More stories

  • in

    Monsoon forced evolution of savanna and the spread of agro-pastoralism in peninsular India

    1.Whyte, R. O. Grassland and Fodder Resources of India Revised. (Indian Council of Agricultural Research, 1964).
    Google Scholar 
    2.Misra, R. The vegetation of the Indian Savannas. In Tropical Savannas (ed. Bourliere, F.) 151–166 (Elsevier, 1983).3.Behrensmeyer, A. K. et al. The structure and rate of late Miocene expansion of C4 plants: evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. GSA Bull. 119, 1486–1505 (2007).CAS 
    Article 

    Google Scholar 
    4.Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India Press, 1968).
    Google Scholar 
    5.Mani, M. S. The Flora. In Ecology and Biogeography in India (ed. Mani, M. S.) 159–177 (Dr. W. Junk b.v. Publishers, 1974).6.Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B 371, 20150305 (2016).Article 
    CAS 

    Google Scholar 
    7.Blasco, F. The transition from open forest to Savanna in continental Southeast Asia. In Tropical Savannas (ed. Bourliere, F.) 167–182 (Elsevier, 1983).8.Puri, G. S., Meher Homji, V. M., Gupta, R. K. & Puri, S. Forest Ecology. Phytogeography and Conservation Vol. 1 (Oxford & IBH Publishing, 1983).
    Google Scholar 
    9.Fuller, D. Q. & Korisettar, R. The vegetational context of early agriculture in South India. Man Environ. 29, 7–27 (2004).
    Google Scholar 
    10.Fuller, D. Q. Finding plant domestication in the Indian subcontinent. Curr. Anthropol. 52, S347–S362 (2011).Article 

    Google Scholar 
    11.Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Staver, A. C., Archibald, S. & Levin, S. A. Tree-cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Bond, W. J. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).Article 

    Google Scholar 
    14.Hirota, M., Holmgren, M., Van Nes, E. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).ADS 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    16.Mayle, F. E. & Power, M. J. Impact of a drier early–mid-Holocene climate upon Amazonian forests. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1829–1838 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ngomanda, A. et al. Western equatorial African forest-savanna mosaics: a legacy of late Holocene climatic change?. Clim. Past 5, 647–659 (2009).Article 

    Google Scholar 
    18.Metwally, A. A., Scott, L., Neumann, F. H., Bamford, M. K. & Oberhänsli, H. Holocene palynology and palaeoenvironments in the Savanna Biome at Tswaing Crater, central South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 402, 125–135 (2014).Article 

    Google Scholar 
    19.Kuper, R. & Kröpelin, S. Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803–807 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mayewski, P. A. et al. Holocene climate variability. Quat. Res. 62, 243–255 (2004).Article 

    Google Scholar 
    21.Wanner, H. et al. Mid- to late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).ADS 
    Article 

    Google Scholar 
    22.Kathayat, G. et al. The Indian monsoon variability and civilization changes in the Indian subcontinent. Sci. Adv. 3, e1701296 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Shinde, V. The origin and development of the Chalcolithic in Central India. Indo-Pac. Prehist. Assoc. Bull. 19, 125–136 (2000).
    Google Scholar 
    24.Fuller, D. Q. Agricultural origins and frontiers in South Asia: a working synthesis. J. World Prehist. 20, 1–86 (2006).Article 

    Google Scholar 
    25.Fuller, D. Q., Boivin, N. & Korisettar, R. Dating the Neolithic of South India: new radiometric evidence for key economic, social and ritual transformations. Antiquity 81, 755–778 (2007).Article 

    Google Scholar 
    26.Johansen, P. G. Landscape, monumental architecture, and ritual: a reconsideration of the South Indian ashmounds. J. Anthropol. Archaeol. 23, 309–330 (2004).Article 

    Google Scholar 
    27.Fuller, D. Q. Asia, South: Neolithic cultures. In Encyclopedia of Archaeology (ed. Pearsall, D.) 756–768 (Springer, 2008).
    Google Scholar 
    28.Asouti, E. & Fuller, D. Q. Trees and Woodlands of South India: Archaeological Perspectives (Left Coast Press, 2008).
    Google Scholar 
    29.Singh, G., Joshi, R. D., Chopra, S. K. & Singh, A. B. Late quaternary history of vegetation and climate of the Rajasthan desert, India. Philos. Trans. R. Soc. Lond. B Biol. Sci. 267, 467–501 (1974).ADS 
    Article 

    Google Scholar 
    30.Singh, I. B. Quaternary palaeoenvironments of the Ganga plain and anthropogenic activity. Man Environ. 30, 1–35 (2005).
    Google Scholar 
    31.Clarkson, C. et al. The oldest and longest enduring microlithic sequence in India: 35 000 years of modern human occupation and change at the Jwalapuram locality 9 rockshelter. Antiquity 83, 326–348 (2009).Article 

    Google Scholar 
    32.Riedel, N. et al. Modern pollen vegetation relationships in a dry deciduous monsoon forest: a case study from Lonar Crater Lake, central India. Quat. Int. 371 (2015).33.Sarkar, S. et al. Monsoon source shifts during the drying mid-Holocene: biomarker isotope based evidence from the core ‘monsoon zone’ (CMZ) of India. Quat. Sci. Rev. 123, 144–157 (2015).ADS 
    Article 

    Google Scholar 
    34.Chakraborty, A., Joshi, P. K., Ghosh, A. & Areendran, G. Assessing biome boundary shifts under climate change scenarios in India. Ecol. Indic. 34, 536–547 (2013).Article 

    Google Scholar 
    35.Rasquinha, D. N. & Sankaran, M. Modelling biome shifts in the Indian subcontinent under scenarios of future climate change. Curr. Sci. 111, 147–156 (2016).Article 

    Google Scholar 
    36.Berkelhammer, M. et al. An abrupt shift in the Indian monsoon 4000 years ago in Climates, Landscapes, and Civilizations (eds. Giosan, L. et al.) 75–88 (American Geophysical Union, 2013).37.Fleitmann, D. et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat. Sci. Rev. 26, 170–188 (2007).ADS 
    Article 

    Google Scholar 
    38.Sinha, A. et al. A global context for megadroughts in monsoon Asia during the past millennium. Quat. Sci. Rev. 30, 47–62 (2011).ADS 
    Article 

    Google Scholar 
    39.Berkelhammer, M. et al. Persistent multidecadal power of the Indian Summer Monsoon. Earth Planet. Sci. Lett. 290, 166–172 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Laskar, A. H., Yadava, M. G., Ramesh, R., Polyak, V. J. & Asmerom, Y. A 4 kyr stalagmite oxygen isotopic record of the past Indian Summer Monsoon in the Andaman Islands. Geochem. Geophys. Geosyst. 14, 3555–3566 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Thamban, M., Kawahata, H. & Rao, V. P. Indian summer monsoon variability during the Holocene as recorded in sediments of the Arabian Sea: timing and implications. J. Oceanogr. 63, 1009–1020 (2007).Article 

    Google Scholar 
    42.Ponton, C. et al. Holocene aridification of India. Geophys. Res. Lett. 39, L03704 (2012).ADS 
    Article 

    Google Scholar 
    43.Deblauwe, V. et al. Remotely sensed temperature and precipitation data improve species distribution modelling in the tropics. Glob. Ecol. Biogeogr. 25, 443–454 (2016).Article 

    Google Scholar 
    44.Gaussen, H. et al. International Map of the Vegetation at Scale 1:1.000.000 (French Institute of Pondycherry, 1964).
    Google Scholar 
    45.ESRI Inc. ArcGIS Pro (ESRI Inc., 2019).
    Google Scholar 
    46.Saha, K. Tropical Circulation Systems and Monsoons (Springer, 2010).Book 

    Google Scholar 
    47.Goswami, B. N. South Asian monsoon. In Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds. Lau, W. K. M. & Waliser, D. E.) 19–61 (Springer, 2005).48.Dabadghao, P. M. & Shankarnarayan, K. A. The Grass Cover of India (Indian Council of Agricultural Research, 1973).
    Google Scholar 
    49.Prasad, S. & Enzel, Y. Holocene paleoclimates of India. Quat. Res. 66, 442–453 (2006).Article 

    Google Scholar 
    50.Fleitmann, D. et al. Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from Southern Oman. Quat. Sci. Rev. 23, 935–945 (2004).ADS 
    Article 

    Google Scholar 
    51.Kale, V. S. Fluvio–sedimentary response of the monsoon-fed Indian rivers to Late Pleistocene–Holocene changes in monsoon strength: reconstruction based on existing 14C dates. Quat. Sci. Rev. 26, 1610–1620 (2007).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    52.Prasad, S. et al. Prolonged monsoon droughts and links to Indo-Pacific warm pool: a Holocene record from Lonar Lake, central India. Earth Planet. Sci. Lett. 391, 171–182 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Dixit, Y., Hodell, D. A. & Petrie, C. A. Abrupt weakening of the summer monsoon in northwest India ∼ 4100 yr ago. Geology https://doi.org/10.1130/G35236.1 (2014).Article 

    Google Scholar 
    54.Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).ADS 
    Article 

    Google Scholar 
    55.Marzin, C. & Braconnot, P. Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5 kyr BP. Clim. Dyn. 33, 215–231 (2009).Article 

    Google Scholar 
    56.Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Murphy, C. & Fuller, D. Q. The agriculture of early India. In Oxford Research Encyclopedia of Environmental Science (ed. Shugart, H.) (Oxford University Press, 2017).
    Google Scholar 
    58.Kumaran, N. K. P. et al. Vegetation response and landscape dynamics of Indian Summer Monsoon variations during Holocene: an eco-geomorphological appraisal of tropical evergreen forest subfossil logs. PLoS ONE 9, e93596 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).Article 

    Google Scholar 
    60.Cole, M. M. The Savannas, Biogeography and Geobotany (Academic Press, 1986).61.Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Kodandapani, N., Cochrane, M. A. & Sukumar, R. A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India. For. Ecol. Manag. 256, 607–617 (2008).Article 

