Benthic estuarine communities' contribution to bioturbation under the experimental effect of marine heatwaves
1.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
2.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1–12 (2018).CAS
Article
Google Scholar
3.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).ADS
Article
Google Scholar
4.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS
Article
Google Scholar
5.Dee, L. E. E. et al. Temperature variability alters the stability and thresholds for collapse of interacting species. Philos. Trans. R. Soc. Biol. Sci. 375, 20190457 (2020).Article
Google Scholar
6.Leung, J. Y. S., Russell, B. D. & Connell, S. D. Adaptive responses of marine gastropods to heatwaves. One Earth 1, 374–381 (2019).Article
Google Scholar
7.Whiteley, N. M. & Mackenzie, C. L. Physiological responses of marine invertebrates to thermal stress. in Stressors in the Marine Environment (eds. Solan, M. & Whiteley, N. M.) 56–72 (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780198718826.003.0004.8.Lonhart, S. I., Jeppesen, R., Beas-luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 8, 1–15 (2019).
Google Scholar
9.Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).Article
Google Scholar
10.Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).ADS
Article
Google Scholar
11.Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 2015–2018 (2018).Article
CAS
Google Scholar
12.Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 1–10. https://doi.org/10.1038/s41598-020-63650-z (2020).CAS
Article
Google Scholar
13.Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evolut. https://doi.org/10.1002/ece3.2137 (2016).Article
Google Scholar
14.Verdelhos, T., Marques, J. C. & Anastácio, P. Behavioral and mortality responses of the bivalves Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s potential impacts. Ecol. Indic. 58, 95–103 (2015).Article
Google Scholar
15.Shanks, A. L. et al. Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnol. Oceanogr. 65, 627–636 (2020).ADS
Article
Google Scholar
16.Morgan, E. A., Brown, A., Ciotti, B. J. & Panton, A. Effects of temperature stress on ecological processes. in Stressors in the Marine Environment (eds. Solan, M. & Whiteley, N. M.) 213–227 (Oxford University Press, 2016). https://doi.org/10.1093/acprof:oso/9780198718826.003.0012.17.Beukema, J. J. & Dekker, R. Winters not too cold, summers not too warm: long-term effects of climate change on the dynamics of a dominant species in the Wadden Sea: the cockle Cerastoderma edule L. Mar. Biol. 167, 1–8 (2020).Article
Google Scholar
18.Sousa, R. et al. Die-offs of the endangered pearl mussel Margaritifera margaritifera during an extreme drought. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1244–1248 (2018).Article
Google Scholar
19.Smale, D. A., Yunnie, A. L. E., Vance, T. & Widdicombe, S. Disentangling the impacts of heat wave magnitude, duration and timing on the structure and diversity of sessile marine assemblages. PeerJ 2015, 1–23 (2015).
Google Scholar
20.McLusky, D. S. & Elliott, M. The Estuarine Ecosystem: Ecology (Threats and Management. Oxford Press, 2004).Book
Google Scholar
21.Johnson, R. G. Temperature variation in the infaunal environment of a sand flat. Limnol. Oceanogr. 10, 114–120 (1965).ADS
Article
Google Scholar
22.Amorim, V. E. et al. Immunological and oxidative stress responses of the bivalve Scrobicularia plana to distinct patterns of heatwaves. Fish Shellfish Immunol. 106, 1067–1077 (2020).CAS
PubMed
Article
Google Scholar
23.Grilo, T. F. F., Cardoso, P. G. G., Dolbeth, M., Bordalo, M. D. D. & Pardal, M. Â. A. Effects of extreme climate events on the macrobenthic communities’ structure and functioning of a temperate estuary. Mar. Pollut. Bull. 62, 303–311 (2011).CAS
PubMed
Article
Google Scholar
24.Dolbeth, M. et al. Long-term changes in the production by estuarine macrobenthos affected by multiple stressors. Estuar. Coast. Shelf Sci. 92, 10–18 (2011).ADS
Article
Google Scholar
25.Ouellette, D. et al. Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Mar. Ecol. Prog. Ser. 266, 185–193 (2004).ADS
Article
Google Scholar
