More stories

  • in

    Landscape resistance constrains hybridization across contact zones in a reproductively and morphologically polymorphic salamander

    1.Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Harrison, R. G. & Larson, E. L. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones. Mol. Ecol. 25, 2454–2466 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Gompert, Z., Mandeville, E. G. & Buerkle, C. A. Analysis of population genomic data from hybrid zones. Annu. Rev. Ecol. Evol. Syst. 48, 207–229 (2017).Article 

    Google Scholar 
    4.Jiggins, C. D. & Mallet, J. Bimodal hybrid zones and speciation. Trends Ecol. Evol. 15, 250–255 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Doebeli, M. & Dieckmann, U. Speciation along environmental gradients. Nature 421, 259–264 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Tarroso, P., Pereira, R. J., Martínez-Freiría, F., Godinho, R. & Brito, J. C. Hybridization at an ecotone: Ecological and genetic barriers between three Iberian vipers. Mol. Ecol. 23, 1108–1123 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Newman, C. E. & Rissler, L. J. Phylogeographic analyses of the southern leopard frog: The impact of geography and climate on the distribution of genetic lineages vs. subspecies. Mol. Ecol. 20, 5295–5312 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Smith, K. L. et al. Spatio-temporal changes in the structure of an Australian frog hybrid zone: A 40-year perspective. Evolution 67, 3442–3454 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Visser, M., Leeuw, M. D., Zuiderwijk, A. & Arntzen, J. W. Stabilization of a salamander moving hybrid zone. Ecol. Evol. 7, 689–696 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Carneiro, M. et al. Steep clines within a highly permeable genome across a hybrid zone between two subspecies of the European rabbit. Mol. Ecol. 22, 2511–2525 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Gompert, Z., Parchman, T. L. & Buerkle, C. A. Genomics of isolation in hybrids. Philos. Trans. R. Soc. B 367, 439–450 (2012).Article 

    Google Scholar 
    13.Zieliński, P. et al. Differential introgression across newt hybrid zones–evidence from replicated transects. Mol. Ecol. 28, 4811–4824 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    14.Hewitt, G. M. Quaternary phylogeography: The roots of hybrid zones. Genetica 139, 617–638 (2011).Article 

    Google Scholar 
    15.Naciri, Y. & Linder, H. P. The genetics of evolutionary radiations. Biol. Rev. 95, 1055–1072 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    17.Butlin, R. Speciation by reinforcement. Trends Ecol. Evol. 2, 8–13 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Arntzen, J. W., de Vries, W., Canestrelli, D. & Martínez-Solano, I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol. Ecol. 26, 5663–5675 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Zamudio, K. R., Bell, R. C. & Mason, N. A. Phenotypes in phylogeography: Species’ traits, environmental variation, and vertebrate diversification. Proc. Natl. Acad. Sci. 113, 8041–8048 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Devitt, T. J., Baird, S. J. & Moritz, C. Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone. BMC Evol. Biol. 11, 245 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Melo, M. C., Salazar, C., Jiggins, C. D. & Linares, M. Assortative mating preferences among hybrids offers a route to hybrid speciation. Evolution 63, 1660–1665 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Cornetti, L. et al. Reproductive isolation between oviparous and viviparous lineages of the Eurasian common lizard Zootoca vivipara in a contact zone. Biol. J. Linn. Soc. 114, 566–573 (2015).Article 

    Google Scholar 
    23.Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Shipilina, D., Serbyn, M., Ivanitskii, V., Marova, I. & Backström, N. Patterns of genetic, phenotypic, and acoustic variation across a chiffchaff (Phylloscopus collybita abietinus/tristis) hybrid zone. Ecol. Evol. 7(7), 2169–2180 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Grabenstein, K. C. & Taylor, S. A. Breaking barriers: Causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33(3), 198–212 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: Dealing with the species-population continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).Article 

    Google Scholar 
    27.Velo-Antón, G., Santos, X., Sanmartín-Villar, I., Cordero-Rivera, A. & Buckley, D. Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females. Evol. Ecol. 29(1), 185–204 (2015).Article 

    Google Scholar 
    28.Beukema, W., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. Colour polymorphism in Salamandra salamandra (Amphibia: Urodela), revealed by a lack of genetic and environmental differentiation between distinct phenotypes. J. Zool. Syst. Evol. Res. 54(2), 127–136 (2016).Article 

    Google Scholar 
    29.Alarcón-Ríos, L., Nicieza, A. G., Kaliontzopoulou, A., Buckley, D. & Velo-Antón, G. Evolutionary history and not heterochronic modifications associated with viviparity drive head shape differentiation in a reproductive polymorphic species, Salamandra salamandra. Evol. Biol. 47(1), 43–55 (2020).Article 

    Google Scholar 
    30.Burgon, J. D. et al. Phylogenomic inference of species and subspecies diversity in the Palearctic salamander genus Salamandra. Mol. Phylogenet. Evol. 157, 107063 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.García-París, M., Alcobendas, M., Buckley, D. & Wake, D. Dispersal of viviparity across contact zones in Iberian populations of Fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57(1), 129–143 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Velo-Antón, G., García-París, M., Galán, P. & CorderoRivera, A. The evolution of viviparity in holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J. Zool. Syst. Evol. Res. 45(4), 345–352 (2007).Article 

    Google Scholar 
    33.Velo-Antón, G., Zamudio, K. R. & Cordero-Rivera, A. Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108(4), 410–418 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Uotila, E., Díaz, A. C., Azkue, I. S. & Rubio Pilarte, X. Variation in the reproductive strategies of Salamandra salamandra (Linnaeus, 1758) populations in the province of Gipuzkoa (Basque Country). Munibe Cienc. Nat. Nat. Zientziak 61, 91–101 (2013).
    Google Scholar 
    35.Galán, P. Viviparismo y distribución de Salamandra salamandra bernardezi en el norte de Galicia. Bol. Asoc. Herpetol. Esp. 18, 44–49 (2007).
    Google Scholar 
    36.Alcobendas, M., Dopazo, H. & Alberch, P. Geographic variation in allozymes of populations of Salamandra salamandra (Amphibia: Urodela) exhibiting distinct reproductive modes. J. Evol. Biol. 9(1), 83–102 (1996).Article 

    Google Scholar 
    37.Alarcón-Ríos, L., Nicieza, A. G., Lourenço, A. & Velo-Antón, G. The evolution of pueriparity maintains multiple paternity in a polymorphic viviparous salamander. Sci. Rep. 10, 14744 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Lourenço, A., Gonçalves, J., Carvalho, F., Wang, I. J. & Velo-Antón, G. Comparative landscape genetics reveals the evolution of viviparity reduces genetic connectivity in fire salamanders. Mol. Ecol. 28(20), 4573–4591 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    39.Velo-Antón, G., & Buckley, D. Salamandra común—Salamandra salamandra. in Enciclopedia Virtual de los Vertebrados Españoles (L.M. Carrascal, A Salvador, Eds.) (Museo Nacional de Ciencias Naturales, 2015). Retrieved from http://www.vertebradosibericos.org/anfibios/salsal.html40.Cordero, A., Velo-Antón, G. & Galán, P. Ecology of amphibians in small coastal Holocene islands: Local adaptations and the effect of exotic tree plantations. Munibe 25, 94–103 (2007).
    Google Scholar 
    41.Antunes, B. et al. Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. Conserv. Genet. 19(6), 1411–1424 (2018).CAS 
    Article 

    Google Scholar 
    42.Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: Integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26(6), 1498–1514 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    43.Landguth, E. L., Cushman, S. A., Murphy, M. A. & Luikart, G. Relationships between migration rates and landscape resistance assessed using individual-based simulations. Mol. Ecol. Resour. 10(5), 854–862 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Zhang, P., Papenfuss, T. J., Wake, M. H., Qu, L. & Wake, D. B. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol. Phylogenet. Evol. 49(2), 586–597 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Hendrix, R., Hauswaldt, S., Veith, M. & Steinfartz, S. Strong correlation between cross-amplification success and genetic distance across all members of ‘True Salamanders’ (Amphibia: Salamandridae) revealed by Salamandra salamandra-specific microsatellite loci. Mol. Ecol. Resour. 10(6), 1038–1047 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Steinfartz, S., Kuesters, D. & Tautz, D. Isolation and characterization of polymorphic tetranucleotide microsatellite loci in the Fire salamander Salamandra salamandra (Amphibia: Caudata). Mol. Ecol. Notes 4(4), 626–628 (2004).CAS 
    Article 

    Google Scholar 
    47.Álvarez, D., Lourenço, A., Oro, D. & Velo-Antón, G. Assessment of census (N) and effective population size (N e) reveals consistency of N e single-sample estimators and a high N e/N ratio in an urban and isolated population of fire salamanders. Conserv. Genet. Resour. 7(3), 705–712 (2015).Article 

    Google Scholar 
    48.Antunes, B., Velo-Antón, G., Buckley, D., Pereira, R. & Martínez-Solano, I. Physical and ecological isolation contribute to maintain genetic differentiation between fire salamander subspecies. Heredity. https://doi.org/10.1038/s41437-021-00405-0 (2021). 49.Lourenço, A., Sequeira, F., Buckley, D. & Velo-Antón, G. Role of colonization history and species-specific traits on contemporary genetic variation of two salamander species in a Holocene island-mainland system. J. Biogeogr. 45(5), 1054–1066 (2018).Article 

    Google Scholar 
    50.Lourenço, A., Antunes, B., Wang, I. J. & Velo-Antón, G. Fine-scale genetic structure in a salamander with two reproductive modes: Does reproductive mode affect dispersal?. Evol. Ecol. 32(6), 699–732 (2018).Article 

    Google Scholar 
    51.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 17. Mol. Biol. Evol. 29(8), 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9(8), 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Ehl, S., Vences, M. & Veith, M. Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol. Phylogenet. Evol. 134, 211–225 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. in 2010 gateway computing environments workshop (GCE pp. 1–8) (2010).55.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14), 1801–1806 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Anderson, E. C. & Thompson, E. A. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160(3), 1217–1229 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Anderson, E. C. Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos. Trans. R. Soc. B 363(1505), 2841–2850 (2008).Article 

    Google Scholar 
    60.Shurtliff, Q. R., Murphy, P. J. & Matocq, M. D. Ecological segregation in a small mammal hybrid zone: Habitat-specific mating opportunities and selection against hybrids restrict gene flow on a fine spatial scale. Evolution 68(3), 729–742 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Shirk, A. J., Landguth, E. L. & Cushman, S. A. A comparison of individual-based genetic distance metrics for landscape genetics. Mol. Ecol. Resour. 17(6), 1308–1317 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Wang, J. COANCESTRY: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11(1), 141–145 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89, 135–153 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Estrada-Peña, A., Estrada-Sánchez, A. & de la Fuente, J. A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Parasit. Vectors 7(1), 302 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Nosil, P., Egan, S. P. & Funk, D. J. Heterogeneous genomic differentiation between walking-stick ecotypes: “Isolation by adaptation” and multiple roles for divergent selection. Evolution 62, 316–336 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Graves, T. A., Beier, P. & Royle, J. A. Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol. Ecol. 22(15), 3888–3903 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Peterman, W. E., Connette, G. M., Semlitsch, R. D. & Eggert, L. S. Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander. Mol. Ecol. 23(10), 2402–2413 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Tarroso, P., Carvalho, S. B. & Velo-Antón, G. Phylin 2.0: Extending the phylogeographical interpolation method to include uncertainty and user-defined distance metrics. Mol. Ecol. Resour. 19(4), 1081–1094 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Peterman, W. E. ResistanceGA: An R package for the optimization of resistance surfaces using genetic algorithms. Methods Ecol. Evol. 9(6), 1638–1647 (2018).Article 

