Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena
1.Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—Responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).Article
ADS
Google Scholar
2.McGregor, G. B. et al. First report of a toxic Nodularia spumigena (nostocales/cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int. J. Env. Res. Public Health 9, 2396–2411 (2012).Article
Google Scholar
3.Popin, R. V. et al. Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond. Toxins 12, 141 (2020).CAS
PubMed Central
Article
PubMed
Google Scholar
4.Seaman, M., Ashton, P. & Williams, W. Inland salt waters of southern Africa. Hydrobiologia 210, 75–91 (1991).CAS
Article
Google Scholar
5.Beutel, M. W., Horne, A. J., Roth, J. C. & Barratt, N. J. Saline Lakes 91–105 (Springer, 2001).Book
Google Scholar
6.Paerl, H. W. & Paul, V. J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).CAS
PubMed
Article
Google Scholar
7.Karjalainen, M. et al. Ecosystem consequences of cyanobacteria in the northern Baltic Sea. AMBIO J. Human Environ. 36, 195–202 (2007).CAS
Article
Google Scholar
8.Sotton, B., Domaizon, I., Anneville, O., Cattanéo, F. & Guillard, J. Nodularin and cylindrospermopsin: A review of their effects on fish. Rev. Fish Biol. Fish. 25, 1–19 (2015).Article
Google Scholar
9.Mazur-Marzec, H., Bertos-Fortis, M., Toruńska-Sitarz, A., Fidor, A. & Legrand, C. Chemical and genetic diversity of Nodularia spumigena from the Baltic Sea. Mar. Drugs 14, 209. https://doi.org/10.3390/md14110209 (2016).CAS
Article
PubMed Central
PubMed
Google Scholar
10.Voss, B. et al. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8, e60224–e60224. https://doi.org/10.1371/journal.pone.0060224 (2013).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
11.Le Manach, S. et al. Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00791 (2019).Article
PubMed
PubMed Central
Google Scholar
12.Welker, M. & von Döhren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 30, 530–563 (2006).CAS
PubMed
Article
Google Scholar
13.Kehr, J. C., Picchi, D. G. & Dittmann, E. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J. Org. Chem. 7, 1622–1635. https://doi.org/10.3762/bjoc.7.191 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
14.Christiansen, G., Philmus, B., Hemscheidt, T. & Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J. Bacteriol. 193, 3822–3831 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Ishida, K. et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem. Biol. 14, 565–576 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Fewer, D.P. et al. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73, 924–937. https://doi.org/10.1111/j.1365-2958.2009.06816.x (2009).CAS
Article
PubMed
Google Scholar
17.Portmann, C. et al. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 71, 1891–1896 (2008).CAS
PubMed
Article
Google Scholar
18.Ersmark, K., Del Valle, J. R. & Hanessian, S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 47, 1202–1223 (2008).CAS
Article
Google Scholar
19.Liu, L. et al. Pseudoaeruginosins, nonribosomal peptides in Nodularia spumigena. ACS Chem. Biol. 10, 725–733 (2015).CAS
PubMed
Article
Google Scholar
20.Itou, Y., Suzuki, S., Ishida, K. & Murakami, M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorg. Med. Chem. Lett. 9, 1243–1246 (1999).CAS
PubMed
Article
Google Scholar
21.Bister, B. et al. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J. Nat. Prod. 67, 1755–1757 (2004).CAS
PubMed
Article
Google Scholar
22.Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C. & Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15, 1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x (2013).CAS
Article
PubMed
Google Scholar
23.Halstvedt, C. B., Rohrlack, T., Ptacnik, R. & Edvardsen, B. On the effect of abiotic environmental factors on production of bioactive oligopeptides in field populations of Planktothrix spp. (Cyanobacteria). J. Plankton Res. 30, 607–617 (2008).CAS
Article
Google Scholar
24.Mazur-Marzec, H. et al. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar. Drugs 11, 1–19. https://doi.org/10.3390/md11010001 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
25.Repka, S., Koivula, M., Harjunpa, V., Rouhiainen, L. & Sivonen, K. Effects of phosphate and light on growth of and bioactive peptide production by the Cyanobacterium anabaena strain 90 and its anabaenopeptilide mutant. Appl. Environ. Microbiol. 70, 4551–4560. https://doi.org/10.1128/aem.70.8.4551-4560.2004 (2004).CAS
