More stories

  • in

    Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs

    1.Collar, D. C., Schulte, J. A., O’Meara, B. C. & Losos, J. B. Habitat use affects morphological diversification in dragon lizards. J. Evol. Biol. 23, 1033–1049 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 1–11 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Vidal-García, M. & Keogh, J. S. Phylogenetic conservatism in skulls and evolutionary lability in limbs – morphological evolution across an ancient frog radiation is shaped by diet, locomotion and burrowing. BMC Evol. Biol. 17, 1–15 (2017).Article 

    Google Scholar 
    4.Fabre, A.-C., Cornette, R., Goswami, A. & Peigné, S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J. Anat. 226, 596–610 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Dumont, M. et al. Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biol. J. Linn. Soc. 117, 858–878 (2015).Article 

    Google Scholar 
    6.Baeckens, S., Goeyers, C. & Van Damme, R. Convergent evolution of claw shape in a transcontinental lizard radiation. Integr. Comp. Biol. https://doi.org/10.1093/icb/icz151 (2019).7.Price, S. A., Holzman, R., Near, T. J. & Wainwright, P. C. Coral reefs promote the evolution of morphological diversity and ecological novelty in labrid fishes. Ecol. Lett. 14, 462–469 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Price, S. A., Tavera, J. J., Near, T. J. & Wainwright, P. C. Elevated rates of morphological and functional diversification in reef-dwelling haemulid fishes. Evolution 67, 417–428 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Millien, V. Morphological evolution is accelerated among island mammals. PLoS Biol. 4, 1863–1868 (2006).CAS 

    Google Scholar 
    10.Salvidio, S., Crovetto, F. & Adams, D. C. Potential rapid evolution of foot morphology in Italian plethodontid salamanders (Hydromantes strinatii) following the colonization of an artificial cave. J. Evol. Biol. 28, 1403–1409 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Ledbetter, N. M. & Bonett, R. M. Terrestriality constrains salamander limb diversification: implications for the evolution of pentadactyly. J. Evol. Biol. 32, 642–652 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    12.McGhee Jr, G. R. Convergent Evolution: Limited Forms Most Beautiful (MIT Press, 2011).13.Vullo, R., Allain, R. & Cavin, L. Convergent evolution of jaws between spinosaurid dinosaurs and pike conger eels. Acta Palaeontol. Pol. 61, 825–828 (2016).Article 

    Google Scholar 
    14.Stayton, C. T. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60, 824–841 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–5 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sears, K. E. Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58, 2353–2370 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    17.Bennett, C. V. & Goswami, A. Statistical support for the hypothesis of developmental constraint in marsupial skull evolution. BMC Biol. 11, 1–14 (2013).Article 

    Google Scholar 
    18.Goswami, A. et al. Do developmental constraints and high integration limit the evolution of the marsupial oral apparatus? Integr. Comp. Biol. 56, 404–415 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Wake, D. B. & Hanken, J. Direct development in the lungless salamanders: what are the consequences for developmental biology, evolution and phylogenesis? Int. J. Dev. Biol. 40, 859–869 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Wake, D. B. & Larson, A. Multidimensional analysis of an evolving lineage. Science 238, 42–48 (1987).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Bonett, R. M. & Blair, A. L. Evidence for complex life cycle constraints on salamander body form diversification. Proc. Natl Acad. Sci. USA 114, 9936–9941 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Bardua, C., Wilkinson, M., Gower, D. J., Sherratt, E. & Goswami, A. Morphological evolution and modularity of the caecilian skull. BMC Evol. Biol. 19, 1–23 (2019).Article 

    Google Scholar 
    23.Schlosser, G. in Modularity: Understanding the Development and Evolution of Natural Complex Systems (eds. Callebaut, W. & Rasskin-Gutman, D.) (MIT Press, 2005).24.Moran, N. A. Adaptation and constraint in the complex life cycles of animals. Annu. Rev. Ecol. Syst. 25, 573–600 (1994).Article 

    Google Scholar 
    25.Ebenman, B. Evolution in organisms that change their niches during the life cycle. Am. Nat. 139, 990–1021 (1992).Article 

    Google Scholar 
    26.Mallarino, R. et al. Two developmental modules establish 3D beak-shape variation in Darwin’s finches. Proc. Natl Acad. Sci. USA 108, 4057–4062 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Liedtke, H. C. et al. Terrestrial reproduction as an adaptation to steep terrain in African toads. Proc. R. Soc. B Biol. Sci. 284, 20162598 (2017).Article 
    CAS 

    Google Scholar 
    28.Harrington, S. M., Harrison, L. B. & Sheil, C. A. Ossification sequence heterochrony among amphibians. Evol. Dev. 15, 344–364 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Bonett, R. M., Phillips, J. G., Ledbetter, N. M., Martin, S. D. & Lehman, L. Rapid phenotypic evolution following shifts in life cycle complexity. Proc. R. Soc. B Biol. Sci. 285, 20172304 (2018).Article 
    CAS 

    Google Scholar 
    30.Laurent, R. F. Adaptive modifications in frogs of an isolated highland fauna in Central Africa. Evolution 18, 458–467 (1964).Article 

    Google Scholar 
    31.Moen, D. S., Morlon, H. & Wiens, J. J. Testing convergence versus history: convergence dominates phenotypic evolution for over 150 million years in frogs. Syst. Biol. 65, 146–160 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Moen, D. S., Irschick, D. J. & Wiens, J. J. Evolutionary conservatism and convergence both lead to striking similarity in ecology, morphology and performance across continents in frogs. Proc. R. Soc. B Biol. Sci. 280, 1–9 (2013).
    Google Scholar 
    33.Duellman, W. E. & Trueb, L. Biology of the Amphibians (McGraw-Hill publishing company, 1986).34.LaBarbera, M. in Patterns and Processes in the History of Life (eds. Raup, D.M. & Jablonski, D.) (Springer, 1986).35.Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458 (2013).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Callery, E. M. & Elinson, R. P. Thyroid hormone-dependent metamorphosis in a direct developing frog. Proc. Natl Acad. Sci. USA 97, 2615–2620 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Ziermann, J. M. & Diogo, R. Cranial muscle development in frogs with different developmental modes: direct development versus biphasic development. J. Morphol. 275, 398–413 (2013).Article 

    Google Scholar 
    38.McDiarmid, R. W. & Altig, R. (eds) Tadpoles: The Biology of Anuran Larvae (University of Chicago Press, 1999).39.Altig, R. & Johnston, G. F. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol. Monogr. 3, 81–109 (1989).Article 

    Google Scholar 
    40.Rose, C. S. & Reiss, J. O. in The Skull Volume 1: Development (eds. Hanken, J. & Hall, B. K.) (The University of Chicago Press, 1993).41.Callery, E. M., Fang, H. & Elinson, R. P. Frogs without polliwogs: evolution of anuran direct development. BioEssays 23, 233–241 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Wake, D. B. & Roth, G. (eds). Complex Organismal Functions: Integration and Evolution in Vertebrates (Wiley, Chichester, UK, 1989).43.Weisbecker, V. & Mitgutsch, C. A large-scale survey of heterochrony in anuran cranial ossification patterns. J. Zool. Syst. Evol. Res. 48, 332–347 (2010).Article 

    Google Scholar 
    44.Dehling, J. M. & Sinsch, U. Partitioning of morphospace in larval and adult reed frogs (Anura: Hyperoliidae: Hyperolius) of the Central African Albertine Rift. Zool. Anz. 280, 65–77 (2019).Article 

    Google Scholar 
    45.Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs: larval and adult size evolution. Proc. R. Soc. B Biol. Sci. 287, 20201474 (2020).Article 

    Google Scholar 
    46.Werner, E. E. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128, 319–341 (1986).Article 

    Google Scholar 
    47.Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Wollenberg Valero, K. C. et al. Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases. Nat. Commun. 8, 15213 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Trueb, L. in The Skull: Patterns of Structural and Systematic Diversity (eds Hanken, J, & Hall, B. K.) (The University of Chicago Press, 1993).50.Trueb, L. in Evolutionary Biology of the Anurans: Contemporary Research on Major Problems (ed. Vial, J. L.) (University of Missouri Press, 1973).51.Reiss, J. O. The phylogeny of amphibian metamorphosis. Zoology 105, 85–96 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Moore, M. K. & Townsend, V. R. Jr Intraspecific variation in cranial ossification in the tailed frog, Ascaphus truei. J. Herpetol. 37, 714–717 (2003).Article 

    Google Scholar 
    53.Yeh, J. The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56, 2484–2498 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Schoch, R. R. Amphibian skull evolution: the developmental and functional context of simplification, bone loss and heterotopy. J. Exp. Zool. B Mol. Dev. Evol. 322B, 619–630 (2014).Article 

    Google Scholar 
    55.Pereyra, M. O. et al. The complex evolutionary history of the tympanic middle ear in frogs and toads (Anura). Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    56.Long, J. A., Young, G. C., Holland, T., Senden, T. J. & Fitzgerald, E. M. G. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 199–202 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Barton, R. A. & Harvey, P. H. Mosaic evolution of brain structure in mammals. Nature 405, 1055–1058 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Schlosser, G. Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui. Anat. Embryol. 206, 215–227 (2003).Article 

    Google Scholar 
    60.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Felice, R. N. et al. Evolutionary integration and modularity in the archosaur cranium. Integr. Comp. Biol. 59, 371–382 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Watanabe, A. et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc. Natl Acad. Sci. USA 116, 14688–14697 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Owen, R. On the Archaeopteryx of Von Meyer, with a description of the fossil remains of a long-tailed species from the lithographic stone of Solnhofen. Philos. Trans. R. Soc. Lond. 153, 33–47 (1863).ADS 

