1.Hartman, K. et al. Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming. Microbiome 6, 14 (2018).Article
Google Scholar
2.Berzsenyi, Z., Győrffy, B. & Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 13, 225–244. https://doi.org/10.1016/S1161-0301(00)00076-9 (2000).Article
Google Scholar
3.Körschens, M. The importance of long-term field experiments for soil science and environmental research: a review. Plant Soil Environ. 52, 1–8 (2006).
Google Scholar
4.Zuber, S. M., Behnke, G., Nafziger, E. & Villamil, M. B. Crop rotation and tillage effects on soil physical and chemical properties in Illinois. Agron. J. 107, 971–978. https://doi.org/10.2134/agronj14.0465 (2015).CAS
Article
Google Scholar
5.Stott, D. E. Recommended Soil Health Indicators and Associated Laboratory Procedures. National Soil Health Specialist, Soil Health Division, U.S. Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS), Washington, D.C. (2019).6.Barrios, E. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64, 269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004 (2007).Article
Google Scholar
7.Garbeva, P., van Veen, J. A. & van Elsas, J. D. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42, 243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455 (2004).CAS
Article
PubMed
Google Scholar
8.Hatfield, J., Prueger, J. & Kustas, W. Spatial and temporal variation of energy and carbon fluxes in central Iowa. Agron. J. 99, 285–296. https://doi.org/10.2134/agronj2005.0116S (2007).CAS
Article
Google Scholar
9.Lehman, R. M. et al. Understanding and enhancing soil biological health: the solution for reversing soil degradation. Sustainability 7, 988–1027. https://doi.org/10.3390/su7010988 (2015).Article
Google Scholar
10.Weil, R. R., Islam, K. R., Stine, M. A., Gruver, J. B. & Samson-Liebig, S. E. Estimating active carbon for soil quality assessment: a simplified method for laboratory and field use. Am. J. Alter. Agric. 18, 3–17. https://doi.org/10.1079/AJAA200228 (2003).Article
Google Scholar
11.Idowu, O. et al. Farmer-oriented assessment of soil quality using field, laboratory, and VNIR spectroscopy methods. Int. J. Plant-Soil Relatsh. 307, 243–253. https://doi.org/10.1007/s11104-007-9521-0 (2008).CAS
Article
Google Scholar
12.Gunapala, N. & Scow, K. M. Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol. Biochem. 30, 805–816. https://doi.org/10.1016/S0038-0717(97)00162-4 (1998).CAS
Article
Google Scholar
13.Plaza-Bonilla, D., Álvaro-Fuentes, J. & Cantero-Martínez, C. Identifying soil organic carbon fractions sensitive to agricultural management practices. Soil Tillage Res. 139, 19–22. https://doi.org/10.1016/j.still.2014.01.006 (2014).Article
Google Scholar
14.Mirsky, S., Lanyon, L. & Needelman, B. Evaluating soil management using particulate and chemically labile soil organic matter fractions. Soil Sci. Soc. Am. J. 72, 180–185. https://doi.org/10.2136/sssaj2005.0279 (2008).ADS
CAS
Article
Google Scholar
15.Wright, S. F. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).ADS
CAS
Article
Google Scholar
16.Jan, M. T., Roberts, P., Tonheim, S. K. & Jones, D. L. Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils. Soil Biol. Biochem. 41, 2272–2282. https://doi.org/10.1016/j.soilbio.2009.08.013 (2009).CAS
Article
Google Scholar
17.Nannipieri, P. & Eldor, P. The chemical and functional characterization of soil N and its biotic components. Soil Biol. Biochem. 41, 2357–2369. https://doi.org/10.1016/j.soilbio.2009.07.013 (2009).CAS
Article
Google Scholar
18.Weintraub, M. N. & Schimel, J. P. Seasonal protein dynamics in Alaskan arctic tundra soils. Soil Biol. Biochem. 37, 1469–1475. https://doi.org/10.1016/j.soilbio.2005.01.005 (2005).CAS
Article
Google Scholar
19.Ros, G. H., Temminghoff, E. J. M. & Hoffland, E. Nitrogen mineralization: a review and meta-analysis of the predictive value of soil tests. Eur. J. Soil Sci. 62, 162–173. https://doi.org/10.1111/j.1365-2389.2010.01318.x (2011).CAS