    Google Scholar 
    72.Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53(6), 1898–1914 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Horreo, J. L. et al. Genetic introgression among differentiated clades is lower among clades exhibiting different parity modes. Heredity 123(2), 264–272 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Sota, T. & Tanabe, T. Multiple speciation events in an arthropod with divergent evolution in sexual morphology. Proc. R. Soc. B 277(1682), 689–696 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Merrill, R. M., Van Schooten, B., Scott, J. A. & Jiggins, C. D. Pervasive genetic associations between traits causing reproductive isolation in Heliconius butterflies. Proc. R. Soc. B 278(1705), 511–518 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Singhal, S. & Moritz, C. Reproductive isolation between phylogeographic lineages scales with divergence. Proc. R. Soc. B 280(1772), 20132246 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Donaire, D. & Rivera, X. L. salamandra común Salamandra salamandra (Linnaeus, 1758) en el subcantábrico: Origen, dispersión, subspecies y zonas de introgresión. Bull. Soc. Catal. Herpetol. 23, 7–38 (2016).
    Google Scholar 
    78.Recuero, E. & García-París, M. Evolutionary history of Lissotriton helveticus: multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol. Phylogenet. Evol. 60(1), 170–182 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Dufresnes, C. et al. Are glacial refugia hotspots of speciation and cyto-nuclear discordances? Answers from the genomic phylogeography of Spanish common frogs. Mol. Ecol. 29, 986–1000 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Toews, D. P. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21(16), 3907–3930 (2012).CAS 
    Article 

    Google Scholar 
    81.Bisconti, R., Porretta, D., Arduino, P., Nascetti, G. & Canestrelli, D. Hybridization and extensive mitochondrial introgression among fire salamanders in peninsular Italy. Sci. Rep. 8(1), 1–10 (2018).CAS 
    Article 

    Google Scholar 
    82.Dinis, M. et al. Allopatric diversification and evolutionary melting pot in a North African Palearctic relict: The biogeographic history of Salamandra algira. Mol. Phylogenet. Evol. 130, 81–91 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Buckley, D., Alcobendas, M., García-París, M. & Wake, M. H. Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol. Dev. 9(1), 105–115 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Helfer, V., Broquet, T. & Fumagalli, L. Sex-specific estimates of dispersal show female philopatry and male dispersal in a promiscuous amphibian, the alpine salamander (Salamandra atra). Mol. Ecol. 21(19), 4706–4720 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Vörös, J. et al. Increased genetic structuring of isolated Salamandra salamandra populations (Caudata: Salamandridae) at the margins of the Carpathian Mountains. J. Zool. Syst. Evol. Res. 55(2), 138–149 (2017).Article 

    Google Scholar 
    86.Dudaniec, R. Y., Spear, S. F., Richardson, J. S. & Storfer, A. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations. PLoS ONE 7(5), e36769 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Richardson, J. L. Divergent landscape effects on population connectivity in two co-occurring amphibian species. Mol. Ecol. 21(18), 4437–4451 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mulder, K. P., Cortes-Rodriguez, N., Campbell Grant, E. H., Brand, A. & Fleischer, R. C. North-facing slopes and elevation shape asymmetric genetic structure in the range-restricted salamander Plethodon shenandoah. Ecol. Evol. 9(9), 5094–5105 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Velo-Antón, G., Parra, J. L., Parra-Olea, G. & Zamudio, K. R. Tracking climate change in a dispersal-limited species: Reduced spatial and genetic connectivity in a montane salamander. Mol. Ecol. 22(12), 3261–3278 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Sánchez-Montes, G., Wang, J., Ariño, A. H. & Martínez-Solano, Í. Mountains as barriers to gene flow in amphibians: Quantifying the differential effect of a major mountain ridge on the genetic structure of four sympatric species with different life history traits. J. Biogeogr. 45(2), 318–331 (2018).Article 

    Google Scholar 
    91.Figueiredo-Vázquez, C., Lourenço, A. & Velo-Antón, G. Riverine barriers to gene flow in a salamander with both aquatic and terrestrial reproduction. Evol Ecol https://doi.org/10.1007/s10682-021-10114-z (2021). 92.Czypionka, T., Goedbloed, D. J., Steinfartz, S. & Nolte, A. W. Plasticity and evolutionary divergence in gene expression associated with alternative habitat use in larvae of the European Fire Salamander. Mol. Ecol. 27(12), 2698–2713 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Arntzen, J. W. & van Belkom, J. ‘Mainland-island’population structure of a terrestrial salamander in a forest-bocage landscape with little evidence for in situ ecological speciation. Sci. Rep. 10(1), 1–15 (2020).Article 
    CAS 

    Google Scholar 
    94.Burgon, J. D. et al. Functional colour genes and signals of selection in colour-polymorphic salamanders. Mol. Ecol. 29(7), 1284–1299 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Velo-Antón, G. & Cordero-Rivera, A. Ethological and phenotypic divergence in insular fire salamanders: Diurnal activity mediated by predation?. Acta Ethol. 20(3), 243–253 (2017).Article 

    Google Scholar 
    96.González, T. E. D., & Penas, Á. The high mountain area of Northwestern Spain: The Cantabrian Range, the Galician-Leonese Mountains and the Bierzo Trench. In The vegetation of the Iberian Peninsula (pp. 251–321). (Springer, 2017). More

  • in

    Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status

    1.Sadd, B. M. & Schmid-Hempel, P. Principles of ecological immunology. Evol. Appl. 2, 113–121. https://doi.org/10.1111/j.1752-4571.2008.00057.x (2009).Article 
    PubMed 

    Google Scholar 
    2.Kew, C. et al. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 9, e57591, https://doi.org/10.7554/eLife.57591 (2020).3.Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172–4172. https://doi.org/10.1038/ncomms5172 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Demas, G. E. & Nelson, R. J. Ecoimmunology. (Oxford University Press, 2012).6.Brock, P. M., Murdock, C. C. & Martin, L. B. The history of ecoimmunology and its integration with disease ecology. Integr. Comp. Biol. 54, 353–362. https://doi.org/10.1093/icb/icu046 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Gurven, M., Kaplan, H., Winking, J., Finch, C. & Crimmins, E. M. Aging and inflammation in two epidemiological worlds. J. Gerontol. A Biol. Sci. Med. Sci. 63, 196–199, https://doi.org/10.1093/gerona/63.2.196 (2008).8.Blackwell, A. D. et al. Immune function in Amazonian horticulturalists. Ann. Hum. Biol. 43, 382–396. https://doi.org/10.1080/03014460.2016.1189963 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Blackwell, A. D., Martin, M., Kaplan, H. & Gurven, M. Antagonism between two intestinal parasites in humans: the importance of co-infection for infection risk and recovery dynamics. Proc. Biol. Sci. 280, 20131671–20131671. https://doi.org/10.1098/rspb.2013.1671 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Vasunilashorn, S. et al. Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. Am. J. Hum. Biol. 22, 731–740. https://doi.org/10.1002/ajhb.21074 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Kraft, T. S. et al. Multi-system physiological dysregulation and ageing in a subsistence population. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190610. https://doi.org/10.1098/rstb.2019.0610 (2020).Article 
    PubMed 

    Google Scholar 
    12.Dansereau, G. et al. Conservation of physiological dysregulation signatures of aging across primates. Aging Cell 18, e12925–e12925. https://doi.org/10.1111/acel.12925 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6, e20101. https://doi.org/10.1371/journal.pone.0020101 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Lewton, K. L. The effects of captive versus wild rearing environments on long bone articular surfaces in common chimpanzees (Pan troglodytes). PeerJ 5, e3668–e3668. https://doi.org/10.7717/peerj.3668 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Atsalis, S. & Videan, E. Reproductive aging in captive and wild common chimpanzees: Factors influencing the rate of follicular depletion. Am. J. Primatol. 71, 271–282. https://doi.org/10.1002/ajp.20650 (2009).Article 
    PubMed 

    Google Scholar 
    16.Michaud, M. et al. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877–882. https://doi.org/10.1016/j.jamda.2013.05.009 (2013).Article 
    PubMed 

    Google Scholar 
    17.Ian, D. G. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 2, 801–810. https://doi.org/10.1093/clinids/2.5.801 (1980).Article 

    Google Scholar 
    18.Monti, D., Ostan, R., Borelli, V., Castellani, G. & Franceschi, C. Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 165, 129–138. https://doi.org/10.1016/j.mad.2016.12.008 (2017).Article 
    PubMed 

    Google Scholar 
    19.Walker, E. M. et al. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. Geroscience 41, 739–757. https://doi.org/10.1007/s11357-019-00099-7 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Baylis, D., Bartlett, D. B., Patel, H. P. & Roberts, H. C. Understanding how we age: insights into inflammaging. Longev. Healthspan 2, 8–8. https://doi.org/10.1186/2046-2395-2-8 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).Article 
    PubMed 

    Google Scholar 
    22.Cheynel, L. et al. Immunosenescence patterns differ between populations but not between sexes in a long-lived mammal. Sci. Rep. 7, 13700–13700. https://doi.org/10.1038/s41598-017-13686-5 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206. https://doi.org/10.1016/j.ijppaw.2020.02.009 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368. https://doi.org/10.1038/hdy.1948.21 (1948).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626. https://doi.org/10.1038/nri.2016.90 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Lemaître, J.-F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl. Acad. Sci. U.S.A. 117, 8546–8553. https://doi.org/10.1073/pnas.1911999117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018. https://doi.org/10.1126/science.1074196 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321. https://doi.org/10.1111/acel.12326 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Faas, M. et al. The immune response during the luteal phase of the ovarian cycle: A Th2-type response?. Fertil. Steril. 74, 1008–1013. https://doi.org/10.1016/S0015-0282(00)01553-3 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Murphy, S. P. et al. Interferon gamma in successful pregnancies. Biol. Reprod. 80, 848–859. https://doi.org/10.1095/biolreprod.108.073353 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Morison, L. et al. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm. Infect 81, 242–247. https://doi.org/10.1136/sti.2004.011684 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Wira, C. R. & Fahey, J. V. A new strategy to understand how HIV infects women: Identification of a window of vulnerability during the menstrual cycle. AIDS 22, 1909–1917. https://doi.org/10.1097/QAD.0b013e3283060ea4 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Raghupathy, R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today 18, 478–482. https://doi.org/10.1016/s0167-5699(97)01127-4 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Sappenfield, E., Jamieson, D. J. & Kourtis, A. P. Pregnancy and susceptibility to infectious diseases. Infect Dis. Obstet. Gynecol. 752852–752852, 2013. https://doi.org/10.1155/2013/752852 (2013).Article 