    Google Scholar 
    64.Paluh, D. J., Stanley, E. L. & Blackburn, D. C. Evolution of hyperossification expands skull diversity in frogs. Proc. Natl Acad. Sci. USA 117, 8554–8562 (2020).65.Gomez-Mestre, I., Pyron, R. A. & Wiens, J. J. Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66, 3687–3700 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Nevo, E. Adaptive convergence and divergence of subterranean mammals. Annu. Rev. Ecol. Syst. 10, 269–308 (1979).Article 

    Google Scholar 
    67.Nevo, E. Mammalian evolution underground. The ecological-genetic-phenetic interfaces. Acta Theriol. 3, 9–31 (1995).Article 

    Google Scholar 
    68.Vogel, S. Life’s Devices: The Physical World of Animals and Plants (Princeton Univ. Press, 1988).69.Sansalone, G. et al. Impact of transition to a subterranean lifestyle on morphological disparity and integration in talpid moles (Mammalia, Talpidae). BMC Evol. Biol. 19, 1–15 (2019).CAS 
    Article 

    Google Scholar 
    70.Nauwelaerts, S., Ramsay, J. & Aerts, P. Morphological correlates of aquatic and terrestrial locomotion in a semi-aquatic frog, Rana esculenta: no evidence for a design conflict. J. Anat. 210, 304–317 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Sherratt, E., Gower, D. J., Klingenberg, C. P. & Wilkinson, M. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evol. Biol. 41, 528–545 (2014).Article 

    Google Scholar 
    72.Cardini, A., Polly, P. D., Dawson, R. & Milne, N. Why the long face? Kangaroos and wallabies follow the same ‘rule’ of cranial evolutionary allometry (CREA) as placentals. Evol. Biol. 42, 169–176 (2015).Article 

    Google Scholar 
    73.Yeh, J. The effect of miniaturized body size on skeletal morphology in frogs. Evolution 56, 628–641 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Wells, K. D. The Ecology and Behavior of Amphibians (University of Chicago Press, 2010).75.Emerson, S. B. Skull shape in frogs: correlations with diet. Herpetologica 41, 177–188 (1985).
    Google Scholar 
    76.Carreño, C. A. & Nishikawa, K. C. Aquatic feeding in pipid frogs: the use of suction for prey capture. J. Exp. Biol. 213, 2001–2008 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fernandez, E., Irish, F. & Cundall, D. How a frog, Pipa pipa, succeeds or fails in catching fish. Copeia 105, 108–119 (2017).Article 

    Google Scholar 
    78.Herrel, A. et al. in Feeding in Vertebrates: Evolution, Morphology, Behavior, Biomechanics (eds. Bels, V. & Whishaw, I. Q.) (Springer, 2019).79.Bardua, C. et al. Evolutionary integration of the frog cranium. Evolution 74, 1200–1215 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Bon, M., Bardua, C., Goswami, A. & Fabre, A.-C. Cranial integration in the fire salamander, Salamandra salamandra (Caudata: Salamandridae). Biol. J. Linn. Soc. 130, 178–194 (2020).81.Fabre, A. et al. Metamorphosis and the evolution of morphological diversity in salamanders. Nat. Ecol. Evol. 4, 1129–1140 (2020).82.Nishikawa, K. C. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) (Academic Press, 2000).83.Trueb, L. & Gans, C. Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). J. Zool. 199, 189–208 (1983).Article 

    Google Scholar 
    84.Nishikawa, K. C., Kier, W. M. & Smith, K. K. Morphology and mechanics of tongue movement in the African pig-nosed frog Hemisus marmoratum: a muscular hydrostatic model. J. Exp. Biol. 202, 771–80 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Henrici, A. C. Digging through the past: the evolutionary history of burrowing and underground feeding in rhinophrynid anurans. Palaeobiodivers. Palaeoenviron. 96, 97–109 (2015).Article 

    Google Scholar 
    86.Van Dijk, D. E. Osteology of the ranoid burrowing African anurans Breviceps and Hemisus. Afr. Zool. 36, 137–141 (2001).Article 

    Google Scholar 
    87.Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A. & Hoke, K. L. Sensitive high-frequency hearing in earless and partially eared harlequin frogs (Atelopus). J. Exp. Biol. 221, 1–8 (2018).Article 

    Google Scholar 
    88.Boistel, R. et al. How minute sooglossid frogs hear without a middle ear. Proc. Natl Acad. Sci. USA 110, 15360–15364 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Womack, M. C., Stynoski, J. L., Voyles, M. K., Coloma, L. A. & Hoke, K. L. Prolonged middle ear development in Rhinella horribilis. J. Morphol. 279, 1518–1523 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Womack, M. C., Christensen-Dalsgaard, J., Coloma, L. A., Chaparro, J. C. & Hoke, K. L. Earless toads sense low frequencies but miss the high notes. Proc. R. Soc. B Biol. Sci. 284, 20171670 (2017).Article 

    Google Scholar 
    91.Hetherington, T. E. in The Evolutionary Biology of Hearing (eds. Webster, D. B., Fay, R. R. & Popper, A. N.) (Springer, 1992).92.Hanken, J., Klymkowsky, M. W., Summers, C. H., Seufert, D. W. & Ingebrigtsen, N. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount lmmunohistochemistry. J. Morphol. 211, 95–118 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Hanken, J., Klymkowsky, M. W., Alley, K. E. & Jennings, D. H. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs. Proc. R. Soc. B Biol. Sci. 264, 1349–1354 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    94.Wray, G. A. & Raff, R. A. The evolution of developmental strategy in marine invertebrates. Trends Ecol. Evol. 6, 45–50 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Watkins, T. B. A quantitative genetic test of adaptive decoupling across metamorphosis for locomotor and life-history traits in the Pacific tree frog, Hyla regilla. Evolution 55, 1668–1677 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Wilson, A. D. M. & Krause, J. Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav. Ecol. 23, 1316–1323 (2012).Article 

    Google Scholar 
    97.O’Reilly, J. C., Deban, S. M. & Nishikawa., K. C. in Topics in Functional and Ecological Vertebrate Morphology: A Tribute to Frits de Vree (eds. Aerts, P., D’Août, K., Herrel, A. & van Damme, R.) (Shaker Publishing, 2002).98.Philips, P. C. Genetic constraints at the metamorphic boundary: morphological development in the wood frog, Rana sylvatica. J. Evol. Biol. 11, 453–463 (1998).Article 

    Google Scholar 
    99.Johansson, F., Lederer, B. & Lind, M. I. Trait performance correlations across life stages under environmental stress conditions in the common frog, Rana temporaria. PLoS ONE 5, e11680 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    100.Wassersug, R. J. The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Am. Zool. 15, 405–417 (1975).Article 

    Google Scholar 
    101.Vassilieva, A. B. Heterochronies in the cranial development of Asian tree frogs (Amphibia: Anura: Rhacophoridae) with different life histories. Dokl. Biol. Sci. 473, 110–113 (2017).Article 

    Google Scholar 
    102.Kerney, R., Meegaskumbura, M., Manamendra-Arachchi, K. & Hanken, J. Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans. J. Morphol. 268, 715–725 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Heatwole, H. & Davies, M. (eds.) Amphibian biology (volume 5), osteology. (Surrey Beatty & Sons, 2003).104.Hanken, J. & Hall, B. K. Skull development during anuran metamorphosis: I. Early development of the first three bones to form–the exoccipital, the parasphenoid, and the frontoparietal. J. Morphol. 195, 247–256 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Fink, W. L. The conceptual relationship between ontogeny and phylogeny. Paleobiology 8, 254–264 (1982).Article 

    Google Scholar 
    106.Strathmann, R. R. in Echinoderm Phylogeny and Evolutionary Biology (eds. Paul, C. R. C. & Smith, A. B.) (Clarendon Press, 1988).107.Laloy, F. et al. A re-interpretation of the Eocene anuran Thaumastosaurus based on MicroCT examination of a “mummified” specimen. PLoS ONE 8, e74874 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Frost, D. R. et al. The amphibian tree of life. Bull. Am. Mus. Nat. Hist. 297, 1–370 (2006).109.Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 435–441 (2010).Article 

    Google Scholar 
    110.Slater, G. J. & Harmon, L. J. Unifying fossils and phylogenies for comparative analyses of diversification and trait evolution. Methods Ecol. Evol. 4, 699–702 (2013).Article 

    Google Scholar 
    111.Volume Graphics. VGStudio MAX v. 2.0 (Volume Graphics GmbH, 2001).112.Bardua, C., Felice, R. N., Watanabe, A., Fabre, A.-C. & Goswami, A. A practical guide to sliding and surface semilandmarks in morphometric analyses. Integr. Org. Biol. 1, 1–34 (2019).
    Google Scholar 
    113.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    Article 

    Google Scholar 
    115.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    116.Wiley, D. F. et al. Evolutionary morphing. In Proc. Visualization Conference (IEEE, 2005).117.Schlager, S. in Statistical Shape and Deformation Analysis (eds. Zheng, G., Li, S. & Szekely, G.) (Academic Press, 2017).118.Cardini, A. Left, right or both? Estimating and improving accuracy of one-side-only geometric morphometric analyses of cranial variation. J. Zool. Syst. Evol. Res. 55, 1–10 (2016).Article 

    Google Scholar 
    119.Marshall, A. F. et al. High-density three-dimensional morphometric analyses support conserved static (intraspecific) modularity in caecilian (Amphibia: Gymnophiona) crania. Biol. J. Linn. Soc. 126, 721–742 (2019).Article 

    Google Scholar 
    120.Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl Acad. Sci. USA 97, 6585–90 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Young, J. E., Christian, K. A., Donnellan, S. C., Tracy, C. R. & Parry, D. Comparative analysis of cutaneous evaporative water loss in frogs demonstrates correlation with ecological habits. Physiol. Biochem. Zool. 78, 847–856 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    122.Portik, D. M. & Blackburn, D. C. The evolution of reproductive diversity in Afrobatrachia: a phylogenetic comparative analysis of an extensive radiation of African frogs. Evolution 70, 2017–2032 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Scott, E. A phylogeny of ranid frogs (Anura: Ranoidea: Ranidae), based on a simultaneous analysis of morphological and molecular data. Cladistics 21, 507–574 (2005).Article 

