Spatial segregation and cooperation in radially expanding microbial colonies under antibiotic stress
1.Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10:S122.CAS
PubMed
Article
PubMed Central
Google Scholar
2.Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.CAS
PubMed
PubMed Central
Article
Google Scholar
3.Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol. 2015;13:42.CAS
PubMed
Article
PubMed Central
Google Scholar
4.Meredith HR, Srimani JK, Lee AJ, Lopatkin AJ, You L. Collective antibiotic tolerance: mechanisms, dynamics, and intervention. Nat Chem Biol. 2015;11:182.CAS
PubMed
PubMed Central
Article
Google Scholar
5.Vega NM, Gore J. Collective antibiotic resistance: mechanisms and implications. Curr Opin Microbiol. 2014;21:28–34. http://www.sciencedirect.com/science/article/pii/S1369527414001234, antimicrobials.CAS
PubMed
PubMed Central
Article
Google Scholar
6.Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14:563.CAS
PubMed
Article
PubMed Central
Google Scholar
7.Liu J, Prindle A, Humphries J, Gabalda-Sagarra M, Asally M, Lee DyD, et al. Metabolic codependence gives rise to collective oscillations within biofilms. Nature. 2015;523:550.CAS
PubMed
PubMed Central
Article
Google Scholar
8.Liu J, Martinez-Corral R, Prindle A, Dong-yeon DL, Larkin J, Gabalda- Sagarra M, et al. Coupling between distant biofilms and emergence of nutrient time-sharing. Science. 2017;356:638–42.CAS
PubMed
PubMed Central
Article
Google Scholar
9.Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7:277.CAS
PubMed
PubMed Central
Article
Google Scholar
10.Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284:1318–22.CAS
PubMed
Article
PubMed Central
Google Scholar
11.Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 2004;428:643–6.CAS
PubMed
PubMed Central
Article
Google Scholar
12.Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Korolev KS, Avlund M, Hallatschek O, Nelson DR. Genetic demixing and evolution in linear stepping stone models. Rev Mod Phys. 2010;82:1691.CAS
PubMed
PubMed Central
Article
Google Scholar
14.Müller MJ, Neugeboren BI, Nelson DR, Murray AW. Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci USA. 2014;111:1037–42.PubMed
Article
CAS
PubMed Central
Google Scholar
15.Momeni B, Brileya KA, Fields MW, Shou W. Strong inter-population co- operation leads to partner intermixing in microbial communities. eLife. 2013;2:e00230.PubMed
PubMed Central
Article
CAS
Google Scholar
16.Momeni B, Waite AJ, Shou W. Spatial self-organization favors heterotypic cooperation over cheating. eLife. 2013;2:e00960.PubMed
PubMed Central
Article
CAS
Google Scholar
17.Lavrentovich MO, Nelson DR. Asymmetric mutualism in two- and three-dimensional range expansions. Phys Rev Lett. 2014;112:138102.PubMed
Article
CAS
PubMed Central
Google Scholar
18.Gandhi SR, Yurtsev EA, Korolev KS, Gore J. Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population. Proc Natl Acad Sci USA. 2016;113:6922–7.19.Kayser J, Schreck CF, Gralka M, Fusco D, Hallatschek O. Collective motion conceals fitness differences in crowded cellular populations. Nat Ecol Evol. 2019;3:125–34.Article
Google Scholar
20.Gandhi SR, Korolev KS, Gore J. Cooperation mitigates diversity loss in a spatially expanding microbial population. Proc Natl Acad Sci USA. 2019;116:23582–7.CAS
PubMed
Article
PubMed Central
Google Scholar
21.Datta MS, Korolev KS, Cvijovic I, Dudley C, Gore J. Range expansion promotes cooperation in an experimental microbial metapopulation. Proc Natl Acad Sci USA. 2013;110:7354–9.PubMed