    Google Scholar 
    36.Wood, B. M., Watts, D. P., Mitani, J. C. & Langergraber, K. E. Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J. Hum. Evol. 105, 41–56. https://doi.org/10.1016/j.jhevol.2017.01.003 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Johnson, P. T. J. et al. Living fast and dying of infection: Host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242. https://doi.org/10.1111/j.1461-0248.2011.01730.x (2012).Article 
    PubMed 

    Google Scholar 
    38.Previtali, M. A. et al. Relationship between pace of life and immune responses in wild rodents. Oikos 121, 1483–1492. https://doi.org/10.1111/j.1600-0706.2012.020215.x (2012).Article 

    Google Scholar 
    39.Haigwood, N. & Walker, C. Chimpanzees in Biomedical and Behavioral Research: Assessing the Necessity (eds Bruce M. Altevogt, Diana E. Pankevich, Marilee K. Shelton-Davenport, & Jeffrey P. Kahn) 91–165 (National Academies Press (US), 2011).40.Muehlenbein, M. P. Parasitological analyses of the male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 65, 167–179. https://doi.org/10.1002/ajp.20106 (2005).Article 
    PubMed 

    Google Scholar 
    41.Gillespie, T. R. et al. Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. Am. J. Phys. Anthropol. 143, 534–544. https://doi.org/10.1002/ajpa.21348 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Muehlenbein, M. P. & Lewis, C. M. Primate Ecology and Conservation: A Handbook of Techniques (eds E. J. Sterling, N. Bynum, & M. E. Blair) 40–57 (Oxford University Press, 2013).43.Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in non-human-primate species. Front. Physiol. 8, 51–51. https://doi.org/10.3389/fphys.2017.00051 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684. https://doi.org/10.1002/ajpa.22821 (2015).Article 
    PubMed 

    Google Scholar 
    45.Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329. https://doi.org/10.1046/j.1365-2710.2001.00358.x (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Murr, C., Widner, B., Wirleitner, B. & Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 3, 175–187. https://doi.org/10.2174/1389200024605082 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222. https://doi.org/10.1007/bf01662720 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346–13346. https://doi.org/10.1038/s41598-018-31563-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 2. https://doi.org/10.1186/s40850-019-0041-1 (2019).MathSciNet 
    Article 

    Google Scholar 
    50.González, N. T. et al. Urinary markers of oxidative stress respond to infection and late-life in wild chimpanzees. PLoS ONE 15, e0238066. https://doi.org/10.1371/journal.pone.0238066 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Negrey, J. D. et al. Demography, life history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190613, https://doi.org/10.1098/rstb.2019.0613 (2020).52.Phillips, S. R. et al. Faecal parasites increase with age but not reproductive effort in wild female chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190614, https://doi.org/10.1098/rstb.2019.0614 (2020).53.Emery Thompson, M. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. 5, 180840. https://doi.org/10.1098/rsos.180840 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Dyke, B., Gage, T. B., Alford, P. L., Swenson, B. & Williams-Blangero, S. Model life table for captive chimpanzees. Am. J. Primatol. 37, 25–37. https://doi.org/10.1002/ajp.1350370104 (1995).Article 
    PubMed 

    Google Scholar 
    55.Obanda, V., Omondi, G. P. & Chiyo, P. I. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees. PLoS ONE 9, e104602–e104602. https://doi.org/10.1371/journal.pone.0104602 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413. https://doi.org/10.1186/1475-2875-13-413 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Anim. Behav. 66, 551–560. https://doi.org/10.1006/anbe.2003.2210 (2003).Article 

    Google Scholar 
    58.Knott, C. D. Field collection and preservation of urine in orangutans and chimpanzees. Trop. Biodivers. 4, 95–102 (1997).
    Google Scholar 
    59.Fuchs, D. et al. Urinary neopterin concentrations vs total neopterins for clinical utility. Clin. Chem. 35, 2305–2307 (1989).CAS 
    Article 

    Google Scholar 
    60.Anestis, S. F., Breakey, A. A., Beuerlein, M. M. & Bribiescas, R. G. Specific gravity as an alternative to creatinine for estimating urine concentration in captive and wild chimpanzee (Pan troglodytes) samples. Am. J. Primatol. 71, 130–135. https://doi.org/10.1002/ajp.20631 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Emery Thompson, M., Muller, M. N. & Wrangham, R. W. Technical note: Variation in muscle mass in wild chimpanzees: Application of a modified urinary creatinine method. Am. J. Phys. Anthropol. 149, 622–627, https://doi.org/10.1002/ajpa.22157 (2012).62.Miller, R. C. et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin. Chem. 50, 924–932. https://doi.org/10.1373/clinchem.2004.032292 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. 8, 139–149. https://doi.org/10.1080/22221751.2018.1563456 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).65.Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin. Chem. 34, 1866–1867. https://doi.org/10.1093/clinchem/34.9.1863 (1988).Article 
    PubMed 

    Google Scholar 
    66.Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803. https://doi.org/10.1007/s10393-018-1357-y (2018).Article 
    PubMed 

    Google Scholar 
    67.Wood, S. Generalized Additive Models: An Introduction With R. Vol. 66 (2006).68.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 1, https://doi.org/10.18637/jss.v082.i13 (2017).69.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    70.Stolwijk, A. M., Straatman, H. & Zielhuis, G. A. Studying seasonality by using sine and cosine functions in regression analysis. J. Epidemiol. Commun. Health 53, 235–238. https://doi.org/10.1136/jech.53.4.235 (1999).CAS 
    Article 

    Google Scholar 
    71.Peacock, L. J. & Rogers, C. M. Gestation period and twinning in chimpanzees. Science 129, 959–959. https://doi.org/10.1126/science.129.3354.959 (1959).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Caro, T. M. et al. Termination of reproduction in nonhuman and human female primates. Int. J. Primatol. 16, 205–220. https://doi.org/10.1007/BF02735478 (1995).Article 

    Google Scholar 
    73.Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 26, 211–252, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x (1964).74.Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 49, 1494–1502. https://doi.org/10.3758/s13428-016-0809-y (2017).Article 
    PubMed 

    Google Scholar 
    75.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    76.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    77.Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55, 1–17. https://doi.org/10.1093/biomet/55.1.1 (1968).CAS 
    Article 
    PubMed 

    Google Scholar 
    78.Fox, J., Weisberg, S. & Fox, J. An R Companion to Applied Regression. 2nd edn (Sage, 2011).79.Reibnegger, G. et al. Approach to define “normal aging” in man. Immune function, serum lipids, lipoproteins and neopterin levels. Mech. Ageing Dev. 46, 67–82, https://doi.org/10.1016/0047-6374(88)90115-7 (1988).80.Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973–41973. https://doi.org/10.1038/srep41973 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Flatt, T. & Partridge, L. Horizons in the evolution of aging. BMC Biol. 16, 93–93. https://doi.org/10.1186/s12915-018-0562-z (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355. https://doi.org/10.1016/j.cub.2019.03.040 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070. https://doi.org/10.1002/art.1780290902 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    84.Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 196432–196432, 2013. https://doi.org/10.1155/2013/196432 (2013).Article 

    Google Scholar 
    85.Emery Thompson, M., Muller, M. N. & Wrangham, R. W. The energetics of lactation and the return to fecundity in wild chimpanzees. Behav. Ecol. 23, 1234–1241, https://doi.org/10.1093/beheco/ars107 (2012).86.Muller, M. N. in Behavioral Diversity in Chimpanzees and Bonobos (eds C. Boesch, G. Hohmann, & L. Marchant) 112–124 (Cambridge University Press, 2002).87.Pepper, J. W., Mitani, J. C. & Watts, D. P. General gregariousness and specific social preferences among wild chimpanzees. Int. J. Primatol. 20, 613–632. https://doi.org/10.1023/A:1020760616641 (1999).Article 

    Google Scholar 
    88.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Habig, B. et al. Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 73, 134. https://doi.org/10.1007/s00265-019-2748-y (2019).Article 

    Google Scholar 
    90.Foo, Y. Z., Nakagawa, S., Rhodes, G. & Simmons, L. W. The effects of sex hormones on immune function: A meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).Article 
    PubMed 

    Google Scholar 
    91.Franceschi, C. et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105. https://doi.org/10.1016/j.mad.2006.11.016 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    92.Brod, S. A. Unregulated inflammation shortens human functional longevity. Inflamm. Res. 49, 561–570. https://doi.org/10.1007/s000110050632 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    93.Gurven, M. & Kaplan, H. Longevity among hunter-gatherers: A cross-cultural examination. Popul. Dev. Rev. 33, 321–365 (2007).Article 

    Google Scholar 
    94.Bichler, A. et al. Measurement of urinary neopterin in normal pregnant and non-pregnant women and in women with benign and malignant genital tract neoplasms. Arch. Gynecol. 233, 121–130. https://doi.org/10.1007/BF02114788 (1983).CAS 
    Article 
    PubMed 

    Google Scholar 
    95.Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Horm. Behav. 46, 204–215. https://doi.org/10.1016/j.yhbeh.2004.03.013 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    96.Matsumoto-Oda, A. Mahale chimpanzees: Grouping patterns and cycling females. Am. J. Primatol. 47, 197–207. https://doi.org/10.1002/(sici)1098-2345(1999)47:3%3c197::aid-ajp2%3e3.0.co;2-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    97.Relloso, M. et al. Estradiol impairs the Th17 immune response against Candida albicans. J. Leukoc. Biol. 91, 159–165. https://doi.org/10.1189/jlb.1110645 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    98.Muller, M. N., Kahlenberg, S. M., Thompson, M. E. & Wrangham, R. W. Male coercion and the costs of promiscuous mating for female chimpanzees. Proc. Biol. Sci. 274, 1009–1014. https://doi.org/10.1098/rspb.2006.0206 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    99.Uyar, I. S. et al. Evaluation of systemic inflammatory response in cardiovascular surgery via interleukin-6, interleukin-8, and neopterin. Heart Surg. Forum 17, E13-17. https://doi.org/10.1532/hsf98.2013267 (2014).Article 
    PubMed 