    Google Scholar 
    124.Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    125.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    126.Clavel, J., Escarguel, G. & Merceron, G. mvmorph: an r package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article 

    Google Scholar 
    127.Clavel, J., Aristide, L. & Morlon, H. A penalized likelihood framework for high-dimensional phylogenetic comparative methods and an application to new-world monkeys brain evolution. Syst. Biol. 68, 93–116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    128.Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in phyllostomid bats. Syst. Biol. 69, 927–943 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Housworth, E. A., Martins, E. P. & Lynch, M. The phylogenetic mixed model. Am. Nat. 163, 84–96 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    130.Revell, L. J. Phylogenetic signal and linear regression on species data. Methods Ecol. Evol. 1, 319–329 (2010).Article 

    Google Scholar 
    131.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    132.Goolsby, E. W., Bruggeman, J. & Ane, C. Rphylopars: phylogenetic comparative tools for missing data and within-species variation. R package version 0.2.11 https://CRAN.R-project.org/package=Rphylopars (2019).133.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    134.Bardua, C. & Goswami, A. Frog skull shape data for modularity and macroevolution. https://doi.org/10.5281/zenodo.4619880 (2020). More

  • in

    The Holocene influence on the future evolution of the Venice Lagoon tidal marshes

    1.D’Alpaos, A., Da Lio, C. & Marani, M. Biogeomorphology of tidal landforms: physical and biological processes shaping the tidal landscape. Ecohydrology 5, 550–562 (2012).Article 

    Google Scholar 
    2.Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Response of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).Article 

    Google Scholar 
    3.Murray, A. B., Knaapen, M. A. F., Tal, M. & Kirwan, M. L. Biomorphodynamics: physical-biological feedbacks that shape landscapes. Water Resour. Res. 44, W11301 (2008).4.Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf S. 82, 377 – 389 (2009).Article 
    CAS 

    Google Scholar 
    5.Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).CAS 
    Article 

    Google Scholar 
    6.Törnqvist, T. E. et al. Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat. Geosci. 1, 173–176 (2008).Article 
    CAS 

    Google Scholar 
    7.Global Wetland Outlook: State of the World’s Wetlands and their Services to People. Technical Report (Ramsar Convention on Wetlands, Gland, Switzerland: Ramsar Convention Secretariat, 2018).8.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    9.Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 15, 257–265 (2017).Article 

    Google Scholar 
    10.Sapkota, Y. & White, J. R. Carbon offset market methodologies applicable for coastal wetland restoration and conservation in the united states: a review. Sci. Total Environ. 701, 134497 (2020).CAS 
    Article 

    Google Scholar 
    11.Brain, M. J. Past, present and future perspectives of sediment compaction as a driver of relative sea level and coastal change. Current Clim. Change Rep. 2, 75–85 (2016).Article 

    Google Scholar 
    12.Marani, M., D’Alpaos, A., Lanzoni, S. & Santalucia, M. Understanding and predicting wave erosion of marsh edges. Giophys. Res. Lett. 38, L21401 (2011).13.Houser, C. Relative importance of vessel-generated and wind waves to salt marsh erosion in a restricted fetch environment. J. Coast. Res. 26, 230–240 (2010).14.Anderson, F. E. Effect of wave-wash from personal watercraft on salt marsh channels. J. Coast. Res. 37, 33–49 (2002).15.Day, J. et al. Sustainability of mediterranean deltaic and lagoon wetlands with sea-level rise: the importance of river input. Estuaries Coasts 34, 483–493 (2011).16.Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).CAS 
    Article 

    Google Scholar 
    17.Schuerch, M., Spencer, T. & Temmerman, S. e. a. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).18.Tosi, L., Da Lio, C., Teatini, P. & Strozzi, T. Land subsidence in coastal environments: knowledge advance in the venice coastland by TerraSAR-X PSI. Remote Sens. 10, 1191 (2018).Article 

    Google Scholar 
    19.Strozzi, T., Teatini, P., Tosi, L., Wegmüller, U. & Werner, C. Land subsidence of natural transitional environments by satellite radar interferometry on artificial reflectors. J. Geophys. Res. Earth Surface 118, 1177–1191 (2013).Article 

    Google Scholar 
    20.Mariotti, G. Beyond marsh drowning: the many faces of marsh loss (and gain). Adv. Water Resour. 144, 103710 (2020).Article 

    Google Scholar 
    21.Jankowski, K. L., Törnqvist, T. E. & Fernandes, A. M. Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nat. Commun. 8, 14792 (2017).CAS 
    Article 

    Google Scholar 
    22.D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).Article 

    Google Scholar 
    23.Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, RG1002 (2012).24.Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Sci. Rev. 19, 1155–1231 (2000).Article 

    Google Scholar 
    25.Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. The importance of being coupled: Stable states and catastrophic shifts in tidal biomorphodynamics. J. Geophys. Res. Earth Surface 115, 1–15 (2010).Article 

    Google Scholar 
    26.Da Lio, C., D’Alpaos, A. & Marani, M. The secret gardener: vegetation and the emergence of biogeomorphic patterns in tidal environments. Philos. Trans. A. Math. Phys. Eng. Sci. 371, 20120367 (2013).
    Google Scholar 
    27.Allen, J. R. L. Geological impact on coastal wetland landscapes: some general effects of sediment autocompaction in the Holocene of northwest Europe. Holocene 9, 1–12 (1999).Article 

    Google Scholar 
    28.Callaway, J. C., DeLaune, R. D. & Jr., W. H. P. Sediment accretion rates from four coastal wetlands along the gulf of Mexico. J. Coast. Res. 13, 181–191 http://www.jstor.org/stable/4298603 (1997).29.Rybczyk, J. M., Callaway, J. & Jr, J. D. A relative elevation model for a subsiding coastal forested wetland receiving wastewater effluent. Ecol. Model. 112, 23–44 https://doi.org/10.1016/S0304-3800(98)00125-2 (1998).30.Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).Article 

    Google Scholar 
    31.Brain, M. J. et al. Exploring mechanisms of compaction in salt-marsh sediments using Common Era relative sea-level reconstructions. Quat. Sci. Rev. 167, 96–111 (2017).32.Zoccarato, C. & Teatini, P. Numerical simulations of Holocene salt-marsh dynamics under the hypothesis of large soil deformations. Ad. Water Res. 110, 107–119 (2017).Article 

    Google Scholar 
    33.Da Lio, C., Teatini, P., Strozzi, T. & Tosi, L. Understanding land subsidence in salt marshes of the Venice Lagoon from SAR interferometry and ground-based investigations. Remote Sens. Environ. 205, 56–70 (2018).
    Google Scholar 
    34.Cahoon, D. & Turner, R. E. Accretion and canal impacts in a rapidly subsiding wetland ii. feldspar marker horizon technique. Estuaries 12, 260–268 (1989).35.Cahoon, D. R. & Reed, D. J. W., D. J. Estimating shallow subsidence in microtidal salt marshes of the southeastern united states: Kaye and barghoorn revisited. Marine Geol. 128, 1–9 (1995).36.Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).CAS 
    Article 

    Google Scholar 
    37.Teatini, P. et al. Mapping regional land displacements in the Venice coastland by an integrated monitoring system. Remote Sens. Environ. 98, 403–413 (2005).Article 

    Google Scholar 
    38.Tosi, L. et al. Ground surface dynamics in the northern adriatic coastland over the last two decades. Rendiconti Lincei 21, 115–129 (2010).Article 

    Google Scholar 
    39.Karegar, M., Dixon, T. & Malservisi, R. A three-dimensional surface velocity field for the mississippi delta: implications for coastal restoration and flood potential. Geology 43, 519–522 (2015).40.Brain, M. J. et al. Modelling the effects of sediment compaction on salt marsh reconstructions of recent sea-level rise. Earth Planet. Sci. Lett. 345–348, 180–193 (2012).Article 
    CAS 

    Google Scholar 
    41.Tosi, L., Teatini, P., Carbognin, L. & Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The Venice coast, Italy. Tectonophysics 474, 271–284 (2009).Article 

    Google Scholar 
    42.Tosi, L. et al. Note illustrative della carta geologica d’italia alla scala 1: 50.000 foglio 128 venezia. APAT – Dipartimento Difesa del Suolo, Servizio Geologico d’Italia (2007).43.Rizzetto, F. & Tosi, L. Aptitude of modern salt marshes to counteract relative sea-level rise, Venice Lagoon (Italy). Geology 39, 755–758 (2011).Article 

    Google Scholar 
    44.Cola, S., Sanavia, L., Simonini, P. & Schrefler, B. A. Coupled thermohydromechanical analysis of Venice lagoon salt marshes. Water Resour. Res. 44, 1–16 (2008).Article 

    Google Scholar 
    45.Carminati, E. & Di Donato, G. Separating natural and anthropogenic vertical movements in fast subsiding areas: the po plain (n. italy) case. Geophys. Res. Lett. 26, 2291–2294 (1999).Article 

    Google Scholar 
    46.Carbognin, L., Teatini, P. & Tosi, L. The impact of relative sea-level rise on the Northern Adriatic Sea coast, Italy. WIT Trans. Ecol. Environ. 127, 137–148 (2009).47.Tsimplis, M. et al. Recent developments in understanding sea level rise at the Adriatic coasts. Phys. Chem. Earth Parts A/B/C 40-41, 59 – 71 (2012).Article 

    Google Scholar 
    48.Antonioli, F. et al. Sea-level rise and potential drowning of the italian coastal plains: flooding risk scenarios for 2100. Quat. Sci. Rev. 158, 29 – 43 (2017).Article 