Article
PubMed Central
Google Scholar
22.Kimmel GJ, Gerlee P, Brown JS, Altrock PM. Neighborhood size-effects shape growing population dynamics in evolutionary public goods games. Commun Biol. 2019;2:1–10.Article
Google Scholar
23.Kimmel GJ, Gerlee P, Altrock PM. Time scales and wave formation in non-linear spatial public goods games. PLoS Comput Biol. 2019;15:e1007361.CAS
PubMed
PubMed Central
Article
Google Scholar
24.Gerlee P, Altrock PM. Persistence of cooperation in diffusive public goods games. Phys Rev E. 2019;99:062412.CAS
PubMed
Article
PubMed Central
Google Scholar
25.Celik Ozgen V, Kong W, Blanchard AE, Liu F, Lu T. Spatial interference scale as a determinant of microbial range expansion. Sci. Adv. 2018;4:eaau0695.26.Steenackers HP, Parijs I, Foster KR, Vanderleyden J. Experimental evolu- tion in biofilm populations. FEMS Microbiol Rev. 2016;40:373–97.CAS
PubMed
PubMed Central
Article
Google Scholar
27.Kepler TB, Perelson AS. Drug concentration heterogeneity facili- tates the evolution of drug resistance. Proc Natl Acad Sci USA. 1998;95:11514–9.CAS
PubMed
Article
PubMed Central
Google Scholar
28.Hermsen R, Deris JB, Hwa T. On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci USA. 2012;109:10775–80.CAS
PubMed
Article
PubMed Central
Google Scholar
29.Zhang Q, Lambert G, Liao D, Kim H, Robin K, Tung CK, et al. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science. 2011;333:1764–7.CAS
PubMed
Article
PubMed Central
Google Scholar
30.Greulich P, Waclaw B, Allen RJ. Mutational pathway determines whether drug gradients accelerate evolution of drug-resistant cells. Phys Rev Lett. 2012;109:088101.PubMed
Article
CAS
PubMed Central
Google Scholar
31.Fu F, Nowak MA, Bonhoeffer S. Spatial heterogeneity in drug concen- trations can facilitate the emergence of resistance to cancer therapy. PLoS Comput Biol. 2015;11:e1004142.PubMed
PubMed Central
Article
CAS
Google Scholar
32.Moreno-Gamez S, Hill AL, Rosenbloom DI, Petrov DA, Nowak MA, Pen- nings PS. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci USA. 2015;112:E2874–E2883.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, et al. Spatiotemporal microbial evolution on antibiotic landscapes. Science. 2016;353:1147–51.CAS
PubMed
PubMed Central
Article
Google Scholar
34.De Jong MG, Wood KB. Tuning spatial profiles of selection pressure to modulate the evolution of drug resistance. Phys Rev Lett. 2018;120:238102.PubMed
PubMed Central
Article
Google Scholar
35.Lenski RE, Hattingh SE. Coexistence of two competitors on one re- source and one inhibitor: a chemostat model based on bacteria and antibiotics. J Theor Biol. 1986;122:83–93.CAS
PubMed
Article
PubMed Central
Google Scholar
36.Dugatkin LA, Perlin M, Lucas JS, Atlas R. Group-beneficial traits, frequency-dependent selection and genotypic diversity: an antibiotic resistance paradigm. Proc R Soc B. 2005;272:79–83.PubMed
Article
PubMed Central
Google Scholar
37.Clark DR, Alton TM, Bajorek A, Holden P, Dugatkin LA, Atlas RM, et al. Evolution of altruists and cheaters in near-isogenic populations of Escherichia coli. Front Biosci. 2009;14:4815.CAS
Article
Google Scholar
38.Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B 2009;276:3759–68.CAS
PubMed
Article
PubMed Central
Google Scholar
39.Yurtsev EA, Chao HX, Datta MS, Artemova T, Gore J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol Syst Biol. 2013. https://doi.org/10.1038/msb.2013.39.40.Koster DA, Mayo A, Bren A, Alon U. Surface growth of a motile bac- terial population resembles growth in a chemostat. J Mol Biol. 2012;424:180–91.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Sorg RA, Lin L, van Doorn GS, Sorg M, Olson J, Nizet V. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 2016;14:e2000631 https://doi.org/10.1371/journal.pbio.2000631.CAS