Article
PubMed
PubMed Central
Google Scholar
26.Lehtimäki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63, 1647–1656 (1997).PubMed
PubMed Central
Article
Google Scholar
27.OECD. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD Guidelines for the Testing of Chemicals, Section 2. https://doi.org/10.1787/9789264069923-en (OECD
Publishing, Paris, 2011).28.Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M. & Klenk, H.-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7, e34846. https://doi.org/10.1371/journal.pone.0034846 (2012).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
29.Higo, S., Yamatogi, T., Ishida, N., Hirae, S. & Koike, K. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 61, 63–70 (2017).Article
Google Scholar
30.Qi, H., Wang, J. & Wang, Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J. Sea Res. 80, 1–11 (2013).Article
ADS
Google Scholar
31.Briand, E., Bormans, M., Gugger, M., Dorrestein, P. C. & Gerwick, W. H. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 18, 384–400. https://doi.org/10.1111/1462-2920.12904 (2016).CAS
Article
PubMed
Google Scholar
32.Koek, M. M., Muilwijk, B., van der Werf, M. J. & Hankemeier, T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem. 78, 1272–1281 (2006).CAS
PubMed
Article
Google Scholar
33.R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).34.Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245-257.e247. https://doi.org/10.1016/j.cels.2018.08.003 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
35.Paul, C., Mausz, M. A. & Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9, 349–359. https://doi.org/10.1007/s11306-012-0453-1 (2013).CAS
Article
Google Scholar
36.Schatz, D. et al. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ. Microbiol. 7, 798–805 (2005).CAS
PubMed
Article
Google Scholar
37.Jensen, A., Rystad, B. & Skoglund, L. The use of dialysis culture in phytoplankton studies. J. Exp. Mar. Biol. Ecol. 8, 241–248 (1972).Article
Google Scholar
38.Kobayashi, K., Takata, Y. & Kodama, M. Direct contact between Pseudo-nitzschiaámultiseries and bacteria is necessary for the diatom to produce a high level of domoic acid. Fish. Sci. 75, 771–776 (2009).CAS
Article
Google Scholar
39.McVeigh, I., & Brown, W. In vitro growth of chlamydomonas chlamydogama bold and haematococcus pluvialis flotow em. Wille in mixed cultures.
Bulletin of the Torrey Botanical Club, 81(3), 218–233. https://doi.org/10.2307/2481813 (1954).CAS
Article
Google Scholar
40.Sieg, R. D., Poulson-Ellestad, K. L. & Kubanek, J. Chemical ecology of the marine plankton. Nat. Prod. Rep. 28, 388–399 (2011).CAS
PubMed
Article
Google Scholar
41.Yamasaki, A. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options. J. Chem. Eng. Japan 36, 361–375 (2003).CAS
Article
Google Scholar
42.Hajdu, S., Hoglander, H. & Larsson, U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6, 189–205 (2007).Article
Google Scholar
43.Berman-Frank, I. & Dubinsky, Z. Balanced growth in aquatic plants: Myth or reality? Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage. Bioscience 49, 29–37 (1999).Article
Google Scholar
44.Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 525–536. https://doi.org/10.1111/j.1469-8137.2005.01601.x (2006).CAS
Article
PubMed
Google Scholar
45.Raven, J. A. & Beardall, J. Chlorophyll fluorescence and ecophysiology: Seeing red?. New Phytol. 169, 449–451. https://doi.org/10.1111/j.1469-8137.2006.01637.x (2006).CAS
Article
PubMed
Google Scholar
46.Li, Q. et al. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming microcystis-epibiont communities. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00746 (2018).Article
PubMed
PubMed Central
Google Scholar
47.Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20 (2016).PubMed
Article
Google Scholar
48.Caldwell, D. Associations between photosynthetic and heterotrophic prokaryotes in plankton. in Abstracts of the third International Symposium on Photosynthetic Prokaryotes (ed Nichols, J. M) (University of Liverpool, UK, 1979).49.Park, H. D. et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol. Int. J. 16, 337–343 (2001).CAS
Article
ADS
Google Scholar