    Google Scholar 
    49.Zanchettin, D. et al. Review article: Sea-level rise in venice: historic and future trends. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 1–56 (2020).
    Google Scholar 
    50.Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegriá, A., Nicolai, M., Okem, A., Petzold, J., Rama, B. & Weyer, N. M.) Ch. 4 (IPCC, 2019).51.Tsimplis, M. N. & Rixen, M. Sea level in the mediterranean sea: the contribution of temperature and salinity changes. Geophys. Res. Lett. 29, 51–1–51–4 (2002).Article 

    Google Scholar 
    52.Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B. & Losada, I. Likely and high-end impacts of regional sea-level rise on the shoreline change of european sandy coasts under a high greenhouse gas emissions scenario. Water 11, 2607 (2019).Article 
    CAS 

    Google Scholar 
    53.Zoccarato, C., Da Lio, C., Tosi, L. & Teatini, P. A coupled biomorpho-geomechanical model of tidal marsh evolution. Water Resour. Res. 55, 8330–8349 (2019).Article 

    Google Scholar 
    54.Marani, M., D’Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice Lagoon. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    55.Ferrarin, C. et al. Assessing hydrological effects of human interventions on coastal systems: numerical applications to the Venice Lagoon. Hydrol. Earth Syst. Sci. 17, 1733–1748 (2013).Article 

    Google Scholar 
    56.Umgiesser, G. The impact of operating the mobile barriers in venice (mose) under climate change. J. Nat. Conserv. 54, 125783 (2020).Article 

    Google Scholar 
    57.Roner, M. et al. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the venice lagoon, italy. Ad. Water Res. 93, 276–287 (2016).CAS 
    Article 

    Google Scholar 
    58.Long, A. J., Waller, M. P. & Stupples, P. Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar. Geol. 225, 63–84 (2006).Article 

    Google Scholar 
    59.Karegar, M. A., Larson, K. M., Kusche, J. & Dixon, T. H. Novel quantification of shallow sediment compaction by gps interferometric reflectometry and implications for flood susceptibility. Geophys. Res. Lett. 47, e2020GL087807 (2020).
    Google Scholar 
    60.Zoccarato, C., Minderhoud, P. S. J. & Teatini, P. The role of sedimentation and natural compaction in a prograding delta: insights from the mega mekong delta, vietnam. Sci. Rep. 8, 11437 (2018).61.Brain, M. J., Long, A. J., Petley, D. N., Horton, B. P. & Allison, R. J. Compression behaviour of minerogenic low energy intertidal sediments. Sed. Geol. 233, 28–41 (2011).Article 

    Google Scholar 
    62.Guimond, J. A., Yu, X., Seyfferth, A. L. & Michael, H. A. Using hydrological-biogeochemical linkages to elucidate carbon dynamics in coastal marshes subject to relative sea-level rise. Water Resour. Res. 56, e2019WR026302 (2020).CAS 
    Article 

    Google Scholar 
    63.Teatini, P. et al. Characterizing marshland compressibility by an in-situ loading test: design and set-up of an experiment in the Venice Lagoon. Proc. IAHS 382, 345–351 (2020).64.Mazzia, A., Ferronato, M., Teatini, P. & Zoccarato, C. Virtual element method for the numerical simulation of long-term dynamics of transitional environments. J. Comput. Phys. 407, 109235 (2020).Article 

    Google Scholar 
    65.Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 1. The rigorous theory. Water Resour. Res. 9, 1022–1028 (1973).Article 

    Google Scholar 
    66.Gambolati, G. Equation for one-dimensional vertical flow of groundwater. 2. Validity range of the diffusion equation. Water Resour. Res. 9, 1385–1395 (1973).Article 

    Google Scholar 
    67.Gambolati, G., Giunta, G. & Teatini, P. Numerical modeling of natural land subsidence over sedimentary basins undergoing large compaction. In Gambolati, G. (ed.) CENAS – Coastline evolution of the Upper Adriatic Sea due to sea level rise and natural and anthropogenic land subsidence, no. 28 in Water Science and Technology Library, 77–102 (Klwer Acedemic Publ., 1998). More

  • in

    African swine fever ravaging Borneo’s wild pigs

    African swine fever has breached the island of Borneo, where it is wiping out populations of the wild bearded pig Sus barbatus. First confirmed in early February, the outbreak has driven a precipitous decline in this species in less than two months. Field sites in the east of the Sabah region are reporting a complete absence of live pigs in forests. Local extinctions across swathes of Borneo are a realistic prospect.Bearded pigs are listed as vulnerable by the International Union for Conservation of Nature. They are seen as ‘ecosystem engineers’ in the Bornean rainforest, where they are one of the most abundant species of mammal. Bearded pigs can be legally hunted under permit, and are an important source of animal protein for many communities.The African swine fever virus is already island-hopping across southeast Asia, threatening 11 species of endemic pig, including the Sulawesi warty pig (Sus celebensis). Opportunities to control the disease in wild-pig populations are limited. Vaccines for domestic pigs are still in development, so the best hope for stemming loss of the wild animals could be to protect isolated populations in geographically defensible locations. More

  • in

    Physiological and biochemical responses of two precious Carpinus species to high-concentration NO2 stress and their natural recovery

    Morphological changes of the leavesThe influence of NO2 stress on the plants was first reflected by the morphological changes of the leaves (Fig. 1)20,22. Slight NO2 injury was manifested by slight green deficiency and light color. Moderate NO2 injury was manifested by irregular watery spots between leaf veins, which gradually developed into yellow necrotic spots followed by lesions at the leaf stalk and margins. When the exposure time extended to 72 h, the leaves turned yellow, and irreversible injury occurred, which led to leaf death. The damaged areas of the leaves of the two species at different time points of NO2 exposure are summarized in Table 1.Figure 1Leaf injury symptoms of Carpinus betulus (A) and Carpinus putoensis (B) under different NO2 exposure time and after recovery.Full size imageTable 1 The damaged areas (percentage) of the leaves of Carpinus betulus and Carpinus putoensis at different time points of NO2 stress.Full size tableChanges in MDA contentThe changes in the MDA content of C. betulus and C. putoensis at different time points of NO2 stress are shown in Fig. 2. With the prolongation of NO2 stress, the MDA content of C. betulus showed an increasing tendency with the variation range from 0.016 to 0.029 µmol g−1 fw. However, no significant differences were observed at different time points of NO2 exposure.Figure 2Changes in the MDA content of C. betulus and C. putoensis at different time points of NO2 stress and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageAs NO2 fumigation time extended, the MDA content of C. putoensis also showed an increasing tendency, with the variation range from 0.015 to 0.034 µmol g−1 fw. Compared with the control group, a significant difference was observed in the MDA content from 24 h, which peaked at 72 h. In C. putoensis, although the recover group and the control group did not show a significant difference, the MDA content of the former lay between 0.015 (6 h) and 0.019 µmol g−1 fw (12 h), which suggests that the plant did not recovered completely from the stress damage.Compared with C. putoensis, C. betulus exhibited a smaller variation amplitude in the MDA content under NO2 stress. The MDA content of C. betulus did not show noticeable changes at 1, 6, and 12 h, and it was till 24 h when a rapid increase occurred. These findings indicate a delayed injury response of C. betulus. In contrast, with the prolongation of NO2 stress, the MDA content of C. putoensis noticeably increased, which indicates an increase in the membrane lipid peroxidation activity of C. putoensis under NO2 stress.Changes in POD activityThe changes in POD activity of C. betulus and C. putoensis at different time points of NO2 stress are shown in Fig. 3. With the prolongation of NO2 stress, the POD activity of C. betulus showed an increasing tendency, with a variation range from 323 to 663 U (g * min)−1 fw. After 30-d self recovery, the POD activity returned to 409 U (g * min)−1 fw, which was comparable to that of the control.Figure 3Changes in POD activity of C. betulus and C. putoensis at different time points of NO2 stress and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageAs NO2 fumigation time extended, the POD value of C. putoensis also showed an increasing tendency, with a variation range from 385 to 596 U (g * min)−1 fw. The recovery group did not show a significant difference compared with the control group.In C. betulus, the POD activity value rapidly increased at 72 h of NO2 stress, which showed a significant difference compared with any other group (adjusted p  0.05).Figure 4Changes in the soluble protein content of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageIn C. putoensis, the soluble protein content also showed an increasing trend as the fumigation time prolonged. The variations ranged from 2.61 to 3.27 mg g−1 fw. Compared with the control group, the recovery group exhibited a lower soluble protein content, although no significant difference was observed between them.As shown in Fig. 4, the maximum difference in the soluble protein content of C. betulus was 2.33 mg g−1 fw, which was greatly larger than that of C. putoensis (0.66 mg g−1 fw). Particularly, C. betulus exhibited a rapid increase in the soluble protein content from 12 h of fumigation, which indicates that C. betulus increased protein synthesis when encountered with NO2 stress, whereas C. putoensis showed only weak resistance against the stress.Changes in NRAt 0 h of NO2 treatment, the NR activity of C. betulus was 1.43 ± 0.14 µmol NO2−·g−1fw·h−1. With the prolongation of NO2 exposure, the NR activity of C. betulus exhibited a gradual increase followed by a gradual decrease, and a significant difference (adjusted p  0.05). In C. putoensis, the NR activity of the control group was 0.58 ± 0.06 µmol NO2−·g−1fw·h−1. As the NO2 exposure time prolonged, NR activity exhibited a rapid increase (adjusted p  0.05). The results were shown in Fig. 5.Figure 5Changes in the NR activity of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageChanges in NO3
    −NAs the NO2 treatment time extended, the NO3−N content of C. betulus exhibited an increase followed by a gradual decrease, and a significant difference (adjusted p  0.05). In C. putoensis, the NO3−N content also exhibited an increase followed by a decrease after NO2 exposure. However, a significant difference was observed from 12 h. After 30-d recovery, the index returned to a normal level (adjusted p  > 0.05). The results were shown in Fig. 6.Figure 6Changes in the NO3−N content of C. betulus and C. putoensis under NO2 stress at different time points and after self recovery. Letters or letter combinations containing the same letter indicate no significant difference between the corresponding NO2 exposure time points in the same plant species according to ANOVA or nonparametric Kruskal–Wallis ANOVA followed by Bonferroni tests. Capital letters for C. putoensis and lower letters for C. betulus.Full size imageChanges in mineral elementsThe changes in the mineral elements of C. betulus and C. putoensi under NO2 stress and after self recovery are summarized in Table 2.Table 2 Changes in the mineral element contents of C. betulus and C. putoensis under NO2 stress and after self recovery.Full size tableMacroelements(1) N. At 1 h of NO2 stress, the total nitrogen content of C. betulus increased slightly to 1.68 ± 0.17 g/kg; this value was higher than that of control (1.4 ± 0.13 g/kg), but no significant difference was observed (adjusted p  > 0.05). With the prolongation of the stress, the content decreased, with the variations ranging from 0.84 to 1.68 g/kg and the maximum difference of 0.84 g/kg. The recovery group did not show a significant difference compared with the control group (1.53 ± 0.15 vs. 1.4 ± 0.13; adjusted p = 1.00).Overall, the changes in the total nitrogen content of C. putoensis showed a similar trend with those of C. betulus. At 1 h of NO2 stress, the total nitrogen content of C. putoensis significantly increased compared with that of the control (1.68 ± 0.15 g/kg vs. 1.12 ± 0.11 g/kg; adjusted p  0.05).(4) Ca. With the prolongation of NO2 exposure, the Ca content of C. betulus exhibited an increase followed by a gradual decrease, and the variations ranged from 84 to 243 µg L−1 dw. A significant difference was observed at 72 h of NO2 exposure. In C. putoensis, significant differences in the Ca content were observed during NO2 exposure, except at 12 h. In both species, the Ca content of the recovery group did not show a significant difference compared with the control group. The variation amplitude of the Ca content of C. betulus (159 µg L−1 dw) was noticeably greater than that of C. putoensis (68 µg L−1 dw).(5) Mg. As the NO2 stress prolonged, the Mg content of C. betulus did not show a significant drop, except at 48 h. The variations ranged from 21.4 to 31.3 µg L−1 dw. In C. putoensis, the variations ranged from 12.2 to 32.2 µg L−1 dw. In both species, the Ca content of the recovery group did not show a significant difference compared with the control group. The variation amplitude of the Ca content of C. betulus (9.9 µg L−1 dw) was remarkably smaller than that of C. putoensis (20 µg L−1 dw).Microelements(1) Zn. With the prolongation of NO2 exposure, the Zn content of C. betulus exhibited an increase followed by a gradual decrease. Compared with the control, significant differences were observed at 1, 6, and 12 h. The variations anged from 7.1 to 10.6 µg L−1 dw. In C. putoensis, significant differences in the Zn content were observed at 6 h and 48 h, and the variations ranged from 5.7 to 11.2 µg L−1 dw. The variation amplitude of the Zn content of C. betulus (3.5 µg L−1 dw) was smaller than that of C. putoensis (5.5 µg L−1 dw). In each species, the Zn content of the recovery group showed a significant difference compared with the control group.(2) Mn. At 1 h of NO2 fumigation, a sharp drop was observed, compared with the control. Afterwards, the Mn content of C. betulus exhibited a general increase followed by a gradual decrease. However, at any time point during NO2 exposure, a significant lower Mn content was observed when compared to the control. The variations of the Mn content ranged from 11.2 to 78.1 µg L−1 dw. In C. putoensis, the Mn content during NO2 exposure significantly decreased compared with control, and the variations ranged from 9.4 to 85.5 µg L−1 dw. The variation amplitude of the Mn content of C. betulus (66.9 µg L−1 dw) was slightly smaller than that of C. putoensis (76.1 µg L−1 dw). In each species, the Mn content of the recovery group did not show a significant difference compared with the control group.Correlation analysisThe correlations between the investigated indices and NO2 exposure time were analyzed using the Pearson’s method (Table 3). POD and soluble protein had a strong positive correlation with NO2 exposure time (correlation coefficient: 0.891 and 0.799, respectively), and NR, NO3−N, N, K, and Ca had a strong negative correlation with NO2 exposure time (correlation coefficient: -0.691, -0.805, -0.744, -0.606 and -0.696, respectively). MDA and the Zn content were not correlated with the exposure time.Table 3 Correlations of the investigated indices with NO2 exposure time.Full size table More

