1.Whyte, I. Studying elephant movements, in studying elephants, in African Wildl. Found. Tech. Ser. 7. African Wildl. Found. (ed Kangwana, K.) 75–89 (1996).2.Rasmussen, L. E. L. & Krishnamurthy, V. How chemical signals integrate Asian elephant society: The known and the unknown. Zoo Biol. 19, 405–423 (2000).CAS
Article
Google Scholar
3.Nair, S., Balakrishnan, R., Seelamantula, C. S. & Sukumar, R. Vocalizations of wild Asian elephants (Elephas maximus ): structural classification and social context. J. Acoust. Soc. Am. 126, 2768–2778 (2009).ADS
PubMed
Article
PubMed Central
Google Scholar
4.Stoeger, A. S. & Manger, P. Vocal learning in elephants: neural bases and adaptive context. Curr. Opin. Neurobiol. 28, 101–107 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Moss, C. J. & Poole, J. H. Relationships and social structure in African elephants. Primate Soc. Relationsh.: An Integr. Approach 315-325 (1983).
Google Scholar
6.Foerder, P., Galloway, M., Barthel, T., Moore, D. E. & Reiss, D. Insightful problem solving in an asian elephant. PLoS ONE 6, e23251 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
7.Lee, P. C. Allomothering among African elephant. Animal Behaviour 35, 278-291 (1987).8.Byrne, R. W., Bates, L. & Moss, C. J. Comparative cognition & behavior reviews. Elephant Cogn. 4, 65–79 (2009).
Google Scholar
9.Bates, L. A., Poole, J. H. & Byrne, R. W. Elephant cognition. Curr. Biol. 18, 544–546 (2008).Article
CAS
Google Scholar
10.Vance, E. A., Archie, E. A. & Moss, C. J. Social networks in African elephants. Comput. Math. Organ. Theory 15, 273–293 (2009).Article
Google Scholar
11.de Silva, S. & Wittemyer, G. A comparison of social organization in Asian elephants and African savannah elephants. Int. J. Primatol. 33, 1125–1141 (2012).Article
Google Scholar
12.Shoshani, J. Understanding proboscidean evolution: a formidable task. Trends Ecol. Evol. 13, 480–487 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Rohland, N. et al. Proboscidean mitogenomics: chronology and mode of elephant evolution using mastodon as outgroup. PLoS Biol. 5, 1663–1671 (2007).CAS
Article
Google Scholar
14.de Flamingh, A. Genetic structure of the savannah elephant population (Loxodonta africana (Blumenbach 1797)) in the Kavango-Zambezi Transfrontier Conservation Area. ProQuest Diss. Theses 102 (2013).15.Grubb, P., Groves, C. P., Dudley, J. P. & Shoshani, J. Living African elephants belong to two species: Loxodonta africana (Blumenbach, 1797) and Loxodonta cyclotis (Matschie, 1900). Elephant 2, 1–4 (2000).Article
Google Scholar
16.Roca, A. L., Georgiadis, N., Pecon-Slattery, J. & O’Brien, S. J. Genetic evidence for two species of elephant in Africa. Science 293, 1473–1477 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
17.Roca, A. L. et al. Elephant natural history: a genomic perspective. Annu. Rev. Anim. Biosci. 3, 139–167 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Wasser, S. K. et al. Assigning African elephant DNA to geographic region of origin: applications to the ivory trade. Proc. Natl. Acad. Sci. U. S. A. 101, 14847–14852 (2004).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
19.Ishida, Y. et al. Distinguishing forest and savanna African elephants using short nuclear DNA sequences. J. Hered. 102, 610–616 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Comstock, K. E. et al. Patterns of molecular genetic variation among African elephant populations. Mol. Ecol. 11, 2489–2498 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. Proc. Natl. Acad. Sci. U. S. A. 115, E2566–E2574 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
22.Shoshani, J. & Eisenberg, J. F. Elephas maximus. Mamm. Species 182, 1–8 (1982).Article
Google Scholar
23.Sukumar, R. The Living Elephants (Oxford University Press, 2003).
Google Scholar
24.Sukumar, R. A brief review of the status, distribution and biology of wild Asian elephants Elephas maximus. Int. Zoo Yearb. 40, 1–8 (2006).Article
Google Scholar
25.Olivier, R. Distribution and status of the Asian elephant. Oryx 14(4), 379–424. https://doi.org/10.1017/S003060530001601X (1978).Article
Google Scholar
26.Santiapillai, C. The Asian elephant conservation: a global strategy. Gajah 18, 21–39 (1997).
