More stories

  • in

    Transitions in symbiosis: evidence for environmental acquisition and social transmission within a clade of heritable symbionts

    1.Ewald PW. Transmission modes and evolution of the parasitism-mutualism continuum. Ann NY Acad Sci. 1987;503:295–306.CAS 
    PubMed 

    Google Scholar 
    2.Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 

    Google Scholar 
    3.Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;51:505–10.
    Google Scholar 
    4.Salem H, Florez L, Gerardo N, Kaltenpoth M. An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc B. 2015;282:1804.
    Google Scholar 
    5.Ebert D. The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst. 2013;44:623–43.
    Google Scholar 
    6.Webster JP, Borlase A, Rudge JW. Who acquires infection from whom and how? Disentangling multi-host and multimode transmission dynamics in the ‘elimination’ era. Philos Trans R Soc B Biol Sci. 2017;372:20160091.7.Bennett GM, Moran NA. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci USA. 2015;112:10169–76.CAS 
    PubMed 

    Google Scholar 
    8.Law R, Dieckmann U. Symbiosis through exploitation and the merger of lineages in evolution. Proc R Soc B. 1998;265:1245–53.
    Google Scholar 
    9.Cordaux R, Michel-Salzat A, Bouchon D. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. J Evol Biol. 2001;14:237–43.CAS 

    Google Scholar 
    10.Russell JA, Latorre A, Sabater-Muñoz B, Moya A, Moran NA. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol. 2003;12:1061–75.CAS 
    PubMed 

    Google Scholar 
    11.Zug R, Koehncke A, Hammerstein P. Epidemiology in evolutionary time: the case of Wolbachia horizontal transmission between arthropod host species. J Evol Biol. 2012;25:2149–60.PubMed 

    Google Scholar 
    12.Werren JH, O’Neill SL. The evolution of heritable symbionts. In: O’Neill SL, Hoffmann AA, Werren JH (eds). Influential Passengers: Inherited Microorganisms and Arthropod Reproduction. 1997. Oxford University Press, Oxford, pp 1–41.13.Parratt SR, Frost CL, Schenkel MA, Rice A, Hurst GDD, King KC. Superparasitism drives heritable symbiont epidemiology and host sex ratio in a wasp. PLoS Pathog. 2016;12:1–22.
    Google Scholar 
    14.Gordon ERL, McFrederick QS, Weirauch C. Comparative phylogenetic analysis of bacterial associates in Pyrrhocoroidea and evidence for ancient and persistent environmental symbiont reacquisition in Largidae (Hemiptera: Heteroptera). Appl Environ Microbiol. 2016;82:064022.
    Google Scholar 
    15.Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308 LP–4316.
    Google Scholar 
    16.Buchner P. Endosymbiosis of animals with plant microorganisms. Z Für Allg Mikrobiol. 1967;7:168.
    Google Scholar 
    17.Anderson RM, May RM. Coevolution of hosts and parasites. Parasitology. 1982;85:211–426.
    Google Scholar 
    18.Frank SA. Host-symbiont conflict over the mixing of symbiotic lineages. Proc Biol Sci. 1996;263:339–44.CAS 
    PubMed 

    Google Scholar 
    19.Sachs JL, Essenberg CJ, Turcotte MM. New paradigms for the evolution of beneficial infections. Trends Ecol Evol. 2011;26:202–9.PubMed 

    Google Scholar 
    20.Shapiro JW, Turner PE. The impact of transmission mode on the evolution of benefits provided by microbial symbionts. Ecol Evol. 2014;4:3350–61.PubMed 
    PubMed Central 

    Google Scholar 
    21.Clayton AL, Oakeson KF, Gutin M, Pontes A, Dunn DM, Von AC, et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect—bacterial symbioses. Plos Genet. 2012;8:11.
    Google Scholar 
    22.Duron O, Noël V, Mccoy KD, Bonazzi M, Sidi K, Morel O, et al. The recent evolution of a maternally- inherited endosymbiont of ticks led to the emergence of the Q fever pathogen Coxiella burnetii. Plos Pathog. 2015;11:1–23.CAS 

    Google Scholar 
    23.Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 2016;40:855–74.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Toft C, Andersson SGE. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010;11:465–75.CAS 
    PubMed 

    Google Scholar 
    25.Wilkes TE, Duron O, Darby AC, Hypša V, Nováková E, Hurst GDD. The Genus Arsenophonus. In: Bourtzis K, Zchori-Fein E, editors. Manipulative tenants: bacteria associated with arthropods. Boca Raton: CRC Press; 2011. p. 225–44.26.Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol. 2008;6:1–12.
    Google Scholar 
    27.Nováková E, Hypša V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:1–14.
    Google Scholar 
    28.Gherna RL, Werren JH, Weisburg W, Cote R, Woese CR, Mandelco L, et al. Notes: Arsenophonus nasoniae gen. nov., sp. nov., the causative agent of the son-killer trait in the parasitic wasp Nasonia vitripennis. Int J Syst Bacteriol. 1991;41:563–5.
    Google Scholar 
    29.Qu LY, Lou YH, Fan HW, Ye YX, Huang HJ, Hu MQ, et al. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens. Symbiosis. 2013;61:47–53.
    Google Scholar 
    30.Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA. 2010;107:12168–73.CAS 
    PubMed 

    Google Scholar 
    31.Nováková E, Hypša V, Nguyen P, Husník F, Darby AC. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae). Stand Genom Sci. 2016;11:72.
    Google Scholar 
    32.Perotti MA, Allen JM, Reed DL, Braig HR. Host-symbiont interactions of the primary endosymbiont of human head and body lice. FASEB J. 2007;21:1058–66.CAS 
    PubMed 

    Google Scholar 
    33.Nováková E, Husník F, Šochová E, Hypša V. Arsenophonus and Sodalis symbionts in louse flies: An analogy to the Wigglesworthia and Sodalis system in tsetse flies. Appl Environ Microbiol. 2015;81:6189–99.PubMed 
    PubMed Central 

    Google Scholar 
    34.Duron O, Wilkes TE, Hurst GDD. Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett. 2010;13:1139–48.PubMed 

    Google Scholar 
    35.Huger AM, Skinner SW, Werren JH. Bacterial infections associated with the son-killer trait in the parasitoid wasp Nasonia (= Mormoniella) vitripennis (Hymenoptera: Pteromalidae). J Invertebr Pathol. 1985;46:272–80.CAS 
    PubMed 

    Google Scholar 
    36.Bressan A. Emergence and evolution of Arsenophonus bacteria as insect-vectored plant pathogens. Infect Genet Evol. 2014;22:81–90.PubMed 

    Google Scholar 
    37.Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Micro Ecol. 2012;63:628–38.
    Google Scholar 
    38.Bressan A, Sémétey O, Arneodo J, Lherminier J, Boudon-Padieu E. Vector transmission of a plant-pathogenic bacterium in the Arsenophonus clade sharing ecological traits with facultative insect endosymbionts. Phytopathology. 2009;99:1289–96.CAS 
    PubMed 

    Google Scholar 
    39.Aizenberg-Gershtein Y, Izhaki I, Halpern M. Do honeybees shape the bacterial community composition in floral nectar? PLoS ONE. 2013;8:e67556.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Babendreier D, Joller D, Romeis J, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol. 2007;59:600–10.CAS 
    PubMed 

    Google Scholar 
    41.Corby-Harris V, Maes P, Anderson KE. The bacterial communities associated with honey bee (Apis mellifera) foragers. PLoS ONE. 2014;9:e95056.PubMed 
    PubMed Central 

    Google Scholar 
    42.Donkersley P, Rhodes G, Pickup RW, Jones KC, Wilson K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol Evol. 2018;8:4743–56.PubMed 
    PubMed Central 

    Google Scholar 
    43.Yañez O, Gauthier L, Chantawannakul P, Neumann P. Endosymbiotic bacteria in honey bees: Arsenophonus spp. are not transmitted transovarially. FEMS Microbiol Lett. 2016;363:1–7.
    Google Scholar 
    44.Budge GE, Adams I, Thwaites R, Pietravalle S, Drew GC, Hurst GDD, et al. Identifying bacterial predictors of honey bee health. J Invertebr Pathol. 2016;141:41–4.PubMed 

    Google Scholar 
    45.Cornman RS, Tarpy DR, Chen Y, Jeffreys L, Lopez D, Pettis JS, et al. Pathogen webs in collapsing honey bee colonies. PLoS ONE. 2012;7:e43562.46.Hughes DP, Pierce NE, Boomsma JJ. Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol. 2008;23:672–7.PubMed 

    Google Scholar 
    47.Schmid-Hempel P. Parasites and their social hosts. Trends Parasitol. 2017;33:453–62.PubMed 

    Google Scholar 
    48.Wilson EO. The insect societies. Harvard University Press: Cambridge, MA, 1971.49.Onchuru TO, Javier Martinez A, Ingham CS, Kaltenpoth M. Transmission of mutualistic bacteria in social and gregarious insects. Curr Opin Insect Sci. 2018;28:50–58.PubMed 

    Google Scholar 
    50.Rubin BER, Sanders JG, Turner KM, Pierce NE, Kocher SD. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R Soc Open Sci. 2018;5:180369.51.Anderson KE, Russell JA, Moreau CS, Kautz S, Sullam KE, Hu Y, et al. Highly similar microbial communities are shared among related and trophically similar ant species. Mol Ecol. 2012;21:2282–96.PubMed 

    Google Scholar 
    52.Frost CL, FernÁndez-MarÍn H, Smith JE, Hughes WOH. Multiple gains and losses of Wolbachia symbionts across a tribe of fungus-growing ants. Mol Ecol. 2010;19:4077–85.CAS 
    PubMed 

    Google Scholar 
    53.Keller L, Liautard C, Reuter MAX, Brown WD, Chapuisat M, Sundstro L. Sex ratio and Wolbachia infection in the ant Formica exsecta. Heredity. 2001;87:227–33.CAS 
    PubMed 

    Google Scholar 
    54.Van Borm S, Wenseleers T, Billen J, Boomsma JJ. Wolbachia in leafcutter ants: a widespread symbiont that may induce male killing or incompatible matings. J Evol Biol. 2001;14:805–14.
    Google Scholar 
    55.Wenseleers T, Sundström L, Billen J. Deleterious Wolbachia in the ant Formica truncorum. Proc R Soc B Biol Sci. 2002;269:623–9.CAS 

    Google Scholar 
    56.Gauthier L, Cornman S, Hartmann U, Cousserans F, Evans JD, De Miranda JR, et al. The Apis mellifera filamentous virus genome. Viruses. 2015;7:3798–815.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    58.Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–2.PubMed 

    Google Scholar 
    59.Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques. 1991;10:506–13.CAS 
    PubMed 

    Google Scholar 
    60.Lourenço AP, Mackert A, Cristino A, dos S, Simões ZLP. Validation of reference genes for gene expression studies in the honey bee, Apis mellifera, by quantitative real-time RT-PCR. Apidologie. 2008;39:372–85.
    Google Scholar 
    61.Boncristiani H, Li J, Evans JD, Pettis J, Chen Y. Scientific note on PCR inhibitors in the compound eyes of honey bees, Apis mellifera. Apidologie. 2011;42:457–60.
    Google Scholar 
    62.Gottlieb Y, Ghanim M, Gueguen G, Kontsedalov S, Vavre F, Fleury F, et al. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 2008;22:2591–9.CAS 
    PubMed 

    Google Scholar 
    63.Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.R Core Team. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. http://www.R-project.org/.65.Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models Using lme4. J Stat Softw. 2015;1:1–48.66.Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974;19:716–23.
    Google Scholar 
    67.Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media: New York, NY, 2003.68.Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2009;1:3–14.
    Google Scholar 
    69.Frost CL, Siozios S, Nadal-Jimenez P, Brockhurst MA, King KC, Darby AC, et al. The hypercomplex genome of an insect reproductive parasite highlights the importance of lateral gene transfer in symbiont biology. mBio. 2020;11:e02590–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Smith AH, Łukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol. 2015;24:1135–49.
    Google Scholar 
    71.Nadal-Jimenez P, Griffin JS, Davies L, Frost CL, Marcello M, Hurst GDD. Genetic manipulation allows in vivo tracking of the life cycle of the son-killer symbiont, Arsenophonus nasoniae, and reveals patterns of host invasion, tropism and pathology. Environ Microbiol. 2019;21:3172–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Perlman SJ, Hunter MS, Zchori-Fein E. The emerging diversity of Rickettsia. Proc Biol Sci. 2006;273:2097–106.PubMed 
    PubMed Central 

    Google Scholar 
    73.Sachs JL, Skophammer RG, Regus JU. Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA. 2011;108:10800–7.CAS 
    PubMed 

    Google Scholar 
    74.Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84.CAS 
    PubMed 

    Google Scholar 
    75.Chrudimský T, Husník F, Nováková E, Hypša V. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius. PLoS ONE. 2012;7:e40354.PubMed 
    PubMed Central 

    Google Scholar 
    76.Dale C, Maudlin I. Sodalis gen. nov. and Sodalis glossinidius sp. nov., a microaerophilic secondary endosymbiont of the tsetse fly Glossina morsitans morsitans. Int J Syst Bacteriol. 1999;1:267–75.
    Google Scholar 
    77.Kenyon LJ, Meulia T, Sabree ZL. Habitat visualization and genomic analysis of ‘Candidatus Pantoea carbekii,’ the primary symbiont of the brown marmorated stink bug. Genome Biol Evol. 2015;7:620–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Fischer-Le Saux M, Viallard V, Brunel B, Normand P, Boemare NE. Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov. Int J Syst Evol Microbiol. 1999;49:1645–56.
    Google Scholar 
    79.Forst S, Dowds B, Boemare N, Stackebrandt E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol. 1997;51:47–72.CAS 
    PubMed 

    Google Scholar 
    80.Costa SCP, Girard PA, Brehélin M, Zumbihl R. The emerging human pathogen Photorhabdus asymbiotica is a facultative intracellular bacterium and induces apoptosis of macrophage-like cells. Infect Immun. 2009;77:1022–30.CAS 
    PubMed 

    Google Scholar 
    81.Gerrard J, Waterfield N, Vohra R, ffrench-Constant R. Human infection with Photorhabdus asymbiotica: an emerging bacterial pathogen. Microbes Infect. 2004;6:229–37.CAS 
    PubMed 

    Google Scholar 
    82.Schmid-Hempel P. Parasites in social insects. Princeton University Press: Princeton, NJ, 1998.83.Frost CL, Pollock SW, Smith JE, Hughes WOH. Wolbachia in the flesh: symbiont intensities in germ-line and somatic tissues challenge the conventional view of Wolbachia transmission routes. PLoS ONE. 2014;9:e95122.84.Graystock P, Goulson D, Hughes WOH. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc R Soc B Biol Sci. 2015;282:1471–2954.
    Google Scholar 
    85.Graystock P, Goulson D, Hughes WOH. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ. 2014;2:e522.PubMed 
    PubMed Central 

    Google Scholar 
    86.Koch H, Abrol DP, Li J, Schmid-Hempel P. Diversity and evolutionary patterns of bacterial gut associates of corbiculate bees. Mol Ecol. 2013;22:2028–44.CAS 
    PubMed 

    Google Scholar 
    87.McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, et al. Flowers and wild megachilid bees share microbes. Micro Ecol. 2017;73:188–200.
    Google Scholar 
    88.Satterfield DA, Altizer S, Williams MK, Hall RJ. Environmental persistence influences infection dynamics for a butterfly pathogen. PLoS ONE. 2017;12:1–16.
    Google Scholar 
    89.Darby AC, Choi JH, Wilkes T, Hughes MA, Werren JH, Hurst GDD, et al. Characteristics of the genome of Arsenophonus nasoniae, son-killer bacterium of the wasp Nasonia. Insect Mol Biol. 2010;19:75–89.CAS 
    PubMed 

    Google Scholar 
    90.Dale C, Beeton M, Harbison C, Jones T, Pontes M. Isolation, pure culture, and characterization of ‘Candidatus Arsenophonus arthropodicus,’ an intracellular secondary endosymbiont from the hippoboscid louse fly Pseudolynchia canariensis. Appl Environ Microbiol. 2006;72:2997–3004.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Clark T. Honeybee spiroplasmosis, a new problem for beekeepers. Am Bee J. 1978;118:18–19.
    Google Scholar 
    92.Schwarz RS, Teixeira ÉW, Tauber JP, Birke JM, Martins MF, Fonseca I, et al. Honey bee colonies act as reservoirs for two Spiroplasma facultative symbionts and incur complex, multiyear infection dynamics. MicrobiologyOpen. 2014;3:341–55.PubMed 
    PubMed Central 

