Division of labor in work shifts by leaf-cutting ants
1.Roces, F. Individual complexity and self-organization in foraging by leaf-cutting ants. Biol. Bull. 202, 306–313 (2002).PubMed
Article
Google Scholar
2.Cerdá, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551–562 (2009).Article
Google Scholar
3.Dussutour, A., Deneubourg, J.-L., Beshers, S. & Fourcassié, V. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica. Anim. Cogn. 12, 21–30 (2009).PubMed
Article
Google Scholar
4.Leboeuf, A. C. & Grozinger, C. M. Me and we: The interplay between individual and group behavioral variation in social collectives. Curr. Opin. Insect Sci. 5, 16–24 (2014).PubMed
Article
Google Scholar
5.Feinerman, O. & Korman, A. Individual versus collective cognition in social insects. J. Exp. Biol. 220, 73–82 (2017).PubMed
PubMed Central
Article
Google Scholar
6.Frank, E. T. & Linsenmair, K. E. Individual versus collective decision making: Optimal foraging in the group-hunting termite specialist Megaponera analis. Anim. Behav. 130, 27–35 (2017).Article
Google Scholar
7.Menzel, R., Leboulle, G. & Eisenhardt, D. Small brains, bright minds. Cell 124, 237–239 (2006).CAS
PubMed
Article
Google Scholar
8.Leadbeater, E. & Chittka, L. Social learning in insects—From miniature brains to consensus building. Curr. Biol. 17, 703–713 (2007).Article
CAS
Google Scholar
9.Giurfa, M. Cognition with few neurons: Higher-order learning in insects. Trends Neurosci. 36, 285–294 (2013).CAS
PubMed
Article
Google Scholar
10.Guerrieri, F. J. & D’Ettorre, P. Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. J. Insect Physiol. 56, 88–92 (2010).CAS
PubMed
Article
Google Scholar
11.Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).Article
Google Scholar
12.Goss, S., Aron, S., Deneubourg, J. L. & Pasteels, J. M. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989).ADS
Article
Google Scholar
13.Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).ADS
CAS
Article
Google Scholar
14.Czaczkes, T. J. et al. Composite collective decision-making. Proc. Biol. Sci. 282, 20142723 (2015).PubMed
PubMed Central
Google Scholar
15.Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. TREE 12, 188–194 (1997).CAS
PubMed
Google Scholar
16.Boomsma, J. J. & Franks, N. R. Social insects: From selfish genes to self organisation and beyond. Trends Ecol. Evol. 21, 303–308 (2006).PubMed
Article
Google Scholar
17.Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E. Self-Organization in Biological Systems. (Princeton University Press, 2003).18.Constant, N., Santorelli, L.A., Lopes, J.F.S., Hughes, W.O.H. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav. Ecol. 23, 1284–1288 (2012).19.Feinerman, O. & Traniello, J. F. A. Social complexity, diet, and brain evolution: Modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70, 1063–1074 (2016).Article
Google Scholar
20.McCluskey, E.S. Circadian-rhythms in male-ants of five diverse species. Science (80- ) 150, 1037–1039 (1965).21.North, R. D. Circadian rhythm of locomotor activity in individual workers of the wood ant Formica rufa. Physiol. Entomol. 12, 445–454 (1987).Article
Google Scholar
22.Cros, S., Cerdá, X., Retana, J., De, E. U. & De, C. F. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Écoscience 4, 269–278 (1997).Article
Google Scholar
23.Bellusci, S. & David, M. M. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117–124 (2001).Article
Google Scholar
24.Narendra, A., Reid, S.F., Greiner, B., Peters, R.A., Hemmi, J.M., Ribi, W.A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. Biol. Sci. 278, 1141–1149 (2011).25.Yilmaz, A., Aksoy, V., Camlitepe, Y. & Giurfa, M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front. Behav. Neurosci. 8, 205 (2014).PubMed
PubMed Central
Article
Google Scholar
26.Nickele, M. A., Filho, W. R., Pie, M. R. & Penteado, S. R. C. Daily foraging activity of Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Sociobiology 63, 645–650 (2016).Article
Google Scholar
27.Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25, 11–28 (1960).CAS
PubMed
Article
Google Scholar
28.Hall, J. C. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1–280 (2003).CAS
PubMed
Article
Google Scholar
29.Sandrelli, F., Costa, R., Kyriacou, C. P. & Rosato, E. Comparative analysis of circadian clock genes in insects. Insect Mol. Biol. 17, 447–463 (2008).CAS
PubMed
Article
Google Scholar
30.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).CAS
Article
Google Scholar
31.Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J.A.C., Andersson, M. et al. Inclusive fitness theory and eusociality. Nature 471, E1–E4 (2011).32.Kost, C., De Oliveira, E. G., Knoch, T. A. & Wirth, R. Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). J. Trop. Ecol. 21, 677–688 (2005).33.Bochynek, T., Meyer, B. & Burd, M. Energetics of trail clearing in the leaf-cutter ant Atta. Behav. Ecol. Sociobiol. 71, 1–10 (2017).Article
