More stories

  • in

    A heterocyte glycolipid-based calibration to reconstruct past continental climate change

    1.Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).3.Prahl, F. G. & Wakeham, S. G. Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment. Nature 330, 367–369 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Schouten, S., Hopmans, E. C., Schefuß, E. & Sinninghe Damsté, J. S. Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures? Earth Planet. Sci. Lett. 204, 265–274 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Rampen, S. W. et al. Evaluation of long chain 1,14-alkyl diols in marine sediments as indicators for upwelling and temperature. Org. Geochem. 76, 39–47 (2014).CAS 
    Article 

    Google Scholar 
    6.Conte, M. H. et al. Global temperature calibration of the alkenone unsaturation index (UK’37) in surface waters and comparison with surface sediments. Geochem. Geophys. Geosyst. 7, Q02005 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Schouten, S., Hopmans, E. C. & Sinninghe Damsté, J. S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Org. Geochem. 54, 19–61 (2013).CAS 
    Article 

    Google Scholar 
    8.Robinson, S. A. et al. Early Jurassic North Atlantic sea‐surface temperatures from TEX86 palaeothermometry. Sedimentology 64, 215–230 (2017).Article 

    Google Scholar 
    9.Forster, A., Schouten, S., Baas, M. & Sinninghe Damsté, J. S. Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).ADS 
    Article 

    Google Scholar 
    10.LaRiviere, J. P. et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486, 97–100 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Zachos, J. C. et al. Extreme warming of mid-latitude coastal ocean during the Paleocene–Eocene Thermal Maximum: inferences from TEX86 and isotope data. Geology 34, 737–740 (2006).ADS 
    Article 

    Google Scholar 
    12.Powers, L. A. et al. Crenarchaeotal membrane lipids in lake sediments: a new paleotemperature proxy for continental paleoclimate reconstruction? Geology 32, 613–616 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Toney, J. L. et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochim. Cosmochim. Acta 74, 1563–1578 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    14.De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    15.Tierney, J. E. & Russell, J. M. Distributions of branched GDGTs in a tropical lake system: implications for lacustrine application of the MBT/CBT paleoproxy. Org. Geochem. 40, 1032–1036 (2009).CAS 
    Article 

    Google Scholar 
    16.Bauersachs, T., Rochelmeier, J. & Schwark, L. Seasonal lake surface water temperature trends reflected by heterocyst glycolipid-based molecular thermometers. Biogeosciences 12, 3741–3751 (2015).ADS 
    Article 

    Google Scholar 
    17.Gambacorta, A., Trincone, A., Soriente, A. & Sodano, G. Chemistry of glycolipids from the heterocysts of nitrogen-fixing cyanobacteria. Curr. Top. Phytochem. 2, 145–150 (1999).CAS 

    Google Scholar 
    18.Bauersachs, T. et al. Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry 70, 2034–2039 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Wörmer, L., Cirés, S., Velázquez, D., Quesada, A. & Hinrichs, K.-U. Cyanobacterial heterocyst glycolipids in cultures and environmental samples: diversity and biomarker potential. Limnol. Oceanogr. 57, 1775–1788 (2012).ADS 
    Article 

    Google Scholar 
    20.Whitton, B. Ecology of Cyanobacteria II: Their Diversity in Space and Time (Springer Netherlands, 2012).21.Bauersachs, T., Stal, L. J., Grego, M. & Schwark, L. Temperature induced changes in the heterocyst glycolipid composition of N2 fixing heterocystous cyanobacteria. Org. Geochem. 69, 98–105 (2014).CAS 
    Article 

    Google Scholar 
    22.Stal, L. J. Is the distribution of nitrogen-fixing cyanobacteria in the oceans related to temperature? Environ. Microbiol. 11, 1632–1645 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Loomis, S. E., Russell, J. M., Ladd, B., Street-Perrott, F. A. & Sinninghe Damsté, J. S. Calibration and application of the branched GDGT temperature proxy on East African lake sediments. Earth Planet. Sci. Lett. 357–358, 277–288 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Loomis, S. E., Russell, J. M., Eggermont, H., Verschuren, D. & Sinninghe Damsté, J. S. Effects of temperature, pH and nutrient concentration on branched GDGT distributions in East African lakes: implications for paleoenvironmental reconstruction. Org. Geochem. 66, 25–37 (2014).CAS 
    Article 

    Google Scholar 
    25.Bauersachs, T. et al. Heterocyte glycolipids indicate polyphyly of stigonematalean cyanobacteria. Phytochemistry 166, 112059 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hecky, R. E. & Kling, H. J. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika: species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnol. Oceanogr. 26, 548–564 (1981).ADS 
    Article 

    Google Scholar 
    27.Descy, J.-P. & Sarmento, H. Microorganisms of the East African great lakes and their response to environmental changes. Freshw. Rev. 1, 59–73 (2008).Article 

    Google Scholar 
    28.McGlue, M. M. et al. Seismic records of late Pleistocene aridity in Lake Tanganyika, tropical East Africa. J. Paleolimnol. 40, 635–653 (2008).ADS 
    Article 

    Google Scholar 
    29.Bale, N. J. et al. Impact of trophic state on the distribution of intact polar lipids in surface waters of lakes. Limnol. Oceanogr. 61, 1065–1077 (2016).ADS 
    Article 

    Google Scholar 
    30.Bauersachs, T. et al. Distribution of long chain heterocyst glycolipids in cultures of the thermophilic cyanobacterium Mastigocladus laminosus and a hot spring microbial mat. Org. Geochem. 56, 19–24 (2013).CAS 
    Article 

    Google Scholar 
    31.Rethemeyer, J. et al. Distribution of polar membrane lipids in permafrost soils and sediments of a small high Arctic catchment. Org. Geochem. 41, 1130–1145 (2010).CAS 
    Article 

    Google Scholar 
    32.D’Andrea, W. J., Huang, Y., Fritz, S. C. & Anderson, N. J. Abrupt Holocene climate change as an important factor for human migration in West Greenland. Proc. Natl Acad. Sci. USA 108, 9765–9769 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J. & Sinninghe Damsté, J. S. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: effects of temperature, pH, and new lacustrine paleotemperature calibrations. Org. Geochem. 117, 56–69 (2018).CAS 
    Article 

    Google Scholar 
    34.Pérez, L. et al. Bioindicators of climate and trophic state in lowland and highland aquatic ecosystems of the Northern Neotropics. Rev. Biol. Trop. 61, 603–644 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Sinninghe Damsté, J. S., Ossebaar, J., Abbas, B., Schouten, S. & Verschuren, D. Fluxes and distribution of tetraether lipids in an equatorial African lake: constraints on the application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochim. Cosmochim. Acta 73, 4232–4249 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    36.Deng, L., Jia, G., Jin, C. & Li, S. Warm season bias of branched GDGT temperature estimates causes underestimation of altitudinal lapse rate. Org. Geochem. 96, 11–17 (2016).CAS 
    Article 

    Google Scholar 
    37.Vollmer, M. K. et al. Deep-water warming trend in Lake Malawi, East Africa. Limnol. Oceanogr. 50, 727–732 (2005).ADS 
    Article 

    Google Scholar 
    38.Kraemer, B. M. et al. Century-long warming trends in the upper water column of Lake Tanganyika. PLoS ONE 10, e0132490 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Paerl, H. W., Hall, N. S. & Calandrino, E. S. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Moisander, P. H., Paerl, H. W. & Zehr, J. P. Effects of inorganic nitrogen on taxa-specific cyanobacterial growth and nifH expression in a subtropical estuary. Limnol. Oceanogr. 53, 2519–2532 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Paerl, H. W. & Otten, T. G. Harmful cyanobacterial blooms: causes, consequences, and controls. Microb. Ecol. 65, 995–1010 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kahru, M., Leppänen, J.-M. & Rud, O. Cyanobacterial blooms cause heating of the sea surface. Mar. Ecol. Prog. Ser. 101, 1–7 (1993).ADS 
    Article 

    Google Scholar 
    43.Wurl, O. et al. Warming and inhibition of salinization at the ocean’s surface by cyanobacteria. Geophys. Res. Lett. 45, 4230–4237 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Capone, D. et al. An extensive bloom of the N2-fixing cyanobacterium Trichodesmium erythraeum in the central Arabian Sea. Mar. Ecol. Prog. Ser. 172, 281–292 (1998).ADS 
    Article 

    Google Scholar 
    45.Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252–255 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Gasse, F., Lédée, V., Massault, M. & Fontes, J. C. Water-level fluctuations of Lake Tanganyika in phase with oceanic changes during the last glaciation and deglaciation. Nature 342, 57–59 (1989).ADS 
    Article 

    Google Scholar 
    47.Köhler, P., Nehrbass-Ahles, C., Schmitt, J., Stocker, T. F. & Fischer, H. Compilations and splined-smoothed calculations of continuous records of the atmospheric greenhouse gases CO2, CH4, and N2O and their radiative forcing since the penultimate glacial maximum. Earth Syst. Sci. Data 9, 363–387 (2017).ADS 
    Article 

    Google Scholar 
    48.Ivory, S. J. & Russell, J. Lowland forest collapse and early human impacts at the end of the African Humid Period at Lake Edward, equatorial East Africa. Quat. Res. 89, 7–20 (2018).Article 

    Google Scholar 
    49.Powers, L. A. Large temperature variability in the southern African tropics since the last glacial maximum. Geophys. Res. Lett. 32, L08706 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Woltering, M., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. Late Pleistocene temperature history of Southeast Africa: a TEX86 temperature record from Lake Malawi. Palaeogeogr. Palaeoclimatol. Palaeoecol. 303, 93–102 (2011).Article 

    Google Scholar 
    51.Berke, M. A., Johnson, T. C., Werne, J. P., Schouten, S. & Sinninghe Damsté, J. S. A mid-Holocene thermal maximum at the end of the African Humid Period. Earth Planet. Sci. Lett. 351–352, 95–104 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    52.Bonnefille, R., Roeland, J. C. & Guiot, J. Temperature and rainfall estimates for the past 40,000 years in equatorial Africa. Nature 346, 347–349 (1990).ADS 
    Article 

    Google Scholar 
    53.Sinninghe Damsté, J. S., Ossebaar, J., Schouten, S. & Verschuren, D. Distribution of tetraether lipids in the 25-ka sedimentary record of Lake Challa: extracting reliable TEX86 and MBT/CBT palaeotemperatures from an equatorial African lake. Quat. Sci. Rev. 50, 43–54 (2012).ADS 
    Article 

    Google Scholar 
    54.Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).ADS 
    Article 

    Google Scholar 
    55.Berke, M. A. et al. Characterization of the last deglacial transition in tropical East Africa: insights from Lake Albert. Palaeogeogr. Palaeoclimatol. Palaeoecol. 409, 1–8 (2014).Article 

    Google Scholar 
    56.Loomis, S. E. et al. The tropical lapse rate steepened during the last glacial maximum. Sci. Adv. 3, e1600815 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Tierney, J. E., Russell, J. M. & Huang, Y. A molecular perspective on Late Quaternary climate and vegetation change in the Lake Tanganyika basin, East Africa. Quat. Sci. Rev. 29, 787–800 (2010).ADS 
    Article 

    Google Scholar 
    58.Schouten, S., Rijpstra, W. I. C., Durisch-Kaiser, E., Schubert, C. J. & Sinninghe Damsté, J. S. Distribution of glycerol dialkyl glycerol tetraether lipids in the water column of Lake Tanganyika. Org. Geochem. 53, 34–37 (2012).CAS 
    Article 

    Google Scholar 
    59.Haberyan, K. A. & Hecky, R. E. The late Pleistocene and Holocene stratigraphy and paleolimnology of Lakes Kivu and Tanganyika. Palaeogeogr. Palaeoclimatol. Palaeoecol. 61, 169–197 (1987).CAS 
    Article 

    Google Scholar 
    60.Berke, M. A. et al. Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa. Quat. Sci. Rev. 55, 59–74 (2012).ADS 
    Article 

    Google Scholar 
    61.Weijers, J. W. H., Schefuß, E., Schouten, S. & Sinninghe Damsté, J. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Klages, J. P. et al. Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580, 81–86 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Schaefer, B. et al. Microbial life in the nascent Chicxulub crater. Geology 48, 328–332 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Costa, K. M., Russell, J. M., Vogel, H. & Bijaksana, S. Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 417, 467–475 (2015).Article 