Article
Google Scholar
20.Ros, G. H., Hanegraaf, M. C., Hoffland, E. & van Riemsdijk, W. H. Predicting soil N mineralization: relevance of organic matter fractions and soil properties. Soil Biol. Biochem. 43, 1714–1722. https://doi.org/10.1016/j.soilbio.2011.04.017 (2011).CAS
Article
Google Scholar
21.Chang, E.-H., Chung, R.-S. & Tsai, Y.-H. Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci. Plant Nutr. 53, 132–140. https://doi.org/10.1111/j.1747-0765.2007.00122.x (2007).ADS
CAS
Article
Google Scholar
22.Liebig, M., Carpenter-Boggs, L., Johnson, J. M. F., Wright, S. & Barbour, N. Cropping system effects on soil biological characteristics in the Great Plains. Renew. Agric. Food Syst. 21, 36–48. https://doi.org/10.1079/RAF2005124 (2006).Article
Google Scholar
23.Wright, S. & Upadhyaya, A. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biol. Biochem. 30, 1853–1857 (1998).CAS
Article
Google Scholar
24.Wright, S. F. & Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97–107 (1998).CAS
Article
Google Scholar
25.Lovelock, C. E., Wright, S. F., Clark, D. A. & Ruess, R. W. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J. Ecol. 92, 278–287. https://doi.org/10.1111/j.0022-0477.2004.00855.x (2004).CAS
Article
Google Scholar
26.Emran, M., Gispert, M. & Pardini, G. Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. Eur. J. Soil Sci. 63, 637–649. https://doi.org/10.1111/j.1365-2389.2012.01493.x (2012).CAS
Article
Google Scholar
27.Nichols, K. A. & Millar, J. Glomalin and soil aggregation under six management systems in the Northern Great Plains, USA. Open J. Soil Sci. 03(08), 5. https://doi.org/10.4236/ojss.2013.38043 (2013).CAS
Article
Google Scholar
28.Rillig, M., Ramsey, P., Morris, S. & Paul, E. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change. Int. J. Plant-Soil Relatsh. 253, 293–299. https://doi.org/10.1023/A:1024807820579 (2003).CAS
Article
Google Scholar
29.Klose, S. & Tabatabai, M. A. Response of phosphomonoesterases in soils to chloroform fumigation. J. Plant Nutr. Soil Sci. 165, 429–434. https://doi.org/10.1002/1522-2624(200208)165:4%3c429::AID-JPLN429%3e3.0.CO;2-S (2002).CAS
Article
Google Scholar
30.Wang, X.-C. & Lu, Q. Beta-glucosidase activity in paddy soils of the Taihu Lake Region, China. Pedosphere 16, 118–124. https://doi.org/10.1016/S1002-0160(06)60033-7 (2006).CAS
Article
Google Scholar
31.Wilson, D. B. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14, 259–263. https://doi.org/10.1016/j.mib.2011.04.004 (2011).CAS
Article
PubMed
Google Scholar
32.Shewale, J. G. β-Glucosidase: Its role in cellulase synthesis and hydrolysis of cellulose. Int. J. Biochem. 14, 435–443. https://doi.org/10.1016/0020-711X(82)90109-4 (1982).CAS
Article
PubMed
Google Scholar
33.Acosta-Martínez, V., Reicher, Z., Bischoff, M. & Turco, R. F. The role of tree leaf mulch and nitrogen fertilizer on turfgrass soil quality. Biol. Fertil. Soils 29, 55–61. https://doi.org/10.1007/s003740050524 (1999).Article
Google Scholar
34.Krogh, K. et al. Characterization and kinetic analysis of a thermostable GH3 β-glucosidase from Penicillium brasilianum. Appl. Microbiol. Biotechnol. 86, 143–154. https://doi.org/10.1007/s00253-009-2181-7 (2010).CAS
Article
PubMed
Google Scholar
35.Chen, M. et al. Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb. Technol. 46, 444–449. https://doi.org/10.1016/j.enzmictec.2010.01.008 (2010).CAS
Article
PubMed
Google Scholar
36.Günata, Z. & Vallier, M.-J. Production of a highly glucose-tolerant extracellular β-glucosidase by three Aspergillus strains. Biotechnol. Lett. 21, 219–223. https://doi.org/10.1023/A:1005407710806 (1999).Article
Google Scholar