50.Berg, C. et al. Dissection of microbial community functions during a cyanobacterial bloom in the Baltic Sea via metatranscriptomics. Front. Mar. Sci. 5, 55 (2018).Article
Google Scholar
51.Humbert, J.-F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8, e70747. https://doi.org/10.1371/journal.pone.0070747 (2013).CAS
Article
PubMed
PubMed Central
ADS
Google Scholar
52.Toporowska, M., Mazur-Marzec, H. & Pawlik-Skowrońska, B. The effects of cyanobacterial bloom extracts on the biomass, Chl-a, MC and other oligopeptides contents in a natural Planktothrix agardhii population. Int. J. Env. Res. Public Health 17, 2881 (2020).CAS
Article
Google Scholar
53.Grabowska, M., Kobos, J., Toruńska-Sitarz, A. & Mazur-Marzec, H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch. Microbiol. 196, 697–707 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Penn, K., Wang, J., Fernando, S. C. & Thompson, J. R. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J. 8, 1866–1878 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Neilan, B. A. et al. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181, 4089–4097 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Long, B. M., Jones, G. J. & Orr, P. T. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67, 278–283 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Qu, J. et al. Determination of the role of microcystis aeruginosa in toxin generation based on phosphoproteomic profiles. Toxins 10, 304 (2018).PubMed Central
Article
CAS
PubMed
Google Scholar
58.Raven, J. A. Cyanotoxins: A poison that frees phosphate. Curr. Biol. 20, R850–R852 (2010).CAS
PubMed
Article
Google Scholar
59.Utkilen, H. & Gjølme, N. Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61, 797–800 (1995).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Gan, N. et al. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ. Microbiol. 14, 730–742 (2012).CAS
PubMed
Article
Google Scholar
61.Pomati, F., Rossetti, C., Manarolla, G., Burns, B. P. & Neilan, B. A. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology 150, 455–461 (2004).CAS
PubMed
Article
Google Scholar
62.Seigler, D. & Price, P. W. Secondary compounds in plants: Primary functions. Am. Nat. 110, 101–105 (1976).CAS
Article
Google Scholar
63.Zilliges, Y. et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6, e17615 (2011).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
64.Meissner, S., Fastner, J. & Dittmann, E. Microcystin production revisited: Conjugate formation makes a major contribution. Environ. Microbiol. 15, 1810–1820. https://doi.org/10.1111/1462-2920.12072 (2013).CAS
Article
PubMed
Google Scholar
65.Orr, P. T., Willis, A. & Burford, M. A. Application of first order rate kinetics to explain changes in bloom toxicity—The importance of understanding cell toxin quotas. J. Oceanol. Limnol. 36, 1063–1074. https://doi.org/10.1007/s00343-019-7188-z (2018).CAS
Article
ADS
Google Scholar
66.Rantala, A. et al. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA 101, 568–573 (2004).CAS
PubMed
Article
ADS
Google Scholar
67.Orr, P. T. & Jones, G. J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43, 1604–1614 (1998).CAS
Article
ADS
Google Scholar
68.Burford, M. A. et al. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54, 44–53 (2016).PubMed
Article
Google Scholar
69.Pierangelini, M. et al. Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl. Environ. Microbiol. 81, 3069–3076. https://doi.org/10.1128/aem.03556-14 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
70.Falkowski, P. G., Sukenik, A. & Herzig, R. Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. J. Phycol. 25, 471–478 (1989).CAS
Article
Google Scholar
71.Turpin, D. H. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27, 14–20 (1991).CAS
Article
Google Scholar
72.Moffitt, M. C. & Neilan, B. A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 70, 6353–6362 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Fewer, D. P. et al. New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS ONE 8, e73618 (2013).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
74.Fujii, K. et al. Comparative study of toxic and non-toxic cyanobacterial products: Novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Lett. 38, 5525–5528 (1997).CAS
Article
Google Scholar