    Google Scholar 
    93.Levin MD. Interactions among foraging honey bees from different apiaries in the same field. Insectes Sociaux. 1961;8:195–201.
    Google Scholar 
    94.Parmentier A, Billiet A, Smagghe G, Vandamme P, Deforce D, Van Nieuwerburgh F, et al. A prokaryotic–eukaryotic relation in the fat body of Bombus terrestris. Environ Microbiol Rep. 2018;10:644–50.CAS 
    PubMed 

    Google Scholar 
    95.Nussbaumer AD, Fisher CR, Bright M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature. 2006;441:345–8.CAS 
    PubMed 

    Google Scholar 
    96.Werren JH, Skinner SW, Huger AM. Male-killing bacteria in a parasitic wasp. Science. 1986;231:990–2.CAS 
    PubMed 

    Google Scholar 
    97.Gerth M, Saeed A, White JA, Bleidorn C. Extensive screen for bacterial endosymbionts reveals taxon-specific distribution patterns among bees (Hymenoptera, Anthophila). FEMS Microbiol Ecol. 2015;91:1–12.
    Google Scholar 
    98.McFrederick QS, Mueller UG, James RR. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc R Soc B Biol Sci. 2014;281:1471–2954.
    Google Scholar 
    99.Saeed A, White JA. Surveys for maternally-inherited endosymbionts reveal novel and variable infections within solitary bee species. J Invertebr Pathol. 2015;132:111–4.PubMed 

    Google Scholar  More

  • in

    Meta-analytic evidence that animals rarely avoid inbreeding

    1.Kokko, H. & Ots, I. When not to avoid inbreeding. Evolution 60, 467–475 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Blouin, S. F. & Blouin, M. Inbreeding avoidance behaviors. Trends Ecol. Evol. 3, 230–233 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Pusey, A. & Wolf, M. Inbreeding avoidance in animals. Trends Ecol. Evol. 11, 201–206 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Keller, L. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    5.Szulkin, M., Stopher, K. V., Pemberton, J. M. & Reid, J. M. Inbreeding avoidance, tolerance, or preference in animals? Trends Ecol. Evol. 28, 205–211 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).7.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Parker, G. A. in Sexual Selection and Reproductive Competition in Insects (eds Blum, M. S. & Blum, N. A.) 123–166 (Academic, 1979).9.Duthie, A. B. & Reid, J. M. Evolution of inbreeding avoidance and inbreeding preference through mate choice among interacting relatives. Am. Nat. 188, 651–667 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Lehmann, L. & Perrin, N. Inbreeding avoidance through kin recognition: choosy females boost male dispersal. Am. Nat. 162, 638–652 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kokko, H. Give one species the task to come up with a theory that spans them all: what good can come out of that? Proc. Biol. Sci. 284, 20171652 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Parker, G. A. Sexual conflict over mating and fertilization: an overview. Philos. Trans. R. Soc. Lond. B 361, 235–259 (2006).CAS 
    Article 

    Google Scholar 
    13.Ihle, M. & Forstmeier, W. Revisiting the evidence for inbreeding avoidance in zebra finches. Behav. Ecol. 24, 1356–1362 (2013).Article 

    Google Scholar 
    14.Annavi, G. et al. Heterozygosity–fitness correlations in a wild mammal population: accounting for parental and environmental effects. Ecol. Evol. 4, 2594–2609 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Arct, A., Drobniak, S. M. & Cichoń, M. Genetic similarity between mates predicts extrapair paternity—a meta-analysis of bird studies. Behav. Ecol. 26, 959–968 (2015).Article 

    Google Scholar 
    16.Winternitz, J., Abbate, J. L., Huchard, E., Havlicek, J. & Garamszegi, L. Z. Patterns of MHC-dependent mate selection in humans and nonhuman primates: a meta-analysis. Mol. Ecol. 26, 668–688 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Havlíček, J., Winternitz, J. & Roberts, S. C. Major histocompatibility complex-associated odour preferences and human mate choice: near and far horizons. Philos. Trans. R. Soc. Lond. B 375, 20190260 (2020).Article 

    Google Scholar 
    18.Lizé, A., McKay, R. & Lewis, Z. Kin recognition in Drosophila: the importance of ecology and gut microbiota. ISME J. 8, 469–477 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Heys, C. et al. Evidence that the microbiota counteracts male outbreeding strategy by inhibiting sexual signaling in females. Front. Ecol. Evol. 6, https://doi.org/10.3389/fevo.2018.00029 (2018)20.Ala-Honkola, O., Manier, M. K., Lupold, S. & Pitnick, S. No evidence for postcopulatory inbreeding avoidance in Drosophila melanogaster. Evolution 65, 2699–2705 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Mack, P. D., Hammock, B. A. & Promislow, D. E. Sperm competitive ability and genetic relatedness in Drosophila melanogaster: similarity breeds contempt. Evolution 56, 1789–1795 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Loyau, A., Cornuau, J. H., Clobert, J. & Danchin, E. Incestuous sisters: mate preference for brothers over unrelated males in Drosophila melanogaster. PLoS ONE 7, e51293 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Tan, C. K. W., Løvlie, H., Pizzari, T. & Wigby, S. No evidence for precopulatory inbreeding avoidance in Drosophila melanogaster. Anim. Behav. 83, 1433–1441 (2012).Article 

    Google Scholar 
    24.Robinson, S. P., Kennington, W. J. & Simmons, L. W. Preference for related mates in the fruit fly, Drosophila melanogaster. Anim. Behav. 84, 1169–1176 (2012).Article 

    Google Scholar 
    25.Ala-Honkola, O., Veltsos, P., Anderson, H. & Ritchie, M. G. Copulation duration, but not paternity share, potentially mediates inbreeding avoidance in Drosophila montana. Behav. Ecol. Sociobiol. 68, 2013–2021 (2014).Article 

    Google Scholar 
    26.Nakamura, S. Inbreeding and rotational breeding of the parasitoid fly, Exorista japonica (Diptera: Tachinidae), for successive rearing. Appl. Entomol. Zool. 31, 433–441 (1996).Article 

    Google Scholar 
    27.Aluja, M., Rull, J., Perez-Staples, D., Diaz-Fleischer, F. & Sivinski, J. Random mating among Anastrepha ludens (Diptera: Tephritidae) adults of geographically distant and ecologically distinct populations in Mexico. Bull. Entomol. Res. 99, 207–214 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Fischer, K. et al. Kin recognition and inbreeding avoidance in a butterfly. Ethology 121, 977–984 (2015).Article 

    Google Scholar 
    29.Mongue, A. J., Ahmed, M. Z., Tsai, M. V. & de Roode, J. C. Testing for cryptic female choice in monarch butterflies. Behav. Ecol. 26, 386–395 (2014).Article 

    Google Scholar 
    30.Haikola, S., Singer, M. C. & Pen, I. Has inbreeding depression led to avoidance of sib mating in the Glanville fritillary butterfly (Melitaea cinxia)? Evol. Ecol. 18, 113–120 (2004).Article 

    Google Scholar 
    31.Välimäki, P., Kivelä, S. M. & Mäenpää, M. I. Mating with a kin decreases female remating interval: a possible example of inbreeding avoidance. Behav. Ecol. Sociobiol. 65, 2037–2047 (2011).Article 

    Google Scholar 
    32.Lewis, Z. & Wedell, N. Male moths reduce sperm investment in relatives. Anim. Behav. 77, 1547–1550 (2009).Article 

    Google Scholar 
    33.Harano, T. & Katsuki, M. Female seed beetles, Callosobruchus chinensis, remate more readily after mating with relatives. Anim. Behav. 83, 1007–1010 (2012).Article 

    Google Scholar 
    34.Edvardsson, M., Rodríguez-Muñoz, R. & Tregenza, T. No evidence that female bruchid beetles, Callosobruchus maculatus, use remating to reduce costs of inbreeding. Anim. Behav. 75, 1519–1524 (2008).Article 

    Google Scholar 
    35.Müller, T. & Müller, C. Consequences of mating with siblings and nonsiblings on the reproductive success in a leaf beetle. Ecol. Evol. 6, 3185–3197 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. Inbreeding avoidance or tolerance? Comparison of mating behavior between mass-reared and wild strains of the sweet potato weevil. Behav. Ecol. Sociobiol. 65, 1483–1489 (2011).Article 

    Google Scholar 
    37.Kuriwada, T., Kumano, N., Shiromoto, K. & Haraguchi, D. The effect of inbreeding on mating behaviour of West Indian sweet potato weevil Euscepes postfasciatus. Ethology 117, 822–828 (2011).Article 

    Google Scholar 
    38.Tyler, F. & Tregenza, T. Why do so many flour beetle copulations fail? Entomol. Exp. Appl. 146, 199–206 (2013).Article 

    Google Scholar 
    39.Mattey, S. N., Smiseth, P. T. & Herberstein, M. No inbreeding avoidance by female burying beetles regardless of whether they encounter males simultaneously or sequentially. Ethology 121, 1031–1038 (2015).Article 

    Google Scholar 
    40.De Luca, P. A. & Cocroft, R. B. The effects of age and relatedness on mating patterns in thornbug treehoppers: inbreeding avoidance or inbreeding tolerance? Behav. Ecol. Sociobiol. 62, 1869–1875 (2008).Article 

    Google Scholar 
    41.Poderoso, J. C. M. et al. Mating preferences and consequences of choosing sibling or non-sibling mates by females of the predator Podisus nigrispinus (Heteroptera: Pentatomidae). Fla. Entomol. 96, 419–423 (2013).Article 

    Google Scholar 
    42.Huang, M. H. & Caillaud, M. C. Inbreeding avoidance by recognition of close kin in the pea aphid, Acyrthosiphon pisum. J. Insect Sci. 12, 39 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    43.Stockley, P. Sperm selection and genetic incompatibility: does relatedness of mates affect male success in sperm competition? Proc. R. Soc. Biol. Sci. Ser. B 266, 1663–1669 (1999).Article 

    Google Scholar 
    44.Weddle, C. B. et al. Cuticular hydrocarbons as a basis for chemosensory self-referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecol. Lett. 16, 346–353 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Simmons, L. M. Female choice and the relatedness of mates in the field cricket, Gryllus bimaculatus. Anim. Behav. 41, 493–501 (1991).Article 

    Google Scholar 
    46.Bretman, A., Newcombe, D. & Tregenza, T. Promiscuous females avoid inbreeding by controlling sperm storage. Mol. Ecol. 18, 3340–3345 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Bretman, A., Wedell, N. & Tregenza, T. Molecular evidence of post-copulatory inbreeding avoidance in the field cricket Gryllus bimaculatus. Proc. Biol. Sci. 271, 159–164 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Simmons, L. W. Kin recognition and its influence on mating preferences of the field cricket, Gryllus bimaculatus (de Geer). Anim. Behav. 38, 68–77 (1989).Article 

    Google Scholar 
    49.Simmons, L. W., Beveridge, M., Wedell, N. & Tregenza, T. Postcopulatory inbreeding avoidance by female crickets only revealed by molecular markers. Mol. Ecol. 15, 3817–3824 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Simmons, L. W. & Thomas, M. L. No postcopulatory response to inbreeding by male crickets. Biol. Lett. 4, 183–185 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tuni, C., Beveridge, M. & Simmons, L. W. Female crickets assess relatedness during mate guarding and bias storage of sperm towards unrelated males. J. Evol. Biol. 26, 1261–1268 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Haneke-Reinders, M., Reinhold, K. & Schmoll, T. Sex-specific repeatabilities and effects of relatedness and mating status on copulation duration in an acridid grasshopper. Ecol. Evol. 7, 3414–3424 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Teng, Z. Q. & Kang, L. Egg-hatching benefits gained by polyandrous female locusts are not due to the fertilization advantage of nonsibling males. Evolution 61, 470–476 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bouchebti, S., Durier, V., Pasquaretta, C., Rivault, C. & Lihoreau, M. Subsocial cockroaches Nauphoeta cinerea mate indiscriminately with kin despite high costs of inbreeding. PLoS ONE 11, e0162548 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Lihoreau, M. & Rivault, C. German cockroach males maximize their inclusive fitness by avoiding mating with kin. Anim. Behav. 80, 303–309 (2010).Article 

    Google Scholar 
    56.Lihoreau, M., Zimmer, C. & Rivault, C. Kin recognition and incest avoidance in a group-living insect. Behav. Ecol. 18, 880–887 (2007).Article 

    Google Scholar 
    57.Lihoreau, M., Zimmer, C. & Rivault, C. Mutual mate choice: when it pays both sexes to avoid inbreeding. PLoS ONE 3, e3365 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Hedlund, K., Ek, H., Gunnarsson, T. & Svegborn, C. Mate choice and male competition in Orchesella cincta (Collembola). Experientia 46, 524–526 (1990).Article 

    Google Scholar 
    59.Palmer, C. A. & Edmands, S. Mate choice in the face of both inbreeding and outbreeding depression in the intertidal copepod Tigriopus californicus. Mar. Biol. 136, 693–698 (2000).Article 

    Google Scholar 
    60.Winsor, G. L. & Innes, D. J. Sexual reproduction in Daphnia pulex (Crustacea: Cladocera): observations on male mating behaviour and avoidance of inbreeding. Freshwat. Biol. 47, 441–450 (2002).Article 

    Google Scholar 
    61.Fortin, M., Vitet, C., Souty-Grosset, C. & Richard, F. J. How do familiarity and relatedness influence mate choice in Armadillidium vulgare? PLoS ONE 13, e0209893 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Tuni, C., Mestre, L., Berger-Tal, R., Lubin, Y. & Bilde, T. Mate choice in naturally inbred spiders: testing the role of relatedness. Anim. Behav. 157, 27–33 (2019).Article 

    Google Scholar 
    63.Ruch, J., Heinrich, L., Bilde, T. & Schneider, J. M. The evolution of social inbreeding mating systems in spiders: limited male mating dispersal and lack of pre-copulatory inbreeding avoidance in a subsocial predecessor. Biol. J. Linn. Soc. 98, 851–859 (2009).Article 

    Google Scholar 
    64.Bilde, T., Lubin, Y., Smith, D., Schneider, J. M. & Maklakov, A. A. The transition to social inbred mating systems in spiders: role of inbreeding tolerance in a subsocial predecessor. Evolution 59, 160–174 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Welke, K. W. & Schneider, J. M. Males of the orb-web spider Argiope bruennichi sacrifice themselves to unrelated females. Biol. Lett. 6, 585–588 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Welke, K. & Schneider, J. M. Inbreeding avoidance through cryptic female choice in the cannibalistic orb-web spider Argiope lobata. Behav. Ecol. 20, 1056–1062 (2009).Article 

    Google Scholar 
    67.Chen, Z. et al. Inbreeding produces trade-offs between maternal fecundity and offspring survival in a monandrous spider. Anim. Behav. 132, 253–259 (2017).Article 

    Google Scholar 
    68.Zeh, J. A. & Zeh, D. W. Outbred embryos rescue inbred half-siblings in mixed-paternity broods of live-bearing females. Nature 439, 201–203 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.McCarthy, T. M. & Sih, A. Relatedness of mates influences mating behaviour and reproductive success of the hermaphroditic freshwater snail Physa gyrina. Evol. Ecol. Res. 10, 77–94 (2008).
    Google Scholar 
    70.Facon, B., Ravigné, V. & Goudet, J. Experimental evidence of inbreeding avoidance in the hermaphroditic snail Physa acuta. Evol. Ecol. 20, 395–406 (2006).Article 

    Google Scholar 
    71.Baur, B. & Baur, A. Random mating with respect to relatedness in the simultaneously hermaphroditic land snail Arianta arbustorum. Invertebr. Biol. 116, 294–298 (1997).Article 