Article
PubMed
PubMed Central
Google Scholar
42.Hallinen KM, Karslake J, Wood KB. Delayed antibiotic exposure induces population collapse in enterococcal communities with drug-resistant subpopulations. eLife. 2020;9:e52813.CAS
PubMed
PubMed Central
Article
Google Scholar
43.Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N. Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2004;48:1168–74.CAS
PubMed
PubMed Central
Article
Google Scholar
44.Allen B, Gore J, Nowak MA. Spatial dilemmas of diffusible public goods. eLife. 2013;2:e01169.PubMed
PubMed Central
Article
Google Scholar
45.Medaney F, Dimitriu T, Ellis RJ, Raymond B. Live to cheat another day: bacterial dormancy facilitates the social exploitation of β-lactamases. ISME J. 2016;10:778.CAS
PubMed
Article
PubMed Central
Google Scholar
46.Frost I, Smith WP, Mitri S, San Millan A, Davit Y, Osborne JM, et al. Cooperation, competition and antibiotic resistance in bacterial colonies. ISME J. 2018;12:1582–93.CAS
PubMed
PubMed Central
Article
Google Scholar
47.Estrela SBS. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLoS Comput Biol. 2018;14:e1006179.PubMed
PubMed Central
Article
CAS
Google Scholar
48.Amanatidou E, Matthews AC, Kuhlicke U, Neu TR, McEvoy JP, Raymond B. Biofilms facilitate cheating and social exploitation of β-lactam resistance in Escherichia coli. npj Biofilms Microbiomes. 2019;5:1–10.CAS
Article
Google Scholar
49.Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife. 2019;8:e47612.CAS
PubMed
PubMed Central
Article
Google Scholar
50.Seligman SJ, Hewitt WL. Kinetics of the action of ampicillin on Escherichia coli. J Bacteriol. 1963;85:1160–4.CAS
PubMed
PubMed Central
Article
Google Scholar
51.Klementiev AD, Jin Z, Whiteley M. Micron scale spatial measurement of the O2 gradient surrounding a bacterial biofilm in real time. mBio. 2020;11:e02536-20.52.van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–70.53.Kumar RK, Meiller-Legrand T, Alcinesio A, Gonzalez D, Mavridou DA, Meacock OJ, et al. Droplet printing reveals the importance of micron-scale structure for bacterial ecology. Nat Commun. 2021;12:857.54.Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary; 2014.55.Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis. 1998;4:239.CAS
PubMed
PubMed Central
Article
Google Scholar
56.Mohamed JA, Huang DB. Biofilm formation by enterococci. J Med Microbiol. 2007;56:1581–8.CAS
PubMed
Article
PubMed Central
Google Scholar
57.Ch’ng JH, Chong KK, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol. 2018;1:82–94.58.Murray BE, Mederski-Samaroj B. Transferable β-lactamase. A new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J Clin Investig. 1983;72:1168–71. https://doi.org/10.1172/JCI111042.CAS
Article
PubMed
PubMed Central
Google Scholar
59.Rice L, Eliopoulos G, Wennersten C, Goldmann D, Jacoby G, Moellering R. Chromosomally mediated β-lactamase production and gentamicin resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 1991;35:272–6.CAS
PubMed
PubMed Central
Article
Google Scholar
60.Murray BE. Beta-lactmase-producing enterococci. Antimicrob Agents Chemother. 1992;36:2355–9.CAS
PubMed
PubMed Central
Article
Google Scholar
61.Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Rev Antiinfect Ther. 2014;12:1221–36.CAS
