Potential of indigenous crop microbiomes for sustainable agriculture
1.Savci, S. An agricultural pollutant: chemical fertilizer. Int. J. Environ. Sci. Dev. 3, 77–80 (2012).CAS
Google Scholar
2.Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).ADS
CAS
PubMed
Article
Google Scholar
3.Raza, S. et al. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Glob. Change Biol. 26, 3738–3751 (2020).ADS
Article
Google Scholar
4.Jez, J. M., Lee, S. G. & Sherp, A. M. The next green movement: plant biology for the environment and sustainability. Science 353, 1241–1244 (2016).ADS
CAS
PubMed
Article
Google Scholar
5.Cordovez, V., Dini-Andreote, F., Carrion, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).CAS
PubMed
Article
Google Scholar
6.Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e914 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
7.Dini-Andreote, F. & Raaijmakers, J. M. Embracing community ecology in plant microbiome research. Trends Plant Sci. 23, 467–469 (2018).CAS
PubMed
Article
Google Scholar
8.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).ADS
CAS
PubMed
Article
Google Scholar
9.Hubbard, C. J. et al. The effect of rhizosphere microbes outweighs host plant genetics in reducing insect herbivory. Mol. Ecol. 28, 1801–1811 (2019).CAS
PubMed
Article
Google Scholar
10.Oldroyd, G. E. D. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368, eaba0196 (2020).CAS
PubMed
Article
Google Scholar
11.Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).CAS
PubMed
Article
Google Scholar
12.Martín‐Robles, N. et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334 (2018).PubMed
Article
Google Scholar
13.Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649–660 (2020).CAS
PubMed
Article
Google Scholar
14.Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).PubMed
Article
Google Scholar
15.Varoquaux, N. et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl Acad. Sci. USA 116, 27124–27132 (2019).CAS
Article
Google Scholar
16.Lazcano, C., Barrios-Masias, F. H. & Jackson, L. E. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biol. Biochem. 74, 184–192 (2014).CAS
Article
Google Scholar
17.Sprent, J. I. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174, 11–25 (2007).CAS
PubMed
Article
Google Scholar
18.Soltis, D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA 92, 2647–2651 (1995).ADS
CAS
PubMed
Article
Google Scholar
19.Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
20.van Velzen, R. et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing Rhizobium symbioses. Proc. Natl Acad. Sci. USA 115, E4700–E4709 (2018).PubMed
Article
CAS
Google Scholar
21.Smil, V. Nitrogen in crop production: an account of global flows. Glob. Biogeochem. Cycles 13, 647–662 (1999).ADS
CAS
Article
Google Scholar
22.O’Hara, G. W. The role of nitrogen fixation in crop production. J. Crop Prod. 1, 115–138 (1998).Article
Google Scholar
23.Remigi, P., Zhu, J., Young, J. P. W. & Masson-Boivin, C. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol. 24, 63–75 (2016).CAS
PubMed
Article
Google Scholar
24.Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol. 208, 79–87 (2015).PubMed
Article
Google Scholar
25.Fisher, R. F. & Long, S. R. Rhizobium–plant signal exchange. Nature 357, 655–660 (1992).ADS
CAS
PubMed
Article
Google Scholar
26.Cao, Y., Halane, M. K., Gassmann, W. & Stacey, G. The role of plant innate immunity in the legume–Rhizobium symbiosis. Annu. Rev. Plant Biol. 68, 535–561 (2017).CAS
PubMed
Article
Google Scholar
27.Ferguson, B. J. et al. Legume nodulation: the host controls the party. Plant Cell Environ. 42, 41–51 (2019).CAS
PubMed
Article
Google Scholar
28.Remans, R. et al. Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312, 25–37 (2008).CAS
Article
Google Scholar
29.Cassán, F. & Diaz-Zorita, M. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103, 117–130 (2016).Article
CAS
Google Scholar
30.Han, Q. et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 14, 1915–1928 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Saharan, B. S. & Nehra, V. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 21, 30 (2011).