  • in

    Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity

    1.Rook, G. A., Martinelli, R. & Brunet, L. R. Innate immune responses to mycobacteria and the downregulation of atopic responses. Curr. Opin. Allergy Clin. Immunol. 3, 337–342 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Dannemiller, K. C. et al. Next-generation DNA sequencing reveals that low fungal diversity in house dust is associated with childhood asthma development. Indoor Air 24, 236–247 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Arleevskaya, M. I., Aminov, R., Brooks, W. H., Manukyan, G. & Renaudineau, Y. Shaping of human immune system and metabolic processes by viruses and microorganisms. Front Microbiol. 10, 816 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Rook, G. A., Raison, C. L. & Lowry, C. A. Microbiota, immunoregulatory old friends and psychiatric disorders. In Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease 2014 319–356 (Springer, 2014).
    Google Scholar 
    7.Rook, G. A. Regulation of the immune system by biodiversity from the natural environment: An ecosystem service essential to health. Proc. Natl. Acad. Sci. 110, 18360–18367 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Schwinge, D. & Schramm, C. Sex-related factors in autoimmune liver diseases. In Seminars in Immunopathology, Voxl 41, No 2 165–175 (Springer, 2019).
    Google Scholar 
    9.Prescott, S. L. A butterfly flaps its wings: Extinction of biological experience and the origins of allergy. Ann. Allergy Asthma Immunol. 20, 20 (2020).
    Google Scholar 
    10.Prescott, S. L. et al. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Austvoll, C. T., Gallo, V. & Montag, D. Health impact of the Anthropocene: The complex relationship between gut microbiota, epigenetics, and human health, using obesity as an example. Glob. Health Epidemiol. Genom. 5, 20 (2020).
    Google Scholar 
    12.Haahtela, T. A biodiversity hypothesis. Allergy 74, 1445–1456 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Haahtela, T. et al. The biodiversity hypothesis and allergic disease: World allergy organization position statement. World Allergy Organ. J. 6, 1–8 (2013).Article 

    Google Scholar 
    14.Donovan, G., Gatziolis, D., Mannetje, A. T., Weinkove, R., Fyfe, C., & Douwes, J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Available at SSRN 3559635 (2020).15.Chen, D. et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signalling and gut microbiota. Cancer Lett. 469, 456–467 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Du, Y. et al. Butyrate protects against high-fat diet-induced atherosclerosis via up-regulating ABCA1 expression in apolipoprotein E-deficiency mice. Br. J. Pharmacol. 177, 1754–1772 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Li, J. Y. et al. Microbiota dependent production of butyrate is required for the bone anabolic activity of PTH. J. Clin. Invest. 20, 20 (2020).CAS 

    Google Scholar 
    18.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 1–4 (2017).CAS 
    Article 

    Google Scholar 
    19.Uetake, J. et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front Microbiol. 10, 1572 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urban airborne microbial communities are less abundant and less diverse than rural counterparts-but what does that mean for our health? A systematic review. Sci. Total Environ. 20, 140337 (2020).Article 
    CAS 

    Google Scholar 
    21.Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Mhuireach, G. et al. Urban greenness influences airborne bacterial community composition. Sci. Total Environ. 571, 680–687 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lymperopoulou, D. S., Adams, R. I. & Lindow, S. E. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl. Environ. Microbiol. 82, 3822–3833 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Abdelfattah, A. et al. Revealing cues for fungal interplay in the plant–air interface in vineyards. Front Plant Sci. 10, 922 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Stewart, J. et al. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci. Total Environ. 1, 138353 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    26.Mhuireach, G. Á., Betancourt-Román, C. M., Green, J. L. & Johnson, B. R. Spatiotemporal controls on the urban aerobiome. Front Ecol. Evol. 7, 43 (2019).Article 

    Google Scholar 
    27.Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article 

    Google Scholar 
    28.Robinson, J. M. & Breed, M. F. Green prescriptions and their co-benefits: Integrative strategies for public and environmental health. Challenges 10, 9 (2019).Article 

    Google Scholar 
    29.Callaghan, A. et al. The impact of green spaces on mental health in urban settings: A scoping review. J. Ment. Health 18, 1–5 (2020).Article 

    Google Scholar 
    30.Cameron, R. W. et al. Where the wild things are! Do urban green spaces with greater avian biodiversity promote more positive emotions in humans?. Urban Ecosyst. 23, 301–317 (2020).Article 

    Google Scholar 
    31.Robinson, J. M., Jorgensen, A., Cameron, R. & Brindley, P. Let nature be thy medicine: A socioecological exploration of green prescribing in the UK. Int. J. Environ. Res. Public Health 17, 3460 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    32.Yeh, C. T., Cheng, Y. Y. & Liu, T. Y. Spatial characteristics of urban green spaces and human health: An exploratory analysis of canonical correlation. Int. J. Environ. Res. Public Health 17, 3227 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    33.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Franconieri, F. et al. Rothia spp. infective endocarditis: A systematic literature review. Méd. Maladies Infect. 35, 1–8 (2020).
    Google Scholar 
    35.Iljazovic, A. et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol. 14, 1–12 (2020).
    Google Scholar 
    36.Robinson, J. M. & Jorgensen, A. Rekindling old friendships in new landscapes: The environment–microbiome–health axis in the realms of landscape research. People Nat. 2, 339–349 (2020).Article 