    Google Scholar 
    100.Jerin, A. et al. Neopterin – An early marker of surgical stress and hypoxic reperfusion damage during liver surgery. Clin. Chem. Lab. Med. 40, 663–666. https://doi.org/10.1515/CCLM.2002.113 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    101.Baxter-Parker, G. et al. Knee replacement surgery significantly elevates the urinary inflammatory biomarkers neopterin and 7,8-dihydroneopterin. Clin. Biochem. 63, 39–45. https://doi.org/10.1016/j.clinbiochem.2018.11.002 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    102.Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R. Soc. Open Sci. 7, 191825–191825. https://doi.org/10.1098/rsos.191825 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Boyunağa, H. et al. Urinary neopterin levels in the different stages of pregnancy. Gynecol. Obstet. Invest. 59, 171–174. https://doi.org/10.1159/000083748 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    104.Oleszczuk, J., Wawrzycka, B. & Maj, J. G. Interleukin-6 and neopterin levels in serum of patients with preterm labour with and without infection. Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 27–30. https://doi.org/10.1016/S0301-2115(97)00083-3 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    105.Kaleli, I. et al. Serum levels of neopterin and interleukin-2 receptor in women with severe preeclampsia. J. Clin. Lab Anal. 19, 36–39. https://doi.org/10.1002/jcla.20053 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    106.Sencan, H., Keskin, N. & Khatib, G. The role of neopterin and anti-Mullerian hormone in unexplained recurrent pregnancy loss – A case-control study. J. Obstet. Gynaecol. 39, 996–999. https://doi.org/10.1080/01443615.2019.1586850 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    107.Potts, K. B., Watts, D. P. & Wrangham, R. W. Comparative feeding ecology of two communities of chimpanzees (Pan troglodytes) in Kibale National Park, Uganda. Int. J. Primatol. 32, 669–690. https://doi.org/10.1007/s10764-011-9494-y (2011).Article 

    Google Scholar 
    108.Emery Thompson, M., Muller, M. N., Wrangham, R. W., Lwanga, J. S. & Potts, K. B. Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees. Horm. Behav. 55, 299–305, https://doi.org/10.1016/j.yhbeh.2008.11.005 (2009).109.Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity?. Oikos 88, 87–98. https://doi.org/10.1034/j.1600-0706.2000.880110.x (2000).Article 

    Google Scholar  More

  • in

    Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon

    1.Xiao, X. M., Biradar, C. M., Czarnecki, C., Alabi, T. & Keller, M. A simple algorithm for large-scale mapping of evergreen forests in tropical America, Africa and Asia. Remote Sens. 1, 355–374 (2009).Article 

    Google Scholar 
    2.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    Article 

    Google Scholar 
    3.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    Article 

    Google Scholar 
    4.Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012).CAS 
    Article 

    Google Scholar 
    5.Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).CAS 
    Article 

    Google Scholar 
    6.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS 
    Article 

    Google Scholar 
    7.Fearnside, P. M. Brazilian politics threaten environmental policies. Science 353, 746–748 (2016).CAS 
    Article 

    Google Scholar 
    8.Fearnside, P. M. Business as Usual: A Resurgence of Deforestation in the Brazilian Amazon (Yale School of Forestry & Environmental Studies, 2017).9.Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Change Biol. 20, 3713–3726 (2014).Article 

    Google Scholar 
    10.Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).CAS 
    Article 

    Google Scholar 
    11.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS 
    Article 

    Google Scholar 
    12.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).CAS 
    Article 

    Google Scholar 
    13.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS 
    Article 

    Google Scholar 
    14.PRODES Legal Amazon Deforestation Monitoring System (INPE, 2018); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes15.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    16.Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 3, e1601047 (2017).Article 

    Google Scholar 
    17.Qin, Y. et al. Improved estimates of forest cover and loss in the Brazilian Amazon in 2000–2017. Nat. Sustain. 2, 764–772 (2019).Article 

    Google Scholar 
    18.Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).CAS 
    Article 

    Google Scholar 
    19.Richards, P., Arima, E., VanWey, L., Cohn, A. & Bhattarai, N. Are Brazil’s deforesters avoiding detection? Conserv. Lett. 10, 470–476 (2017).Article 

    Google Scholar 
    20.Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).CAS 
    Article 

    Google Scholar 
    21.Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).Article 

    Google Scholar 
    22.Wigneron, J.-P. et al. Tropical forests did not recover from the strong 2015–2016 El Niño event. Sci. Adv. 6, eaay4603 (2020).CAS 
    Article 

    Google Scholar 
    23.Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).Article 

    Google Scholar 
    24.Qin, Y. W. et al. Annual dynamics of forest areas in South America during 2007–2010 at 50 m spatial resolution. Remote Sens. Environ. 201, 73–87 (2017).Article 

    Google Scholar 
    25.Ferrante, L. & Fearnside, P. M. Brazil’s new president and ‘ruralists’ threaten Amazonia’s environment, traditional peoples and the global climate. Environ. Conserv. 46, 261–263 (2019).Article 

    Google Scholar 
    26.Artaxo, P. Working together for Amazonia. Science 363, 323–323 (2019).CAS 
    Article 

    Google Scholar 
    27.Aragão, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).Article 
    CAS 

    Google Scholar 
    28.Nunes, S., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).Article 

    Google Scholar 
    29.Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).CAS 
    Article 

    Google Scholar 
    30.Liu, J. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Nino. Science 358, eaam5690 (2017).Article 
    CAS 

    Google Scholar 
    31.Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).CAS 
    Article 

    Google Scholar 
    32.Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).CAS 
    Article 

    Google Scholar 
    33.Yang, Y. et al. Post-drought decline of the Amazon carbon sink. Nat. Commun. 9, 3172 (2018).Article 
    CAS 

    Google Scholar 
    34.Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).CAS 
    Article 

    Google Scholar 
    35.Asner, G. P. et al. Selective logging in the Brazilian Amazon. Science 310, 480–482 (2005).CAS 
    Article 

    Google Scholar 
    36.Silva, C. H. L.Jr et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Article 

    Google Scholar 
    37.Espírito-Santo, F. D. B. et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5, 3434 (2014).Article 
    CAS 

    Google Scholar 
    38.Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554–554 (2011).CAS 
    Article 

    Google Scholar 
    39.Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016. Sci. Rep. 6, 33130 (2016).Article 
    CAS 

    Google Scholar 
    40.Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).CAS 
    Article 

    Google Scholar 
    41.Aguiar, A. P. D. et al. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon. Glob. Change Biol. 22, 1821–1840 (2016).Article 

    Google Scholar 
    42.Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).Article 

    Google Scholar 
    43.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).Article 

    Google Scholar 
    44.Silva, C. V. J. et al. Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environ. Res. Lett. 15, 114023 (2020).CAS 
    Article 

    Google Scholar 
    45.Silva, C. V. J. et al. Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Phil. Trans. R. Soc. B 373, 20180043 (2018).Article 

    Google Scholar 
    46.Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).Article 

    Google Scholar 
    47.Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).CAS 
    Article 

    Google Scholar 
    48.Hansen, M. C., Potapov, P. & Tyukavina, A. Comment on ‘Tropical forests are a net carbon source based on aboveground measurements of gain and loss’. Science 363, eaar3629 (2019).CAS 
    Article 

    Google Scholar 
    49.Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).Article 

    Google Scholar 
    50.Doughty, R. et al. TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest. Proc. Natl Acad. Sci. USA 116, 22393–22398 (2019).CAS 
    Article 

    Google Scholar 
    51.Moore, B. III et al. The potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas. Front. Environ. Sci. 6, 109 (2018).Article 

    Google Scholar 
    52.Landsat (NASA, USGS, 2019); https://landsat.gsfc.nasa.gov/news/media-resources53.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).Article 

    Google Scholar 
    54.Fernandez-Moran, R. et al. SMOS-IC: an alternative SMOS soil moisture and vegetation optical depth product. Remote Sens. 9, 457 (2017).Article 

    Google Scholar 
    55.Rodriguez-Fernandez, N. J. et al. An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa. Biogeosciences 15, 4627–4645 (2018).CAS 
    Article 

    Google Scholar 
    56.Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).Article 

    Google Scholar 
    57.Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474 (2015).Article 

    Google Scholar 
    58.Moesinger, L. et al. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Article 

    Google Scholar 
    59.Tang, H. et al. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 231, 111262 (2019).Article 

    Google Scholar 
    60.Crisp, D. et al. The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmos. Meas. Tech. 10, 59–81 (2017).CAS 
    Article 

    Google Scholar 
    61.Kiel, M. et al. How bias correction goes wrong: measurement of XCO2 affected by erroneous surface pressure estimates. Atmos. Meas. Tech. 12, 2241–2259 (2019).CAS 
    Article 

    Google Scholar 
    62.Worden, J. R. et al. Evaluation and attribution of OCO-2 XCO2 uncertainties. Atmos. Meas. Tech. 10, 2759–2771 (2017).CAS 
    Article 

    Google Scholar 
    63.Giglio, L. & Justice, C. MOD14A2 MODIS/Terra Thermal Anomalies/Fire 8-Day L3 Global 1 km SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).64.Giglio, L., Justice, C., Boschetti, L. & Roy, D. MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500 m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2015).65.Huffman, G. et al. Integrated Multi-satellitE Retrievals for GPM (IMERG). Version 4.4 (NASA’s Precipitation Processing Center, 2014); ftp://arthurhou.pps.eosdis.nasa.gov/gpmdata/66.Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017).67.Qin, Y., Xiao, X. & Wigneron, J.-P. Annual evergreen forest maps in the Brazilian Amazon during 2010–2019. Figshare https://doi.org/10.6084/m9.figshare.14115518.v1 (2021).68.Qin, Y., Xiao, X. & Wigneron, J.-P. Annual aboveground biomass maps in the Brazilian Amazon during 2010–2019. Figshare https://doi.org/10.6084/m9.figshare.14115566.v1 (2021).69.Qin, Y., Xiao, X. & Wigneron, J.-P. Code for evergreen forest and aboveground biomass analyses in the Brazilian Amazon. Figshare https://doi.org/10.6084/m9.figshare.14115680.v1 (2021). More

  • in

    Multi-seasonal systematic camera-trapping reveals fluctuating densities and high turnover rates of Carpathian lynx on the western edge of its native range

    1.Hayward, M. W. et al. FORUM: Ecologists need robust survey designs, sampling and analytical methods. J. Appl. Ecol. 52, 286–290 (2015).Article 

    Google Scholar 
    2.Karanth, K. U. Estimating tiger Pantheratigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71, 333–338 (1995).Article 

    Google Scholar 
    3.O’Connell, A. F., Nichols, J. D. & Katranth, K. U. Camera Traps in Animal Ecology: Methods and Analyses (Springer, 2011).Book 

    Google Scholar 
    4.Molinari-Jobin, A. et al. Monitoring in the presence of species misidentification: The case of the Eurasian lynx in the Alps. Anim. Conserv. 15, 266–273 (2012).Article 

    Google Scholar 
    5.López-Bao, J. V. et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci. Rep. 8, 2177 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    6.Foster, R. J. & Harmsen, B. J. A critique of density estimation from camera-trap data. J. Wildl. Manage. 76, 224–236 (2012).Article 

    Google Scholar 
    7.Rozylowicz, L., Popescu, V. D., Pǎtroescu, M. & Chişamera, G. The potential of large carnivores as conservation surrogates in the Romanian Carpathians. Biodivers. Conserv. 20, 561–579 (2011).Article 

    Google Scholar 
    8.Weingarth, K. et al. First estimation of Eurasian lynx (Lynx lynx) abundance and density using digital cameras and capture-recapture techniques in a German national park. Anim. Biodivers. Conserv. 35, 197–207 (2012).Article 

    Google Scholar 
    9.Pesenti, E. & Zimmermann, F. Density estimations of the Eurasian lynx (Lynx lynx) in the Swiss Alps. J. Mammal. 94, 73–81 (2013).Article 

