1.IPCC. The Ocean and Cryosphere in a changing Climate—Summary for Policymakers (2019).2.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic. Bull. Am. Meteorol. Soc. 96, 2079–2105 (2015).ADS
Article
Google Scholar
3.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed
Article
Google Scholar
4.Borgå, K. The Arctic ecosystem: a canary in the coal mine for global multiple stressors. Environ. Toxicol. Chem. 38, 487–488 (2019).PubMed
Article
CAS
Google Scholar
5.Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).ADS
Article
Google Scholar
6.Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic Sea ice loss. J. Clim. 31, 4917–4932 (2018).ADS
Article
Google Scholar
7.Screen, J. A. & Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 37, 1–5 (2010).Article
Google Scholar
8.Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).ADS
Article
Google Scholar
9.Champine, R. D., Morris, R. & Elder, S. The melting Arctic is now open for business. National Geographic Magazine (2019).10.Orourke, R. et al. Changes in the Arctic: Background and Issues for Congress 129 (DIANE Publishing, 2020).
Google Scholar
11.Eriksen, E., Huserbråten, M., Gjøsæter, H., Vikebø, F. & Albretsen, J. Polar cod egg and larval drift patterns in the Svalbard archipelago. Polar Biol. https://doi.org/10.1007/s00300-019-02549-6 (2019).Article
Google Scholar
12.Eguíluz, V. M., Fernández-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 2010–2014. Sci. Rep. 6, 30682 (2016).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
13.Ellis, B., & Brigham, L. Arctic Marine Shipping Assessment 2009 Report. (2009).14.Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed
Article
Google Scholar
15.Pollino, C. A. & Holdway, D. A. Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol. Environ. Saf. 52, 180–189 (2002).CAS
PubMed
Article
Google Scholar
16.Miller, B. & Kendall, A. W. Early Life History of Marine Fishes (University of California Press, 2009). https://doi.org/10.1525/9780520943766.
Google Scholar
17.Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).ADS
Article
CAS
Google Scholar
18.Petersen, G. I. & Kristensen, P. Bioaccumulation of lipophilic substances in fish early life stages. Environ. Toxicol. Chem. 17, 1385–1395 (1998).CAS
Article
Google Scholar
19.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS
CAS
PubMed
Article
Google Scholar
20.Jung, J.-H. et al. Differential toxicokinetics determines the sensitivity of two marine embryonic fish exposed to Iranian heavy crude oil. Environ. Sci. Technol. 49, 13639–13648 (2015).ADS
CAS
PubMed
Article
Google Scholar
21.Ingvarsdóttir, A. et al. Effects of different concentrations of crude oil on first feeding larvae of Atlantic herring (Clupea harengus). J. Mar. Syst. 93, 69–76 (2012).Article
Google Scholar
22.Pasparakis, C., Esbaugh, A. J., Burggren, W. & Grosell, M. Physiological impacts of deepwater horizon oil on fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 224, 108558 (2019).CAS
Article
Google Scholar
23.Steiner, N. S. et al. Impacts of the changing ocean-sea ice system on the key forage fish arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian arctic—evaluating linked climate, ecosystem and economic (CEE) models. Front. Mar. Sci. 6, 179 (2019).Article
Google Scholar
24.Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).Article
Google Scholar
25.Harter, B. B., Elliott, K. H., Divoky, G. J. & Davoren, G. K. Arctic cod (Boreogadus saida) as prey: fish length-energetics relationships in the Beaufort Sea and Hudson Bay. Arctic 66, 191–196 (2013).Article
Google Scholar
26.Graham, M. & Hop, H. Aspects of reproduction and larval biology of Arctic cod (Boreogadus saida). Arctic 48, 130–135 (1995).Article
Google Scholar
27.Gradinger, R. R. & Bluhm, B. A. In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Canada Basin. Polar Biol. 27, 595–603 (2004).Article
Google Scholar
28.Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).Article
Google Scholar
29.ICES. Report of the Arctic Fisheries Working Group. 859 http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2018/AFWG/00-AFWG%202018%20Report.pdf (2018).30.Eriksen, E., Ingvaldsen, R. B., Nedreaas, K. & Prozorkevich, D. The effect of recent warming on polar cod and beaked redfish juveniles in the Barents Sea. Reg. Stud. Mar. Sci. 2, 105–112 (2015).Article
Google Scholar