26.Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: Moving from individual to community-level responses. Glob. Chang. Biol. 22, 974–989 (2016).ADS
PubMed
Article
Google Scholar
27.Solan, M., Bennett, E. M., Mumby, P. J., Leyland, J. & Godbold, J. A. Benthic-based contributions to climate change mitigation and adaptation. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190107 (2020).Article
Google Scholar
28.Kristensen, E. & Kostka, J. E. Macrofaunal burrows and irrigation in marine sediment: Microbiological and biogeochemical interactions. in Interactions Between Macro‐ and Microorganisms in Marine Sediments (eds. Kristensen, E., Haese, R. R. & Kostka, J. E.), 125–157 (American Geophysical Union, 2013). https://doi.org/10.1029/CE060p0125.29.Cozzoli, F. et al. Biological and physical drivers of bio-mediated sediment resuspension: A flume study on Cerastoderma edule. Estuar. Coast. Shelf Sci. 241, 106824 (2020).Article
Google Scholar
30.Soissons, L. M. et al. Sandification vs. muddification of tidal flats by benthic organisms: A flume study. Estuar. Coast. Shelf Sci. 228, 106355 (2019).Article
Google Scholar
31.Fernandes, S., Sobral, P. & Costa, M. H. Nereis diversicolor effect on the stability of cohesive intertidal sediments. Aquat. Ecol. 40, 567–579 (2006).CAS
Article
Google Scholar
32.Paramor, O. A. L. & Hughes, R. G. The effects of bioturbation and herbivory by the polychaete Nereis diversicolor on loss of saltmarsh in south-east England. J. Appl. Ecol. 41, 449–463 (2004).Article
Google Scholar
33.Dolbeth, M., Crespo, D., Leston, S. & Solan, M. Realistic scenarios of environmental disturbance lead to functionally important changes in benthic species-environment interactions. Mar. Environ. Res. 150, 104770 (2019).CAS
PubMed
Article
Google Scholar
34.Godbold, J. A. & Solan, M. Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philos. Trans. R. Soc. B Biol. Sci. 368, 20130186 (2013).Article
CAS
Google Scholar
35.Godbold, J. A., Hale, R., Wood, C. L. & Solan, M. Vulnerability of macronutrients to the concurrent effects of enhanced temperature and atmospheric pCO2 in representative shelf sea sediment habitats. Biogeochemistry 135, 89–102 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Sorte, C. J. B., Fuller, A. & Bracken, M. E. S. Impacts of a simulated heat wave on composition of a marine community. Oikos 119, 1909–1918 (2010).Article
Google Scholar
37.Pansch, C. et al. Heat waves and their significance for a temperate benthic community: A near-natural experimental approach. Glob. Change Biol. 24, 4357–4367 (2018).ADS
Article
Google Scholar
38.Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3, 3958–3985 (2013).PubMed
PubMed Central
Article
Google Scholar
39.Wrede, A., Beermann, J., Dannheim, J., Gutow, L. & Brey, T. Organism functional traits and ecosystem supporting services—A novel approach to predict bioirrigation. Ecol. Indic. 91, 737–743 (2018).Article
Google Scholar
40.Crespo, D. et al. New climatic targets against global warming: Will the maximum 2 °C temperature rise affect estuarine benthic communities. Sci. Rep. 7, 1–14 (2017).Article
CAS
Google Scholar
41.Galasso, H. L., Richard, M., Lefebvre, S., Aliaume, C. & Callier, M. D. Body size and temperature effects on standard metabolic rate for determining metabolic scope for activity of the polychaete Hediste (Nereis) diversicolor. PeerJ 6, e5675 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
42.Kristensen, E. Ventilation and oxygen uptake by three species of Nereis (Annelida: Polychaeta). I. Effects of hypoxia. Mar. Ecol. Prog. Ser. 12, 289–297 (1983).ADS
Article
Google Scholar
43.Cozzoli, F. et al. The combined influence of body size and density on cohesive sediment resuspension by bioturbators. Sci. Rep. 8, 1–12 (2018).CAS
Article
Google Scholar
44.Cozzoli, F. et al. A process based model of cohesive sediment resuspension under bioturbators’ influence. Sci. Total Environ. 670, 18–30 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
45.Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O.F. Müller) (Annelida: Polychaeta). Hydrobiologia 470, 203–218 (2002).Article