    Google Scholar 
    72.Ng, T. P. T. & Johannesson, K. No precopulatory inbreeding avoidance in the intertidal snail Littorina saxatilis. J. Mollusca. Stud. 82, 213–215 (2015).
    Google Scholar 
    73.Burgess, S. C., Sander, L. & Bueno, M. How relatedness between mates influences reproductive success: an experimental analysis of self-fertilization and biparental inbreeding in a marine bryozoan. Ecol. Evol. 9, 11353–11366 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Peters, A. & Michiels, N. K. Evidence for lack of inbreeding avoidance by selective mating in a simultaneous hermaphrodite. Invertebr. Biol. 115, 99–103 (1996).Article 

    Google Scholar 
    75.Boyd, S. K. & Blaustein, A. R. Familiarity and inbreeding avoidance in the gray-tailed vole (Microtus canicaudus). J. Mammal. 66, 348–352 (1985).Article 

    Google Scholar 
    76.Bollinger, E. K., Harper, S. J., Kramer, J. M. & Barrett, G. W. Avoidance of inbreeding in the meadow vole (Microtus pennsylvanicus). J. Mammal. 72, 419–421 (1991).Article 

    Google Scholar 
    77.Sun, P., Zhu, W. & Zhao, X. Opposite-sex sibling recognition in adult root vole, Microtus Oeconomus pallas: phenotype matching or association. Pol. J. Ecol. 56, 701–708 (2008).
    Google Scholar 
    78.Fadao, T., Ruyong, S. & Tingzheng, W. Does low fecundity reflect kin recognition and inbreeding avoidance in the mandarin vole (Microtus mandarinus)? Can. J. Zool. 80, 2150–2155 (2002).Article 

    Google Scholar 
    79.Fadao, T., Tingzheng, W. & Yajun, Z. Inbreeding avoidance and mate choice in the mandarin vole (Microtus mandarinus). Can. J. Zool. 78, 2119–2125 (2000).Article 

    Google Scholar 
    80.Yu, X., Sun, R. & Fang, J. Effect of kinship on social behaviors in Brandt’s voles (Microtus brandti). J. Ethol. 22, 17–22 (2004).Article 

    Google Scholar 
    81.Lucia, K. E. & Keane, B. A field test of the effects of familiarity and relatedness on social associations and reproduction in prairie voles. Behav. Ecol. Sociobiol. 66, 13–27 (2011).Article 

    Google Scholar 
    82.Gavish, L., Hofmann, J. E. & Getz, L. L. Sibling recognition in the prairie vole, Microtus ochrogaster. Anim. Behav. 32, 362–366 (1984).Article 

    Google Scholar 
    83.Ylӧnen, H. & Haapakoski, M. Risk of inbreeding: problem of mate choice and fitness effects? Isr. J. Ecol. Evol. 62, 155–161 (2016).Article 

    Google Scholar 
    84.Kruczek, M. & Golas, A. Behavioural development of conspecific odour preferences in bank voles, Clethrionomys glareolus. Behav. Process. 64, 31–39 (2003).Article 

    Google Scholar 
    85.Lemaître, J.-F., Ramm, S. A., Hurst, J. L. & Stockley, P. Inbreeding avoidance behaviour of male bank voles in relation to social status. Anim. Behav. 83, 453–457 (2012).Article 

    Google Scholar 
    86.Kruczek, M. Recognition of kin in bank voles (Clethrionomys glareolus). Physiol. Behav. 90, 483–489 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Rao, X., Zhang, J.-X., Liu, D. & Cong, L. Kinship alters the effects of forced cohabitation on body weight, mate choice and fitness in the rat-like hamster Tscheskia triton. Curr. Zool. 55, 41–47 (2009).Article 

    Google Scholar 
    88.Mateo, J. M. & Johnston, R. E. Kin recognition and the ‘armpit effect’: evidence of self-referent phenotype matching. Proc. Biol. Sci. 267, 695–700 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Grau, H. J. Kin recognition in white-footed deermice (Peromyscus leucopus). Anim. Behav. 30, 497–505 (1982).Article 

    Google Scholar 
    90.Pillay, N. Father–daughter recognition and inbreeding avoidance in the striped mouse, Rhabdomys pumilio. Mamm. Biol. 67, 212–218 (2002).Article 

    Google Scholar 
    91.Pillay, N. & Rymer, T. L. Preference for outbreeding in inbred Littledale’s whistling rats Parotomys littledalei. Evol. Biol. 44, 21–30 (2016).Article 

    Google Scholar 
    92.Pillay, N. Inbreeding in Littledale’s whistling rat Parotomys littledalei. J. Exp. Zool. 293, 171–178 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Firman, R. C. & Simmons, L. W. Polyandry facilitates postcopulatory inbreeding avoidance in house mice. Evolution 62, 603–611 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Firman, R. C. & Simmons, L. W. Gametic interactions promote inbreeding avoidance in house mice. Ecol. Lett. 18, 937–943 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Barnard, C. J. & Fitzsimons, J. Kin recognition and mate choice in mice: the effects of kinship, familiarity and social interference on intersexual interaction. Anim. Behav. 36, 1078–1090 (1988).Article 

    Google Scholar 
    96.Krackow, S. & Matuschak, B. Mate choice for non-siblings in wild house mice: evidence from a choice test and a reproductive test. Ethology 88, 99–108 (2010).Article 

    Google Scholar 
    97.Musolf, K., Hoffmann, F. & Penn, D. J. Ultrasonic courtship vocalizations in wild house mice, Mus musculus musculus. Anim. Behav. 79, 757–764 (2010).Article 

    Google Scholar 
    98.Bolton, J. L. et al. Kin discrimination in prepubescent and adult Long-Evans rats. Behav. Process. 90, 415–419 (2012).Article 

    Google Scholar 
    99.Valsecchi, P., Razzoli, M. & Choleris, E. Influence of kinship and familiarity on the social and reproductive behaviour of female Mongolian gerbils. Ethol. Ecol. Evol. 14, 239–253 (2002).Article 

    Google Scholar 
    100.Smith, B. A. & Block, M. L. Male saliva cues and female social choice in Mongolian gerbils. Physiol. Behav. 50, 379–384 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Ågren, G. Two laboratory experiments on inbreeding avoidance in the Mongolian gerbil. Behav. Process. 6, 291–297 (1981).Article 

    Google Scholar 
    102.Ågren, G. Incest avoidance and bonding between siblings in gerbils. Behav. Ecol. Sociobiol. 14, 161–169 (1984).Article 

    Google Scholar 
    103.Ågren, G. Alternative mating strategies in the Mongolian gerbil. Behaviour 91, 229–243 (1984).Article 

    Google Scholar 
    104.Heth, G., Todrank, J., Begall, S., Wegner, R. E. & Burda, H. Genetic relatedness discrimination in eusocial Cryptomys anselli mole-rats, Bathyergidae, Rodentia. Folia Zool. 53, 269–278 (2004).
    Google Scholar 
    105.Bennett, N. C., Faulkes, C. G. & Molteno, A. J. Reproductive suppression in subordinate, non-breeding female Damaraland mole-rats: two components to a lifetime of socially induced infertility. Proc. Biol. Sci. 263, 1599–1603 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Carter, S. N., Goldman, B. D., Goldman, S. L. & Freeman, D. A. Social cues elicit sexual behavior in subordinate Damaraland mole-rats independent of gonadal status. Horm. Behav. 65, 14–21 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Greeff, J. M. & Bennett, N. C. Causes and consequences of incest avoidance in the cooperatively breeding mole-rat, Cryptomys darlingi (Bathyergidae). Ecol. Lett. 3, 318–328 (2000).Article 

    Google Scholar 
    108.Clarke, F. M. & Faulkes, C. G. Kin discrimination and female mate choice in the naked mole-rat Heterocephalus glaber. Proc. Biol. Sci. 266, 1995–2002 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Marcinkowska, U. M., Moore, F. R. & Rantala, M. J. An experimental test of the Westermarck effect: sex differences in inbreeding avoidance. Behav. Ecol. 24, 842–845 (2013).Article 

    Google Scholar 
    110.Lass-Hennemann, J. et al. Effects of stress on human mating preferences: stressed individuals prefer dissimilar mates. Proc. Biol. Sci. 277, 2175–2183 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    111.Lass-Hennemann, J. et al. Effect of facial self-resemblance on the startle response and subjective ratings of erotic stimuli in heterosexual men. Arch. Sex. Behav. 40, 1007–1014 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Krupp, D. B., DeBruine, L. M., Jones, B. C. & Lalumiere, M. L. Kin recognition: evidence that humans can perceive both positive and negative relatedness. J. Evol. Biol. 25, 1472–1478 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    113.Kocsor, F., Rezneki, R., Juhasz, S. & Bereczkei, T. Preference for facial self-resemblance and attractiveness in human mate choice. Arch. Sex. Behav. 40, 1263–1270 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Finke, J. B., Zhang, X., Best, D. R., Lass-Hennemann, J. & Schächinger, H. Self-resemblance modulates processing of socio-emotional pictures in a context-sensitive manner. J. Psychophysiol. 33, 127–138 (2019).Article 

    Google Scholar 
    115.Fraley, R. C. & Marks, M. J. Westermarck, Freud, and the incest taboo: does familial resemblance activate sexual attraction? Pers. Soc. Psychol. Bull. 36, 1202–1212 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. Biol. Sci. 285, https://doi.org/10.1098/rspb.2018.1527 (2018)117.Pfefferle, D., Kazem, A. J., Brockhausen, R. R., Ruiz-Lambides, A. V. & Widdig, A. Monkeys spontaneously discriminate their unfamiliar paternal kin under natural conditions using facial cues. Curr. Biol. 24, 1806–1810 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Pfefferle, D., Ruiz-Lambides, A. V. & Widdig, A. Male rhesus macaques use vocalizations to distinguish female maternal, but not paternal, kin from non-kin. Behav. Ecol. Sociobiol. 69, 1677–1686 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Erhart, E. M., Coelho, A. M. Jr. & Bramblett, C. A. Kin recognition by paternal half-siblings in captive Papio cynocephalus. Am. J. Primatol. 43, 147–157 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Craul, M., Zimmermann, E. & Radespiel, U. First experimental evidence for female mate choice in a nocturnal primate. Primates 45, 271–274 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    121.Mossotti, R. H. et al. Reactions of female cheetahs (Acinonyx jubatus) to urine volatiles from males of varying genetic distance. Zoo Biol. 37, 229–235 (2018).Article 

    Google Scholar 
    122.Hamilton, J. & Vonk, J. Do dogs (Canis lupus familiaris) prefer family? Behav. Process. 119, 123–134 (2015).Article 

    Google Scholar 
    123.Orihuela, A. & Vázquez, R. Mating preferences of Saint Croix rams to related or unrelated ewes. Small Rumin. Res. 83, 82–84 (2009).Article 

    Google Scholar 
    124.Fracasso, G., Tuliozi, B., Hoi, H. & Griggio, M. Can house sparrows recognize familiar or kin-related individuals by scent? Curr. Zool. 65, 53–59 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Schielzeth, H., Burger, C., Bolund, E. & Forstmeier, W. Assortative versus disassortative mating preferences of female zebra finches based on self-referent phenotype matching. Anim. Behav. 76, 1927–1934 (2008).Article 

    Google Scholar 
    126.Miller, D. B. Long-term recognition of father’s song by female zebra finches. Nature 280, 389–391 (1979).Article 

    Google Scholar 
    127.Burley, N., Minor, C. & Strachan, C. Social preference of zebra finches for siblings, cousins and non-kin. Anim. Behav. 39, 775–784 (1990).Article 

    Google Scholar 
    128.Kato, Y., Hasegawa, T. & Okanoya, K. Song preference of female Bengalese finches as measured by operant conditioning. J. Ethol. 28, 447–453 (2010).Article 

    Google Scholar 
    129.Schubert, C. A., Ratcliffe, L. M. & Boag, P. T. A test of inbreeding avoidance in the zebra finch. Ethology 82, 265–274 (2010).Article 

    Google Scholar 
    130.Slater, P. J. B. & Clements, F. A. Incestuous mating in zebra finches. Z. Tierpsychol. 57, 201–208 (2010).Article 

    Google Scholar 
    131.Arct, A., Rutkowska, J., Martyka, R., Drobniak, S. M. & Cichon, M. Kin recognition and adjustment of reproductive effort in zebra finches. Biol. Lett. 6, 762–764 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: the first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    133.Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    134.Bateson, P. Preferences for cousins in Japanese quail. Nature 295, 236–237 (1982).Article 

    Google Scholar 
    135.Løvlie, H., Gillingham, M. A., Worley, K., Pizzari, T. & Richardson, D. S. Cryptic female choice favours sperm from major histocompatibility complex-dissimilar males. Proc. Biol. Sci. 280, 20131296 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    136.Pizzari, T., Lovlie, H. & Cornwallis, C. K. Sex-specific, counteracting responses to inbreeding in a bird. Proc. Biol. Sci. 271, 2115–2121 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Denk, A. G., Holzmann, A., Peters, A., Vermeirssen, E. L. M. & Kempenaers, B. Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav. Ecol. 16, 825–833 (2005).Article 

    Google Scholar 
    138.Jansson, N., Uller, T. & Olsson, M. Female dragons, Ctenophorus pictus, do not prefer scent from unrelated males. Aust. J. Zool. 53, 279–282 (2005).Article 

    Google Scholar 
    139.Ala-Honkola, O., Tuominen, L. & Lindström, K. Inbreeding avoidance in a poeciliid fish (Heterandria formosa). Behav. Ecol. Sociobiol. 64, 1403–1414 (2010).Article 

    Google Scholar 
    140.Vega-Trejo, R., Head, M. L. & Jennions, M. D. Evidence for inbreeding depression in a species with limited opportunity for maternal effects. Ecol. Evol. 5, 1398–1404 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    141.Pitcher, T. E., Rodd, F. H. & Rowe, L. Female choice and the relatedness of mates in the guppy (Poecilia reticulata): mate choice and inbreeding depression. Genetica 134, 137–146 (2008).PubMed 
    Article 

    Google Scholar 
    142.Daniel, M. J. & Rodd, F. H. Female guppies can recognize kin but only avoid incest when previously mated. Behav. Ecol. 27, 55–61 (2016).Article 

    Google Scholar 
    143.Fitzpatrick, L. J., Gasparini, C., Fitzpatrick, J. L. & Evans, J. P. Male–female relatedness and patterns of male reproductive investment in guppies. Biol. Lett. 10, 20140166 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.Viken, A., Fleming, I. A. & Rosenqvist, G. Premating avoidance of inbreeding absent in female guppies (Poecilia reticulata). Ethology 112, 716–723 (2006).Article 

    Google Scholar 
    145.Gasparini, C. & Pilastro, A. Cryptic female preference for genetically unrelated males is mediated by ovarian fluid in the guppy. Proc. Biol. Sci. 278, 2495–2501 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    146.Evans, J. P., Brooks, R. C., Zajitschek, S. R. & Griffith, S. C. Does genetic relatedness of mates influence competitive fertilization success in guppies? Evolution 62, 2929–2935 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    147.Fitzpatrick, J. L. & Evans, J. P. Postcopulatory inbreeding avoidance in guppies. J. Evol. Biol. 27, 2585–2594 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    148.Speechley, E. M., Gasparini, C. & Evans, J. P. Female guppies increase their propensity for polyandry as an inbreeding avoidance strategy. Anim. Behav. 157, 87–93 (2019).Article 

    Google Scholar 
    149.Thünken, T., Bakker, T. C. M., Baldauf, S. A. & Kullmann, H. Active inbreeding in a cichlid fish and its adaptive significance. Curr. Biol. 17, 225–229 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    150.Thünken, T., Bakker, T. C. M., Baldauf, S. A. & Kullmann, H. Direct familiarity does not alter mating preference for sisters in male Pelvicachromis taeniatus (Cichlidae). Ethology 113, 1107–1112 (2007).Article 

    Google Scholar 
    151.Thünken, T., Meuthen, D., Bakker, T. C. M. & Baldauf, S. A. A sex-specific trade-off between mating preferences for genetic compatibility and body size in a cichlid fish with mutual mate choice. Proc. Biol. Sci. 279, 2959–2964 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    152.Thünken, T., Bakker, T. C. M. & Baldauf, S. A. ‘Armpit effect’ in an African cichlid fish: self-referent kin recognition in mating decisions of male Pelvicachromis taeniatus. Behav. Ecol. Sociobiol. 68, 99–104 (2013).Article 