    Google Scholar 
    63.Hegde, V., Chandran, M. D. S. & Gadgil, M. Variation in bark thickness in a tropical forest community of Western Ghats in India. Funct. Ecol. 12, 313–318 (1998).Article 

    Google Scholar 
    64.Stott, P. A., Goldammer, J. G. & Werner, W. L. The role of fire in the tropical lowland deciduous forests of Asia. In Fire in the Tropical Biota. Ecosystem Processes and Global Challenges (ed. Goldammer, J. G.) 32–44 (Springer, 1990).65.Murphy, C. & Fuller, D. Q. Seed coat thinning during horsegram (Macrotyloma uniflorum) domestication documented through synchrotron tomography of archaeological seeds. Sci. Rep. 7, 5369 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Kingwell-Banham, E. & Fuller, D. Q. Shifting cultivators in South Asia: expansion, marginalisation and specialisation over the long term. Quat. Int. 249, 84–95 (2012).Article 

    Google Scholar 
    67.Kajale, M. Excavation at Inamgaon (Deccan College Postgraduate and Research Institute, 1988).
    Google Scholar 
    68.Shirvalkar, P. & Prasad, E. The archaeology of the Late Holocene on the Deccan Plateau (The Deccan Chalcolithic). In A Companion to South Asia in the Past (eds. Schug, G. R. & Walimbe, S. R.) 240-254 (John Wiley & Sons, 2016).69.Roberts, P. et al. Local diversity in settlement, demography and subsistence across the southern Indian Neolithic-Iron Age transition: site growth and abandonment at Sanganakallu-Kupgal. Archaeol. Anthropol. Sci. 8, 575–599 (2016).Article 

    Google Scholar 
    70.Nayar, T. S. Pollen Flora of Maharashtra State, India (Today & Tomorrow Printers and Publishers, 1990).
    Google Scholar 
    71.APSA Members. The Australasian Pollen and Spore Atlas V1.0 (Australian National University, 2007).
    Google Scholar 
    72.Tinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. Holocene 13, 499–505 (2003).ADS 
    Article 

    Google Scholar 
    73.Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28, 555–576 (2009).ADS 
    Article 

    Google Scholar 
    74.Higuera, P., Peters, M., Brubaker, L. & Gavin, D. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).ADS 
    Article 

    Google Scholar 
    75.McDermott, F. Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat. Sci. Rev. 23, 901–918 (2004).ADS 
    Article 

    Google Scholar 
    76.Baldini, J., McDermott, F. & Fairchild, I. Spatial variability in cave drip water hydrochemistry: implications for stalagmite paleoclimate records. Chem. Geol. 235, 390–404 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Allchin, B. & Allchin, F. R. The Rise of Civilization in India and Pakistan (Cambridge University Press, 1982).
    Google Scholar 
    78.Shinde, V. S. New light on the origin, settlement system and decline of the Jorwe culture in the Deccan India. South Asian Stud. 5, 59–72 (1989).Article 

    Google Scholar 
    79.Shinde, V. S. Settlement pattern of the Savalda culture—the first farming community of Maharashtra. Bull. Deccan Coll. Res. Inst. 49–50, 417–426 (1990).
    Google Scholar 
    80.Paddayya, K. Investigations Into the Neolithic Culture of the Shorapur Doab, South India Vol. 3 (Brill, 1973).
    Google Scholar  More

  • in

    A Graph Theory approach to assess nature’s contribution to people at a global scale

    For each case study area, a search query was executed (Table 1). Query terms were based on the hashtags of the geographical name of the study areas; therefore, the post download was related to the name of the study area (e.g., Galapagos), with all downloaded posts including this name as query. Query search was limited to English, the most common language amongst tourists. This might have overlooked posts where the name of the place was in a different language. For most marine areas, this was considered irrelevant as the name of the place is not translated to other languages (e.g., Tayrona, Vamizi, Skomer). In some of the cases, the name of the place could appear in a variety of languages (e.g., Great Barrier Reef), however, the use of non-English place hashtags as queries generally retrieved a significantly lower number of posts (e.g., Gran Barrera de Coral in Spanish with 1900 posts, or Grand Barrière de Corail in French with 14 posts, while Great Barrier Reef had over 10,000 posts). In the specific case of Easter Island, we observed that the use of three particular queries was linked to a high number of posts: Easter Island and the local name Rapanui had over 10,000 posts each, and Isla de Pascua in Spanish had 8700 posts. In this case, three separate posts’ downloads were performed, and data were merged for subsequent analysis. The above, rather than a limitation of the methodological approach, demonstrates its flexibility to adapt to different data acquisition requirements.To illustrate the most relevant information contained as part of the posts downloaded for each of the 14 areas, we selected the 150 most frequent hashtags from each dataset in order to create the network graph and represent the dominant discourse in relation to the area in question. Network graphs were delineated using eigenvector, betweenness and edge betweenness as centrality measures. Eigenvector centrality measure (hereafter Eigenvector) allows identifying those hashtags that are frequently posted with other hashtags also frequently posted, and it can be interpreted as the pairs or groups of features more frequently related to the case study by the users. Betweenness centrality (hereafter betweenness) and edge betweenness centrality (hereafter edge betweenness) provide information about clusters of hashtags that describe users’ experiences or perceptions and that connect (by means of a hashtag) to other clusters representing other types of experiences or perceptions. These high betweenness hashtags structure the general discourse about an area and their removal would fragment the network and disconnect distant concepts. Therefore, hashtags and links with high betweenness can show the discourse parallel or additional to the main discourse and their relations, allowing to identify less frequent activities or perceptions but that are equally important to understand the network as a whole.Network centrality measuresResults indicated that network graphs captured information on distinct types of ecosystem services, for example, those based on wildlife and nature, heritage, or beach tourism. In areas such as Galapagos, central hashtags were nature, wildlife, photography, travel and adventure, evidencing a preference for wildlife and nature-based tourism. In this area, betweenness evidenced the connections between the most frequent hashtags group with other peripheric hashtags and provided a complete picture on the discourse of Galapagos’ visitors (Fig. 2). As such, nature and wildlife-based travel and photography is related with natural science concepts like evolution and endemism, and specific biotic and abiotic components like crabs and waves, altogether related with positive feelings (i.e., happy). Other areas emerging for their wildlife and nature were Skomer nature reserve, characterised by the hashtags birds (including the species Puffin), nature and wildlife photography; and Península Valdés, characterized by many locality names and by fauna, with the frequently posted hashtags’ wildlife, whales and nature funnelling most connections to other less frequent hashtags (e.g., wind, hiking, relax) and providing a full picture of the social perception on nature recreation activities, iconic fauna and positive feelings. Three networks, Sandwich Harbour, Glacier Bay and Macquarie Island also included popular hashtags related with nature, wildlife and photography; however, most hashtags had low betweenness and edge betweenness limiting the diversity of the posts (all network graphs are available at the Figshare repository, https://doi.org/10.6084/m9.figshare.13325627.v2).Figure 2Example of network graphs in Galapagos case study. In plot (A) node size represents the Eigenvector centrality and edges represent normalized strength (weighted degree). In plot (B) node size represents normalized Betweenness centrality and edges represent normalized Edge betweenness.Full size imageRegarding cultural heritage, Easter Island was characterised by popular hashtags related with Easter Island stone statues (moais) and with travel; and edge betweenness evidenced a diversity of peripherical nodes that describe other cultural elements, like design, music and food, and evidence social preferences for different cultural elements of the island, beyond the moais. Other areas reflected cultural identity by the frequent post of local names (e.g., Ytrehvaler), words related with the country’s identity (e.g., Isole Egadi) and positive feelings about this identity (e.g., Tawharanui). In Tayrona National Park network, the full discourse identified cultural identity like Kogui (indigenous culture) linked with the popular posts related with nature and summer holidays. Similarly, in Tawharanui and Isole Egadi, beach, nature and summer where the most frequent posts that, in some cases, where connected with places and activities. In these cases, and particularly in Isole Egadi and Ytrehvaler, edge betweenness allows to identify connections between places and activities, wildlife or natural structures, providing relevant information for area management and conservation.A group of areas were appreciated by their underwater ecosystems. For Great Barrier Reef, popular hashtags were related with the coral reef: ocean, diving, underwater photography, travel, nature, coral and reef; whereas betweenness highlighted a set of hashtags related with conservation: science, sustainability, save the reef, 4 ocean (Fig. 3) and evidenced the presence of a conservationist discourse in the social media. In Toguean Island network, the frequent hashtags beach, wonderful and charming are connected to peripherical hashtags related with the sea (e.g., sea life, diving), while in Vamizi, popular hashtags were related with high-income tourism, private island, travel, luxury travel, and were connected to less frequent hashtags linked to the sea, including recreational fisheries. These last two examples illustrate differences in the benefits, and beneficiaries, provided by two popular touristic destinations.Figure 3Example of network graphs in Great Barrier Reef case study. In plot (A) node size represents the Eigenvector centrality and edges represent normalized strength (weighted degree). In plot (B) node size represents normalized Betweenness centrality and edges represent normalized Edge betweenness.Full size imageNetwork communitiesThe division of hashtags in communities allows for a more detailed exploration of the words included in the 150 most frequent hashtags selection, independently of their centrality measures, and allowed a categorisation of hashtags within cultural ecosystem services classes in each area (Table 2). Hashtags were grouped in 3 to 5 communities, with some communities relatively constant across case studies, e.g., aesthetics, wildlife and nature appreciation (Fig. 4) (all other network graphs are available at the Figshare repository, https://doi.org/10.6084/m9.figshare.13325627.v2).Table 2 Cultural Ecosystem Services’ types (CES) depicted from the community analysis (Fast Greedy algorithm). The order of the CES class does not imply a priority rank.Full size tableFigure 4Communities assessed through Fast-Greedy algorithm for the case studies Glacier Bay (A) and Tayrona (C). The node size represents the normalized Eigenvector and the colour represents the community. The colour and width of the edges represents the normalized edge strength (weighted degree).Full size imageIn some of the areas, the communities were diverse in hashtag composition, for example, in Galapagos, wildlife (and related words) was distinctive of several communities, but other communities were characterised by different concepts: beach, holidays, happiness, snorkelling and diving. In Easter Island, the hashtags related with the stone statues and cultural heritage characterise one community, while the other communities include a diversity of hashtags classified under adventure, nature, underwater recreational activities; therefore, it widens the information provided by the centrality metrics. Tayrona (Fig. 4) is also a diverse network with one community characterised by hashtags like beach, summer, happiness (wellbeing), but other communities contain a diversity of hashtags like forest, hiking, indigenous and wildlife (classified in recreational, cultural heritage, nature and aesthetics; Table 2).In some areas, the communities were not so diverse, but provided additional information on the posts. For example, in MacQuarie Island the communities highlighted iconic fauna, including several penguin species, and biodiversity conservation. In several areas, network communities informed of the iconic fauna and specific places: puffins and other bird species in Skomer; southern right whale, sealions and penguins in Península Valdés; glaciers and mountains in Glacier bay (Fig. 4); desert and dunes in Sandwich harbour. Finally, Ytrehvaler is a network characterised by many local names (in Norwegian), evidencing a national tourism, and hashtags related with scenery.Merged network of the 14 case studiesThe merged network highlighted several hashtags that act as bridges between communities of hashtags (Fig. 5). Nature, travel, photo and travel photography are key to structure the global network. However, several low eigenvector hashtags connect smaller groups: sunset and island connect the subgroups from Easter Island, Isole Egadi and Vamizi.Figure 5Global network graph including the fourteen case studies where the node size represents the Eigenvector centrality. The coloured clusters arrange the case studies to facilitate the visual identification of areas connected in the network.Full size imageFrom the hashtag travel photography diverges a branch that connects 7 areas through adventure; a small group of hashtags deriving from this node represent Sandwich harbour and Vamizi, connected through Africa. The hashtag ocean, connected to adventure, relates Great Barrier Reef with Tawharanui, and to wanderlust (a German expression for the desire to explore the world) that connects Península Valdés, Skomer and Macquairie Island. These three areas and Tayrona are also connected through the central hashtag travel photography, and Skomer and Macquairie Island through wildlife photography. The hashtag adventure is also connected to a group of hashtags from Galapagos that also derive to the high eigenvector hashtag nature.The hashtag nature is key to include the fragile sub-network Ytrehvaler, and also derives to other high eigenvector hashtag, travel, that in turn, connects to the small sub-network from Glacier bay. Photo, a central hashtag related with travel, connects to paradise, that is key to integrate Toguean Island, a few hashtags from Tayrona related with the Caribbean and beach, and a group of hashtags from Peninsula Valdez related with whale watching. Some other small hashtags, that are connected to high eigenvector hashtags but are not included in any particular area are shared by many of the areas, e.g., sun, relax, landscape photography, nature lovers, sunset, sky. More

