Projected shifts in loggerhead sea turtle thermal habitat in the Northwest Atlantic Ocean due to climate change
1.IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp. (2014).2.Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).PubMed
Article
Google Scholar
3.Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).ADS
Article
Google Scholar
4.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430(7002), 881–884 (2004).ADS
CAS
PubMed
Article
Google Scholar
5.Weatherdon, L. V., Magnan, A. K., Rogers, A. D., Sumaila, U. R. & Cheung, W. W. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: an update. Front. Mar. Sci. 3, 48 (2016).Article
Google Scholar
6.Mawdsley, J. R., O’Malley, R. & Ojima, D. S. A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conserv. Biol. 23(5), 1080–1089 (2009).PubMed
Article
Google Scholar
7.Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Species Res. 4(3), 309–331 (2008).Article
Google Scholar
8.Franco, A. M., Catry, I., Sutherland, W. J. & Palmeirim, J. M. Do different habitat preference survey methods produce the same conservation recommendations for lesser kestrels?. Anim. Conserv. 7(3), 291–300 (2004).Article
Google Scholar
9.Spotila, J. R., Reina, R. D., Steyermark, A. C., Plotkin, P. T. & Paladino, F. V. Pacific leatherback turtles face extinction. Nature 405(6786), 529–530 (2000).ADS
CAS
PubMed
Article
Google Scholar
10.Wallace, B. P. et al. Impacts of fisheries bycatch on marine turtle populations worldwide: Toward conservation and research priorities. Ecosphere 4(3), 1–49 (2013).Article
Google Scholar
11.Dunn, D. C., Boustany, A. M. & Halpin, P. N. Spatio-temporal management of fisheries to reduce by-catch and increase fishing selectivity. Fish Fish. 12(1), 110–119 (2011).Article
Google Scholar
12.Senko, J., White, E. R., Heppell, S. S. & Gerber, L. R. Comparing bycatch mitigation strategies for vulnerable marine megafauna. Anim. Conserv. 17(1), 5–18 (2014).Article
Google Scholar
13.Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H. & Polovina, J. J. TurtleWatch: A tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endanger. Species Res. 5(2–3), 267–278 (2008).Article
Google Scholar
14.Swimmer, Y. et al. Sea turtle bycatch mitigation in US longline fisheries. Front. Mar. Sci. 4, 260 (2017).Article
Google Scholar
15.Saba, V. S., Stock, C. A., Spotila, J. R., Paladino, F. V. & Tomillo, P. S. Projected response of an endangered marine turtle population to climate change. Nat. Clim. Change 2(11), 814–820 (2012).ADS
Article
Google Scholar
16.Santidrián Tomillo, P. et al. Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci. Rep. 5, 16789 (2015).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
17.Patel, S. H. et al. Climate impacts on sea turtle breeding phenology in Greece and associated foraging habitats in the wider Mediterranean region. PLoS ONE 11(6), e0157170 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
18.Shoop, C. R. & Kenney, R. D. Seasonal distributions and abundances of loggerhead and leatherback sea turtles in waters of the northeastern United States. Herpetol. Monogr. 6, 43–67 (1992).Article
Google Scholar
19.Coles, W. & Musick, J. A. Satellite sea surface temperature analysis and correlation with sea turtle distribution off North Carolina. Copeia 2000(2), 551–554 (2000).Article
Google Scholar
20.Kleisner, K. M. et al. Marine species distribution shifts on the US Northeast Continental Shelf under continued ocean warming. Prog. Oceanogr. 153, 24–36 (2017).ADS
Article
Google Scholar
21.Tyberghein, L. et al. Bio-ORACLE: A global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21(2), 272–281 (2012).Article
Google Scholar
22.Stoneburner, D. L. Satellite telemetry of loggerhead sea turtle movement in the Georgia Bight. Copeia 1982, 400–408 (1982).Article
Google Scholar