Google Scholar
27.Sukumar, R. Ecology of the Asian elephant in Southern India. i. movement and habitat utilization patterns. J. Trop. Ecol. 5, 1–18 (1989).Article
Google Scholar
28.Vidya, T. N. C., Fernando, P., Melnick, D. J. & Sukumar, R. Population genetic structure and conservation of Asian elephants (Elephas maximus) across India. Anim. Conserv. 8, 377–388 (2005).Article
Google Scholar
29.Fleischer, R. C., Perry, E. A., Muralidharan, K., Stevens, E. E. & Wemmer, C. M. Phylogeography of the Asian elephant (Elephas maximus) based on mitochondrial DNA. Evolution (N. Y.) 55, 1882–1892 (2001).CAS
Google Scholar
30.Fernando, P., Pfrender, M. E., Encalada, S. E. & Lande, R. Mitochondrial DNA variation, phylogeography and population structure of the Asian elephant. Heredity (Edinb). 84, 362–372 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Fernando, P. Elephants in Sri Lanka: past, present, and future. Loris 22, 38–44 (2000).
Google Scholar
32.Hendavitharana, W., Dissanayake, S. & de Silva, M. The survey of elephants in Sri Lanka. Gajah 12, 1–30 (1994).
Google Scholar
33.Eggert, L. S., Rasner, C. A. & Woodruff, D. S. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers. Hungarian Q. 49, 1993–2006 (2008).
Google Scholar
34.Ishida, Y., Georgiadis, N. J., Hondo, T. & Roca, A. L. Triangulating the provenance of African elephants using mitochondrial DNA. Evol. Appl. 6, 253–265 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Liu, C. Z., Wang, L., Xia, X. J. & Jiang, J. Q. Characterization of the complete mitochondrial genome of cape elephant shrew, Elephantulus edwardii. Mitochondrial DNA Part B Resour. 3, 738–739 (2018).Article
Google Scholar
36.Fernando, P. et al. DNA analysis indicates that Asian elephants are native to Borneo and are therefore a high priority for conservation. PLoS Biol. 1, 110–115 (2003).CAS
Article
Google Scholar
37.Ahlering, M. A. et al. Genetic diversity, social structure, and conservation value of the elephants of the Nakai Plateau, Lao PDR, based on non-invasive sampling. Conserv. Genet. 12, 413–422 (2011).Article
Google Scholar
38.Goossens, B. et al. Habitat fragmentation and genetic diversity in natural populations of the Bornean elephant: implications for conservation. BIOC 196, 80–92 (2016).
Google Scholar
39.Shoshani, J., Golenberg, E. M. & Yang, H. Elephantidae phylogeny: Morphological versus molecular results. Acta Theriol. (Warsz) 43, 89–122 (1998).Article
Google Scholar
40.Vidya, T. N. C. & Sukumar, R. Amplification success and feasibility of using microsatellite loci amplified from dung to population genetic studies of the Asian elephant (Elephas maximus). Curr. Sci. 88, 489–492 (2005).CAS
Google Scholar
41.Vidya, T. N. C., Varma, S., Dang, N. X., Van Thanh, T. & Sukumar, R. Minimum population size, genetic diversity, and social structure of the Asian elephant in Cat Tien National Park and its adjoining areas, Vietnam, based on molecular genetic analyses. Conserv. Genet. 8, 1471–1478 (2007).Article
Google Scholar
42.Suwattana, D., Jirasupphachok, J., Kanchanapangka, S. & Koykul, W. Tetranucleotide microsatellite markers for molecular testing in Thai domestic elephants (Elephas maximus indicus). Thai J. Vet. Med. 40, 405–409 (2010).