  • in

    Reburial potential and survivability of the striped venus clam (Chamelea gallina) in hydraulic dredge fisheries

    1.Péres, J. M. & Picard, J. New manual for benthic bionomics in the Mediterranean Sea. Trav. Stn. Marittime Endoume 31, 137 (1964).
    Google Scholar 
    2.Moschino, V. & Marin, M. G. Seasonal changes in physiological responses and evaluation of “well-being” in the Venus clam Chamelea gallina from the Northern Adriatic Sea. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 145, 433–440 (2006).Article 

    Google Scholar 
    3.Barillari, A., Boldrin, A., Mozzi, C. & Rabitti, S. Some relationships between the nature of the sediments and the presence of the clam Chamelea (Venus) gallina in the upper Adriatic sea, near Venice. Atti dell’istituto Veneto di Sci. Lett. ed Arti. Cl. di Sci. Mat. Fis. e Nat. 137, 19–34 (1979).4.Froglia, C. Clam fisheries with hydraulic dredges in the Adriatic Sea. In Marine Invertebrates Fisheries: Their Assessment and Management (ed. Caddy, J. F.) 507–524 (Wiley, 1989).
    Google Scholar 
    5.Orban, E. et al. Nutritional and commercial quality of the striped venus clam, Chamelea gallina, from the Adriatic sea. Food Chem. 101, 1063–1070 (2007).CAS 
    Article 

    Google Scholar 
    6.Marini, M., Jones, B. H., Campanelli, A., Grilli, F. & Lee, C. M. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. J. Geophys. Res. Ocean 113, 1–18 (2008).7.Italian National Management Plan for hydraulic dredges. National management plan for fishing activities with the hydraulic dredger system and rakes for boats as identified in the designation of fishing gear in mechanical dredgers including hydraulic mechanized dredger (HMD) and mechanized dredger. Public Law No. 9913 of Italian Ministry for Agricultural, Food and Forestry Policies (2019).8.Morello, E. B., Froglia, C., Atkinson, R. J. A. & Moore, P. G. Impacts of hydraulic dredging on a macrobenthic community of the Adriatic Sea, Italy. Can. J. Fish. Aquat. Sci. 62, 2076–2087 (2005).Article 

    Google Scholar 
    9.Froglia, C. The contribution of scientific research to the management of bivalve mollusc fishing with hydraulic dredgers. Biol. Mar. Mediterr. 7, 71–82 (2000).
    Google Scholar 
    10.STECF. Commission Decision of 25 February 2016 setting up a Scientific, Technical and Economic Committee for Fisheries, C(2016) 1084, OJ C 74, 26.2.2016, 4–10 (2016).11.Gaspar, M. B., Pereira, A. M., Vasconcelos, P. & Monteiro, C. C. Age and growth of Chamelea gallina from the Algarve coast (southern Portugal): influence of seawater temperature and gametogenic cycle on growth rate. J. Molluscan Stud. 70, 371–377 (2004).Article 

    Google Scholar 
    12.Deval, M. C. Shell growth and biometry of the striped venus Chamelea gallina (L) in the Marmara Sea, Turkey. J. Shellfish Res. 20, 155–159 (2001).
    Google Scholar 
    13.Polenta, R. Observations on Growth of the Striped Venus Clam Chamelea gallina L. in the Middle Adriatic (Università di Bologna, 1993).
    Google Scholar 
    14.European Council. Council Regulation (EC) No 1967/2006 of 21 December 2006 concerning management measures for the sustainable exploitation of fishery resources in the Mediterranean Sea, amending Regulation (EEC) No 2847/93 and repealing Regulation (EC) No 1626/94. Off. J. Eur. Union, L 409/11 75 (2006).15.European Council. Commission Delegated Regulation (EU) 2016/2376 of 13 October 2016 establishing a rejection plan for bivalve molluscs Venus spp. in Italian territorial waters. Off. J. Eur. Union, L 352/48 2 (2016).16.European Council. Commission Delegated Regulation (EU) 2020/3 of 28 August 2019 establishing a discard plan for Venus shells (Venus spp.) in certain Italian territorial waters. Off. J. Eur. Union, L2/1 4 (2020).17.European Council. Commission Delegated Regulation (EU) 2020/2237 amending the Delegated Reg. (EU) 2020/3 concerning the waiver for the minimum conservation reference size for the conservation of the striped venus clam (Venus spp.) in certain Italian territorial waters. Off. J. Eur. Union, L436/1 3 (2020).18.European Council. Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy, amending Council Regulations (EC) No 1954/2003 and (EC) No 1224/2009 and repealing Council Regulations (EC) No 2371/2002 etc. Off. J. Eur. Union, L 354/22 40 (2013).19.Petetta, A. et al. Dredge selectivity in a Mediterranean striped venus clam (Chamelea gallina) fishery. Fish. Res. 238, 105895 (2021).Article 

    Google Scholar 
    20.Sala, A., Brčić, J., Herrmann, B., Lucchetti, A. & Virgili, M. Assessment of size selectivity in hydraulic clam dredge fisheries. Can. J. Fish. Aquat. Sci. 74, 339–348 (2017).Article 

    Google Scholar 
    21.Marin, M. G. et al. Effects of hydraulic dredging on target species Chamelea gallina from the northern Adriatic Sea: physiological responses and shell damage. J. Mar. Biol. Assoc. U. K. 83, 1281–1285 (2003).Article 

    Google Scholar 
    22.Moschino, V., Chícharo, L. & Marin, M. G. Effects of hydraulic dredging on the physiological responses of the target species Chamelea gallina (Mollusca: Bivalvia): laboratory experiments and field surveys. Sci. Mar. 72, 493–501 (2008).
    Google Scholar 
    23.Morello, E. B., Froglia, C., Atkinson, R. J. A. & Moore, P. G. Hydraulic dredge discards of the clam (Chamelea gallina) fishery in the western Adriatic Sea, Italy. Fish. Res. 76, 430–444 (2005).Article 

    Google Scholar 
    24.Moschino, V., Deppieri, M. & Marin, M. G. Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J. Mar. Sci. 60, 393–401 (2003).Article 

    Google Scholar 
    25.Brooks, S. P. J. et al. Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: covalent modification of phosphofructokinase and glycogen phosphorylase during anoxia. J. Comp. Physiol. B 161, 207–212 (1991).CAS 
    Article 

    Google Scholar 
    26.Eertman, R. H. M., Wagenvoort, A. J., Hummel, H. & Smaal, A. C. “Survival in air” of the blue mussel Mytilus edulis L. as a sensitive response to pollution-induced environmental stress. J. Exp. Mar. Biol. Ecol. 170, 179–195 (1993).Article 

    Google Scholar 
    27.Crawley, M. J. The R book 2nd edn. (Wiley, 2013).MATH 

    Google Scholar 
    28.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar 
    29.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-137 (2018).30.Morello, E. B., Froglia, C., Atkinson, R. J. A. & Moore, P. G. The effects of hydraulic dredging on the reburial of several molluscan species. Biol. Mar. Mediterr. 13, 610–613 (2006).
    Google Scholar 
    31.Henderson, S. M. & Richardson, C. A. A comparison of the age, growth rate and burrowing behaviour of the razor clams, Ensis siliqua and E. ensis. J. Mar. Biol. Assoc. U. K. 74, 939–954 (1994).Article 

