Urinary neopterin of wild chimpanzees indicates that cell-mediated immune activity varies by age, sex, and female reproductive status
1.Sadd, B. M. & Schmid-Hempel, P. Principles of ecological immunology. Evol. Appl. 2, 113–121. https://doi.org/10.1111/j.1752-4571.2008.00057.x (2009).Article
PubMed
Google Scholar
2.Kew, C. et al. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 9, e57591, https://doi.org/10.7554/eLife.57591 (2020).3.Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172–4172. https://doi.org/10.1038/ncomms5172 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
4.Lee, K. A. Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015. https://doi.org/10.1093/icb/icl049 (2006).CAS
Article
PubMed
Google Scholar
5.Demas, G. E. & Nelson, R. J. Ecoimmunology. (Oxford University Press, 2012).6.Brock, P. M., Murdock, C. C. & Martin, L. B. The history of ecoimmunology and its integration with disease ecology. Integr. Comp. Biol. 54, 353–362. https://doi.org/10.1093/icb/icu046 (2014).Article
PubMed
PubMed Central
Google Scholar
7.Gurven, M., Kaplan, H., Winking, J., Finch, C. & Crimmins, E. M. Aging and inflammation in two epidemiological worlds. J. Gerontol. A Biol. Sci. Med. Sci. 63, 196–199, https://doi.org/10.1093/gerona/63.2.196 (2008).8.Blackwell, A. D. et al. Immune function in Amazonian horticulturalists. Ann. Hum. Biol. 43, 382–396. https://doi.org/10.1080/03014460.2016.1189963 (2016).Article
PubMed
PubMed Central
Google Scholar
9.Blackwell, A. D., Martin, M., Kaplan, H. & Gurven, M. Antagonism between two intestinal parasites in humans: the importance of co-infection for infection risk and recovery dynamics. Proc. Biol. Sci. 280, 20131671–20131671. https://doi.org/10.1098/rspb.2013.1671 (2013).Article
PubMed
PubMed Central
Google Scholar
10.Vasunilashorn, S. et al. Blood lipids, infection, and inflammatory markers in the Tsimane of Bolivia. Am. J. Hum. Biol. 22, 731–740. https://doi.org/10.1002/ajhb.21074 (2010).Article
PubMed
PubMed Central
Google Scholar
11.Kraft, T. S. et al. Multi-system physiological dysregulation and ageing in a subsistence population. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 375, 20190610. https://doi.org/10.1098/rstb.2019.0610 (2020).Article
PubMed
Google Scholar
12.Dansereau, G. et al. Conservation of physiological dysregulation signatures of aging across primates. Aging Cell 18, e12925–e12925. https://doi.org/10.1111/acel.12925 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
13.Birkett, L. P. & Newton-Fisher, N. E. How abnormal is the behaviour of captive, zoo-living chimpanzees?. PLoS ONE 6, e20101. https://doi.org/10.1371/journal.pone.0020101 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
14.Lewton, K. L. The effects of captive versus wild rearing environments on long bone articular surfaces in common chimpanzees (Pan troglodytes). PeerJ 5, e3668–e3668. https://doi.org/10.7717/peerj.3668 (2017).Article
PubMed
PubMed Central
Google Scholar
15.Atsalis, S. & Videan, E. Reproductive aging in captive and wild common chimpanzees: Factors influencing the rate of follicular depletion. Am. J. Primatol. 71, 271–282. https://doi.org/10.1002/ajp.20650 (2009).Article
PubMed
Google Scholar
16.Michaud, M. et al. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14, 877–882. https://doi.org/10.1016/j.jamda.2013.05.009 (2013).Article
PubMed
Google Scholar
17.Ian, D. G. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 2, 801–810. https://doi.org/10.1093/clinids/2.5.801 (1980).Article
Google Scholar
18.Monti, D., Ostan, R., Borelli, V., Castellani, G. & Franceschi, C. Inflammaging and human longevity in the omics era. Mech. Ageing Dev. 165, 129–138. https://doi.org/10.1016/j.mad.2016.12.008 (2017).Article
PubMed
Google Scholar
19.Walker, E. M. et al. Inflammaging phenotype in rhesus macaques is associated with a decline in epithelial barrier-protective functions and increased pro-inflammatory function in CD161-expressing cells. Geroscience 41, 739–757. https://doi.org/10.1007/s11357-019-00099-7 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
20.Baylis, D., Bartlett, D. B., Patel, H. P. & Roberts, H. C. Understanding how we age: insights into inflammaging. Longev. Healthspan 2, 8–8. https://doi.org/10.1186/2046-2395-2-8 (2013).Article