    Google Scholar 
    153.Frommen, J. G. & Bakker, T. C. Inbreeding avoidance through non-random mating in sticklebacks. Biol. Lett. 2, 232–235 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    154.Butts, I. A., Johnson, K., Wilson, C. C. & Pitcher, T. E. Ovarian fluid enhances sperm velocity based on relatedness in lake trout, Salvelinus namaycush. Theriogenology 78, 2105–2109 e2101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    155.Gerlach, G. & Lysiak, N. Kin recognition and inbreeding avoidance in zebrafish, Danio rerio, is based on phenotype matching. Anim. Behav. 71, 1371–1377 (2006).Article 

    Google Scholar 
    156.Kueffer, C. et al. Fame, glory and neglect in meta-analyses. Trends Ecol. Evol. 26, 493–494 (2011).PubMed 
    Article 

    Google Scholar 
    157.Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd edn (Lawrence Erlbaum, 1988).158.Blouin, M. S. DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol. Evol. 18, 503–511 (2003).Article 

    Google Scholar 
    159.Brown, J. L. & Eklund, A. Kin recognition and the major histocompatibility complex: an integrative review. Am. Nat. 143, 435–461 (1994).Article 

    Google Scholar 
    160.Penn, D. J. The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108, 1–21 (2002).Article 

    Google Scholar 
    161.Kokko, H. & Mappes, J. Sexual selection when fertilization is not guaranteed. Evolution 59, 1876–1885 (2005).PubMed 
    Article 

    Google Scholar 
    162.Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity. Stat. Med. 26, 4544–4562 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    164.Senior, A. M. et al. Heterogeneity in ecological and evolutionary meta-analyses: its magnitude and implications. Ecology 97, 3293–3299 (2016).PubMed 
    Article 

    Google Scholar 
    165.Zeh, J. A. & Zeh, D. W. The evolution of polyandry II: post-copulatory defences against genetic incompatibility. Proc. R. Soc. B 264, 69–75 (1997).Article 

    Google Scholar 
    166.Carleial, R. et al. Temporal dynamics of competitive fertilization in social groups of red junglefowl (Gallus gallus) shed new light on avian sperm competition. Philos. Trans. R. Soc. Lond. B 375, 20200081 (2020).Article 

    Google Scholar 
    167.Antfolk, J. et al. Opposition to inbreeding between close kin reflects inclusive fitness costs. Front. Psychol. 9, 2101 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    168.Kresanov, P. et al. Intergenerational incest aversion: self-reported sexual arousal and disgust to hypothetical sexual contact with family members. Evol. Hum. Behav. 39, 664–674 (2018).Article 

    Google Scholar 
    169.Richardson, J., Comin, P. & Smiseth, P. T. Inbred burying beetles suffer fitness costs from making poor decisions. Proc. R. Soc. B 285, 20180419 (2018).PubMed 
    Article 

    Google Scholar 
    170.Long, T. A. F., Rowe, L. & Agrawal, A. F. The effects of selective history and environmental heterogeneity on inbreeding depression in experimental populations of Drosophila melanogaster. Am. Nat. 181, 532–544 (2013).PubMed 
    Article 

    Google Scholar 
    171.Johnson, A. M. et al. Inbreeding depression and inbreeding avoidance in a natural population of guppies (Poecilia reticulata). Ethology 116, 448–457 (2010).Article 

    Google Scholar 
    172.Barson, N., Cable, J. & Van Oosterhout, C. Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source–sink metapopulation structure, founder events and population bottlenecks. J. Evol. Biol. 22, 485–497 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    173.Lindholm, A. K. et al. Invasion success and genetic diversity of introduced populations of guppies Poecilia reticulata in Australia. Mol. Ecol. 14, 3671–3682 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    174.Hosken, D. J. & Blanckenhorn, W. U. Female multiple mating, inbreeding avoidance, and fitness: it is not only the magnitude of costs and benefits that counts. Behav. Ecol. 10, 462–464 (1999).Article 

    Google Scholar 
    175.Duthie, A. B. & Reid, J. M. What happens after inbreeding avoidance? Inbreeding by rejected relatives and the inclusive fitness benefit of inbreeding avoidance. PLoS ONE 10, e0125140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    176.Taylor, H. R. The use and abuse of genetic marker-based estimates of relatedness and inbreeding. Ecol. Evol. 5, 3140–3150 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    177.Galla, S. J. et al. A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: implications for conservation breeding programmes worldwide. Evol. Appl. 13, 991–1008 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    178.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA. 93, 6140 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    179.Janicke, T., Vellnow, N., Sarda, V. & David, P. Sex-specific inbreeding depression depends on the strength of male–male competition. Evolution 67, 2861–2875 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    180.Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity (Edinb.) 95, 235–242 (2005).CAS 
    Article 

    Google Scholar 
    181.Lüpold, S., de Boer, R. A., Evans, J. P., Tomkins, J. L. & Fitzpatrick, J. L. How sperm competition shapes the evolution of testes and sperm: a meta-analysis. Philos. Trans. R. Soc. Lond. B 375, 20200064 (2020).Article 

    Google Scholar 
    182.Martin-Wintle, M. S. et al. Free mate choice enhances conservation breeding in the endangered giant panda. Nat. Commun. 6, 10125 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    183.Martin-Wintle, M. S., Wintle, N. J. P., Díez-León, M., Swaisgood, R. R. & Asa, C. S. Improving the sustainability of ex situ populations with mate choice. Zoo Biol. 38, 119–132 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    184.Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    185.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan–a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    186.Pick, J. L., Nakagawa, S., Noble, D. W. A. & Price, S. Reproducible, flexible and high-throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2019).Article 

    Google Scholar 
    187.R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).188.Hedges, L. & Olkin, I. Statistical Methods for Meta-analysis (Academic, 1985).189.Rosenberg, M. S., Rothstein, H. R. & Gurevitch, J. in Handbook of Meta-analysis in Ecology and Evolution (eds Koricheva, J. et al.) 61–71 (Princeton Univ. Press, 2013).190.Viechtbauer, W. Conducting meta‐analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    191.Del Re, A. compute.es: compute effect sizes, R package version 0.2-2 (2013).192.Michonneau, F., Brown, J. W., Winter, D. J. & Fitzjohn, R. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    193.Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. Camb. Philos. Soc. 85, 935–956 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    194.Higgins, J. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions (Wiley-Blackwell, 2009).195.Kossmeier, M., Tran, U. S. & Voracek, M. metaviz: forest plots, funnel plots, and visual funnel plot inference for meta-analysis, R package version 0.3.0 https://CRAN.R-project.org/package=metaviz (2018).196.Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R. & Rushton, L. Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J. Clin. Epidemiol. 61, 991–996 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    197.Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).CAS 
    Article 

    Google Scholar 
    198.Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    199.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    200.Shi, L. & Lin, L. The trim-and-fill method for publication bias: practical guidelines and recommendations based on a large database of meta-analyses. Med. (Baltim.) 98, e15987 (2019).Article 

    Google Scholar 
    201.Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2000).
    Google Scholar 
    202.Møller, A. & Jennions, M. D. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132, 492–500 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    203.Szulkin, M. & Sheldon, B. C. The environmental dependence of inbreeding depression in a wild bird population. PLoS ONE 2, e1027 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    204.Zeh, D. W. & Zeh, J. A. Reproductive mode and speciation: the viviparity-driven conflict hypothesis. Bioessays 22, 938–946 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    205.Waser, P. M., Austad, S. N. & Keane, B. When should animals tolerate inbreeding? Am. Nat. 128, 529–537 (1986).Article 

    Google Scholar 
    206.Puurtinen, M. Mate choice for optimal (k)inbreeding. Evolution 65, 1501–1505 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    207.Tregenza, T. & Wedell, N. Polyandrous females avoid costs of inbreeding. Nature 415, 71–73 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    208.Birkhead, T. R. & Pizzari, T. Postcopulatory sexual selection. Nat. Rev. Genet. 3, 262–273 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    209.Duthie, A. B., Bocedi, G., Germain, R. R. & Reid, J. M. Evolution of precopulatory and post-copulatory strategies of inbreeding avoidance and associated polyandry. J. Evol. Biol. 31, 31–45 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    210.Barry, K. L. & Kokko, H. Male mate choice: why sequential choice can make its evolution difficult. Anim. Behav. 80, 163–169 (2010).Article 

    Google Scholar  More

  • in

    Consequences of spatial patterns for coexistence in species-rich plant communities

    Study areasNine large forest dynamics plots of areas between 20 and 50 ha were used in the present study (Supplementary Table 1). The forest plots are part of the ForestGEO network4 and are situated in Asia and the Americas at locations ranging in latitude from 9.15° N to 45.55° N. Tree species richness among the plots ranges from 36 to 468. All free-standing individuals with diameter at breast height (dbh) ≥1 cm were mapped, size measured and identified. We focused our analysis here on individuals with dbh ≥ 10 cm (resulting in a sample size of 131,582 individuals) and focal species with more than 50 individuals (resulting in 289 species). The 10 cm size threshold excludes most of the saplings and enables comparisons with previous spatial analyses20,35,47,48. Shrub species were also excluded.Some of our analyses require estimation of the ratio βfi/βff that describes the relative individual-level competitive effect18 of individuals of species i on an individual of the focal species f. We used for this purpose phylogenetic distances49 based on molecular data, given in Myr, that assume that functional traits are phylogenetically conserved19,26,27. In this case, close relatives are predicted to compete more strongly or to share more pests than distant relatives26. To obtain consistent measures among forest plots, phylogenetic similarities were scaled between 0 and 1, with conspecifics set to 1, and a similarity of 0 was assumed for a phylogenetic distance of 1,200 Myr, which was somewhat larger than the maximal observed distance (1,059 Myr). This was necessary to avoid discounting crowding effects from the most distantly related neighbours26.Observed spatial patterns at species-rich forestsFigure 1 and Supplementary Data Table 1 show the intraspecific variation in our three crowding indices nkff, nkfh and nkfβ that can be approximated by gamma distributions. To assess how well the gamma distribution described the observed distribution, we used an error index defined as the sum of the absolute differences of the two cumulative distributions divided by the number of bins (spanning the two distributions). The maximal value of the error index is one, and a smaller value indicates a better fit.Equations (6, 8 and 9) relate the measures of the emerging spatial patterns (that is, kff, kfh and Bf) to macroscale properties and conditions for species coexistence. Even though our multiscale model (equation (7)) is simplified, it allows for a direct comparison with the emerging patterns in our nine fully stem-mapped forest plots. We estimate the key quantities of equations (8) and (9) directly from the forest plot data (Fig. 4), with the exception of the carrying capacities Kf, which were indirectly estimated from the observed species abundances (assuming approximate equilibrium; equation (8) and Supplementary Data Table 1). This allowed us to estimate the feasibility index µf (equation (9)). Because statistical analyses with individual-based neighbourhood models19,26 based on neighbourhood crowding indices have shown that the performance of trees depends on their neighbours for R between 10 and 15 m, we estimate all measures of spatial neighbourhood patterns with a neighbourhood radius of R = 10 m. Analyses with R = 15 or R = 20 gave similar results.The spatial multispecies model and equilibriumWe use a general macroscale model to describe the dynamics of a community of S species:$$frac{{N_fleft( {t + {Delta}t} right) – N_fleft( t right)}}{{{Delta}t}} = N_fleft( t right)left[ {left( {r_f – 1} right) + s_fexp left( { – alpha _{ff}N_fleft( t right) – mathop {sum }limits_{i ne f} alpha _{fi}N_i(t)} right)} right]$$
    (11)
    where rf is the mean number of recruits per adult of species f within time step Δt, sf is a density-independent background survival rate of species f and the αfi are the population-level interaction coefficients, yielding αff = c γff kff βff and αfi = c γfβ kfh βff Bf (equation (6)). The βfi are the assumed individual-level interaction coefficients between individuals of species i and f; kff = Kff(R) / π R2 and kfh = Kfh(R) / π R2 measure intraspecific clustering and interspecific segregation, respectively, with Kff(R) being the univariate K function for species f and Kfh(R) the bivariate K function describing the pattern of all heterospecifics ‘h’ around individuals of species f. A is the area of the observation window.Following equation (5), Bf can be estimated as$$B_f = frac{{bar n_{fbeta }}}{{bar n_{f{mathrm{h}}}}} = frac{{mathop {sum }nolimits_{i ne f} left[ {ck_{fi}N_ileft( t right)} right]frac{{beta _{fi}}}{{beta _{ff}}}}}{{mathop {sum }nolimits_{i ne f} left[ {ck_{fi}N_ileft( t right)} right]}} = frac{{mathop {sum }nolimits_{i ne f} k_{fi}N_ileft( t right)frac{{beta _{fi}}}{{beta _{ff}}}}}{{k_{f{mathrm{h}}}mathop {sum }nolimits_{i ne f} N_ileft( t right)}},$$
    (12)
    and is the weighted average of the relative individual-level interaction coefficients βfi/βff between species i and the focal species f, weighted by the mean number of individuals of species i in the neighbourhoods of the individuals of the focal species (that is, c kfi Ni(t)). For competitive interactions, Bf ranges between zero and one; Bf = 1 indicates that heterospecific and conspecific neighbours compete equally, and smaller values of Bf indicate reduced competition with heterospecific neighbours. The denominator can be rewritten in terms of segregation kfh to all heterospecifics and the total number of heterospecifics ∑i≠f Ni(t).The analytical expression of the equilibrium (equation (8)) relies on the assumption that the values of Bf are approximately constant in time. This assumption may not apply in our model during the initial burn-in phase of the simulations if the βfi/βff show large intraspecific variability (Supplementary Text and Figs. 1–5). The underlying mechanism is the central niche effect introduced by Stump45 where a species has reduced average fitness if it has high niche overlap with competitors.Finally, the factors γff = ln(1 + bff βff) (bff βff)−1 and γfβ = ln(1+ bfβ βff) (bfβ βff)−1 describe the influence of the variance-to-mean ratios bff and bfβ of the gamma distribution of the crowding indices nkff and nkfβ, respectively. For high survival rates during one time step (for example, >85%), the values of γff and γfβ are close to one; in this case the exponential function in equation (1a) can be approximated by its linear expansion and γff = γfβ = 1.In equilibrium we have (Nf(t + Δt) ‒ Nf(t))/Δt = 0, which leads, with equation (7), to:$$N_f^{ast} = left( {K_f – frac{{alpha _{f{mathrm{h}}}}}{{alpha _{ff}}}J^{ast} } right) left( {1 – frac{{alpha _{f{mathrm{h}}}}}{{alpha _{ff}}}} right)^{-1}$$
    (13)
    with (K_f = – {mathrm{ln}}left( {frac{{1 – r_f}}{{s_f}}} right) left( alpha _{ff} right)^{-1}) and the total number of individuals being (J^{ast} = sum _iN_i^{ast}). Rewriting equation (13) yields (frac{K_f}{J^{ast}} = left( frac{N_f^{ast}}{J^{ast}} right) left(1- frac{alpha_{f{mathrm{h}}}}{alpha_{ff}}right) + frac{alpha_{f{mathrm{h}}}}{alpha_{ff}}). For αfh/αff  More

  • in

    Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning

    1.Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Nat. Resour. Environ. 34, (2020).2.Laureto, L. M. O., Cianciaruso, M. V. & Samia, D. S. M. Functional diversity: an overview of its history and applicability. Nat. Conserv. 13, 112–116 (2015).Article 

    Google Scholar 
    3.Gilbey, J. et al. Life in a drop: Sampling environmental DNA for marine fishery management and ecosystem monitoring. Mar. Policy 124, 104331 (2021).Article 

    Google Scholar 
    4.de Chazal, J. & Rounsevell, M. D. A. Land-use and climate change within assessments of biodiversity change: a review. Glob. Environ. Chang. 19, 306–315 (2009).Article 

    Google Scholar 
    5.Benayas, J. M. R., Newton, A. C., Diaz, A. & Bullock, J. M. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325, 1121–1124 (2009).CAS 
    Article 

    Google Scholar 
    6.Ovaskainen, O. et al. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol. Lett. 20, 561–576 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Leibold, M. A. & Miller, T. E. in Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 133–150 (Elsevier Academic Pres, 2004).8.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    9.Donohue, I. et al. Navigating the complexity of ecological stability. Ecol. Lett. 19, 1172–1185 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).PubMed 
    Article 

    Google Scholar 
    11.Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).PubMed 
    Article 