Google Scholar
32.Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Dini-Andreote, F. Endophytes: the second layer of plant defense. Trends Plant Sci. 25, 319–322 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).ADS
Article
CAS
Google Scholar
35.Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS
PubMed
Article
Google Scholar
37.Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS
PubMed
Article
Google Scholar
38.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed
Article
Google Scholar
39.Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
40.Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).PubMed
PubMed Central
Article
Google Scholar
41.Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).ADS
CAS
PubMed
Article
Google Scholar
42.Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60, 35–58 (2015).CAS
PubMed
Article
Google Scholar
43.Szoboszlay, M. et al. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol. Biochem. 80, 34–44 (2015).CAS
Article
Google Scholar
44.Perez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).CAS
PubMed
Article
Google Scholar
45.Perez-Jaramillo, J. E., Carrion, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143 (2018).PubMed
PubMed Central
Article
Google Scholar
46.Emmett, B. D., Buckley, D. H., Smith, M. E. & Drinkwater, L. E. Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition. Plant Soil 431, 53–69 (2018).CAS
Article
Google Scholar
47.Mutch, L. A. & Young, J. P. W. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol. Ecol. 13, 2435–2444 (2004).CAS
PubMed
Article
Google Scholar
48.Kiers, E. T., Hutton, M. G. & Denison, R. F. Human selection and the relaxation of legume defences against ineffective rhizobia. Proc. R. Soc. B 274, 3119–3126 (2007).CAS
PubMed
Article
Google Scholar
49.Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257 (2017).PubMed
PubMed Central
Article
Google Scholar
50.Zachow, C., Müller, H., Tilcher, R. & Berg, G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets. Front. Microbiol. 5, 415 (2014).PubMed
PubMed Central
Article
Google Scholar
51.Coleman‐Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).PubMed
Article
CAS
Google Scholar
52.Warschefsky, E., Penmetsa, R. V., Cook, D. R. & von Wettberg, E. J. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am. J. Bot. 101, 1791–1800 (2014).PubMed
Article
Google Scholar
53.Brozynska, M., Furtado, A. & Henry, R. J. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol. J. 14, 1070–1085 (2016).CAS
PubMed
Article
Google Scholar
54.Zhang, H., Mittal, N., Leamy, L. J., Barazani, O. & Song, B. H. Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 10, 5–24 (2017).PubMed
Article
Google Scholar
55.Maxted, N. & Kell, S. P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs (FAO Commission on Genetic Resources for Food and Agriculture, 2009).56.Stenberg, J. A., Heil, M., Åhman, I. & Björkman, C. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 20, 698–712 (2015).CAS
PubMed
Article
Google Scholar
57.Heil, M. & Baldwin, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002).CAS
PubMed
Article
Google Scholar
58.Liu, H. & Brettell, L. E. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 24, 187–189 (2019).CAS
PubMed
Article
Google Scholar
59.Schulz-Bohm, K. et al. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 12, 1252–1262 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Ehlers, B. K. et al. Plant secondary compounds in soil and their role in belowground species interactions. Trends Ecol. Evol. 35, 716–730 (2020).PubMed
Article
Google Scholar
61.Preece, C. & Penuelas, J. A return to the wild: root exudates and food security. Trends Plant Sci. 25, 14–21 (2020).CAS
PubMed
Article
Google Scholar
62.Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737 (2005).ADS
CAS
PubMed
Article
Google Scholar
63.Köllner, T. G. et al. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20, 482–494 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
64.Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).ADS
CAS
PubMed
Article
Google Scholar
65.Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).CAS
PubMed
Article
Google Scholar
66.Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).CAS
PubMed
Article
Google Scholar
67.Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 18, 241–256 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Cui, L., Zhang, D., Yang, K., Zhang, X. & Zhu, Y. G. Perspective on surface-enhanced Raman spectroscopic investigation of microbial world. Anal. Chem. 91, 15345–15354 (2019).CAS