    Google Scholar 
    32.Chıcharo, L., Chıcharo, M., Gaspar, M., Regala, J. & Alves, F. Reburial time and indirect mortality of Spisula solida clams caused by dredging. Fish. Res. 59, 247–257 (2002).Article 

    Google Scholar 
    33.Leitão, F. M. & Gaspar, M. B. Comparison of the burrowing response of undersized cockles (Cerastoderma edule) after fishing disturbance caused by hand dredge and harvesting knife. Mar. Biol. Res. 7, 509–514 (2011).Article 

    Google Scholar 
    34.Gaspar, M. B. et al. The influence of dredge design on the catch of Callista chione (Linnaeus, 1758). In Coastal Shellfish—A Sustainable Resource (ed. Burnell, G.) 153–167 (Springer, 2001).
    Google Scholar 
    35.Chícharo, M. A. et al. Adenylic-derived indices and reburying time as indicators of the effects of dredging-induced stress on the clam Spisula solida. Mar. Biol. 142, 1113–1117 (2003).Article 

    Google Scholar 
    36.Broadhurst, M. K., Suuronen, P. & Hulme, A. Estimating collateral mortality from towed fishing gear. Fish Fish. 7, 180–218 (2006).Article 

    Google Scholar 
    37.Uhlmann, S. S. & Broadhurst, M. K. Mitigating unaccounted fishing mortality from gillnets and traps. Fish Fish. 16, 183–229 (2015).Article 

    Google Scholar 
    38.ICES. Report of the Workshop on Methods for Estimating Discard Survival (WKMEDS) (2015).39.Breen, M., Huse, I., Ingolfsson, I., Madsen, N. & Soldal, A. V. SURVIVAL: an assessment of mortality in fish escaping from trawl codends and its use in fisheries management. EU Final Report (2007).40.Boscolo, R., Cornello, M. & Giovanardi, O. Condition index and air survival time to compare three kinds of Manila clam Tapes philippinarum (Adams & Reeve) farming systems. Aquac. Int. 11, 243–254 (2003).Article 

    Google Scholar 
    41.Ahrens, M. J., Nieuwenhuis, R. & Hickey, C. W. Sensitivity of juvenile Macomona liliana (bivalvia) to UV-photoactivated fluoranthene toxicity. Environ. Toxicol. 17, 567–577 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Hutchins, C. M., Teasdale, P. R., Lee, S. Y. & Simpson, S. L. Influence of sediment metal spiking procedures on copper bioavailability and toxicity in the estuarine bivalve Indoaustriella lamprelli. Environ. Toxicol. Chem. Int. J. 28, 1885–1892 (2009).CAS 
    Article 

    Google Scholar 
    43.Ballarin, L., Pampanin, D. M. & Marin, M. G. Mechanical disturbance affects haemocyte functionality in the Venus clam Chamelea gallina. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 136, 631–640 (2003).Article 

    Google Scholar 
    44.Lucchetti, A. & Sala, A. Impact and performance of Mediterranean fishing gear by side-scan sonar technology. Can. J. Fish. Aquat. Sci. 69, 1806–1816 (2012).Article 

    Google Scholar 
    45.Italian Ministry Decree (DM) 22/12/2000. Ministerial Decree of 22 December 2000 Subject: discipline for fishing for bivalve molluscs. Changes to the Ministerial Decree 21.7.98 Being Registered At The Central Budget Office (2000).46.Anjos, M. et al. Bycatch and discard survival rate in a small-scale bivalve dredge fishery along the Algarve coast (southern Portugal). Sci. Mar. 82, 75–90 (2018).Article 

    Google Scholar 
    47.Bargione, G. et al. Age and growth of striped Venus Clam Chamelea gallina (Linnaeus, 1758) in the Mid-Western Adriatic Sea: a comparison of three laboratory techniques. Front. Mar. Sci. 7, 807 (2020).Article 

    Google Scholar  More

  • in

    Internode elongation and strobili production of Humulus lupulus cultivars in response to local strain sensing

    Figure 4 illustrates the length of fertile internodes 20–40 within the various treatments of: FC, FN, F45, T45, N45, and B90. The FC, FN, and F45 treatments grew lengthier internodes from node 20–40 than the T45, N45, and B45 treatments (Fig. 4). Internode width, however, was greater in T45, N45, and B90 as compared to the undisturbed FC, FN, and F45 treatments (Table 1). The T45 and N45 treatments had a 27.9% and 26.6% reduction in internode elongation compared to the FC, FN, and F45 treatments. Of the treatments, B90 had the shortest internodes and widest internode thickness between node 20–40 (Tables 1, 2). Due to the shorter internode lengths in the mechanically affected treatments, the density of nodes per unit area was ~ 25% greater in T45 and N45 from node 20–40 and an additional 28% shorter in B90. In other words, B90 internodes were ~ 54% shorter between nodes 20–40 as compared to the untouched treatments and had the densest node concentration (cf Fig. 4 and Table 2). Both touched and bent bines were significantly reduced in elongation (Table 1; P  12–25. Thus, amassing many fertile nodes per vertical distance within a high sidewall greenhouse (e.g. ≥ 6 m) would be one viable means to increase the yield potential of hop in controlled environment production as long as plant resources did not become limiting. What’s more the 15.25 cm rise over run staircase created by the B90 internode bending treatment would allow for approximately double the bine length from the container to the top of a high sidewall greenhouse as compared to a vertically trellised bine (an additional direct step toward increasing node quantity per unit vertical production area). Secondly, the time and resource investment in overcoming the hop cultivar specific 11–24 infertile juvenile phase adds approximately three weeks to a single hop crop cycle e.g.11,36. Thus, it would be more time and space efficient to grow fewer crop cycles per annum that contain larger amounts of fertile nodes within a cycle as compared to additional cycles that contain the unfertile juvenile phase.In conclusion, repeated touch and/or bine bending within the active elongation zone of hop bines resulted in shortened internode length with higher cone production per given area. Mechanical stimuli did not reduce cone yield or flower quality. The results demonstrate that successive local internode strain can aid the control of internode elongation. Moreover, the study provides evidence that thigmomorphogenic cues can be used as a management tool to increase bine compactness and increase node density per unit area. This finding is especially important for growth control when production space is limiting and/or of high-value (e.g. greenhouse production)1. Hence, mechanical perturbation was an effective non-chemical means to control hop internode length. Nonetheless, models aimed at predicting internode length of hop bines in response to strain should still take into account a cultivar parameter. The results are practical on a commercial scale because the methods of touch and bending used in this study are easy to apply with minimal investment in labor, have a short time interval of application (approximately 5–10 s−1 per bine per 24 h), and the application duration is relatively short ~ 30 days out of the 90–120 day crop cycle, making this a practical endeavor when one considers that high value vine crops are already repeatedly handled by humans throughout their production cycle (e.g. viticulture grape and controlled environment cucumber production). More

  • in

    Effect of land use, habitat suitability, and hurricanes on the population connectivity of an endemic insular bat

    1.Ceballos, G. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Meyer, C. F. J., Struebig, M. J. & Willig, M. R. Responses of tropical bats to habitat fragmentation, logging, and deforestation. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 63–103 (Springer, 2016). https://doi.org/10.1007/978-3-319-25220-9_4.
    Google Scholar 
    3.Torres-Romero, E. J., Giordano, A. J., Ceballos, G. & López-Bao, J. V. Reducing the sixth mass extinction: understanding the value of human-altered landscapes to the conservation of the world’s largest terrestrial mammals. Biol. Conserv. 249, 108706 (2020).Article 

    Google Scholar 
    4.Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. Global biodiversity conservation: the critical role of hotspots BT—biodiversity hotspots: distribution and protection of conservation priority areas. In (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-642-20992-5_1.5.Bosso, L., Mucedda, M., Fichera, G., Kiefer, A. & Russo, D. A gap analysis for threatened bat populations on Sardinia. Hystrix Ital. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    6.Upham, N. S. Past and present of insular Caribbean mammals: understanding Holocene extinctions to inform modern biodiversity conservation. J. Mammal. 98, 913–917 (2017).Article 

    Google Scholar 
    7.Gould, W. A., Castro-Prieto, J. & Álvarez-Berríos, N. L. Climate change and biodiversity conservation in the Caribbean islands. In Encyclopedia of the World’s Biomes (eds Goldstein, M. & DellaSala, D.) 114–125 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-409548-9.12091-3.
    Google Scholar 
    8.Schoener, T. W., Spiller, D. A. & Losos, J. B. Variable ecological effects of hurricanes: the importance of seasonal timing for survival of lizards on Bahamian islands. Proc. Natl. Acad. Sci. 101, 177 LP – 181 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    9.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752–1246752 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Turvey, S. T., Kennerley, R. J., Nuñez-Miño, J. M. & Young, R. P. The Last Survivors: current status and conservation of the non-volant land mammals of the insular Caribbean. J. Mammal. 98, 918–936 (2017).Article 

    Google Scholar 
    12.Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb313 (2020).Article 

    Google Scholar 
    13.Turvey, S. T. & Crees, J. J. Extinction in the anthropocene. Curr. Biol. 29, R982–R986 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Donihue, C. M. et al. Hurricane effects on neotropical lizards span geographic and phylogenetic scales. Proc. Natl. Acad. Sci. 117, 10429 LP – 10434 (2020).Article 
    CAS 

    Google Scholar 
    15.Gannon, M. R., Kurta, A., Rodríguez-Durán, A. & Willig, M. R. Bats of Puerto Rico: An Island Focus and a Caribbean Perspective (Texas Tech University Press, 2005).
    Google Scholar 
    16.Miller, G. L. & Lugo, A. E. Guide to the ecological systems of Puerto Rico. IITF-GTR-35. (2009).17.Guzmán-Colón, D. K., Pidgeon, A. M., Martinuzzi, S. & Radeloff, V. C. Conservation planning for island nations: using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico. Glob. Ecol. Conserv. 23, e01075 (2020).Article 