PubMed
PubMed Central
Google Scholar
21.Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).Article
PubMed
Google Scholar
22.Cheynel, L. et al. Immunosenescence patterns differ between populations but not between sexes in a long-lived mammal. Sci. Rep. 7, 13700–13700. https://doi.org/10.1038/s41598-017-13686-5 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
23.Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
24.Dibakou, S. E. et al. Ecological, parasitological and individual determinants of plasma neopterin levels in a natural mandrill population. Int. J. Parasitol. Parasites Wildl. 11, 198–206. https://doi.org/10.1016/j.ijppaw.2020.02.009 (2020).Article
PubMed
PubMed Central
Google Scholar
25.Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368. https://doi.org/10.1038/hdy.1948.21 (1948).CAS
Article
PubMed
Google Scholar
26.Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626. https://doi.org/10.1038/nri.2016.90 (2016).CAS
Article
PubMed
Google Scholar
27.Lemaître, J.-F. et al. Sex differences in adult lifespan and aging rates of mortality across wild mammals. Proc. Natl. Acad. Sci. U.S.A. 117, 8546–8553. https://doi.org/10.1073/pnas.1911999117 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
28.Moore, S. L. & Wilson, K. Parasites as a viability cost of sexual selection in natural populations of mammals. Science 297, 2015–2018. https://doi.org/10.1126/science.1074196 (2002).ADS
CAS
Article
PubMed
Google Scholar
29.Giefing-Kröll, C., Berger, P., Lepperdinger, G. & Grubeck-Loebenstein, B. How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell 14, 309–321. https://doi.org/10.1111/acel.12326 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
30.Faas, M. et al. The immune response during the luteal phase of the ovarian cycle: A Th2-type response?. Fertil. Steril. 74, 1008–1013. https://doi.org/10.1016/S0015-0282(00)01553-3 (2000).CAS
Article
PubMed
Google Scholar
31.Murphy, S. P. et al. Interferon gamma in successful pregnancies. Biol. Reprod. 80, 848–859. https://doi.org/10.1095/biolreprod.108.073353 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Morison, L. et al. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm. Infect 81, 242–247. https://doi.org/10.1136/sti.2004.011684 (2005).CAS
Article
PubMed
PubMed Central
Google Scholar
33.Wira, C. R. & Fahey, J. V. A new strategy to understand how HIV infects women: Identification of a window of vulnerability during the menstrual cycle. AIDS 22, 1909–1917. https://doi.org/10.1097/QAD.0b013e3283060ea4 (2008).Article
PubMed
PubMed Central
Google Scholar
34.Raghupathy, R. Th1-type immunity is incompatible with successful pregnancy. Immunol. Today 18, 478–482. https://doi.org/10.1016/s0167-5699(97)01127-4 (1997).CAS
Article
PubMed
Google Scholar
35.Sappenfield, E., Jamieson, D. J. & Kourtis, A. P. Pregnancy and susceptibility to infectious diseases. Infect Dis. Obstet. Gynecol. 752852–752852, 2013. https://doi.org/10.1155/2013/752852 (2013).Article
Google Scholar
36.Wood, B. M., Watts, D. P., Mitani, J. C. & Langergraber, K. E. Favorable ecological circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. J. Hum. Evol. 105, 41–56. https://doi.org/10.1016/j.jhevol.2017.01.003 (2017).Article
PubMed
PubMed Central
Google Scholar
37.Johnson, P. T. J. et al. Living fast and dying of infection: Host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242. https://doi.org/10.1111/j.1461-0248.2011.01730.x (2012).Article
PubMed
Google Scholar
38.Previtali, M. A. et al. Relationship between pace of life and immune responses in wild rodents. Oikos 121, 1483–1492. https://doi.org/10.1111/j.1600-0706.2012.020215.x (2012).Article
Google Scholar
39.Haigwood, N. & Walker, C. Chimpanzees in Biomedical and Behavioral Research: Assessing the Necessity (eds Bruce M. Altevogt, Diana E. Pankevich, Marilee K. Shelton-Davenport, & Jeffrey P. Kahn) 91–165 (National Academies Press (US), 2011).40.Muehlenbein, M. P. Parasitological analyses of the male chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda. Am. J. Primatol. 65, 167–179. https://doi.org/10.1002/ajp.20106 (2005).Article
PubMed
Google Scholar