    Google Scholar 
    65.Ohlendorf, C. et al. Mechanisms of lake-level change at Laguna Potrok Aike (Argentina) – insights from hydrological balance calculations. Quat. Sci. Rev. 71, 27–45 (2013).ADS 
    Article 

    Google Scholar 
    66.Hawes, I., Howard-Williams, C. & Sorrell, B. Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antarctica. Antarct. Sci. 26, 219–230 (2014).ADS 
    Article 

    Google Scholar 
    67.Bauersachs, T. et al. Rapid analysis of long-chain glycolipids in heterocystous cyanobacteria using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 23, 1387–1394 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Shirkhorshidi, A. S., Aghabozorgi, S. & Wah, T. Y. A comparison study on similarity and dissimilarity measures in clustering continuous data. PLoS ONE 10, e0144059 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Kelly, M. A. et al. Expanded glaciers during a dry and cold last glacial maximum in equatorial East Africa. Geology 42, 519–522 (2014).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    High and specific diversity of protists in the deep-sea basins dominated by diplonemids, kinetoplastids, ciliates and foraminiferans

    1.Danovaro, R., Snelgrove, P. V. R. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).PubMed 
    Article 

    Google Scholar 
    2.Ebbe, B. et al. In Life in the World’s Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A. D.) 139–160 (Blackwell Publishing Ltd, 2010).3.Edgcomb, V. Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr. Opin. Microbiol. 31, 169–175 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bienhold, C., Zinger, L., Boetius, A. & Ramette, A. Diversity and biogeography of bathyal and abyssal seafloor bacteria. PLoS ONE 11, e0148016 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.del Campo, J. & Massana, R. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162, 435–448 (2011).PubMed 
    Article 

    Google Scholar 
    6.López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).PubMed 
    Article 

    Google Scholar 
    7.Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean—challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).PubMed 
    Article 

    Google Scholar 
    8.Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Jürgens, K. & Massana, R. In Microbial Ecology of the Oceans (ed. Kirchman, D. L.) 383–441 (Wiley, 2008).10.Moran, M. A. The global ocean microbiome. Science 350, aac8455 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article 

    Google Scholar 
    13.Patterson, D. J., Nygaard, K., Steinberg, G. & Turley, C. M. Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J. Mar. Biol. Assoc. UK 73, 67 (1993).Article 

    Google Scholar 
    14.Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Arndt, H. et al. In The Flagellates—Unity, Diversity and Evolution (eds. Leadbeater, B. S. & Green, J. C.) 240–268 (Taylor & Francis Ltd, 2000).16.Boenigk, J. & Arndt, H. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van. Leeuwenhoek 81, 465–480 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. M. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science 218, 795–797 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Gooday, A. J. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. J. Oceanogr. 58, 305–332 (2002).CAS 
    Article 

    Google Scholar 
    19.Molari, M., Manini, E. & Dell’Anno, A. Dark inorganic carbon fixation sustains the functioning of benthic deep-sea ecosystems. Glob. Biogeochem. Cycles 27, 212–221 (2013).CAS 
    Article 

    Google Scholar 
    20.Pasulka, A. et al. SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from Guaymas Basin hydrothermal vent. J. Eukaryot. Microbiol. 66, 637–653 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Stoeck, T., Taylor, G. T. & Epstein, S. S. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69, 5656–5663 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Pachiadaki, M. G. et al. In situ grazing experiments apply new technology to gain insights into deep-sea microbial food webs. Deep Sea Res. Part II Top. Stud. Oceanogr. 129, 223–231 (2016).Article 

    Google Scholar 
    23.Cordier, T., Barrenechea, I., Lejzerowicz, F., Reo, E. & Pawlowski, J. Benthic foraminiferal DNA metabarcodes significantly vary along a gradient from abyssal to hadal depths and between each side of the Kuril-Kamchatka trench. Prog. Oceanogr. 178, 102175 (2019).Article 

    Google Scholar 
    24.Pawlowski, J. et al. Eukaryotic richness in the abyss: insights from pyrotag sequencing. PLoS ONE 6, e18169 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Scheckenbach, F., Hausmann, K., Wylezich, C., Weitere, M. & Arndt, H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl Acad. Sci. USA 107, 115–120 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Schlitzer, R. Ocean Data View (2012). http://odv.awi.de.28.Schoenle, A., Nitsche, F., Werner, J. & Arndt, H. Deep-sea ciliates: recorded diversity and experimental studies on pressure tolerance. Deep Sea Res. Part I: Oceanograp. Res. Pap. 128, 55–66 (2017).CAS 
    Article 

    Google Scholar 
    29.Živaljić, S. et al. A barotolerant ciliate isolated from the abyssal deep sea of the North Atlantic: Euplotes dominicanus sp. n. (Ciliophora, Euplotia). Eur. J. Protistol. 73, 125664 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Logares, R. et al. Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome 8, 55 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).Article 

    Google Scholar 
    32.Forster, D. et al. Benthic protists: the under-charted majority. FEMS Microbiol. Ecol. 92, fiw120 (2016).33.Schoenle, A., Hohlfeld, M., Hermanns, K. & Arndt, H. V9_DeepSea (Deep Sea Reference Database) [Data set]. Commun. Biol., Zenodo https://doi.org/10.5281/zenodo.4305675 (2021).34.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucl. Acids Res. 41, D597–D604 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Flegontova, O. et al. Extreme diversity of diplonemid eukaryotes in the ocean. Curr. Biol. 26, 3060–3065 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Clopton, R. E., Janovy, J. & Percival, T. J. Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78, 334–337 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Leander, B. S. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol. 24, 60–67 (2008).PubMed 
    Article 

    Google Scholar 
    38.del Campo, J. et al. Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Baker, P. et al. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 21–34 (2018).Article 

    Google Scholar 
    41.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS 
    Article 

    Google Scholar 
    43.Xu, D. et al. Pigmented microbial eukaryotes fuel the deep sea carbon pool in the tropical Western Pacific Ocean. Environ. Microbiol. 20, 3811–3824 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Schoenle, A. et al. Global comparison of bicosoecid Cafeteria-like flagellates from the deep ocean and surface waters, with reorganization of the family Cafeteriaceae. Eur. J. Protistol. 73, 125665 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Massana, R. et al. Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate. ISME J. 15, 154–167 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Živaljić, S. et al. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: literature review and own experiments. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 251–259 (2018).Article 
    CAS 

    Google Scholar 
    48.Lecroq, B. et al. Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc. Natl Acad. Sci. USA 108, 13177–13182 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Devey, C. W. et al. Habitat characterization of the Vema Fracture Zone and Puerto Rico Trench. Deep Sea Res Part II Top. Stud. Oceanogr. 148, 7–20 (2018).Article 

    Google Scholar 
    50.Levin, L. A. & Sibuet, M. Understanding continental margin biodiversity: a new imperative. Annu. Rev. Mar. Sci. 4, 79–112 (2012).Article 

    Google Scholar 
    51.Gooday, A. J. In Encyclopedia of Ocean Science (eds. Cochran, J. et al.) 684–705 (Elsevier, 2019).52.Vuillemin, A. et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci. Adv. 5, eaaw4108 (2019).53.De Corte, D., Paredes, G., Yokokawa, T., Sintes, E. & Herndl, G. J. Differential response of Cafeteria roenbergensis to different bacterial and archaeal prey characteristics. Micro. Ecol. 78, 1–5 (2019).Article 

    Google Scholar 
    54.Ballen-Segura, M., Felip, M. & Catalan, J. Some mixotrophic flagellate species selectively graze on Archaea. Appl. Environ. Microbiol. 83, e02317–16 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Schoenle, A. et al. Methodological studies on estimates of abundance and diversity of heterotrophic flagellates from the deep-sea floor. J. Mar. Sci. Eng. 4, 22 (2016).Article 

    Google Scholar 
    56.Schoenle, A. et al. New phagotrophic euglenids from deep sea and surface waters of the Atlantic Ocean (Keelungia nitschei, Petalomonas acorensis, Ploeotia costaversata). Eur. J. Protistol. 69, 102–116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Danovaro, R. Methods for the Study of Deep-sea Sediments, their Functioning and Biodiversity (ed. Danovaro, R.) 181–196 (CRC Press, 2010).58.Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    59.Butler, H. & Rogerson, A. Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730 (1995).Article 

    Google Scholar 
    60.Goryatcheva, N. V. The cultivation of colourless marine flagellate Bodo marina. Biol. Inland Waters Bull. 11, 25–28 (1971).
    Google Scholar 
    61.Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Van der Auwera, G., Chapelle, S. & De Wächter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338, 133–136 (1994).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hillis, D. M., Dixon, M. T. & Ribosomal, D. N. A. Molecular evolution and phylogenetic inference. Q. Rev. Biol. 66, 411–453 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    65.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Mahé, F. Stampa: sequence taxonomic assigment by massive pairwise aligments. https://github.com/frederic-mahe/stampa (2018).68.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).69.Vavrek, M. J. Fossil: palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1T (2011).
    Google Scholar 
    70.Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).Article 

    Google Scholar 
    71.Oksanen, J. et al. vegan: Community Ecology Package. The R Project for Statistical Computing. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).72.Hennig, C. fpc: Flexible Procedures for Clustering. The R Project for Statistical Computing. https://www.unibo.it/sitoweb/christian.hennig/en/ (2019).73.Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. The R Project for Statistical Computing. https://rdrr.io/cran/VennDiagram/ (2018).74.Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Kolde, R. pheatmap: Pretty Heatmaps. The R Project for Statistical Computing. https://CRAN.R-project.org/package=pheatmap (2019).76.Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists. (eds. Archibald, J. M. et al.) 1–1657 (Springer, 2017).77.Okamura, T. & Kondo, R. Suigetsumonas clinomigrationis gen. et sp. nov., a novel facultative anaerobic nanoflagellate isolated from the meromictic Lake Suigetsu, Japan. Protist 166, 409–421 (2015).PubMed 
    Article 

    Google Scholar 
    78.Rybarski, A. et al. Revision of the phylogeny of Placididea (Stramenopiles): molecular and morphological diversity of novel placidid protists from extreme aquatic environments. Eur. J. Protistol.(in press).79.Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K. & Arndt, H. Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 38, 239–247 (2005).Article 

    Google Scholar 
    80.Park, J. S. & Simpson, A. G. B. Characterization of halotolerant Bicosoecida and Placididea (Stramenopila) that are distinct from marine forms, and the phylogenetic pattern of salinity preference in heterotrophic stramenopiles: novel halotolerant heterotrophic stramenopiles. Environ. Microbiol. 12, 1173–1184 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Moriya, M., Nakayama, T. & Inouye, I. Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et sp. nov., a new heterotrophic flagellate (Stramenopiles, Incertae Sedis). Protist 151, 41–55 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Živaljić, S. et al. Influence of hydrostatic pressure on the behaviour of three ciliate species isolated from the deep sea. Mar. Biol. 167, 63 (2020).Article 

    Google Scholar  More

  • in

    Deep genetic structure at a small spatial scale in the endangered land snail Xerocrassa montserratensis

    1.Cardoso, P., Erwin, T. L., Borges, P. A. V. & New, T. R. The seven impediments in invertebrate conservation and how to overcome them. Biol. Conserv. 144, 2647–2655 (2011).Article 

    Google Scholar 
    2.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).Article 

    Google Scholar 
    3.Régnier, C. et al. Mass extinction in poorly known taxa. Proc. Natl. Acad. Sci. USA 112, 7761–7766 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Cuttelod, A., Seddon, M. & Neubert, E. European Red List of Non-Marine Molluscs (2011).5.Aubry, S., Labaune, C., Magnin, F., Roche, P. & Kiss, L. Active and passive dispersal of an invading land snail in Mediterranean France. J. Anim. Ecol. 75, 802–813 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Guiller, A. & Madec, L. Historical biogeography of the land snail Cornu aspersum: A new scenario inferred from haplotype distribution in the Western Mediterranean basin. BMC Evol. Biol. 10, 18 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Ochman, H., Jonest, J. S. & Selander, R. K. Molecular area effects in Cepaea. Proc. Natl. Acad. Sci. USA 80, 4189–4193 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Chueca, L. J., Gómez-Moliner, B. J., Madeira, M. J. & Pfenninger, M. Molecular phylogeny of Candidula (Geomitridae) land snails inferred from mitochondrial and nuclear markers reveals the polyphyly of the genus. Mol. Phylogenet. Evol. 118, 357–368 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Moreira, F., Calado, G. & Dias, S. Conservation status of a recently described endemic land snail, Candidula coudensis, from the Iberian peninsula. PLoS ONE 10, e0138464 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Sauer, J. & Hausdorf, B. Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evol. Biol. 10, 299 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Davison, A. Land snails as a model to understand the role of history and selection in the origins of biodiversity. Popul. Ecol. 44, 129–136 (2002).Article 