Google Scholar
43.Eggert, L. S. et al. Using genetic profiles of African forest elephants to infer population structure, movements, and habitat use in a conservation and development landscape in Gabon. Conserv. Biol. 28, 107–118 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Kinuthia, J. et al. The selection of a standard STR panel for DNA profiling of the African elephant (Loxodonta africana) in Kenya. Conserv. Genet. Resour. 7, 305–307 (2015).Article
Google Scholar
45.Hedges, S. Monitoring elephant populations and assessing threats. Universities Press (India) Pvt. Ltd., Hyderabad, India 259–292 (2012).46.Eggert, L. S., Ramakrishnan, U., Mundy, N. I. & Woodruff, D. S. Polymorphic microsatellite DNA markers in the African elephant (Loxondonta africana) and their use in the Asian elephant (Elephas maximus). Mol. Ecol. 9, 2222–2224 (2000).Article
Google Scholar
47.Nyakaana, S., Arctander, P. & Siegismund, H. R. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci. Heredity (Edinb). 89, 90–98 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Kongrit, C. et al. Isolation and characterization of dinucleotide microsatellite loci in the Asian elephant (Elephas maximus). Mol. Ecol. Resour. 8, 175–177 (2007).Article
CAS
Google Scholar
49.Fernando, P., Vidya, T. N. C. & Melnick, D. J. Isolation and characterization of tri- and tetranucleotide microsatellite loci in the Asian elephant, Elephas maximus. Mol. Ecol. Resour. 8, 232–233 (2001).Article
Google Scholar
50.Archie, E. A., Moss, C. J. & Alberts, S. C. Characterization of tetranucleotide microsatellite loci in the African Savannah Elephant (Loxodonta africana africana). Mol. Ecol. Notes 3, 244–246 (2003).CAS
Article
Google Scholar
51.Lieckfeldt, D., Schmidt, A. & Pitra, C. Isolation and characterization of microsatellite loci in the great bustard, Otis tarda. Mol. Ecol. Notes 1, 133–134 (2001).CAS
Article
Google Scholar
52.Nyakaana, S., Okello, J. B. A., Muwanika, V. & Siegismund, H. R. Six new polymorphic microsatellite loci isolated and characterized from the African savannah elephant genome. Mol. Ecol. Notes 5, 223–225 (2005).CAS
Article
Google Scholar
53.Okello, J. B. A. et al. Population genetic structure of savannah elephants in Kenya: conservation and management implications. J. Hered. 99, 443–452 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Nyakaana, S. & Arctander, P. Isolation and characterization of microsatellite loci in the African elephant, Loxodonta africana. Mol. Ecol. 10, 1436–1437 (1998).
Google Scholar
55.Comstock, K. E., Wasser, S. K. & Ostrander, E. A. Polymorphic microsatellite DNA loci identified in the African elephant (Loxodonta africana). Mol. Ecol. 9, 1004–1006 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Hartl, G. B., Hartl, K. F., Hemmer, W. & Nadlinger, K. Electrophoretic and chromosomal variation in captive Asian elephants (Elephas maximus). Zoo Biol. 14, 87–95 (1995).Article
Google Scholar
57.Bourgeois, S. et al. Single-nucleotide polymorphism discovery and panel characterization in the African forest elephant. Ecol. Evol. 8, 2207–2217 (2018).PubMed
PubMed Central
Google Scholar
58.Sharma, R. et al. Two different high throughput sequencing approaches identify thousands of De Novo genomic markers for the genetically depleted Bornean elephant. PLoS ONE 7, e49533 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
59.Reddy, P. C. et al. Comparative sequence analyses of genome and transcriptome reveal novel transcripts and variants in the Asian elephant Elephas maximus. J. Biosci. 40, 891–907 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Mondol, S. et al. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa. Mol. Ecol. 24, 6134–6147 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Hou, Z. C. et al. Elephant transcriptome provides insights into the evolution of eutherian placentation. Genome Biol. Evol. 4, 713–725 (2012).PubMed
PubMed Central
Article
CAS
Google Scholar
62.Tollis, M. et al. Elephant Genomes Reveal Insights into Differences in Disease Defense Mechanisms between Species. bioRxiv 2020.05.29.124396 (2020).63.Rohland, N. et al. Genomic DNA sequences from mastodon and woolly mammoth reveal deep speciation of forest and savanna elephants. PLoS Biol. 8, 16–19 (2010).Article
CAS
Google Scholar
64.Lynch, V. J. et al. Elephantid genomes reveal the molecular bases of woolly mammoth adaptations to the Arctic. Cell Rep. 12, 217–228 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Yang, H., Golenberg, E. M. & Shoshani, J. Phylogenetic resolution within the elephantidae using fossil DNA sequence from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl. Acad. Sci. U. S. A. 93, 1190–1194 (1996).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
66.Orlando, L., Hänni, C. & Douady, C. J. Mammoth and elephant phylogenetic relationships: Mammut americanum, the missing outgroup. Evol. Bioinforma. 3, 45–51 (2007).CAS
Article
Google Scholar
67.Eggert, L. S., Eggert, J. A. & Woodruff, D. S. Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol. Ecol. 12, 1389–1402 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Vidya, T. N. C. Evolutionary history and population genetic structure of Asian elephants in India. Indian J. Hist. Sci. 51, 391–405 (2016).