Article
Google Scholar
62.Dunny GM, Lee LN, LeBlanc DJ. Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol. 1991;57:1194–201.CAS
PubMed
PubMed Central
Article
Google Scholar
63.Aymanns S, Mauerer S, van Zandbergen G, Wolz C, Spellerberg B. High-level fluorescence labeling of gram-positive pathogens. PLoS ONE. 2011;6:e19822.CAS
PubMed
PubMed Central
Article
Google Scholar
64.Zscheck KK, Murray BE. Nucleotide sequence of the β-lactamase gene from Enterococcus faecalis HH22 and its similarity to staphylococcal β-lactamase genes. Antimicrob Agents Chemother. 1991;35:1736–40.CAS
PubMed
PubMed Central
Article
Google Scholar
65.Hallinen KM, Guardiola-Flores KA, Wood KB. Fluorescent reporter plas- mids for single-cell and bulk-level composition assays in E. faecalis. PLoS ONE. 2020;15:e0232539.CAS
PubMed
PubMed Central
Article
Google Scholar
66.AU Levin-Reisman I, AU Fridman O, AU Balaban NQ. Scan- Lag: high- throughput quantification of colony growth and lag time. JoVE 2014;51456.67.Schindelin J, Arganda-Carreras I, Frise EEA. Fiji: an open-source plat- form for biological-image analysis. Nat Methods. 2012;9:676–82.CAS
PubMed
Article
PubMed Central
Google Scholar
68.Eden M. A two-dimensional growth process. Dyn Fractal Surf. 1961;4:223–39.
Google Scholar
69.Smith WP, Davit Y, Osborne JM, Kim W, Foster KR, Pitt-Francis JM. Cell morphology drives spatial patterning in microbial communities. Proc Natl Acad Sci USA. 2017;114:E280–E286.CAS
PubMed
Article
PubMed Central
Google Scholar
70.Gralka M, Stiewe F, Farrell F, Möbius W, Waclaw B, Hallatschek O. Allele surfing promotes microbial adaptation from standing variation. Ecol Lett. 2016;19:889–98.PubMed
PubMed Central
Article
Google Scholar
71.Paulose J, Hallatschek O. The impact of long-range dispersal on gene surfing. Proc Natl Acad Sci USA. 2020;117:7584–93.CAS
PubMed
Article
PubMed Central
Google Scholar
72.Kaznatcheev A, Peacock J, Basanta D, Marusyk A, Scott JG. Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer. Nat Ecol Evol. 2019;3:450–6.PubMed
PubMed Central
Article
Google Scholar
73.Levin B. Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond B Biol Sci. 1988;319:459–72.CAS
PubMed
Article
PubMed Central
Google Scholar
74.Kaznatcheev A. Two conceptions of evolutionary games: reductive vs effective. bioRxiv. 2017; 231993; https://doi.org/10.1101/231993.75.van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.PubMed
PubMed Central
Article
CAS
Google Scholar
76.Bamford CH, Tipper C, Compton R. Diffusion-limited reactions, vol. 25. Elsevier; 1985.77.Berg HC, Purcell EM. Physics of chemoreception. Biophys J. 1977;20:193–219.CAS
PubMed
PubMed Central
Article
Google Scholar
78.Christensen H, Martin MT, Waley SG. Beta-lactamases as fully effcient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Biochem J. 1990;266:853.CAS
PubMed
PubMed Central
Google Scholar
79.Hardy LW, Kirsch JF. Diffusion-limited component of reactions catalyzed by Bacillus cereus. Beta-lactamase I. Biochemistry. 1984;23:1275–82.CAS
PubMed
Article
PubMed Central
Google Scholar
80.Dubus A, Ledent P, Lamotte-Brasseur J, Frère JM. The roles of residues Tyr150, Glu272, and His314 in class C β-lactamases. Proteins. 1996;25:473–85.CAS
PubMed
PubMed Central
Google Scholar
81.Voladri R, Tummuru M, Kernodle DS. Structure-function relationships among wild-type variants of Staphylococcus aureus β-lactamase: importance of amino acids 128 and 216. J Bacteriol. 1996;178:7248–53.CAS
PubMed
PubMed Central
Article
Google Scholar
