139.Ala-Honkola, O., Tuominen, L. & Lindström, K. Inbreeding avoidance in a poeciliid fish (Heterandria formosa). Behav. Ecol. Sociobiol. 64, 1403–1414 (2010).Article 

    Google Scholar 
    140.Vega-Trejo, R., Head, M. L. & Jennions, M. D. Evidence for inbreeding depression in a species with limited opportunity for maternal effects. Ecol. Evol. 5, 1398–1404 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    141.Pitcher, T. E., Rodd, F. H. & Rowe, L. Female choice and the relatedness of mates in the guppy (Poecilia reticulata): mate choice and inbreeding depression. Genetica 134, 137–146 (2008).PubMed 
    Article 

    Google Scholar 
    142.Daniel, M. J. & Rodd, F. H. Female guppies can recognize kin but only avoid incest when previously mated. Behav. Ecol. 27, 55–61 (2016).Article 

    Google Scholar 
    143.Fitzpatrick, L. J., Gasparini, C., Fitzpatrick, J. L. & Evans, J. P. Male–female relatedness and patterns of male reproductive investment in guppies. Biol. Lett. 10, 20140166 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.Viken, A., Fleming, I. A. & Rosenqvist, G. Premating avoidance of inbreeding absent in female guppies (Poecilia reticulata). Ethology 112, 716–723 (2006).Article 

    Google Scholar 
    145.Gasparini, C. & Pilastro, A. Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proc. Biol. Sci. 278, 2495–2501 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    146.Evans, J. P., Brooks, R. C., Zajitschek, S. R. & Griffith, S. C. Does genetic relatedness of mates influence competitive fertilization success in guppies? Evolution 62, 2929–2935 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    147.Fitzpatrick, J. L. & Evans, J. P. Postcopulatory inbreeding avoidance in guppies. J. Evol. Biol. 27, 2585–2594 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Speechley, E. M., Gasparini, C. & Evans, J. P. Female guppies increase their propensity for polyandry as an inbreeding avoidance strategy. Anim. Behav. 157, 87–93 (2019).Article 

    Google Scholar 
    149.Thünken, T., Bakker, T. C. M., Baldauf, S. A. & Kullmann, H. Active inbreeding in a cichlid fish and its adaptive significance. Curr. Biol. 17, 225–229 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    150.Thünken, T., Bakker, T. C. M., Baldauf, S. A. & Kullmann, H. Direct familiarity does not alter mating preference for sisters in male Pelvicachromis taeniatus (Cichlidae). Ethology 113, 1107–1112 (2007).Article 

    Google Scholar 
    151.Thünken, T., Meuthen, D., Bakker, T. C. M. & Baldauf, S. A. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice. Proc. Biol. Sci. 279, 2959–2964 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    152.Thünken, T., Bakker, T. C. M. & Baldauf, S. A. ‘Armpit effect’ in an African cichlid fish: self-referent kin recognition in mating decisions of male Pelvicachromis taeniatus. Behav. Ecol. Sociobiol. 68, 99–104 (2013).Article 

    Google Scholar 
    153.Frommen, J. G. & Bakker, T. C. Inbreeding avoidance through non-random mating in sticklebacks. Biol. Lett. 2, 232–235 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    154.Butts, I. A., Johnson, K., Wilson, C. C. & Pitcher, T. E. Ovarian fluid enhances sperm velocity based on relatedness in lake trout, Salvelinus namaycush. Theriogenology 78, 2105–2109 e2101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    155.Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).Article 

    Google Scholar 
    156.Kueffer, C. et al. Fame, glory and neglect in meta-analyses. Trends Ecol. Evol. 26, 493–494 (2011).PubMed 
    Article 

    Google Scholar 
    157.Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd edn (Lawrence Erlbaum, 1988).158.Blouin, M. S. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18, 503–511 (2003).Article 

    Google Scholar 
    159.Brown, J. L. & Eklund, A. Kin recognition and the major histocompatibility complex: an integrative review. Am. Nat. 143, 435–461 (1994).Article 

    Google Scholar 
    160.Penn, D. J. The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108, 1–21 (2002).Article 

    Google Scholar 
    161.Kokko, H. & Mappes, J. Sexual selection when fertilization is not guaranteed. Evolution 59, 1876–1885 (2005).PubMed 
    Article 