23.Hart, K. M. & Hyrenbach, K. D. Satellite telemetry of marine megavertebrates: The coming of age of an experimental science. Endanger. Species Res. 10, 9–20 (2009).Article
Google Scholar
24.Hebblewhite, M. & Haydon, D. T. Distinguishing technology from biology: A critical review of the use of GPS telemetry data in ecology. Philos. Trans. R. Soc. B Biol. Sci. 365(1550), 2303–2312 (2010).Article
Google Scholar
25.Hays, G. C. & Hawkes, L. A. Satellite tracking sea turtles: Opportunities and challenges to address key questions. Front. Mar. Sci. 5, 432 (2018).Article
Google Scholar
26.Hawkes, L. A., Broderick, A. C., Coyne, M. S., Godfrey, M. H. & Godley, B. J. Only some like it hot—Quantifying the environmental niche of the loggerhead sea turtle. Divers. Distrib. 13(4), 447–457 (2007).Article
Google Scholar
27.Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Chang. 3(3), 234–238 (2013).ADS
MathSciNet
Article
Google Scholar
28.Roe, J. H. et al. Predicting bycatch hotspots for endangered leatherback turtles on longlines in the Pacific Ocean. Proc. R. Soc. B Biol. Sci. 281(1777), 20132559 (2014).Article
Google Scholar
29.Winton, M. V. et al. Estimating the distribution and relative density of satellite-tagged loggerhead sea turtles using geostatistical mixed effects models. Mar. Ecol. Prog. Ser. 586, 217–232 (2018).ADS
Article
Google Scholar
30.Araújo, M. B. & Townsend, P. A. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7), 1527–1539 (2012).PubMed
Article
Google Scholar
31.Gilman P, et al. National offshore wind strategy: facilitating the development of the offshore wind industry in the United States. National Renewable Energy Lab. (NREL), Golden, CO (United States) (2016).32.Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). Preliminary summer 2010 regional abundance estimate of loggerhead turtles (Caretta caretta) in northwestern Atlantic Ocean continental shelf waters. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 11–03; 33 p (2011).33.Ceriani, S. A., Weishampel, J. F., Ehrhart, L. M., Mansfield, K. L. & Wunder, M. B. Foraging and recruitment hotspot dynamics for the largest Atlantic loggerhead turtle rookery. Sci. Rep. 7(1), 1–3 (2017).CAS
Article
Google Scholar
34.Fofonoff, N. P. The Gulf Stream. In Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel (eds. Warren, B. A., & Wunsch, C.) 112–139 (MIT Press, 1981) Cambridge, MA.35.Patel, S. H., Miller, S. & Smolowitz, R. J. Understanding impacts of the sea scallop fishery on loggerhead sea turtles through satellite tagging. Final report for 2015 Sea Scallop Research Set-Aside (RSA). NOAA grant: NA15 NMF 4540055. Coonamessett Farm Foundation, East Falmouth, MA (2016).36.Patel, S. H. et al. Loggerhead turtles are good ocean-observers in stratified mid-latitude regions. Estuar. Coast. Shelf Sci. 213, 128–136 (2018).ADS
Article
Google Scholar
37.Crowe, L. M., Hatch, J. M., Patel, S. H., Smolowitz, R. J. & Haas, H. L. Riders on the storm: loggerhead sea turtles detect and respond to a major hurricane in the Northwest Atlantic Ocean. Mov. Ecol. 8(1), 1–3 (2020).Article
Google Scholar
38.Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. M. TMB: Automatic differentiation and Laplace approximation. J. Stat. Softw. 70(5), 1–21 (2016).Article
Google Scholar
39.R Core Team. R: A language and environment for statistical computing (2017).40.Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89(5), 1208–1215 (2008).PubMed
Article
Google Scholar
41.Albertsen, C. M., Whoriskey, K., Yurkowski, D., Nielsen, A. & Flemming, J. M. Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder. Ecology 96(10), 2598–2604 (2015).PubMed
Article
Google Scholar
42.Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. American Statistical Association (2015).43.Turtle Expert Working Group (TEWG). An assessment of the loggerhead turtle population in the western North Atlantic Ocean. NOAA Tech. Mem. NMFS-SEFSC. 575(131), 744 (2009).