    Google Scholar 
    12.Pfenninger, M., Posada, D. & Shaw, K. Phylogeographic history of the land snail Candidula unifasciata (Helicellinae, Stylommatophora): Fragmentation, corridor migration, and secondary contact. Evolution (N. Y). 56, 1776–1788 (2002).13.Madeira, P. M. et al. High unexpected genetic diversity of a narrow endemic terrestrial mollusc. PeerJ 2017, e3069 (2017).Article 

    Google Scholar 
    14.Sauer, J., Oldeland, J. & Hausdorf, B. Continuing fragmentation of a widespread species by geographical barriers as initial step in a land snail radiation on Crete. PLoS ONE 8, e62569 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Haig, S. M. Molecular contributions to conservation. Ecology 79, 413–425 (1998).Article 

    Google Scholar 
    16.Ezzine, I. K., Pfarrer, B., Dimassi, N., Said, K. & Neubert, E. At home at least: The taxonomic position of some North African Xerocrassa species (Pulmonata, Geomitridae). Zookeys 712, 1–27 (2017).Article 

    Google Scholar 
    17.Bank, R. A. & Neubert, E. Checklist of the Land and Freshwater Gastropoda of Europe. http://www.marinespecies.org/aphia.php?p=sourcedetails&id=279050 (2017).18.Chueca, L. J., Gómez-Moliner, B. J., Forés, M. & Madeira, M. J. Biogeography and radiation of the land snail genus Xerocrassa (Geomitridae) in the Balearic Islands. J. Biogeogr. 44, 760–772 (2017).Article 

    Google Scholar 
    19.Martínez-Ortí, A. Xerocrassa montserratensis. The IUCN Red List of Threatened Species e.T22254A9368348. https://doi.org/10.2305/IUCN.UK.2011-1.RLTS.T22254A9368348.en (2011).20.Martínez-Ortí, A. & Bros, V. Taxonomic clarification of three taxa of Iberian geomitrids, Helix montserratensis Hidalgo, 1870 and subspecies (Gastropoda, Pulmonata), based on morpho–anatomical data. Anim. Biodivers. Conserv. 40, 247–267 (2017).Article 

    Google Scholar 
    21.Bros, V. Composició de la comunitat de mol· luscs de les codines en el Parc Natural de Sant Llorenç del Munt i l’Obac, i l’impacte del trepig i l’erosió en el Montcau. In VII Monografies de Sant Llorenç del Munt i l’Obac 43–52 (2011).22.Santos, X., Bros, V. & Ros, E. Contrasting responses of two xerophilous land snails to fire and natural reforestation. Contrib. Zool. 81, 167–180 (2012).Article 

    Google Scholar 
    23.Hidalgo, J. G. Description de trois espèces nouvelles d’Helix d’Espagne. J. Conchyliol. 18, 298–299 (1870).
    Google Scholar 
    24.Bofill, A. Catálogo de los moluscos testáceos terrestres del llano de Barcelona. Crónica Científ. 3, 1–24 (1879).
    Google Scholar 
    25.Bofill, A. La Helix montserratensis. Su origen y su distribución en el tiempo y en el espacio. Mem. Real Acad. Cienc. Artes Barcelona 2, 331–343 (1898).26.Altimira, C. Notas malacológicas. Contribución al conocimiento de la fauna malacológica terrestre y de agua dulce de Cataluña. Misc. Zool. 3, 7–10 (1971).27.Van Riel, P. et al. Molecular systematics of the endemic Leptaxini (Gastropoda: Pulmonata) on the Azores islands. Mol. Phylogenet. Evol. 37, 132–143 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Kruckenhauser, L. et al. Paraphyly and budding speciation in the hairy snail (Pulmonata, Hygromiidae). Zool. Scr. 43, 273–288 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Dempsey, Z. W., Goater, C. P. & Burg, T. M. Living on the edge: Comparative phylogeography and phylogenetics of Oreohelix land snails at their range edge in Western Canada. BMC Evol. Biol. 20, 3 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Ursenbacher, S., Alvarez, C., Armbruster, G. F. J. & Baur, B. High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains. Conserv. Genet. 11, 1265–1271 (2010).Article 

    Google Scholar 
    31.Jesse, R., Véla, E. & Pfenninger, M. Phylogeography of a land snail suggests trans-Mediterranean Neolithic transport. PLoS ONE 6, e20734 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hausdorf, B. Biogeography of the Limacoidea sensu lato (Gastropoda: Stylommatophora): vicariance events and long-distance dispersal. J. Biogeogr. 27, 379–390 (2000).Article 

    Google Scholar 
    33.Neiber, M. T., Sagorny, C., Sauer, J., Walther, F. & Hausdorf, B. Phylogeographic analyses reveal Transpontic long distance dispersal in land snails belonging to the Caucasotachea atrolabiata complex (Gastropoda: Helicidae). Mol. Phylogenet. Evol. 103, 172–183 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Simonová, J., Simon, O. P., Kapic, Š, Nehasil, L. & Horsák, M. Medium-sized forest snails survive passage through birds’ digestive tract and adhere strongly to birds’ legs: More evidence for passive dispersal mechanisms. J. Molluscan Stud. 82, 422–426 (2016).Article 

    Google Scholar 
    35.Watanabe, Y. & Chiba, S. High within-population mitochondrial DNA variation due to microvicariance and population mixing in the land snail Euhadra quaesita (Pulmonata: Bradybaenidae). Mol. Ecol. 10, 2635–2645 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Nägele, K.-L. & Hausdorf, B. Comparative phylogeography of land snail species in mountain refugia in the European Southern Alps. J. Biogeogr. 42, 821–832 (2015).Article 

    Google Scholar 
    37.Shakun, J. D., Lea, D. W., Lisiecki, L. E. & Raymo, M. E. An 800-kyr record of global surface ocean δ18O and implications for ice volume-temperature coupling. Earth Planet. Sci. Lett. 426, 58–68 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).
    Google Scholar 
    39.Santos, X., Bros, V. & Miño, À. Recolonization of a burned Mediterranean area by terrestrial gastropods. Biodivers. Conserv. 18, 3153–3165 (2009).Article 

    Google Scholar 
    40.Bishop, P. Drainage rearrangement by river capture, beheading and diversion. Prog. Phys. Geogr. Earth Environ. 19, 449–473 (1995).Article 

    Google Scholar 
    41.Castelltort, F. X., Balasch, J. C., Cirés, J. & Colombo, F. Consecuencias de la migración lateral de una cuenca de drenaje (Homoclinal shifting) en la formación de la cuenca erosiva de la Plana de Vic. NE de la Cuenca del Ebro. Geogaceta 61, 55–58 (2017).42.Irwin, D. E. Phylogeographic breaks without geographic barriers to gene flow. Evolution (N. Y). 56, 2383–2394 (2002).43.Falniowski, A. et al. Melanopsidae (Caenogastropoda: Cerithioidea) from the eastern Mediterranean: Another case of morphostatic speciation. Zool. J. Linn. Soc. 190, 483–507 (2020).Article 

    Google Scholar 
    44.Proćków, M., Strzała, T., Kuźnik-Kowalska, E., Proćków, J. & Mackiewicz, P. Ongoing speciation and gene flow between taxonomically challenging Trochulus species complex (Gastropoda: Hygromiidae). PLoS ONE 12, e0170460 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Fiorentino, V., Manganelli, G., Giusti, F., Tiedemann, R. & Ketmaier, V. A question of time: The land snail Murella muralis (Gastropoda: Pulmonata) reveals constraints on past ecological speciation. Mol. Ecol. 22, 170–186 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Bamberger, S. et al. Genome‐wide nuclear data confirm two species in the Alpine endemic land snail Noricella oreinos s.l. (Gastropoda, Hygromiidae). J. Zool. Syst. Evol. Res. 00, 1–23 (2020).47.Torrado, H., Carreras, C., Raventos, N., Macpherson, E. & Pascual, M. Individual-based population genomics reveal different drivers of adaptation in sympatric fish. Sci. Rep. 10, 12683 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Alexander, A. et al. What influences the worldwide genetic structure of sperm whales (Physeter macrocephalus)?. Mol. Ecol. 25, 2754–2772 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Petit, R. J., El Mousadik, A. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855 (1998).Article 

    Google Scholar 
    53.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).54.Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).CAS 
    Article 

    Google Scholar 
    55.Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2539 (2012).56.Miller, M. P. Alleles in space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).59.Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).60.Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018). More

  • in

    Projected shifts in loggerhead sea turtle thermal habitat in the Northwest Atlantic Ocean due to climate change

    1.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (2014).2.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed 
    Article 

    Google Scholar 
    3.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).ADS 
    Article 

    Google Scholar 
    4.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002), 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Weatherdon, L. V., Magnan, A. K., Rogers, A. D., Sumaila, U. R. & Cheung, W. W. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: an update. Front. Mar. Sci. 3, 48 (2016).Article 

    Google Scholar 
    6.Mawdsley, J. R., O’Malley, R. & Ojima, D. S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23(5), 1080–1089 (2009).PubMed 
    Article 

    Google Scholar 
    7.Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Species Res. 4(3), 309–331 (2008).Article 

    Google Scholar 
    8.Franco, A. M., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).Article 

    Google Scholar 
    9.Spotila, J. R., Reina, R. D., Steyermark, A. C., Plotkin, P. T. & Paladino, F. V. Pacific leatherback turtles face extinction. Nature 405(6786), 529–530 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Wallace, B. P. et al. Impacts of fisheries bycatch on marine turtle populations worldwide: Toward conservation and research priorities. Ecosphere 4(3), 1–49 (2013).Article 

    Google Scholar 
    11.Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12(1), 110–119 (2011).Article 

    Google Scholar 
    12.Senko, J., White, E. R., Heppell, S. S. & Gerber, L. R. Comparing bycatch mitigation strategies for vulnerable marine megafauna. Anim. Conserv. 17(1), 5–18 (2014).Article 

    Google Scholar 
    13.Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H. & Polovina, J. J. TurtleWatch: A tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endanger. Species Res. 5(2–3), 267–278 (2008).Article 

    Google Scholar 
    14.Swimmer, Y. et al. Sea turtle bycatch mitigation in US longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article 

    Google Scholar 
    15.Saba, V. S., Stock, C. A., Spotila, J. R., Paladino, F. V. & Tomillo, P. S. Projected response of an endangered marine turtle population to climate change. Nat. Clim. Change 2(11), 814–820 (2012).ADS 
    Article 

    Google Scholar 
    16.Santidrián Tomillo, P. et al. Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci. Rep. 5, 16789 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Patel, S. H. et al. Climate impacts on sea turtle breeding phenology in Greece and associated foraging habitats in the wider Mediterranean region. PLoS ONE 11(6), e0157170 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Shoop, C. R. & Kenney, R. D. Seasonal distributions and abundances of loggerhead and leatherback sea turtles in waters of the northeastern United States. Herpetol. Monogr. 6, 43–67 (1992).Article 

    Google Scholar 
    19.Coles, W. & Musick, J. A. Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000(2), 551–554 (2000).Article 

    Google Scholar 
    20.Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).ADS 
    Article 

    Google Scholar 
    21.Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21(2), 272–281 (2012).Article 

    Google Scholar 
    22.Stoneburner, D. L. Satellite telemetry of loggerhead sea turtle movement in the Georgia Bight. Copeia 1982, 400–408 (1982).Article 

    Google Scholar 
    23.Hart, K. M. & Hyrenbach, K. D. Satellite telemetry of marine megavertebrates: The coming of age of an experimental science. Endanger. Species Res. 10, 9–20 (2009).Article 

    Google Scholar 
    24.Hebblewhite, M. & Haydon, D. T. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B Biol. Sci. 365(1550), 2303–2312 (2010).Article 