    Google Scholar 
    162.Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat. Med. 26, 4544–4562 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    164.Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).PubMed 
    Article 

    Google Scholar 
    165.Zeh, J. A. & Zeh, D. W. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).Article 

    Google Scholar 
    166.Carleial, R. et al. Temporal dynamics of competitive fertilization in social groups of red junglefowl (Gallus gallus) shed new light on avian sperm competition. Philos. Trans. R. Soc. Lond. B 375, 20200081 (2020).Article 

    Google Scholar 
    167.Antfolk, J. et al. Opposition to inbreeding between close kin reflects inclusive fitness costs. Front. Psychol. 9, 2101 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    168.Kresanov, P. et al. Intergenerational incest aversion: self-reported sexual arousal and disgust to hypothetical sexual contact with family members. Evol. Hum. Behav. 39, 664–674 (2018).Article 

    Google Scholar 
    169.Richardson, J., Comin, P. & Smiseth, P. T. Inbred burying beetles suffer fitness costs from making poor decisions. Proc. R. Soc. B 285, 20180419 (2018).PubMed 
    Article 

    Google Scholar 
    170.Long, T. A. F., Rowe, L. & Agrawal, A. F. The effects of selective history and environmental heterogeneity on inbreeding depression in experimental populations of Drosophila melanogaster. Am. Nat. 181, 532–544 (2013).PubMed 
    Article 

    Google Scholar 
    171.Johnson, A. M. et al. Inbreeding depression and inbreeding avoidance in a natural population of guppies (Poecilia reticulata). Ethology 116, 448–457 (2010).Article 

    Google Scholar 
    172.Barson, N., Cable, J. & Van Oosterhout, C. Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source–sink metapopulation structure, founder events and population bottlenecks. J. Evol. Biol. 22, 485–497 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    173.Lindholm, A. K. et al. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol. Ecol. 14, 3671–3682 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    174.Hosken, D. J. & Blanckenhorn, W. U. Female multiple mating, inbreeding avoidance, and fitness: it is not only the magnitude of costs and benefits that counts. Behav. Ecol. 10, 462–464 (1999).Article 

    Google Scholar 
    175.Duthie, A. B. & Reid, J. M. What happens after inbreeding avoidance? Inbreeding by rejected relatives and the inclusive fitness benefit of inbreeding avoidance. PLoS ONE 10, e0125140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    176.Taylor, H. R. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol. Evol. 5, 3140–3150 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    177.Galla, S. J. et al. A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: implications for conservation breeding programmes worldwide. Evol. Appl. 13, 991–1008 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    178.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA. 93, 6140 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    179.Janicke, T., Vellnow, N., Sarda, V. & David, P. Sex-specific inbreeding depression depends on the strength of male–male competition. Evolution 67, 2861–2875 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    180.Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity (Edinb.) 95, 235–242 (2005).CAS 
    Article 

    Google Scholar 
    181.Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L. & Fitzpatrick, J. L. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos. Trans. R. Soc. Lond. B 375, 20200064 (2020).Article 

    Google Scholar 
    182.Martin-Wintle, M. S. et al. Free mate choice enhances conservation breeding in the endangered giant panda. Nat. Commun. 6, 10125 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    183.Martin-Wintle, M. S., Wintle, N. J. P., Díez-León, M., Swaisgood, R. R. & Asa, C. S. Improving the sustainability of ex situ populations with mate choice. Zoo Biol. 38, 119–132 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    184.Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    185.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan–a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    186.Pick, J. L., Nakagawa, S., Noble, D. W. A. & Price, S. Reproducible, flexible and high-throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2019).Article 

    Google Scholar 
    187.R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).188.Hedges, L. & Olkin, I. Statistical Methods for Meta-analysis (Academic, 1985).189.Rosenberg, M. S., Rothstein, H. R. & Gurevitch, J. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton Univ. Press, 2013).190.Viechtbauer, W. Conducting meta‐analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    191.Del Re, A. compute.es: compute effect sizes, R package version 0.2-2 (2013).192.Michonneau, F., Brown, J. W., Winter, D. J. & Fitzjohn, R. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    193.Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85, 935–956 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    194.Higgins, J. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions (Wiley-Blackwell, 2009).195.Kossmeier, M., Tran, U. S. & Voracek, M. metaviz: forest plots, funnel plots, and visual funnel plot inference for meta-analysis, R package version 0.3.0 https://CRAN.R-project.org/package=metaviz (2018).196.Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    197.Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).CAS 
    Article 