37.Riou, C., Salmon, J.-M., Vallier, M.-J., Gunata, Z. & Barre, P. Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta -glucosidase from Aspergillus oryzae. Appl. Environ. Microbiol. 64, 3607 (1998).CAS
Article
Google Scholar
38.Tsukada, T., Igarashi, K., Yoshida, M. & Samejima, M. Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family 1 from the basidiomycete Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 73, 807–814. https://doi.org/10.1007/s00253-006-0526-z (2006).CAS
Article
PubMed
Google Scholar
39.Yang, S., Wang, L., Yan, Q., Jiang, Z. & Li, L. Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem. 115, 1247–1252. https://doi.org/10.1016/j.foodchem.2009.01.038 (2009).CAS
Article
Google Scholar
40.Arévalo Villena, M., Úbeda Iranzo, J. F., Gundllapalli, S. B., Cordero Otero, R. R. & Briones Pérez, A. I. Characterization of an exocellular β-glucosidase from Debaryomyces pseudopolymorphus. Enzyme Microb. Technol. 39, 229–234. https://doi.org/10.1016/j.enzmictec.2005.10.018 (2006).CAS
Article
Google Scholar
41.Amouri, B. & Gargouri, A. Characterization of a novel β-glucosidase from a Stachybotrys strain. Biochem. Eng. J. 32, 191–197. https://doi.org/10.1016/j.bej.2006.09.022 (2006).CAS
Article
Google Scholar
42.Okamoto, K., Sugita, Y., Nishikori, N., Nitta, Y. & Yanase, H. Characterization of two acidic β-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzyme Microb. Technol. 48, 359–364. https://doi.org/10.1016/j.enzmictec.2010.12.012 (2011).CAS
Article
PubMed
Google Scholar
43.Singhania, R. R., Patel, A. K., Sukumaran, R. K., Larroche, C. & Pandey, A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Biores. Technol. 127, 500–507. https://doi.org/10.1016/j.biortech.2012.09.012 (2013).CAS
Article
Google Scholar
44.Okamoto, K., Nakano, H., Yatake, T., Kiso, T. & Kitahata, S. Purification and some properties of a β-glucosidase from Flavobacterium johnsonae. Biosci. Biotechnol. Biochem. 64, 333–340. https://doi.org/10.1271/bbb.64.333 (2000).CAS
Article
PubMed
Google Scholar
45.Spano, G. et al. A β-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol. 98, 855–861. https://doi.org/10.1111/j.1365-2672.2004.02521.x (2005).CAS
Article
PubMed
Google Scholar
46.Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100. https://doi.org/10.1126/science.1203980 (2011).ADS
CAS
Article
PubMed
Google Scholar
47.Crookston, R., Kurle, J., Copeland, P. J., Ford, J. H. & Lueschen, W. E. Rotational cropping sequence affects yield of corn and soybean. Agron. J. 83, 108–113 (1991).Article
Google Scholar
48.Meese, B. G., Carter, P. R., Oplinger, E. S. & Pendleton, J. W. Corn/soybean rotation effect as influenced by tillage, nitrogen, and hybrid/cultivar. J. Prod. Agric. 4, 74–80 (1991).Article
Google Scholar
49.Kelley, K. W., Long, J. H. & Todd, T. C. Long-term crop rotations affect soybean yield, seed weight, and soil chemical properties. Field Crop Res. 83, 41–50. https://doi.org/10.1016/S0378-4290(03)00055-8 (2003).Article
Google Scholar
50.Mourtzinis, S. et al. Corn and soybean yield response to tillage, rotation, and nematicide seed treatment. Crop Sci. 57, 1704–1712. https://doi.org/10.2135/cropsci2016.09.0792 (2017).Article
Google Scholar
51.Farmaha, B. S. et al. Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated maize-soybean systems. Agron. J. 108, 2313–2321. https://doi.org/10.2134/agronj2016.01.0046 (2016).Article
Google Scholar
52.Crookston, R. K. & Kurle, J. E. Corn residue effect on the yield of corn and soybean grown in rotation. Agron. J. 81, 229–232. https://doi.org/10.2134/agronj1989.00021962008100020018x (1989).Article
Google Scholar
53.Whiting, K. R. & Crookston, R. K. Host-specific pathogens do not account for the corn-soybean rotation effect. Crop Sci. 33, 539–543. https://doi.org/10.2135/cropsci1993.0011183X003300030024x (1993).Article
Google Scholar
