More stories

  • in

    Evidence for self-sustaining populations of Arcuatula senhousia in the UK and a review of this species’ potential impacts within Europe

    1.Crooks, J. A. The population ecology of an exotic mussel, Musculista senhousia, in a Southern California bay. Estuaries 19, 42–50 (1996).Article 

    Google Scholar 
    2.Huber, M. Compendium of Bivalves: A Full-Color Guide to 3,300 of the World’s Marine Bivalves: A Status on Bivalvia After 250 Years of Research. (ConchBooks, 2010).3.Kulikova, V. A. Morphology, seasonal population dynamics, and settlement of larvae of the bivalve mollusc Musculista senhousia in Busse Lagoon (South Sakhalin). Sov. J. Mar. Biol. 4, 769–773 (1978).
    Google Scholar 
    4.Chuang, S. H. On Malayan shores: a log cabin book. (Muwu Shosa, 1961).5.CABI. Arcuatula senhousia [original text by A. Zenetos]. In: Invasive Species Compendium. CAB International, Wallingford, UK. www.cabi.org/isc (2019).6.Kincaid, T. The acclimitization of marine animals in Pacific northwest waters. Min. Conchol Club South. Calif. 72, 1–3 (1947).
    Google Scholar 
    7.Willan, R. C. Successful establishment of the Asian mussel Musculista senhousia (Benson in Cantor, 1842) in New Zealand. Rec. Auckl. Inst. Museum 22, 85–96 (1985).
    Google Scholar 
    8.Willan, R. C. The mussel Musculista senhousia in Australasia; another aggressive alien highlights the need for quarantine at ports. Bull. Mar. Sci. 41, 475–489 (1987).ADS 

    Google Scholar 
    9.Hoenselaar, H. J. & Hoenselaar, J. Musculista senhousia (Benson in Cantor, 1842) in the western Mediterranean (Bivalvia, Mytilidae). Basteria 53, 73–76 (1989).
    Google Scholar 
    10.Mastrototaro, F., Matarrese, A. & D’Onghia, G. Occurrence of Musculista senhousia (Mollusca: Bivalvia) in the Taranto seas (eastern-central Mediterranean Sea). J. Mar. Biol. Ass. UK 83, 1279–1280 (2003).Article 

    Google Scholar 
    11.Micu, D. First record of Musculista senhousia (Brenson in Cantor, 1842) from the Black Sea. (Abstracts of the International Symposium of Malacology, 19–22 Aug 2004, Sibiu, Romania. p. 47, 2004).12.Ruci, S., Kasemi, D. & Beqiraj, S. Data on macrozoobenthos in rocky areas of the Adriatic Sea of Albania. IMPACT Int. J. Res. Appl. Nat. Soc. Sci. 2, 63–70 (2014).13.Kovalev, E. A., Zhivoglyadova, L. A., Revkov, N. K., Frolenko, L. N. & Afanasyev, D. F. First record of the bivalve Arcuatula senhousia (Benson, 1842) in the Russian part of the the Azov-Black Sea basin. Russ. J. Biol. Invasions 8, 316–320 (2017).Article 

    Google Scholar 
    14.Lourenço, P. M., Henriques, M., Catry, I., Pedro, J. & Catry, T. First record of the invasive Asian date mussel Arcuatula senhousia (Benson, 1842) (Mollusca: Bivalvia: Mytilidae) in West Africa. J. Nat. Hist. 52, 2567–2571 (2018).15.Barash, A. & Danin, Z. The Indo-Pacific species of Mollusca in the Mediterranean and notes on a collection from the Suez Canal. Isrl. J. Zool. 21, 301–374 (1972).
    Google Scholar 
    16.George, E. L. & Nair, N. B. The growth rates of the estuarine mollusc Musculista arcuatula Yamamoto and Habe (Bivalvia: Mytilidae). Hydrobiologia 45, 239–248 (1974).Article 

    Google Scholar 
    17.Morton, B. Life-history characteristics and sexual strategy of Mytilopsis sallei (Bivalvia: Dreissenacea), introduced into Hong Kong. J. Zool. 219, 469–485 (1989).Article 

    Google Scholar 
    18.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–332 (2001).Article 

    Google Scholar 
    19.Sgro, L., Turolla, E., Rossi, R. & Mistri, M. Sexual maturation and larval development of the immigrant Asian date mussel, Musculista senhousia, in a Po River deltaic lagoon. Ital. J. Zool. 69, 223–228 (2002).Article 

    Google Scholar 
    20.CIESM. Musculista senhousia. In: Atlas of Exotic Species in the Mediterranean. The Mediterranean Science Commission (CIESM). https://www.ciesm.org/atlas (2005).21.Cohen, A. N. Musculista senhousia. In: The Exotics Guide: Non-native Marine Species of the North American Pacific Coast. Centre for Research on Aquatic Bioinvasions; San Francisco Estuary Institute. www.exoticsguide.org (2011).22.Morton, B. Some aspects of the biology, population dynamics, and functional morphology of Musculista senhousia Benson (Bivalvia, Mytilidae). Pac. Sci. 28, 19–33 (1974).
    Google Scholar 
    23.Mistri, M. Ecological characteristics of the invasive Asian date mussel, Musculista senhousia, in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25, 431–440 (2002).Article 

    Google Scholar 
    24.Bachelet, G. et al. A round-the-world tour almost completed: first records of the invasive mussel Musculista senhousia in the north-east Atlantic (southern Bay of Biscay). Mar. Biodivers. Rec. 2, e119 (2009).Article 

    Google Scholar 
    25.Holman, L. E. et al. Detection of introduced and resident marine species using environmental DNA metabarcoding of sediment and water. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    26.Barfield, P., Holmes, A., Watson, G. & Rowe, G. First evidence of Arcuatula senhousia (Benson, 1842), the Asian date mussel in UK waters. J. Conchol. 43, 217–222 (2018).
    Google Scholar 
    27.ICES. Maps: ICES statistical rectangles. https://www.ices.dk/data/maps/Pages/ICES-statistical-rectangles.aspx (2020).28.World Sea Temperature. Southampton Sea Temperature. https://www.seatemperature.org/europe/united-kingdom/southampton.htm (2020).29.Natural England. Solent Maritime EMS. Natural England, UK. http://publications.naturalengland.org.uk/publication/3194402 (2001).30.Katsanevakis, S., Wallentinus, I., Zenetos, A., Leppäkoski, E. & Çinar, M. E. Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat. Invas. 9, 391–423 (2014).Article 

    Google Scholar 
    31.Bouma, T. J., Olenin, S. & Reise, K. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helgol. Mar. Res. 63, 95–106 (2009).ADS 
    Article 

    Google Scholar 
    32.NCC. Towards a Framework for Defining and Measuring Change in Natural Capital. Working Paper 1. (Natural Capital Committee (NCC), 2014).33.Jeschke, J. M. et al. Defining the impact of non-native species. Conserv. Biol. 28, 1188–1194 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Reusch, T. B. H. & Williams, S. L. Variable responses of native eelgrass Zostera marina to a non-indigenous bivalve Musculista senhousia. Oecologia 113, 428–441 (1998).35.Albentosa, M. Effect of food concentration inside eelgrass beds on the energy balance of the invasive mussel Musculista senhousia. Mar. Fresh. Behav. Physiol. 35, 247–260 (2002).CAS 
    Article 

    Google Scholar 
    36.Allen, B. J. & Williams, S. L. Native eelgrass Zostera marina controls growth and reproduction of an invasive mussel through food limitation. Mar. Ecol. Prog. Ser. 254, 57–67 (2003).37.Lau, S. C. Y., Brettell, D. L. D. F. & Astudillo, J. C. Rapid assessment of the invasive Xenostrobus securis on cultured oysters in Hong Kong. Reg. Stud. Mar. Sci. 17, 11–16 (2018).Article 

    Google Scholar 
    38.Mistri, M., Rossi, R. & Fano, E. A. The spread of the alien bivalve (Musculista senhousia) in the Sacca Di Goro lagoon (Adriatic Sea, Italy). J. Moll. Stud. 70, 257–261 (2004).Article 

    Google Scholar 
    39.Hosozawa, T. et al. Temporal change in the spatial distribution of Asian bag mussel Arcuatula senhousia (Bivalvia, Mytilidae) population in Ohashi-River, Shimane Prefecture. . Japanese J. Benthol. 70, 1–12 (2015).
    Google Scholar 
    40.Crooks, J. A. Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar. Ecol. Prog. Ser. 162, 137–152 (1998).41.Crooks, J. A. & Khim, H. S. Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J. Exp. Mar. Bio. Ecol. 240, 53–75 (1999).42.Watson, G. J., Murray, J. M., Schaefer, M. & Bonner, A. Bait worms: a valuable and important fishery with implications for fisheries and conservation management. Fish Fish. 18, 374–388 (2016).Article 

    Google Scholar 
    43.Clarke, L. J. et al. Using remote sensing to quantify fishing effort and predict shorebird conflicts in an intertidal fishery. Ecol. Inform. 50, 136–148 (2019).Article 

    Google Scholar 
    44.European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. (2000).45.Siah, A., Pellerin, J., Amiard, J. C., Pelletier, E. & Viglino, L. Delayed gametogenesis and progesterone levels in soft-shell clams (Mya arenaria) in relation to in situ contamination to organotins and heavy metals in the St. Lawrence River (Canada). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 135, 145–156 (2003).46.Harding, S., Nelson, L. & Glover, T. Solent Oyster Restoration Project Management Plan (Blue Marine Foundation (BLUE), 2016).
    Google Scholar 
    47.Hooper, T. et al. Application of the natural capital approach to the marine environment to aid decision-making. Ecosyst. Serv. 38, 100947 (2019).MathSciNet 
    Article 

    Google Scholar 
    48.Thornton, A. et al. Initial natural capital accounts for the UK marine and coastal environment. Final Report. Report prepared for the Department for Environment Food and Rural Affairs. (Joint Nature Conservation Committee (JNCC); Centre for Environment, Fisheries and Aquaculture Science (CEFAS), 2019).49.Worsfold, T. M., Pennisi, N. & Ashelby, C. W. Theora lubrica Gould, 1861 (Bivalvia: Semelidae), new to the UK, with notes on associated non-native species, and an earlier date of introduction for Arcuatula senhousia (Bivalvia: Mytilidae) to the UK. J. Conchol. 43, 665–674 (2020).
    Google Scholar 
    50.Wolff, W. J. & Reise, K. Oyster Imports as a Vector for the Introduction of Alien Species into Northern and Western European Coastal Waters. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management (eds. Leppäkoski, E., Gollasch, S. & Olenin, S.) 193–205 (Springer, 2002).51.Slack-Smith, S. M. & Brearley, A. Musculista senhousia (Benson, 1842); a mussel recently introduced into the Swan River estuary, Western Australia (Mollusca: Mytilidae). Rec. West. Aust. Museum 13, 225–230 (1987).
    Google Scholar 
    52.Slijkerman, D. M. E. et al. Monitoring Groningen Sea Ports. Non-indigenous species and risks from ballast water in Eemshaven and Delfzijl. Wageningen Marine Research report C045/17 A. (University of Wageningen, 2017).53.Kim, H. M. et al. Epibionts associated with floating Sargassum horneri in the Korea strait. Algae 34, 303–313 (2019).CAS 
    Article 

    Google Scholar 
    54.Reusch, T. B. H. & Williams, S. L. Macrophyte canopy structure and the success of an invasive bivalve. Oikos 84, 398–416 (1999).Article 

    Google Scholar 
    55.Mastrototaro, F., Matarrese, A. & D’Onghia, G. Observations on the recruitment of Musculista senhousia (Mollusca, Bivalvia) in the Taranto seas (Eastern-Central Mediterranean Sea). Biogeographia 25, 55–63 (2004).
    Google Scholar 
    56.Verween, A., Vincx, M. & Degraer, S. The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits. J. Exp. Mar. Bio. Ecol. 348, 111–120 (2007).Article 