    Google Scholar 
    18.Gould, W. A. et al. The Puerto Rico Gap Analysis Project Volume 1: Land Cover, Vertebrate Species Distributions, and Land Stewardship. General technical reports IITF-39 vol. 1 https://www.fs.usda.gov/treesearch/pubs/38430 (2008).19.Gould, W. A. Puerto Rico gap analysis project. GAP Anal. Bull. 16, 71–79 (2009).
    Google Scholar 
    20.Gould, W. A., Quiñones, M., Solorzano, M., Alcobas, W. & Alarcon, C. Protected Natural Areas of Puerto Rico. Res. Map IITF-RMAP-02. Rio Piedras, PR US Dep. Agric. For. Serv. Int. Inst. Trop. For. (2011).21.Junta de Planificación. Plan de Uso de Terrenos, Guías de Ordenación del Territorio. 220 (2015).22.Gould, W. A., Wadsworth, F. H., Quiñones, M., Fain, S. J. & Álvarez-Berríos, N. L. Land use, conservation, forestry, and agriculture in Puerto Rico. Forests 8, 242–263 (2017).Article 

    Google Scholar 
    23.QGIS.org. QGIS Geographic Information System (2016).24.Martinuzzi, S., Gould, W. A., González, O. M. R., Quiñones, M. & Jiménez, M. E. Urban and rural land use in Puerto Rico. Res. Map IITF-RMAP-01. Rio Piedras, PR US Dep. Agric. For. Serv. Int. Inst. Trop. For. (2008).25.Gould, W. A., Martinuzzi, S. & González, O. M. R. High and low density development in Puerto Rico. Res. Map IITF-RMAP-11. Rio Piedras, PR US Dep. Agric. For. Serv. Int. Inst. Trop. For. (2008).26.Gannon, M. R. & Willig, M. R. The effects of Hurricane Hugo on bats of the Luquillo experimental forest of Puerto Rico. Biotropica 26, 320 (1994).Article 

    Google Scholar 
    27.Gannon, M. R. & Willig, M. R. Long-term monitoring protocol for bats: lessons from the Luquillo Experimental Forest of Puerto Rico. For. Biodivers. North Cent. South Am. Caribbean. Res. Monit. Man Biosph. Ser. 21, 271–291 (1998).
    Google Scholar 
    28.Gannon, M. R. & Willig, M. R. Island in the storm: disturbance ecology of plant-visiting bats on the hurricane-prone island of Puerto Rico. In Island Bats: Evolution, Ecology, and Conservation (eds Fleming, T. H. & Racey, P.) 281–301 (University of Chicago Press, 2009).
    Google Scholar 
    29.Jones, K. E., Barlow, K. E., Vaughan, N., Rodríguez-Durán, A. & Gannon, M. R. Short-term impacts of extreme environmental disturbance on the bats of Puerto Rico. Anim. Conserv. 4, 59–66 (2001).Article 

    Google Scholar 
    30.Rodríguez-Durán, A. & Vázquez, R. The bat Artibeus jamaicensis in Puerto Rico (West Indies): seasonality of diet, activity, and effect of a hurricane. Acta Chiropterologica 3, 53–61 (2001).
    Google Scholar 
    31.Rodríguez-Durán, A., Nieves, N. A. & Avilés-Ruiz, Y. Hurricane-mediated extirpation of a bat from an Antillean Island. Caribb. Nat. 78, 1–7 (2020).
    Google Scholar 
    32.Genoways, H. H. & Baker, R. J. Stenoderma rufum. Mamm. Species https://doi.org/10.2307/3503991 (1972).Article 

    Google Scholar 
    33.Kwiecinski, G. G. & Coles, W. C. Presence of Stenoderma rufum beyond the Puerto Rican bank. Occas. Pap. Museum Texas Tech Univ. https://doi.org/10.5962/bhl.title.156896 (2007).Article 

    Google Scholar 
    34.Liu, X. et al. Litterfall production prior to and during Hurricanes Irma and Maria in four Puerto Rican forests. Forests 9, 367 (2018).Article 

    Google Scholar 
    35.Rodríguez-Durán, A. Stenoderma rufum. IUCN Red List Threat. Species e.T20743A22065638 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T20743A22065638.en (2016).Article 

    Google Scholar 
    36.Gannon, M. R. Foraging Ecology, Reproductive Biology, and Systematics of the Red Fig-Eating Bat (Stenoderma rufum) in the Tabonuco Rain Forest of Puerto Rico (Texas Tech University, 1991).
    Google Scholar 
    37.Meyer, C. F. J. & Kalko, E. K. V. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation: land-bridge islands as a model system. J. Biogeogr. 35, 1711–1726 (2008).Article 

    Google Scholar 
    38.Estrada-Villegas, S., Meyer, C. F. J. & Kalko, E. K. V. Effects of tropical forest fragmentation on aerial insectivorous bats in a land-bridge island system. Biol. Conserv. 143, 597–608 (2010).Article 

    Google Scholar 
    39.Feng, Y., Negrón-Juárez, R. I. & Chambers, J. Q. Remote sensing and statistical analysis of the effects of hurricane María on the forests of Puerto Rico. Remote Sens. Environ. 247, 111940 (2020).ADS 
    Article 

    Google Scholar 
    40.Soto-Centeno, J. A. & Steadman, D. W. Fossils reject climate change as the cause of extinction of Caribbean bats. Sci. Rep. 5, 7971 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Razgour, O. Beyond species distribution modeling: a landscape genetics approach to investigating range shifts under future climate change. Ecol. Inform. 30, 250–256 (2015).Article 

    Google Scholar 
    42.Rodríguez-Durán, A. Bat assemblages in the West Indies: the role of caves. In Island Bats: Evolution, Ecology and Conservation (eds Fleming, T. H. & Racey, P.) 265–280 (University of Chicago Press, 2009).
    Google Scholar 
    43.Nassar, J. M., Aguirre, L. F., Rodríguez-Herrera, B. & Medellín, R. A. Threats, status, and conservation perspectives for leaf-nosed bats. In Phyllostomid Bats: A Unique Mammalian Radiation (eds Fleming, T. H. et al.) 470 (University of Chicago Press, 2020).
    Google Scholar 
    44.Rodríguez-Durán, A. Nonrandom aggregations and distribution of cave-dwelling bats in Puerto Rico. J. Mammal. 79, 141–146 (1998).Article 

    Google Scholar 
    45.Rodríguez-Durán, A. & Padilla-Rodríguez, E. New records for the bat fauna of Mona Island, Puerto Rico, with notes on their natural history. Caribb. J. Sci. 46, 102–105 (2010).Article 

    Google Scholar 
    46.Rodríguez-Durán, A. & Feliciano-Robles, W. Conservation value of remnant habitat for neotropical bats on islands. Caribb. Nat. 35, 1–10 (2016).
    Google Scholar 
    47.Gómez-Ruiz, E. P. & Lacher, T. E. Modelling the potential geographic distribution of an endangered pollination corridor in Mexico and the United States. Divers. Distrib. 23, 67–78 (2017).Article 

    Google Scholar 
    48.Shah, V. B. & McRae, B. H. Circuitscape: a tool for landscape ecology. In Proceedings of the 7th Python in Science Conference, vol. 7, 62–66 (SciPy Conference California, 2008).49.McRae, B. H., Dickson, B. G., Keitt, T. H. & Shah, V. B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Carroll, C., McRae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of Gray wolf populations in Western North America. Conserv. Biol. 26, 78–87 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Theobald, D. M., Reed, S. E., Fields, K. & Soulé, M. Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conserv. Lett. 5, 123–133 (2012).Article 

    Google Scholar 
    52.Dutta, T., Sharma, S., McRae, B. H., Roy, P. S. & DeFries, R. Connecting the dots: mapping habitat connectivity for tigers in central India. Reg. Environ. Change 16, 53–67 (2016).Article 

    Google Scholar 
    53.Mallory, C. D. & Boyce, M. S. Prioritization of landscape connectivity for the conservation of Peary caribou. Ecol. Evol. 9, 2189–2205 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Osipova, L. et al. Using step-selection functions to model landscape connectivity for African elephants: accounting for variability across individuals and seasons. Anim. Conserv. 22, 35–48 (2019).Article 

    Google Scholar 
    55.GBIF.org. GBIF Occurrence Download (2019). https://doi.org/10.15468/dl.atjvik56.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    57.Vermote, E. & NOAA CDR Program. NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI), Version 5 (2019). https://doi.org/10.7289/V5ZG6QH9.58.de Moraes, W. M. & Viveiros Grelle, C. E. Does environmental suitability explain the relative abundance of the tailed tailless bat, Anoura caudifer. Nat. Conserv. 10, 221–227 (2012).Article 

    Google Scholar 
    59.Gutiérrez, E. E., Boria, R. A. & Anderson, R. P. Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums. Ecography 37, 741–753 (2014).Article 

    Google Scholar 
    60.Gutiérrez, E. E. et al. The taxonomic status of Mazama bricenii and the significance of the Táchira depression for mammalian endemism in the Cordillera de Mérida, Venezuela. PLoS ONE 10, 1–24 (2015).
    Google Scholar 
    61.Ancillotto, L., Mori, E., Bosso, L., Agnelli, P. & Russo, D. The Balkan long-eared bat (Plecotus kolombatovici) occurs in Italy—first confirmed record and potential distribution. Mamm. Biol. 96, 61–67 (2019).Article 

    Google Scholar 
    62.Alberdi, A., Aizpurua, O., Aihartza, J. & Garin, I. Unveiling the factors shaping the distribution of widely distributed alpine vertebrates, using multi-scale ecological niche modelling of the bat Plecotus macrobullaris. Front. Zool. 11, 77 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    64.Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.) 31, 161–175 (2008).Article 

    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (2018).66.Muscarella, R. et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).Article 

    Google Scholar 
    67.Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar  More

  • in

    Progeny fitness determines the performance of the parasitoid Therophilus javanus, a prospective biocontrol agent against the legume pod borer