Google Scholar
34.Bouchebti, S., Travaglini, R. V., Forti, L. C. & Fourcassié, V. Dynamics of physical trail construction and of trail usage in the leaf-cutting ant Atta laevigata. Ethol. Ecol. Evol. 31, 105–120 (2019).Article
Google Scholar
35.Cherrett, J. M. The foraging behavior of Atta cephalotes L. J. Anim. Ecol. 37, 387–403 (1968).Article
Google Scholar
36.Lewis, T., Pollard, G.V., Dibley, G.C. Rhythmic foraging in the leaf-cutting ant Atta cephalotes (L.) (Formicidae: Attini). J. Anim. Ecol. 43, 129 (1974).37.Sharma, V. K., Lone, S. R., Mathew, D., Goel, A. & Chandrashekaran, M. K. Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus. Chronobiol. Int. 21, 297–308 (2004).PubMed
Article
Google Scholar
38.Koto, A., Mersch, D., Hollis, B. & Keller, L. Social isolation causes mortality by disrupting energy homeostasis in ants. Behav. Ecol. Sociobiol. 69, 583–591 (2015).Article
Google Scholar
39.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) I. The overall pattern in A. sexdens. Behav. Ecol. Sociobiol. 7, 143–156 (1980).40.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera : Formicidae : Atta) II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 7, 157–165 (1980).41.Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect. Soc. 60, 191–201 (2013).Article
Google Scholar
42.Martinoya, C., Bloch, S., Ventura, D. F. & Puglia, N. M. Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J. Comp. Physiol A 104, 205–210 (1975).Article
Google Scholar
43.Kaiser, W. Busy bees need rest, too. J. Comp. Physiol. A 163, 565–584 (1988).Article
Google Scholar
44.Sauer, S., Herrmann, E. & Kaiser, W. Sleep deprivation in honey bees. J. Sleep Res. 13, 145–152 (2004).PubMed
Article
Google Scholar
45.Klein, B. A., Klein, A., Wray, M. K., Mueller, U. G. & Seeley, T. D. Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc. Natl. Acad. Sci. 107, 22705–22709 (2010).ADS
CAS
PubMed
Article
Google Scholar
46.Mildner, S. & Roces, F. Plasticity of daily behavioral rhythms in foragers and nurses of the ant Camponotus rufipes: Influence of social context and feeding times. PLoS ONE 12, e0169244 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
47.Fujioka, H. et al. Ant circadian activity associated with brood care type. Biol. Lett. 13, 20160743 (2017).PubMed
PubMed Central
Article
Google Scholar
48.Klein, B. A., Olzsowy, K. M., Klein, A., Saunders, K. M. & Seeley, T. D. Caste-dependent sleep of worker honey bees. J. Exp. Biol. 211, 3028–3040 (2008).PubMed
Article
Google Scholar
49.Bloch, G., Toma, D. P. & Robinson, G. E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J. Biol. Rhythms 16, 444–456 (2001).CAS
PubMed
Article
Google Scholar
50.Bloch, G. The social clock of the honeybee. J. Biol. Rhythms 25, 307–317 (2010).PubMed
Article
Google Scholar
51.Bloch, G., Sullivan, J. P. & Robinson, G. E. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J. Insect Physiol. 48, 1123–1131 (2002).CAS
PubMed
Article
Google Scholar
52.Bernhard Kraus, F., Gerecke, E., Moritz, R.F.A. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41, 323–328 (2011).53.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 55–60 (1983).54.Detrain, C., Pasteels, J.M. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, Pheidole pallidula (Nyl.) (Hymenoptera: Myrmicinae). J. Insect Behav. 4, 157–176 (1991).55.Lighton, J. R. B. & QuinlanJr, M. C. D. H. F. Is bigger better? Water balance in the polymorphic desert harvester ant Messor pergandei. Physiol. Entomol. 19, 325–334 (1994).Article
Google Scholar
56.Cerdá, X. & Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78, 467 (1997).Article
Google Scholar
57.Clémencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insectes Soc. 57, 11–15 (2010).Article
Google Scholar
58.Gadagkar, R. The evolution of caste polymorphism in social insects: Genetic release followed by diversifying evolution. J. Genet. 76, 167–179 (1997).Article
Google Scholar
59.Helms Cahan, S. & Keller, L. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424, 306–309 (2003).ADS
CAS
PubMed
Article
Google Scholar
60.Fjerdingstad, E. J. & Crozier, R. H. The evolution of worker caste diversity in social insects. Am. Nat. 167, 390–400 (2012).Article
Google Scholar
61.Trible, W. et al. Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170(727–735), e10 (2017).
Google Scholar
62.De, T. M. A. et al. Two castes sizes of leafcutter ants in task partitioning in foraging activity. Ciênc. Rural 46, 1902–1908 (2016).Article
Google Scholar
63.Sharkey, K. M. & Eastman, C. I. Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am. J. Physiol. Integr. Comp. Physiol. 282, R454–R463 (2002).CAS
Article
Google Scholar More