    Google Scholar 
    10.Blanc, L., Marboutin, E., Gatti, S. & Gimenez, O. Abundance of rare and elusive species: Empirical investigation of closed versus spatially explicit capture-recapture models with lynx as a case study. J. Wildl. Manage. 77, 372–378 (2013).Article 

    Google Scholar 
    11.Kubala, J. et al. Robust monitoring of the Eurasian lynx Lynxlynx in the Slovak Carpathians reveals lower numbers than officially reported. Oryx 53, 548–556 (2019).Article 

    Google Scholar 
    12.Kaczensky, P. et al. Status, Management and Distribution of Large Carnivores: Bear, Lynx, Wolf & Wolverine—in Europe (European Commission, 2013).
    Google Scholar 
    13.Gimenez, O. et al. Spatial density estimates of Eurasian lynx (Lynx lynx) in the French Jura and Vosges Mountains. Ecol. Evol. 9, 11707–11715 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Okarma, H. et al. Status of Carnivores in the Carpathian Ecoregion. Report of the Carpathian Ecoregion Initiative (2000).15.Stehlík, J. Znovuvysazení rysa ostrovida Lynx lynx L. v některých evropských zemích v letech 1970–1976. Poľovnícky zborník—Folia venatoria 9, 255–265 (1979).16.Červený, J. & Bufka, L. Lynx (Lynx lynx) in south-western Bohemia. Acta. Sci. Nat. Brno 30, 16–33 (1996).
    Google Scholar 
    17.Salvatori, V. et al. Hunting legislation in the Carpathian Mountains: Implications for the conservation and management of large carnivores. Wildlife Biol. 8, Pagination missing-please provide (2002).18.Smolko, P. et al. Lynx monitoring in the Muránska planina NP, Slovakia and its importance for the national and European management and conservation of the species. Technical report (2018).19.Kubala, J. et al. Monitoring rysa ostrovida (Lynx lynx) vo Veporských vrchoch a jeho význam pre národný a európsky manažment a ochranu druhu. Technická správa. (In Slovak) (2019).20.Kubala, J. et al. Monitoring rysa ostrovida (Lynx lynx) v Strážovských vrchoch a jeho význam pre národný a európsky manažment a ochranu druhu. Technická správa. (In Slovak) (2020).21.Duangchantrasiri, S. et al. Dynamics of a low-density tiger population in Southeast Asia in the context of improved law enforcement. Conserv. Biol. 30, 639–648 (2016).PubMed 
    Article 

    Google Scholar 
    22.Karanth, K. U., Nichols, J. D., Kumar, N. S. & Hines, J. E. Assessing tiger population dynamics using photographic capture-recapture sampling. Ecology 87, 2925–2937 (2006).PubMed 
    Article 

    Google Scholar 
    23.Bisht, S., Banerjee, S., Qureshi, Q. & Jhala, Y. Demography of a high-density tiger population and its implications for tiger recovery. J. Appl. Ecol. 56, 1725–1740 (2019).Article 

    Google Scholar 
    24.Zimmermann F. et al. Abundanz und Dichte des Luchses in den Nordwestalpen : Fang-Wiederfang-Schätzung mittels Fotofallen im K-VI im Winter 2015 / 16, Vol. 41 (2016).25.Pironon, S. et al. Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Sagarin, R. D. & Gaines, S. D. The ‘abundant centre’ distribution: to what extent is it a biogeographical rule?. Ecol. Lett. 5, 137–147 (2002).Article 

    Google Scholar 
    27.Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Krojerová-Prokešová, J. et al. Genetic constraints of population expansion of the Carpathian lynx at the western edge of its native distribution range in Central Europe. Heredity (Edinb). 122, (2019).30.Ján, K. & Štefan, D. Mammals of Slovakia distribution, bionomy and protection. (VEDA, 2012).31.Kubala, J. et al. The coat pattern in the Carpathian population of Eurasian lynx has changed: a sign of demographic bottleneck and limited connectivity. Eur. J. Wildl. Res. 66, 2 (2019).Article 

    Google Scholar 
    32.Kutal, M. et al. Occurrence of large carnivores—Lynx lynx, Canis lupus, and Ursus arctos—and of Felis silvestris in the Czech Republic and western Slovakia in 2012–2016 (Carnivora). Lynx, new Ser. 48, 93–107.33.Galvánek, J., Pietorová, E. & Matejová, M. Hodnotenie abiotických zložiek vybranej ekologicko-funkčnej jednotky. in Ochrana prírody Kysuckého regiónu a spolupráca na jeho trvalo udržateľnom rozvoji. (1996).34.Tolasz, R., Miková, T., Valeriánová, A. & Voženílek, V. Atlas podnebí Česka. (2007).35.Bochníček, O. Climate Atlas of Slovakia. (Slovak Hydrometeorological Institute, 2015).36.Czech Statistical Office. Statistical Yearbook of the Czech Republic 2017. Accessed 9 Nov 2020. https://www.czso.cz/csu/czso/statistical-yearbook-of-the-czech-republic (2017).37.Statistical Office of the Slovak Republic. Statistical Yearbook of the Slovak Republic 2017. Accessed 9 Nov 2020. https://slovak.statistics.sk:443/wps/portal?urile=wcm:path:/obsah-en-pub/publikacie/vsetkypublikacie/f3dc4a81-06ac-4fea-93b7-e0ff45a9fff6 (2017).38.Romportl, D., Zyka, V. & Kutal, M. Connectivity Conservation of Large Carnivores’ Habitats in the Carpathians. in 5th European Congress of Conservation Biology (2018). https://doi.org/10.17011/conference/eccb2018/107837.39.Weingarth, K. et al. Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24, 2935–2952 (2015).Article 

    Google Scholar 
    40.Mohr, C. O. Table of equivalent populations of north american small mammals. Am. Midl. Nat. 37, 223–249 (1947).Article 

    Google Scholar 
    41.Karanth, K. U. & Nichols, J. D. Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852–2862 (1998).Article 

    Google Scholar 
    42.Okarma, H., Sniezko, S. & Smietana, W. Home ranges of Eurasian lynx Lynxlynx in the Polish Carpathian Mountains. Wildlife Biol. 13, 481–487 (2007).Article 

    Google Scholar 
    43.ESRI. ArcGIS Desktop. (2019).44.Duľa, M., Drengubiak, P., Kutal, M., Trulík, V. & Hrdý, Ľ. Monitoring lynx in Kysuce PLA, Slovakia. (2015).45.Kutal, M., Váňa, M., Bojda, M., Kutalová, L. & Suchomel, J. Camera trapping of the Eurasian lynx in the Czech-Slovakian borderland. (2015).46.Duľa, M. et al. Recentný výskyt a reprodukcia rysa ostrovida (Lynx lynx) v CHKO Kysuce a NP Malá Fatra. in 75–78 (2017).47.Choo, Y. R. et al. Best practices for reporting individual identification using camera trap photographs. Glob. Ecol. Conserv. 24, e01294 (2020).Article 

    Google Scholar 
    48.Zimmermann, F., Breitenmoser-Würsten, C., Molinari-Jobin, A. & Breitenmoser, U. Optimizing the size of the area surveyed for monitoring a Eurasian lynx (Lynx lynx) population in the Swiss Alps by means of photographic capture-recapture. Integr. Zool. 8, 232–243 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Gopalaswamy, A. M. et al. Program SPACECAP: Software for estimating animal density using spatially explicit capture-recapture models. Methods Ecol. Evol. 3, 1067–1072 (2012).Article 

    Google Scholar 
    50.Gopalaswamy, A. et al. SPACECAP: An R package for estimating animal density using spatially explicit capture-recapture models. (2014).51.Team, R. C. R software. (2020).52.Stanley & Burnham_1999. A closure test for capture data.Env&EcolStats.pdf.53.Stanley, T. & Richards, J. CloseTest: A program for testing capture–recapture data for closure [Software Manual]. (2004).54.Copernicus Programme. CORINE Land Cover 2012. http://land.copernicus.e/an-europea/orine-land-cove/lc-2012.Google Scholar (2012).55.Gelman, A., Carlin, J., Stern, H. & DB, R. Bayesian data analysis.2nd edn. (2004).56.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ, 2006).Book 

    Google Scholar 
    57.White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    58.Arnason, A. N. Parameter estimates from mark-recapture experiments on two populations subject to migration and death. Res. Popul. Ecol. (Kyoto) 13, 97–113 (1972).Article 

    Google Scholar 
    59.Arnason, A. N. The estimation of population size, migration rates and survival in a stratified population. Res. Popul. Ecol. (Kyoto) 15, 1–8 (1973).Article 

    Google Scholar 
    60.Chabanne, D. B. H., Pollock, K. H., Finn, H. & Bejder, L. Applying the multistate capture–recapture robust design to characterize metapopulation structure. Methods Ecol. Evol. 8, 1547–1557 (2017).Article 

    Google Scholar 
    61.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. multimodel inference 2, (2002).62.Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63Royle, J., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture-Recapture (Academic Press, 2014).
    Google Scholar 
    64.Rovero, F. & Zimmermann, F. Introduction. in Camera Trapping for Wildlife Research 1–7. (2016).65.Avgan, B., Zimmermann, F., Güntert, M., Arikan, F. & Breitenmoser, U. The first density estimation of an isolated Eurasian lynx population in southwest Asia. Wildlife Biol. 20, 217–221 (2014).Article 

    Google Scholar 
    66.Harmsen, B. J., Foster, R. J. & Quigley, H. Spatially explicit capture recapture density estimates: Robustness, accuracy and precision in a long-term study of jaguars (Pantheraonca). PLoS ONE 15, e0227468 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67Sollmann, R., Gardner, B. & Belant, J. L. How does spatial study design influence density estimates from spatial capture-recapture models?. PLoS ONE 7, e34575 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Zimmermann, F. et al. Abondance et densité du lynx dans le Sud du Jura suisse : estimation par capture-recapture photographique dans le compartiment I , durant l ’ hiver 2014 / 15, Vol. 41 (2015).69.Breitenmoser-Würsten, C. et al. Spatial and Social stability of a Eurasian lynx Lynxlynx population: an assessment of 10 years of observation in the Jura Mountains. Wildlife Biol. 13, 365–380 (2007).Article 

    Google Scholar 
    70.Fabiano, E. C. et al. Trends in cheetah Acinonyxjubatus density in north-central Namibia. Popul. Ecol. 62, 233–243 (2020).Article 

    Google Scholar 
    71.Jedrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the lynx in Bialowieza Primeval Forest (Poland and Belarus). Ecography (Cop.) 19, 122–138 (1996).Article 

    Google Scholar 
    72.Breitenmoser-Würsten, C., Vandel, J.-M., Zimmermann, F. & Breitenmoser, U. Demography of lynx Lynxlynx in the Jura Mountains. Wildlife Biol. 13, 381–392 (2007).Article 

    Google Scholar 
    73.Andren, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article 