    Google Scholar 
    25.Hays, G. C. & Hawkes, L. A. Satellite tracking sea turtles: Opportunities and challenges to address key questions. Front. Mar. Sci. 5, 432 (2018).Article 

    Google Scholar 
    26.Hawkes, L. A., Broderick, A. C., Coyne, M. S., Godfrey, M. H. & Godley, B. J. Only some like it hot—Quantifying the environmental niche of the loggerhead sea turtle. Divers. Distrib. 13(4), 447–457 (2007).Article 

    Google Scholar 
    27.Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Chang. 3(3), 234–238 (2013).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    28.Roe, J. H. et al. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean. Proc. R. Soc. B Biol. Sci. 281(1777), 20132559 (2014).Article 

    Google Scholar 
    29.Winton, M. V. et al. Estimating the distribution and relative density of satellite-tagged loggerhead sea turtles using geostatistical mixed effects models. Mar. Ecol. Prog. Ser. 586, 217–232 (2018).ADS 
    Article 

    Google Scholar 
    30.Araújo, M. B. & Townsend, P. A. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7), 1527–1539 (2012).PubMed 
    Article 

    Google Scholar 
    31.Gilman P, et al. National offshore wind strategy: facilitating the development of the offshore wind industry in the United States. National Renewable Energy Lab. (NREL), Golden, CO (United States) (2016).32.Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). Preliminary summer 2010 regional abundance estimate of loggerhead turtles (Caretta caretta) in northwestern Atlantic Ocean continental shelf waters. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 11–03; 33 p (2011).33.Ceriani, S. A., Weishampel, J. F., Ehrhart, L. M., Mansfield, K. L. & Wunder, M. B. Foraging and recruitment hotspot dynamics for the largest Atlantic loggerhead turtle rookery. Sci. Rep. 7(1), 1–3 (2017).CAS 
    Article 

    Google Scholar 
    34.Fofonoff, N. P. The Gulf Stream. In Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel (eds. Warren, B. A., & Wunsch, C.) 112–139 (MIT Press, 1981) Cambridge, MA.35.Patel, S. H., Miller, S. & Smolowitz, R. J. Understanding impacts of the sea scallop fishery on loggerhead sea turtles through satellite tagging. Final report for 2015 Sea Scallop Research Set-Aside (RSA). NOAA grant: NA15 NMF 4540055. Coonamessett Farm Foundation, East Falmouth, MA (2016).36.Patel, S. H. et al. Loggerhead turtles are good ocean-observers in stratified mid-latitude regions. Estuar. Coast. Shelf Sci. 213, 128–136 (2018).ADS 
    Article 

    Google Scholar 
    37.Crowe, L. M., Hatch, J. M., Patel, S. H., Smolowitz, R. J. & Haas, H. L. Riders on the storm: loggerhead sea turtles detect and respond to a major hurricane in the Northwest Atlantic Ocean. Mov. Ecol. 8(1), 1–3 (2020).Article 

    Google Scholar 
    38.Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. M. TMB: Automatic differentiation and Laplace approximation. J. Stat. Softw. 70(5), 1–21 (2016).Article 

    Google Scholar 
    39.R Core Team. R: A language and environment for statistical computing (2017).40.Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89(5), 1208–1215 (2008).PubMed 
    Article 

    Google Scholar 
    41.Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A. & Flemming, J. M. Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder. Ecology 96(10), 2598–2604 (2015).PubMed 
    Article 

    Google Scholar 
    42.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. American Statistical Association (2015).43.Turtle Expert Working Group (TEWG). An assessment of the loggerhead turtle population in the western North Atlantic Ocean. NOAA Tech. Mem. NMFS-SEFSC. 575(131), 744 (2009).
    Google Scholar 
    44.Clay, P. M. Management regions, statistical areas and fishing grounds: Criteria for dividing up the sea. J. Northwest Atl. Fish. Sci. 19, 103–126 (1996).Article 

    Google Scholar 
    45.Murray, K. T. & Orphanides, C. D. Estimating the risk of loggerhead turtle Caretta caretta bycatch in the US mid-Atlantic using fishery-independent and-dependent data. Mar. Ecol. Prog. Ser. 477, 259–270 (2013).ADS 
    Article 

    Google Scholar 
    46.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate. J. Geophys. Res. Oceans 121(1), 118–132 (2016).ADS 
    Article 

    Google Scholar 
    47.Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).48.Reynolds, R. W. & Smith, T. M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 7(6), 929–948 (1994).ADS 
    Article 

    Google Scholar 
    49.Chamberlain, S. rerddap – General purpose client for ‘ERDDAP’ servers. R Package (2016).50.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    51.Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70(2–3), 141–159 (2004).Article 

    Google Scholar 
    52.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    53.Benjamin, M. A., Rigby, R. A. & Stasinopoulos, D. M. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98(461), 214–223 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    54.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686 (2019).ADS 
    Article 

    Google Scholar 
    55.Tanaka, K. R., Torre, M. P., Saba, V. S., Stock, C. A. & Chen, Y. An ensemble high‐resolution projection of changes in the future habitat of American lobster and sea scallop in the Northeast US continental shelf. Diversity and Distributions (2020).56.McHenry, J., Welch, H., Lester, S. E. & Saba, V. Projecting marine species range shifts from only temperature can mask climate vulnerability. Glob. Change Biol. 25(12), 4208–4221 (2019).ADS 
    Article 

    Google Scholar 
    57.Selden, R. L., Batt, R. D., Saba, V. S. & Pinsky, M. L. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions. Glob. Change Biol. 24(1), 117–131 (2018).ADS 
    Article 

    Google Scholar 
    58.Griffin, D. B. et al. Foraging habitats and migration corridors utilized by a recovering subpopulation of adult female loggerhead sea turtles: Implications for conservation. Mar. Biol. 160(12), 3071–3086 (2013).Article 

    Google Scholar 
    59.Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Computational and mathematical methods in medicine (2017).60.Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21(20), 7881 (2005).Article 
    CAS 

    Google Scholar 
    61.Link, J. et al. The Northeast US continental shelf Energy Modeling and Analysis exercise (EMAX): Ecological network model development and basic ecosystem metrics. J. Mar. Syst. 74(1–2), 453–474 (2008).Article 

    Google Scholar 
    62.Bane, J. M. Jr., Brown, O. B., Evans, R. H. & Hamilton, P. Gulf Stream remote forcing of shelfbreak currents in the Mid-Atlantic Bight. Geophys. Res. Lett. 15(5), 405–407 (1988).ADS 
    Article 

    Google Scholar 
    63.Hawkes, L. A. et al. Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of the USA. Divers. Distrib. 17(4), 624–640 (2011).Article 

    Google Scholar 
    64.Mansfield, K. L., Saba, V. S., Keinath, J. A. & Musick, J. A. Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic. Mar. Biol. 156(12), 2555–2570 (2009).Article 

    Google Scholar 
    65.Lentz, S. J. Seasonal warming of the Middle Atlantic Bight Cold Pool. J. Geophys. Res. Oceans 122(2), 941–954 (2017).ADS 
    Article 

    Google Scholar 
    66.Iverson, A. R., Fujisaki, I., Lamont, M. M. & Hart, K. M. Loggerhead sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature. PLoS ONE 14(8), e0220372 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Braun-McNeill, J., Sasso, C. R., Epperly, S. P. & Rivero, C. Feasibility of using sea surface temperature imagery to mitigate cheloniid sea turtle–fishery interactions off the coast of northeastern USA. Endanger. Species Res. 5(2–3), 257–266 (2008).Article 

    Google Scholar 
    68.Murray, K. T. Characteristics and magnitude of sea turtle bycatch in US mid-Atlantic gillnet gear. Endanger. Species Res. 8(3), 211–224 (2009).Article 

    Google Scholar 
    69.Murray, K. T. Interactions between sea turtles and dredge gear in the US sea scallop (Placopecten magellanicus) fishery, 2001–2008. Fish. Res. 107(1–3), 137–146 (2011).Article 

    Google Scholar 
    70.Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 213(6), 901–911 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).Article 

    Google Scholar 
    72.Saunders, M. A. & Lea, A. S. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature 451(7178), 557–560 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    73.McClellan, C. M. & Read, A. J. Complexity and variation in loggerhead sea turtle life history. Biol. Lett. 3(6), 592–594 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.McClellan, C. M., Braun-McNeill, J., Avens, L., Wallace, B. P. & Read, A. J. Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J. Exp. Mar. Biol. Ecol. 387(1–2), 44–51 (2010).Article 

    Google Scholar 
    75.Hatase, H. et al. Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar. Ecol. Prog. Ser. 233, 273–281 (2002).ADS 
    Article 

    Google Scholar 
    76.Hatase, H., Omuta, K. & Tsukamoto, K. Bottom or midwater: Alternative foraging behaviours in adult female loggerhead sea turtles. J. Zool. 273(1), 46–55 (2007).Article 

    Google Scholar 
    77.Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16(10), 990–995 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Reich, K. J. et al. Polymodal foraging in adult female loggerheads (Caretta caretta). Mar. Biol. 157(1), 113–121 (2010).Article 

    Google Scholar 
    79.Smolowitz, R. J., Patel, S. H., Haas, H. L. & Miller, S. A. Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. J. Exp. Mar. Biol. Ecol. 471, 84–91 (2015).Article 

    Google Scholar 
    80.Patel, S. H., Dodge, K. L., Haas, H. L. & Smolowitz, R. J. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta) at a foraging ground. Front. Mar. Sci. 3, 254 (2016).Article 

    Google Scholar 
    81.James, M. C., Andrea Ottensmeyer, C. & Myers, R. A. Identification of high-use habitat and threats to leatherback sea turtles in northern waters: new directions for conservation. Ecol. Lett. 8(2), 195–201 (2005).Article 

    Google Scholar 
    82.Dodge, K. L., Galuardi, B., Miller, T. J. & Lutcavage, M. E. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 9(3), e91726 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Smolowitz, R., Milliken, H. O. & Weeks, M. Design, evolution, and assessment of a sea turtle deflector dredge for the US Northwest Atlantic Sea scallop fishery: Impacts on fish bycatch. North Am. J. Fish. Manag. 32(1), 65–76 (2012).Article 

    Google Scholar 
    84.Hart, D. R. & Chute, A. S. Essential fish habitat source document: Sea scallop, Placopecten magellanicus, life history and habitat characteristics. NOAA Tech. Mem. NMFS NE 189, 21 (2004).
    Google Scholar 
    85.Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13(9), e0203536 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Framework Adjustment 23 to the Scallop Fisheries Management Plan. NOAA-NMFS-2011-0255 (2012).87.Murray, K. T. Estimated magnitude of sea turtle interactions and mortality in US Bottom Trawl Gear, 2014–2018 (2020).88.Houghton, J. D., Doyle, T. K., Wilson, M. W., Davenport, J. & Hays, G. C. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87(8), 1967–1972 (2006).PubMed 
    Article 

    Google Scholar 
    89.Nelson, D. A. Life history and environmental requirements of loggerhead turtles. Fish and Wildlife Service, US Department of the Interior (1988). More

  • in

    Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects

    1.Benelli, G. Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95, 58–68 (2016).CAS 
    Article 

    Google Scholar 
    2.Dash, A. P., Valecha, N. & Anvikar, A. R. Malaria in India: challenges and opportunities. J. Biosci 33(4), 583–928 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.World Malaria Report: Geneva: World Health Organization. Accessed 18th July 2017.4.Olotu, A. et al. Seven-year efficacy of RTS, S/AS01 malaria vaccine among young African children. N. Engl. J. Med 374, 2519–2529 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Solomona, S., Plattnerb, G. K., Knuttic, R. & Friedlingsteind, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U.S.A. 106, 1704–1709 (2009).ADS 
    Article 

    Google Scholar 
    6.Shaalan, E. A. S., Canyonb, D., Younesc, M. W. F., Abdel-Wahaba, H. & Mansoura, A. H. A review of botanical phytochemicals with mosquitocidal potential. Environ. Int. 3, 1149–1166 (2005).Article 
    CAS 

    Google Scholar 
    7.Sundukov, Y. N. First record of the ground beetle Trechoblemus postilenatus (Coleoptera, Carabidae) in Primorskii krai. Far East Entomol. 165, 16 (2006).
    Google Scholar 
    8.Soni, N. & Prakash, S. Green nanoparticles for mosquito control. Sci. World J. 214, 1–6 (2014).Article 