    Google Scholar 
    57.Pilditch, C. A. & Grant, J. Effect of temperature fluctuations and food supply on the growth and metabolism of juvenile sea scallops (Placopecten magellanicus). Mar. Biol. 134, 235–248 (1999).Article 

    Google Scholar 
    58.Vélez, A. & Epifanio, C. E. Effects of temperature and ration on gametogenesis and growth in the tropical mussel Perna perna (L.). Aquaculture 22, 21–26 (1981).Article 

    Google Scholar 
    59.Liang, Z. L., Kim, Y. H., Zhang, Z. F., Lim, S. M. & Kang, K. H. Water temperature and salinity tolerance of embryos and spat of the mussel, Musculista senhousia. Korean J. Malacol. 25, 179–187 (2009).
    Google Scholar 
    60.Inoue, T. & Yamamuro, M. Respiration and ingestion rates of the filter-feeding bivalve Musculista senhousia: implications for water-quality control. J. Mar. Syst. 26, 183–192 (2000).Article 

    Google Scholar 
    61.Asif, J. H. & Krug, P. J. Lineage distribution and barriers to gene flow among populations of the globally invasive marine mussel Musculista senhousia. Biol. Invas. 14, 1431–1444 (2012).Article 

    Google Scholar 
    62.Creese, R., Hooker, S., de Luca, S. & Wharton, Y. Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. New Zeal. J. Mar. Freshw. Res. 31, 225–236 (1997).Article 

    Google Scholar 
    63.Crooks, J. A. & Soulé, M. Lag times in population explosions of invasive species: causes and implications. in Invasive Species and Biodiversity Management (eds. Sandlund, O. T., Schei, P. J. & Viken, A.) 103–125 (Kluwer Academic Publishers, 1999).64.Yamamuro, M. & Jun, Æ. What prevents Musculista senhousia from constructing byssal thread mats in estuarine environments? A case study focusing on Lake Shinji and nearby estuarine waters. Lanscape Ecol Eng 6, 23–28 (2010).Article 

    Google Scholar 
    65.Scirocco, T. & Urbano, F. The population of the non-indigenous bivalve Arcuatula senhousia of the Varano Lagoon (Adriatic Sea, Italy). J. Environ. Sci. Eng. 7, 345–353 (2018).
    Google Scholar 
    66.Yamamuro, M., Oka, N. & Hiratsuka, J. Predation by diving ducks on the biofouling mussel Musculista senhousia in a eutrophic estuarine lagoon. Mar. Ecol. Prog. Ser. 174, 101–106 (1998).ADS 
    Article 

    Google Scholar 
    67.Reusch, T. B. H. Native predators contribute to invasion resistance to the non-indigenous bivalve Musculista senhousia in southern California, USA. . Mar. Ecol. Prog. Ser. 170, 159–168 (1998).ADS 
    Article 

    Google Scholar 
    68.Kushner, R. B. & Hovel, K. A. Effects of native predators and eelgrass habitat structure on the introduced Asian mussel Musculista senhousia (Benson in Cantor) in southern California. J. Exp. Mar. Biol. Ecol. 332, 166–177 (2006).Article 

    Google Scholar 
    69.Sugawara, K., Ebihara, T., Ishii, T., Aoki, K. & Uchida, A. Outbreak of a mussel Brachidontes senhousia in Urayasu shellfish rearing ground. Rep. Chiba Prefect. Inshore Fish. Exp. Stn. 3, 83–92 (1961).
    Google Scholar 
    70.Uchida, A. Growth of a mussel Musculista senhousia and the influence of Musculista senhousia on the clam Tapes philippinarum. Rep. Chiba Prefect. Inshore Fish. Exp. Stn. 7, 69–78 (1965).
    Google Scholar 
    71.Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).Article 

    Google Scholar 
    72.Castorani, M. C. N. & Hovel, K. A. Invasive prey indirectly increase predation on their native competitors. Ecology 96, 1911–1922 (2015).PubMed 
    Article 

    Google Scholar 
    73.FAO. Fisheries Global Information System (FIGIS). Food and Agriculture Organization (FAO). http://www.fao.org/figis/servlet/TabSelector (2017).74.CEFAS. Sanitary survey of the Solent. CEFAS report on behalf of the Food Standards Agency, to demonstrate compliance with the requirements for classification of bivalve mollusc production areas in England and Wales under of EC Regulation No. 854/2004. (Centre for Environment, Fisheries and Aquaculture Science (CEFAS), 2013).75.Humphreys, J., Caldow, R. W. G., Mcgrorty, S., West, A. D. & Jensen, A. C. Population dynamics of naturalised manila clams Ruditapes philippinarum in british coastal waters. Mar. Biol. 151, 2255–2270 (2007).Article 

    Google Scholar 
    76.Pranovi, F. et al. An ecological imbalance induced by a non-native species: The Manila clam in the Venice Lagoon. Biol. Invasions 8, 595–609 (2006).Article 

    Google Scholar 
    77.Kikuchi, T. & Peres, J. M. Consumer ecology of seagrass beds. In Seagrass Ecosystems A Scientific Perspective (eds McRoy, C. P. & Helffrich, C.) (Marcel Dekker Inc, 1977).
    Google Scholar 
    78.Kikuchi, T. Ecology and biological production of Lake Naka-umi and adjacent regions. 3. Macro-benthic communities of Lake Shinji-ko and Lake Naka-umi. Spec. Publ. from Seto Mar. Biol. Lab. 2, 21–44 (1964).79.Jackson, E. L., Rees, S. E., Wilding, C. & Attrill, M. J. Use of a seagrass residency index to apportion commercial fishery landing values and recreation fisheries expenditure to seagrass habitat service. Conserv. Biol. 29, 899–909 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Peters, J. R., McCloskey, R. M., Hinder, S. L. & Unsworth, R. K. F. Motile fauna of sub-tidal Zostera marina meadows in England and Wales. Mar. Biodivers. 45, 647–654 (2015).Article 

    Google Scholar 
    81.Unsworth, R. K. F., Nordlund, L. M. & Cullen-Unsworth, L. C. Seagrass meadows support global fisheries production. Conserv. Lett. 12, 1–8 (2019).Article 

    Google Scholar 
    82.Bertelli, C. M. & Unsworth, R. K. F. Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat. Mar. Pollut. Bull. 83, 425–429 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.UNEP. Out of Blue: The value of seagrasses to the enviroment and to people. (United Nations Environment Programme (UNEP), 2020).84.Jones, B. L. & Unsworth, R. K. F. The perilous state of seagrass in the British Isles. R. Soc. Open Sci. 3, 1–14 (2016).
    Google Scholar 
    85.de los Santos, C. B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 1–8 (2019).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    86.Project Seagrass. Project Seagrass. https://www.projectseagrass.org/ (2018).87.Claereboudt, M. R., Bureau, D., Côté, J. & Himmelman, J. H. Fouling development and its effect on the growth of juvenile giant scallops (Placopecten magellanicus) in suspended culture. Aquaculture 121, 327–342 (1994).Article 

    Google Scholar 
    88.Lacoste, E. & Gaertner-Mazouni, N. Biofouling impact on production and ecosystem functioning: a review for bivalve aquaculture. Rev. Aquac. 7, 187–196 (2015).Article 

    Google Scholar 
    89.Renault, T. Appearance and spread of diseases among bivalve molluscs in the northern hemisphere in relation to international trade. OIE Rev. Sci. Tech. 15, 551–561 (1996).CAS 
    Article 

    Google Scholar 
    90.Beaumont, A. R., Hawkins, M. P., Doig, F. L., Davies, I. M. & Snow, M. Three species of Mytilus and their hybrids identified in a Scottish Loch: natives, relicts and invaders?. J. Exp. Mar. Bio. Ecol. 367, 100–110 (2008).Article 

    Google Scholar 
    91.Miller, A., Inglis, G. J., Poulin, R. & Inglis, G. J. Use of the introduced bivalve, Musculista senhousia, by generalist parasites of native New Zealand bivalves. New Zeal. J. Mar. Freshw. Res. 42, 143–151 (2008).Article 

    Google Scholar 
    92.Bierbaum, R. & Shumway, S. E. Filtration and oxygen consumption in mussels, Mytilus edulis, with and without pea crabs, Pinnotheres maculatus. Estuaries 11, 264–271 (1988).CAS 
    Article 

    Google Scholar 
    93.Sun, W., Sun, S., Yuqi, W., Baowen, Y. & Weibo, S. The prevalence of the pea crab, Pinnotheres sinensis, and its impact on the condition of the cultured mussel, Mytilus galloprovincialis, in Jiaonan waters (Shandong Province, China). Aquaculture 253, 57–63 (2006).Article 

    Google Scholar 
    94.Morris, J. P., Backeljau, T. & Chapelle, G. Shells from aquaculture: a valuable biomaterial, not a nuisance waste product. Rev. Aquac. 11, 42–57 (2019).Article 

    Google Scholar 
    95.Carlton, J. T. History, biogeography, and ecology of the introduced marine and estuarine invertebrates of the Pacific coast of North America. PhD Thesis. (University of California, 1979).96.Michalek, K., Ventura, A. & Sanders, T. Mytilus hybridisation and impact on aquaculture: A minireview. Mar. Genomics 27, 3–7 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Seed, R. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores. Oecologia 3, 277–316 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    98.King, P. A., McGrath, D. & Gosling, E. M. Reproduction and settlement of Mytilus edulis on an exposed rocky shore in Galway bay, west coast of Ireland. J. Mar. Biol. Assoc. United Kingdom 69, 355–365 (1989).Article 

    Google Scholar 
    99.van der Schatte Olivier, A. et al. A global review of the ecosystem services provided by bivalve aquaculture. Rev. Aquac. 1, 1–23. https://doi.org/10.1111/raq.12301 (2018).Article 

    Google Scholar 
    100.Yamamuro, M. & Ishitobi, Y. Seasonal change in a filter-feeding bivalve Musculista senhousia population of a eutrophic estuarine lagoon. J. Mar. Syst. 26, 117–126 (2000).Article 

    Google Scholar 
    101.Broszeit, S., Hattam, C. & Beaumont, N. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis. Mar. Pollut. Bull. 103, 5–14 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Valipour, R., Boegman, L., Bouffard, D. & Rao, Y. R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 62, 1045–1065 (2017).ADS 
    Article 

    Google Scholar 
    103.Mistri, M. & Munari, C. The invasive bag mussel Arcuatula senhousia is a CO2 generator in near-shore coastal ecosystems. J. Exp. Mar. Bio. Ecol. 440, 164–168 (2013).Article 

    Google Scholar 
    104.Filgueira, R. et al. An integrated ecosystem approach for assessing the potential role of cultivated bivalve shells as part of the carbon trading system. Mar. Ecol. Prog. Ser. 518, 281–287 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    105.Reaugh, K. E., Harris, J. M. & Branch, G. M. Further refutation of the primary-secondary settlement hypothesis for the brown mussel Perna perna. African J. Mar. Sci. 29, 545–549 (2007).Article 

    Google Scholar 
    106.Cohen, A. N. Guide to the Exotic Species of San Francisco Bay. San Francisco Estuary Institute, Oakland, California, USA. http://www.exoticsguide.org (2005).107.Como, S. et al. Assessing the impact of the Asian mussel Arcuatula senhousia in the recently invaded Oristano Lagoon-Gulf system (W Sardinia, Italy). Estuar. Coast. Shelf Sci. 201, 123–131 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    108.Ragnarsson, S. Á. & Raffaelli, D. Effects of the mussel Mytilus edulis L. on the invertebrate fauna of sediments. J. Exp. Mar. Bio. Ecol. 241, 31–43 (1999).Article 

    Google Scholar 
    109.Barash, A. L. & Danin, Z. Mollusca from the stomach of Sparus auratus fished in the lagoon or Bardwall. Argamon 2, 97–104 (1971).
    Google Scholar 
    110.Taylor, D. et al. Facilitation effects of invasive and farmed bivalves on native populations of the sea slug Pleurobranchaea maculata. Mar. Ecol. Prog. Ser. 537, 39–48 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    111.Herbert, R. J. H., Stillman, R. A., Davies, C. J., Bowgen, K. M. & Hatton, J. The importance of nonnative Pacific oyster reefs as supplementary feeding areas for coastal birds on estuary mudflats. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 1294–1307 (2018).Article 

