Disturbance suppresses the aboveground carbon sink in North American boreal forests
1.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS
Article
Google Scholar
2.Lindroth, A., Grelle, A. & Morén, A.-S. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Glob. Change Biol. 4, 443–450 (1998).Article
Google Scholar
3.Kasischke, E. S., Christensen, N. Jr & Stocks, B. J. Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437–451 (1995).Article
Google Scholar
4.Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS
Article
Google Scholar
5.Welp, L. R. et al. Increasing summer net CO2 uptake in high northern ecosystems inferred from atmospheric inversions and comparisons to remote-sensing NDVI. Atmos. Chem. Phys. 16, 9047–9066 (2016).CAS
Article
Google Scholar
6.Myneni, R. B., Keeling, C., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).CAS
Article
Google Scholar
7.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS
Article
Google Scholar
8.Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS
Article
Google Scholar
9.Giguère-Croteau, C. et al. North America’s oldest boreal trees are more efficient water users due to increased [CO2], but do not grow faster. Proc. Natl Acad. Sci. USA 116, 2749–2754 (2019).Article
CAS
Google Scholar
10.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS
Article
Google Scholar
11.Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 33, L09703 (2006).
Google Scholar
12.White, J. C., Wulder, M. A., Hermosilla, T., Coops, N. C. & Hobart, G. W. A nationwide annual characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens. Environ. 194, 303–321 (2017).Article
Google Scholar
13.Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).CAS
Article
Google Scholar
14.Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).CAS
Article
Google Scholar
15.Wang, J. A. et al. Extensive land cover change across Arctic–boreal northwestern North America from disturbance and climate forcing. Glob. Change Biol. 26, 807–822 (2020).Article
Google Scholar
16.Johnstone, J. F., Hollingsworth, T. N., Chapin, F. S. & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).Article
Google Scholar
17.Wang, J. A. & Friedl, M. A. The role of land cover change in Arctic–boreal greening and browning trends. Environ. Res. Lett. 14, 125007 (2019).Article
Google Scholar
18.Beck, P. S. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).Article
Google Scholar
19.de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44 (2013).Article
Google Scholar
20.Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92 (2007).CAS
Article
Google Scholar
21.Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).Article
Google Scholar
22.Goulden, M. L. et al. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob. Change Biol. 17, 855–871 (2011).Article
Google Scholar
23.Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).CAS
Article
Google Scholar
24.Zimov, S. et al. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2. Science 284, 1973–1976 (1999).CAS
Article
Google Scholar
25.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).Article
Google Scholar
26.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).CAS
Article
Google Scholar
27.Matasci, G. et al. Three decades of forest structural dynamics over Canada’s forested ecosystems using Landsat time-series and lidar plots. Remote Sens. Environ. 216, 697–714 (2018).Article
Google Scholar
28.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS
Article
Google Scholar
29.Wulder, M. A., Hermosilla, T., White, J. C. & Coops, N. C. Biomass status and dynamics over Canada’s forests: disentangling disturbed area from associated aboveground biomass consequences. Environ. Res. Lett. 15, 094093 (2020).CAS
Article
Google Scholar
30.Margolis, H. A. et al. Combining satellite lidar, airborne lidar, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Can. J. For. Res. 45, 838–855 (2015).Article
Google Scholar
31.Neigh, C. S. et al. Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR. Remote Sens. Environ. 137, 274–287 (2013).Article
Google Scholar
32.Fisher, J. B. et al. Missing pieces to modeling the Arctic–boreal puzzle. Environ. Res. Lett. 13, 020202 (2018).Article
Google Scholar
33.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS
Article
Google Scholar
34.Kurz, W. A. et al. Carbon in Canada’s boreal forest—a synthesis. Environ. Rev. 21, 260–292 (2013).CAS
Article
Google Scholar
35.Price, D., Peng, C., Apps, M. & Halliwell, D. Simulating effects of climate change on boreal ecosystem carbon pools in central Canada. J. Biogeogr. 26, 1237–1248 (1999).Article
Google Scholar
36.Stocks, B. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, FFR-5 (2002).