54.Copeland, P. J., Allmaras, R. R., Crookston, R. K. & Nelson, W. W. Corn-soybean rotation effects on soil water depletion. Agron. J. 85, 203–210. https://doi.org/10.2134/agronj1993.00021962008500020008x (1993).Article
Google Scholar
55.Li, J. et al. Soil-plant indices help explain legume response to crop rotation in a semiarid environment. Front. Plant Sci. https://doi.org/10.3389/fpls.2018.01488 (2018).Article
PubMed
PubMed Central
Google Scholar
56.Nickel, S. E., Crookston, R. K. & Russelle, M. P. Root growth and distribution are affected by corn-soybean cropping sequence. Agron. J. 87, 895–902. https://doi.org/10.2134/agronj1995.00021962008700050020x (1995).Article
Google Scholar
57.Bennett, A. J., Bending, G. D., Chandler, D., Hilton, S. & Mills, P. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations. Biol. Rev. 87, 52–71. https://doi.org/10.1111/j.1469-185X.2011.00184.x (2012).Article
PubMed
Google Scholar
58.Johnson, N., Copeland, P. J., Crookston, R. & Pfleger, F. L. Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agron. J. 84, 387–390 (1992).Article
Google Scholar
59.Chen, S., Porter, P. M., Reese, C. D. & Stienstra, W. C. Crop sequence effects on soybean cyst nematode and soybean and corn yields this research was supported by Minnesota soybean producers check-off funding through Minnesota research and promotion council and Minnesota agric. exp. stn.. Crop Sci. 41, 1843–1849. https://doi.org/10.2135/cropsci2001.1843 (2001).Article
Google Scholar
60.Grabau, Z. J. & Chen, S. Determining the role of plant-parasitic nematodes in the corn-soybean crop rotation yield effect using nematicide application: II. Soybean. Agron. J. 108, 1168–1179. https://doi.org/10.2134/agronj2015.0432 (2016).CAS
Article
Google Scholar
61.Hoss, M., Behnke, G., Davis, A., Nafziger, E. & Villamil, M. B. Short corn rotations do not improve soil quality. Compared with corn monocultures. Agron. J. 110, 1274–1288. https://doi.org/10.2134/agronj2017.11.0633 (2018).CAS
Article
Google Scholar
62.Plaza, C., Courtier-Murias, D., Fernández, J. M., Polo, A. & Simpson, A. J. Physical, chemical, and biochemical mechanisms of soil organic matter stabilization under conservation tillage systems: a central role for microbes and microbial by-products in C sequestration. Soil Biol. Biochem. 57, 124–134. https://doi.org/10.1016/j.soilbio.2012.07.026 (2013).CAS
Article
Google Scholar
63.Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213. https://doi.org/10.1016/j.soilbio.2015.08.010 (2015).CAS
Article
Google Scholar
64.Tiedje, J. M., Asuming-Brempong, S., Nüsslein, K., Marsh, T. L. & Flynn, S. J. Opening the black box of soil microbial diversity. Appl. Soil. Ecol. 13, 109–122. https://doi.org/10.1016/S0929-1393(99)00026-8 (1999).Article
Google Scholar
65.Hussain, S., Ghaffar, A. & Aslam, M. Biological-control of macrophomina-phaseolina charcoal rot of sunflower and mung bean. J. Phytopathol. 130, 157–160. https://doi.org/10.1111/j.1439-0434.1990.tb01163.x (1990).Article
Google Scholar
66.Khan, A. N. et al. Molecular identification and genetic characterization of Macrophomina phaseolina strains causing pathogenicity on sunflower and chickpea. Front. Microbiol. 8, 1309. https://doi.org/10.3389/fmicb.2017.01309 (2017).Article
PubMed
PubMed Central
Google Scholar
67.Ramezani, M. et al. Soybean charcoal rot disease fungus Macrophomina phaseolina in Mississippi produces the phytotoxin (-)-botryodiplodin but no detectable phaseolinone. J. Nat. Prod. 70, 128–129. https://doi.org/10.1021/np060480t (2007).CAS
Article
PubMed
Google Scholar
68.Smith, L.J., Datnoff, L.E., Pernezny, K. & Schlub, R.L. Phylogenetic and pathogenic characterization of Corynespora cassiicola isolates. In II International Symposium on Tomato Diseases 808, 51–56 (2007)69.Deon, M. et al. Characterization of a cassiicolin-encoding gene from Corynespora cassiicola, pathogen of rubber tree (Hevea brasiliensis). Plant Sci. 185–186, 227–237. https://doi.org/10.1016/j.plantsci.2011.10.017 (2012).CAS