    Google Scholar 
    112.Hanna, G. D. Introduced mollusks of western North America. Occ. Pap. Calif. Acad. Sci. 48, 1–108 (1966).
    Google Scholar 
    113.Vilariño, M. L. et al. Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int. Microbiol. 12, 145–151 (2009).PubMed 

    Google Scholar 
    114.Vilà, M. & Hulme, P. E. Impact of Biological Invasions on Ecosystem Services. (Springer International Publishing Switzerland, 2017). https://doi.org/10.1007/978-3-319-45121-3_5.115.Williams, F. et al. The Economic Cost of Invasive Non-Native Species on Great Britain. Cent. Agric. Biosci. Int. CAB/001/09, 1–199 (2010).116.Watson, S. C. L., Preston, J., Beaumont, N. J. & Watson, G. J. Assessing the natural capital value of water quality and climate regulation in temperate marine systems using a EUNIS biotope classification approach. Sci. Total Environ. (2020)117.Farber, S. C., Costanza, R. & Wilson, M. A. Economic and ecological concepts for valuing ecosystem services. Ecol. Econ. 41, 375–392 (2002).Article 

    Google Scholar 
    118.Melathopoulos, A. P. & Stoner, A. M. Critique and transformation: On the hypothetical nature of ecosystem service value and its neo-Marxist, liberal and pragmatist criticisms. Ecol. Econ. 117, 173–181 (2015).Article 

    Google Scholar 
    119.Faasse, M. A record of the Asian mussel Arcuatula senhousia (Benson in Cantor, 1842) from NW Europe (the Netherlands). Spirula 416, 14–15 (2018).
    Google Scholar 
    120.Tepolt, C. K. & Somero, G. N. Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J. Exp. Biol. 217, 1129–1138 (2014).PubMed 
    Article 

    Google Scholar 
    121.Guardiola, M., Frotscher, J. & Uriz, M. J. High genetic diversity, phenotypic plasticity, and invasive potential of a recently introduced calcareous sponge, fast spreading across the Atlanto-Mediterranean basin. Mar. Biol. 163, 1–16 (2016).Article 

    Google Scholar 
    122.Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373–385 (2009).PubMed 
    Article 

    Google Scholar 
    123.Tabak, M. A., Webb, C. T. & Miller, R. S. Propagule size and structure, life history, and environmental conditions affect establishment success of an invasive species. Sci. Rep. 8, 1–9 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Brain size and neuron numbers drive differences in yawn duration across mammals and birds

    1.Barbizet, J. Yawning. J. Neurol. Neurosurg. Psychiatry 21, 203–209 (1958).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Baenninger, R. Some comparative aspects of yawning in Betta splendens, Homo sapiens, Panthera leo, and Papio sphinx. J. Comp. Psychol. 101, 349 (1987).Article 

    Google Scholar 
    3.de Vries, J. I. P., Visser, G. H. A. & Prechtl, H. F. R. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum. Dev. 7, 301–322 (1982).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Provine, R. R. Yawning as a stereotyped action pattern and releasing stimulus. Ethology 72, 109–122 (1986).Article 

    Google Scholar 
    5.Tesfaye, Y. & Lal, S. Hazard of yawning. Can. Med. Assoc. J. 142, 15 (1990).CAS 

    Google Scholar 
    6.Smith, E. O. Yawning: an evolutionary perspective. Hum. Evol. 14, 191–198 (1999).Article 

    Google Scholar 
    7.Guggisberg, A. G., Mathis, J., Schnider, A. & Hess, C. W. Why do we yawn? Neurosci. Biobehav. Rev. 34, 1267–1276 (2010).PubMed 
    Article 

    Google Scholar 
    8.Gallup, A. C. Why do we yawn? Primitive versus derived features. Neurosci. Biobehav. Rev. 35, 765–769 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Provine, R. R., Tate, B. C. & Geldmacher, L. L. Yawning: no effect of 3–5% CO2, 100% O2, and exercise. Behav. Neural Biol. 48, 382–393 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Gallup, A. C. & Gallup, G. G. Jr. Yawning as a brain cooling mechanism: nasal breathing and forehead cooling diminish the incidence of contagious yawning. Evol. Psychol. 5, 92–101 (2007).Article 

    Google Scholar 
    11.Gallup, A. C. & Gallup, G. G. Jr. Yawning and thermoregulation. Physiol. Behav. 95, 10–16 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Gallup, A. C. & Eldakar, O. T. The thermoregulatory theory of yawning: what we know from over 5 years of research. Front. Neurosci. 6, 188 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Shoup-Knox, M. L., Gallup, A. C., Gallup, G. & McNay, E. C. Yawning and stretching predict brain temperature changes in rats: support for the thermoregulatory hypothesis. Front. Evol. Neurosci. 2, 108 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Gallup, G. G. & Gallup, A. C. Excessive yawning and thermoregulation: two case histories of chronic, debilitating bouts of yawning. Sleep Breath. 14, 157–159 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Eguibar, J. R., Uribe, C. A., Cortes, C., Bautista, A. & Gallup, A. C. Yawning reduces facial temperature in the high-yawning subline of Sprague-Dawley rats. BMC Neurosci. 18, 3 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Ramirez, V., Ryan, C. P., Eldakar, O. T. & Gallup, A. C. Manipulating neck temperature alters contagious yawning in humans. Physiol. Behav. 207, 86–89 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gallup, A. C., Miller, R. R. & Clark, A. B. Changes in ambient temperature trigger yawning but not stretching in rats. Ethology 117, 145–153 (2011).Article 

    Google Scholar 
    18.Gallup, A. C. & Eldakar, O. T. Contagious yawning and seasonal climate variation. Front. Evolut. Neurosci. 3, 3 (2011).
    Google Scholar 
    19.Massen, J. J. M., Dusch, K., Eldakar, O. T. & Gallup, A. C. A thermal window for yawning in humans: yawning as a brain cooling mechanism. Physiol. Behav. 130, 145–148 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Eldakar, O. T. et al. Temperature-dependent variation in self-reported contagious yawning. Adapt. Hum. Behav. Physiol. 1, 460–466 (2015).Article 

    Google Scholar 
    21.Falk, D. Brain evolution in Homo: The “radiator” theory. Behav. Brain Sci. 13, 333–381 (1990).Article 

    Google Scholar 
    22.Kiyatkin, E. A., Brown, P. L. & Wise, R. A. Brain temperature fluctuation: a reflection of functional neural activation. Eur. J. Neurosci. 16, 164–168 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Baker, M. A. Brain cooling in endotherms in heat and exercise. Annu. Rev. Physiol. 44, 85–85 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wang, H. et al. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front. Neurosci. 8, 307 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    25.Richie, J. M. Energetic aspects of nerve conduction: the relationships between heat production, electrical activity and metabolism. Prog. Biophys. Mol. Biol. 26, 147–187 (1973).Article 

    Google Scholar 
    26.Gallup, A. C., Church, A. M. & Pelegrino, A. J. Yawn duration predicts brain weight and cortical neuron number in mammals. Biol. Lett. 12, 20160545 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Gallup, A. C., Crowe, B. & Yanchus, M. Yawn duration predicts brain volumes in wild cats (Felidae). Int. J. Comp. Psychol. 30, 1–5 (2017).Article 

    Google Scholar 
    28.Gallup, A. C., Moscatello, L. & Massen, J. J. M. Brain weight predicts yawn duration across domesticated dog breeds. Curr. Zool. 66, 401–405 (2020).29.Kilgore, D. L., Bernstein, M. H. & Hudson, D. M. Brain temperatures in birds. J. Comp. Physiol. 110, 209–215 (1976).Article 

    Google Scholar 
    30.McKechnie, A. E. & Wolf, B. O. The physiology of heat tolerance in small endotherms. Physiology 34, 302–313 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Bernstein, M. H., Sandoval, I., Curtis, M. B. & Hudson, D. M. Brain temperature in pigeons: effects of anterior respiratory bypass. J. Comp. Physiol. 129, 115–118 (1979).Article 

    Google Scholar 
    32.Porter, W. R. & Witmer, L. M. Avian cephalic vascular anatomy, sites of thermal exchange, and the rete ophthalmicum. Anat. Rec. 299, 1461–1486 (2016).Article 

    Google Scholar 
    33.Gallup, A. C., Miller, M. L. & Clark, A. B. Yawning and thermoregulation in budgerigars, Melopsittacus undulatus. Anim. Behav. 77, 109–113 (2009).Article 

    Google Scholar 
    34.Gallup, A. C., Miller, M. L. & Clark, A. B. The direction and range of ambient temperature change influences yawning in budgerigars (Melopsittacus undulatus). J. Comp. Psychol. 124, 133 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Gallup, A. C. et al. Thermal imaging reveals sizable shifts in facial temperature surrounding yawning in budgerigars (Melopsittacus undulatus). Temperature 4, 429–435 (2017).Article 

    Google Scholar 
    36.Herculano-Houzel, S. & Lent, R. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Revell, L. J. Size‐correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    38.Prinzinger, R., Preßmar, A. & Schleucher, E. Body temperature in birds. Comp. Biochem. Phys. A 99, 499–506 (1991).Article 

    Google Scholar 
    39.Jessen, C. Temperature Regulation in Humans and Other Mammals (Springer, 2001).40.O’Brien, H. D. From anomalous arteries to selective brain cooling: parallel evolution of the artiodactyl carotid rete. Anat. Rec. 303, 308–317 (2020).Article 

    Google Scholar 
    41.Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325, 468–470 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Iwaniuk, A. N., Dean, K. M. & Nelson, J. E. Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): Comparisons with other birds and primates. Brain Behav. Evol. 65, 40–59 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.von Eugen, K., Ströckens, F., Backes, H., Endepols, H., & Güntürkün, O. Glucose Metabolism of the Avian Brain: an FDG-PET Study in Pigeons (Columba livia) with Estimated Arterial Input Function of Anesthetized and Awake State. Poster # 068.12/QQ22 Neuroscience Meeting Planner (Online) (Society for Neuroscience, 2018).45.Herculano-Houzel, S. Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PLoS ONE 6, e17514 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Kverková, K. et al. Sociality does not drive the evolution of large brains in eusocial African mole-rats. Sci. Rep. 8, 9203 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Buffenstein, R. & Yahav, S. Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal? J. Therm. Biol. 16, 227–232 (1991).Article 

    Google Scholar 
    48.Tucker, R. The digging behavior and skin differentiations in Heterocephalus glaber. J. Morphol. 168, 51–71 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.McNab, B. K. The metabolism of fossorial rodents: a study of convergence. Ecology 47, 712–733 (1966).Article 

    Google Scholar 
    50.Stephan, H. Methodische Studien über den quantitativen Vergleich architektonischer Struktureinheiten des Gehirns. Z. wiss. Zool. 164, 143–172 (1960).
    Google Scholar 
    51.Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12138–12143 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Herculano-Houzel, S., Collins, C. E., Wong, P. & Kaas, J. K. Cellular scaling rules for primate brains. Proc. Natl Acad. Sci. USA 104, 3562–3567 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Herculano-Houzel, S. et al. Updated neuronal scaling rules for the brains of Glires (rodents/lagomorphs). Brain Behav. Evol. 78, 302–314 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Herculano-Houzel, S., Catania, K., Manger, P. R. & Kaas, J. H. Mammalian brains are made of these: a dataset of the numbers and densities of neuronal and nonneuronal cells in the brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and their relationship with body mass. Brain Behav. Evol. 86, 145–163 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dos Santos, S. E. et al. Cellular scaling rules for the brains of marsupials: not as “primitive” as expected. Brain Behav. Evol. 89, 48–63 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kazu, R. S., Maldonado, J., Mota, B., Manger, P. R. & Herculano-Houzel, S. Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Front. Neuroanat. 8, 128 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Collins, C. E. et al. Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proc. Natl Acad. Sci. USA 113, 740–745 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Jardim-Messeder, D. et al. Dogs have the most neurons, though not the largest brain: trade-off between body mass and number of neurons in the cerebral cortex of large carnivoran species. Front. Neuroanat. 11, 118 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear-protein in vertebrates. Development 116, 201–211 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Rehkämper, G., Kart, E., Frahm, H. D. & Werner, C. W. Discontinuous variability of brain composition among domestic chicken breeds. Brain Behav. Evol. 61, 59–69 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Horschler, D. J. et al. Absolute brain size predicts dog breed differences in executive function. Anim. Cogn. 22, 187–198 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Rogell, B., Dowling, D. K. & Husby, A. Controlling for body size leads to inferential biases in the biological sciences. Evol. Lett. 4, 73–82 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Gutierrez-Ibanez, C., Iwaniuk, A. N. & Wylie, D. R. Relative brain size is not correlated with display complexity in manakins: a reanalysis of Lindsay et al. (2015). Brain Behav. Evol. 87, 223–226 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    66.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Boil. Evol. 34, 1812–1819 (2017).CAS 
    Article 