    Google Scholar 
    9.Abinaya, M. et al. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors. Environ. Sci. Pollut. Res 25, 5 (2018).Article 
    CAS 

    Google Scholar 
    10.Shawkey, A. M., Rabeh, M. A., Abdulall, A. K. & Abdellatif, A. O. Green nanotechnology: anticancer activity of silver nanoparticles using Citrullus colocynthis aqueous extracts. Adv. Life Sci. Technol. 13, 60–70 (2013).
    Google Scholar 
    11.Thomas, S., Ravishankaran, S. & Johnson Amala Justin, N. A. Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar. J. 16(11), 1–7 (2017).
    Google Scholar 
    12.Murugan, K. et al. Sargassum wightii-synthesized ZnO nanoparticles reduce the fitness and reproduction of the malaria vector Anopheles stephensi and cotton bollworm Helicoverpa armigera. Physiol. Mol. Plant Pathol. 101, 202–213 (2018).CAS 
    Article 

    Google Scholar 
    13.Kalimuthu, K., Panneerselvam, C., Murugan, K. & Hwang, J. S. Green synthesis of silver nanoparticles using Cadaba indica Lam leaf extract and its larvicidal and pupicidal activity against Anopheles stephensi and Culex quinquefasciatus. J. Entomol. Acarol. Res. 45(2), e11 (2013).Article 

    Google Scholar 
    14.Patra, A., Raja, A. S. M. & Shah, N. Current developments in (Malaria) mosquito protective methods: a review paper. Int. J. Mosquito Res. 6(1), 38–45 (2019).
    Google Scholar 
    15.Wahab, R., Ahmad, J. & Ahmad, N. Application of multi-dimensional (0D, 1D, 2D) nanostructures for the cytological evaluation of cancer cells and their bacterial response. Colloids Surf. A Physicochem. Eng. Asp. 583, 123953 (2019).CAS 
    Article 

    Google Scholar 
    16.Bhadra, J., Alkareem, A. & Al-Thani, N. A review of advances in the preparation and application of polyaniline based thermoset blends and composites. J. Polym. Res. 27(5), 1–20 (2020).Article 
    CAS 

    Google Scholar 
    17.Jaganathana, A. et al. (+16), Earthworm-mediated synthesis of silver nanoparticles: a potent toolagainst hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 65(2016), 276–284 (2016).Article 
    CAS 

    Google Scholar 
    18.Abdelkhalek, A. & Al-Askar, A. A. Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus. Appl. Sci. 10, 15 (2020).Article 
    CAS 

    Google Scholar 
    19.Ishwarya, R. et al. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. 2018(178), 249–258 (2018).Article 
    CAS 

    Google Scholar 
    20.Murugan, K. et al. Nano-insecticides for the control of human and crop pests. In Short Views on Insect Genomics and Proteomics. Entomology in Focus (eds Raman, C. et al.) 229–251 (Springer, 2016).
    Google Scholar 
    21.Bauer, A. W., Kirby, W. M., Sherris, J. C. & Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(4), 493–496 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Anitha, J. et al. Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes. Parasitol. Int. 65, 276–284 (2016).Article 
    CAS 

    Google Scholar 
    23.Wahab, R., Khan, F. & Al-Khedhairy, A. A. Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv. 8(44), 24750–24759 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Rajan, R., Chandran, K., Harper, S. L., Yun, S. I. & Kalaichelvan, P. T. Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind. Crop Prod. 70, 356–373 (2015).CAS 
    Article 

    Google Scholar 
    26.Suresh, U. et al. Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562 (2015).PubMed 
    Article 

    Google Scholar 
    27.Natarajan, K., Selvaraj, S. & Murty, V. R. Microbial production of silver nanoparticle. Digest J. Nanomat. Biostruct. 5, 135–140 (2010).
    Google Scholar 
    28.Song, Y. J., Jang, H. K. & Kim, S. B. Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extract. Process Biochem. 44, 1133–1138 (2009).CAS 
    Article 

    Google Scholar 
    29.Krishnan, R. & Maru, G. B. Isolation and analysis of polymeric polyphenol fractions from black tea. Food Chem. 94, 331–340 (2006).CAS 
    Article 

    Google Scholar 
    30.Shankar, S., Rai, A., Ahmad, A. & Sastry, M. Rapid synthesis of Au, Ag and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275, 496–550 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A. & Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22, 577–583 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Benelli, G. Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? In Nanoparticles in the Fight Against Parasites Parasitology Research Monographs (ed. Mehlhorn, H.) 155–172 (Springer, 2015).
    Google Scholar 
    33.Sadraei, R. A simple method for preparation of nano-sized ZnO. Res. Rev. J. Chem. 5(2), 45–49 (2016).CAS 

    Google Scholar 
    34.Priyadarshini, K. A. et al. Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 111(3), 997–1006 (2012).PubMed 
    Article 

    Google Scholar 
    35.Satheeshkumar, K. & Kathireswari, P. Biological synthesis of Silver nanoparticles (Ag-NPS) by Lawsonia inermis (Henna) plant aqueous extract and its antimicrobial activity against human pathogens. Int. J. Curr. Microbiol. Appl. Sci. 5, 926–937 (2016).
    Google Scholar 
    36.Nareshkumar, G. et al. Electron channeling contrast imaging for III-nitride thin film structures. Mat. Sci. Semicon. Proc. 2016(47), 44–50 (2016).Article 
    CAS 

    Google Scholar 
    37.Gandhi, S. & Madhusudhan, N. Retrieval of exoplanet emission spectra with HyDRA. Mon. Not. R. Astron. Soc. 47, 1–20 (2017).
    Google Scholar 
    38.Murugan, K. et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum. Parasitol. Res. 114, 3657–3664 (2015).PubMed 
    Article 

    Google Scholar 
    39.Dinesh, D. et al. Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi?. Parasitol. Res. 114, 1519–1529 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Pati, F. et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5, 3935 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Baxter, J. B. & Aydil, E. S. Nanowire based dye sensitized solar cells. Appl. Phys. Lett. 86, 53114 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    42.Reddy, K. M. et al. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90(21), 213902–213903 (2007).ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Chwalibog, A. et al. Visualization of interaction between inorganic nano-particles and bacteria or fungi. Int. J. Nanomedicine. 2010(5), 1085–1094 (2010).Article 
    CAS 

    Google Scholar 
    44.Saha, S., Dhanasekaran, D., Chandraleka, S. & Panneerselvam, C. A Synthesis, characterization and antimicrobial activity of cobalt metal complex against multi drug resistant bacterial and fungal pathogen Facta universitatis series. Phys. Chem. Technol. 7(1), 73–80 (2009).CAS 

    Google Scholar 
    45.Vivek, M., Kumar, P. S., Steffi, S. & Sudha, S. Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects Avicenna. J. Med. Biotechnol. 3(3), 143 (2011).CAS 

    Google Scholar 
    46.Chobu, M., Nkwengulila, G., Mahande, A. M., Mwangonde, B. J. & Kweka, E. J. Direct and indirect effect of predators on Anopheles gambiae sensu stricto. Acta Trop. 142, 131–137 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Murugan, K. et al. Hydrothermal synthesis of titanium dioxide nanoparticles: mosquitocidal potential and anticancer activity on human breast cancer cells (MCF-7). Parasitol. Res. 115, 1085–1096 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Subramaniam, J. et al. Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach?. Environ. Sci. Pollut. Res. Int. 22(24), 20067–20083 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Murugan, K. et al. Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector, Aedes aegypti, in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol. Res. 114, 3601–3610 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Mahesh Kumar, P. et al. Mosquitocidal activity of Solanum xanthocarpum fruit extract and copepod Mesocyclops thermocyclopoides for the control of dengue vector Aedes aegypti. Parasitol. Res. 111, 609–618 (2012).PubMed 
    Article 

    Google Scholar 
    51.Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M. & Mirshekar, A. Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agric Slov. 107(2), 299 (2016).CAS 
    Article 

    Google Scholar 
    52.Ahmad, J., Wahab, R., Siddiqui, M. A., Saquib, Q. & Al-Khedhairy, A. A. Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. J. Biol. Inorg. Chem. 25(2), 325–338 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Wahab, R. et al. Gold quantum dots impair the tumorigenic potential of glioma stem-like cells via β-catenin downregulation in vitro. Int. J. Nanomed. 14, 1131–1148 (2019).CAS 
    Article 

    Google Scholar 
    54.Wahab, R., Saquib, Q. & Faisal, M. Zinc oxide nanostructures: a motivated dynamism against cancer cells. Process Biochem. 98(June), 83–92 (2020).CAS 
    Article 

    Google Scholar 
    55.Wahab, R. et al. Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Adv. 9(23), 13336–13347 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    56.Anitha, J., Selvakumar, R. & Murugan, K. Chitosan capped ZnO nanoparticles with cell specific apoptosis induction through P53 activation and G2/M arrest in breast cancer cells—In vitro approaches. Int. J. Biol. Macromol. 136, 686–696 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Wahab, R. et al. Zinc oxide quantum dots: Multifunctional candidates for arresting C2C12 cancer cells and their role towards caspase 3 and 7 genes. RSC Adv. 6(31), 26111–26120 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Liu, J. & Wang, Z. Increased oxidative stress a selective anticancer therapy. Oxid. Med. Cell. Longev. 2015, 294303 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    59.Droese, S. & Brandt, U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748, 145–169 (2012).CAS 
    Article 

    Google Scholar 
    60.Gupta, S. C. et al. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16, 1295–1322 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Rearing experience with ramps improves specific learning and behaviour and welfare on a commercial laying farm