    1.Dung, D. T., Thi, L., Phuong, H. & Long, K. D. Insect parasitoid composition on soybean, some eco-biological characteristics of the parasitoid, xanthopimpla punctata fabricius on soybean leaffolder omiodes indicata ( Fabricius ) in Hanoi Vietnam. ISSAAS J. 17, 58–69 (2011).
    Google Scholar 
    2.Srinivasan, R., Yule, S., Lin, M. Y. & Khumsuwan, C. Recent developments in the biological control of legume pod borer (Maruca vitrata) on yard-long bean. Acta Hort. 1102, 143–149 (2015).Article 

    Google Scholar 
    3.Van Lenteren, J. C. et al. Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48, 3–38 (2003).Article 

    Google Scholar 
    4.Aboubakar Souna, D. et al. An insight in the reproductive biology of Therophilus javanus (hymenoptera, braconidae, and agathidinae), a potential biological control agent against the legume pod borer (Lepidoptera, Crambidae). Psyche (London) 2017, 1–8 (2017).Article 

    Google Scholar 
    5.Aboubakar Souna, D. et al. Volatiles from Maruca vitrata (Lepidoptera, Crambidae) host plants influence olfactory responses of the parasitoid Therophilus javanus (Hymenoptera, Braconidae, Agathidinae). Biol. Control 130, 104–109 (2019).CAS 
    Article 

    Google Scholar 
    6.Bellows, T. S. & Van Driesche, R. G. Life Table Construction and Analysis for Evaluating Biological Control Agents. in Handbook of Biological Control 199–223 (Elsevier, 1999). https://doi.org/10.1016/b978-012257305-7/50055-2.7.Maia, A. D. H., Luiz, A. J. & Campanhola, C. Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. J. Econ. Entomol. 93(2), 511–518 (2000).Article 

    Google Scholar 
    8.Roy, M., Brodeur, J. & Cloutier, C. Effect of temperature on intrinsic rates of natural increase (rm) of a coccinellid and its spider mite prey. Biocontrol 48, 57–72 (2003).Article 

    Google Scholar 
    9.Harvey, J. A. Factors affecting the evolution of development strategies in parasitoid wasps: The importance of functional constraints and incorporating complexity. Entomol. Exp. Appl. 117, 1–13 (2005).Article 

    Google Scholar 
    10.Henderson, R. E., Kuriachan, I. & Vinson, S. B. Postegression feeding enhances growth, survival, and nutrient acquisition in the endoparasitoid Toxoneuron nigriceps (Hymenoptera: Braconidae). J. Insect Sci. 15, 51 (2015).Article 

    Google Scholar 
    11.Kuriachan, I., Henderson, R., Laca, R. & Vinson, S. B. Post-egression host tissue feeding is another strategy of host regulation by the koinobiont wasp toxoneuron nigriceps. J. Insect Sci. 11, 1–11 (2011).Article 

    Google Scholar 
    12.Benelli, G. et al. The impact of adult diet on parasitoid reproductive performance. J. Pest. Sci. 90, 807–823 (2017).Article 

    Google Scholar 
    13.Harvey, J. A. & Strand, M. R. The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology 83, 2439–2451 (2002).Article 

    Google Scholar 
    14.Harvey, J. A., Bezemer, T. M., Gols, R., Nakamatsu, Y. & Tanaka, T. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiol. Entomol. 33, 217–225 (2008).Article 

    Google Scholar 
    15.Harvey, J. A. et al. Development of a solitary koinobiont hyperparasitoid in different instars of its primary and secondary hosts. J. Insect Physiol. 90, 36–42 (2016).CAS 
    Article 

    Google Scholar 
    16.Harvey, J. A. & Malcicka, M. Nutritional integration between insect hosts and koinobiont parasitoids in an evolutionary framework. Entomol. Exp. Appl. 159, 181–188 (2016).Article 

    Google Scholar 
    17.Gols, R., Ros, V. I. D., Ode, P. J., Vyas, D. & Harvey, J. A. Varying degree of physiological integration among host instars and their endoparasitoid affects stress-induced mortality. Entomol. Exp. Appl. 167, 424–432 (2019).Article 

    Google Scholar 
    18.Vieira, L. J. P., Franco, G. M. & Sampaio, M. V. Host preference and fitness of Lysiphlebus testaceipes (Hymenoptera: Braconidae) in different instars of the aphid Schizaphis graminum. Neotrop. Entomol. 48, 391–398 (2019).CAS 
    Article 

    Google Scholar 
    19.Harvey, J. A. Dynamic effects of parasitism by an endoparasitoid wasp on the development of two host species: Implications for host quality and parasitoid fitness. Ecol. Entomol. 25, 267–278 (2000).Article 

    Google Scholar 
    20.Harvey, J. A., Kadash, K. & Strand, M. R. Differences in larval feeding behavior correlate with altered developmental strategies in two parasitic wasps: Implications for the size-fitness hypothesis. Oikos 88, 621–629 (2000).Article 

    Google Scholar 
    21.van Achterberg, C. & Long, K. D. Revision of the Agathidinae (Hymenoptera, Braconidae) of Vietnam, with the description of forty-two new species and three new genera. Zookeys https://doi.org/10.3897/zookeys.54.475 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Kuriachan, I., Consoli, F. L. & Vinson, S. B. In vitro rearing of Toxoneuron nigriceps (Hymenoptera: Braconidae), a larval endoparasitoid of Heliothis virescens (Lepidoptera: Noctuidae) from early second instar to third instar larvae. J. Insect Physiol. 52, 881–887 (2006).CAS 
    Article 

    Google Scholar 
    23.Pennacchio, F., Vinson, S. B. & Tremblay, E. Growth and development of Cardiochiles nigriceps viereck (hymenoptera, braconidae) larvae and their synchronization with some changes of the hemolymph composition of their host, Heliothis virescens (F.) (Lepidoptera, Noctuidae). Arch. Insect Biochem. Physiol. 24, 65–77 (1993).CAS 
    Article 

    Google Scholar 
    24.Dannon, E. A., Tamò, M., van Huis, A. & Dicke, M. Functional response and life history parameters of Apanteles taragamae, a larval parasitoid of Maruca vitrata. Biocontrol 55, 363–378 (2010).Article 

    Google Scholar 
    25.Henry, L. M., Gillespie, D. R. & Roitberg, B. D. Does mother really know best? Oviposition preference reduces reproductive performance in the generalist parasitoid Aphidius ervi. Entomol. Exp. Appl. 116, 167–174 (2005).Article 

    Google Scholar 
    26.Moreau, S. J. M. & Asgari, S. Venom proteins from parasitoid wasps and their biological functions. Toxins (Basel). 7, 2385–2412 (2015).CAS 
    Article 

    Google Scholar 
    27.Aboubakar Souna, D. Assessing the potential of Therophilus javanus, a biological control candidate against the cowpea pod borer Maruca vitrata in West Africa. (University of Montpellier (France); University of Abomey-Calavi (Benin), 2018).28.Beckage, N. E. & Gelman, D. B. Wasp parasitoid disruption of host development: Implications for new biologically based strategies for insect control. Annu. Rev. Entomol. 49, 299–330 (2004).CAS 
    Article 

    Google Scholar 
    29.Qiu, B., Zhou, Z. & Xu, Z. Age Preference and Fitness of Microplitis manilae (Hymenoptera: Braconidae) Reared on Spodoptera exigua (Lepidoptera: Noctuidae). Florida Entomol. 96, 602–609 (2013).Article 

    Google Scholar 
    30.Mayhew, P. J. Comparing parasitoid life histories. Entomol. Exp. Appl. 159, 147–162 (2016).Article 

    Google Scholar 
    31.Sithole, R., Chinwada, P. & Lohr, B. L. Effects of host larval stage preferences and diet on life history traits of Diadegma mollipla, an African parasitoid of the Diamondback Moth. Biocontrol Sci. Technol. 28, 172–184 (2018).Article 

    Google Scholar 
    32.Boulton, R. A., Collins, L. A. & Shuker, D. M. Beyond sex allocation: The role of mating systems in sexual selection in parasitoid wasps. Biol. Rev. https://doi.org/10.1111/brv.12126 (2015).Article 
    PubMed 

    Google Scholar 
    33.Beukeboom, L. W., Ellers, J. & Van Alphen, J. J. M. Absence of single-locus complementary sex determination in the braconid wasps Asobara tabida and Alysia manducator. Heredity (Edinb). 84, 29–36 (2000).Article 

    Google Scholar 
    34.Zhou, Y., Gu, H. & Dorn, S. Single-locus sex determination in the parasitoid wasp Cotesia glomerata (Hymenoptera: Braconidae). Heredity (Edinb). https://doi.org/10.1038/sj.hdy.6800829 (2006).Article 
    PubMed 

    Google Scholar 
    35.Van Nieuwenhove, G. A. & Ovruski, S. M. Influence of Anastrepha fraterculus (Diptera: Tephritidae) larval instars on the production of Diachasmimorpha longicaudata (Hymneoptera: Braconidae) progeny and their sex ratio. Florida Entomol. 94, 863–868 (2011).Article 

    Google Scholar 
    36.Huang, Y. B. & Chi, H. Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): With an invalidation of the jackknife technique. J. Appl. Entomol. 137, 327–339 (2013).Article 

    Google Scholar 
    37.Shapiro, A. S. S. & Wilk, M. B. Biometrika trust an analysis of variance test for normality (Complete Samples ) Published by : Oxford University Press on behalf of Biometrika Trust Stable. Biometrika 52, 591–611 (1965).38.Bretz, F., Hothorn, T. & Westfall, P. H. Multiple comparisons using R. 187 (2011). https://doi.org/10.1128/AAC.03728-14.39.Mangiafico, S. S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.0.0. Cran R (2016). https://doi.org/10.1016/J.AMJSURG.2007.06.026.40.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria (2019).41.Chi, H. & Su, H.-Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 35, 10–21 (2006).Article 

    Google Scholar 
    42.Ning, S., Zhang, W., Sun, Y. & Feng, J. Development of insect life tables: Comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci. Rep. 7, 4821 (2017).ADS 
    Article 