    Google Scholar 
    12.Young, R. G. & Collier, K. J. Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshw. Biol. 54, 2155–2170 (2009).CAS 
    Article 

    Google Scholar 
    13.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    14.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    15.de Oliveira, S. S. et al. Higher taxa are sufficient to represent biodiversity patterns. Ecol. Indic. 111, 105994 (2020).Article 

    Google Scholar 
    16.Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Boivin-Delisle, D. et al. Using environmental DNA for biomonitoring of freshwater fish communities: Comparison with established gillnet surveys in a boreal hydroelectric impoundment. Environ. DNA 3, 105–120 (2020).18.Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management? Trends Ecol. Evol. 35, 668–678 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).Article 

    Google Scholar 
    20.Rees, H. C., Gough, K. C., Middleditch, D. J., Patmore, J. R. M. & Maddison, B. C. Applications and limitations of measuring environmental DNA as indicators of the presence of aquatic animals. J. Appl. Ecol. 52, 827–831 (2015).Article 

    Google Scholar 
    21.Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 
    Article 

    Google Scholar 
    22.Seymour, M. Rapid progression and future of environmental DNA research. Commun. Biol 2, 80 (2019).
    Google Scholar 
    23.Jo, T., Arimoto, M., Murakami, H., Masuda, R. & Minamoto, T. Particle size distribution of environmental DNA from the nuclei of marine fish. Environ. Sci. Technol. 53, 9947–9956 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Moushomi, R., Wilgar, G., Carvalho, G., Creer, S. & Seymour, M. Environmental DNA size sorting and degradation experiment indicates the state of Daphnia magna mitochondrial and nuclear eDNA is subcellular. Sci. Rep. 9, 12500 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Sassoubre, L. M., Yamahara, K. M., Gardner, L. D., Block, B. A. & Boehm, A. B. Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish. Environ. Sci. Technol. 50, 10456–10464 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Sales, N. G. et al. Fishing for mammals: landscape-level monitoring of terrestrial and semi-aquatic communities using eDNA from riverine systems. J. Appl. Ecol. 57, 707–716 (2020).CAS 
    Article 

    Google Scholar 
    27.Riascos, L. et al. DNA-based monitoring of the alien invasive North American crayfish Procambarus clarkii in Andean lakes (Ecuador). Limnologica 70, 20–25 (2018).CAS 
    Article 

    Google Scholar 
    28.Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).29.Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Crookes, S. et al. Monitoring the silver carp invasion in Africa: a case study using environmental DNA (eDNA) in dangerous watersheds. NeoBiota 56, 31–47 (2020).Article 

    Google Scholar 
    31.Sigsgaard, E. E. et al. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. Conserv. Biol. 34, 697–710 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Holman, L. E., Hollenbeck, C. M., Ashton, T. J. & Johnston, I. A. Demonstration of the use of environmental DNA for the non-invasive genotyping of a Bivalve Mollusk, the European Flat Oyster (Ostrea edulis). Front. Genet. 10, 1159 (2019). vol.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Cindy, B. et al. Passive eDNA collection enhances aquatic biodiversity analysis. Commun. Biol. 4, 236 (2021).PubMed Central 
    Article 

    Google Scholar 
    34.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    35.Seymour, M., Fronhofer, E. A. & Altermatt, F. Dendritic network structure and dispersal affect temporal dynamics of diversity and species persistence. Oikos 124, 908–916 (2015).Article 

    Google Scholar 
    36.Seymour, M., Deiner, K. & Altermatt, F. Scale and scope matter when explaining varying patterns of community diversity in riverine metacommunities. Basic Appl. Ecol. 17, 134–144 (2016).Article 

    Google Scholar 
    37.Haase, P., Pauls, S. U., Schindehütte, K. & Sundermann, A. First audit of macroinvertebrate samples from an EU Water Framework Directive monitoring program: human error greatly lowers precision of assessment results. J. North Am. Benthol. Soc. 29, 1279–1291 (2010).Article 

    Google Scholar 
    38.Altermatt, F., Seymour, M. & Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40, 2249–2260 (2013).Article 

    Google Scholar 
    39.Miserendino, M. L. & Masi, C. I. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecol. Indic. 10, 311–319 (2010).CAS 
    Article 

    Google Scholar 
    40.Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Barbour, M. T., Gerritsen, J., Snyder, B. D. & Stribling, J. B. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Vol. 339 (US Environmental Protection Agency, Office of Water, 1999).42.Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. 1, 4 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Milner, A. M., Robertson, A. L., Monaghan, K. A., Veal, A. J. & Flory, E. A. Colonization and development of an Alaskan stream community over 28 years. Front. Ecol. Environ. 6, 413–419 (2008).Article 

    Google Scholar 
    44.Álvarez-Cabria, M., Barquín, J. & Antonio Juanes, J. Spatial and seasonal variability of macroinvertebrate metrics: do macroinvertebrate communities track river health? Ecol. Indic. 10, 370–379 (2010).Article 
    CAS 

    Google Scholar 
    45.Macher, J.-N. et al. Comparison of environmental DNA and bulk-sample metabarcoding using highly degenerate cytochrome c oxidase I primers. Mol. Ecol. Resour. 18, 1456–1468 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Pereira-da-Conceicoa, L. et al. Metabarcoding unsorted kick-samples facilitates macroinvertebrate-based biomonitoring with increased taxonomic resolution, while outperforming environmental DNA. bioRxiv https://doi.org/10.1101/792333 (2019).47.Leese, F. et al. Improved freshwater macroinvertebrate detection from environmental DNA through minimized nontarget amplification. Environ. DNA https://doi.org/10.1101/2020.04.27.063545 (2020).48.Carraro, L., Hartikainen, H., Jokela, J., Bertuzzo, E. & Rinaldo, A. Estimating species distribution and abundance in river networks using environmental DNA. Proc. Natl Acad. Sci. 115, 11724 LP–11711729 (2018).Article 
    CAS 

    Google Scholar 
    49.Bussi, G. et al. Climate and land-use change impact on faecal indicator bacteria in a temperate maritime catchment (the River Conwy, Wales). J. Hydrol. 553, 248–261 (2017).Article 

    Google Scholar 
    50.Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Harvey, E., Gounand, I., Fronhofer, E. A. & Altermatt, F. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proc. R. Soc. B Biol. Sci. 285, 20182441 (2018).Article 

    Google Scholar 
    52.Townsend, C. R., Scarsbrook, M. R. & Dolédec, S. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnol. Oceanogr. 42, 938–949 (1997).Article 

    Google Scholar 
    53.Cummins, K. W. & Klug, M. J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 10, 147–172 (1979).Article 

    Google Scholar 
    54.Wallace, J., Hutchens John, J. & Grubaugh, J. in Methods in Stream Ecology 249–271 https://doi.org/10.1016/B978-012332908-0.50014-0 (2007).55.Erman, D. C. & Chouteau, W. C. Fine Particulate Organic Carbon Output from Fens and Its Effect on Benthic Macroinvertebrates. Oikos 32, 409–415 (1979).CAS 
    Article 

    Google Scholar 
    56.Hart, D. D. & Robinson, C. T. Resource limitation in a stream community: phosphorus enrichment effects on Periphyton and Grazers. Ecology 71, 1494–1502 (1990).Article 

    Google Scholar 
    57.Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc. 30, 963–980 (2011).Article 

    Google Scholar 
    58.Mächler, E., Deiner, K., Spahn, F. & Altermatt, F. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. Environ. Sci. Technol. 50, 305–312 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Agency, E. River Habitat Survey in Britain and Ireland: Field Survey Guidance Manual: 2003 Version (Forest Research, 2003).60.Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).Article 

    Google Scholar 
    61.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Schmieder, R., Lim, Y. W., Rohwer, F. & Edwards, R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinform 11, 341 (2010).Article 
    CAS 

    Google Scholar 
    64.Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).65.Coordinators, N. R. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).Article 
    CAS 

    Google Scholar 
    66.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).67.Pinheiro, J. C. & Bates, D. M. Mixed-effects Models in S and S-plus (Springer, 2000).68.Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).69.Seymour, M. Conwy eDNA data. https://doi.org/10.6084/m9.figshare.14159579.v1 (2021). More

  • in

    Sleep contributes to preference for novel food odours in Drosophila melanogaster

    1.Medic, G., Wille, M. & Hemels, M. Short- and long-term health consequences of sleep disruption. Nat. Sci. Sleep 9, 151–161 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Randazzo, A. C., Muehlbach, M. J., Schweitzer, P. K. & Walsh, J. K. Cognitive function following acute sleep restriction in children ages 10–14. Sleep 21, 861–868 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Stickgold, R. Sleep-dependent memory consolidation. Nature 437, 1272–1278 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Tononi, G. & Cirelli, C. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Marshall, L. & Born, J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn. Sci. 11, 442–450 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Smith, C. Sleep states and memory processes in humans: Procedural versus declarative memory systems. Sleep Med. Rev. 5, 491–506 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Johnston, T. D. In Selective Costs and Benefits in the Evolution of Learning. in Advances in the Study of Behavior (eds. Rosenblatt, J. S. et al.) 12, 65–106 (Academic Press, 1982).8.Hendricks, J. C. et al. Rest in Drosophila is a sleep-like state. Neuron 25, 129–138 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Campbell, S. S. & Tobler, I. Animal sleep: A review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269–300 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Shaw, P. J. Correlates of sleep and waking in Drosophila melanogaster. Science (80-). 287, 1834–1837 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Hamblen, M. et al. Germ-line transformation involving DNA from the period locus in Drosophila melanogaster: Overlapping genomic fragments that restore circadian and ultradian rhythmicity to per 0 and per—mutants. J. Neurogenet. 3, 249–291 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kirszenblat, L. & van Swinderen, B. Sleep in Drosophila. In Handbook of Sleep Research, Vol. 30 (ed. Dringenberg, H. C.) 333–347 (Elsevier, 2019).13.Ly, S., Pack, A. I. & Naidoo, N. The neurobiological basis of sleep: Insights from Drosophila. Neurosci. Biobehav. Rev. 87, 67–86 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Helfrich-Förster, C. Sleep in insects. Annu. Rev. Entomol. 63, 69–86 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Le Glou, E., Seugnet, L., Shaw, P. J., Preat, T. & Goguel, V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. Sleep 35, 1377–1384 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Li, X., Yu, F. & Guo, A. Sleep deprivation specifically impairs short-term olfactory memory in Drosophila. Sleep 32, 1417–1424 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Rihel, J. & Bendor, D. Flies sleep on it, or Fuhgeddaboudit!. Cell 161, 1498–1500 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Geissmann, Q., Beckwith, E. J. & Gilestro, G. F. Most sleep does not serve a vital function: Evidence from Drosophila melanogaster. Sci. Adv. 5, eaau8253 (2019).Article 
    CAS 

    Google Scholar 
    19.Tougeron, K. & Abram, P. K. An ecological perspective on sleep disruption. Am. Nat. 190, E55–E66 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Aulsebrook, A. E., Jones, T. M., Rattenborg, N. C., Roth, T. C. & Lesku, J. A. Sleep ecophysiology: Integrating neuroscience and ecology. Trends Ecol. Evol. 31, 590–599 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Markow, T. A. Host use and host shifts in Drosophila. Curr. Opin. Insect Sci. 31, 139–145 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Badel, L., Ohta, K., Tsuchimoto, Y. & Kazama, H. Decoding of context-dependent olfactory behavior in Drosophila. Neuron 91, 155–167 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Knaden, M., Strutz, A., Ahsan, J., Sachse, S. & Hansson, B. S. Spatial representation of odorant valence in an insect brain. Cell Rep. 1, 392–399 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hopkins, A. A discussion of C.G. Hewitt’s paper on ‘Insect Behavior’. J. Econ. Entomol. 10, 92–93 (1917).
    Google Scholar 
    25.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evol. 19, 411–416 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Barron, A. B. The life and death of Hopkins’ host selection principle. J. Insect Behav. 14, 725–737 (2001).Article 

    Google Scholar 
    27.van Emden, H. F. et al. Plant chemistry and aphid parasitoids (Hymenoptera: Braconidae): Imprinting and memory. Eur. J. Entomol. 105, 477–483 (2008).Article 

    Google Scholar 
    28.Liu, S. S., Li, Y. H., Liu, Y. Q. & Zalucki, M. P. Experience-induced preference for oviposition repellents derived from a non-host plant by a specialist herbivore. Ecol. Lett. 8, 722–729 (2005).Article 

    Google Scholar 
    29.Hamilton, C. E., Beresford, D. V. & Sutcliffe, J. F. Effects of natal habitat odour, reinforced by adult experience, on choice of oviposition site in the mosquito Aedes aegypti. Med. Vet. Entomol. 25, 428–435 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Turlings, T. C. L., Wackers, F. L., Vet, L. E. M., Lewis, W. J. & Tumlinson, J. H. Learning of Host-Finding Cues by Hymenopterous parasitoids. In Insect Learning (eds. Papaj, D. R. & Lewis, W. J.) 51–78 (Springer US, 1993). https://doi.org/10.1007/978-1-4615-2814-2_331.Jaenike, J. Induction of host preference in Drosophila melanogaster. Oecologia 58, 320–325 (1983).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Takemoto, H., Powell, W., Pickett, J., Kainoh, Y. & Takabayashi, J. Two-step learning involved in acquiring olfactory preferences for plant volatiles by parasitic wasps. Anim. Behav. 83, 1491–1496 (2012).Article 

    Google Scholar 
    33.Andretic, R. & Shaw, P. J. Essentials of sleep recordings in Drosophila: Moving beyond sleep time. Methods Enzymol. 393, 759–772 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Garbe, D. S. et al. Context-specific comparison of sleep acquisition systems in Drosophila. Biol. Open 4, 1558–1568 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Faraway, J. J. Extending the Linear Model with R (CRC Press, 2016). https://doi.org/10.1201/b21296.Book 
    MATH 

    Google Scholar 
    36.Ho, K. S. & Sehgal, A. Drosophila melanogaster: An insect model for fundamental studies of sleep. Methods Enzymol. 393, 1834–1837 (2005).
    Google Scholar 
    37.Greenspan, R. J., Tononi, G., Cirelli, C. & Shaw, P. J. Sleep and the fruit fly. Trends Neurosci. 24, 142–145 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Killgore, W. D. S. Sleep deprivation and behavioral risk-taking. In Modulation of Sleep by Obesity, Diabetes, Age, and Diet 279–287 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-420168-2.00030-2.39.Revadi, S. et al. Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiol. Entomol. 40, 54–64 (2015).CAS 
    Article 

    Google Scholar 
    40.Cirelli, C. & Tononi, G. Is sleep essential?. PLoS Biol. 6, 1605–1611 (2008).CAS 
    Article 

    Google Scholar 
    41.Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Wilkin, M. M., Waters, P., McCormick, C. M. & Menard, J. L. Intermittent physical stress during early- and mid-adolescence differentially alters rats’ anxiety- and depression-like behaviors in adulthood. Behav. Neurosci. 126, 344–360 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Chaumet, G. et al. Confinement and sleep deprivation effects on propensity to take risks. Aviat. Space. Environ. Med. 80, 73–80 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Killgore, W. D. S. Effects of sleep deprivation and morningness-eveningness traits on risk-taking. Psychol. Rep. 100, 613–626 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Killgore, W. D. S. et al. Restoration of risk-propensity during sleep deprivation: Caffeine, dextroamphetamine, and modafinil. Aviat. Space. Environ. Med. 79, 867–874 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Tversky, A. & Kahneman, D. Judgment under uncertainty: Heuristics and biases. Science (80-). 185, 1124–1131 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Spieth, H. T. Courtship behavior in Drosophila. Annu. Rev. Entomol. 19, 385–405 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Bartelt, R. J., Schaner, A. M. & Jackson, L. L. cis-Vaccenyl acetate as an aggregation pheromone in Drosophila melanogaster. J. Chem. Ecol. 11, 1747–1756 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cazalé-Debat, L., Houot, B., Farine, J. P., Everaerts, C. & Ferveur, J. F. Flying Drosophila show sex-specific attraction to fly-labelled food. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    50.Malek, H. L. & Long, T. A. F. On the use of private versus social information in oviposition site choice decisions by Drosophila melanogaster females. Behav. Ecol. 31, 739–749 (2020).Article 