41.Gillespie, T. R. et al. Demographic and ecological effects on patterns of parasitism in eastern chimpanzees (Pan troglodytes schweinfurthii) in Gombe National Park, Tanzania. Am. J. Phys. Anthropol. 143, 534–544. https://doi.org/10.1002/ajpa.21348 (2010).Article
PubMed
PubMed Central
Google Scholar
42.Muehlenbein, M. P. & Lewis, C. M. Primate Ecology and Conservation: A Handbook of Techniques (eds E. J. Sterling, N. Bynum, & M. E. Blair) 40–57 (Oxford University Press, 2013).43.Behringer, V., Stevens, J. M. G., Leendertz, F. H., Hohmann, G. & Deschner, T. Validation of a method for the assessment of urinary neopterin levels to monitor health status in non-human-primate species. Front. Physiol. 8, 51–51. https://doi.org/10.3389/fphys.2017.00051 (2017).Article
PubMed
PubMed Central
Google Scholar
44.Higham, J. P. et al. Evaluating noninvasive markers of nonhuman primate immune activation and inflammation. Am. J. Phys. Anthropol. 158, 673–684. https://doi.org/10.1002/ajpa.22821 (2015).Article
PubMed
Google Scholar
45.Berdowska, A. & Zwirska-Korczala, K. Neopterin measurement in clinical diagnosis. J. Clin. Pharm. Ther. 26, 319–329. https://doi.org/10.1046/j.1365-2710.2001.00358.x (2001).CAS
Article
PubMed
Google Scholar
46.Murr, C., Widner, B., Wirleitner, B. & Fuchs, D. Neopterin as a marker for immune system activation. Curr. Drug Metab. 3, 175–187. https://doi.org/10.2174/1389200024605082 (2002).CAS
Article
PubMed
Google Scholar
47.Denz, H. et al. Value of urinary neopterin in the differential diagnosis of bacterial and viral infections. Klin. Wochenschr. 68, 218–222. https://doi.org/10.1007/bf01662720 (1990).CAS
Article
PubMed
Google Scholar
48.Wu, D. F., Behringer, V., Wittig, R. M., Leendertz, F. H. & Deschner, T. Urinary neopterin levels increase and predict survival during a respiratory outbreak in wild chimpanzees (Taï National Park, Côte d’Ivoire). Sci. Rep. 8, 13346–13346. https://doi.org/10.1038/s41598-018-31563-7 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
49.Behringer, V. et al. Elevated neopterin levels in wild, healthy chimpanzees indicate constant investment in unspecific immune system. BMC Zool. 4, 2. https://doi.org/10.1186/s40850-019-0041-1 (2019).MathSciNet
Article
Google Scholar
50.González, N. T. et al. Urinary markers of oxidative stress respond to infection and late-life in wild chimpanzees. PLoS ONE 15, e0238066. https://doi.org/10.1371/journal.pone.0238066 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
51.Negrey, J. D. et al. Demography, life history trade-offs, and the gastrointestinal virome of wild chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190613, https://doi.org/10.1098/rstb.2019.0613 (2020).52.Phillips, S. R. et al. Faecal parasites increase with age but not reproductive effort in wild female chimpanzees. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190614, https://doi.org/10.1098/rstb.2019.0614 (2020).53.Emery Thompson, M. et al. Risk factors for respiratory illness in a community of wild chimpanzees (Pan troglodytes schweinfurthii). R. Soc. Open Sci. 5, 180840. https://doi.org/10.1098/rsos.180840 (2018).ADS
Article
PubMed
PubMed Central
Google Scholar
54.Dyke, B., Gage, T. B., Alford, P. L., Swenson, B. & Williams-Blangero, S. Model life table for captive chimpanzees. Am. J. Primatol. 37, 25–37. https://doi.org/10.1002/ajp.1350370104 (1995).Article
PubMed
Google Scholar
55.Obanda, V., Omondi, G. P. & Chiyo, P. I. The influence of body mass index, age and sex on inflammatory disease risk in semi-captive Chimpanzees. PLoS ONE 9, e104602–e104602. https://doi.org/10.1371/journal.pone.0104602 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
56.De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 413. https://doi.org/10.1186/1475-2875-13-413 (2014).Article
PubMed
PubMed Central
Google Scholar
57.Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Timing and probability of ovulation in relation to sex skin swelling in wild West African chimpanzees, Pan troglodytes verus. Anim. Behav. 66, 551–560. https://doi.org/10.1006/anbe.2003.2210 (2003).Article
Google Scholar
58.Knott, C. D. Field collection and preservation of urine in orangutans and chimpanzees. Trop. Biodivers. 4, 95–102 (1997).