    Google Scholar 
    43.Chi, H. TWOSEX-MSChart: a computer program for the age stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. 2015b Available: http://140.120.197.173/Ecology/ (access (2015).44.Akca, I., Ayvaz, T., Yazici, E., Smith, C. L. & Chi, H. Demography and population projection of Aphis fabae (Hemiptera: Aphididae): with additional comments on life table research criteria. J. Econ. Entomol. 108, 1466–1478 (2015).Article 

    Google Scholar  More

  • in

    Patch selection by bumble bees navigating discontinuous landscapes

    1.Marden, J. H. & Waddington, K. D. Floral choices by honeybees in relation to the relative distances to flowers. Physiol. Entomol. 6, 431–435 (1981).Article 

    Google Scholar 
    2.Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29, 779–784 (1981).Article 

    Google Scholar 
    3.Bauer, A. A., Clayton, M. K. & Brunet, J. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. Am. J. Bot. 104, 772–781 (2017).PubMed 
    Article 

    Google Scholar 
    4.Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Klahre, U. et al. Pollinator choice in petunia depends on two major genetic loci for floral scent production. Curr. Biol. 21, 730–739 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Muth, F., Papaj, D. R. & Leonard, A. S. Bees remember flowers for more than one reason: pollen mediates associative learning. Anim. Behav. 111, 93–100 (2016).Article 

    Google Scholar 
    7.Brunet, J., Thairu, M. W., Henss, J. M., Link, R. I. & Kluever, J. A. The effects of flower, floral display, and reward sizes on bumblebee foraging behavior when pollen is the reward and plants are dichogamous. Int. J. Plant Sci. 176, 811–819 (2015).Article 

    Google Scholar 
    8.Nicholls, E. & De Ibarra, N. H. Bees associate colour cues with differences in pollen rewards. J. Exp. Biol. 217, 2783–2788 (2014).PubMed 
    Article 

    Google Scholar 
    9.Thairu, M. W. & Brunet, J. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea. Ann. Bot. 115, 971–979 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Ishii, H. S. Floral display size influences subsequent plant choice by bumble bees. Funct. Ecol. 20, 233–238 (2006).Article 

    Google Scholar 
    11.Mitchell, R. J., Karron, J. D., Holmquist, K. G. & Bell, J. M. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Funct. Ecol. 18, 116–124 (2004).Article 

    Google Scholar 
    12.Makino, T. T. & Sakai, S. Experience changes pollinator responses to floral display size: from size-based to reward-based foraging. Funct. Ecol. 21, 854–863 (2007).Article 

    Google Scholar 
    13.Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533 (1999).Article 

    Google Scholar 
    14.Osborne, J. L. & Williams, I. H. Site constancy of bumble bees in an experimentally patchy habitat. Agric. Ecosyst. Environ. 83, 129–141 (2001).Article 

    Google Scholar 
    15.Saville, N. M., Dramstad, W. E., Fry, G. L. A. & Corbet, S. A. Bumblebee movement in a fragmented agricultural landscape. Agric. Ecosyst. Environ. 61, 145–154 (1997).Article 

    Google Scholar 
    16.Ogilvie, J. E. & Thomson, J. D. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species. Ecology 97, 1442–1451 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Cresswell, J. E. & Osborne, J. L. The effect of patch size and separation on bumblebbe foraging in oilseed rape: implications for gene flow. J. Appl. Ecol. 41, 539–546 (2004).Article 

    Google Scholar 
    18.Ohashi, K. & Thomson, J. D. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Ann. Bot. 103, 1365–1378 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Saleh, N. & Chittka, L. Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia 151, 719–730 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M. & Chittka, L. Continuous radar tracking illustrates the development of multi-destination routes of bumblebees. Sci. Rep. 7, 1–15 (2017).CAS 
    Article 

    Google Scholar 
    21.Lihoreau, M., Chittka, L. & Raine, N. E. Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees. Funct. Ecol. 25, 1284–1292 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Lihoreau, M., Chittka, L. & Raine, N. E. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. Am. Nat. 176, 744–757 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Minahan, D. F. & Brunet, J. Strong interspecific differences in foraging activity observed between honey bees and bumble bees using miniaturized radio frequency identification (RFID). Front. Ecol. Evol. 6, 156 (2018).Article 

    Google Scholar 
    25.Brunet, J., Zhao, Y. & Clayton, M. K. Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE 14, e0212561 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Reynolds, A. M., Lihoreau, M. & Chittka, L. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements. PLoS Comput. Biol. 9, e1002938 (2013).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Marschall, E. A., Chesson, P. L. & Stein, R. A. Foraging in a patchy environment: prey-encounter rate and residence time distributions. Anim. Behav. 37, 444–454 (1989).Article 

    Google Scholar 
    28.Pyke, G. H. Optimal foraging theory : a critical review. Ann. Rev. Ecol. Syst. 15, 523–575 (1984).Article 

    Google Scholar 
    29.Rands, S. A. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology. PeerJ 2, e269 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Lima, S. L. & Zollner, P. A. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Brunet, J. A conceptual framework that links pollinator foraging behavior to gene flow. In Proceedings for the 2018 Winter Seed Conference 63–67 (2018).32.Macarthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article 

    Google Scholar 
    33.Pyke, G. H. Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol. Evol. 6, 1–16 (2015).Article 

    Google Scholar 
    34.Heinrich, B. ‘Majoring’ and ‘minoring’ by foraging bumblebees, Bombus vagans: an experimental analysis. Ecology 60, 245–255 (1979).Article 

    Google Scholar 
    35.Somme, L. et al. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46, 92–106 (2015).ADS 
    Article 

    Google Scholar 
    36.Levey, D. J., Bolker, B. M., Tewksbury, J. J., Sargent, S. & Haddad, N. M. Effects of landscape corridors on seed dispersal by birds. Science 309, 146–148 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Levey, D. J., Tewksbury, J. J. & Bolker, B. M. Modelling long-distance seed dispersal in heterogeneous landscapes. J. Ecol. 96, 599–608 (2008).Article 

    Google Scholar 
    38.Pasquet, R. S. et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. U. S. A. 105, 13456–13461 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Smith, K. & Spangenberg, G. Considerations for managing agricultural co-existence between transgenic and non-transgenic cultivars of outcrossing perennial forage plants in dairy pastures. Agronomy 6, 59–68 (2016).Article 

    Google Scholar 
    40.Ellstrand, N. C. et al. Introgression of crop alleles into wild or weedy populations. Annu. Rev. Ecol. Evol. Syst. 44, 325–345 (2013).Article 

    Google Scholar 
    41.Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Esch, H. E. & Burns, J. E. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Srinivasan, M. V., Zhang, S., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the ‘odometer’. Science (80-.) 287, 851–853 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Collett, M. & Collett, T. S. How do insects use path integration for their navigation?. Biol. Cybern. 83, 245–259 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23, R789–R800 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Chittka, L., Geiger, K. & Kunze, J. The influences of landmarks on distance estimation of honey bees. Anim. Behav. 50, 23–31 (1995).Article 

    Google Scholar 
    47.Srinivasan, M. V., Lehrer, M. & Horridge, G. A. Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc. R. Soc. B Biol. Sci. 238, 331–350 (1990).ADS 

    Google Scholar 
    48.Lehrer, M. Looking all around: honeybees use different cues in different eye regions. J. Exp. Biol. 201, 3275–3292 (1998).PubMed 
    PubMed Central 

    Google Scholar 
    49.Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2, 185–209 (1999).Article 

    Google Scholar 
    50.Ohashi, K., Thomson, J. D. & D’Souza, D. Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behav. Ecol. 18, 1–11 (2007).Article 

    Google Scholar 
    51.Comba, L. Patch use by bumblebees (hymenoptera apidae): temperature, wind, flower density and traplining. Ethol. Ecol. Evol. 11, 243–264 (1999).Article 

    Google Scholar 
    52.Ohashi, K., Leslie, A. & Thomson, J. D. Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behav. Ecol. 19, 936–948 (2008).Article 

    Google Scholar 
    53.Klein, S., Pasquaretta, C., Barron, A. B., Devaud, J. M. & Lihoreau, M. Inter-individual variability in the foraging behaviour of traplining bumblebees. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    54.Chittka, L. Bee cognition. Curr. Biol. 27, R1049–R1053 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Ohashi, K. & Yahara, T. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Funct. Ecol. 16, 492–503 (2002).Article 

    Google Scholar 
    56.Brunet, J. & Stewart, C. M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche A J. Entomol. https://doi.org/10.1155/2010/201858 (2010).Article 

    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    58.Weisberg, S. Applied Linear Regression (Wiley, 2013). https://doi.org/10.2307/3150981.Book 
    MATH 

    Google Scholar  More

  • in

    Serum correlation, demographic differentiation, and seasonality of blubber testosterone in common bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, FL

    1.Kellar, N. M. et al. Blubber testosterone: a potential marker of male reproductive status in short-beaked common dolphins. Mar. Mamm. Sci. 25(3), 507–522 (2009).CAS 
    Article 

    Google Scholar 
    2.Atkinson, S. & Yoshioka, M. Endocrinology of reproduction. In Reproductive biology and phylogeny of Cetacea. Whales, dolphins and porpoises (ed. Miller, D. L.) 171–192 (Science Publishers, 2007).
    Google Scholar 
    3.Cates, K. A. et al. Testosterone trends within and across seasons in male humpback whales (Megaptera novaeangliae) from Hawaii and Alaska. Gen. Comp. Endocrinol. 279, 164–173 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.McKenna, T. J. et al. 2 A critical review of the origin and control of adrenal androgens. Baillieres Clin. Obstet. Gynaecol. 11(2), 229–248 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Sharpe, R. et al. Testosterone and Spermatogenesis identification of stage-specific, androgen-regulated proteins secreted by adult rat seminiferous tubules. J. Androl. 13, 172–184 (1992).CAS 
    PubMed 

    Google Scholar 
    6.Kita, S., Yoshioka, M. & Kashiwagi, M. Relationship between sexual maturity and serum and testis testosterone concentrations in short-finned pilot whales Globicephala macrorhynchus. Fish. Sci. 65(6), 878–883 (1999).CAS 
    Article 