Google Scholar
69.Schuttler, S. G., Whittaker, A., Jeffery, K. J. & Eggert, L. S. African forest elephant social networks: fission-fusion dynamics, but fewer associations. Endanger. Species Res. 25, 165–173 (2014).Article
Google Scholar
70.Ahlering, M. A. et al. Identifying source populations and genetic structure for savannah elephants in human-dominated landscapes and protected areas in the Kenya-Tanzania borderlands. PLoS ONE 7, e52288 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
71.Vidya, T. N. C., Fernando, P., Melnick, D. J. & Sukumar, R. Population differentiation within and among Asian elephant (Elephas maximus) populations in southern India. Heredity (Edinb). 94, 71–80 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
72.Sukumar, R., Ramakrishnan, U. & Santosh, J. A. Impact of poaching on an Asian elephant population in Periyar, southern India: a model of demography and tusk harvest. Anim. Conserv. 1, 281–291 (1998).Article
Google Scholar
73.Mondol, S., Mailand, C. R. & Wasser, S. K. Male biased sex ratio of poached elephants is negatively related to poaching intensity over time. Conserv. Genet. 15, 1259–1263 (2014).Article
Google Scholar
74.Breuer, T., Maisels, F. & Fishlock, V. The consequences of poaching and anthropogenic change for forest elephants. Conserv. Biol. 30, 1019–1026 (2016).PubMed
Article
PubMed Central
Google Scholar
75.Mailand, C. & Wasser, S. K. Isolation of DNA from small amounts of elephant ivory. Nat. Protoc. 2, 2228–2232 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Lee, E. et al. The identification of elephant ivory evidences of illegal trade with mitochondrial cytochrome b gene and hypervariable D-loop region. J. Forensic Leg. Med. 20, 174–178 (2015).Article
Google Scholar
77.Chakraborty, S., Boominathan, D., Desai, A. A. & Vidya, T. N. C. Using genetic analysis to estimate population size, sex ratio, and social organization in an Asian elephant population in conflict with humans in Alur, southern India. Conserv. Genet. 15, 897–907 (2014).Article
Google Scholar
78.Fernando, P. & Pastorini, J. Range-wide status of Asian elephants. Gajah 35, 15–20 (2011).
Google Scholar
79.Ishida, Y., Gugala, N. A., Georgiadis, N. J. & Roca, A. L. Evolutionary and demographic processes shaping geographic patterns of genetic diversity in a keystone species, the African forest elephant (Loxodonta cyclotis). Ecol. Evol. 8, 4919–4931 (2018).PubMed
PubMed Central
Article
Google Scholar
80.Kongrit, C. Genetic tools for the conservation of wild Asian elephants. Int. J. Biol. 9, 1 (2017).Article
Google Scholar
81.McComb, K., Shannon, G., Sayialel, K. N. & Moss, C. Elephants can determine ethnicity, gender, and age from acoustic cues in human voices. Proc. Natl. Acad. Sci. U. S. A. 111, 5433–5438 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
82.Prithiviraj, F. & Melnick, D. J. Molecular sexing eutherina mammals. Mol. Ecol. Notes 1, 350–353 (2001).Article
Google Scholar
83.Vandebona, H. et al. DNA fingerprints of the Asian elephant in Sri Lanka, Elephas maximus maximus, using multilocus probe 33.15 (Jeffreys). J. Natl. Sci. Found. Sri Lanka 32, 83–96 (2004).CAS
Article
Google Scholar
84.Gugala, N. A., Ishida, Y., Georgiadis, N. J. & Roca, A. L. Development and characterization of microsatellite markers in the African forest elephant (Loxodonta cyclotis). BMC Res. Notes 9, 4–9 (2016).Article
CAS
Google Scholar
85.Zhang, L. et al. Asian elephants in China: estimating population size and evaluating habitat suitability. PLoS ONE 10, 1–13 (2015).
Google Scholar
86.Vartia, S. et al. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. R. Soc. Open Sci. 3, 150565 (2016).ADS
MathSciNet
PubMed
PubMed Central
Article
CAS
Google Scholar
87.Tighe, A. J. et al. Testing PCR amplification from elephant dung using silica-dried swabs. Pachyderm 59, 56–65 (2018).