    Experimental designOver 3 years, six paired organic British Blacktail flocks with intact beaks (i.e. not beak-trimmed) were visited between 1 and 40 weeks of age. Within each pair, one flock was ramp reared (RR) and one flock was control reared without ramps (CR). All flocks were kept on one farm which possessed two rearing houses and six laying sheds of approximately 2000 birds per flock. The site was multi-age, meaning that of the six laying sheds there were three different ages on the site at one time.The availability of this commercial facility enabled us to design an experiment whereby we allocated two rearing treatments, one with ramps provided to access elevated structures and a control with elevated structures but no ramps and to alternate these treatments between the two rearing houses available to avoid treatment x house confounds. Each rearing flock was moved independently to a laying house with no mixing, so we were able to continue data collection and examine any long-term effects of the rearing treatment during the laying period. Rearing flocks were systematically allocated so that each laying house received one RR flock and one CR flock during the experiment.Observations were made in the mornings at three time points during the rearing period at 1, 3 and 15–16 weeks, and three in the laying period at 16–17, 24 and 40 weeks of age. See Table 5 for a summary of experimental design, flock and housing information.Table 5 Experimental design for each ramp reared and control reared flock for the 6 replicates. There were two rearing sheds used, Rear1 (R1) and Rear2 (R2), with 6 different laying sheds named A1, A2, B1, B2, C1 and C2.Full size tableThe rearing sheds were static with 142.7 m2 of floor space covered with wood shavings. Rearing sheds were both set up with feed tracks giving mini pellet feed up to 11 weeks of age then pellet grower feed and 7 nipple drinker lines. The lighting schedule was 23 h light in the first day reducing gradually over the rearing period to 10 h light at 7 weeks of age. A minimum light intensity of 10 lx is required, but with windows and pop-holes light intensity was higher in the houses. The temperature was maintained at 30 °C during the first few days then slowly reduced to match the temperature in the laying sheds. Shed heating was provided by gas spot lamps, whole shed heating through hot pipes running along the length of the shed and hot air fans run by a biomass boiler. All flocks had access to the outside range by 10 weeks of age through two pop holes (each L: 2 m by H: 0.4 m). Flocks were moved the short distance from the rearing to the laying house at between 15 to 16 weeks of age in one night using transport modules.All rearing flocks had access to six elevated structures (ES) (see Fig. 3) from four days of age when the chicks were released from the brooding circles. Each ES comprised nine metal perches (length 302 cm, width 3.5 cm), with three perches (25 cm apart) at three different heights (43 cm, 73 cm and 103 cm). Two plastic grids (width 60 cm, length 115 cm) were fixed within the ES to provide platforms at different heights (Fig. 3). In each replicate, the RR flock had one ramp attached to each ES. Three of the ES were fitted with plastic grid ramps (width 60 cm, length 74 cm, angle 35.5°) leading up to the low perch and three ES had ramps (width 60 cm, length 115 cm, angle 40°) leading up to the middle perch. The CR flock had six ES without ramps.Figure 3Elevated structure dimensions used in the ramp reared sheds, (a) shows the high ramp (b) shows the low ramp. The control sheds elevated structures were identical to these but without ramps.Full size imageThe six single-tier laying houses on-site were mobile organic units with approximately 345m2 of floor space. See Fig. 4 for a schematic plan of their layout. All had a raised area comprising plastic slats over supports (approx. 70 cm from the litter) and a ground-level litter area covered with wood chip. Four of the sheds (Fig. 4a) were set up with the slatted area spanning the whole width of the shed and halfway down the length. In two of the sheds (Fig. 4b) the litter area was either side of the elevated slatted area. Nest boxes ran down the centre of the slatted area, dividing this into two sections. Intermittent ramps were installed at the level change, resulting in 4 m of ramp access and 4 m without ramps in the shed with litter at the end and 8 m of ramp access and 13 m without ramps in the shed with litter at the sides. In sheds A1 and A2 the height of the slatted area resulted in a steeper ramp angle of 45° compared to 30° in the other sheds. There were four pop holes at ground level with two on each side of the house (L: 2.35 m by H: 0.4 m) leading to the range from the litter area on both sides of the sheds. All sheds had aerial perches at 1 m high with 18 cm of perching space per bird resulting in approximately 360 m of perch length running the length of the slatted area. Feed tracks and drinker lines matched those in the rearing sheds. The lighting schedule was 16 h of light and varied between summer and winter with the lights set to turn off at the same time as natural dusk. The birds were fed on organic mini pellets throughout lay. Enrichment was provided to the flocks in the form of pecking objects such as buckets and boots. Replicates 5 and 6 were provided with pecking blocks and alfalfa hay nets hung on the litter area.Figure 4Plan view of the laying house layout (a) for replicates 1, 2, 4 and 5 and (b) for replicates 3 and 6. Images not to scale.Full size imageAssessments of behaviourObservations were made at three time points during the rearing period at 1, 3 and 15–16 weeks. On the first visit at 1 week of age, the total number of chicks on each ES was counted once in spot counts in the morning. At 3 and 15–16 weeks, observations of the movements up and down the ES were made. Three of the 6 structures were chosen at random in each shed. The number of chicks present on the different parts of the ES was counted at the beginning and end of the recording period to allow a comparison with the 1-week counts. The recordings involved 5-min continuous sampling where all movements down the ES were recorded and the area the chicks moved down from was noted. This was then repeated for movements up the ES. Focal bird recordings were taken at 3 and 15–16 weeks of age. Records were made for each of 3 randomly selected ES. When 10 focal birds had been observed (approximately 30 birds per flock), or 10 min had passed recordings stopped. A focal bird was chosen if it was performing orientation behaviour, indicating a downwards or upwards transition. This was described as the bird rotating its head to look in the direction of movement. Behaviours performed after the orientation behaviour were tallied, thus recorded as counts per behaviour (see Table 6). Recordings were stopped if birds completed a transition or moved away from transitioning.Table 6 An ethogram of behaviours of focal birds during up and down movements.Full size tableAt 15–16 weeks of age, three types of interactions were recorded for feather pecking. These included severe feather pecking (SFP), gentle feather pecking (GFP) and aggressive pecks (AP)28. A quadrat area 2 m by 2 m was randomly selected, with the number of birds in each quadrat counted at the beginning and end of the recording period. The number of SFP, GFP and AP were recorded over three minutes of continuous recordings in three different areas of the house, selected randomly at each end and the middle of the shed. Feather pecks and aggressive pecks were recorded as bouts: a series of pecks not separated by more than 5 s28. Rates of pecking were calculated as the number of pecks per bird per second.In the laying shed around 16–17 and at 24 weeks of age 3-min continuous sampling and focal bird recordings were taken for transitions between the slats and litter. Four recordings were made at 2-m lengths along the elevated slatted area: two areas with ramps (RA) and two areas without ramps (NRA) were selected. Separate recordings were taken for upwards and downwards movements and the number of birds in the recording area were counted at the start and end of the scans. At 16–17 and 24 weeks of age, feather pecking observations were taken using the same procedure as for the 15–16-week observations during rear.Welfare assessments and production data rearing phaseFeather scores of 20 birds per flock were recorded at 16–17 weeks of age by walking in a straight line down the centre of the shed, selecting a bird at random then counting two birds to the left of this and visually feather scoring that bird. Birds were not handled to minimise disturbance and plumage was scored using the method from Bright et al.33. The neck, back, rump, tail and wings were scored using a four-point scale 0 (best) to 4 (worst). Data were obtained from the farm records for percentage cumulative mortality and body weight.Welfare assessments and production data laying phaseAt 16–17 and 24 weeks of age, the attitude of the flocks was assessed using the approach distance and reactions to novel objects methodology developed by Whay et al.34. Distance to approach birds before they moved away was recorded by walking through the house selecting a bird at random and counting two birds to the left. The bird had to be standing up and facing the researcher, who approached the bird at a steady pace and recorded the distance before the bird moved away. This was repeated on 20 birds in each flock. Reactions to a novel object (blue folder at 17 weeks of age and a white and blue tub at 24 weeks of age) were assessed by placing a novel object on the ground and recording the time taken for the first bird to interact with it and then how many birds were within a 30 cm radius after 60 s. The novel object test was repeated in 4 areas per flock. Range use was recorded by counting the number of birds near to the house (5 m) in the middle range (5–20 m) and far (the rest of the range). Feather scores of 20 birds per flock were recorded at 17 and 24 weeks of age using the same procedure as for the 16-week assessment for birds at rear.At 40 weeks of age, feather cover and keel bone fractures were scored. Up to 100 birds per shed were caught from four different locations (25 litter, 25 slats, 25 perches, 25 nest boxes). In four sheds only 50 birds were caught as the birds were fearful and showed signs of distress. Feather cover was scored by picking the bird up and scoring the body and flight feathers separately using a the AssureWel three-point scale 0 (best) to 2 (worst)35. The keel damage was then scored using a 0 (no damage) to 2 scale based on the technique used by Wilkins et al.36. Validation for keel bone palpations was conducted. A score of 94% matched scores compared to an experienced gold standard assessor and 85% match at dissection for scoring a break. At 24 weeks of age, the number of floor eggs were counted over 1 day.Data were collected from the farm records on laying house percentage of daily eggs, average egg weight (grams), average hen body weight and feed conversion ratio.During the 16 week recordings in the final rearing flocks, the lighting inside the shed was considerably reduced compared to previous flocks. This resulted in poor visibility for feather cover and feather pecking observations, so these were not taken during this visit. Data were not obtained on keel fractures and feather cover scores at 40 weeks for the first laying flocks visited as their sheds were destroyed by strong winds.Statistical analysisData were analysed using SPSS 24 (IMB) or MLwiN 3.0. The statistical package MLwiN was chosen as it is designed for multilevel modelling and can therefore accommodate data nested within levels with repeated measures. Such models account for dependence between responses caused by grouping of birds within sheds, and repeated measures taken from the same sheds on different visits within and between replicates. Including visit and replicate as nested effects ensures that dependences (e.g. due to differing times of year when data were collected) are accounted for. All residuals were checked for normal distributions using a Shapiro-Wilks test or plotted graphically and no transformations were needed to meet the assumptions of the tests. All results are reported in the format mean ± SD unless when stated as the percentage of birds performing a behaviour during transitions.Assessments of behaviourAt rear, from the counts of chicks on structures and counts of transitions up and down the structures, a normal model (generalised linear model) was used with a four-level hierarchy (bird within shed within visit within replicate). The same normal model and four level hierarchy were used for the counts of transitions in the laying shed.For the focal bird behaviours of birds transitioning at rear and lay, the data were presented as the percentage of each behaviour calculated for the birds in the recording session for the two rearing treatments. The direction (up or down) was analysed separately. For the focal birds at lay, all were included in the analysis for the pre-transitioning behaviours, only birds that attempted a transition were included for analysis of the transitioning behaviours. Pre-transition behaviours for birds that moved-away and did not transition were analysed separately. Owing to the low occurrence of behaviours during the focal recordings for transitions up and down the ramps, data were coded as yes or no, and a Binomial model was used for analysis for both the rear and lay focal transition data with four hierarchical levels (bird within shed within visit within replicate).Welfare and production dataFor the Novel object test, human approach, feather pecking and feather cover data a normal model was used in MLwiN with four-levels (Bird within Shed within visit within replicate). Floor eggs were analysed using a two-tailed t-test in SPSS, due to limited data. Ordinal data such a keel bone fracture scores and feather cover recorded at 40 weeks of age were converted to binomial data due to a lack of data for some scores, these were therefore analysed using a binomial model in MLwiN with two levels (Bird within shed).Production data at rear (body weight in grams) and lay (% eggs daily, egg weight in grams, body weight in grams and feed conversion ratio) were obtained from farm records and analysed in SPSS using a general linear model with treatment (CR and RR) as a fixed factor and age (3, 8 and 14 weeks at rear and 20, 30 and 70 weeks at lay) as a random factor to account for repeated results. Cumulative percentage mortality was analysed at 14 weeks of age using a t-test to compare the treatment groups.Ethical approvalEthical approval for this project was granted by the University of Bristol’s Animal Welfare and Ethical review body under UIN: UB/16/040 and all methods were conducted in accordance with the review body and UK legislation. More

  • in

    Keeping an eye on the use of eye-lens weight as a universal indicator of age for European wild rabbits

    1.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    2.Caughley, G. & Sinclair, A. R. E. Wildlife Ecology and Management (Blackwell Science, 1994).
    Google Scholar 
    3.Servanty, S. et al. Influence of harvesting pressure on demographic tactics: Implications for wildlife management. J. Appl. Ecol. 48(4), 835–843 (2011).Article 

    Google Scholar 
    4.Marboutin, E., Bray, Y., Péroux, R., Mauvy, B. & Lartiges, A. Population dynamics in European hare: Breeding parameters and sustainable harvest rates. J. Appl. Ecol. 40(3), 580–591 (2003).Article 

    Google Scholar 
    5.Stoneberg, R. P. & Jonkel, C. L. Age determination of black bears by cementum layers. J. Wildlife Manage. 30(2), 411–414 (1966).Article 

    Google Scholar 
    6.Roth, V. L. & Shoshani, J. Dental identification and age determination in Elephas maximus. J. Zool. 214, 567–588 (1988).Article 

    Google Scholar 
    7.Dutta, S. & Sengupta, P. Men and mice: Relating their ages. Life Sci. 152, 244–248 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Dimmick, R. W. & Pelton, M. R. Criteria of sex and age. In Research and Management Techniques for Wildlife and Habitats 5th edn, (ed. Bookhout, T.
    A.) 169–214 (The Wildlife Society, Bethesda, MA, US, 1994).
    Google Scholar 
    9.Morris, P. A review of mammalian age determination methods. Mamm. Rev. 2, 69–103 (1972).Article 

    Google Scholar 
    10.Augusteyn, R. C. On the relationship between rabbit age and lens dry weight: Improved determination of the age of rabbits in the wild. Mol. Vis. 13, 2030–2034 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Augusteyn, R. C. Growth of the lens: In vitro observations. Clin. Exp. Optom. 91(3), 226–239 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Augusteyn, R. C. Growth of the eye lens: I. Weight accumulation in multiple species. Mol. Vis. 20, 410–426 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    13.Lord, D. R. The lens as an indicator of age in cottontail rabbits. J. Wildl. Manage. 23, 358–360 (1959).Article 

    Google Scholar 
    14.Forsyth, D. M., Garel, M. & McLeod, S. R. Estimating age and age class of harvested hog deer from eye lens mass using frequentist and Bayesian methods. Wildlife biol. 22(4), 137–143 (2016).Article 

    Google Scholar 
    15.Dudzinski, M. L. & Mykytowycz, R. The eye lens as an indicator of age in the wild rabbit in Australia. CSIRO Wildl. Res. 6, 156–159 (1961).Article 

    Google Scholar 
    16.Myers, K. & Gilbert, N. Determination of age of wild rabbits in Australia. J. Wildl. Manage. 32, 841–849 (1968).Article 