Google Scholar
59.Fuchs, D. et al. Urinary neopterin concentrations vs total neopterins for clinical utility. Clin. Chem. 35, 2305–2307 (1989).CAS
Article
Google Scholar
60.Anestis, S. F., Breakey, A. A., Beuerlein, M. M. & Bribiescas, R. G. Specific gravity as an alternative to creatinine for estimating urine concentration in captive and wild chimpanzee (Pan troglodytes) samples. Am. J. Primatol. 71, 130–135. https://doi.org/10.1002/ajp.20631 (2009).CAS
Article
PubMed
Google Scholar
61.Emery Thompson, M., Muller, M. N. & Wrangham, R. W. Technical note: Variation in muscle mass in wild chimpanzees: Application of a modified urinary creatinine method. Am. J. Phys. Anthropol. 149, 622–627, https://doi.org/10.1002/ajpa.22157 (2012).62.Miller, R. C. et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin. Chem. 50, 924–932. https://doi.org/10.1373/clinchem.2004.032292 (2004).CAS
Article
PubMed
Google Scholar
63.Negrey, J. D. et al. Simultaneous outbreaks of respiratory disease in wild chimpanzees caused by distinct viruses of human origin. Emerg. Microbes Infect. 8, 139–149. https://doi.org/10.1080/22221751.2018.1563456 (2019).Article
PubMed
PubMed Central
Google Scholar
64.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).65.Auzéby, A., Bogdan, A., Krosi, Z. & Touitou, Y. Time-dependence of urinary neopterin, a marker of cellular immune activity. Clin. Chem. 34, 1866–1867. https://doi.org/10.1093/clinchem/34.9.1863 (1988).Article
PubMed
Google Scholar
66.Löhrich, T., Behringer, V., Wittig, R. M., Deschner, T. & Leendertz, F. H. The use of neopterin as a noninvasive marker in monitoring diseases in wild chimpanzees. EcoHealth 15, 792–803. https://doi.org/10.1007/s10393-018-1357-y (2018).Article
PubMed
Google Scholar
67.Wood, S. Generalized Additive Models: An Introduction With R. Vol. 66 (2006).68.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 1, https://doi.org/10.18637/jss.v082.i13 (2017).69.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
70.Stolwijk, A. M., Straatman, H. & Zielhuis, G. A. Studying seasonality by using sine and cosine functions in regression analysis. J. Epidemiol. Commun. Health 53, 235–238. https://doi.org/10.1136/jech.53.4.235 (1999).CAS
Article
Google Scholar
71.Peacock, L. J. & Rogers, C. M. Gestation period and twinning in chimpanzees. Science 129, 959–959. https://doi.org/10.1126/science.129.3354.959 (1959).ADS
CAS
Article
PubMed
Google Scholar
72.Caro, T. M. et al. Termination of reproduction in nonhuman and human female primates. Int. J. Primatol. 16, 205–220. https://doi.org/10.1007/BF02735478 (1995).Article
Google Scholar
73.Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Ser. B. Stat. Methodol. 26, 211–252, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x (1964).74.Luke, S. G. Evaluating significance in linear mixed-effects models in R. Behav. Res. Methods 49, 1494–1502. https://doi.org/10.3758/s13428-016-0809-y (2017).Article
PubMed
Google Scholar
75.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article
Google Scholar
76.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611. https://doi.org/10.1093/biomet/52.3-4.591 (1965).MathSciNet
Article
MATH
Google Scholar
77.Wilk, M. B. & Gnanadesikan, R. Probability plotting methods for the analysis of data. Biometrika 55, 1–17. https://doi.org/10.1093/biomet/55.1.1 (1968).CAS
Article
PubMed
Google Scholar