    Google Scholar 
    37.Baruch, Z. et al. Characterising the soil fungal microbiome in metropolitan green spaces across a vegetation biodiversity gradient. Fungal Ecol. 47, 100939 (2020).Article 

    Google Scholar 
    38.Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 20, 20 (2020).
    Google Scholar 
    39.Honeker, L. K. et al. Gut microbiota from amish but not hutterite children protect germ-free mice from experimental asthma. In D92. The Microbiome and Lung Disease A7022–A7022 (American Thoracic Society, 2019).
    Google Scholar 
    40.Roslund, M. I. et al. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, 2578 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    41.Laforest-Lapointe, I., Messier, C. & Kembel, S. W. Tree leaf bacterial community structure and diversity differ along a gradient of urban intensity. MSystems 2, 6 (2017).Article 

    Google Scholar 
    42.Chen, J., Jin, S. & Du, P. Roles of horizontal and vertical tree canopy structure in mitigating daytime and night-time urban heat island effects. Int. J. Appl. Earth Obs. Geoinf. 89, 102060 (2020).Article 

    Google Scholar 
    43.Straka, T. M., Wolf, M., Gras, P., Buchholz, S. & Voigt, C. C. Tree cover mediates the effect of artificial light on urban bats. Front Ecol. Evol. 7, 91 (2019).Article 

    Google Scholar 
    44.Wood, E. M. & Esaian, S. The importance of street trees to urban avifauna. Ecol. Appl. 20, 20 (2020).
    Google Scholar 
    45.Astell-Burt, T. & Feng, X. Does sleep grow on trees? A longitudinal study to investigate potential prevention of insufficient sleep with different types of urban green space. SSM Popul. Health 10, 100497 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Woo, J. & Lee, C. J. Sleep-enhancing effects of phytoncide via behavioral, electrophysiological, and molecular modeling approaches. Exp. Neurobiol. 29, 120 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Ross, S. et al. i-Tree eco analysis of landscape vegetation on remediated areas of oak ridge national laboratory. Open J. Forest. 10, 412 (2020).Article 

    Google Scholar 
    48.Robinson, J. M., Mills, J. G. & Breed, M. F. Walking ecosystems in microbiome-inspired green infrastructure: An ecological perspective on enhancing personal and planetary health. Challenges 9, 40 (2018).Article 

    Google Scholar 
    49.Watkins, H., Robinson, J. M., Breed, M. F., Parker, B. & Weinstein, P. Microbiome-inspired green infrastructure: A toolkit for multidisciplinary landscape design. Trends Biotechnol. 20, 20 (2020).
    Google Scholar 
    50.Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front Microbiol. 9, 84 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Abrego, N. et al. Fungal communities decline with urbanization—more in air than in soil. ISME J. 20, 1–10 (2020).
    Google Scholar 
    52.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.JNCC. 2013. Handbook for Phase 1 Habitat Surveys. https://data.jncc.gov.uk/data/9578d07b-e018-4c66-9c1b-47110f14df2a/Handbook-Phase1-HabitatSurvey-Revised-2016.pdf. Accessed 28 Sep 2020.55.Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 02527–02614 (2015).Article 
    CAS 

    Google Scholar 
    56.Mbareche, H., Veillette, M., Pilote, J., Létourneau, V. & Duchaine, C. Bioaerosols play a major role in the nasopharyngeal microbiota content in agricultural environment. Int. J. Environ. Res. Public Health 16, 1375 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dettwyler, K. A. A time to wean: The hominid blueprint for the natural age of weaning in modern human populations. In Breastfeeding 39–74 (Routledge, 2017).
    Google Scholar 
    58.Jelenkovic, A. et al. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts. Sci. Rep. 6, 1–3 (2016).Article 

    Google Scholar 
    59.Milani, C. et al. The first microbial colonizers of the human gut: Composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81, 00036–00117 (2017).Article 

    Google Scholar 
    60.RCPCH. Growth Charts. 2020. https://www.rcpch.ac.uk/resources/uk-who-growth-charts-2-18-years. Accessed on 21 Jan 2020.61.Bae, S., Lyons, C. & Onstad, N. A culture-dependent and metagenomic approach of household drinking water from the source to point of use in a developing country. Water Res. X. 2, 100026 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    63.Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 9, 107 (2019).Article 
    CAS 

    Google Scholar 
    64.Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Wickham, H., & Wickham, MH. . The ggplot package. (2007).66.Oksanen, J., Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, H. H., Szoecs, E., & Wagner, E. The vegan package in R. Online. https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed on 20 Sep 2020.67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Revel, W. The Psych R Package. 2020. https://cran.r-project.org/web/pakages/psych/psych.pdf. Accessed on 20 Sep 2020.69.Canty, A, & Ripley, B. The Boot R Package. 2020. https://cran.r-project.org/web/packages/boot/boot.pdf. Accessed on 20 Sep 2020.70.Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 9, 1002687 (2012).Article 
    CAS 

    Google Scholar 
    71.Csárdi, G. The igraph Package in R. Online. 2020. https://cran.r-project.org/web/packages/igraph/igraph.pdf. Accessed on 10 Aug 20.72.Cusack, L., Larkin, A., Carozza, S. E. & Hystad, P. Associations between multiple green space measures and birth weight across two US cities. Health Place 47, 36–43 (2017).PubMed 
    Article 

    Google Scholar 
    73.Klompmaker, J. O. et al. Green space definition affects associations of green space with overweight and physical activity. Environ Res. 160, 531–540 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Lee, J. Y. et al. Preventive effect of residential green space on infantile atopic dermatitis associated with prenatal air pollution exposure. Int. J. Environ. Res. Public Health 15, 102 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    75.i-Tree Canopy. i-Tree Canopy. 2020. https://canopy.itreetools.org/. Accessed on 15 May 2020.76.Richardson, J. J. & Moskal, L. M. Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban Forest. Urban Green. 13, 152–157 (2014).Article 

    Google Scholar 
    77.Soltani, A. & Sharifi, E. Daily variation of urban heat island effect and its correlations to urban greenery: A case study of Adelaide. Front Arch. Res. 6, 529–538 (2017).
    Google Scholar  More

  • in

    Forests that float in the clouds are drifting away

    Mist wafts through the trees at the Monteverde Cloud Forest Biological Preserve in Costa Rica. Cloud forests around the world are threatened by development, wood collection and climate change. Credit: Stefano Paterna/Alamy

    Conservation biology
    04 May 2021
    Forests that float in the clouds are drifting away

    Tropical cloud forests are safe havens for a vast range of creatures and plants, but they are under siege around the globe.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Remote habitats called tropical cloud forests, which cling to misty mountains and tap humid air for water, are in decline. So says a global analysis also reporting that cloud forests, despite occupying just 0.4% of Earth’s land, harbour around 15% of the global biodiversity of birds, mammals, amphibians and tree ferns.Dirk Karger at the Swiss Federal Institute for Forest, Snow and Landscape Research in Birmensdorf, Walter Jetz at Yale University in New Haven, Connecticut, and their colleagues created habitat-prediction models that incorporate remote-sensing data on cloud cover and other conditions to predict the coverage of tropical cloud forests worldwide. They then studied satellite imagery of land cover from 2001 to 2018 to determine the rate of cloud-forest loss and analysed how this loss would affect 3,700 species living in this ecosystem.The team estimates that more than 15,000 square kilometres of tropical cloud forest — 2.4% of the global total — were lost during the 18-year period. Africa and the Americas had the greatest losses. The authors note that the establishment of protected areas did little to halt the loss of habitat and its biodiversity, highlighting the urgent need for other safeguards.

    Nature Ecol. Evol. (2021)

    Conservation biology More

  • in

    Conservation concerns associated with low genetic diversity for K’gari–Fraser Island dingoes

    1.Crowther, M. S., Fillios, M., Colman, N. & Letnic, M. An updated description of the Australian dingo (Canis dingo Meyer, 1793). J. Zool. 293(3), 192–203 (2014).Article 

    Google Scholar 
    2.Smith, B. P. et al. Taxonomic status of the Australian dingo: the case for Canis dingo Meyer, 1793. Zootaxa 4564, 173–197 (2019).Article 

    Google Scholar 
    3.Sillero-Zubiri, C., Hoffmann, M. & Macdonald, D. W. Canids: foxes, wolves, jackals and dogs: status survey and conservation action plan. (IUCN, 2004).4.Jackson, S. M. et al. The wayward dog: is the Australian native dog or dingo a distinct species?. Zootaxa 4317, 201–224 (2017).Article 

    Google Scholar 
    5.Cairns, K. M. What is a dingo–origins, hybridisation and identity. Aust. Zool. (2021).6.Jackson, S. M. et al. The dogma of dingoes—taxonomic status of the dingo: a reply to Smith et al. Zootaxa 4564, 198–212 (2019).Article 

    Google Scholar 
    7.Zhang, S.-J. et al. Genomic regions under selection in the feralization of the dingoes. Nat. Commun. 11, 1–10 (2020).ADS 