31.Astthorsson, O. S. Distribution, abundance and biology of polar cod, Boreogadus saida, in Iceland–East Greenland waters. Polar Biol. 39, 995–1003 (2016).Article
Google Scholar
32.Divoky, G. J., Lukacs, P. M. & Druckenmiller, M. L. Effects of recent decreases in arctic sea ice on an ice-associated marine bird. Prog. Oceanogr. 136, 151–161 (2015).ADS
Article
Google Scholar
33.Hansen, M. O., Nielsen, T. G., Stedmon, C. A. & Munk, P. Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol. Oceanogr. 57, 634–644 (2012).ADS
Article
Google Scholar
34.Nahrgang, J. et al. Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS ONE 9, e98452 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
35.Huserbråten, M. B. O., Eriksen, E., Gjøsæter, H. & Vikebø, F. Polar cod in jeopardy under the retreating Arctic sea ice. Commun. Biol. 2, 1–8 (2019).Article
Google Scholar
36.Nahrgang, J. et al. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. Environ. Pollut. 218, 605–614 (2016).CAS
PubMed
Article
Google Scholar
37.Laurel, B. J. et al. Embryonic crude oil exposure impairs growth and lipid allocation in a keystone arctic forage fish. iScience 19, 1101–1113 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
38.Politis, S. N. et al. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae. PLoS ONE 12, e0182726 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
39.O’Dea, R. E., Lagisz, M., Hendry, A. P. & Nakagawa, S. Developmental temperature affects phenotypic means and variability: a meta-analysis of fish data. Fish Fish. 20, 1005–1022 (2019).Article
Google Scholar
40.Réalis-Doyelle, E., Pasquet, A., De Charleroy, D., Fontaine, P. & Teletchea, F. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE 11, e0155487 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
41.Réalis-Doyelle, E., Pasquet, A., Fontaine, P. & Teletchea, F. How climate change may affect the early life stages of one of the most common freshwater fish species worldwide: the common carp (Cyprinus carpio). Hydrobiologia 805, 365–375 (2018).Article
CAS
Google Scholar
42.Hicken, C. E. et al. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc. Natl. Acad. Sci. 108, 7086–7090 (2011).ADS
CAS
PubMed
Article
Google Scholar
43.Carls, M. G., Rice, S. D. & Hose, J. E. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ. Toxicol. Chem. 18, 481–493 (1999).CAS
Article
Google Scholar
44.Incardona, J. P. Molecular mechanisms of crude oil developmental toxicity in fish. Arch. Environ. Contam. Toxicol. 73, 19–32 (2017).CAS
PubMed
Article
Google Scholar
45.Sørhus, E. et al. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. Elife 6, e20707 (2017).PubMed
PubMed Central
Article
Google Scholar
46.Incardona, J. P. & Scholz, N. L. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat. Toxicol. 177, 515–525 (2016).CAS
PubMed
Article
Google Scholar
47.Perrichon, P. et al. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi–mahi, Coryphaena hippurus. PLoS ONE 13, e0203949 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
48.Pasparakis, C. et al. Combined effects of oil exposure, temperature and ultraviolet radiation on buoyancy and oxygen consumption of embryonic mahi–mahi, Coryphaena hippurus. Aquat. Toxicol. 191, 113–121 (2017).CAS
PubMed
Article
Google Scholar
49.Pasparakis, C., Mager, E. M., Stieglitz, J. D., Benetti, D. & Grosell, M. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi–mahi (Coryphaena hippurus). Aquat. Toxicol. 181, 113–123 (2016).CAS
PubMed
Article
Google Scholar
50.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).ADS
Article
Google Scholar
51.McNicholl, D. G., Davoren, G. K., Majewski, A. R. & Reist, J. D. Isotopic niche overlap between co-occurring capelin (Mallotus villosus) and polar cod (Boreogadus saida) and the effect of lipid extraction on stable isotope ratios. Polar Biol. 41, 423–432 (2018).Article
Google Scholar
52.Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278 (2018).PubMed
PubMed Central
Article
Google Scholar
53.Bouchard, C. & Fortier, L. Circum-arctic comparison of the hatching season of polar cod Boreogadus saida: a test of the freshwater winter refuge hypothesis. Prog. Oceanogr. 90, 105–116 (2011).ADS
Article
Google Scholar
54.Laurel, B. J., Spencer, M., Iseri, P. & Copeman, L. A. Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol. 39, 1127–1135 (2016).Article
Google Scholar
55.Drost, H. E. et al. Upper thermal limits of the hearts of Arctic cod Boreogadus saida : adults compared with larvae: boreogadus saida thermal limits. J. Fish Biol. 88, 718–726 (2016).CAS