Google Scholar
46.Cassidy, C., Grange, L. J., Garcia, C., Bolam, S. G. & Godbold, J. A. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc. R. Soc. B Biol. Sci. 287, 20192143 (2020).Article
Google Scholar
47.Thomsen, M. S. et al. Compensatory responses can alter the form of the biodiversity—function relation curve. Philos. Trans. R. Soc. B 286, 20190287 (2019).CAS
Google Scholar
48.Hale, R. et al. Mediation of macronutrients and carbon by post-disturbance shelf sea sediment communities. Biogeochemistry 135, 121–133 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Karlson, K., Bonsdorff, E. & Rosenberg, R. The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio 36, 161–167 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Thomsen, M. S. et al. Compensatory responses can alter the form of the biodiversity-function relation curve. Proc. R. Soc. B Biol. Sci. 286, 20190287 (2019).CAS
Article
Google Scholar
51.Wohlgemuth, D., Solan, M. & Godbold, J. A. Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting. Proc. R. Soc. B: Biol. Sci. 284, 20162805 (2017).Article
Google Scholar
52.Lillebø, A. I., Neto, J. M., Flindt, M. R., Marques, J. C. & Pardal, M. A. Phosphorous dynamics in a temperate intertidal estuary. Estuar. Coast. Shelf Sci. 61, 101–109 (2004).ADS
Article
CAS
Google Scholar
53.Lillebø, A. I. et al. Management of a shallow temperate estuary to control eutrophication: The effect of hydrodynamics on the system’s nutrient loading. Estuar. Coast. Shelf Sci. 65, 697–707 (2005).ADS
Article
Google Scholar
54.Verdelhos, T., Cardoso, P. G., Dolbeth, M. & Pardal, M. A. Recovery trends of Scrobicularia plana populations after restoration measures, affected by extreme climate events. Mar. Environ. Res. 98, 39–48 (2014).CAS
PubMed
Article
Google Scholar
55.Hale, R., Mavrogordato, M. N., Tolhurst, T. J. & Solan, M. Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors. Sci. Rep. 4, 1–6 (2014).
Google Scholar
56.Benton, T. G., Solan, M., Travis, J. M. J. & Sait, S. M. Microcosm experiments can inform global ecological problems. Trends Ecol. Evol. 22, 516–521 (2007).PubMed
Article
PubMed Central
Google Scholar
57.Bento, E. G. et al. Climate influence on juvenile European sea bass (Dicentrarchus labrax, L.) populations in an estuarine nursery: A decadal overview. Mar. Environ. Res. 122, 93–104 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
58.Martinho, F. et al. The influence of an extreme drought event in the fish community of a southern Europe temperate estuary. Estuar. Coast. Shelf Sci. 75, 537–546 (2007).ADS
Article
Google Scholar
59.Solan, M. et al. In situ quantification of bioturbation using time-lapse fluorescent sediment profile imaging (f-SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).ADS
Article
Google Scholar
60.Schiffers, K., Teal, L. R., Travis, J. M. J. & Solan, M. An open source simulation model for soil and sediment bioturbation. PLoS ONE 6, e28028 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
61.Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of Seawater Analysis (Verlag Chemie, 1983).
Google Scholar
62.Jones, M. N. Nitrate reduction by shaking with cadmium. Alternative to cadmium columns. Water Res. 18, 643–646 (1984).ADS
CAS
Article
Google Scholar
63.Hayward, P. J. & Ryland, J. S. Handbook of the Marine Fauna of North-West Europe. (Oxford University Press, 2017). https://doi.org/10.1093/acprof:oso/9780199549443.001.0001.64.Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. 214 (PRIMER-E Ltd., Plymouth, UK, 2008).65.Ricotta, C. & Moretti, M. CWM and Rao’s quadratic diversity: A unified framework for functional ecology. Oecologia 167, 181–188 (2011).ADS
PubMed
Article
Google Scholar
66.Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article
Google Scholar
67.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. (2019) https://www.R-project.org/.68.Oksanen, J. et al. vegan: Community Ecology Package. R package 2.5-6. (2019). https://CRAN.Rproject.org/package=vegan.69.Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. (2014).70.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH
Book
Google Scholar More