    Google Scholar 
    8.Corbett, L. The Dingo in Australia and Asia 2nd edn. (JB Books, Marleston, 2011).
    Google Scholar 
    9.Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Savolainen, P., Leitner, T., Wilton, A. N., Matisoo-Smith, E. & Lundeberg, J. A detailed picture of the origin of the Australian dingo, obtained from the study of mitochondrial DNA. Proc. Natl. Acad. Sci. U.S.A. 101, 12387–12390 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Milham, P. & Thompson, P. Relative antiquity of human occupation and extinct fauna at Madura Cave, southeastern Western Australia. Mankind 10, 175–180 (1976).
    Google Scholar 
    12.Savolainen, P., Zhang, Y.-P., Luo, J., Lundeberg, J. & Leitner, T. Genetic evidence for an East Asian origin of domestic dogs. Science 298, 1610–1613 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Ardalan, A. et al. Narrow genetic basis for the Australian dingo confirmed through analysis of paternal ancestry. Genetica 140, 65–73 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Wright, J. & Lambert, D. Australia’s first dingo. Australas. Sci. 36, 34–36 (2015).
    Google Scholar 
    15.Fillios, M. A. & Taçon, P. S. Who let the dogs in? A review of the recent genetic evidence for the introduction of the dingo to Australia and implications for the movement of people. J. Archaeol. Sci. Rep. 7, 782–792 (2016).
    Google Scholar 
    16.Brown, S. K. et al. Phylogenetic distinctiveness of middle eastern and southeast Asian Village Dog Y chromosomes illuminates dog origins. PLoS ONE 6, e28496. https://doi.org/10.1371/journal.pone.0028496 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Brink, H. et al. Pets and pests: a review of the contrasting economics and fortunes of dingoes and domestic dogs in Australia, and a proposed new funding scheme for non-lethal dingo management. Wildl. Res. 46, 365–377 (2019).Article 

    Google Scholar 
    18.Corbett, L. Canis lupus ssp. dingo. IUCN 2010. IUCN Red List of Threatened Species. Version 2010.4 (2010).19.Burns, G. L. & Howard, P. When wildlife tourism goes wrong: a case study of stakeholder and management issues regarding Dingoes on Fraser Island, Australia. Tourism Manag. 24, 699–712 (2003).Article 

    Google Scholar 
    20.Archer-Lean, C., Wardell-Johnson, A., Conroy, G. & Carter, J. Representations of the dingo: contextualising iconicity. Australas. J. Environ. Manag. 22, 181–196 (2015).Article 

    Google Scholar 
    21.Letnic, M., Koch, F., Gordon, C., Crowther, M. S. & Dickman, C. R. Keystone effects of an alien top-predator stem extinctions of native mammals. Proc. R. Soc. Lond. B: Biol. Sci. 276, 3249–3256 (2009).
    Google Scholar 
    22.Letnic, M., Crowther, M., Dickman, C. R. & Ritchie, E. G. Demonising the dingo: How much wild dogma is enough?. Curr. Zool. 57, 668–670 (2011).Article 

    Google Scholar 
    23.Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: the dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413. https://doi.org/10.1111/j.1469-185X.2011.00203.x (2012).Article 
    PubMed 

    Google Scholar 
    24.Colman, N., Gordon, C., Crowther, M. & Letnic, M. Lethal control of an apex predator has unintended cascading effects on forest mammal assemblages. Proc. R. Soc. B: Biol. Sci. 281, 20133094 (2014).CAS 
    Article 

    Google Scholar 
    25.Wallach, A. D., Johnson, C. N., Ritchie, E. G. & O’Neill, A. J. Predator control promotes invasive dominated ecological states. Ecol. Lett. 13, 1008–1018 (2010).PubMed 

    Google Scholar 
    26.Glen, A. S., Dickman, C. R., Soule, M. E. & Mackey, B. Evaluating the role of the dingo as a trophic regulator in Australian ecosystems. Aust. Ecol. 32, 492–501 (2007).Article 

    Google Scholar 
    27.Johnson, C. N., Isaac, J. L. & Fisher, D. O. Rarity of a top predator triggers continent-wide collapse of mammal prey: dingoes and marsupials in Australia. Pro. R. Soc. Lond. B: Biol. Sci. 274, 341–346 (2007).
    Google Scholar 
    28.Johnson, C. N. & Ritchie, E. G. The dingo and biodiversity conservation: response to Fleming et al. (2012). Aust. Mammal. 35, 8–14 (2013).Article 

    Google Scholar 
    29.Thom, B. & Chappell, J. Vol. 6 90–93 (CONTROL PUBL PTY LTD 14 ARCHERON ST, DONCASTER VIC 3108, AUSTRALIA, 1975).30.Wardell-Johnson, G. et al. Re-framing values for a World Heritage future: what type of icon will K’gari-Fraser Island become?. Australas. J. Environ. Manag. 22, 124–148 (2015).Article 

    Google Scholar 
    31.Corbett, L. Management of Dingoes on Fraser Island (ERA Environmental Services, 1998).
    Google Scholar 
    32.Appleby, R., Mackie, J., Smith, B., Bernede, L. & Jones, D. Human–dingo interactions on Fraser Island: an analysis of serious incident reports. Aust. Mammal. 40, 146–156 (2018).Article 

    Google Scholar 
    33.Allen, B., Boswell, J. & Higginbottom, K. Fraser Island Dingo Management Strategy Review: Report to Department of Environment and Heritage Protection (Ecosure Pty Ltd, 2012).
    Google Scholar 
    34.O’Neill, A. J., Cairns, K. M., Kaplan, G. & Healy, E. Managing dingoes on Fraser Island: culling, conflict, and an alternative. Pac. Conserv. Biol. 23, 4–14 (2017).Article 

    Google Scholar 
    35.Conroy, G., Lamont, R., Bridges, L. & Ogbourne, S. (University of the Sunshine Coast, Queensland, Australia, 2016).36.Appleby, R. & Jones, D. Analysis of Preliminary Dingo Capture-Mark-Recapture Experiment on Fraser Island: final Report to Queensland Parks and Wildlife Service (Griffith University, Brisbane, 2011).
    Google Scholar 
    37.England, P. R., Usher, A. V., Whelan, R. J. & Ayre, D. J. Microsatellite diversity and genetic structure of fragmented populations of the rare, fire-dependent shrub Grevillea macleayana. Mol. Ecol. 11, 967–977 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation GENETICS (Cambridge University Press, 2002).Book 

    Google Scholar 
    39.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    40.Lowe, A., Harris, S. & Ashton, P. Ecological Genetics: Design, Analysis, and Application (Wiley, 2009).
    Google Scholar 
    41.How, R., Spencer, P. & Schmitt, L. Island populations have high conservation value for northern Australia’s top marsupial predator ahead of a threatening process. J. Zool. 278, 206–217 (2009).Article 

    Google Scholar 
    42.Elledge, A. E., Leung, L. K. P., Allen, L. R., Firestone, K. & Wilton, A. N. Assessing the taxonomic status of dingoes (Canis familiaris dingo) for conservation. Mammal Rev. 36, 142–156. https://doi.org/10.1111/j.1365-2907.2006.00086.x (2006).Article 

    Google Scholar 
    43.Oskarsson, M. C. et al. Mitochondrial DNA data indicate an introduction through Mainland Southeast Asia for Australian dingoes and Polynesian domestic dogs. Proc. R. Soc. B: Biol. Sci. rspb20111395 (2011).44.Wilton, A. N. in A Symposium on the Dingo. Royal Zoological Society of New South Wales, Mossman NSW. 49–56.45.Elledge, A. E., Allen, L. R., Carlsson, B., Wilton, A. N. & Leung, L. K. An evaluation of genetic analyses, skull morphology and visual appearance for assessing dingo purity: implications for dingo conservation. Wildl. Res. 35, 812–820. https://doi.org/10.1071/WR07056 (2008).Article 

    Google Scholar 
    46.Stephens, D. The Molecular Ecology of Australian Wild Dogs: Hybridisation, Gene Flow and Genetic Structure at Multiple Geographic Scales. Ph.D. thesis, The University of Western Australia (2011).47.Wilton, A., Steward, D. & Zafiris, K. Microsatellite variation in the Australian dingo. J. Hered. 90, 108–111. https://doi.org/10.1093/jhered/90.1.108 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Irion, D. N., Schaffer, A. L., Grant, S., Wilton, A. N. & Pedersen, N. C. Genetic variation analysis of the Bali street dog using microsatellites. BMC Genet. 6, 1 (2005).Article 
    CAS 

    Google Scholar 
    49.Cairns, K. M., Shannon, L. M., Koler-Matznick, J., Ballard, J. W. O. & Boyko, A. R. Elucidating biogeographical patterns in Australian native canids using genome wide SNPs. PLoS ONE 13, e0198754 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Frankel, O. & Soulé, M. E. Conservation and Evolution (CUP Archive, 1981).
    Google Scholar 
    51.Hamrick, J. L., Godt, M. J. W. & Sherman-Broyles, S. L. Population Genetics of Forest Trees 95–124 (Springer, 1992).52.Falk, D. A., Knapp, E. E. & Guerrant, E. O. An introduction to restoration genetics. Soc. Ecol. Restor. 13, 1–33 (2001).
    Google Scholar 
    53.Altermatt, F., Pajunen, V. I. & Ebert, D. Climate change affects colonization dynamics in a metacommunity of three Daphnia species. Glob. Change Biol. 14, 1209–1220 (2008).ADS 
    Article 

    Google Scholar 
    54.Cairns, K. Population differentiation in the dingo: biogeography and molecular ecology of the Australian Native Dog using maternal, paternal and autosomal genetic markers. Ph.D. thesis, The University of New South Wales (2014).55.Ding, Z. et al. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA. Heredity 108, 507–514 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327 (1997).PubMed 
    Article 

    Google Scholar 
    57.Eldridge, M., Kinnear, J., Zenger, K., McKenzie, L. & Spencer, P. Genetic diversity in remnant mainland and “pristine” island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conserv. Genet. 5, 325–338 (2004).CAS 
    Article 

    Google Scholar 
    58.Mills, H. R., Moro, D. & Spencer, P. Conservation significance of island versus mainland populations: a case study of dibblers (Parantechinus apicalis) in Western Australia. Anim. Conserv. 7, 387–395 (2004).Article 

    Google Scholar 
    59.Boessenkool, S., Taylor, S. S., Tepolt, C. K., Komdeur, J. & Jamieson, I. G. Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges. Conserv. Genet. 8, 705–714 (2007).Article 

    Google Scholar 
    60.Carmichael, L. E. et al. Northwest passages: conservation genetics of Arctic Island wolves. Conserv. Genet. 9, 879–892 (2008).Article 