    Google Scholar 
    51.Inoue, I. et al. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors. Proc. Natl. Acad. Sci. U. S. A. 93, 13316–13320 (1996).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Daffner, K. R., Mesulam, M.-M., Cohen, L. G. & Scinto, L. F. M. Mechanisms underlying diminished novelty-seeking behavior in patients with probable Alzheimer’s disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 12, 58–66 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Lee, A. C. H., Rahman, S., Hodges, J. R., Sahakian, B. J. & Graham, K. S. Associative and recognition memory for novel objects in dementia: Implications for diagnosis. Eur. J. Neurosci. 18, 1660–1670 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ju, Y.-E.S., Lucey, B. P. & Holtzman, D. M. Sleep and Alzheimer disease pathology—A bidirectional relationship. Nat. Rev. Neurol. 10, 115–119 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Tabuchi, M. et al. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr. Biol. 25, 702–712 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Dissel, S. et al. Enhanced sleep reverses memory deficits and underlying pathology in drosophila models of Alzheimer’s disease. Neurobiol. Sleep Circadian Rhythm. 2, 15–26 (2017).Article 

    Google Scholar 
    57.Takano-Shimizu-Kouno, T. KYOTO Stock Center—Department of Drosophila Genomics and Genetic Resources (Kyoto Institute of Technology, 2015).58.Shaw, P. J., Tortoni, G., Greenspan, R. J. & Robinson, D. F. Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417, 287–291 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.https://www.arduino.cc/. Accessed 6 Jan 202160.https://processing.org/. Accessed 6 Jan 2021 More

  • in

    Energy budget and carbon footprint in a wheat and maize system under ridge furrow strategy in dry semi humid areas

    1.Yadav, G. S. et al. Energy budget and carbon footprint in a no-till and mulch based rice–mustard cropping system. J. Clean. Prod. 191, 144–157 (2018).Article 

    Google Scholar 
    2.Fleming-Muñoz, D. A., Preston, K. & Arratia-Solar, A. Value and impact of publicly funded climate change agricultural mitigation research: Insights from New Zealand. J. Clean. Prod. 248, 119249 (2020).Article 

    Google Scholar 
    3.IPCC. Climate Change 2014: Mitigation of Climate Change (Cambridge University Press, 2014).
    Google Scholar 
    4.Wang, Z. B. et al. Lowering carbon footprint of winter wheat by improving management practices in North China Plain. J. Clean. Prod. 112, 149–157 (2016).CAS 
    Article 

    Google Scholar 
    5.Grassini, P. & Cassman, K. G. High-yield maize with large net energy yield and small global warming intensity. Proc. Natl. Acad. Sci. 109, 1074–1079 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Gao, B. et al. Chinese cropping systems are a net source of greenhouse gases despite soil carbon sequestration. Glob. Change Biol. 24, 5590–5606 (2018).Article 

    Google Scholar 
    7.Xue, J. F. et al. Carbon footprint of dryland winter wheat under film mulching during summer-fallow season and sowing method on the Loess Plateau. Ecol. Indic. 95, 12–20 (2018).CAS 
    Article 

    Google Scholar 
    8.Yuan, S., Peng, S. B., Wang, D. & Man, J. G. Evaluation of the energy budget and energy use efficiency in wheat production under various crop management practices in China. Energy 160, 184–191 (2018).Article 

    Google Scholar 
    9.Qi, J. Y. et al. Response of carbon footprint of spring maize production to cultivation patterns in the Loess Plateau, China. J. Clean. Prod. 187, 525–536 (2018).CAS 
    Article 

    Google Scholar 
    10.Lu, X. L. & Liao, Y. C. Effect of tillage practices on net carbon flux and economic parameters from farmland on the Loess Plateau in China. J. Clean. Prod. 162, 1617–1624 (2017).CAS 
    Article 

    Google Scholar 
    11.Tan, Y. C., Wu, D., Bol, R., Wu, W. L. & Meng, F. Q. Conservation farming practices in winter wheat–summer maize cropping reduce GHG emissions and maintain high yields. Agric. Ecosyst. Environ. 272, 266–275 (2019).CAS 
    Article 

    Google Scholar 
    12.Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Wang, X. L. et al. Emergy analysis of grain production systems on large-scale farms in the North China Plain based on LCA. Agric. Syst. 128, 66–78 (2014).Article 

    Google Scholar 
    14.Chen, X. Z. et al. Environmental impact assessment of water-saving irrigation systems across 60 irrigation construction projects in northern China. J. Clean. Prod. 245, 118883 (2020).Article 

    Google Scholar 
    15.Racette, K., Zurweller, B., Tillman, B. & Rowland, D. Transgenerational stress memory of water deficit in peanut production. Field Crop. Res. 248, 107712 (2020).Article 

    Google Scholar 
    16.Xie, J. H. et al. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China. Soil. Till. Res. 199, 104584 (2020).Article 

    Google Scholar 
    17.Li, R., Hou, X. Q., Jia, Z. K. & Han, Q. F. Soil environment and maize productivity in semi-humid regions prone to drought of Weibei Highland are improved by ridge-and-furrow tillage with mulching. Soil. Till. Res. 196, 104476 (2020).Article 

    Google Scholar 
    18.Zhang, X. D. et al. Optimizing fertilization under ridge-furrow rainfall harvesting system to improve foxtail millet yield and water use in a semiarid region, China. Agric. Water Manag. 227, 105852 (2020).Article 

    Google Scholar 
    19.Nishimura, S., Komada, M., Takebe, M., Yonemura, S. & Kato, N. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48, 787–795 (2012).CAS 
    Article 

    Google Scholar 
    20.Xiong, L., Liang, C., Ma, B., Shah, F. & Wu, W. Carbon footprint and yield performance assessment under plastic film mulching for winter wheat production. J. Clean. Prod. 270, 122468 (2020).CAS 
    Article 

    Google Scholar 
    21.Zhang, F., Zhang, W. J., Qi, J. G. & Li, F. M. A regional evaluation of plastic film mulching for improving crop yields on the Loess Plateau of China. Agric. Forest Meteorol. 248, 458–468 (2018).ADS 
    Article 

    Google Scholar 
    22.Peng, X. Y., Wu, X. H., Wu, F. Q., Wang, X. Q. & Tong, X. G. Life cycle assessment of winter wheat-summer maize rotation system in Guanzhong region of shaanxi province. J. Agro-Environ. Sci. 34, 809–816 (2015).CAS 

    Google Scholar 
    23.Li, C. J. et al. Ridge-furrow with plastic film mulching practice improves maize productivity and resource use efficiency under the wheat-maize double-cropping system in dry semi-humid areas. Field Crop. Res. 203, 201–211 (2017).Article 

    Google Scholar 
    24.Tang, J. J., Folmer, H. & Xue, J. H. Technical and allocative efficiency of irrigation water use in the Guanzhong Plain. China. Food Policy 50, 43–52 (2015).Article 

    Google Scholar 
    25.Liu, Y., Zhang, X. L., Xi, L. Y., Liao, Y. C. & Han, J. Ridge-furrow planting promotes wheat grain yield and water productivity in the irrigated sub-humid region of China. Agric. Water Manag. 231, 105935 (2020).Article 

    Google Scholar 
    26.Li, Y. Z. et al. Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics. Soil. Till. Res. 199, 104596 (2020).Article 

    Google Scholar 
    27.Wart, J. V., Kersebaum, K. C., Peng, S. B., Maribeth, M. & Cassman, K. G. Estimating crop yield potential at regional to national scales. Field Crops Res. 143, 34–43 (2013).Article 

    Google Scholar 
    28.Hu, Y. J. et al. Exploring optimal soil mulching for the wheat-maize cropping system in sub-humid drought-prone regions in China. Agric. Water Manag. 219, 59–71 (2019).Article 

    Google Scholar 
    29.Cui, J. X. et al. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J. Clean. Prod. 193, 524–532 (2018).Article 

    Google Scholar 
    30.Yin, W. et al. Wheat-maize intercropping with reduced tillage and straw retention: A step towards enhancing economic and environmental benefits in arid areas. Front. Plant Sci. 9, 1328 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zheng, J. F. et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agric. Ecosyst. Environ. 241, 70–78 (2017).CAS 
    Article 

    Google Scholar 
    32.Liang, L. et al. A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecol. Indic. 97, 350–362 (2019).CAS 
    Article 

    Google Scholar 
    33.Moitzi, G., Neugschwandtner, R. W., Kaul, H. P. & Wagentristl, H. Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. Eur. J. Agron. 103, 24–31 (2019).Article 

    Google Scholar 
    34.Nasseri, A. Energy use and economic analysis for wheat production by conservation tillage along with sprinkler irrigation. Sci. Total Environ. 648, 450–459 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Sahabi, H., Feizi, H. & Karbasi, A. Is saffron more energy and economic efficient than wheat in crop rotation systems in northeast Iran?. Sustain. Prod. Consum. 5, 29–35 (2016).Article 

    Google Scholar 
    36.Mondani, F., Aleagha, S., Khoramivafa, M. & Ghobadi, R. Evaluation of greenhouse gases emission based on energy consumption in wheat agroecosystems. Energy Rep. 3, 37–45 (2017).Article 

    Google Scholar 
    37.Bertocco, M., Basso, B., Sartori, L. & Martin, E. C. Evaluating energy efficiency of site-specific tillage in maize in NE Italy. Bioresour. Technol. 99, 6957–6965 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Amaducci, S., Colauzzi, M., Battini, F., Fracasso, A. & Perego, A. Effect of irrigation and nitrogen fertilization on the production of biogas from maize and sorghum in a water limited environment. Eur. J. Agron. 76, 54–65 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Qiu, G. Y., Zhang, X., Yu, X. & Zou, Z. The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain. Agr. Water Manag. 203, 138–150 (2018).Article 

    Google Scholar 
    40.Arvidsson, J. Energy use efficiency in different tillage systems for winter wheat on a clay and silt loam in Sweden. Eur. J. Agron. 33, 250–256 (2010).Article 

    Google Scholar 
    41.Singh, R. J. et al. Energy budgeting and emergy synthesis of rainfed maize–wheat rotation system with different soil amendment applications. Ecol. Indic. 61, 753–765 (2016).CAS 
    Article 

    Google Scholar 
    42.Zhang, Y. et al. Effects of different fertilizer strategies on soil water utilization and maize yield in the ridge and furrow rainfall harvesting system in semiarid regions of China. Agric. Water Manag. 208, 414–421 (2018).Article 

    Google Scholar 
    43.Cheng, K. et al. Carbon footprint of China’s crop production–An estimation using agro-statistics data over 1993–2007. Agr. Ecosyst. Environ. 142, 231–237 (2011).Article 

    Google Scholar 
    44.Hillier, J. et al. The carbon footprints of food crop production. Int. J. Agric. Sustain. 7, 107–118 (2009).Article 

    Google Scholar 
    45.Su, B., Su, Z. & Shangguan, Z. Trade-off analyses of plant biomass and soil moisture relations on the Loess Plateau. CATENA 197, 104946 (2020).Article 

    Google Scholar 
    46.Prata, J. C. et al. Solutions and integrated strategies for the control and mitigation of plastic and microplastic pollution. Int. J. Environ. Res. Public Health 16, 2411 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    47.Sardon, H. & Dove, A. P. Plastics recycling with a difference. Science 360, 380–381 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Qin, W., Hu, C. & Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: A metaeanalysis. Sci. Rep. 5, 16210 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Sun, M. et al. Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crops Res. 243, 107620 (2019).Article 

    Google Scholar 
    50.Choudhary, M. et al. Energy budgeting and carbon footprint of pearl millet e mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem. Energy 141, 1052–1058 (2017).Article 

    Google Scholar 
    51.Bai, J. et al. Straw returning and one-time application of a mixture of controlled release and solid granular urea to reduce carbon footprint of plastic film mulching spring maize. J. Clean. Prod. 280, 124478 (2021).CAS 
    Article 

    Google Scholar 
    52.Li, C. J. et al. Towards the highly effective use of precipitation by ridge-furrow with plastic film mulching instead of relying on irrigation resources in a dry semi-humid area. Field Crops Res. 188, 62–73 (2016).ADS 
    Article 

    Google Scholar 
    53.Reisinger, A., Ledgard, S. F. & Falconer, S. J. Sensitivity of the carbon footprint of New Zealand milk to greenhouse gas metrics. Ecol. Indic. 81, 74–82 (2017).CAS 
    Article 

    Google Scholar 
    54.Chen, X. et al. Carbon footprint of a typical pomelo production region in China basedon farm survey data. J. Clean. Prod. 277, 124041 (2020).CAS 
    Article 

    Google Scholar 
    55.Pratibha, G. et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea–castor systems. Eur. J. Agron. 66, 30–40 (2015).Article 

    Google Scholar 
    56.Wang, C., Li, X., Gong, T. & Zhang, H. Life cycle assessment of wheat-maize rotation system emphasizing high crop yield and high resource use efficiency in Quzhou County. J. Clean. Prod. 68, 56–63 (2014).CAS 
    Article 

    Google Scholar 
    57.Li, S. et al. Effect of straw management on carbon sequestration and grain production in a maize–wheat cropping system in Anthrosol of the Guanzhong Plain. Soil Till. Res. 157, 43–51 (2016).Article 

    Google Scholar 
    58.Kong, A. Y. Y., Six, J., Bryant, D. C., Denison, R. F. & van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078–1085 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Zhu, Y. C. et al. Large-scale farming operations are win-win for grain production, soil carbon storage and mitigation of greenhouse gases. J. Clean. Prod. 172, 2143–2152 (2018).Article 

    Google Scholar 
    60.Wang, Z. B. et al. Comparison of greenhouse gas emissions of chemical fertilizer types in China’s crop production. J. Clean. Prod. 141, 1267–1274 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    The ecological importance of habitat complexity to the Caribbean coral reef herbivore Diadema antillarum: three lines of evidence

    1.Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.de Groot, R. et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 1, 50–61 (2012).Article 

    Google Scholar 
    3.Exton, D. A. et al. Artisanal fish fences pose broad and unexpected threats to the tropical coastal seascape. Nat. Commun. 10, 2100 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Pandolfi, J. M. et al. Global trajectories of the long-term decline of coral reef ecosystems. Science (80-) 301, 955–958 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Jackson, J.B.C., Donovan, M.K., Cramer, K.L. and Lam, V.V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring
    Network, IUCN, Gland, Switzerland, pp.1970-2012. (2014).8.Alvarez-Filip, L., Dulvy, N. K., Gill, J. A., Côté, I. M. & Watkinson, A. R. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc. R. Soc. B Biol. Sci. 276, 3019–3025 (2009).Article 

    Google Scholar 
    9.Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    10.Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Ind. 57, 395–408 (2015).Article 

    Google Scholar 
    11.McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Mumby, P. J., Hastings, A. & Edwards, H. J. Thresholds and the resilience of Caribbean coral reefs. Nature 450, 98–101 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Solandt, J. L. & Campbell, A. C. Macroalgal feeding characteristics of the sea urchin Diadema antillarum Philippi at Discovery Bay, Jamaica. Caribb. J. Sci. 37, 227–238 (2001).
    Google Scholar 
    16.Chiappone, M., Rutten, L. M., Miller, S. L. & Swanson, D. W. Recent trends (1999–2011) in population density and size of the echinoid Diadema antillarum in the Florida Keys. Florida Sci. 76, 23–35 (2013).
    Google Scholar 
    17.Lessios, H. A. The great Diadema antillarum die-off: 30 years later. Annu. Rev. Mar. Sci. 8, 267–283 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. W. Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs. Ecol. Soc. Am. 90, 1478–1484 (2009).
    Google Scholar 
    19Miller, M. W., Szmant, A. M. & Precht, W. F. Lessons learned from experimental key-species restoration. In Coral Reef Restoration Handbook, 219–234 (ed. Precht, W. F.) (Taylor & Francis, 2006).
    Google Scholar 
    20.Mumby, P. J., Hedley, J. D., Zychaluk, K., Harborne, A. R. & Blackwell, P. G. Revisiting the catastrophic die-off of the urchin Diadema antillarum on Caribbean coral reefs: fresh insights on resilience from a simulation model. Ecol. Modell. 196, 131–148 (2006).Article 

    Google Scholar 
    21.Myhre, S. & Acevedo-Gutiérrez, A. Recovery of sea urchin Diadema antillarum populations is correlated to increased coral and reduced macroalgal cover. Mar. Ecol. Prog. Ser. 329, 205–210 (2007).ADS 
    Article 