Google Scholar
44.Clay, P. M. Management regions, statistical areas and fishing grounds: Criteria for dividing up the sea. J. Northwest Atl. Fish. Sci. 19, 103–126 (1996).Article
Google Scholar
45.Murray, K. T. & Orphanides, C. D. Estimating the risk of loggerhead turtle Caretta caretta bycatch in the US mid-Atlantic using fishery-independent and-dependent data. Mar. Ecol. Prog. Ser. 477, 259–270 (2013).ADS
Article
Google Scholar
46.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate. J. Geophys. Res. Oceans 121(1), 118–132 (2016).ADS
Article
Google Scholar
47.Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24 (2009).48.Reynolds, R. W. & Smith, T. M. Improved global sea surface temperature analyses using optimum interpolation. J. Clim. 7(6), 929–948 (1994).ADS
Article
Google Scholar
49.Chamberlain, S. rerddap – General purpose client for ‘ERDDAP’ servers. R Package (2016).50.Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60(2), 255–265 (1973).MathSciNet
MATH
Article
Google Scholar
51.Maunder, M. N. & Punt, A. E. Standardizing catch and effort data: a review of recent approaches. Fish. Res. 70(2–3), 141–159 (2004).Article
Google Scholar
52.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH
Book
Google Scholar
53.Benjamin, M. A., Rigby, R. A. & Stasinopoulos, D. M. Generalized autoregressive moving average models. J. Am. Stat. Assoc. 98(461), 214–223 (2003).MathSciNet
MATH
Article
Google Scholar
54.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686 (2019).ADS
Article
Google Scholar
55.Tanaka, K. R., Torre, M. P., Saba, V. S., Stock, C. A. & Chen, Y. An ensemble high‐resolution projection of changes in the future habitat of American lobster and sea scallop in the Northeast US continental shelf. Diversity and Distributions (2020).56.McHenry, J., Welch, H., Lester, S. E. & Saba, V. Projecting marine species range shifts from only temperature can mask climate vulnerability. Glob. Change Biol. 25(12), 4208–4221 (2019).ADS
Article
Google Scholar
57.Selden, R. L., Batt, R. D., Saba, V. S. & Pinsky, M. L. Diversity in thermal affinity among key piscivores buffers impacts of ocean warming on predator–prey interactions. Glob. Change Biol. 24(1), 117–131 (2018).ADS
Article
Google Scholar
58.Griffin, D. B. et al. Foraging habitats and migration corridors utilized by a recovering subpopulation of adult female loggerhead sea turtles: Implications for conservation. Mar. Biol. 160(12), 3071–3086 (2013).Article
Google Scholar
59.Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Computational and mathematical methods in medicine (2017).60.Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21(20), 7881 (2005).Article
CAS
Google Scholar
61.Link, J. et al. The Northeast US continental shelf Energy Modeling and Analysis exercise (EMAX): Ecological network model development and basic ecosystem metrics. J. Mar. Syst. 74(1–2), 453–474 (2008).Article
Google Scholar
62.Bane, J. M. Jr., Brown, O. B., Evans, R. H. & Hamilton, P. Gulf Stream remote forcing of shelfbreak currents in the Mid-Atlantic Bight. Geophys. Res. Lett. 15(5), 405–407 (1988).ADS
Article
Google Scholar
63.Hawkes, L. A. et al. Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of the USA. Divers. Distrib. 17(4), 624–640 (2011).Article
Google Scholar
64.Mansfield, K. L., Saba, V. S., Keinath, J. A. & Musick, J. A. Satellite tracking reveals a dichotomy in migration strategies among juvenile loggerhead turtles in the Northwest Atlantic. Mar. Biol. 156(12), 2555–2570 (2009).Article
Google Scholar
65.Lentz, S. J. Seasonal warming of the Middle Atlantic Bight Cold Pool. J. Geophys. Res. Oceans 122(2), 941–954 (2017).ADS
Article
Google Scholar
66.Iverson, A. R., Fujisaki, I., Lamont, M. M. & Hart, K. M. Loggerhead sea turtle (Caretta caretta) diving changes with productivity, behavioral mode, and sea surface temperature. PLoS ONE 14(8), e0220372 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Braun-McNeill, J., Sasso, C. R., Epperly, S. P. & Rivero, C. Feasibility of using sea surface temperature imagery to mitigate cheloniid sea turtle–fishery interactions off the coast of northeastern USA. Endanger. Species Res. 5(2–3), 257–266 (2008).Article