    Google Scholar 
    61.Cardoso, M. J. et al. Effects of founder events on the genetic variation of translocated island populations: implications for conservation management of the northern quoll. Conserv. Genet. 10, 1719–1733 (2009).Article 

    Google Scholar 
    62.Spencer, P., Sandover, S., Nihill, K., Wale, C. & How, R. Living in isolation: ecological, demographic and genetic patterns in northern Australiaâ s top marsupial predator on Koolan Island. Aust. Mammal. 39, 17–27 (2016).Article 

    Google Scholar 
    63.Allen, B., Higginbottom, K., Bracks, J., Davies, N. & Baxter, G. Balancing dingo conservation with human safety on Fraser Island: the numerical and demographic effects of humane destruction of dingoes. Aust. J. Environ. Manag. 22, 197–215 (2015).Article 

    Google Scholar 
    64.Frankham, R. Inbreeding and extinction: island populations. Conserv. Biol. 12, 665–675 (1998).Article 

    Google Scholar 
    65.Marie, A. D. et al. Implications for management and conservation of the population genetic structure of the wedge clam Donax trunculus across two biogeographic boundaries. Sci. Rep. 6, 39152 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Jamieson, I. G. & Allendorf, F. W. How does the 50/500 rule apply to MVPs?. Trends Ecol. Evol. 27, 578–584 (2012).PubMed 
    Article 

    Google Scholar 
    67.Frankham, R., Bradshaw, C. J. & Brook, B. W. Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).Article 

    Google Scholar 
    68.Petrie, R. Early Days on Fraser Island 1913–1922 (Go Bush Safaris, 1996).
    Google Scholar 
    69.Catling, P., Corbett, L. & Newsome, A. Reproduction in captive and wild dingoes (Canis familiaris dingo) in temperate and arid environments of Australia. Wildl. Res. 19, 195–209 (1992).Article 

    Google Scholar 
    70.Thompson, J., Shirreffs, L. & McPhail, I. Dingoes on Fraser Island—tourism dream or management nightmare. Hum. Dimens. Wildl. 8, 37–47 (2003).Article 

    Google Scholar 
    71.Government, Q. (ed.) Department of Environment and Heritage Protection Ecosystem Services (Brisbane, State of Queensland, 2013).
    Google Scholar 
    72.Ivanova, N. V., Dewaard, J. R. & Hebert, P. D. An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol. Ecol. Notes 6, 998–1002 (2006).CAS 
    Article 

    Google Scholar 
    73.Murphy, C. et al. Genetic diversity and structure of the threatened striped legless lizard, Delma impar: management implications for the species and a translocated population. Conserv. Genet. 20, 245–257 (2019).MathSciNet 
    Article 

    Google Scholar 
    74.Lamont, R., Conroy, G., Reddell, P. & Ogbourne, S. Population genetic analysis of a medicinally significant Australian rainforest tree, Fontainea picrosperma CT White (Euphorbiaceae): biogeographic patterns and implications for species domestication and plantation establishment. BMC Plant Biol. 16, 57 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    76.Kalinowski, S. T. & Taper, M. L. Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv. Genet. 7, 991–995 (2006).CAS 
    Article 

    Google Scholar 
    77.Peakall, R. & Smouse, P. E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295 (2006).Article 

    Google Scholar 
    78.Goudet, J. J. FSTAT version 2.9.3.2., updated from Goudet (1995). FSTAT: a computer program to calculate F-statistics. J. Hered. 86, 485–486 (2002).Article 

    Google Scholar 
    79.Dąbrowski, M., Bornelöv, S., Kruczyk, M., Baltzer, N. & Komorowski, J. ‘True’null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Kalinowski, S. T. HP-Rare: a computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 
    Article 

    Google Scholar 
    81.Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article 

    Google Scholar 
    82.Luikart, G. & Cornuet, J. M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 12, 228–237 (1998).Article 

    Google Scholar 
    83.Zhang, L. et al. Population structure and genetic differentiation of tea green leafhopper, Empoasca (Matsumurasca) onukii, in China based on microsatellite markers. Sci. Rep. 9, 1202 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Do, C. et al. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Waples, R. S. Evaluation of a Genetic Method for Estimating Contemporary Population Size in Cetaceans Based on Linkage Disequilibrium (Citeseer, 2006).
    Google Scholar 
    86.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genet. Soc. Am. 155, 945–959 (2000).CAS 

    Google Scholar 
    89.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Earl, D. A. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    91.Jakobsson, M. & Rosenberg, N. A. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS 
    Article 

    Google Scholar 
    92.Rosenberg, N. A. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).Article 

    Google Scholar  More

  • in

    Visual marking in mammals first proved by manipulations of brown bear tree debarking

    Among the many groups of terrestrial species, our understanding of mammal visual signalling might be hampered by the fact that most research on mammals has focused on chemical (e.g., scat, urine, and glands) and acoustic (e.g., howling) signalling1,2. Instead2,3, visual communication might be an overlooked communication channel2,4, despite being perhaps as important as the others, if we consider that: (1) mammal coloration has evolved for inter- and intraspecific communication2,4,5,6,7, which means that mammals use visual signals to communicate; and (2) visual signalling through physical marks (e.g., bites and scratches) is permanent and, thus, has the obvious advantages of (a) being long-lasting, i.e., environmental factors such as rain or snow are less likely to affect the detectability of visual marks as compared to, e.g., chemical signalling8, although mammals have found strategies to make chemical signalling last as long as possible9, and (b) functioning remotely, i.e., even when the signaller is away from the marked location2. Visual marking may also allow individuals to reduce repeated visits to strategic marking points, and thus save time and energy, which would otherwise detract animals from other activities, like foraging and reproduction10. Therefore, visual signalling may represent a reliable and advantageous communication channel8.Solitary species like bears may benefit from advertising their location, size, and reproductive status to expedite mate selection during the breeding season. Moreover, brown bears usually occur at low densities across their range, making direct interactions with one another infrequent11,12. Thus, long-lasting visual signalling may be particularly effective and considerably time saving. To date, studies on bear communication have highlighted two main forms of communication10,13,14,15,16,17: (1) olfactory communication, i.e., the marking of focal trees by rubbing the body against the trunk and/or by urination and deposition of anogenital gland secretions; and (2) pedal marking, by which bears mark the ground with their scent by grinding their feet into the substrate. Auditory communication, e.g., vocalizations used as threats during agonistic encounters, to advertise sexual receptivity, or for communication between females and their cubs, is considered as the least important channel through which bears signal, whereas visual communication has always been considered limited to different forms of body postures or behavioural displays (but see18).Since the beginning of the 1980s, bear marks on trees have puzzled researchers8. The function of, and motivation behind, tree biting and clawing have prompted a variety of theories related to glandular scent deposition (i.e., chemical signalling), but none of these hypotheses has been considered satisfactory, nor have they ever been tested8.
    The debarking behaviour of brown bears Ursus arctos, which leaves bright and conspicuous marks on tree trunks (see Extended Data Fig. 1 and Extended Data Fig. 2), presents a unique yet unexplored opportunity to investigate new ways of visual communication in terrestrial mammals, and to better understand both bear and carnivore communication broadly. The hypothesis behind this experimental work is that brown bears may rely on visual communication via the conspicuous marks that they produce on trees.Figure 1Brown bear response to trunk mark manipulation. The behavioural sequence of an adult male brown bear removing the pieces of bark that we used to conceal the visual markings on an ash tree during the mating season in the Cantabrian Mountains, Spain (12/06/2020, 15h37). The whole sequence is shown in the video footage Extended Data Fig. 5.Full size imageAfter manipulating bear tree marks in the Cantabrian Mountains (north-western Spain), we found that bears removed the bark strips that we used to cover their marks during the mating season (Extended Data Figs. 3 and 4), suggesting that bear debarking may represent a visual communication channel used for intraspecific communication.Brown bear responses to marked tree manipulationsAfter concealing bear marks due to trunk debarking with bark strips from the same tree species (see “Methods”), our manipulations on 20 trees triggered a rapid reaction from brown bears. Between the 16th of May and the end of September 2020 (overlapping part of the brown bear mating period in the Cantabrian Mountains19), brown bears removed the strips of bark that we used to cover the trunk marks in 9 (45%) out of the 20 manipulated trunks (Fig. 1 and Extended Data Fig. 5). However, if we consider that these nine trees were also the ones that we could manipulate (because of field work restrictions due to COVID-19) from the start of the mating season (beginning of May), 100% of the bark strips used to cover tree marks were removed by bears when the manipulation occurred at the commencement of the mating season. In only one case, a bear removed the bark strips covering marks on a tree that was manipulated later in the mating season (end of June). Control bark strips fixed to (a) the same trunk as the manipulated bear mark, (b) the nearest neighbouring tree to the manipulated one showing bear marks, and (c) the nearest rubbing trees with no bear marks, were never removed by bears. In two cases (50%), after the first removal of the manipulated mark by a bear, which was subsequently covered again with new strips (n = 4), a bear removed the strips a second time. Further, camera traps showed that: (1) bears uncovered the manipulated marks the first time they visited the tree after our manipulation; (2) bark strips that were not removed were always the result of bears not visiting the site after tree manipulations; and (3) the shortest lapse of time between a mark manipulation and a bear visiting the tree for the first time and uncovering the mark was seven days. Thus, manipulations always triggered a rapid response from bears when adult males, probably the same individuals that debarked the trunks, came back and check on marked trees.Conspicuousness of brown bear visual marksThe conspicuousness of a visual signal is not only increased by its position in a noticeable location, but also by the contrast between the signal and its background20,21. A remarkable difference (pixel intensity: mean (± SD) = 85.09 ± 26.77, range = 20.27–177.06) exists between bark and sapwood brightness for all tree species (t = 19.07, p =   More