    Google Scholar 
    68.Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology (ed. Garamszegi, L. Z.) 263–286 (Springer, 2014).69.Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Gelman, A. et al. Bayesian Data Analysis (CRC Press, 2013).71.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2016).72.Lo, S. & Andrews, S. To transform or not to transform: using generalized linear mixed models to analyse reaction time data. Front. Psychol. 6, 1171 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Gelman, A., Hwang, J. & Vehtari, A. Understanding predictive information criteria for Bayesian models. Stat. Comput. 24, 997–1016 (2014).Article 

    Google Scholar 
    74.Lemoine, N. P. Moving beyond noninformative priors: why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).Article 

    Google Scholar 
    75.Bürkner, P. C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    76.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 

    Google Scholar 
    77.McShane, B. B., Gal, D., Gelman, A., Robert, C. & Tackett, J. L. Abandon statistical significance. Am. Stat. 73, 235–245 (2019).Article 

    Google Scholar 
    78.Sawilowsky, S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8, 467–474 (2009).Article 

    Google Scholar  More

  • in

    Elevational and seasonal patterns of butterflies and hawkmoths in plant-pollinator networks in tropical rainforests of Mount Cameroon

    1.Classen, A. et al. Specialization of plant–pollinator interactions increases with temperature at Mt. Kilimanjaro. Ecol. Evol. 10, 2182–2195 (2020).
    Google Scholar 
    2.Klecka, J., Hadrava, J., Biella, P. & Akter, A. Flower visitation by hoverflies (Diptera: Syrphidae) in a temperate plant-pollinator network. PeerJ 2018, e6025 (2018).
    Google Scholar 
    3.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).
    Google Scholar 
    4.Martínez-Adriano, C. A., Díaz-Castelazo, C. & Aguirre-Jaimes, A. Flower-mediated plant-butterfly interactions in an heterogeneous tropical coastal ecosystem. PeerJ 2018, e5493 (2018).
    Google Scholar 
    5.Mertens, J. E. J. et al. Changes of pollinating community of Scadoxus cinnabarinus (Amaryllidaceae) along its elevational range on Mount Cameroon. Arthropod. Plant. Interact. 14, 215–226 (2020).
    Google Scholar 
    6.Wardhaugh, C. W. How many species of arthropods visit flowers?. Arthropod. Plant. Interact. 9, 547–565 (2015).
    Google Scholar 
    7.Hahn, M. & Brühl, C. A. The secret pollinators: an overview of moth pollination with a focus on Europe and North America. Arthropod. Plant. Interact. 10, 21–28 (2016).
    Google Scholar 
    8.Willmer, P. Pollination and Floral Ecology (Princeton University Press, 2011).
    Google Scholar 
    9.Johnson, S. D. et al. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct. Ecol. 31, 101–115 (2017).
    Google Scholar 
    10.Darwin, C. On the Various Contrivances by Which British and Foreign Orchids are Fertilized (Murray, 1862).
    Google Scholar 
    11.Fox, K. et al. Nectar Robbery and Thievery in the hawk moth (Lepidoptera: Sphingidae)-Pollinated Western Prairie Fringed Orchid Platanthera praeclara. Ann. Entomol. Soc. Am. 108, 1000–1013 (2015).
    Google Scholar 
    12.Martins, D. J. & Johnson, S. D. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biol. J. Linn. Soc. 110, 199–213 (2013).
    Google Scholar 
    13.Arroyo, M. T. K., Till-Bottraud, I., Torres, C., Henríquez, C. A. & Martínez, J. Display size preferences and foraging habits of high andean butterflies pollinating Chaetanthera lycopodioides (Asteraceae) in the subnival of the central Chilean Andes. Arctic Antarct. Alp. Res. 39, 347–352 (2007).
    Google Scholar 
    14.Santos, R. S., Milfont, M. O., Silva, M. M., Carneiro, L. T. & Castro, C. C. Butterflies provide pollination services to macadamia in northeastern Brazil. Sci. Hortic. (Amst.) 259, 108818 (2020).
    Google Scholar 
    15.Fleming, T. H. & Holland, J. N. The evolution of obligate pollination mutualisms: Senita cactus and senita moth. Oecologia 114, 368–375 (1998).
    Google Scholar 
    16.Skogen, K. A., Overson, R. P., Hilpman, E. T. & Fant, J. B. Hawkmoth pollination facilitates long-distance pollen dispersal and reduces isolation across a gradient of land-use change. Ann. Mo. Bot. Gard. 104, 495–511 (2019).
    Google Scholar 
    17.Corbet, S. A. Butterfly nectaring flowers: butterfly morphology and flower form. Entomol. Exp. Appl. 96, 289–298 (2000).
    Google Scholar 
    18.Tiple, A. D., Khurad, A. M. & Dennis, R. L. H. Adult butterfly feeding-nectar flower associations: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. J. Nat. Hist. 43, 855–884 (2009).
    Google Scholar 
    19.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon Press, 1979).
    Google Scholar 
    20.Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: the case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).
    Google Scholar 
    21.Glover, B. J. Pollinator attraction: the importance of looking good and smelling nice. Curr. Biol. 21, R307–R309 (2011).
    Google Scholar 
    22.Kelber, A., Balkenius, A. & Warrant, E. J. Colour vision in diurnal and nocturnal hawkmoths. Integr. Comp. Biol. 43, 571–579 (2003).
    Google Scholar 
    23.Ômura, H. & Honda, K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia 142, 588–596 (2005).
    Google Scholar 
    24.Pohl, N. B., Van Wyk, J. & Campbell, D. R. Butterflies show flower colour preferences but not constancy in foraging at four plant species. Ecol. Entomol. 36, 290–300 (2011).
    Google Scholar 
    25.Yurtsever, S., Okyar, Z. & Guler, N. What colour of flowers do Lepidoptera prefer for foraging?. Biologia (Bratisl). 65, 1049–1056 (2010).
    Google Scholar 
    26.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 
    27.Klomberg, Y. et al. Spatiotemporal shifts in the role of floral traits in shaping tropical plant-pollinator interactions. bioRxiv 2020.10.16.342386. https://doi.org/10.1101/2020.10.16.342386 (2020).28.Ollerton, J., Johnson, S. D. & Hingston, A. B. Geographical variation in diversity and specificity of pollination systems. In Plant–Pollinator Interactions: From Specialization to Generalization (eds Waser, N. M. & Ollerton, J.) 283–308 (University of Chicago Press, 2006).
    Google Scholar 
    29.Maicher, V. et al. Flying between raindrops: strong seasonal turnover of several Lepidoptera groups in lowland rainforests of Mount Cameroon. Ecol. Evol. 8, 12761–12772 (2018).
    Google Scholar 
    30.Maicher, V. et al. Seasonal shifts of biodiversity patterns and species’ elevation ranges of butterflies and moths along a complete rainforest elevational gradient on Mount Cameroon. J. Biogeogr. 47, 342–354 (2020).
    Google Scholar 
    31.MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Princeton University Press, 1972).
    Google Scholar 
    32.McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. In Encyclopedia of Life Sciences (ed. John Wiley & Sons, Ltd), a0022548 (Wiley, Chichester, 2010) https://doi.org/10.1002/9780470015902.a0022548.33.Šmilauer, P. & Lepš, J. Multivariate analysis of ecological data using Canoco 5 (Cambridge University Press, 2014). https://doi.org/10.1017/CBO9781139627061.
    Google Scholar 
    34.Kato, M. et al. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia. Am. J. Bot. 95, 1375–1394 (2008).
    Google Scholar 
    35.Momose, K. et al. Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant-pollinator community in a lowland dipterocarp forest. Am. J. Bot. 85, 1477–1501 (1998).
    Google Scholar 
    36.Ramirez, N. Biologia de Polinizacion en una Comunidad Arbustiva Tropical de la Alta Guayana Venezolana. Biotropica 21, 319 (1989).
    Google Scholar 
    37.Van Dulmen, A. Pollination and phenology of flowers in the canopy of two contrasting rain forest types in Amazonia, Colombia. Plant Ecology. 153, 73–85 (2001).
    Google Scholar 
    38.Nsor, C. A. & Chapman, H. M. A preliminary investigation into the avian pollinators of three tree species in a Nigerian montane forest. Malimbus 35, 38–49 (2013).
    Google Scholar 
    39.Weber, N., Kalko, E. K. V. & Fahr, J. A first assessment of home range and foraging behaviour of the African long-tongued bat Megaloglossus woermanni (Chiroptera: Pteropodidae) in a heterogeneous landscape within the Lama Forest Reserve, Benin. Acta Chiropterol. 11, 317–329 (2009).
    Google Scholar 
    40.Borges, R. M., Gowda, V. & Zacharias, M. Butterfly pollination and high-contrast visual signals in a low-density distylous plant. Oecologia 136, 571–573 (2003).
    Google Scholar 
    41.Mizusawa, L., Takimoto, G., Yamasaki, M., Isagi, Y. & Hasegawa, M. Comparison of pollination characteristics between the insular shrub Clerodendrum izuinsulare and its widespread congener C.trichotomum. Plant Species Biol. 29, 73–84 (2014).
    Google Scholar 
    42.Budumajji, U. & Solomon Raju, A. J. Pollination ecology of Bidens pilosa L. (Asteraceae). Taiwania 63, 89–100 (2018).
    Google Scholar 
    43.Valentin-Silva, A., Godinho, M. A. S., Cruz, K. C., Lelis, S. M. & Vieira, M. F. Three psychophilous Asteraceae species with distinct reproductive mechanisms in southeastern Brazil. New Zeal. J. Bot. 54, 498–510 (2016).
    Google Scholar 
    44.Valtonen, A. et al. Tropical phenology: Bi-annual rhythms and interannual variation in an Afrotropical butterfly assemblage. Ecosphere 4, art36 (2013).
    Google Scholar 
    45.Aizen, M. A. Down-facing flowers, hummingbirds and rain. Taxon 52, 675–680 (2003).
    Google Scholar 
    46.Janeček, Š, Bartoš, M. & Njabo, K. Y. Convergent evolution of sunbird pollination systems of Impatiens species in tropical Africa and hummingbird systems of the New World. Biol. J. Linn. Soc. 115, 127–133 (2015).
    Google Scholar 
    47.Bartoš, M. & Janeček, Š. Pollinator-induced twisting of flowers sidesteps floral architecture constraints. Curr. Biol. 24, R793–R795 (2014).
    Google Scholar 
    48.Bärtschi, F. et al. Elevational richness patterns of sphingid moths support area effects over climatic drivers in a near-global analysis. Glob. Ecol. Biogeogr. 28, 917–927 (2019).
    Google Scholar 
    49.Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).
    Google Scholar 
    50.Hořák, D. et al. Forest structure determines spatial changes in avian communities along an elevational gradient in tropical Africa. J. Biogeogr. 46, 2466–2478 (2019).
    Google Scholar 
    51.Ramos-Jiliberto, R. et al. Topological change of Andean plant-pollinator networks along an altitudinal gradient. Ecol. Complex. 7, 86–90 (2010).
    Google Scholar 
    52.Bloch, D. & Erhardt, A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes. Ecology 89, 2453–2460 (2008).
    Google Scholar 
    53.Brehm, G., Zeuss, D. & Colwell, R. K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography (Cop.) 42, 632–642 (2019).
    Google Scholar 
    54.Kaczorowski, R. L., Seliger, A. R., Gaskett, A. C., Wigsten, S. K. & Raguso, R. A. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Funct. Ecol. 26, 577–587 (2012).
    Google Scholar 
    55.Dellinger, A. S. Pollination syndromes in the 21st century: where do we stand and where may we go?. New Phytol. 228, 1193–1213 (2020).
    Google Scholar 
    56.Larsen, T. Butterflies of West Africa (Apollo Books, 2005).
    Google Scholar 
    57.Ballesteros-Mejia, L., Kitching, I. J., Jetz, W., Nagel, P. & Beck, J. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob. Ecol. Biogeogr. 22, 586–595 (2013).
    Google Scholar 
    58.Cheek, M., Cable, S., Hepper, F. N., Ndam, N. & Watts, J. Mapping plant biodiversity on Mount Cameroon. In The Biodiversity of African Plants (eds van der Maesen, L. et al.) 110–120 (Springer, 1996). https://doi.org/10.1007/978-94-009-0285-5_16.
    Google Scholar 
    59.Weinstein, B. G. MotionMeerkat: integrating motion video detection and ecological monitoring. Methods Ecol. Evol. 6, 357–362 (2015).
    Google Scholar 
    60.Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).
    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing (2019).62.Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (1987).
    Google Scholar 
    63.Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 1–12 (2006).
    Google Scholar 
    64.Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
    Google Scholar 
    65.Almeida-Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
    Google Scholar 
    66.Bartoš, M. et al. Self-compatibility and autonomous selfing of plants in meadow communities. Plant Biol. 22, 120–128 (2020).
    Google Scholar 
    67.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017).
    Google Scholar 
    68.Hurvich, C. M. & Tsai, C.-L. A corrected akaike information criterion for vector autoregressive model selection. J. Time Ser. Anal. 14, 271–279 (1993).
    Google Scholar 
    69.ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 50 (Microcomputer Power, 2012).
    Google Scholar  More