    Google Scholar 
    74.Herrero, A. et al. Genetic analysis indicates spatial-dependent patterns of sex-biased dispersal in Eurasian lynx in Finland. PLoS ONE 16, e0246833 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Port, M. et al. Rise and fall of a Eurasian lynx (Lynx lynx) stepping-stone population in central Germany. Mammal Res. 66, 45–55 (2021).Article 

    Google Scholar 
    76.Pereira, J. A. et al. Population density of Geoffroy’s cat in scrublands of central Argentina. J. Zool. 283, 37–44 (2011).Article 

    Google Scholar 
    77.Breitenmoser, U. et al. Conservation of the lynx Lynxlynx in the Swiss Jura Mountains. Wildlife Biol. 13, 340–355 (2007).Article 

    Google Scholar 
    78.Basille, M. et al. What shapes Eurasian lynx distribution in human dominated landscapes: selecting prey or avoiding people?. Ecography (Cop.) 32, 683–691 (2009).Article 

    Google Scholar 
    79.Filla, M. et al. Habitat selection by Eurasian lynx (Lynx lynx) is primarily driven by avoidance of human activity during day and prey availability during night. Ecol. Evol. 7, 6367–6381 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Nowicki, P. Food habit and diet of the lynx (Lynx lynx) in Europe. J. Wildl. Res. 2, (1997).81.Statistical Office of the Slovak Republic. Spring stock and hunting of game. Accessed 9 Nov 2020. http://datacube.statistics.sk/#!/view/en/VBD_SLOVSTAT/pl2006rs/v_pl2006rs_00_00_00_en (2019).82.Czech Statistical Office. Number and hunting of selected game species 2010 – 2019. Accessed 9 Nov 2020. https://www.czso.cz/documents/10180/122461942/1000052006e.pdf/3cd18662-1691-45df-a398-040ecdeeef00?version=1.1 (2020).83.Kutal, M., Váňa, M., Suchomel, J., Chapron, G. & Lopez-Bao, J. Trans-boundary edge effects in the western carpathians: the influence of hunting on large carnivore occupancy. PLoS ONE 11, e0168292 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Schmidt-Posthaus, H., Breitenmoser-Würsten, C., Posthaus, H., Bacciarini, L. & Breitenmoser, U. Causes of mortality in reintroduced Eurasian lynx in Switzerland. J. Wildl. Dis. 38, 84–92 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Mattisson, J. et al. Lethal male-male interactions in Eurasian lynx. Mamm. Biol. 78, 304–308 (2013).Article 

    Google Scholar 
    86.Sindičić, M. et al. Mortality in the Eurasian lynx population in Croatia over the course of 40 years. Mamm. Biol. 81, 290–294 (2016).Article 

    Google Scholar 
    87.Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article 

    Google Scholar 
    88.Červený, J., Krojerová-Prokešová, J., Kušta, T. & Koubek, P. The change in the attitudes of Czech hunters towards Eurasian lynx: Is poaching restricting lynx population growth?. J. Nat. Conserv. 47, 28–37 (2019).Article 

    Google Scholar 
    89.Kalaš, M. Contribution on the collisions of the European Lynx (Lynx lynx) with car traffic. in Migration corridors in the Western Carpathians: Malá Fatra—Kysucké Beskydy—Moravskoslezské Beskydy—Javorníky (ed. Kutal, M.) (2013).90.Boitani, L. et al. Key actions for Large Carnivore populations in Europe. Report to DG Environment. Contract no. 07.0307/2013/654446/SER/B3 (European Commission, Bruxelles, 2015).91.Kratochvil, J. et al. History of the distribution of the lynx in Europe. Acta Sci. Nat. Brno 4, 1–50 (1968).
    Google Scholar 
    92.Zimmermann, F., BreitenmoserWursten, C. & Breitenmoser, U. Natal dispersal of Eurasian lynx (Lynx lynx) in Switzerland. J. Zool. 267, 381–395 (2005).Article 

    Google Scholar 
    93.Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Importance of dispersal for the expansion of a Eurasian lynx Lynxlynx population in a fragmented landscape. Oryx 41, 358–368 (2007).Article 

    Google Scholar 
    94.Kowalczyk, R., Górny, M. & Schmidt, K. Edge effect and influence of economic growth on Eurasian lynx mortality in the Białowieża Primeval Forest, Poland. 3–8. https://doi.org/10.1007/s13364-014-0203-z (2015).95.Černecký, J. et al. Správa o stave biotopov a druhov európskeho významu za obdobie rokov 2013–2018 v Slovenskej republike. (2020). More

  • in

    A non-destructive sugar-feeding assay for parasite detection and estimating the extrinsic incubation period of Plasmodium falciparum in individual mosquito vectors

    Comparing estimates of parasite’s EIP between the classic dissection approach and the non-destructive individual “spit” assayDestructive approach: mosquito dissection and microscopic observationA total of 121 mosquito females exposed to parasite isolate A and 114 to isolate B were dissected from 8 to 16 dpbm (between 8 and 20 females/day, median = 14) to assess microscopically the presence and number of oocysts in the midguts and of sporozoites in salivary glands. Salivary gland infections were also confirmed through qPCR. The infection rate was high with 117/121 (96.7%) and 114/114 (100%) of females exposed respectively to isolate A and B harboring parasite oocysts in their midguts (supplementary S44, Fig. S4a). The gametocytemia of isolate B (1208 gam/µl) was higher than that of isolate A (168 gam/µl), resulting in strong difference in the number of developing oocysts between the two isolates (B: 191.65 ± 21, A: 13.86 ± 2, supplementary S4, Fig. S4b, LRT X21 = 24.46, P  More

  • in

    Joined-up action for biodiversity

    This is a challenge. Hunger, poverty and the continued decline in biodiversity are linked societal challenges. On our current trajectory, biodiversity, and the services it provides, will continue to decline, jeopardizing the achievement of the Sustainable Development Goals, due to the increasing impacts of land- and sea-use change, overexploitation of resources, climate change, pollution and invasive species — all pressures driven by unsustainable patterns of production and consumption. The projected decline in biodiversity will affect all people, but especially indigenous and local communities, and the world’s poor and vulnerable, as they rely on biodiversity for their livelihoods. However, it is not too late to change path. We need a portfolio of actions to address all drivers of biodiversity decline, at all levels, using context-specific approaches; urgent transformations are needed in the production of goods and services, especially food, provision of fresh water, energy and products from forestry. This requires a significant shift away from business-as-usual and a focus on synergies. There is no single pathway ahead but many alternative approaches reflecting local conditions and priorities — flexibility is crucial to tailor measures to national realities and circumstances. More