Google Scholar
88.Bourgeois, S. et al. Improving cost-efficiency of faecal genotyping: new tools for elephant species. PLoS ONE 14, e0210811 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Hedges, S., Johnson, A., Ahlering, M., Tyson, M. & Eggert, L. S. Accuracy, precision, and cost-effectiveness of conventional dung density and fecal DNA based survey methods to estimate Asian elephant (Elephas maximus) population size and structure. Biol. Conserv. 159, 101–108 (2013).Article
Google Scholar
90.Moßbrucker, A. M. et al. Non-invasive genotyping of Sumatran elephants : implications for conservation The Sumatran elephant (Elephas maximus sumatranus) is one of three currently recognized subspecies. Trop. Conserv. Sci. 8, 745–759 (2015).Article
Google Scholar
91.Ishida, Y. et al. Short amplicon microsatellite markers for low quality elephant DNA. Conserv. Genet. Resour. 4, 491–494 (2012).Article
Google Scholar
92.Thitaram, C. et al. Evaluation and selection of microsatellite markers for an identification and parentage test of Asian elephants (Elephas maximus). Conserv. Genet. 9, 921–925 (2008).CAS
Article
Google Scholar
93.Lorenz, T. C. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J. Vis. Exp. 2, 1–15. https://doi.org/10.3791/3998 (2012).CAS
Article
Google Scholar
94.Litt, M. & Luty, J. A. Hypervariable amplification. Am. J. Hum. Genet. 44, 397–401 (1989).CAS
PubMed
PubMed Central
Google Scholar
95.Park, Y. J., Lee, J. K. & Kim, N. S. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14, 4546–4569 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
96.Vieira, M. L. C., Santini, L., Diniz, A. L. & Munhoz, C. D. F. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39, 312–328 (2016).PubMed
PubMed Central
Article
Google Scholar
97.Stafne, E. T., Clark, J. R., Weber, C. A., Graham, J. & Lewers, K. S. Simple sequence repeat (SSR) markers for genetic mapping of raspberry and blackberry. J. Am. Soc. Hortic. Sci. 130, 722–728 (2005).CAS
Article
Google Scholar
98.Tommasini, L. et al. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor. Appl. Genet. 106, 1091–1101 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
99.Norrgard, K. Forensics, DNA Fingerprinting, and CODIS. Nat. Educ. 1, 35 (2008).
Google Scholar
100.Maroju, P. A. et al. Schrodinger’s scat: A critical review of the currently available tiger (Panthera Tigris) and leopard (Panthera pardus) specific primers in India, and a novel leopard specific primer. BMC Genet. 17, 1–6 (2016).Article
Google Scholar
101.Waits, L. P. & Pearkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manag. 69, 1419–1433 (2005).Article
Google Scholar
102.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, 1–7 (2008).Article
CAS
Google Scholar
103.Miller, M. R., Dunham, J. P., Amores, A., Cresko, W. A. & Johnson, E. A. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res. 17, 240–248 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Delord, C. et al. A cost-and-time effective procedure to develop SNP markers for multiple species: a support for community genetics. Methods Ecol. Evol. 9, 1959–1974 (2018).Article
Google Scholar
105.Magwanga, R. O. et al. GBS mapping and analysis of genes conserved between Gossypium tomentosum and Gossypium hirsutum cotton cultivars that respond to drought stress at the seedling stage of the BC2F2generation. Int. J. Mol. Sci. 19, 1614 (2018).PubMed Central
Article
CAS
Google Scholar
106.Elshire, R. J. et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6, 1–10 (2011).Article
CAS
Google Scholar
107.Chandrasekara, C. H. W. M. R. B., Wijesundera, W. S. S., Perera, H. N., Chong, S. S. & Rajan-Babu, I. S. Cascade screening for fragile X syndrome/CGG repeat expansions in children attending special education in Sri Lanka. PLoS ONE 10, 1–10 (2015).
Google Scholar
108.Felsenstein, J. 2002. {PHYLIP}(Phylogen. I. P. ver. 3. 6a3.—P. by the author. PHYLIP(Phylogeny Inference Package) ver. 3.6a3. (2002).109.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76, 5269–5273 (1979).ADS
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
110.Rambaut, A. FigTree ver.1. 3.1: tree figure drawing tool. http://tree.bio.ed.ac.uk/software/figtree. (2009). More