75.Ishida, K. et al. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl. Environ. Microbiol. 75, 2017–2026 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Suikkanen, S., Fistarol, G. O. & Granéli, E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flosaquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308, 85–101 (2004).Article
Google Scholar
77.Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K. & Viitasalo, M. Allelopathy of Baltic Sea cyanobacteria: No evidence for the role of nodularin. J. Plankton Res. 28, 543–550. https://doi.org/10.1093/plankt/fbi139 (2006).CAS
Article
Google Scholar
78.Żak, A. & Kosakowska, A. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar. Coast. Shelf Sci. 167, 113–118 (2015).Article
ADS
Google Scholar
79.Śliwińska-Wilczewska, S., Felpeto, A. B., Możdżeń, K., Vasconcelos, V. & Latała, A. Physiological effects on coexisting microalgae of the allelochemicals produced by the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena. Toxins 11, 712 (2019).PubMed Central
Article
CAS
PubMed
Google Scholar
80.Gross, E. M. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313–339 (2003).Article
Google Scholar
81.Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42, 406–419 (2003).Article
Google Scholar
82.Leao, P. N., Vasconcelos, M. T. & Vasconcelos, V. M. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282. https://doi.org/10.3109/10408410902823705 (2009).CAS
Article
PubMed
Google Scholar
83.MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. & Codd, G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990).CAS
PubMed
Article
Google Scholar
84.Pflugmacher, S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol. Int. J. 17, 407–413 (2002).CAS
Article
ADS
Google Scholar
85.Tilahun S. Exclusive partitioning of intra- and extra-cellular cyanotoxins: limitation of the conventional procedure. Environ. Sci. Pollut. Res. Int. 27(14), 17427–17428. https://doi.org/10.1007/s11356-020-08256-8 (2020).Article
PubMed
Google Scholar
86.Park, H. D. et al. Temporal variabilities of the concentrations of intra-and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual. Int. J. 13, 61–72 (1998).CAS
Article
ADS
Google Scholar
87.Tsuji, K. et al. Stability of microcystins from cyanobacteria: Effect of light on decomposition and isomerization. Environ. Sci. Technol. 28, 173–177 (1994).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
88.Schatz, D. et al. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol. 9, 965–970 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
89.Makower, A. K. et al. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81, 544–554 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
90.Kaplan, A. et al. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol. 3, 138 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
91.Svercel, M. Negative allelopathy among cyanobacteria. in Cyanobacteria: Ecology, Toxicology and Management. (ed Ferrao-Filho, A. S.) 27–46 (Nova Science Publishers, New York, NY, USA, 2013).
Google Scholar
92.Wiegand, C. & Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218. https://doi.org/10.1016/j.taap.2004.11.002 (2005).CAS
Article
PubMed
Google Scholar
93.Agrawal, M. & Agrawal, M. K. Cyanobacteria–herbivore interaction in freshwater ecosystem. J. Microbiol. Biotechnol. Res. 1, 52–66 (2011).
Google Scholar
94.Sadler, T. & von Elert, E. Dietary exposure of Daphnia to microcystins: No in vivo relevance of biotransformation. Aquat. Toxicol. 150, 73–82. https://doi.org/10.1016/j.aquatox.2014.02.017 (2014).CAS
Article
PubMed
Google Scholar
95.Rohrlack, T., Christiansen, G. & Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 79, 2642–2647 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
96.Sivonen, K. et al. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl. Environ. Microbiol. 55, 1990–1995 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
97.Burbage, C. D. & Binder, B. J. Relationship between cell cycle and light-limited growth rate in oceanic Prochlorococcus (MIT9312) and Synechococcus (WH8103) (Cyanobacteria). J. Phycol. 43, 266–274. https://doi.org/10.1111/j.1529-8817.2007.00315.x (2007).Article
Google Scholar
98.Lei, L., Dai, J., Lin, Q., Peng, L. Competitive dominance of Microcystis aeruginosa against Raphidiopsis raciborskii is strain-and temperature dependent. Knowl. Manag. Aquat. Ecosyst. 421, 36. https://doi.org/10.1051/kmae/2020023 (2020).Article
Google Scholar More