  • in

    Stochastic models support rapid peopling of Late Pleistocene Sahul

    Cellular-automaton frameworkWe constructed the cellular-automaton model in the open-access R statistical computing environment (cran.rproject.org). We provide all code, data and instructions to repeat the analysis65, which can be run on any desktop computer. Our spatial model is based on a 0.5° × 0.5° raster grid of Sahul from 0.5 to 43.0° S latitude, and 110.5 to 153.5° E longitude (86 rows and 87 columns). The land area of Sahul changes with fluctuating sea levels, so we estimated exposed land in 1000-year time slices to follow our available hindcasts of carrying capacity (see ‘Carrying capacity’ below) based on a digital elevation model and estimated sea-level change over the period of interest (from 85 to 40 ka; see Scenarios). We used the ETOPO1 global relief model of Earth’s surface66 to estimate the exposed landmass of Sahul through time. To reconstruct the landmass changes of Sahul every 1000 years, we applied sea-level variability outputs67 to the ETOPO1 model. We also included fluctuations in Lake Carpentaria that could potentially act as a natural barrier for human movement over time. We modified the contour of the lake based on modelled sea-level changes68 applied to the digital elevation model.From an initially peopled cell (see Scenarios), the new population can grow following a Ricker population-dynamics model, and emigrate to adjacent cells following stochastically resampled rules of dispersal; likewise, each cell can receive immigrants from adjacent cells following similar dispersal rules (see ‘Emigration and immigration’, and ‘Long-distance dispersal’).Population-dynamics modelEach cell within the grid acts as a particular sub-population unit within the overall dynamics of Sahul, and the summary information provided at the end of a simulation is an overall expression of all cells. The change in human abundance (N) within each cell is governed by the following phenomenological (Ricker) equation of population dynamics:$$N_{i,j,t + 1} = N_{i,j,t}e^{r_mleft( {1 – frac{{N_{i,j,t}}}{{K_{i,j,t}}}} right)} – left( {E_{i,j,t} – I_{i,j,t}} right)$$
    (1)
    where i is the cell row number in the 0.5° × 0.5° latitude lattice, j is the cell column number, t is the time interval in units of human generations (1 g = 27.9 years)2, Ni,j,t + 1 is the number of individuals in cell i, j at the next time interval (t + 1), Ni, j, t is the number of individuals in cell i, j at time interval t, rm is the maximum rate of population increase when resources are not limiting, Ki, j, t is the cell-specific carrying capacity (see ‘Carrying capacity’ below), and the Ei, j, t and Ii, j, t parameters represent the number of individuals emigrating from and immigrating into the focal cell i, j per time interval t, respectively (see ‘Emigration and immigration’). As an estimate of rm, we set the age-structured Leslie matrix for Aboriginal hunter–gatherers2 to have a survival probability (subdiagonal matrix entries) all equal to 1 (complete survival in every age class), and then took the loge of that matrix’s dominant eigenvalue to the power of g multiplied by 2 as the generationally scaled rm estimate required for Eq. (1). Finally, we imposed a beta-resampled additional mortality parameter MMVP = 0.2 for cells with a population size  1, immigration into cell i, j occurred following the same movement rules as for emigration.Long-distance dispersalWe used the allometric relationship of natal dispersal for omnivorous and herbivorous mammals40 to predict a dispersal probability for humans. Assuming a mean adult mass of M = 50 kg, maximum natal dispersal distance Dm is estimated as aMb, where a = 3.31 ± 1.17 and b = 0.65 ± 0.05 for omnivores and herbivores combined40. This produced an estimated maximum dispersal distance Dm ranging from 22.4 to 69.3 km. As a maximum dispersal range, this compares well to the average mobility of African hunter–gatherers of 1400–3900 km2/generation39 (equivalent to a radius of 21.1–35.2 km assuming a perfect circle), and the 0.4–1.1 km yr−1 (11.2–30.7 km/generation) estimates for Palaeolithic human expansions in northern Europe41. Also, Gould38 reported journeys by Aboriginal Australians of 400 to 560 km as ‘not unusual’ and perhaps the greatest mobility ever recorded, moving as many as nine times in three months, and covering an area of ~2600 km2 (radius = 28.8 km).Next, we used the estimated probability of dispersal (Pr(dmax)) of d exceeding multiples (1 to 10) of one cell width (0.5 × 111.12 = 55.6 km) as (Pr left( {d_{{mathrm{max}}}} right) = e^{ – d/aM^b}) (Supplementary Fig. 7). However, there is evidence globally that the territory size of hunter–gatherer groups is strongly related to local productivity, with a greater need to expand foraging areas as productivity declines19,80. Using territory size and rainfall data from Hiscock80, we assumed the same relative change in rainfall applied to net primary productivity, but shifted the power–law relationship upwards to match the slope of the upper limit of maximum dispersal distance (Supplementary Fig. 7b). Thus, for every tenfold decrease in relative net primary production, maximum dispersal distance increases by 12.7 times (Supplementary Fig. 7b). Once a long-distance dispersal event occurred, we Poisson-resampled the maximum dispersal distance to provide a δx and a δy to move from the focal cell in cell units (including a random direction: east–west for δx, and north–south for δy). The size of the long-distance-dispersing population followed the same rules as for neighbouring-cell emigration.Distance-to-water limitationWhile territory size, and hence, maximum dispersal distances increase with increasing aridity according to the relationships described above, there is evidence that human dispersal is ultimately limited by water availability15. This is likely to be even more relevant in Australia, the driest inhabited continent on Earth—indeed, estimated routes of gene flow among Aboriginal Australians suggest that the arid interior acted as a barrier to migration11. We therefore invoked an additional limitation on dispersal by calculating a probability of realizing a long-distance dispersal event (Pl) according to the following equation previously designed to limit modelled species migrations81:$$P_l = 1 – left( {frac{{D_l}}{{D_{H_2O}}}} right)^{Omega}$$
    (5)
    where Dl = the realized maximum dispersal distance generated from the algorithm described above, (D_{H_2O}) = the distance to water in units of map cells derived from the Australian Water Observations from Space dataset15, and Ω = the hydrological resistance parameter set arbitrarily to a value of 3 to invoke landscape-scale resistance to movement only in the driest areas of Sahul per generational time step.RuggednessWe hypothesized that high landscape ruggedness (elevational gradient) might at least partially impede the progress of human expansion across the landscape42, so we tested this using data available in an ethnographic and environmental dataset compiled by Binford42. Available in the binford library82 in R, the dataset includes >200 variables measuring aspects of hunter–gatherer subsistence, mobility and social organization for 339 ethnographically documented groups. Given the evidence that mobility is a function of productivity36,80, we constructed a simple linear model of annual movement varying with annual rainfall and the difference between maximum and minimum elevation within a 25- (40.2 km) mile radius of the group’s centroid (equivalent to an elevational gradient; i.e., ruggedness). Taking the cube root of annual movement and the difference in maximum and minimum elevation to comply with the assumption of Gaussian error distributions, the expected relationship between movement and rainfall prevailed, and there was a weak effect of elevational difference—a maximum of 1% reduction in annual movement (Supplementary Fig. 8). Expressed on the linear scale and standardizing annual movement and elevational difference to the range of 0–1 (assuming a constant median annual rainfall value), an exponential decay function of the form:$$M_{{mathrm{red}}} = a + broot {3} of {{G_{{mathrm{rel}}}}}$$
    (6)
    where Mred = the proportion of expected total annual movement, a = 1.001116, b = −0.0104453 and Grel = the standardized ruggedness from 0 to 1, described the reduction in annual movement rates up to a maximum of 1% (Supplementary Fig. 8). For all instances of emigration, immigration and long-distance dispersal, we assigned this function to the total number of people migrating for each cell based on its standardized ruggedness. We computed the topographic ruggedness index83 as the difference in elevation between a given cell and its eight neighbouring central cells, based on our digital elevation model. For a given cell, we then squared each of the eight elevation difference values (to render them positive), and calculated the square root of the averages of the squares. We updated the spatial resolution of our results to 0.5° × 0.5° to match the other environmental layers.Catastrophic mortality eventsPalaeo-demographic investigations of past human populations suggest that long-term population growth rates were just slightly higher than zero as a result of episodes of catastrophic mortality arising from pandemics, natural disasters and violent conflicts occurring every few generations84. This also agrees well with estimates of the probability of mass mortality events scaling to generation time for vertebrates (Pr(catastrophe) = 0.14 per generation)43. We thus sampled binomially at Pr = 0.14 for whether a catastrophe occurred in each focal cell, and then beta-sampled the severity of the event centred on Mcat = 0.5 (SD = 0.5/10) to emulate a stochastic catastrophe event of 50% mortality, on average, for that cell43.However, we reasoned that a random allocation of catastrophes among cells across the entirety of Sahul was not realistic, for the reason that mortality events arising from natural disasters, warfare or disease outbreaks would likely be spatially aggregated. We therefore imposed a Thomas cluster process using the rThomas function from the spatstat R library85, setting the intensity of the Poisson process of cluster centres κ to a linear relationship between the number of cells occupied per iteration and a vector ranging from 0.3 to 1.2, the standard deviation of random displacement along each coordinate axis of the grid of a given cell away from the cluster centre σscale = 0.015, and the mean number of cells per cluster μ = 0.6 × the mean dimension of the occupied grid per iteration. This combination of parameters led to a reasonable degree of spatial clustering while maintaining a random spread of cells around a catastrophe focal point, as well as maintaining the overall proportion of cells across the landscape experiencing a catastrophic mortality event ~0.14 per generational iteration.ScenariosWe ran 120 scenarios (8 entry times, ×5 entry sequences, ×3 relationships between carrying capacity and net primary production) where we modified three main components of the stochastic simulations: (i) the timing of first entry to Australia (from 85 to 50 ka, in 5000-year increments), (ii) the place of entry (northern, southern, simultaneous northern and southern, northern followed by southern 2000 years later, or southern followed by northern 2000 years later) and (iii) the form of the relationship between hindcasted net primary productivity and human carrying capacity (linear, rotated parabolic or reciprocal quadratic yield density). We repeated each scenario 100 times to generate a per-cell confidence interval of time of first arrival. Here, we deemed a cell to have been populated for the first time once it received ≥100 individuals (Nfirst), which is considered the minimum viable effective population size to avoid inbreeding depression70.Comparison layersTo test the resultant outputs against real archaeological data, we compiled a conservative list of ages older than 30 ka obtained from across Sahul (see ‘Compiling reference archaeological dates’ in the Supplementary Information and Supplementary Data 1). However, the spatial coverage of these ages is highly uneven (Fig. 1a), so we applied a maximum-likelihood method to correct for the Signor–Lipps effect first developed by Solow86 and adapted for spatial inference of both first-arrival and extinction patterns87. While described in more detailed elsewhere87, we briefly summarize the approach here.To correct for the inherent spatial bias of dates in a landscape, let x1,…xn be the spatial locations of n dated specimens in an area W and a1,…an their respective ages. The estimated average age M(x) of a putative date at a given location x is based on a standard kriging procedure88 derived from the spatial covariance between the age of two dated specimens as a function of their respective pairwise distance, so that:$$hat Mleft( x right) = mathop {sum}limits_{i le n} {w_ileft( x right)a_i}$$
    (7)
    where (w_1left( x right), ldots w_nleft( x right)) follows (mathop {sum}nolimits_{i le n} {w_ileft( x right) = 1}) and minimizes$$mathop {sum}limits_{i le n} {w_ileft( x right)gamma left( {x_i – x_j} right) + mu = gamma (x – x_j)}$$
    (8)
    for j ≤ n, with μ being a Lagrange multiplier so that (mu = mathop {sum}nolimits_{i le n} {gamma (x_i – x)}) and γ is the variogram:$$gamma left( u right) = frac{1}{2}Eleft( {aleft( z right) – aleft( {z + u} right)} right)^2 = sigma ^2 – cleft( u right)$$
    (9)
    where a(z) is the age a of a specimen found at a given location z (with z ∈ W), σ2 is the variance of a(z) and c(u) is the covariance between a(z) and a(z + u), with any two locations in W separated by distance u.We then modified Solow’s method89 to correct for taphonomic bias, which assumes initially that the distribution of ages through time is uniform between a given age A0 when individuals are assumed to be present, and the date of arrival A. For n ages of a given time series at a given location, the estimated terminal age (hat A) is therefore:$$hat A = A_0 + frac{{n + 1}}{n}{max} _{i}left( {a_i – A_o} right)$$
    (10)
    To integrate this method into a spatial context, we estimated a preliminary age Ap across space assuming (hat Mleft( x right)) follows a stationary random field:$$hat A_pleft( x right) = 2hat Mleft( x right) – A_0$$
    (11)
    But this generates a spatial bias (hat A_pleft( x right) – A(x)), in every (hat A_pleft( x right)), so we applied a simulation-based, spatial-bias-correction procedure90 to estimate the bias generated by Eq. (11) at each x across W. The first step assumes that (hat A_pleft( x right)) is the ‘true’ date of the terminal event in x. Based on these (hat A_pleft( x right)), we generated k age samples (a^{(k)} = (a_1^{left( k right)}, ldots ,a_n^{(k)})) at the same locations x1, … xn following the same spatial pattern and characteristics as the dated record and sampled independently from a uniform distribution on ([A_{0,}hat A_pleft( {x_i} right)]). We then inferred (hat A^{(k)}(x)), the timing of the terminal event for the k new simulated time series and calculated an estimated total bias (hat Bleft( x right)) across all k ages:$$hat Bleft( x right) = frac{1}{k}mathop {sum}limits_k {hat A^{left( k right)}left( x right) – hat A_pleft( x right)}$$
    (12)
    The final estimate of the timing of the terminal event of interest (hat Aleft( x right)) is the distribution of the preliminary dates (hat A_pleft( x right)) for every location x corrected by (hat Bleft( x right)), such that:$$hat Aleft( x right) = hat A_pleft( x right) – hat Bleft( x right)$$
    (13)
    Because archaeological age estimates ai are always associated with an inherent dating uncertainty σi, we assumed that age uncertainties are Gaussian and independent91 so that the probability density of the estimated age of the terminal event A(x) follows:$$int_{{it{epsilon }}_1,…,{it{epsilon }}_n} {A_{left{ {a_1 + {it{epsilon }}_1, ldots ;a_n + {it{epsilon }}_n} right}}(x)prod _ig_ileft( {{it{epsilon }}_i} right)d{it{epsilon }}_1 ldots d{it{epsilon }}_n}$$
    (14)
    where gi = the density of the Gaussian random variable with mean 0 and variance (sigma _i^2), and (A_{left{ {a_1 + {it{epsilon }}_1,, .., a_n + {it{epsilon }}_n} right}}(x)) = the final estimate at a given location x for a time series of age (a_1 + {it{epsilon }}_1,, .., a_n + {it{epsilon }}_n) located at x1,..xn, respectively. We applied the same Cook and Stefanski bias-correction procedure so that the k ages are independently sampled from a uniform distribution on ([A_{0,}hat A_pleft( {x_i} right)]) at the same locations x1, … xn following the same spatial pattern and characteristics as the dated record. This gives (a^{(k)} = (a_1 + {it{epsilon }}_1^{(k)},, .., a_n + {it{epsilon }}_n^{(k)})) with ({it{epsilon }}_i^{(k)}) independently sampled as a function of the probability density described in Eq. (14) to account for the dating uncertainty associated with each age. We then use the terminal ages (hat A^{(k)}(x) = A_{left{ {a_1^{left( k right)},,..,, a_n^{left( k right)}} right}}left( x right)) to estimate the bias in Eq. (12) and apply this to provide a corrected timing of (hat Aleft( x right)) for every x following Eq. (13).Global sensitivity analysisWe designed a global sensitivity analysis to provide robust sensitivity measures of the probability of the time to saturation of the entire Sahul continent to variation in the underlying parameters of our stochastic model54,92; this analysis does not repeat the scenario-testing parameters (i.e., time of entry, point(s) of entry, K–Pp relationship). For this global sensitivity analysis, we used the initial scenario parameters of a 50-ka entry at the southern route, the rotated parabolic relationship between K and Pp, and assuming a founding population size stochastically sampled between 1300 and 1500 people for the entry point2.Here, we ran the cellular-automaton spatial model 1000 times, randomly sampling 12 of its parameters uniformly for each iteration based on a Latin hypercube-sampling protocol54. We set the 12 parameters to be sampled with ±50% variation on the median value used in the model (except for Ncat and max N/K with a maximum upper bound of 0.99, and for maximum Dcell—see below); these 12 parameters were: (i) the maximum generational rate of population increase rm used to parameterize the phenomenological population-dynamics model per cell (range: 0.10–0.31), (ii) the minimum maximal dispersal distances Dm estimated from the allometric prediction (11–34 km), (iii) the cell-based maximum dispersal distance modifier (max Dcell), ranging from 1× to 5× the value set in the original model (10 cells), (iv) the cell-based minimum viable population size NMVP (50–150 individuals) below which we set (v) an additional mortality parameter MMVP (0.1–0.3), (vi) the hydrological resistance parameter Ω invoking landscape-scale resistance to movement only in the driest areas of Sahul per generational time step (1.5–4.5), (vii) the beta-resampled mean mortality of a cell during a catastrophe event Mcat (0.38–0.99), (viii) the beta-resampled proportion of people moving between cells when a migration event occurs Pmig (0.17–0.50), the beta-resampled (ix) minimum and (x) maximum ratios of N/K per cell invoking an emigration event (0.15–0.45 and 0.35–0.99, respectively), (xi) a resistance modifier R that modified the relationship between landscape ruggedness and maximum dispersal probability (0.5–1.5) and (xii) the population threshold Nfirst above which we determined a cell to be occupied for the calculation of the date of first arrival in a cell (50–150 individuals).We chose to summarise the output of each of these 1000 parameter-sampled runs of the spatial model as the time taken to achieve continental saturation (i.e., the number of years taken from initial entry to occupy every cell in Sahul). In a separate analysis, we then tested the influence of the per-model run parameter values (predictors) on the time to continental saturation (response) using a boosted-regression tree93 emulator with the function gbm.step in the dismo R library94. Here, we set the error distribution family as Gaussian, the bag fraction to 0.75, the learning rate to 0.008, the tolerance to 0.0001, the maximum number of trees to 10,000 and the tree complexity to 2 (first-order interactions only). To assess the relative contribution of each of the 12 randomly sampled parameters to the time to spatial saturation, we calculated the boosted-regression tree metrics of relative influence54.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Limited protection and ongoing loss of tropical cloud forest biodiversity and ecosystems worldwide