Google Scholar
37.Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).Article
Google Scholar
38.Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article
Google Scholar
39.Fredeen, A. L., Waughtal, J. D. & Pypker, T. G. When do replanted sub-boreal clearcuts become net sinks for CO2? For. Ecol. Manage. 239, 210–216 (2007).Article
Google Scholar
40.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 201407302 (2014).
Google Scholar
41.Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).Article
CAS
Google Scholar
42.Natali, S. M. et al. Large loss of CO2 in winter observed across the northern permafrost region. Nat. Clim. Change 9, 852–857 (2019).CAS
Article
Google Scholar
43.Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century: limited CO2 fertilization of forests. Glob. Biogeochem. Cycles 24, GB3027 (2010).Article
CAS
Google Scholar
44.Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).CAS
Article
Google Scholar
45.Duncanson, L. et al. Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California. Remote Sens. Environ. 242, 111779 (2020).Article
Google Scholar
46.Helbig, M., Pappas, C. & Sonnentag, O. Permafrost thaw and wildfire: equally important drivers of boreal tree cover changes in the Taiga Plains, Canada. Geophys. Res. Lett. 43, 1598–1606 (2016).Article
Google Scholar
47.Carpino, O. A., Berg, A. A., Quinton, W. L. & Adams, J. R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).Article
Google Scholar
48.Margolis, H., Sun, G., Montesano, P. M. & Nelson, R. F. NACP LiDAR-Based Biomass Estimates, Boreal Forest Biome, North America, 2005–2006 (ORNL DAAC, 2015); https://doi.org/10.3334/ORNLDAAC/127349.Spawn, S. A. & Gibbs, H. K. Global Aboveground and Belowground Biomass Carbon Density Maps for the Year 2010 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/176350.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the Year 2017 Version 1 (Centre for Environmental Data Analysis, 2019); https://doi.org/10.5285/bedc59f37c9545c981a839eb552e408451.Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54, 1249–1266 (2014).Article
Google Scholar
52.Wulder, M. A. et al. Monitoring Canada’s forests. Part 1: completion of the EOSD land cover project. Can. J. Remote Sens. 34, 549–562 (2008).Article
Google Scholar
53.Jin, S., Yang, L., Zhu, Z. & Homer, C. A land cover change detection and classification protocol for updating Alaska NLCD 2001 to 2011. Remote Sens. Environ. 195, 44–55 (2017).Article
Google Scholar
54.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS
Article
Google Scholar
55.Roy, D. P., Boschetti, L., Justice, C. & Ju, J. The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens. Environ. 112, 3690–3707 (2008).Article
Google Scholar
56.Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article
Google Scholar
57.R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019).58.Greenwell, B., Boehmke, B., Cunningham, J. & GMB Developers. gbm: Generalized Boosted Regression Models Version 2.1.5. R package (2019).59.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article
Google Scholar
60.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim. 37, 4302–4315 (2017).Article
Google Scholar
61.Wang, J. A., Sulla-Menashe, D., Woodcock, C. E., Sonnentag, O. & Friedl, M. A. ABoVE: Annual Land Cover in the ABoVE Core Domain from Landsat, 1984–2014 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/169162.Canadian National Fire Database—Agency Fire Data (Canadian Forest Service, 2002); https://cwfis.cfs.nrcan.gc.ca/ha/nfdb63.Alaskan Large Fire Database (Alaska Interagency Coordination Center, 2002); https://fire.ak.blm.gov/predsvcs/maps.php64.Thornton, M. M. et al. Daymet: Monthly Climate Summaries on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ornldaac/134565.Lumley, T. leaps: Regression Subset Selection Version 3.0. R package (2017).66.Mallows, C. L. Some comments on Cp. Technometrics 42, 87–94 (2000).
Google Scholar
67.Li, Z., Kurz, W. A., Apps, M. J. & Beukema, S. J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 33, 126–136 (2003).Article
Google Scholar
68.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More