Article
PubMed
Google Scholar
70.Videira, S. I. R. et al. Mycosphaerellaceae: chaos or clarity?. Stud. Mycol. 87, 257–421 (2017).CAS
Article
Google Scholar
71.Wijayawardene, N. N. et al. Outline of ascomycota: 2017. Fungal Divers. 88, 167–263. https://doi.org/10.1007/s13225-018-0394-8 (2018).Article
Google Scholar
72.Olofsson, J., Ericson, L., Torp, M., Stark, S. & Baxter, R. Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen. Nat. Clim. Change 1, 220–223. https://doi.org/10.1038/Nclimate1142 (2011).ADS
CAS
Article
Google Scholar
73.Wells, L. D. & McManus, P. S. A photographic diagnostic guide for identification of the principal cranberry fruit rot pathogens. Plant Health Prog. https://doi.org/10.1094/php-2013-0729-01-dg (2013).Article
Google Scholar
74.Yeager, C. M. et al. Polysaccharide degradation capability of actinomycetales soil isolates from a semiarid grassland of the Colorado Plateau. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.03020-16 (2017).Article
PubMed
PubMed Central
Google Scholar
75.Loria, R., Bukhalid, R. A., Fry, B. A. & King, R. R. Plant pathogenicity in the genus Streptomyces. Plant Dis. 81, 836–846. https://doi.org/10.1094/Pdis.1997.81.8.836 (1997).Article
PubMed
Google Scholar
76.Li, Y., Liu, J., Diaz-Cruz, G., Cheng, Z. & Bignell, D. R. D. Virulence mechanisms of plant-pathogenic Streptomyces species: an updated review. Microbiology 165, 1025–1040. https://doi.org/10.1099/mic.0.000818 (2019).CAS
Article
PubMed
Google Scholar
77.Abdalla, M. H. Solubilization of rock phosphates by rhizobium and bradyrhizobium. Folia Microbiol. 39, 53–56. https://doi.org/10.1007/Bf02814530 (1994).CAS
Article
Google Scholar
78.Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y. & Dhiba, D. Soil microbial resources for improving fertilizers efficiency in an integrated plant nutrient management system. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01606 (2018).Article
PubMed
PubMed Central
Google Scholar
79.Moebius-Clune, B. N. Comprehensive Assessment of Soil Health: The Cornell Framework Manual (Cornell University, 2016).
Google Scholar
80.Deng, S. P. & Tabatabai, M. A. Cellulase activity of soils. Soil Biol. Biochem. 26, 1347–1354. https://doi.org/10.1016/0038-0717(94)90216-X (1994).CAS
Article
Google Scholar
81.Riesenfeld, C. S., Goodman, R. M. & Handelsman, J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ. Microbiol. 6, 981–989 (2004).CAS
Article
Google Scholar
82.Gohl, D. et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat. Biotechnol. 34, 942–949. https://doi.org/10.1038/nbt.3601 (2016).CAS
Article
PubMed
Google Scholar
83.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2020).84.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
85.Bolyen, E. et al. Qiime 2: reproducible, interactive, scalable, and extensible microbiome data science. Report No. 2167–9843, (PeerJ Preprints, 2018).86.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
87.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. https://doi.org/10.3402/mehd.v26.27663 (2015).Article
PubMed
PubMed Central
Google Scholar
88.Morton, J. T. et al. Balance trees reveal microbial niche differentiation. mSystems https://doi.org/10.1128/mSystems.00162-16 (2017).Article
PubMed
PubMed Central
Google Scholar
89.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264. https://doi.org/10.1093/nar/gky1022 (2019).CAS
Article
PubMed
Google Scholar
90.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. https://doi.org/10.1093/nar/gks1219 (2013).CAS
Article
PubMed
Google Scholar
91.Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).MathSciNet
MATH
Google Scholar
92.Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441 (1952).Article
MATH
Google Scholar More