  • in

    Leadership – not followership – determines performance in ant teams

    1.Wilson, E. O. The insect societies. (Harvard University Press, Cambridge, Massachusetts, USA, 1971).
    Google Scholar 
    2.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robson, S. K. & Traniello, J. F. Key individuals and the organisation of labor in ants. In Information processing in social insects, 239–259 (Springer, 1999).4.Smith, A. The wealth of nations (London, Methuen & Co, 1776).5.Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects (Princeton University Press, 1978).6.Jeanne, R. L. The evolution of the organization of work in social insects. Italian J. Zool. 20, 119–133 (1986).
    Google Scholar 
    7.Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).Article 

    Google Scholar 
    8.Franks, N. R. The organization of working teams in social insects. Trends Ecol. Evol. 2, 72–75 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Robinson, G. E. Regulation of division of labor in insect societies. Ann. Rev. Entomol. 37, 637–665 (1992).CAS 
    Article 

    Google Scholar 
    10.O’Donnell, S. & Jeanne, R. L. Forager specialization and the control of nest repair in Polybia occidentalis olivier (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 27, 359–364 (1990).Article 

    Google Scholar 
    11.Wahl, L. Evolving the division of labour: generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Jaffé, R., Kronauer, D. J., Bernhard Kraus, F., Boomsma, J. J. & Moritz, R. F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).Article 

    Google Scholar 
    14.Wilson, E. O. Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 157–165 (1980).Article 

    Google Scholar 
    15.Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant solenopsis invicta buren. Animal Behav. 29, 410–420 (1981).Article 

    Google Scholar 
    16.Detrain, C. & Pasteels, J. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera: Myrmicinae). J. Insect behav. 4, 157–176 (1991).Article 

    Google Scholar 
    17.Theraulaz, G., Bonabeau, E. & Denuebourg, J. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    18.Johnson, B. R. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 147–152 (2003).Article 

    Google Scholar 
    19.Dukas, R. & Visscher, P. K. Lifetime learning by foraging honey bees. Animal Behav. 48, 1007–1012 (1994).Article 

    Google Scholar 
    20.Richardson, T. O., Mullon, C., Marshall, J. A., Franks, N. R. & Schlegel, T. The influence of the few: a stable ‘oligarchy’ controls information flow in house-hunting ants. Proc. R. Soc. B 285, 20172726 (2018).PubMed 
    Article 

    Google Scholar 
    21.Trumbo, S. T. & Robinson, G. E. Learning and task interference by corpse-removal specialists in honey bee colonies. Ethology 103, 966–975 (1997).Article 

    Google Scholar 
    22.Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behav. 58, 437–442 (1999).CAS 
    Article 

    Google Scholar 
    23.Dukas, R. Life history of learning: performance curves of honeybees in settings that minimize the role of learning. Animal Behav. 75, 1125–1130 (2008).Article 

    Google Scholar 
    24.Charbonneau, D., Sasaki, T. & Dornhaus, A. Who needs ‘lazy’workers? inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PloS one 12, e0184074 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F. & Sumpter, D. J. Information flow, opinion polling and collective intelligence in house–hunting social insects. Philosop. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1567–1583 (2002).Article 

    Google Scholar 
    27.Pratt, S. C., Mallon, E. B., Sumpter, D. J. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).Article 

    Google Scholar 
    28.Möglich, M. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25, 205–225 (1978).Article 

    Google Scholar 
    29.Visscher, P. K. Group decision making in nest-site selection among social insects. Ann. Rev. Entomol. 52, 255–275 (2007).CAS 
    Article 

    Google Scholar 
    30.McGlynn, T. P. The ecology of nest movement in social insects. Ann. Rev. Entomol. 57, 291–308 (2012).CAS 
    Article 

    Google Scholar 
    31.Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Richardson, T. O., Sleeman, P. A., McNamara, J. M., Houston, A. I. & Franks, N. R. Teaching with evaluation in ants. Curr. Biol. 17, 1520–1526 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Franklin, E. L., Richardson, T. O., Sendova-Franks, A. B., Robinson, E. J. & Franks, N. R. Blinkered teaching: tandem running by visually impaired ants. Behav. Ecol. Sociobiol. 65, 569–579 (2011).Article 

    Google Scholar 
    34.Franks, N. R. et al. Ant search strategies after interrupted tandem runs. J. Exper. Biol. 213, 1697–1708 (2010).Article 

    Google Scholar 
    35.Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B Biol. Sci. 272, 1091–1099 (2005).Article 

    Google Scholar 
    36.Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    37.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer Science & Business Media, 2003).38.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    39.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    41.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. 112, 4690–4695 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Pratt, S. C., Sumpter, D. J., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behav. 70, 1023–1036 (2005).Article 

    Google Scholar 
    43.Volny, V. P. & Gordon, D. M. Genetic basis for queen–worker dimorphism in a social insect. Proc. Natl Acad. Sci. 99, 6108–6111 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Walsh, J. T., Warner, M. R., Kase, A., Cushing, B. J. & Linksvayer, T. A. Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Animal Behav. 141, 161–169 (2018).Article 

    Google Scholar 
    45.Seeley, T. D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12, 253–259 (1983).Article 

    Google Scholar 
    46.Boesch, C. Cooperative hunting roles among tai chimpanzees. Human Nat. 13, 27–46 (2002).Article 

    Google Scholar 
    47.Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).Article 

    Google Scholar 
    48.Gazda, S. K., Connor, R. C., Edgar, R. K. & Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (tursiops truncatus) off cedar key, florida. Proc. R. Soc. B Biol. Sci. 272, 135–140 (2005).Article 

    Google Scholar 
    49.Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Nagy, M. et al. Context-dependent hierarchies in pigeons. Proc. Natl Acad. Sci. USA 110, 13049–13054 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. Basketball teams as strategic networks. PloS One 7, e47445 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Alleman, A., Stoldt, M., Feldmeyer, B. & Foitzik, S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol. Ecol. 28, 2342–2359 (2019).PubMed 
    Article 

    Google Scholar 
    53.Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Collett, T. S., Graham, P. & Durier, V. Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).CAS 
    Article 

    Google Scholar 
    56.Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).Article 

    Google Scholar 
    57.Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. & Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Chittka, L. & Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2, 151–154 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova-Franks, A. B. & Franks, N. R. Do ants need to be old and experienced to teach? J. Exp. Biol. 215, 1287–1292 (2012).PubMed 
    Article 

    Google Scholar 
    60.Westhus, C., Kleineidam, C. J., Roces, F. & Weidenmüller, A. Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Animal Behav. 85, 27–34 (2013).Article 

    Google Scholar 
    61.Dukas, R. Animal expertise: mechanisms, ecology and evolution. Animal Behav. 147, 199–210 (2019).Article 

    Google Scholar 
    62.Carter, C. E. & Grahn, J. A. Optimizing music learning: exploring how blocked and interleaved practice schedules affect advanced performance. Front. Psychol. 7, 1251 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Stroeymeyt, N., Franks, N. R. & Giurfa, M. Knowledgeable individuals lead collective decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).PubMed 
    Article 

    Google Scholar 
    64.Stroeymeyt, N., Giurfa, M. & Franks, N. R. Information certainty determines social and private information use in ants. Sci. Rep. 7, 43607 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    65.Hansen, M. J., Schaerf, T. M. & Ward, A. J. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).Article 

    Google Scholar 
    66.Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Leca, J.-B., Gunst, N., Thierry, B. & Petit, O. Distributed leadership in semifree-ranging white-faced capuchin monkeys. Animal Behav. 66, 1045–1052 (2003).Article 

    Google Scholar 
    68.McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).Article 

    Google Scholar 
    69.Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).PubMed 
    Article 

    Google Scholar 
    70.Cook, C. N. et al. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J. Animal Ecol. 88, 236–246 (2019).Article 

    Google Scholar 
    71.Eyer, P.-A., Freyer, J. & Aron, S. Genetic polyethism in the polyandrous desert ant cataglyphis cursor. Behav. Ecol. 24, 144–151 (2013).Article 

    Google Scholar 
    72.Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav. 65, 215–223 (2003).Article 

    Google Scholar 
    73.Dornhaus, A., Franks, N. R., Hawkins, R. & Shere, H. Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behav. 67, 959–963 (2004).Article 

    Google Scholar 
    74.Planqué, R., Dechaume-Moncharmont, F.-X., Franks, N. R., Kovacs, T. & Marshall, J. A. Why do house-hunting ants recruit in both directions? Naturwissenschaften 94, 911–918 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Cooperative root graft networks benefit mangrove trees under stress

    1.Yli-Vakkuri, P. Studies on physical root connections between the trees in Scots pine stands in Finland. Acta Fenn. 60, 5–117 (1953).Article 

    Google Scholar 
    2.Graham, B. F. & Bormann, F. H. Natural root grafts. Bot. Rev. 32, 255–292 (1966).Article 

    Google Scholar 
    3.Keeley, J. Population variation in root grafting and a hypothesys. Oikos 52, 364–366 (1988).Article 

    Google Scholar 
    4.Epstein, A. Root graft transmission of tree pathogens. Annu. Rev. Phitopathol. 196, 181–192 (1978).Article 

    Google Scholar 
    5.Stokes, A. et al. Mechanical resistance of different tree species to rockfall in the French Alps. Plant Soil 278, 107–117 (2005).CAS 
    Article 

    Google Scholar 
    6.Egerton-Warburton, L. M., Querejeta, J. I. & Allen, M. F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J. Exp. Bot. 58, 1473–1483 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Deslippe, J. R., Hartmann, M., Grayston, S. J., Simard, S. W. & Mohn, W. W. Stable isotope probing implicates a species of Cortinarius in carbon transfer through ectomycorrhizal fungal mycelial networks in Arctic tundra. N. Phytol. 210, 383–390 (2016).Article 