    Google Scholar 
    22.Carpenter, R. C. Predator and population density control of homing behavior in the Caribbean echinoid Diadema antillarum. Mar. Biol. 82, 101–108 (1984).Article 

    Google Scholar 
    23.Edmunds, P. J. & Carpenter, R. C. Recovery of Diadema antillarum reduces macroalgal cover and increases abundance of juvenile corals on a Caribbean reef. Proc. Natl. Acad. Sci. U. S. A. 98, 5067–5071 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: the significance of grazing. Aquat. Bot. 3, 357–390 (1977).Article 

    Google Scholar 
    25.Bak, R. P. M., Carpay, M. J. E. & de Ruyter van Steveninck, E. D. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curacao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).ADS 
    Article 

    Google Scholar 
    26.Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).Article 

    Google Scholar 
    27.Chiappone, M., Rutten, L., Swanson, D. & Miller, S. Population status of the urchin Diadema antillarum in the Florida Keys 25 years after the Caribbean mass mortality. In Proceedings of 11th International Coral Reef Symposium 706–710 (2008).28.Bodmer, M. D. V., Rogers, A., Speight, M. R., Lubbock, N. & Exton, D. A. Using an isolated population boom to explore barriers to recovery in the keystone Caribbean coral reef herbivore Diadema antillarum. Coral Reefs 34, 1011–1021 (2015).ADS 
    Article 

    Google Scholar 
    29.Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science (80-) 226, 335–337 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Liddell, W. D. & Ohlhorst, S. L. Changes in benthic community composition following the mass mortality of Diadema at Jamaica. J. Exp. Mar. Biol. Ecol. 95, 271–278 (1986).Article 

    Google Scholar 
    31.Betchel, J. D., Gayle, P. & Kaufman, L. The return of Diadema antillarum to Discovery Bay: patterns of distribution and abundance. In Proceedings of 10th International Coral Reef Symposium 367–375 (2006).32.Robertson, D. R. Increases in surgeonfish populations after mass mortality of the sea urchin Diadema antillarum in Panamá indicate food limitation. Mar. Biol. 111, 437–444 (1991).Article 

    Google Scholar 
    33.Lessios, H. A. Diadema antillarum populations in Panama 20 years following mass mortality. Coral Reefs 24, 125–127 (2005).Article 

    Google Scholar 
    34.Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).ADS 
    Article 

    Google Scholar 
    35.Noriega, N., Pauls, S. M. & del Mónaco, C. Abundancia de Diadema antillarum (Echinodermata: Echinoidea) en las costas de Venezuela. Rev. Biol. Trop. 54, 793–802 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Debrot, A. O. & Nagelkerken, I. Recovery of the long-spined sea urchin Diadema antillarum in Curacao (Netherlands Antilles) linked to lagoonal and wave sheltered shallow rocky habitats. Bull. Mar. Sci. 72, 415–424 (2006).
    Google Scholar 
    37.Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).
    Google Scholar 
    38.Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science (80-) 321, 560–563 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science (80-) 301, 958–960 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Pennington, J. T. The ecology of fertilization of echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430 (1985).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Levitan, D. R. Influence of body size and population density on fertilization success and reproductive output in a free-spawning invertebrate. Biol. Bull. 181, 261–268 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Levitan, D. R., Edmunds, P. J. & Levitan, K. E. What makes a species common? No evidence of density-dependent recruitment or mortality of the sea urchin Diadema antillarum after the 1983–1984 mass mortality. Oecologia 175, 117–128 (2014).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Lacey, E. A., Fourqurean, J. W. & Collado-Vides, L. Increased algal dominance despite presence of Diadema antillarum populations on a Caribbean coral reef. Bull. Mar. Sci. 89, 603–620 (2013).Article 

    Google Scholar 
    44.Dumas, P., Kulbicki, M., Chifflet, S., Fichez, R. & Ferraris, J. Environmental factors influencing urchin spatial distributions on disturbed coral reefs (New Caledonia, South Pacific). J. Exp. Mar. Biol. Ecol. 344, 88–100 (2007).Article 

    Google Scholar 
    45.Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection? Front. Mar. Sci. 3, 63 (2016).Article 

    Google Scholar 
    46.Alvarado, J. J., Cortés, J., Guzman, H. & Reyes-Bonilla, H. Density, size, and biomass of Diadema mexicanum (Echinoidea) in Eastern Tropical Pacific coral reefs. Aquat. Biol. 24, 151–161 (2016).Article 

    Google Scholar 
    47.Ogden, J. C. & Carpenter, R. C. Long-spined black sea urchin. Biol. Rep. 82, 1–17 (1987).
    Google Scholar 
    48.Bodmer, M. D. V. et al. Interacting effects of temperature, habitat and phenotype on predator avoidance behaviour in Diadema antillarum: implications for restorative conservation. Mar. Ecol. Prog. Ser. 566, 105–115 (2017).ADS 
    Article 

    Google Scholar 
    49.Andradi-Brown, D. A., Gress, E., Wright, G., Exton, D. A. & Rogers, A. D. Reef fish community biomass and trophic structure changes across shallow to upper-mesophotic reefs in the mesoamerican barrier reef, Caribbean. PLoS ONE 11, 1–19 (2016).
    Google Scholar 
    50.Rodríguez-Barreras, R., Pérez, M. E., Mercado-Molina, A. E. & Sabat, A. M. Arrested recovery of Diadema antillarum population: survival or recruitment limitation? Estuar. Coast. Shelf Sci. 163, 167–174 (2015).ADS 
    Article 

    Google Scholar 
    51.Risk, M. J. Fish diversity on a coral reef in the Virgin Islands. Atoll Res. Bull. 153, 1–4 (1972).Article 

    Google Scholar 
    52.Figueira, W. et al. Accuracy and precision of habitat structural complexity metrics derived from underwater photogrammetry. Remote Sens. 7, 16883–16900 (2015).ADS 
    Article 

    Google Scholar 
    53.Leon, J. X., Roelfsema, C. M., Saunders, M. I. & Phinn, S. R. Measuring coral reef terrain roughness using ‘Structure-from-Motion’ close-range photogrammetry. Geomorphology 242, 21–28 (2015).ADS 
    Article 

    Google Scholar 
    54.Storlazzi, C. D., Dartnell, P., Hatcher, G. A. & Gibbs, A. E. End of the chain? Rugosity and fine-scale bathymetry from existing underwater digital imagery using structure-from-motion (SfM) technology. Coral Reefs 35, 889–894 (2016).ADS 
    Article 

    Google Scholar 
    55.Young, G. C., Dey, S., Rogers, A. D. & Exton, D. A. Cost and time-effective method for multiscale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS ONE 12, e0175341 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Zawada, D. G. & Brock, J. C. A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry. J. Coast. Res. 2009, 6–16 (2009).Article 

    Google Scholar 
    57.Randall, J. E., Schroeder, R. E. & Starck, W. A. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 4, 421–433 (1964).
    Google Scholar 
    58.Hunt, C. L. et al. Aggregating behaviour in invasive Caribbean lionfish is driven by habitat complexity. Sci. Rep. 9, 783 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Millott, N. & Yoshida, M. The shadow reaction of Diadema antillarum Philippi I: the spine response and its relation to the stimulus. J. Exp. Biol. 37, 363–375 (1960).Article 

    Google Scholar 
    60.Millott, N. & Yoshida, M. The shadow reaction of Diadema antillarum Philippi II: inhibition by light. J. Exp. Biol. 37, 376–389 (1960).Article 

    Google Scholar 
    61.Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Ullrich-Lüter, E. M., D’Aniello, S. & Arnone, M. I. C-opsin expressing photoreceptors in echinoderms. Integr. Comp. Biol. 53, 27–38 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    63.Yoshida, M. On the light response of the chromatophore of the sea-urchin, Diadema setosum (Leske). J. Exp. Biol. 33, 119–123 (1956).Article 

    Google Scholar 
    64.JPL MUR MEaSUREs. GHRSST Level 4 MUR global foundation sea surface temperature analysis. Version 4.1 PO.DAAC, CA, USA. Dataset accessed 23 Jan 2021 at https://doi.org/10.5067/GHGMR-4FJ04 (2015).65.Pickering, H., Whitmarsh, D. & Jensen, A. Artificial reefs as a tool to aid rehabilitation of coastal ecosystems: investigating the potential. Mar. Pollut. Bull. 37, 505–514 (1999).Article 

    Google Scholar 
    66.Fitzhardinge, R. C. & Bailey-Brock, J. H. Colonization of artificial reef materials by corals and other sessile organisms. Bull. Mar. Sci. 44, 567–579 (1989).
    Google Scholar 
    67.R Core Team. R: A Language and Environment for Statistical Computing. Vienna. https://www.r-project.org/. (2016).68.RStudio Team. RStudio: Integrated Development for R (2015).69.Dinno, A. conover.test: Conover-Iman test of multiple comparisons using rank sums. R Package Version 1.1.5. (2017).70.Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365, 59–66 (2008).Article 

    Google Scholar 
    71.Kintzing, M. D. & Butler, M. J. The influence of shelter, conspecifics, and threat of predation on the behavior of the long-spined sea urchin (Diadema antillarum). J. Shellfish Res. 33, 781–785 (2014).Article 

    Google Scholar 
    72.Clemente, S., Hernández, J. C., Toledo, K. & Brito, A. Predation upon Diadema aff. antillarum in barren grounds in the Canary Islands. Sci. Mar. 71, 745–754 (2007).Article 

    Google Scholar 
    73.Jennings, L. B. & Hunt, H. L. Settlement, recruitment and potential predators and competitors of juvenile echinoderms in the rocky subtidal zone. Mar. Biol. 157, 307–316 (2010).Article 

    Google Scholar 
    74.Rodríguez-Barreras, R. Demographic implications of predatory wrasses on low-density Diadema antillarum populations. Mar. Biol. Res. 14, 383–391 (2018).Article 

    Google Scholar 
    75.Delgado, G. A. & Sharp, W. C. Does artificial shelter have a place in Diadema antillarum restoration in the Florida Keys? Tests of habitat manipulation and sheltering behavior. Glob. Ecol. Conserv. 26, e01502 (2021).Article 

    Google Scholar 
    76.Sammarco, P. W. & Williams, A. H. Damselfish territoriality: influence on Diadema antillarum distribution and implications for coral community structure. Mar. Ecol. Prog. Ser. 8, 53–59 (1982).ADS 
    Article 

    Google Scholar 
    77.Nedimyer, K. & Moe, M. A. 2003. Techniques development for the reestablishment of the long-spined sea urchin, Diadema antillarum, on two small patch reefs in the upper Florida Keys. 2002–2003 Sanctuary Science Report: An Ecosystem Report Card After Five Years of Marine Zoning.78.Idjadi, J., Haring, R. & Precht, W. Recovery of the sea urchin Diadema antillarum promotes scleractinian coral growth and survivorship on shallow Jamaican reefs. Mar. Ecol. Prog. Ser. 403, 91–100 (2010).ADS 
    Article 

    Google Scholar 
    79.Macia, S., Robinson, M. P. & Nalevanko, A. Experimental dispersal of recovering Diadema antillarum increases grazing intensity and reduces macroalgal abundance on a coral reef. Mar. Ecol. Prog. Ser. 348, 173–182 (2007).ADS 
    Article 

    Google Scholar  More

  • in

    Comparative study of the environmental footprints of marinas on European Islands

    1.EU. Communication from the Commission. Ports: an engine for growth (2013).2.EU. Directive (EU) 2019/883 of the European Parliament and of the Council of 17 April 2019. 2019(March), 116–142 (2019).3.Chao, M. & Rodríguez, M. New trends in port managing: towards the e-port. J. Marit. Res. 3(2), 35–42 (2006).
    Google Scholar 
    4.Paiano, A., Crovella, T. & Lagioia, G. Managing sustainable practices in cruise tourism: the assessment of carbon footprint and waste of water and beverage packaging. Tour. Manag. 77(October 2019), 104016. https://doi.org/10.1016/j.tourman.2019.104016 (2020).Article 

    Google Scholar 
    5.Kovačić, M. & Silveira, L. Nautical tourism in Croatia and in Portugal in the late 2010’s: issues and perspectives. Pomorstvo 32(2), 281–289. https://doi.org/10.31217/p.32.2.13 (2018).Article 

    Google Scholar 
    6.Pérez Labajos, C. & Blanco Rojo, B. Leisure ports planning. J. Marit. Res. 3(2), 67–82 (2006).
    Google Scholar 
    7.BOE. Real Decreto Legislativo 2/2011, de 5 de septiembre, por el que se aprueba el Texto Refundido de la Ley de Puertos del Estado y de la Marina Mercante. Span. Off. Bull. 255, 11. https://www.boe.es/buscar/pdf/2011/BOE-A-2011-16467-consolidado.pdf (2011).8.Gómez, A. G., Valdor, P. F., Ondiviela, B., Díaz, J. L. & Juanes, J. A. Mapping the environmental risk assessment of marinas on water quality: the Atlas of the Spanish coast. Mar. Pollut. Bull. 139(January), 355–365. https://doi.org/10.1016/j.marpolbul.2019.01.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Sofiev, M. et al. Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nat. Commun. 9(1), 1–12. https://doi.org/10.1038/s41467-017-02774-9 (2018).CAS 
    Article 

    Google Scholar 
    10.Chen, C., Saikawa, E., Comer, B., Mao, X. & Rutherford, D. Ship emission impacts on air quality and human health in the Pearl River Delta (PRD) Region, China, in 2015, with projections to 2030. GeoHealth 3(9), 284–306. https://doi.org/10.1029/2019GH000183 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Mateos, M. R. Los puertos deportivos como infraestructuras de soporte de las actividades náuticas de recreo en Andalucía. Mar. Infrastruct. Supports Naut. Recreat. Act. Andal. 54, 335–360 (2010).
    Google Scholar 
    12.Nursey-Bray, M. et al. Vulnerabilities and adaptation of ports to climate change. J. Environ. Plan. Manag. 56(7), 1021–1045. https://doi.org/10.1080/09640568.2012.716363 (2013).Article 

    Google Scholar 
    13.Antequera, P. D., Jaime, D. & Abel, L. Tourism, transport and climate change: the carbon footprint of international air traffic on Islands. Sustainability 13(4), 1795. https://doi.org/10.3390/su13041795 (2021).CAS 
    Article 

    Google Scholar 
    14.Hadjikakou, M., Chenoweth, J. & Miller, G. Estimating the direct and indirect water use of tourism in the eastern Mediterranean. J. Environ. Manag. 114, 548–556. https://doi.org/10.1016/j.jenvman.2012.11.002 (2013).Article 

    Google Scholar 
    15.Annis, G. M. et al. Designing coastal conservation to deliver ecosystem and human well-being benefits. PLoS ONE 12(2), 1–21. https://doi.org/10.1371/journal.pone.0172458 (2017).CAS 
    Article 

    Google Scholar 
    16.Kizielewicz, J. & Lukovic, T. The phenomenon of the marina development to support the European model of economic development. TransNav Int. J. Mar. Navig. Saf. Sea Transp. 7(3), 461–466. https://doi.org/10.12716/1001.07.03.19 (2013).Article 

    Google Scholar 
    17.Ridolfi, E., Pujol, D. S., Ippolito, A., Saradakou, E. & Salvati, L. An urban political ecology approach to local development in fast-growing, tourism-specialized coastal cities. Tourismos 12(1), 171–204 (2017).
    Google Scholar 
    18.Sevinç, F. & Güzel, T. Sustainable Yacht tourism practices. Manag. Mark. XV(1), 61–76 (2017).
    Google Scholar 
    19.Lam-González, Y. E., León, C. J. & González-Hernández, M. M. Determinants of the European Yachtsmen´s satisfaction with the ports of call of the Canary Islands (Spain). Études Caribéennes https://doi.org/10.4000/etudescaribeennes.10584 (2017).Article 

    Google Scholar 
    20.Novales, A., Martínez Martín, M. I., Castro Núñez, R. B., Cazcarro Castellano, I. & Santero Sánchez, R. El impacto económico de la Náutica de Recreo 99 (Universidad Complutense de Madrid, 2018).
    Google Scholar 
    21.Cámara de Comercio e Industria de Marsella. Náutica de recreo en el Mediterráneo 114 (Etinet, 2011).
    Google Scholar 
    22.Mensa, J. A., Vasallo, P. & Fabiano, M. JMarinas: a simple tool for the environmentally sound management of small marinas. J. Environ. Manag. 92, 67–77 (2011).CAS 
    Article 