78.Fox, J., Weisberg, S. & Fox, J. An R Companion to Applied Regression. 2nd edn (Sage, 2011).79.Reibnegger, G. et al. Approach to define “normal aging” in man. Immune function, serum lipids, lipoproteins and neopterin levels. Mech. Ageing Dev. 46, 67–82, https://doi.org/10.1016/0047-6374(88)90115-7 (1988).80.Müller, N., Heistermann, M., Strube, C., Schülke, O. & Ostner, J. Age, but not anthelmintic treatment, is associated with urinary neopterin levels in semi-free ranging Barbary macaques. Sci. Rep. 7, 41973–41973. https://doi.org/10.1038/srep41973 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
81.Flatt, T. & Partridge, L. Horizons in the evolution of aging. BMC Biol. 16, 93–93. https://doi.org/10.1186/s12915-018-0562-z (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
82.Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355. https://doi.org/10.1016/j.cub.2019.03.040 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
83.Reibnegger, G. et al. Urinary neopterin reflects clinical activity in patients with rheumatoid arthritis. Arthritis Rheum. 29, 1063–1070. https://doi.org/10.1002/art.1780290902 (1986).CAS
Article
PubMed
Google Scholar
84.Eisenhut, M. Neopterin in diagnosis and monitoring of infectious diseases. J. Biomark. 196432–196432, 2013. https://doi.org/10.1155/2013/196432 (2013).Article
Google Scholar
85.Emery Thompson, M., Muller, M. N. & Wrangham, R. W. The energetics of lactation and the return to fecundity in wild chimpanzees. Behav. Ecol. 23, 1234–1241, https://doi.org/10.1093/beheco/ars107 (2012).86.Muller, M. N. in Behavioral Diversity in Chimpanzees and Bonobos (eds C. Boesch, G. Hohmann, & L. Marchant) 112–124 (Cambridge University Press, 2002).87.Pepper, J. W., Mitani, J. C. & Watts, D. P. General gregariousness and specific social preferences among wild chimpanzees. Int. J. Primatol. 20, 613–632. https://doi.org/10.1023/A:1020760616641 (1999).Article
Google Scholar
88.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997. https://doi.org/10.1126/sciadv.1500997 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
89.Habig, B. et al. Multi-scale predictors of parasite risk in wild male savanna baboons (Papio cynocephalus). Behav. Ecol. Sociobiol. 73, 134. https://doi.org/10.1007/s00265-019-2748-y (2019).Article
Google Scholar
90.Foo, Y. Z., Nakagawa, S., Rhodes, G. & Simmons, L. W. The effects of sex hormones on immune function: A meta-analysis. Biol. Rev. 92, 551–571. https://doi.org/10.1111/brv.12243 (2017).Article
PubMed
Google Scholar
91.Franceschi, C. et al. Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mech. Ageing Dev. 128, 92–105. https://doi.org/10.1016/j.mad.2006.11.016 (2007).CAS
Article
PubMed
Google Scholar
92.Brod, S. A. Unregulated inflammation shortens human functional longevity. Inflamm. Res. 49, 561–570. https://doi.org/10.1007/s000110050632 (2000).CAS
Article
PubMed
Google Scholar
93.Gurven, M. & Kaplan, H. Longevity among hunter-gatherers: A cross-cultural examination. Popul. Dev. Rev. 33, 321–365 (2007).Article
Google Scholar
94.Bichler, A. et al. Measurement of urinary neopterin in normal pregnant and non-pregnant women and in women with benign and malignant genital tract neoplasms. Arch. Gynecol. 233, 121–130. https://doi.org/10.1007/BF02114788 (1983).CAS
Article
PubMed
Google Scholar
95.Deschner, T., Heistermann, M., Hodges, K. & Boesch, C. Female sexual swelling size, timing of ovulation, and male behavior in wild West African chimpanzees. Horm. Behav. 46, 204–215. https://doi.org/10.1016/j.yhbeh.2004.03.013 (2004).CAS
Article
PubMed
Google Scholar