    Google Scholar 
    17.Wheeler, S. H. & King, D. R. The use of eye-lens weights for aging wild rabbits, Oryctolagus cuniculus (L.) in Australia. Aust. Wildl. Res. 7, 79–84 (1980).Article 

    Google Scholar 
    18.Tablado, Z., Revilla, E. & Palomares, F. Breeding like rabbits: Global patterns of variability and determinants of European wild rabbit reproduction. Ecography 32, 310–320. https://doi.org/10.1111/j.1600-0587.2008.05532.x (2009).Article 

    Google Scholar 
    19.Ferreira, C. et al. Biometrical analysis reveals major differences between the two subspecies of the European rabbit. Biol. J. Linn. Soc. 116, 106–116 (2015).Article 

    Google Scholar 
    20.Branco, M., Monnerot, M., Ferrand, N. & Templeton, A. R. Postglacial dispersal of the European rabbit (Oryctolagus cuniculus) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56, 792–803. https://doi.org/10.1111/j.0014-3820.2002.tb01390.x (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography in Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2006).
    Google Scholar 
    22.Geraldes, A. et al. Reduced introgression of the Y chromosome between subspecies of the European rabbit (Oryctolagus cuniculus) in the Iberian Peninsula. Mol. Ecol. 17, 4489–4499 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Carneiro, M., Ferrand, N. & Nachman, M. W. Recombination and speciation: Loci near centromeres are more differentiated than loci near telomeres between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 181, 593–606 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Rafati, N. et al. A genomic map of clinal variation across the European rabbit hybrid zone. Mol. Ecol. 27, 1457–1478. https://doi.org/10.1111/mec.14494 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Vaquerizas, P. H. et al. The paradox of endangered European rabbits regarded as pests in the Iberian Peninsula: Subspecies differences in trends matter. Endang. Species Res. 43, 99–102 (2020).Article 

    Google Scholar 
    26.Arques, J. & Peiró, V. Estructura de Sexos y Edades de una población de Conejos (Oryctolagus cuniculus) del sudeste de España. Mediterránea. Serie de Estudios Biológicos 18, 1–33 (2005).
    Google Scholar 
    27.Trout, R. C. & Smith, G. C. The reproductive productivity of the wild rabbit (Oryctolagus cuniculus) in southern England on sites with different soils. J. Zool. 237(3), 411–422 (1995).Article 

    Google Scholar 
    28.Boussès, P., Arthur, C. & Chapuis, J. L. Rôle du facteur trophique sur la biologie des populations de lapins (Oryctolagus cuniculus L.) des Iles Kerguelen. Revue d’écologie 43, 329–343 (1988).
    Google Scholar 
    29.Bonino, N. & Donadio, E. Body parameters and sexual dimorphism in the European wild rabbit (Oryctolagus cuniculus) introduced in Argentina. Mastozool. Neotrop. 17(1), 123–127 (2010).
    Google Scholar 
    30.Carneiro, M. et al. Rabbit genome analysis reveals a polygenic basic for phenotypic change during domestication. Science 345(6200), 1074–1079 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Myers, K. The rabbit in Australia. In Dynamics of Numbers in Populations (eds den Boer, P. J. & Gradwell, G. R.) 478–506 (Proceedings of the NATO Advanced Study Institute Oosterbeek, 1970).
    Google Scholar 
    32.Delibes-Mateos, M., Villafuerte, R., Cooke, B. & Alves, P. C. Oryctolagus cuniculus (Linnaeus, 1758). In Lagomorphs: Pikas, Rabbits and Hares of the World (eds Smith, A. T. et al.) 99–104 (John Hopkins University Press, 2018).
    Google Scholar 
    33.Carneiro, M. et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS. Genet. 10(8), e1003519. https://doi.org/10.1371/journal.pgen.1003519 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bonino, N. & Soriguer, R. Genetic lineages of feral populations of the Oryctolagus cuniculus (Leporidae, Lagomorpha) in Argentina. Mammalia 72, 355–357 (2008).Article 

    Google Scholar 
    35.Branco, M. & Ferrand, N. Biochemical and population genetics of the rabbit, Oryctolagus cuniculus, carbonic anhydrases I and II, from the Iberian Peninsula and France. Biochem. Genet. 41, 391–404. https://doi.org/10.1023/B:BIGI.0000007774.39262.8e (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Geraldes, A., Ferrand, N. & Nachman, M. W. Contrasting patterns of introgression at X-linked loci across the hybrid zone between subspecies of the European rabbit (Oryctolagus cuniculus). Genetics 173, 919–933 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Lo Valvo, M., Scala, A. & Scalisi, M. Biometric characterization and taxonomic considerations of European rabbit Oryctolagus cuniculus (Linnaeus 1758) in Sicily (Italy). World Rabbit Sci. 22(3), 207–214. https://doi.org/10.4995/wrs.2014.1467 (2014).Article 

    Google Scholar 
    38.Miller, G. S. Catalogue of the Mammals of Western Europe in the Collection of the British Museum (Trustees of the British Museum, 1912).
    Google Scholar 
    39.Sharples, C. M., Fa, J. E. & Bell, D. J. Geographical variation in size in the European rabbit Oryctolagus cuniculus (Lagomorpha: Leporidae) in western Europe and North Africa. Zool. J. Linn. Soc-Lond. 117, 141–158. https://doi.org/10.1111/j.1096-3642.1996.tb02153.x (1996).Article 

    Google Scholar 
    40.Carro, F., Ortega, M. & Soriguer, R. C. Is restocking a useful tool for increasing rabbit densities?. Global Ecol. Conserv. 17, e00560. https://doi.org/10.1016/j.gecco.2019.e00560 (2019).Article 

    Google Scholar 
    41.Angulo, E. & Villafuerte, R. Modelling hunting strategies for the conservation of wild rabbit populations. Biol. Conserv. 115, 291–301 (2003).Article 

    Google Scholar 
    42.Delibes-Mateos, M., Delibes, M., Ferreras, P. & Villafuerte, R. Key role of European rabbits in the conservation of the Western Mediterranean Basin Hotspot. Conserv. Biol. 22, 1106–1117 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Garrido, J. L., Ferreres, J. & Gortázar, C. Las especies cinegéticas españolas en el siglo XXI. (eds. Garrido, J. L., Ferreres, J. & Gortázar, C.)
    (Independently published, Ciudad Real, Spain, 2019).
    Google Scholar 
    44.Ríos-Saldaña, C. et al. Control of the European rabbit in central Spain. Eur. J. Wildlife Res. 59, 573–580. https://doi.org/10.1007/s10344-013-0707-x (2013).Article 

    Google Scholar 
    45.Lees, A. C. & Bell, D. J. A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Rev. 38, 304–320 (2008).Article 

    Google Scholar 
    46.Cooke, B. D. Rabbits: Manageable environmental pests or participants in new Australian ecosystems?. Wildlife Res. 39, 279–289 (2013).ADS 
    Article 

    Google Scholar 
    47.Calvete, C., Angulo, E. & Estrada, R. Conservation of European wild rabbit populations when hunting is age and sex selective. Biol. Conserv. 121(4), 623–634 (2005).Article 

    Google Scholar 
    48.Delibes-Mateos, M., Ramírez, E., Ferreras, P. & Villafuerte, R. Translocations as a risk for the conservation of European wild rabbit Oryctolagus cuniculus lineages. Oryx 42(2), 259–264 (2008).Article 

    Google Scholar 
    49.Andersen, J. & Jensen, B. Studies on the European hare. XXVIII. The weight of the eye lens in the European hares of known age. Acta Theriol. 17, 87–92 (1972).Article 

    Google Scholar 
    50.Suchentrunck, F., Willing, R. & Hartl, G. B. On eye lens weights and other age criteria of the Brown hare (Lepus europaeus Pallas, 1778). Z. Säugetierkd. 56, 365–374 (1991).
    Google Scholar 
    51.Villafuerte, R. et al. Large-scale assessment of myxomatosis prevalence in European wild rabbits (Oryctolagus cuniculus) 60 years after first outbreak in Spain. Res. Vet. Sci. 114, 281–286 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Rouco, C., Villafuerte, R., Castro, F. & Ferreras, P. Effect of artificial warren size on a restocked European wild rabbit population. Anim. Conserv. 14, 117–123 (2011).Article 

    Google Scholar 
    53.Southern, N. The ecology and population dynamics of the wild rabbit (Oryctolagus cuniculus). Ann. Appl. Biol. 27, 509–514 (1940).Article 

    Google Scholar 
    54.Dunnet, G. M. Growth rate of young rabbits, Oryctolagus cuniculus (L.). CSIRO Wildl. Res. 1, 66–67 (1956).Article 

    Google Scholar 
    55.Ferreira, A. & Ferreira, A. J. Post-weaning growth of endemic Iberian wild rabbit subspecies, Oryctolagus cuniculus algirus, kept in a semi-extensive enclosure: Implications for management and conservation. World Rabbit Sci. 22, 129–136. https://doi.org/10.4995/wrs.2014.1673 (2014).Article 

    Google Scholar 
    56.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (Vienna,
    Austria, 2020).
    Google Scholar 
    57.du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    58.Burnham, K. P. & Anderson, D. R. Monte Carlo insights and extended examples. In Model Selection and Multimodel Inference, (eds. Burnham K. P. &
    Anderson D. R.) https://doi.org/10.1007/978-0-387-22456-5_5). (Springer, New York, NY, US, 2002).59.Pastore, M. Overlapping: A R package for estimating overlapping in empirical distributions. J. Open Source Softw. 32, 1023 (2018).ADS 
    Article 

    Google Scholar 
    60.Pastore, M. & Calcagnì, A. Measuring distribution similarities between samples: A distribution-free overlapping Index. Front. Psychol. 10, 1089 https://doi.org/10.3389/fpsyg.2019.01089 (2019).Article 

    Google Scholar 
    61.Williams, C. & Moore, R. Phenotypic adaptation and natural selection in the wild rabbit, Oryctolagus cuniculus, Australia. J. Anim. Ecol. 58(2), 495–507. https://doi.org/10.2307/4844 (1989).Article 

    Google Scholar  More

  • in

    New lineages of photobionts in Bolivian lichens expand our knowledge on habitat preferences and distribution of Asterochloris algae

    1.Fernández-Brime, S., Muggia, L., Maier, S., Grube, M. & Wedin, M. Bacterial communities in an optional lichen symbiosis are determined by substrate, not algal photobionts. FEMS Microbiol. Ecol. 95, fiz012 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Grube, M. et al. Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J. 9, 412–424 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Peksa, O. & Škaloud, P. Do photobionts influence the ecology of lichens? A case study of environmental preferences in symbiotic green alga Asterochloris (Trebouxiophyceae). Mol. Ecol. 20, 3936–3948 (2011).PubMed 
    Article 

    Google Scholar 
    5.Řídká, T., Peksa, O., Rai, H., Upreti, D. K. & Škaloud, P. Photobiont diversity in Indian Cladonialichens, with special emphasis on the geographical patterns. In Terricolous Lichens in India, Volume 1: Diversity Patterns and Distribution Ecology (eds Rai, H. & Upreti, D. K.) 53–71 (Springer, New York, 2014).
    Google Scholar 
    6.Rolshausen, G. et al. Expanding the mutualistic niche: Parallel symbiont turnover along climatic gradients. Proc. R. Soc. B 287, 1924 (2020).Article 

    Google Scholar 
    7.Kosecka, M. et al. Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. J. Phycol. 56, 979–993 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Muggia, L., Pérez-Ortega, S., Kopun, T., Zellnig, G. & Grube, M. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Ann. Bot. 114, 463–475 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Vančurová, L., Muggia, L., Peksa, O., Řídká, T. & Škaloud, P. The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota). Mol. Ecol. 27, 3016–3033 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    10.Beck, A., Kasalicky, T. & Rambold, G. Myco-photobiontal selection in a Mediterranean cryptogam community with Fulgensia fulgida. New Phytol. 153, 317–326 (2002).Article 

    Google Scholar 
    11.Nelsen, M. P. & Gargas, A. Actin type intron sequences increase phylogenetic resolution: An example from Asterochloris (Chlorophyta: Trebouxiophyceae). Lichenologist 38, 435–440 (2006).Article 