    Google Scholar 
    8.Klein, T., Siegwolf, R. T. & Kröner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Fraser, E. C., Lieffers, V. J. & Landhäusser, S. M. Carbohydrate transfer through root grafts to support shaded trees. Tree Physiol. 26, 1019–1023 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Gaspard, D. T. & DesRochers, A. Natural root grafting in hybrid poplar clones. Trees Struct. Funct. 34, 881–890 (2020).CAS 
    Article 

    Google Scholar 
    11.Quer, E., Baldy, V. & DesRochers, A. Ecological drivers of root grafting in balsam fir natural stands. Forest Ecol. Manag. 475, 118388 (2020).Article 

    Google Scholar 
    12.Tarroux, E. & DesRochers, A. Effect of natural root grafting on growth response of jack pine (Pinus banksiana; Pinaceae). Am. J. Bot. 98, 967–974 (2011).PubMed 
    Article 

    Google Scholar 
    13.Salomón, R. L., Tarroux, E. & DesRochers, A. Natural root grafting in Picea mariana to cope with spruce budworm outbreaks. Can. J. Forest Res. 46, 1059–1066 (2016).Article 
    CAS 

    Google Scholar 
    14.Adonsou, K. E., Drobyshev, I., DesRochers, A. & Tremblay, F. Root connections affect radial growth of balsam poplar trees. Trees Struct. Funct. 30, 1775–1783 (2016).CAS 
    Article 

    Google Scholar 
    15.Vovides, A. G. et al. Change in drivers of mangrove crown displacement along a salinity stress gradient. Funct. Ecol. 32, 2753–2765 (2018).Article 

    Google Scholar 
    16.McKee, K. L. Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? J. Ecol. 89, 876–887 (2001).Article 

    Google Scholar 
    17.Adonsou, K. E., DesRochers, A. & Tremblay, F. Physiological integration of connected balsam poplar ramets. Tree Physiol. 36, 797–806 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Noble, A. E., Rosenstock, T. S., Brown, P. H., Machta, J. & Hastings, A. Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology. Proc. Natl Acad. Sci. USA 115, 1825–1830 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tarroux, E. & DesRochers, A. Frequency of root grafting in naturally and artificially regenerated stands of Pinus banksiana: influence of site characteristics. Can. J. Forest Res. 40, 861–871 (2010).Article 

    Google Scholar 
    20.Jelínková, H., Tremblay, F. & DesRochers, A. Molecular and dendrochronological analysis of natural root grafting in Populus tremuloides (Salicaceae). Am. J. Bot. 96, 1500–1505 (2009).PubMed 
    Article 

    Google Scholar 
    21.Bormann, F. H. The structure, function, and ecological significance of root grafts in Pinus strobus L. Ecol. Monogr. 36, 1–26 (1966).Article 

    Google Scholar 
    22.Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Huxham, M., Berger, U., Skov, M. W. & Sousa, W. P. Kropotkin’s Garden: facilitation in mangrove ecosystems in Interactions in the Marine Benthos (eds. Hawkins, S. J., Bohn, K., Firth, L. B. & Williams, G. A.) 431–447 (Cambridge University Press, 2019)24.Ball, M. C. & Farquhar, G. D. Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity consitions. Plant Physiol. 74, 7–11 (1984).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lin, Y., Berger, U., Grimm, V., Huth, F. & Weiner, J. Plant interactions alter the predictions of metabolic scaling theory. PLoS ONE 8, e57612 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Osland, M. J., Day, R. H., Larriviere, J. C. & From, A. S. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PLoS ONE 9, e99604 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Menezes, M., Berger, U. & Worbes, M. Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetl. Ecol. Manag. 11, 233–242 (2003).Article 

    Google Scholar 
    28.Delay, E. & Piou, C. Mutual aid: when does resource scarcity favour group cooperation? Ecol. Complex. 40, 100790 (2019).Article 

    Google Scholar 
    29.Ohtsuki, H., Hauert, C., Lieberman, E. & Nowak, M. A. A simple rule for the evolution of cooperation on graphs and social networks. Nature 441, 502–505 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Vovides, A. G., Marín-Castro, B., Barradas, G., Berger, U. & López-Portillo, J. A simple and cost-effective method for cable root detection and extension measurement in estuary wetland forests. Estuar. Coast. Shelf Sci. 183, 117–122 (2016).Article 

    Google Scholar 
    31.West, P. W. Tree and Forest Measurement. (Springer-Verlag, 2009).32.Fraser, E. C., Lieffers, V. J. & Landhäusser, S. M. Age, stand density, and tree size as factors in root and basal grafting of lodgepole pine. Can. J. Bot. 83, 983–988 (2005).Article 

    Google Scholar 
    33.Bormann, F. H. & Graham, B. F. The occurrence of natural root grafting in eastern White pine, Pinus strobus L., and Its ecological implications. Ecology 40, 677–691 (1959).Article 

    Google Scholar 
    34.Westoby, M. The place of the self-thinning rule in population dynamics. Am. Nat. 118, 581–587 (2008).Article 

    Google Scholar 
    35.Wang, Y., Titus, S. J. & LeMay, V. M. Relationships between tree slenderness coefficients and tree or stand characteristics for major species in boreal mixedwood forests. Can. J. Forest Res. 28, 1171–1183 (1998).36.MacFarlane, D. W. & Kane, B. Neighbour effects on tree architecture: functional trade-offs balancing crown competitiveness with wind resistance. Funct. Ecol. 31, 1624–1636 (2017).Article 

    Google Scholar 
    37.Brüchert, F. & Gardiner, B. The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Picea sitchensis, Pinaceae). Am. J. Bot. 93, 1512–1521 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Graham, B. F. Transfer of dye through natural root grafts of Pinus strobus L. Ecology 41, 56–64 (1960).Article 

    Google Scholar 
    39.Barabási, A.-L. & Réka, A. Emergence of scaling in random networks. Science 286, 509–513 (1999).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Allen, B. et al. Evolutionary dynamics on any population structure. Nature 544, 227–230 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 536, 238–238 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Basnet, K., Scatena, F. N., Likens, G. E. & Lugo, A. E. Ecological consequences of root grafting in Tabonuco (Dacryodes excelsa) trees in the Luquillo Experimental Forest, Puert Rico. Biotropica 25, 28–35 (1993).Article 

    Google Scholar 
    43.Kropotkin, P. Mutual Aid: a factor of evolution. https://doi.org/10.2307/2140787. (1902).44.López-Portillo, J. A., Ewers, F. W. & Angeles, G. Sap salinity effects on xylem conductivity in two mangrove species. Plant Cell Environ. 28, 1285–1292 (2005).Article 

    Google Scholar 
    45.RAMSAR. La Mancha y El Llano: Ramsar sites information service.  https://rsis.ramsar.org/ris/1336?language=en (2004).46.Gulfbase. Laguna La Mancha. Harte Research Institute for Gulf of Mexcio Studies. https://www.gulfbase.org/. (2021).47.Hernández, C. M. A., Zaragoza, C. G., Iriarte-Vivar, S., Flores-Verdugo, F. J. & Casasola, P. M. Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetl. Ecol. Manag. 19, 273–293 (2011).Article 

    Google Scholar 
    48.Méndez-Alonzo, R., Hernández-Trejo, H. & López-Portillo, J. A. Salinity constrains size inequality and allometry in two contrasting mangrove habitats in the Gulf of Mexico. J. Trop. Ecol. 28, 171–179 (2012).Article 

    Google Scholar 
    49.López-Portillo, J. A., Ezcurra, E., Lopez-Portillo, J. & Ezcurra, E. Response of three mangroves to salinity in two Geoforms. Funct. Ecol. 3, 355–361 (1989).Article 

    Google Scholar 
    50.Vovides, A. G., Berger, U. & López-Portillo-Portillo, J. Data from: Change in drivers of mangrove crown displacement along a salinity stress gradient. https://doi.org/10.5525/gla.researchdata.657. (2018).51.Pretzsch, H. Forest dynamics growth and yield. From Measurement to Model vol. 1, (Springer-Verlag, 2009).52.McKee, K. L., Mendelssohn, I. A. & Hester, M. W. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. Am. J. Bot. 75, 1352–1359 (1988).Article 

    Google Scholar 
    53.Myron L Company. ULTRAMETER IITM. Oper. Manual, Ver. Model. 6Pfc 4P. http://www.myronl.com/products/ultrameter_II.htm (2011).54.Sommet, N. & Morselli, D. Keep calm and learn multilevel logistic modeling: a simplified three-step procedure using stata, R, Mplus, and SPSS. Int. Rev. Soc. Psychol. 30, 203–218 (2017).Article 

    Google Scholar 
    55.Barabási, A. L. Scale-free networks: a decade and beyond. Science 325, 412–413 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2019).57.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–45 (2015).Article 

    Google Scholar 
    58.Hartig, F. DHARMa:residual diagnostics for hierarchical (multi-level /mMixed) regression models. R package version 0.2.7. http://florianhartig.github.io/DHARMa/ (2020).59.Wood, S. & Scheipl, F. gamm4:Generalized additive mixed models using ‘mgcv’ and ‘lme4’. https://cran.r-project.org/web/packages/gamm4/index.html (2017).60.Csardi, G. & Nepusz, T. The igraphsoftware package for complex network research. InterJournal, Complex Sy, 1965 (2006). 61.Colin, S. G. Fitting Heavy Tailed Distributions: The poweRlaw Package. J. Stat. Softw. 64, 1–16 (2015).
    Google Scholar 
    62.Wickham, H. ggplot2 Elegant Graphics for Data Analysis (Use R!). https://doi.org/10.1007/978-0-387-98141-3. (2016). More

  • in

    Insight into the function and evolution of the Wood–Ljungdahl pathway in Actinobacteria

    1.Adam PS, Borrel G, Gribaldo S. Evolutionary history of carbon monoxide dehydrogenase/acetyl-CoA synthase, one of the oldest enzymatic complexes. Proc Natl Acad Sci USA. 2018;115:E1166–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber CM, et al. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea. Nat Microbiol. 2019;4:603–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. BBA-Proteins Proteom. 2008;1784:1873–98.CAS 
    Article 

    Google Scholar 
    4.Müller B, Sun L, Schnürer A. First insights into the syntrophic acetate‐oxidizing bacteria–a genetic study. MicrobiologyOpen. 2013;2:35–53.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Schuchmann K, Müller V. Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol. 2016;82:4056–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Schuchmann K, Müller V. Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria. Nat Rev Microbiol. 2014;12:809–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Evans PN, Boyd JA, Leu AO, Woodcroft BJ, Parks DH, Hugenholtz P, et al. An evolving view of methane metabolism in the Archaea. Nat Rev Microbiol. 2019;17:219–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. Microbiome. 2018;6:1–18.Article 

    Google Scholar 
    9.Liu YF, Chen J, Liu ZL, Shou LB, Lin DD, Zhou L, et al. Anaerobic degradation of paraffins by thermophilic Actinobacteria under methanogenic conditions. Environ Sci Technol. 2020;54:10610–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Zhang Y, Wu G, Jiang H, Yang J, She W, Khan I, et al. Abundant and rare microbial biospheres respond differently to environmental and spatial factors in tibetan hot springs. Front Microbiol. 2018;9:2096.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ, et al. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. ISME J. 2015;9:1280–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    16.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    17.Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Kalyaanamoorthy S, Minh BQ, Wong TK, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Carnevali PBM, Schulz F, Castelle CJ, Kantor RS, Shih PM, Sharon I, et al. Hydrogen-based metabolism as an ancestral trait in lineages sibling to the Cyanobacteria. Nat Commun. 2019;10:1–15.Article 
    CAS 

    Google Scholar 
    25.Jaffe AL, Castelle CJ, Dupont CL, Banfield JF. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol Biol Evol. 2019;36:435–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Søndergaard D, Pedersen CNS, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:1–8.Article 
    CAS 

    Google Scholar 
    29.El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32.CAS 
    Article 

    Google Scholar 
    30.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–42.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Csűös M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics. 2010;26:1910–2.Article 
    CAS 

    Google Scholar 
    34.Hua ZS, Wang YL, Evans PN, Qu YN, Goh KM, Rao YZ, et al. Insights into the ecological roles and evolution of methyl-coenzyme M reductase-containing hot spring Archaea. Nat Commun. 2019;10:1–11.Article 
    CAS 