    Google Scholar 
    23.Benton, T. G. From castaways to throwaways: marine litter in the Pitcairn Islands. Biol. J. Lin. Soc. 56, 415–422 (1995).Article 

    Google Scholar 
    24.Chainho, P. et al. Non-indigenous species in Portuguese coastal areas, coastal lagoons, estuaries and islands. Estuar. Coast. Shelf Sci. 167, 199–211. https://doi.org/10.1016/j.ecss.2015.06.019 (2015).ADS 
    Article 

    Google Scholar 
    25.Styhre, L., Winnes, H., Black, J., Lee, J. & Le-Griffin, H. Greenhouse gas emissions from ships in ports: case studies in four continents. Transp. Res. Part D Transp. Environ. 54, 212–224. https://doi.org/10.1016/j.trd.2017.04.033 (2017).Article 

    Google Scholar 
    26.Yang, Y. C. Operating strategies of CO2 reduction for a container terminal based on carbon footprint perspective. J. Clean. Prod. 141, 472–480. https://doi.org/10.1016/j.jclepro.2016.09.132 (2017).CAS 
    Article 

    Google Scholar 
    27.Giunta, M., Bressi, S. & D’Angelo, G. Life cycle cost assessment of bitumen stabilised ballast: a novel maintenance strategy for railway track-bed. Constr. Build. Mater. 172, 751–759. https://doi.org/10.1016/j.conbuildmat.2018.04.020 (2018).Article 

    Google Scholar 
    28.Hickmann, T. Voluntary global business initiatives and the international climate negotiations: a case study of the Greenhouse Gas Protocol. J. Clean. Prod. 169, 94–104. https://doi.org/10.1016/j.jclepro.2017.06.183 (2017).Article 

    Google Scholar 
    29.Garcia, R. & Freire, F. Carbon footprint of particleboard: a comparison between ISO/TS 14067, GHG protocol, PAS 2050 and climate declaration. J. Clean. Prod. 66, 199–209. https://doi.org/10.1016/j.jclepro.2013.11.073 (2014).CAS 
    Article 

    Google Scholar 
    30.Ingrid, M.-M., Pablo, C.-M., Jose, V.-C. & Miguel Ángel, P.-G. Economic impact of a port on the hinterland: application to Santander’s port. Int. J. Shipp. Transp. Logist. 4, 235–249 (2012).Article 

    Google Scholar 
    31.Abdul-azeez, I. A. Development of carbon dioxide emission assessment tool towards promoting sustainability in UTM Malaysia. Open J. Energy Effic. https://doi.org/10.4236/ojee.2018.72004 (2018).Article 

    Google Scholar 
    32.Jeswani, H. K. & Azapagic, A. Water footprint: methodologies and a case study for assessing the impacts of water use. J. Clean. Prod. 19(12), 1288–1299. https://doi.org/10.1016/j.jclepro.2011.04.003 (2011).Article 

    Google Scholar 
    33.Zhuo, La., Mekonnen, M. M. & Hoekstra, A. Y. Consumptive water footprint and virtual water trade scenarios for China: with a focus on crop production, consumption and trade. Environ. Int. 94, 211–223 (2016).Article 

    Google Scholar 
    34.Arto, I., Andreoni, V. & Rueda-Cantuche, J. M. Global use of water resources: a multiregional analysis of water use, water footprint and water trade balance. Water Resour. Econ. 15, 1–14. https://doi.org/10.1016/j.wre.2016.04.002 (2016).Article 

    Google Scholar 
    35.Zhi, Y., Yang, Z., Yin, X., Hamilton, P. B. & Zhang, L. Using gray water footprint to verify economic sectors’ consumption of assimilative capacity in a river basin: model and a case study in the Haihe River Basin, China. J. Clean. Prod. 92, 267–273. https://doi.org/10.1016/j.jclepro.2014.12.058 (2015).Article 

    Google Scholar 
    36.Norén, A., Karlfeldt Fedje, K., Strömvall, A. M., Rauch, S. & Andersson-Sköld, Y. Integrated assessment of management strategies for metal-contaminated dredged sediments: what are the best approaches for ports, marinas and waterways?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2019.135510 (2020).Article 
    PubMed 

    Google Scholar 
    37.Kenworthy, J. M., Rolland, G., Samadi, S. & Lejeusne, C. Local variation within marinas: effects of pollutants and implications for invasive species. Mar. Pollut. Bull. 133(March), 96–106. https://doi.org/10.1016/j.marpolbul.2018.05.001 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Veettil, A. V. & Mishra, A. K. Water security assessment using blue and green water footprint concepts. J. Hydrol. 542, 589–602. https://doi.org/10.1016/j.jhydrol.2016.09.032 (2016).ADS 
    Article 

    Google Scholar 
    39.Gu, Y., Li, Y., Wang, H. & Li, F. Gray water footprint: taking quality, quantity, and time effect into consideration. Water Resour. Manag. 28(11), 3871–3874. https://doi.org/10.1007/s11269-014-0695-y (2014).Article 

    Google Scholar 
    40.Duvat, V. K. E. et al. Trajectories of exposure and vulnerability of small islands to climate change. Rev. Clim. Change https://doi.org/10.1002/wcc.478 (2017).Article 

    Google Scholar 
    41.Millán, M. M. Extreme hydrometeorological events and climate change predictions in Europe. J. Hydrol. 518(PB), 206–224. https://doi.org/10.1016/j.jhydrol.2013.12.041 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Smith, J. B. et al. Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC) “‘reasons for concern’”. Proc. Natl. Acad. Sci. U.S.A. 106(11), 4133–4137. https://doi.org/10.1073/pnas.0812355106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.IPCC. Climate change 2014: impacts, adaptation and vulnerability (2014).44.Ciscar, J. C. et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. U.S.A. 108(7), 2678–2683. https://doi.org/10.1073/pnas.1011612108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Melo, N., Santos, B. F. & Leandro, J. A prototype tool for dynamic pluvial-flood emergency planning. Urban Water J. 12(1), 79–88. https://doi.org/10.1080/1573062X.2014.975725 (2015).Article 

    Google Scholar 
    46.Lazrus, H. Sea change: Island communities and climate change. Annu. Rev. Anthropol. 41, 285–301. https://doi.org/10.1146/annurev-anthro-092611-145730 (2012).Article 

    Google Scholar 
    47.Reid, S., Johnston, N. & Patiar, A. Coastal resorts setting the pace: an evaluation of sustainable hotel practices. J. Hosp. Tour. Manag. 33, 11–22. https://doi.org/10.1016/j.jhtm.2017.07.001 (2017).Article 

    Google Scholar 
    48.Vargas-Amelin, E. & Pindado, P. The challenge of climate change in Spain: water resources, agriculture and land. J. Hydrol. 518(PB), 243–249. https://doi.org/10.1016/j.jhydrol.2013.11.035 (2014).ADS 
    Article 

    Google Scholar 
    49.Fagerberg, J., Laestadius, S. & Martin, B. R. The triple challenge for Europe: the economy, climate change, and governance. Innov. Econ. Dev. Policy Sel. Essays 59(3), 384–410. https://doi.org/10.1080/05775132.2016.1171668 (2018).Article 

    Google Scholar 
    50.UNCTAD. Maritime transport in small island developing states. Rev. Marit. Transp. https://doi.org/10.1017/CBO9781107415324.004 (2014).Article 

    Google Scholar 
    51.Hinkey, L. M., Zaidi, B. R., Volson, B. & Rodriguez, N. J. Identifying sources and distributions of sediment contaminants at two US Virgin Islands marinas. Mar. Pollut. Bull. 50, 1244–1250. https://doi.org/10.1016/j.marpolbul.2005.04.035 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Marín, J. C. et al. Properties of particulate pollution in the port city of Valparaiso, Chile. Atmos. Environ. 171, 301–316. https://doi.org/10.1016/j.atmosenv.2017.09.044 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Tóvar-Sánchez, A., Sánchez-Quiles, D. & Rodríguez-Romero, A. Massive coastal tourism influx to the Mediterranean Sea: the environmental risk of sunscreens. Sci. Total Environ. 656, 316–321 (2019).ADS 
    Article 

    Google Scholar 
    54.Uche-Soria, M. & Rodríguez-Monroy, C. Solutions to marine pollution in Canary Islands’ ports: alternatives and optimization of energy management. Resources https://doi.org/10.3390/resources8020059 (2019).Article 

    Google Scholar 
    55.Bosch, N. E., Gonçalves, J. M. S., Tuya, F. & Erzini, K. Marinas as habitats for nearshore fish assemblages: comparative analysis of underwater visual census, baited cameras and fish traps. Sci. Mar. 81(2), 159. https://doi.org/10.3989/scimar.04540.20a (2017).Article 

    Google Scholar 
    56.Di Franco, A. et al. Do small marinas drive habitat specific impacts? A case study from Mediterranean Sea. Mar. Pollut. Bull. 62, 926–933. https://doi.org/10.1016/j.marpolbul.2011.02.053 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Pasetto, M. & Partl, M. N. in Lecture Notes in Civil Engineering Proceedings of the 5th International Symposium on Asphalt Pavements & Environment (APE). http://www.springer.com/series/15087 (2020)58.Praticò, F. G., Giunta, M., Mistretta, M. & Gulotta, T. M. Energy and environmental life cycle assessment of sustainable pavement materials and technologies for urban roads. Sustainability (Switzerland) https://doi.org/10.3390/su12020704 (2020).Article 

    Google Scholar 
    59.Hertwich, E. G. & Wood, R. The growing importance of scope 3 greenhouse gas emissions from industry. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aae19a (2018).Article 

    Google Scholar 
    60.Di Vaio, A., Varriale, L. & Alvino, F. Key performance indicators for developing environmentally sustainable and energy efficient ports: evidence from Italy. Energy Policy 122(July), 229–240. https://doi.org/10.1016/j.enpol.2018.07.046 (2018).Article 

    Google Scholar 
    61.Corrigan, S., Kay, A., Ryan, M., Brazil, B. & Ward, M. E. Human factors & safety culture: challenges & opportunities for the port environment. Saf. Sci. 125, 14. https://doi.org/10.1016/j.ssci.2018.02.030 (2020).Article 

    Google Scholar 
    62.Mali, M., Dell’Anna, M. M., Mastrorilli, P., Damiani, L. & Piccinni, A. F. Assessment and source identification of pollution risk for touristic ports: heavy metals and polycyclic aromatic hydrocarbons in sediments of 4 marinas of the Apulia region (Italy). Mar. Pollut. Bull. 114(2), 768–777. https://doi.org/10.1016/j.marpolbul.2016.10.063 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Cutroneo, L., Reboa, A., Besio, G., Borgogno, F., Canesi, L., Canuto, S., Dara, M., Enrile, F., Forioso, I., Greco, G., Lenoble, V., Malatesta, A., Mounier, S., Petrillo, M., Rovetta, R., Stocchino, A., Tesan, J., Vagge, G., & Capello, M. Correction to: Microplastics in seawater: sampling strategies, laboratory methodologies, and identification techniques applied to port environment (Environmental Science and Pollution Research, (2020), 27, 9, (8938–8952), https://doi.org/10.1007/s11356-020-07783-8). Environ. Sci. Pollut. Res. 27(16), 20571. https://doi.org/https://doi.org/10.1007/s11356-020-08704-5 (2020)64.Kotowska, I. & Kubowicz, D. The role of ports in reduction of road transport pollution in port cities. Transp. Res. Procedia 39, 212–220. https://doi.org/10.1016/j.trpro.2019.06.023 (2019).Article 

    Google Scholar 
    65.Coronado Mondragon, A. E., Lalwani, C. S., Coronado Mondragon, E. S., Coronado Mondragon, C. E. & Pawar, K. S. Intelligent transport systems in multimodal logistics: a case of role and contribution through wireless vehicular networks in a sea port location. Int. J. Prod. Econ. 137, 165–175. https://doi.org/10.1016/j.ijpe.2011.11.006 (2012).Article 

    Google Scholar 
    66.Caballini, C., Rebecchi, I. & Sacone, S. Combining multiple trips in a port environment for empty movements minimization. Transp. Res. Procedia 10, 694–703. https://doi.org/10.1016/j.trpro.2015.09.023 (2015).Article 

    Google Scholar 
    67.Sifakis, N. & Tsoutsos, T. Planning zero-emissions ports through the nearly zero energy port concept. J. Clean. Prod. 286, 20. https://doi.org/10.1016/j.jclepro.2020.125448 (2021).Article 

    Google Scholar 
    68.Karimpour, R., Ballini, F. & Ölcer, A. I. Circular economy approach to facilitate the transition of the port cities into self-sustainable energy ports: a case study in Copenhagen-Malmö Port (CMP). WMU J. Marit. Aff. 18(2), 225–247. https://doi.org/10.1007/s13437-019-00170-2 (2019).Article 

    Google Scholar 
    69.Babrowski, S., Heinrichs, H., Jochem, P. & Fichtner, W. Load shift potential of electric vehicles in Europe. J. Power Sources 255, 283–293. https://doi.org/10.1016/j.jpowsour.2014.01.019 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Azarkamand, S., Ferré, G. & Darbra, R. M. Calculating the carbon footprint in ports by using a standardized tool. Sci. Total Environ. 734, 139407. https://doi.org/10.1016/j.scitotenv.2020.139407 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Carballo-Penela, A., Mateo-Mantecón, I., Doménech, J. L. & Coto-Millán, P. From the motorways of the sea to the green corridors’ carbon footprint: the case of a port in Spain. J. Environ. Plan. Manag. 55(6), 765–782. https://doi.org/10.1080/09640568.2011.627422 (2012).Article 

    Google Scholar 
    72.Paska, J. & Surma, T. Electricity generation from renewable energy sources in Poland. Renew. Energy 71, 286–294 (2014).Article 

    Google Scholar 
    73.Trujillo-Baute, E., del Río, P. & Mir-Artigues, P. Analysing the impact of renewable energy regulation on retail electricity prices. Energy Policy 114, 153–164 (2018).Article 

    Google Scholar 
    74.Ruiz-Romero, S., Colmenar-Santos, A., Gil-Ortego, R. & Molina-Bonilla, A. Distributed generation: the definitive boost for renewable energy in Spain. Renew. Energy 53, 354–364 (2013).Article 

    Google Scholar 
    75.Burgos-Payán, M., Roldán-Fernández, J. M., Trigo-García, Á. L., Bermúdez-Ríos, J. M. & Riquelme-Santos, J. M. Costs and benefits of the renewable production of electricity in Spain. Energy Policy 56, 259–270 (2013).Article 

    Google Scholar 
    76.Taliotis, C. et al. Renewable energy technology integration for the island of Cyprus: a cost-optimization approach. Energy 137(2017), 31–41. https://doi.org/10.1016/j.energy.2017.07.015 (2017).Article 

    Google Scholar 
    77.Deyà-Tortella, B., Garcia, C., Nilsson, W. & Tirado, D. The effect of the water tariff structures on the water consumption in Mallorcan hotels. Water Resour. Res. 52(8), 6386–6403. https://doi.org/10.1002/2016WR018621 (2016).ADS 
    Article 

    Google Scholar 
    78.Liu, J. et al. A global and spatially explicit assessment of climate change impacts on crop production and consumptive water use. PLoS ONE https://doi.org/10.1371/journal.pone.0057750 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Hof, A. & Schmitt, T. Urban and tourist land use patterns and water consumption: evidence from Mallorca, Balearic Islands. Land Use Policy 28, 792–804 (2011).Article 

    Google Scholar 
    80.Urban water consumption in the Balearic islands. The water portal: http://www.caib.es/sites/aigua/es/consumo_agua/81.García, C., Mestre-Runge, C., Morán-Tejeda, E., Lorenzo-Lacruz, J., Tirado, D. (2020). Impact of Cruise Activity on Freshwater Use in the Port of Palma (Mallorca, Spain): Water 12, 1088.82.Yves Tramblay, Aristeidis Koutroulis, Luis Samaniego, Sergio Vicente-Serrano, Florence Volaire, et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. EarthScience Reviews, Elsevier, 2020, 210, pp.103348. https://doi.org/10.1016/j.earscirev.2020.103348f More