    Google Scholar 
    12.Nelsen, M. P. & Gargas, A. Dissociation and horizontal transmission of co-dispersed lichen symbionts in the genus Lepraria (Lecanorales: Stereocaulaceae). New Phytol. 177, 264–275 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Škaloud, P. & Peksa, O. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris. Mol. Phylogenet. Evol. 54, 36–46 (2010).PubMed 
    Article 

    Google Scholar 
    14.Škaloud, P., Steinová, J., Řídká, T., Vančurová, L. & Peksa, O. Assembling the challenging puzzle of algal biodiversity: Species delimitation within the genus Asterochloris (Trebouxiophyceae, Chlorophyta). J. Phycol. 51, 507–527 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Steinová, J., Škaloud, P., Yahr, R., Bestová, H. & Muggia, L. Reproductive and dispersal strategies shape the diversity of mycobiont-photobiont association in Cladonia lichens. Mol. Phylogenet. Evol. 134, 226–237 (2019).PubMed 
    Article 

    Google Scholar 
    16.Vančurová, L., Peksa, O., Němcová, Y. & Škaloud, P. Vulcanochloris (Trebouxiales, Trebouxiophyceae), a new genus of lichen photobiont from La Palma, Canary Islands, Spain. Phytotaxa 219, 118–132 (2015).Article 

    Google Scholar 
    17.Vančurová, L. et al. Symbiosis between river and dry lands: Phycobiont dynamics on river gravel bars. Algal Res. 51, 102062. https://doi.org/10.1016/j.algal.2020.102062 (2020).Article 

    Google Scholar 
    18.Yahr, R., Vilgalys, R. & Depriest, P. T. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Mol. Ecol. 13, 3367–3378 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Tschermak-Woess, E. Asterochloris phycobiontica gen. et spec. nov., der Phycobiont der Flechte Varicellaria carneonivea. Plant Syst. Evol. 135, 279–294 (1980).Article 

    Google Scholar 
    20.Moya, P. et al. Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. Nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 65(6), 1838–1854 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    21.Kim, J. I. et al. Asterochloris sejongensis sp. nov. (Trebouxiophyceae, Chlorophyta) from King George Island, Antarctica. Phytotaxa 295, 60–70 (2017).Article 

    Google Scholar 
    22.Kim, J. I. et al. Taxonomic study of three new Antarctic Asterochloris(Trebouxio-phyceae) based on morphological and molecular data. Korean Soc. Phycol. 35(1), 17–32 (2020).CAS 

    Google Scholar 
    23.Pino-Bodas, R. & Stenroos, S. Global biodiversity patterns of the photobionts associated with the genus Cladonia (Lecanorales, Ascomycota). Microb. Ecol. https://doi.org/10.1007/s00248-020-01633-3 (2020).Article 
    PubMed 

    Google Scholar 
    24.Fernandez-Mendoza, F. et al. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Mol. Ecol. 20, 1208–1232 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Helms, G. Taxonomy and symbiosis in associations of Physciaceae and Trebouxia. Göttingen, Doctoral thesis. Germany: Georg-August Universität Göttingen (2003).26.Kroken, S. & Taylor, J. W. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. Bryologist 103, 645–660 (2000).CAS 
    Article 

    Google Scholar 
    27.Leavitt, S. D. et al. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen- forming family Parmeliaceae (Ascomycota). Mol. Ecol. 24, 3779–3797 (2015).PubMed 
    Article 

    Google Scholar 
    28.Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E. & Lutzoni, F. Macroevolution of Specificity in Cyanolichens of the Genus Peltigera Section Polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 66, 74–99 (2016).
    Google Scholar 
    29.Mark, K. et al. Contrasting cooccurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. New Phytol. 227, 1362–1375 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.O’Brien, H. E., Miadlikowska, J. & Lutzoni, F. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198, 557–566 (2013).PubMed 
    Article 

    Google Scholar 
    31.Piercey-Normore, M. D. & DePriest, P. T. Algal switching among lichen symbionts. Am. J. Bot. 88, 1490–1498 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Yahr, R., Vilgalys, R. & DePriest, P. T. Geographic variation in algal partners of Cladonia subtenuis (Cladoniaceae) highlights the dynamic nature of a lichen symbiosis. New Phytol. 171, 847–860 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Muggia, L. et al. The symbiotic playground of lichen thalli—A highly flexible photobiont association in rock inhabiting lichens. FEMS Microbiol. Ecol. 85, 313–323 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Sadowska-Deś, A. D. et al. Integrating coalescent and phylogenetic approaches to delimit species in the lichen photobiont Trebouxia. Mol. Phylogenet. Evol. 76, 202–210 (2014).PubMed 
    Article 

    Google Scholar 
    35.Wirtz, N. et al. Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 160, 177–183 (2003).Article 

    Google Scholar 
    36.Ertz, D., Guzow-Krzemińska, B., Thor, G., Łubek, A. & Kukwa, M. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Sci Rep. 8, 4952 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Marshall, W. A. & Chalmers, M. O. Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20, 585–594 (1997).Article 

    Google Scholar 
    38.Printzen, C., Domaschke, S., Fernandez-Mendoza, F. & Perez-Ortega, S. Biogeography and ecology of Cetraria aculeata, a widely distributed lichen with a bipolar distribution. MycoKeys 6, 33–53 (2013).Article 

    Google Scholar 
    39.Pardo-De la Hoz, C. J. et al. Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Front. Microbiol. 9, 2770–2770 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Singh, G. et al. Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol. 214, 317–329 (2017).PubMed 
    Article 

    Google Scholar 
    41.Cordeiro, L. M. C. et al. Molecular studies of photobionts of selected lichens from the coastal vegetation of Brazil. FEMS Microbiol. Ecol. 54, 381–390 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Pullaiah, T. (ed.) (2019) Biodiversity in Bolivia in: Global Biodiversity Volume 4: Selected Countries in the Americas and Australia, Chapter 1. 1–574 (Apple Academic Press, 2001).43.Ibisch, P. L. & Mérida, G. Biodiversity: the richness of Bolivia. State of knowledge and conservation. 1–638 (Ministry of Sustainable Development, Editorial FAN, 2004).44.Werth, S. & Sork, V. L. Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range-covering ecoregions of western North America. Am. J. Bot. 101, 1127–1140 (2014).PubMed 
    Article 

    Google Scholar 
    45.Rolshausen, G., Dal Grande, F., Sadowska-Deś, A. D., Otte, J. & Schmitt, I. Quantifying the climatic niche of symbiont partners in a lichen symbiosis indicates mutualistmediated niche expansions. Ecography 41, 1380–1392 (2018).Article 

    Google Scholar 
    46.Blaha, J., Baloch, E. & Grube, M. High photobiont diversity insymbioses of the euryoecious lichen Lecanora rupicola (Lecanoraceae, Ascomycota). Biol. J. Linn. Soc. 88, 283–293 (2006).Article 

    Google Scholar 
    47.Vargas Castillo, R. & Beck, A. Photobiont selectivity and specificity in Caloplaca species in a fog-induced community in the Atacama Desert, northern Chile. Fungal Biol. 116, 665–676 (2012).PubMed 
    Article 

    Google Scholar 
    48.Bačkor, M., Klemová, K., Bačkorová, M. & Ivanova, V. Comparison of the phytotoxic effects of usnic acid on cultures of free-living alga Scenedesmus quadricauda and aposymbiotically grown lichen photobiont Trebouxia erici. J. Chem. Ecol. 36, 405–411 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Galloway, D. J. Lichen biogeography. In: Nash T. H. (ed.) Lichen Biology, 315–335 (Cambridge University Press, 2008).50.Dal Grande, F. et al. Environment and host identity structure communities of green algal symbionts in lichens. New Phytol. 217, 277–289 (2017).Article 
    CAS 

    Google Scholar 
    51.Dal Grande, F., Widmer, I., Wagner, H. H. & Scheidegger, C. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Mol. Ecol. 21, 3159–3172 (2012).Article 

    Google Scholar 
    52.Otálora, M. A. G. et al. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol. Phylogenet. Evol. 56, 1089–1095 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Ruprecht, U., Fernández-Mendoza, F., Türk, R. & Fryday, A. High levels of endemism and local differentiation in the fungal and algal symbionts of saxicolous lecideoid lichens along a latitudinal gradient in southern South America. Lichenologist 52, 287–303 (2020).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    54.Ahti, T., Cladoniaceae in Flora Neotropica Monograph 78. 2–362 (New York Botanical Garden Press, 2000).55.Parnmen, S., Leavitt, S. D., Rangsiruji, A. & Lumbsch, H. T. Identification of species in the Cladia aggregata group using DNA barcoding (Ascomycota: Lecanorales). Phytotaxa 115, 1–14 (2013).Article 

    Google Scholar 
    56.Guzow-Krzemińska, B. et al. New species and records of lichens from Bolivia. Phytotaxa 397, 257–279 (2019).Article 

    Google Scholar 
    57.Sipman, H. J. M. Survey of Lepraria species with lobed thallus margins in the tropics. Herzogia 17, 23–35 (2004).
    Google Scholar 
    58.Saag, L., Saag, A. & Randlane, T. World survey of the genus Lepraria (Stereocaulaceae, lichenized Ascomycota). Lichenologist 41, 25–60 (2009).Article 

    Google Scholar 
    59.Guzow-Krzemińska, B. et al. Phylogenetic placement of Lepraria cryptovouauxii sp. nov. (Lecanorales, Lecanoromycetes, Ascomycota) with notes on other Lepraria species from South America. MycoKeys 53, 1–22 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Orange, A., James, P. W. & White, F. J. Microchemical Methods for the Identification of Lichens. 1–101 (British Lichen Society, 2001).61.Cubero, O. F., Crespo, A., Fatehi, J. & Bridge, P. D. DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst. Evol. 216, 243–249 (1999).CAS 
    Article 

    Google Scholar 
    62.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics in PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.) 345–322 (Academic Press, 1990).63.Sherwood, A. R., Garbary, D. J. & Sheath, R. G. Assessing the phylogenetic position of the Prasiolales (Chlorophyta) using rbcL and 18S rRNA gene sequence data. Phycologia 39, 139–146 (2000).Article 

    Google Scholar 
    64.Nelsen, M. P., Rivas Plata, E., Andrew, C. J., Lücking, R. & Lumbsch, H. T. Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. J. Phycol. 47, 282–290 (2011).PubMed 
    Article 

    Google Scholar 
    65.Widmer, I., Dal Grande, F., Cornejo, C. & Scheidegger, C. Highly variable microsatellite markers for the fungal and algal symbionts of the lichen Lobaria pulmonaria and challenges in developing biont-specific molecular markers for fungal associations. Fungal Biol. 114, 538–544 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    Article 

    Google Scholar 
    67.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Okonechnikov, K., Golosova, O. & Fursov, M. UGENE team. Unipro GENE: A unified bioinformatics toolkit. Bioinformatics 28, 1166–1167 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    Article 

    Google Scholar 
    73.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE): 1–8 (2010).74.Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 
    75.Rambaut, A. FigTreev1.4.2. Retrieved from: http://tree.bio.ed.ac.uk/software/figtree/ (2006–2014).76.Oksanen, et al., vegan: Community ecology package manual. Retrieved from https://cran.rproject.org/package=vegan (2017).77.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    78.Borcard, D., Legendre, P., Avois-Jacquet, C. & Tuomisto, H. Dissecting the spatial structure of ecological data at multiple scales. Ecology 85, 1826–1832 (2004).Article 

    Google Scholar 
    79.Lefeuvre, P. BoSSA: A bunch of structure and sequence analysis manual. Retrieved from https://cran.r-project.org/package=BoSSA (2018).80.McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001).Article 

    Google Scholar 
    81.Stenroos, S., Pino-Bodas, R., Hyvönen, J., Lumbsch, T. H. & Ahti, T. Phylogeny of family Cladoniaceae (Lecanoromycetes, Ascomycota) based on sequences of multiple loci. Cladistics 35, 351–384 (2019).Article 

    Google Scholar 
    82.R Core Team. R: A Language and Environment for Statistical Computing.83.https://www.R-project.org/ (2017).84.RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/ (2018).85.Aktas, C. Manipulating DNA Sequences and Estimating Unambiguous Haplotype Network with Statistical Parsimony. Retrieved from https://CRAN.R project.org/package=haplotypes (2020).86.Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A., and V. Tannen. TreeBASE v. 2: A Database of Phylogenetic Knowledge. In: e-BioSphere (2009) More