82.Livermore DM. β-Lactamases: quantity and resistance. Clin Microbiol Infect. 1997;3:4S10–4S19.CAS
Article
Google Scholar
83.Nikaido H, Normark S. Sensitivity of Escherichia coli to various, β-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol. 1987;1:29–36.CAS
PubMed
Article
PubMed Central
Google Scholar
84.Stewart PS. Diffusion in biofilms. J Bacteriol. 2003;185:1485–91.CAS
PubMed
PubMed Central
Article
Google Scholar
85.Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–39.CAS
PubMed
Article
PubMed Central
Google Scholar
86.Lee HH, Molla MN, Cantor CR, Collins JJ. Bacterial charity work leads to population-wide resistance. Nature. 2010;467:82–85. https://doi.org/10.1038/nature09354.CAS
Article
PubMed
PubMed Central
Google Scholar
87.Meredith HR, Andreani V, Ma HR, Lopatkin AJ, Lee AJ, Anderson DJ, et al. Applying ecological resistance and resilience to dissect bacterial antibiotic responses. Sci Adv. 2018;4:eaau1873.CAS
PubMed
PubMed Central
Article
Google Scholar
88.Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. Functional relationship between bacterial cell density and the effcacy of antibiotics. J Antimicrob Chemother. 2009;63:745–57. https://doi.org/10.1093/jac/dkn554.CAS
Article
PubMed
PubMed Central
Google Scholar
89.Tan C, Smith RP, Srimani JK, Riccione KA, Prasada S, Kuehn M, et al. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol Syst Biol. 2012;8:617.90.Karslake J, Maltas J, Brumm P, Wood KB. Population density modulates drug inhibition and gives rise to potential bistability of treatment outcomes for bacterial infections. PLoS Comput Biol. 2016;12:e1005098.PubMed
PubMed Central
Article
CAS
Google Scholar
91.Nadell CD, Foster XJ. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol. 2010;6:e1000716PubMed
PubMed Central
Article
CAS
Google Scholar
92.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14:589.CAS
PubMed
Article
PubMed Central
Google Scholar
93.Yuste S, Acedo L, Lindenberg K. Reaction front in an A+BC reaction-subdiffusion process. Phys Rev E. 2004;69:036126.CAS
Article
Google Scholar
94.Grebenkov DS. Diffusion toward non-overlapping partially reactive spherical traps: fresh insights onto classic problems. J Chem Phys. 2020;152:244108.CAS
PubMed
Article
PubMed Central
Google Scholar
95.Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS
PubMed
PubMed Central
Article
Google Scholar
96.Tanouchi Y, Pai A, Buchler NE, You L. Programming stress-induced altruistic death in engineered bacteria. Mol Syst Biol. 2012;8:626.97.Xie H, Jiao Y, Fan Q, Hai M, Yang J, Hu Z, et al. Modeling three-dimensional invasive solid tumor growth in het- erogeneous microenvironment under chemotherapy. PLoS ONE. 2018;13:e0206292.PubMed
PubMed Central
Article
CAS
Google Scholar
98.Bowness R, Chaplain MA, Powathil GG, Gillespie SH. Modelling the effects of bacterial cell state and spatial location on tuberculosis treatment: insights from a hybrid multiscale cellular automaton model. J Theor Biol. 2018;446:87–100.PubMed
PubMed Central
Article
Google Scholar
99.Dai X, Xiang S, Li J, Gao Q, Yang K. Development of a colorimetric assay for rapid quantitative measurement of clavulanic acid in microbial samples. Sci China Life Sci. 2012;55:158–63.CAS
PubMed
Article
PubMed Central
Google Scholar
100.Kobayashi S, Arai S, Hayashi S, Sakaguchi T. Simple assay of β- lactamase with agar medium containing a chromogenic cephalosporin, pyridinium-2-azo-p-dimethylaniline chromophore (PADAC). Antimicrob Agents Chemother. 1988;32:1040–5.CAS
PubMed
PubMed Central
Article
Google Scholar More