PubMed
Article
Google Scholar
69.Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).CAS
PubMed
Article
Google Scholar
70.Cui, L. et al. Functional single-cell approach to probing nitrogen-fixing bacteria in soil communities by resonance Raman spectroscopy with 15N2 labeling. Anal. Chem. 90, 5082–5089 (2018).CAS
PubMed
Article
Google Scholar
71.Yang, K. et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell Raman spectroscopy in clinical samples. Anal. Chem. 91, 6296–6303 (2019).CAS
PubMed
Article
Google Scholar
72.Li, H. Z. et al. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy. Anal. Chem. 91, 2239–2246 (2019).CAS
PubMed
Article
Google Scholar
73.Moutia, J.-F. Y., Saumtally, S., Spaepen, S. & Vanderleyden, J. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337, 233–242 (2010).CAS
Article
Google Scholar
74.Bashan, Y. & De-Bashan, L. E. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv. Agron. 108, 77–136 (2010).CAS
Article
Google Scholar
75.Figueiredo, M. V. B., Burity, H. A., Martínez, C. R. & Chanway, C. P. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40, 182–188 (2008).Article
Google Scholar
76.Uma, C., Sivagurunathan, P. & Sangeetha, D. Performance of bradyrhizobial isolates under drought conditions. Int. J. Curr. Microbiol. App. Sci. 2, 228–232 (2013).
Google Scholar
77.Tank, N. & Saraf, M. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J. Plant Interact. 5, 51–58 (2010).CAS
Article
Google Scholar
78.Tahir, H. A. et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 8, 171 (2017).PubMed
PubMed Central
Article
Google Scholar
79.Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G. & Bandi, V. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1–14 (2011).CAS
Article
Google Scholar
80.Santoyo, G., Orozco-Mosqueda, M. D. C. & Govindappa, M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci. Technol. 22, 855–872 (2012).Article
Google Scholar
81.Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71, 4577–4584 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Hu, J. et al. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129 (2017).CAS
Article
Google Scholar
83.Kohler, J., Hernández, J. A., Caravaca, F. & Roldán, A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct. Plant Biol. 35, 141–151 (2008).CAS
PubMed
Article
Google Scholar
84.Nassar, A. H., El-Tarabily, K. A. & Sivasithamparam, K. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Reg. 40, 97–106 (2003).CAS
Article
Google Scholar
85.Gopalakrishnan, S. et al. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol. Res. 169, 40–48 (2014).CAS
PubMed
Article
Google Scholar
86.Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).CAS
Article
Google Scholar
87.Sang, M. K. & Kim, K. D. The volatile‐producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113, 383–398 (2012).CAS
PubMed
Article
Google Scholar
88.Naznin, H. A. et al. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 9, e86882 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
89.Kiss, L., Russell, J. C., Szentiványi, O., Xu, X. & Jeffries, P. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci. Technol. 14, 635–651 (2004).Article
Google Scholar
90.Lee, S., Yap, M., Behringer, G., Hung, R. & Bennett, J. W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3, 1–14 (2016).CAS
Article
Google Scholar
91.Zhang, S., Gan, Y. & Xu, B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum t6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 7, 1405 (2016).PubMed
PubMed Central
Google Scholar
92.van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).PubMed
Article
CAS
Google Scholar
93.Bhatti, A. A., Haq, S. & Bhat, R. A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111, 458–467 (2017).CAS
PubMed
Article
Google Scholar
94.Chaurasia, A. et al. Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops. World J. Microbiol. Biotechnol. 34, 1–16 (2018).Article
Google Scholar
95.Ercoli, L., Schüßler, A., Arduini, I. & Pellegrino, E. Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil 419, 153–167 (2017).CAS
Article
Google Scholar
96.Xu, L. et al. Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Appl. Soil Ecol. 125, 213–221 (2018).Article
Google Scholar
97.Ghorchiani, M., Etesami, H. & Alikhani, H. A. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric. Ecosyst. Environ. 258, 59–70 (2018).CAS
Article
Google Scholar
98.Meeds, J. A. et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. https://doi.org/10.1038/s41396-020-00864-z (2021). More