    1.Bruijnzeel, L. A., Scatena, F. N. & Hamilton, L. S. (eds) Tropical Montane Cloud Forests: Science for Conservation and Management (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO97805117783842.Mulligan, M. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 14–38 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.0043.Doumenge, C., Gilmour, D., Pérez, M. R. & Blockhus, J. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 24–37 (Springer-Verlag, 1995).4.Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    5.Bruijnzeel, L. A., Mulligan, M. & Scatena, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol. Process. 25, 465–498 (2011).Article 

    Google Scholar 
    6.Gentry, A. H. Tropical forest biodiversity: distributional patterns and their conservational significance. Oikos 63, 19–28 (1992).Article 

    Google Scholar 
    7.Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci. Rev. 55, 73–106 (2001).Article 

    Google Scholar 
    8.Hamilton, L. S., Juvik, J. O. & Scatena, F. N. in Tropical Montane Cloud Forests (eds Hamilton, L. S. et al.) 1–18 (Springer-Verlag, 1995).9.Ponce-Reyes, R. et al. Vulnerability of cloud forest reserves in Mexico to climate change. Nat. Clim. Change 2, 448–452 (2012).Article 

    Google Scholar 
    10.Swenson, J. J. et al. Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecol. 12, 1 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gould, W. A., González, G. & Rivera, G. C. Structure and composition of vegetation along an elevational gradient in Puerto Rico. J. Veg. Sci. 17, 653–664 (2006).Article 

    Google Scholar 
    12.Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).Article 

    Google Scholar 
    14.Jarvis, A. & Mulligan, M. The climate of cloud forests. Hydrol. Process. 25, 327–343 (2011).Article 

    Google Scholar 
    15.Scatena, F. N., Bruijnzeel, L. A., Bubb, P. & Das, S. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 3–13 (Cambridge Univ. Press, 2011); https://doi.org/10.1017/CBO9780511778384.00316.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article 

    Google Scholar 
    18.Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gillespie, R. G. et al. Long-distance dispersal: a framework for hypothesis testing. Trends Ecol. Evol. 27, 47–56 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kreft, H., Jetz, W., Mutke, J. & Barthlott, W. Contrasting environmental and regional effects on global pteridophyte and seed plant diversity. Ecography 33, 408–419 (2010).Article 

    Google Scholar 
    21.Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS ONE 4, e8273 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Venter, Z. S., Cramer, M. D. & Hawkins, H.-J. Drivers of woody plant encroachment over Africa. Nat. Commun. 9, 2272 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Lawton, R. O., Nair, U. S., Pielke, R. A. & Welch, R. M. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science 294, 584–587 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Guo, W.-Y. et al. Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities. Preprint at bioRxiv https://doi.org/10.1101/2020/04.21.052464 (2020).26.Helmer, E. H. et al. Neotropical cloud forests and páramo to contract and dry from declines in cloud immersion and frost. PLoS ONE 14, e0213155 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    29.Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).30.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Beusekom, A. E. V., González, G. & Scholl, M. A. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change. Atmos. Chem. Phys. 17, 7245–7259 (2017).Article 
    CAS 

    Google Scholar 
    32.Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gross, J. E., Goetz, S. J. & Cihlar, J. Application of remote sensing to parks and protected area monitoring: introduction to the special issue. Remote Sens. Environ. 113, 1343–1345 (2009).Article 

    Google Scholar 
    34.Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).CAS 
    PubMed 

    Google Scholar 
    35.Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. BioScience 65, 637–638 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Wetzel, F. T., Beissmann, H., Penn, D. J. & Jetz, W. Vulnerability of terrestrial island vertebrates to projected sea-level rise. Glob. Change Biol. 19, 2058–2070 (2013).Article 

    Google Scholar 
    37.Keil, P., Storch, D. & Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 6, 8837 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013).PubMed 
    Article 

    Google Scholar 
    39.Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (WW Norton & Company, 2016).42.Liu, J. et al. Complexity of coupled human and natural systems. Science 317, 1513–1516 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Schulze, K., Malek, Ž. & Verburg, P. H. Towards better mapping of forest management patterns: a global allocation approach. For. Ecol. Manage. 432, 776–785 (2019).Article 

    Google Scholar 
    44.Curtis, C. A., Pasquarella, V. J. & Bradley, B. A. Landscape characteristics of non-native pine plantations and invasions in southern Chile. Austral Ecol. 44, 1213–1224 (2019).Article 

    Google Scholar 
    45.Aldrich, M., Billington, C., Edwards, M. & Laidlaw, R. A Global Directory of Tropical Montane Cloud Forests (WCMC, 1997).46.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad https://doi.org/10.5061/dryad.kd1d4 (2017).48.Danielson, J. J. & Gesch, D. B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Open-File Report No. 2011-1073 (USGS, 2011).49.Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).Article 

    Google Scholar 
    50.Guisan, A. & Thuiller, W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 8, 993–1009 (2005).Article 

    Google Scholar 
    51.Karmalkar, A. V., Bradley, R. S. & Diaz, H. F. Climate Change scenario for Costa Rican montane forests. Geophys. Res. Lett. 35, L11702 (2008).Article 

    Google Scholar 
    52.Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Heikkinen, R. K. et al. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog. Phys. Geogr. 30, 751–777 (2006).Article 

    Google Scholar 
    55.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    56.Fithian, W. & Hastie, T. Finite-sample equivalence in statistical models for presence-only data. Ann. Appl. Stat. 7, 1917–1939 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Nelder, J. A. & Wedderburn, R. W. M. Generalized linear models. J. R. Stat. Soc. Ser. A 135, 370–384 (1972).Article 

    Google Scholar 
    58.Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Chapman & Hall/CRC Monographs on Statistics and Applied Probability, 1990).59.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3, 327–338 (2012) .Article 

    Google Scholar 
    60.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    61.Aide, T. M. et al. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45, 262–271 (2013).Article 

    Google Scholar 
    62.Aide, T. M., Ruiz-Jaen, M. C. & Grau, H. R. in Tropical Montane Cloud Forests: Science for Conservation and Management (eds Bruijnzeel, L. A. et al.) 101–109 (Cambridge Univ. Press, 2011).63.Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).Article 

    Google Scholar 
    64.Bubb, P. et al. Cloud Forest Agenda (UNEP-WCMC, 2004); https://www.unep-wcmc.org/cloud-forest-agenda65.Bockor, I. Analyse von Baumartenzusammensetzung und Bestandes-struckturen eines andinen Wolkenwaldes in Westvenezuela als Grundlagezur Wald-typengliederung. PhD thesis, Univ. Göttingen (1979).66.The State of the World’s Forests 2020: Forests, Biodiversity and People (FAO & UNEP, 2020); https://doi.org/10.4060/ca8642en67.Ribas, L. G., dos, S., Pressey, R. L., Loyola, R. & Bini, L. M. A global comparative analysis of impact evaluation methods in estimating the effectiveness of protected areas. Biol. Conserv. 246, 108595 (2020).Article 

    Google Scholar 
    68.Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Khandker, S., B. Koolwal, G. & Samad, H. Handbook on Impact Evaluation: Quantitative Methods and Practices (World Bank, 2009).70.Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).Article 

    Google Scholar 
    71.Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Laurance, W. F. et al. Predictors of deforestation in the Brazilian Amazon. J. Biogeogr. 29, 737–748 (2002).Article 

    Google Scholar 
    73.Etter, A., McAlpine, C., Wilson, K., Phinn, S. & Possingham, H. Regional patterns of agricultural land use and deforestation in Colombia. Agric. Ecosyst. Environ. 114, 369–386 (2006).Article 

    Google Scholar 
    74.Geist, H. J. & Lambin, E. F. What drives tropical deforestation? LUCC Report Series No. 4 (LUCC, 2001).75.Nelson, A. et al. A suite of global accessibility indicators. Sci. Data 6, 266 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73 (2011).Article 

    Google Scholar 
    78.The IUCN Red List of Threatened Species version 2016.1 (IUCN, 2016); http://www.iucnredlist.org79.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Storch, D., Keil, P. & Jetz, W. Universal species–area and endemics–area relationships at continental scales. Nature 488, 78–81 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More