PubMed
Article
Google Scholar
56.Bender, M. L. et al. Effects of chronic dietary petroleum exposure on reproductive development in polar cod (Boreogadus saida). Aquat. Toxicol. 180, 196–208 (2016).CAS
PubMed
Article
Google Scholar
57.Bender, M. L. et al. Effects of acute exposure to dispersed oil and burned oil residue on long-term survival, growth, and reproductive development in polar cod (Boreogadus saida). Mar. Environ. Res. 140, 468–477 (2018).CAS
PubMed
Article
Google Scholar
58.Boehm, P. D., Neff, J. M. & Page, D. S. Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005. Mar. Pollut. Bull. 54, 339–356 (2007).CAS
PubMed
Article
Google Scholar
59.Sammarco, P. W. et al. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. Mar. Pollut. Bull. 73, 129–143 (2013).CAS
PubMed
Article
Google Scholar
60.Berenshtein, I. et al. Invisible oil beyond the Deepwater Horizon satellite footprint. Sci. Adv. 6, eaaw8863 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
61.Incardona, J. P. et al. Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 43, 201–207 (2009).ADS
CAS
PubMed
Article
Google Scholar
62.Incardona, J. P. et al. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat. Toxicol. Amst. Neth. 142–143, 303–316 (2013).Article
CAS
Google Scholar
63.de Soysa, T. Y. et al. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol. 10, 40 (2012).PubMed
PubMed Central
Article
Google Scholar
64.Incardona, J. P. et al. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. 5, 13499 (2015).ADS
PubMed
PubMed Central
Article
Google Scholar
65.Heintz, R. A. et al. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 208, 205–216 (2000).ADS
Article
Google Scholar
66.Sorheim, K. R. & Moldestad, M. O. Weathering properties of the Goliat Kobbe and two Goliat Blend of Kobbe and Realgrunnen crude oils. (2008).67.Sørensen, L., Melbye, A. G. & Booth, A. M. Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants. Mar. Pollut. Bull. 78, 146–152 (2014).PubMed
Article
CAS
Google Scholar
68.Sørensen, L. et al. Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock. Environ. Pollut. 251, 212–220 (2019).PubMed
Article
CAS
Google Scholar
69.Meador, J. P. & Nahrgang, J. Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions?. Environ. Sci. Technol. 53, 11080–11092 (2019).ADS
CAS
PubMed
Article
Google Scholar
70.Sørensen, L. et al. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE 12, e0180048 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
71.Carls, M. G. et al. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat. Toxicol. 88, 121–127 (2008).CAS
PubMed
Article
Google Scholar
72.Hansen, B. H. et al. Developmental effects in fish embryos exposed to oil dispersions—the impact of crude oil micro-droplets. Mar. Environ. Res. 150, 104753 (2019).CAS
PubMed
Article
Google Scholar
73.Olsvik, P. A., Berntssen, M. H. G., Hylland, K., Eriksen, D. Ø. & Holen, E. Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. J. Environ. Radioact. 109, 84–93 (2012).CAS
PubMed
Article
Google Scholar
74.Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
75.Spencer, M. L., Vestfals, C. D., Mueter, F. J. & Laurel, B. J. Ontogenetic changes in the buoyancy and salinity tolerance of eggs and larvae of polar cod (Boreogadus saida) and other gadids. Polar Biol. 18, 1141–1158. https://doi.org/10.1007/s00300-020-02620-7 (2020).Article
Google Scholar
76.Pasparakis, C., Wang, Y., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Embryonic buoyancy control as a mechanism of ultraviolet radiation avoidance. Sci. Total Environ. 651, 3070–3078 (2019).ADS
CAS
PubMed
Article
Google Scholar
77.Kent, D., Drost, H. E., Fisher, J., Oyama, T. & Farrell, A. P. Laboratory rearing of wild Arctic cod Boreogadus saida from egg to adulthood: rearing boreogadus saida from egg to adulthood. J. Fish Biol. 88, 1241–1248 (2016).CAS
PubMed
Article
Google Scholar
78.Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).Article
Google Scholar
79.Porter, S. M. & Bailey, K. M. The effect of early and late hatching on the escape response of walleye pollock (Theragra chalcogramma) larvae. J. Plankton Res. 29, 291–300 (2007).Article
Google Scholar
80.Spicer, J. I., Tills, O., Truebano, M. & Rundle, S. D. Developmental plasticity and heterokairy. In Development and Environment (eds Burggren, W. & Dubansky, B.) 73–96 (Springer, 2018). https://doi.org/10.1007/978-3-319-75935-7_4.