Google Scholar
68.Murray, K. T. Characteristics and magnitude of sea turtle bycatch in US mid-Atlantic gillnet gear. Endanger. Species Res. 8(3), 211–224 (2009).Article
Google Scholar
69.Murray, K. T. Interactions between sea turtles and dredge gear in the US sea scallop (Placopecten magellanicus) fishery, 2001–2008. Fish. Res. 107(1–3), 137–146 (2011).Article
Google Scholar
70.Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. J. Exp. Biol. 213(6), 901–911 (2010).CAS
PubMed
Article
Google Scholar
71.Alerstam, T., Hedenström, A. & Åkesson, S. Long-distance migration: evolution and determinants. Oikos 103(2), 247–260 (2003).Article
Google Scholar
72.Saunders, M. A. & Lea, A. S. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity. Nature 451(7178), 557–560 (2008).ADS
CAS
PubMed
Article
Google Scholar
73.McClellan, C. M. & Read, A. J. Complexity and variation in loggerhead sea turtle life history. Biol. Lett. 3(6), 592–594 (2007).PubMed
PubMed Central
Article
Google Scholar
74.McClellan, C. M., Braun-McNeill, J., Avens, L., Wallace, B. P. & Read, A. J. Stable isotopes confirm a foraging dichotomy in juvenile loggerhead sea turtles. J. Exp. Mar. Biol. Ecol. 387(1–2), 44–51 (2010).Article
Google Scholar
75.Hatase, H. et al. Size-related differences in feeding habitat use of adult female loggerhead turtles Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar. Ecol. Prog. Ser. 233, 273–281 (2002).ADS
Article
Google Scholar
76.Hatase, H., Omuta, K. & Tsukamoto, K. Bottom or midwater: Alternative foraging behaviours in adult female loggerhead sea turtles. J. Zool. 273(1), 46–55 (2007).Article
Google Scholar
77.Hawkes, L. A. et al. Phenotypically linked dichotomy in sea turtle foraging requires multiple conservation approaches. Curr. Biol. 16(10), 990–995 (2006).CAS
PubMed
Article
Google Scholar
78.Reich, K. J. et al. Polymodal foraging in adult female loggerheads (Caretta caretta). Mar. Biol. 157(1), 113–121 (2010).Article
Google Scholar
79.Smolowitz, R. J., Patel, S. H., Haas, H. L. & Miller, S. A. Using a remotely operated vehicle (ROV) to observe loggerhead sea turtle (Caretta caretta) behavior on foraging grounds off the mid-Atlantic United States. J. Exp. Mar. Biol. Ecol. 471, 84–91 (2015).Article
Google Scholar
80.Patel, S. H., Dodge, K. L., Haas, H. L. & Smolowitz, R. J. Videography reveals in-water behavior of loggerhead turtles (Caretta caretta) at a foraging ground. Front. Mar. Sci. 3, 254 (2016).Article
Google Scholar
81.James, M. C., Andrea Ottensmeyer, C. & Myers, R. A. Identification of high-use habitat and threats to leatherback sea turtles in northern waters: new directions for conservation. Ecol. Lett. 8(2), 195–201 (2005).Article
Google Scholar
82.Dodge, K. L., Galuardi, B., Miller, T. J. & Lutcavage, M. E. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS ONE 9(3), e91726 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
83.Smolowitz, R., Milliken, H. O. & Weeks, M. Design, evolution, and assessment of a sea turtle deflector dredge for the US Northwest Atlantic Sea scallop fishery: Impacts on fish bycatch. North Am. J. Fish. Manag. 32(1), 65–76 (2012).Article
Google Scholar
84.Hart, D. R. & Chute, A. S. Essential fish habitat source document: Sea scallop, Placopecten magellanicus, life history and habitat characteristics. NOAA Tech. Mem. NMFS NE 189, 21 (2004).
Google Scholar
85.Rheuban, J. E., Doney, S. C., Cooley, S. R. & Hart, D. R. Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE 13(9), e0203536 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
86.Framework Adjustment 23 to the Scallop Fisheries Management Plan. NOAA-NMFS-2011-0255 (2012).87.Murray, K. T. Estimated magnitude of sea turtle interactions and mortality in US Bottom Trawl Gear, 2014–2018 (2020).88.Houghton, J. D., Doyle, T. K., Wilson, M. W., Davenport, J. & Hays, G. C. Jellyfish aggregations and leatherback turtle foraging patterns in a temperate coastal environment. Ecology 87(8), 1967–1972 (2006).PubMed
Article
Google Scholar
89.Nelson, D. A. Life history and environmental requirements of loggerhead turtles. Fish and Wildlife Service, US Department of the Interior (1988). More