    Google Scholar 
    198.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    199.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    200.Shi, L. & Lin, L. The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Med. (Baltim.) 98, e15987 (2019).Article 

    Google Scholar 
    201.Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2000).
    Google Scholar 
    202.Møller, A. & Jennions, M. D. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132, 492–500 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    203.Szulkin, M. & Sheldon, B. C. The environmental dependence of inbreeding depression in a wild bird population. PLoS ONE 2, e1027 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    204.Zeh, D. W. & Zeh, J. A. Reproductive mode and speciation: the viviparity-driven conflict hypothesis. Bioessays 22, 938–946 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    205.Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).Article 

    Google Scholar 
    206.Puurtinen, M. Mate choice for optimal (k)inbreeding. Evolution 65, 1501–1505 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    207.Tregenza, T. & Wedell, N. Polyandrous females avoid costs of inbreeding. Nature 415, 71–73 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    208.Birkhead, T. R. & Pizzari, T. Postcopulatory sexual selection. Nat. Rev. Genet. 3, 262–273 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    209.Duthie, A. B., Bocedi, G., Germain, R. R. & Reid, J. M. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry. J. Evol. Biol. 31, 31–45 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    210.Barry, K. L. & Kokko, H. Male mate choice: why sequential choice can make its evolution difficult. Anim. Behav. 80, 163–169 (2010).Article 

    Google Scholar  More

  • in

    Consequences of spatial patterns for coexistence in species-rich plant communities