96.Matsumoto-Oda, A. Mahale chimpanzees: Grouping patterns and cycling females. Am. J. Primatol. 47, 197–207. https://doi.org/10.1002/(sici)1098-2345(1999)47:3%3c197::aid-ajp2%3e3.0.co;2-3 (1999).CAS
Article
PubMed
Google Scholar
97.Relloso, M. et al. Estradiol impairs the Th17 immune response against Candida albicans. J. Leukoc. Biol. 91, 159–165. https://doi.org/10.1189/jlb.1110645 (2012).CAS
Article
PubMed
Google Scholar
98.Muller, M. N., Kahlenberg, S. M., Thompson, M. E. & Wrangham, R. W. Male coercion and the costs of promiscuous mating for female chimpanzees. Proc. Biol. Sci. 274, 1009–1014. https://doi.org/10.1098/rspb.2006.0206 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
99.Uyar, I. S. et al. Evaluation of systemic inflammatory response in cardiovascular surgery via interleukin-6, interleukin-8, and neopterin. Heart Surg. Forum 17, E13-17. https://doi.org/10.1532/hsf98.2013267 (2014).Article
PubMed
Google Scholar
100.Jerin, A. et al. Neopterin – An early marker of surgical stress and hypoxic reperfusion damage during liver surgery. Clin. Chem. Lab. Med. 40, 663–666. https://doi.org/10.1515/CCLM.2002.113 (2002).CAS
Article
PubMed
Google Scholar
101.Baxter-Parker, G. et al. Knee replacement surgery significantly elevates the urinary inflammatory biomarkers neopterin and 7,8-dihydroneopterin. Clin. Biochem. 63, 39–45. https://doi.org/10.1016/j.clinbiochem.2018.11.002 (2019).CAS
Article
PubMed
Google Scholar
102.Higham, J. P., Stahl-Hennig, C. & Heistermann, M. Urinary suPAR: A non-invasive biomarker of infection and tissue inflammation for use in studies of large free-ranging mammals. R. Soc. Open Sci. 7, 191825–191825. https://doi.org/10.1098/rsos.191825 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
103.Boyunağa, H. et al. Urinary neopterin levels in the different stages of pregnancy. Gynecol. Obstet. Invest. 59, 171–174. https://doi.org/10.1159/000083748 (2005).CAS
Article
PubMed
Google Scholar
104.Oleszczuk, J., Wawrzycka, B. & Maj, J. G. Interleukin-6 and neopterin levels in serum of patients with preterm labour with and without infection. Eur. J. Obstet. Gynecol. Reprod. Biol. 74, 27–30. https://doi.org/10.1016/S0301-2115(97)00083-3 (1997).CAS
Article
PubMed
Google Scholar
105.Kaleli, I. et al. Serum levels of neopterin and interleukin-2 receptor in women with severe preeclampsia. J. Clin. Lab Anal. 19, 36–39. https://doi.org/10.1002/jcla.20053 (2005).CAS
Article
PubMed
PubMed Central
Google Scholar
106.Sencan, H., Keskin, N. & Khatib, G. The role of neopterin and anti-Mullerian hormone in unexplained recurrent pregnancy loss – A case-control study. J. Obstet. Gynaecol. 39, 996–999. https://doi.org/10.1080/01443615.2019.1586850 (2019).CAS
Article
PubMed
Google Scholar
107.Potts, K. B., Watts, D. P. & Wrangham, R. W. Comparative feeding ecology of two communities of chimpanzees (Pan troglodytes) in Kibale National Park, Uganda. Int. J. Primatol. 32, 669–690. https://doi.org/10.1007/s10764-011-9494-y (2011).Article
Google Scholar
108.Emery Thompson, M., Muller, M. N., Wrangham, R. W., Lwanga, J. S. & Potts, K. B. Urinary C-peptide tracks seasonal and individual variation in energy balance in wild chimpanzees. Horm. Behav. 55, 299–305, https://doi.org/10.1016/j.yhbeh.2008.11.005 (2009).109.Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: just what is the cost of immunity?. Oikos 88, 87–98. https://doi.org/10.1034/j.1600-0706.2000.880110.x (2000).Article
Google Scholar More