Google Scholar
81.Bouchard, C. et al. Climate warming enhances polar cod recruitment, at least transiently. Prog. Oceanogr. 156, 121–129 (2017).Article
Google Scholar
82.Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).Article
Google Scholar
83.Bouchard, C. & Fortier, L. The importance of Calanus glacialis for the feeding success of young polar cod: a circumpolar synthesis. Polar Biol. https://doi.org/10.1007/s00300-020-02643-0 (2020).Article
PubMed
PubMed Central
Google Scholar
84.Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar Res. 37, 1427409 (2018).Article
Google Scholar
85.Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).ADS
Article
Google Scholar
86.Marsh, J. M., Mueter, F. J. & Quinn, T. J. Environmental and biological influences on the distribution and population dynamics of polar cod (Boreogadus saida) in the US Chukchi Sea. Polar Biol. https://doi.org/10.1007/s00300-019-02561-w (2019).Article
Google Scholar
87.Lange, R. & Marshall, D. Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Sci. Rep. 7, 6281 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
88.Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
89.du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article
CAS
Google Scholar
90.Holst, J. C. & McDonald, A. FISH-LIFT: a device for sampling live fish with trawls. Fish. Res. 48, 87–91 (2000).Article
Google Scholar
91.Hall, T. E., Smith, P. & Johnston, I. A. Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morphol. 259, 255–270 (2004).PubMed
Article
Google Scholar
92.Houde, E. D. Mortality. In Fishery Science (ed. Fuiman, L. A.) (Wiley, 1989).
Google Scholar
93.Sørensen, L., Silva, M. S., Booth, A. M. & Meier, S. Optimization and comparison of miniaturized extraction techniques for PAHs from crude oil exposed Atlantic cod and haddock eggs. Anal. Bioanal. Chem. 408, 1023–1032 (2016).PubMed
Article
CAS
Google Scholar
94.Sørensen, L., Meier, S. & Mjøs, S. A. Application of gas chromatography/tandem mass spectrometry to determine a wide range of petrogenic alkylated polycyclic aromatic hydrocarbons in biotic samples. Rapid Commun. Mass Spectrom. 30, 2052–2058 (2016).ADS
PubMed
Article
CAS
Google Scholar
95.Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445 (2001).Article
Google Scholar
96.Riley, P. & Skirrow, G. Chemical Oceanography 56–74 (Academic Press, 1975).
Google Scholar
97.Laurel, B. J., Copeman, L. A., Hurst, T. P. & Parrish, C. C. The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Mar. Biol. 157, 1713–1724 (2010).CAS
Article
Google Scholar
98.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
99.Wassenberg, D. M. & Di Giulio, R. T. Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ. Health Perspect. 112, 1658–1664 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
100.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, version 2018). https://www.R-project.org/.101.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Van Willigen, B. nlme: Linear and Nonlinear Mixed Effects Models. (2020).102.Pinheiro, J. & Bates, D. Fitting linear mixed-effects models. In Mixed-Effects Models in S and S-Plus 133–199 (Springer, 2000).103.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
Google Scholar
104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).ADS
Article
Google Scholar
105.Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p < 0.05”. Am. Stat. 73, 1–19 (2019).MathSciNet
Article
Google Scholar
106.Amrheim, V., Greenland, S. & McShane, B. Time to retire statistical significance Nature2019.pdf. Nature 567, 305–307 (2019).ADS
Article
CAS
Google Scholar More