    Study areasNine large forest dynamics plots of areas between 20 and 50 ha were used in the present study (Supplementary Table 1). The forest plots are part of the ForestGEO network4 and are situated in Asia and the Americas at locations ranging in latitude from 9.15° N to 45.55° N. Tree species richness among the plots ranges from 36 to 468. All free-standing individuals with diameter at breast height (dbh) ≥1 cm were mapped, size measured and identified. We focused our analysis here on individuals with dbh ≥ 10 cm (resulting in a sample size of 131,582 individuals) and focal species with more than 50 individuals (resulting in 289 species). The 10 cm size threshold excludes most of the saplings and enables comparisons with previous spatial analyses20,35,47,48. Shrub species were also excluded.Some of our analyses require estimation of the ratio βfi/βff that describes the relative individual-level competitive effect18 of individuals of species i on an individual of the focal species f. We used for this purpose phylogenetic distances49 based on molecular data, given in Myr, that assume that functional traits are phylogenetically conserved19,26,27. In this case, close relatives are predicted to compete more strongly or to share more pests than distant relatives26. To obtain consistent measures among forest plots, phylogenetic similarities were scaled between 0 and 1, with conspecifics set to 1, and a similarity of 0 was assumed for a phylogenetic distance of 1,200 Myr, which was somewhat larger than the maximal observed distance (1,059 Myr). This was necessary to avoid discounting crowding effects from the most distantly related neighbours26.Observed spatial patterns at species-rich forestsFigure 1 and Supplementary Data Table 1 show the intraspecific variation in our three crowding indices nkff, nkfh and nkfβ that can be approximated by gamma distributions. To assess how well the gamma distribution described the observed distribution, we used an error index defined as the sum of the absolute differences of the two cumulative distributions divided by the number of bins (spanning the two distributions). The maximal value of the error index is one, and a smaller value indicates a better fit.Equations (6, 8 and 9) relate the measures of the emerging spatial patterns (that is, kff, kfh and Bf) to macroscale properties and conditions for species coexistence. Even though our multiscale model (equation (7)) is simplified, it allows for a direct comparison with the emerging patterns in our nine fully stem-mapped forest plots. We estimate the key quantities of equations (8) and (9) directly from the forest plot data (Fig. 4), with the exception of the carrying capacities Kf, which were indirectly estimated from the observed species abundances (assuming approximate equilibrium; equation (8) and Supplementary Data Table 1). This allowed us to estimate the feasibility index µf (equation (9)). Because statistical analyses with individual-based neighbourhood models19,26 based on neighbourhood crowding indices have shown that the performance of trees depends on their neighbours for R between 10 and 15 m, we estimate all measures of spatial neighbourhood patterns with a neighbourhood radius of R = 10 m. Analyses with R = 15 or R = 20 gave similar results.The spatial multispecies model and equilibriumWe use a general macroscale model to describe the dynamics of a community of S species:$$frac{{N_fleft( {t + {Delta}t} right) – N_fleft( t right)}}{{{Delta}t}} = N_fleft( t right)left[ {left( {r_f – 1} right) + s_fexp left( { – alpha _{ff}N_fleft( t right) – mathop {sum }limits_{i ne f} alpha _{fi}N_i(t)} right)} right]$$
    (11)
    where rf is the mean number of recruits per adult of species f within time step Δt, sf is a density-independent background survival rate of species f and the αfi are the population-level interaction coefficients, yielding αff = c γff kff βff and αfi = c γfβ kfh βff Bf (equation (6)). The βfi are the assumed individual-level interaction coefficients between individuals of species i and f; kff = Kff(R) / π R2 and kfh = Kfh(R) / π R2 measure intraspecific clustering and interspecific segregation, respectively, with Kff(R) being the univariate K function for species f and Kfh(R) the bivariate K function describing the pattern of all heterospecifics ‘h’ around individuals of species f. A is the area of the observation window.Following equation (5), Bf can be estimated as$$B_f = frac{{bar n_{fbeta }}}{{bar n_{f{mathrm{h}}}}} = frac{{mathop {sum }nolimits_{i ne f} left[ {ck_{fi}N_ileft( t right)} right]frac{{beta _{fi}}}{{beta _{ff}}}}}{{mathop {sum }nolimits_{i ne f} left[ {ck_{fi}N_ileft( t right)} right]}} = frac{{mathop {sum }nolimits_{i ne f} k_{fi}N_ileft( t right)frac{{beta _{fi}}}{{beta _{ff}}}}}{{k_{f{mathrm{h}}}mathop {sum }nolimits_{i ne f} N_ileft( t right)}},$$
    (12)
    and is the weighted average of the relative individual-level interaction coefficients βfi/βff between species i and the focal species f, weighted by the mean number of individuals of species i in the neighbourhoods of the individuals of the focal species (that is, c kfi Ni(t)). For competitive interactions, Bf ranges between zero and one; Bf = 1 indicates that heterospecific and conspecific neighbours compete equally, and smaller values of Bf indicate reduced competition with heterospecific neighbours. The denominator can be rewritten in terms of segregation kfh to all heterospecifics and the total number of heterospecifics ∑i≠f Ni(t).The analytical expression of the equilibrium (equation (8)) relies on the assumption that the values of Bf are approximately constant in time. This assumption may not apply in our model during the initial burn-in phase of the simulations if the βfi/βff show large intraspecific variability (Supplementary Text and Figs. 1–5). The underlying mechanism is the central niche effect introduced by Stump45 where a species has reduced average fitness if it has high niche overlap with competitors.Finally, the factors γff = ln(1 + bff βff) (bff βff)−1 and γfβ = ln(1+ bfβ βff) (bfβ βff)−1 describe the influence of the variance-to-mean ratios bff and bfβ of the gamma distribution of the crowding indices nkff and nkfβ, respectively. For high survival rates during one time step (for example, >85%), the values of γff and γfβ are close to one; in this case the exponential function in equation (1a) can be approximated by its linear expansion and γff = γfβ = 1.In equilibrium we have (Nf(t + Δt) ‒ Nf(t))/Δt = 0, which leads, with equation (7), to:$$N_f^{ast} = left( {K_f – frac{{alpha _{f{mathrm{h}}}}}{{alpha _{ff}}}J^{ast} } right) left( {1 – frac{{alpha _{f{mathrm{h}}}}}{{alpha _{ff}}}} right)^{-1}$$
    (13)
    with (K_f = – {mathrm{ln}}left( {frac{{1 – r_f}}{{s_f}}} right) left( alpha _{ff} right)^{-1}) and the total number of individuals being (J^{ast} = sum _iN_i^{ast}). Rewriting equation (13) yields (frac{K_f}{J^{ast}} = left( frac{N_f^{ast}}{J^{ast}} right) left(1- frac{alpha_{f{mathrm{h}}}}{alpha_{ff}}right) + frac{alpha_{f{mathrm{h}}}}{alpha_{ff}}). For αfh/αff  More