    Google Scholar 
    35.Jiao JY, Liu L, Hua ZS, Fang BZ, Zhou EM, Salam N, et al. Microbial dark matter coming to light: challenges and opportunities. Natl Sci Rev. 2021;8:nwaa280.36.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.Article 
    CAS 

    Google Scholar 
    41.Brown CT, Olm MR, Thomas BC, Banfield JF. Measurement of bacterial replication rates in microbial communities. Nat Biotechnol. 2016;34:1256–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 
    CAS 

    Google Scholar 
    43.Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics. 2019;35:421–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Salam N, Jiao JY, Zhang XT, Li WJ. Update on the classification of higher ranks in the phylum Actinobacteria. Int J Syst Evol Microbiol. 2020;70:1331–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA. 2009;106:19126–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Micr. 2018;68:461–6.CAS 
    Article 

    Google Scholar 
    47.Merino N, Kawai M, Boyd ES, Colman DR, McGlynn SE, Nealson KH, et al. Single-cell genomics of novel actinobacteria with the Wood–Ljungdahl pathway discovered in a serpentinizing system. Front Microbiol. 2020;11:1031.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Coleman GA, Davín AA, Mahendrarajah T, Spang AA, Hugenholtz P, Szöllősi GJ, et al. A rooted phylogeny resolves early bacterial evolution. 2020. https://doi.org/10.1101/2020.07.15.205187.49.Spear JR, Walker JJ, McCollom TM, Pace NR. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci USA. 2005;102:2555–60.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Vignais PM, Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev. 2007;107:4206–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Marreiros BC, Batista AP, Duarte AM, Pereira MM. A missing link between complex I and group 4 membrane-bound [NiFe] hydrogenases. BBA-Bioenerg. 2013;1827:198–209.CAS 
    Article 

    Google Scholar 
    52.Martin WF. Older than genes: the acetyl CoA pathway and origins. Front Microbiol. 2020;11:817.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Daniel SL, Hsu T, Dean SI, Drake HL. Characterization of the H2-and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol. 1990;172:4464–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Fontaine FE, Peterson WH, McCoy E, Johnson MJ, Ritter GJ. A new type of glucose fermentation by Clostridium thermoaceticum. J Bacteriol. 1942;43:701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Drake HL, Daniel SL. Physiology of the thermophilic acetogen Moorella thermoacetica. Microbiol Res. 2004;155:869–83.Article 

    Google Scholar 
    56.Hügler M, Hube H, Molyneaux SJ, Vetriani C, Sievert SM. Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. Environ Microbiol. 2007;9:81–92.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Hou J, Sievert SM, Wang Y, Seewald JS, Natarajan VP, Xiao X, et al. Microbial succession during the transition from active to inactive stages of deep-sea hydrothermal vent sulfide chimneys. Microbiome. 2020;8:102.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Müller AL, Kjeldsen KU, Rattei T, Pester M, Loy A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi) sulfite reductases. ISME J. 2015;9:1152–65.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol. 2019;4:1138–48.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Seitz KW, Lazar CS, Hinrichs KU, Teske AP, Baker BJ. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 2016;10:1696–705.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Orsi WD, Vuillemin A, Rodriguez P, Coskun ÖK, Gomez-Saez GV, Lavik G, et al. Metabolic activity analyses demonstrate that Lokiarchaeon exhibits homoacetogenesis in sulfidic marine sediments. Nat Microbiol. 2020;5:248–55.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Raymann K, Brochier-Armanet C, Gribaldo S. The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci USA. 2015;112:6670–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Revisiting the hyperdominance of Neotropical tree species under a taxonomic, functional and evolutionary perspective

    Based on extensive geographic sampling of morphological, ddRADseq and functional trait data, we have identified eight distinct evolutionary lineages within the putative hyperdominant taxon P. heptaphyllum. We are using a “traditional” species concept—a typological or morphological species concept where we expect different species to have discrete morphological differences but also represent monophyletic groups with limited genetic admixture. Morphological traits overlap at varying levels, but genetic data suggest that this widespread group represents distinct, independently adapted lineages that diverged over the past million years. We refute the hypothesis that P. heptaphyllum s.l. is a single species and instead find evidence for recognizing eight independently evolving species (or lineages, sensu20). Updates regarding the taxonomic treatment within P. heptaphyllum s.l. are in progress (e.g. Protium cordatum Huber sensu21) and detailed descriptions of new species are in preparation as part of a taxonomic revision (Table S2, Figure S2).Even though a large number of new species have been recently described in the Neotropics9,10,22, very few studies have attempted to resolve morphologically challenging species complexes (e.g.,13,15). In the sections below, we discuss the implications of our results in the context of: (i) revisiting the concept of hyperdominance for Amazonian trees, (ii) improving richness and diversity estimates, (iii) understanding diversification within dominant tropical lineages, and (iv) refining predictions for ecosystem function.Implications for the hyperdominance phenomenonThe fact that communities often harbor a small group of demographically abundant species in addition to a much larger number of rare species is not a recent discovery (e.g.,23 as cited in3). This pattern, also called a species oligarchy and hyperdominance, was first reported for western Amazonian forests in the early 2000s24,25 and again on the pan-Amazonian scale based on data from the ATDN, one of the largest tree community datasets ever compiled in the tropics1. Hyperdominant species have captured the imagination of many tropical ecologists. First, they have been thought to be more likely to be correctly identified than rare species22, allowing for people to use them as proxies for ecosystem-wide function. For example, Fauset et al.4 emphasized that hyperdominant species were responsible for half of carbon storage and productivity in the Amazon. Second, ecologists have proposed that hyperdominants have important shared demographic properties—they often have large geographic ranges but are only dominant in one or two regions and are often habitat specialists1. In contrast, our results suggest that the hyperdominant taxon P. heptaphyllum s.l. actually consists of several lineages warranting recognition as new species that have very different functional traits, that occupy distinct geographic ranges, and that can be rare or threatened. We postulate that similar conclusions could be reached with many of the other hyperdominant species, which are also thought to be members of species complexes (e.g., Iriartea deltoidea Ruiz and Pav.26; Eschweilera coriacea (DC.) S.A. Mori27). Further study is warranted prioritizing the study of these putative species complexes to refine our understanding of dominance across tropical regions28. If fewer species are found to be true hyperdominants, this will render conservation efforts and ecosystem modeling exercises more complicated than has been discussed to date.Taxonomic relevanceProtium is one of the best studied plant groups in the Neotropics (e.g.,17,18,19). Currently, the genus consists of approximately 200 species, and their systematics has been studied by a collaborative team of taxonomists and evolutionary biologists. Protium has a wide geographic range of specimen sampling, and genomic data are available for a number of species18,29,30. Also, current species descriptions in Protium are consistently founded on both morphological and molecular phylogenetic evidence19. Furthermore, the broad intraspecific sampling of key lineages/taxa within Protium heptaphyllum s.l. gives us high confidence in our results, in contrast to other plant groups that have not yet been subjected to similar intensive systematic study but often include diverse and abundant trees in the Amazon Basin. Here, we showed that a multidisciplinary effort and relatively short time investment on a hyperdominant species complex (3–5 years) has yielded the discovery of eight new lineages warranting species status.Multiple other tree families are relatively well studied in the Neotropics (e.g., Annonaceae, Sapotaceae, Lecythidaceae, Rubiaceae, Chrysobalanaceae, Fabaceae, Melastomataceae), but are also frequently cited as containing a few species complexes with incomplete genetic divergence and requiring detailed revision (e.g., Eschweilera27, Pouteria31). We acknowledge that the field of taxonomy is dynamic (ter Steege et al. 2019) in the sense that classification and species names are likely to change as new studies are performed. Besides that, the methods applied to describe, re-establish, or invalidate taxonomic entities are frequently inconsistent among taxonomists and experts, and can vary according to several species concepts and definitions32,33. Inconsistency in taxonomic methods has been the focus of recent debates about tree species richness in Amazonia9,10. While the authors of these studies disagreed about the number of Amazonian tree species, both sides agree that there is still much work to be done in order to improve taxonomy and to increase the pace of species discovery22. We propose that the establishment of a consensus prioritized list of other species complexes from putative hyperdominant taxa such as P. heptaphyllum, s.l. would represent a significant step to contribute to efficient progress of new species discovery. With the advent of cheaper and more rapid techniques for both molecular systematics and functional ecology, we expect that interdisciplinary approaches combined with an extensive populational sampling like we have done will be highly beneficial for the study of hyperdominant species complexes and to advance the estimates of Amazonian tree species diversity.Refining the understanding of trait variation and functional responseThe seven distinct lineages for the Central/West Amazon Basin and Northeast Amazonian regions showed substantial variation in leaf and wood traits (Fig. 4). Overall, more than half of the breadth of variation in these functional traits that has been observed across 2600 Amazonian species (e.g.,34,35,36) can be found within this single species complex.Moreover, the breadth of functional trait variation also varied markedly within lineages. The low within-lineage trait variation in the Amazonian TUC (orange) population (Fig. 4) is consistent with adaptation to dry savanna environments; that is, this lineage exhibits consistent high-water use efficiency (less negative 13C) and small, dense xylem vessels. In contrast, the CRS (red) population, which also exhibits low within-lineage functional trait variation, displays values of traits consistent with functional responses to flooding in Amazonian igapó habitats where it is found, and thus has low water use efficiency and large xylem vessels. Together, these lineages contribute to the broad variation observed in the species complex, while at the same time other lineages from Central Brazil and the Atlantic Coast (light and dark blue) show high within-lineage functional trait variation and broad distribution across habitats. Taken together across the phylogeny of the entire species complex, these functional traits can be considered to be highly labile, with some lineages adapting to contrasting extreme values whereas other sister lineages retain broad functional trait variation (Fig. 4).Importantly, this variation is consistent with the evolutionary histories of each distinct lineage within the species complex. For example, the P. heptaphyllum, P. “tucuruiense” and P. “aromaticum” (yellow, orange and blue) clades experienced a relatively recent population bottleneck and then expanded, likely with traits that permitted them to radiate into the drier savanna environments where they were then able to expand (Fig. 2). Some of these lineages have become adapted to distinct habitats and are responding very differently to current environmental conditions. Moreover, we suggest that these lineages will respond very differently to future changes in climatic conditions across the region, with some of them poorly equipped for the predicted increasing frequency and intensity of droughts37.Our results have important implications for ecosystem function. Since the advent of functional trait network studies (e.g., TRY Plant Trait Database38), understanding how plant species behave in terms of their physiological performance over large scales has led to important predictions of the consequences of future scenarios of climate and land-use change39,40,41. The importance of the Amazon region for the global climate and carbon cycle42,43 highlights the need to devote substantial effort to investigating the taxonomy of hyperdominant plant taxa. For instance, if some or most of the hyperdominant taxa actually represent multiple hidden evolutionary entities, as in P. heptaphyllum s.l., a larger fraction of Amazonian tree species would contribute proportionally more to carbon storage and cycling than described by Fauset et al.4, rendering modeling exercises and management much more nuanced. In addition, a comprehensive taxonomic review of dominant tree lineages with concomitant screening of functional traits as we conducted for this species complex, would greatly improve the understanding of climate-induced functional shifts, such as described by Esquivel‐Muelbert et al.41, and have potentially important consequences for the conservation of putative rare taxa that are nested within hyperdominant species complexes.Understanding diversification in dominant lineagesThe scenario of some hyperdominant or oligarchic taxa representing multiple diverged lineages is intriguing and relevant for understanding the processes of diversification in the Amazonian flora. Based on the demographic history of P. heptaphyllum s.l., older lineages tend to be habitat specialists and less morphologically and functionally variable. In contrast, recently evolved lineages have colonized new areas and frequently experience gene flow across very large geographic distances, and they are morphologically and functionally more variable. We hypothesize that large population sizes may be associated with higher diversification rates due to the process of population expansion followed by radiation into different habitats. Therefore, dominant lineages would have better chances to speciate via habitat specialization and generate large clades than non-dominant lineages. Habitat specialization is considered to have evolved in many tropical plant groups44,45 and many different tree genera have become specialized in contrasting environments46.According to our results, P. heptaphyllum s.l. diverged from its common ancestors around five million years ago and diversified first in the Amazon region followed by an increase in population size. Many lineages subsequently became specialized to white-sand habitats, seasonally flooded forests in the Rio Negro Basin (Igapó forests), and floodplain forests (várzea forests). However, more recently, lineages dispersed into neighboring floristic domains (e.g. Cerrado and Atlantic Forest) and ecotone areas, colonizing regions where the annual precipitation is currently lower and seasonal. These populations found in Central and Coastal Brazil are genetically very similar to each other despite the large geographical distances among them. Moreover, these populations are functionally more variable than the early-diverging lineages in the Amazon. In contrast, older lineages from the Amazon basin were found to be less morphologically plastic and more isolated in terms of gene flow. White-sand ecosystems in Amazonia are characterized by a patchy and geographically disjunct distribution47 that could have inhibited dispersal of habitat-specialist populations, resulting in repeated speciation in white-sand forests in different regions.Conservation implicationsWe show that at least four newly discovered lineages, including two “resurrected” species, are geographically restricted, demographically rare and endemic to white-sand vegetation in the Amazon (e.g. P. cordatum sensu Damasco et al. 2019a, P. “tucuruiense,” P. angustifolium Swart, and P. “reticuliflorum”). Future studies aiming to review potential species complexes among hyperdominant species could indicate other threatened lineages warranting taxonomic recognition as well as new geographic areas for conservation priority. While many studies have relied on datasets compiled by plot-inventory networks, more effort should be focused on increasing the pace of taxonomic research in the Neotropics22,28. Deforestation rates in Amazonia are likely to increase in the next few years; and yet one third of the total number of tree species are likely still undescribed or undiscovered1.We believe that reports that roughly half of all biomass and carbon storage in one of the most diverse areas on Earth is stored by a very small group of “hyperdominant” species may be misinforming policy makers and stakeholders. Based on our integrative review of P. heptaphyllum s.l., we showed that genetic diversity and functional responses to environmental gradients are much greater than expected by the hyperdominance principle. Our results revealed that a single “hyperdominant” taxon contains several lineages warranting recognition as distinct species that include great functional diversity, including at least three that are relatively rare and potentially threatened. Metapopulations of a hyperdominant taxon may be interpreted as much more resilient to future global changes than relatively rare lineages within a species complex. Thus, our findings suggest not only critical issues with species level conservation for lineages that should now be considered threatened taxa and not hyper- nor dominant, but also that some of these putatively new lineages might be at risk of extinction due to future climate change and increasing deforestation. Although the distinction between species and population delimitation may not be of consequence for calculating current carbon storage, we argue that multiple distinct lineages with limited gene flow such as we describe here will likely respond very differently to current and future global changes than a larger interbreeding metapopulation of a single lineage. We therefore caution against simplistic assumptions about biogeochemical processes and ecosystem services reliant on the attractive simplicity of a putative hyperdominance phenomenon. More