    Google Scholar 
    7.Schroeder, J. P. & Keller, K. V. Seasonality of serum testosterone levels and sperm density in Tursiops truncatus. J. Exp. Zool. 249(3), 316–321 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Robeck, T. R. et al. Reproduction, growth and development in captive beluga (Delphinapterus leucas). Zoo Biol. 24(1), 29–49 (2005).Article 

    Google Scholar 
    9.Wells, R. Reproductive behavior and hormonal correlates in Hawaiian spinner dolphins, Stenella longirostris. In Reproduction in Whales, Dolphins, and Porpoises (eds Perrin, W. F. et al.) 465–472 (Reports of the International Whaling Commission, 1984).
    Google Scholar 
    10.Mogoe, T. et al. Functional reduction of the southern minke whale (Balaenoptera acutorostrata) testis during the feeding season. Mar. Mamm. Sci. 16(3), 559–569 (2000).Article 

    Google Scholar 
    11.Kjeld, M. et al. Changes in blood testosterone and progesterone concentrations of the North Atlantic minke whale (Balaenoptera acutorostrata) during the feeding season. Can. J. Fish. Aquat. Sci. 61(2), 230–237 (2004).CAS 
    Article 

    Google Scholar 
    12.Temte, J. L. Use of serum progesterone and testosterone to estimate sexual maturity in Dall’s porpoise Phocoenoides dalli. Fish. Bull. 89(1), 161–166 (1991).
    Google Scholar 
    13.Robeck, T. R. et al. Reproduction, growth and development in captive beluga (Delphinapterus leucas). Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 24(1), 29–49 (2005).
    Google Scholar 
    14.Kirby, V. L. Endocrinology of marine mammals. In Handbook of Marine Mammal Medicine: Health (ed. Dierauf, L. A.) 303–351 (Disease and Rehabilitation CRC Press Inc, 1990).
    Google Scholar 
    15.Desportes, G., Saboureau, M. & Lacroix, A. Growth-related changes in testicular mass and plasma testosterone concentrations in long-finned pilot whales, Globicephala melas. J. Reprod. Fertil. 102(1), 237–244 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Kjeld, J., Sigurjonsson, J. & Arnason, A. Sex hormone concentrations in blood serum from the North Atlantic fin whale (Balaenoptera physalus). J. Endocrinol. 134(3), 405–413 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Boggs, A. S. et al. Remote blubber sampling paired with liquid chromatography tandem mass spectrometry for steroidal endocrinology in free-ranging bottlenose dolphins (Tursiops truncatus). Gen. Comp. Endocrinol. 281, 164–172 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Weller, D. W. et al. Behavioral responses of bottlenose dolphins to remote biopsy sampling and observations of surgical biopsy wound healing. Aquat. Mamm. 23(1), 49–58 (1997).19.Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetac. Res. Manage. 6(2), 175–189 (2004).
    Google Scholar 
    20.Marsili, L. et al. Skin biopsies for cell cultures from Mediterranean free-ranging cetaceans. Mar. Environ. Res. 50(1–5), 523–526 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Hobbs, K. E. et al. PCBs and organochlorine pesticides in blubber biopsies from free-ranging St. Lawrence River Estuary beluga whales (Delphinapterus leucas), 1994–1998. Environ. Pollut. 122(2), 291–302 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Kellar, N. M. et al. Determining pregnancy from blubber in three species of delphinids. Mar. Mamm. Sci. 22(1), 1–16 (2006).Article 

    Google Scholar 
    23.Mingramm, F. et al. Evaluation of respiratory vapour and blubber samples for use in endocrine assessments of bottlenose dolphins (Tursiops spp.). Gen. Comp. Endocrinol. 274, 37–49 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Galligan, T. M. et al. Blubber steroid hormone profiles as indicators of physiological state in free-ranging common bottlenose dolphins (Tursiops truncatus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 239, 110583 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Dierauf, L. & Gulland, F. M. CRC Handbook of Marine Mammal Medicine: Health, Disease, and Rehabilitation (CRC Press, 2001).Book 

    Google Scholar 
    26.Champagne, C. D. et al. Comprehensive endocrine response to acute stress in the bottlenose dolphin from serum, blubber, and feces. Gen. Comp. Endocrinol. 266, 178–193 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Kellar, N. M. et al. Variation of bowhead whale progesterone concentrations across demographic groups and sample matrices. Endang. Species Res. 22(1), 61–72 (2013).Article 

    Google Scholar 
    28.Richard, J. T. et al. Testosterone and progesterone concentrations in blow samples are biologically relevant in belugas (Delphinapterus leucas). Gen. Comp. Endocrinol. 246, 183–193 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hunt, K. E. et al. Multi-year patterns in testosterone, cortisol and corticosterone in baleen from adult males of three whale species. Conserv. Physiol. 6(1), coy049 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Wells, R. S. Dolphin social complexity: lessons from long-term study and life history. In Animal Social Complexity: Intelligence, Culture, and Individualized Societies (eds de Waal, F. B. M. & Tyack, P. L.) 32–56 (Harvard University Press, 2003).
    Google Scholar 
    31.Brook, F. et al. Ultrasonographic imaging of the testis and epididymis of the bottlenose dolphin, Tursiops truncatus aduncas. J. Reprod. Fertil. 119(2), 233–240 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Wells, R. S. Social structure and life history of bottlenose dolphins near Sarasota Bay, Florida: Insights from four decades and five generations. In Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies, Primatology Monographs (eds Yamagiwa, J. & Karczmarski, L.) 149–172 (Springer, 2014).
    Google Scholar 
    33.Barratclough, A. et al. Health assessments of common bottlenose dolphins (Tursiops truncatus): past, present, and potential conservation applications. Front. Vet. Sci. 6, 444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Champagne, C. D. et al. Blubber cortisol qualitatively reflects circulating cortisol concentrations in bottlenose dolphins. Mar. Mamm. Sci. 33(1), 134–153 (2017).CAS 
    Article 

    Google Scholar 
    35.Norman, A. W. & Litwack, G. Hormones (Academic Press, 1997).
    Google Scholar 
    36.Urian, K. et al. Seasonality of reproduction in bottlenose dolphins, Tursiops truncatus. J. Mammal. 77(2), 394–403 (1996).Article 

    Google Scholar 
    37.Wells, R. Reproduction in wild bottlenose dolphins: overview of patterns observed during a long-term study. in Bottlenose Dolphins Reproduction Workshop. AZA marine mammal taxon advisory group. 2000. Silver Springs, MD.38.Read, A. et al. Patterns of growth in wild bottlenose dolphins, Tursiops truncatus. J. Zool. 231(1), 107–123 (1993).Article 

    Google Scholar 
    39.Trego, M. L. et al. Comprehensive screening links halogenated organic compounds with testosterone levels in male Delphinus delphis from the Southern California bight. Environ. Sci. Technol. 52(5), 3101–3109 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kannan, K. et al. Toxicity reference values for the toxic effects of polychlorinated biphenyls to aquatic mammals. Hum. Ecol. Risk Assess. 6(1), 181–201 (2000).CAS 
    Article 

    Google Scholar 
    41.Jepson, P. D. et al. Relationships between polychlorinated biphenyls and health status in harbor porpoises (Phocoena phocoena) stranded in the United Kingdom. Environ. Toxicol. Chem. Int. J. 24(1), 238–248 (2005).CAS 
    Article 

    Google Scholar 
    42.Minter, L. & DeLiberto, T. Seasonal variation in serum testosterone, testicular volume, and semen characteristics in the coyote (Canis latrans). Theriogenology 69(8), 946–952 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Preston, B. T. et al. Testes size, testosterone production and reproductive behaviour in a natural mammalian mating system. J. Anim. Ecol. 81(1), 296–305 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Desportes, G., Saboureau, M. & Lacroix, A. Growth-related changes in testicular mass and plasma testosterone concentrations in long-finned pilot whales Globicephala melas. Reproduction 102(1), 237–244 (1994).CAS 
    Article 

    Google Scholar 
    45.Ryan, C. et al. Lipid content of blubber biopsies is not representative of blubber in situ for fin whales (Balaenoptera physalus). Mar. Mamm. Sci. 29(3), 542–547 (2013).CAS 
    Article 

    Google Scholar 
    46.Wells, R. S. et al. Bottlenose dolphins as marine ecosystem sentinels: developing a health monitoring system. EcoHealth 1(3), 246–254 (2004).Article 

    Google Scholar 
    47.Wells, R. S. et al. Integrating life-history and reproductive success data to examine potential relationships with organochlorine compounds for bottlenose dolphins (Tursiops truncatus) in Sarasota Bay Florida. Sci. Total Environ. 349(1–3), 106–119 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Yordy, J. E. et al. Partitioning of persistent organic pollutants between blubber and blood of wild bottlenose dolphins: implications for biomonitoring and health. Environ. Sci. Technol. 44(12), 4789–4795 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Kellar, N. M. et al. Low reproductive success rates of common bottlenose dolphins Tursiops truncatus in the northern Gulf of Mexico following the Deepwater Horizon disaster (2010–2015). Endang. Species Res. 33, 143–158 (2017).Article 

    Google Scholar 
    50.Kellar, N. M. et al. Blubber cortisol: a potential tool for assessing stress response in free-ranging dolphins without effects due to sampling. PLoS ONE 10(2), e0115257 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Harrison, R. & Ridgway, S. Gonadal activity in some bottlenose dolphins (Tursiops truncatus). J. Zool. 165(3), 355–366 (1971).Article 

    Google Scholar 
    52.Wells, R. S. & Scott, M. D. Bottlenose Dolphin: common bottlenose dolphin: Tursiops truncates. In Encyclopedia of Marine Mammals 3rd edn (eds Würsig, B. et al.) 118–125 (Academic Press/Elsevier, 2009).
    Google Scholar 
    53.R Core Team. R: A Language and Environment for Statistical Computing. 2020, R Foundation for Statistical Computing: 2020, Vienna, Austria. URL https://www.R-project.org/.54.Wells, R. S. & Scott, M. D. Common Bottlenose Dolphin: Tursiops truncates, in Encyclopedia of Marine Mammals 252 (Elsevier, 2009).
    Google Scholar  More