  • in

    Population dynamics of microbial cross-feeding are determined by co-localization probabilities and cooperation-independent cheater growth

    1.Bear A, Rand DG. Intuition, deliberation, and the evolution of cooperation. Proc Natl Acad Sci USA. 2016;113:936–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Athena Aktipis C, Boddy AM, Jansen G, Hibner U, Hochberg ME, Maley CC, et al. Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos Trans R Soc B Biol Sci. 2015;370:20140219.Article 

    Google Scholar 
    3.D’Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep. 2018;35:455–88.PubMed 
    Article 

    Google Scholar 
    4.West SA, Diggle SP, Buckling A, Gardner A, Griffin AS. The social lives of microbes. Annu Rev Ecol Evol Syst. 2007;38:53–77.Article 

    Google Scholar 
    5.Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. Cooperation in microbial populations: theory and experimental model systems. J Mol Biol. 2019;431:4599–644.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.West SA, Cooper GA. Division of labour in microorganisms: an evolutionary perspective. Nat Rev Microbiol. 2016;14:716–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Travisano M, Velicer GJ. Strategies of microbial cheater control. Trends Microbiol. 2004;12:72–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14:589–600.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Birch J. Are kin and group selection rivals or friends? Curr Biol. 2019;29:R433–R438.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Harcombe W. Novel cooperation experimentally evolved between species. Evolution (N. Y). 2010;64:2166–72.
    Google Scholar 
    11.Dobay A, Bagheri HC, Messina A, Kümmerli R, Rankin DJ. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J Evol Biol. 2014;27:1869–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.MacLean RC, Gudelj I. Resource competition and social conflict in experimental populations of yeast. Nature. 2006;441:498–501.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pande S, Kaftan F, Lang S, Svatoš A, Germerodt S, Kost C. Privatization of cooperative benefits stabilizes mutualistic cross-feeding interactions in spatially structured environments. ISME J. 2016;10:1413–23.PubMed 
    Article 

    Google Scholar 
    14.Kreft J-U. Biofilms promote altruism. Microbiology. 2004;150:2751–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Chuang JS, Rivoire O, Leibler S. Simpson’s paradox in a synthetic microbial system. Science. 2009;323:272–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Hsu RH, Clark RL, Tan JW, Ahn JC, Gupta S, Romero PA, et al. Microbial interaction network inference in microfluidic droplets. Cell Syst. 2019;9:229–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Park J, Kerner A, Burns MA, Lin XN Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One. 2011;6:e17019.18.Wilson CE, Lopatkin AJ, Craddock TJA, Driscoll WW, Eldakar OT, Lopez JV, et al. Cooperation and competition shape ecological resistance during periodic spatial disturbance of engineered bacteria. Sci Rep. 2017;7:1–13.19.Hauert C, Doebeli M. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 2004;428:643–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Rebolleda-Gómez M, Travisano M The cost of being big: local competition, importance of dispersal, and experimental evolution of reversal to unicellularity. Am Nat. 2018;192:731–44.21.Sieuwerts S, Molenaar D, SAFT VanHijum, Beerthuyzen M, MJA Stevens, PWM Janssen, et al. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ Microbiol. 2010;76:7775–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Blasche S, Kim Y, Mars R, Kafkia E, Maansson M, Machado D, et al. Emergence of stable coexistence in a complex microbial community through metabolic cooperation and spatio-temporal niche partitioning. bioRxiv 2019;541870.23.Gobbetti M, Corsetti A, Rossi J. The sourdough microflora. Interactions of lactic acid bacteria and yeasts: metabolism of amino acids. World J Microbiol Biotechnol. 1994;10:275–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Müller MJI, Neugeboren BI, Nelson DR, Murray AW. Genetic drift opposes mutualism during spatial population expansion. Proc Natl Acad Sci USA. 2014;111:1037–42.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Inglis RF, Biernaskie JM, Gardner A, Kümmerli R. Presence of a loner strain maintains cooperation and diversity in well-mixed bacterial communities. Proc R Soc B Biol Sci. 2016;283:20152682.Article 
    CAS 

    Google Scholar 
    26.García J, Traulsen A. Leaving the loners alone: Evolution of cooperation in the presence of antisocial punishment. J Theor Biol. 2012;307:168–73.PubMed 
    Article 

    Google Scholar 
    27.Bachmann H, Fischlechner M, Rabbers I, Barfa N, Branco dos Santos F, Molenaar D, et al. Availability of public goods shapes the evolution of competing metabolic strategies. Proc Natl Acad Sci. 2013;110:14302–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Bull JJ, Harcombe WR Population dynamics constrain the cooperative evolution of cross-feeding. PLoS One. 2009;4:e4115.29.Smith JM. Group selection and kin selection. Nature. 1964;201:1145–7.Article 

    Google Scholar 
    30.Otto R, ten Brink B, Veldkamp H, Konings WN. The relation between growth rate and electrochemical proton gradient of Streptococcus cremoris. FEMS Microbiol Lett. 1983;16:69–74.Article 

    Google Scholar 
    31.Jarvis B, Wilrich C, Wilrich P-T. Reconsideration of the derivation of most probable numbers, their standard deviations, confidence bounds and rarity values. J Appl Microbiol. 2010;109:1660–7.CAS 
    PubMed 

    Google Scholar 
    32.Pool WA, Neves AR, Kok J, Santos H, Kuipers OP. Natural sweetening of food products by engineering Lactococcus lactis for glucose production. Metab Eng. 2006;8:456–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Leenhouts KJ, Gietema J, Kok J, Venema G. Chromosomal stabilization of the proteinase genes in Lactococcus lactis. Appl Environ Microbiol. 1991;57:2568–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Bachmann H, Kleerebezem M, Van Hylckama Vlieg JET. High-throughput identification and validation of in situ-expressed genes of Lactococcus lactis. Appl Environ Microbiol. 2008;74:4727–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Nordkvist M, Jensen NBS, Villadsen J. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: Requirement of acetate to sustain growth under microaerobic conditions. Appl Environ Microbiol. 2003;69:3462–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Price CE, Branco Dos Santos F, Hesseling A, Uusitalo JJ, Bachmann H, Benavente V, et al. Adaption to glucose limitation is modulated by the pleotropic regulator CcpA, independent of selection pressure strength. BMC Evol Biol. 2019;19:1–15.Article 

    Google Scholar 
    37.Wilson DS. A theory of group selection. Proc Natl Acad Sci USA. 1975;72:143–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Rumbaugh KP, Sauer K Biofilm dispersion. Nat Rev Microbiol. 2020;18:571–86.39.Morris JJ. Black queen evolution: the role of leakiness in structuring microbial communities. Trends Genet. 2015;31:475–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Bachmann H, Molenaar D, Kleerebezem M, van Hylckama Vlieg JET. High local substrate availability stabilizes a cooperative trait. ISME J. 2011;5:929–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Gore J, Youk H, van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science (80-). 2001;292:504–7.CAS 
    Article 

    Google Scholar 
    43.Marchal M, Goldschmidt F, Derksen-Müller SN, Panke S, Ackermann M, Johnson DR A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol Biol. 2017;17:1–14.44.Preussger D, Giri S, Muhsal LK, Oña L, Kost C Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr Biol. 2020;30:3580–90.45.Harcombe WR, Chacon J, Adamowicz E, Chubiz L, Marx C Evolution of bidirectional costly mutualism from byproduct consumption. PNAS 2018;115.46.Pacheco AR, Moel M, Segrè D Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun 2019;10:1–12.47.Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 2017;5:345–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Pillai P, Gouhier TC, Vollmer SV. The cryptic role of biodiversity in the emergence of host-microbial mutualisms. Ecol Lett. 2014;17:1437–46.PubMed 
    Article 

    Google Scholar 
    49.van Tatenhove-Pel RJ, Rijavec T, Lapanje A, van Swam I, Zwering E, Hernandez-Valdes JA, et al. Microbial competition reduces metabolic interaction distances to the low µm-range. ISME J. 2021;15:688–701.50.Co AD, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4:366–75.Article 

    Google Scholar 
    51.Saleski TE, Kerner AR, Chung MT, Jackman CM, Khasbaatar A, Kurabayashi K, et al. Synthrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metab Eng. 2019;54:232–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sung YJ, Young JHK, Choi H Il, Kwak HS, Sim SJ Magnetophoretic sorting of microdroplets with different microalgal cell densities for rapid isolation of fast growing strains. Sci Rep. 2017;7:1–11.53.Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, et al. Cultivating the uncultured. Proc Natl Acad Sci USA. 2002;99:15681–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG, Sellers D, et al. Massively parallel screening of synthetic microbial communities. Proc Natl Acad Sci USA. 2019;116:12804–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Riehl C, Frederickson ME Cheating and punishment in cooperative animal societies. Philos Trans R Soc B Biol Sci. 2016;371:20150090.56.Nepi M, Grasso DA, Mancuso S. Nectar in plant–insect mutualistic relationships: From food reward to partner manipulation. Front Plant Sci. 2018;9:1–14.Article 

    Google Scholar  More