Patch selection by bumble bees navigating discontinuous landscapes
1.Marden, J. H. & Waddington, K. D. Floral choices by honeybees in relation to the relative distances to flowers. Physiol. Entomol. 6, 431–435 (1981).Article
Google Scholar
2.Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29, 779–784 (1981).Article
Google Scholar
3.Bauer, A. A., Clayton, M. K. & Brunet, J. Floral traits influencing plant attractiveness to three bee species: consequences for plant reproductive success. Am. J. Bot. 104, 772–781 (2017).PubMed
Article
Google Scholar
4.Bradshaw, H. D. & Schemske, D. W. Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426, 176–178 (2003).ADS
CAS
PubMed
Article
Google Scholar
5.Klahre, U. et al. Pollinator choice in petunia depends on two major genetic loci for floral scent production. Curr. Biol. 21, 730–739 (2011).CAS
PubMed
Article
Google Scholar
6.Muth, F., Papaj, D. R. & Leonard, A. S. Bees remember flowers for more than one reason: pollen mediates associative learning. Anim. Behav. 111, 93–100 (2016).Article
Google Scholar
7.Brunet, J., Thairu, M. W., Henss, J. M., Link, R. I. & Kluever, J. A. The effects of flower, floral display, and reward sizes on bumblebee foraging behavior when pollen is the reward and plants are dichogamous. Int. J. Plant Sci. 176, 811–819 (2015).Article
Google Scholar
8.Nicholls, E. & De Ibarra, N. H. Bees associate colour cues with differences in pollen rewards. J. Exp. Biol. 217, 2783–2788 (2014).PubMed
Article
Google Scholar
9.Thairu, M. W. & Brunet, J. The role of pollinators in maintaining variation in flower colour in the Rocky Mountain columbine, Aquilegia coerulea. Ann. Bot. 115, 971–979 (2015).PubMed
PubMed Central
Article
Google Scholar
10.Ishii, H. S. Floral display size influences subsequent plant choice by bumble bees. Funct. Ecol. 20, 233–238 (2006).Article
Google Scholar
11.Mitchell, R. J., Karron, J. D., Holmquist, K. G. & Bell, J. M. The influence of Mimulus ringens floral display size on pollinator visitation patterns. Funct. Ecol. 18, 116–124 (2004).Article
Google Scholar
12.Makino, T. T. & Sakai, S. Experience changes pollinator responses to floral display size: from size-based to reward-based foraging. Funct. Ecol. 21, 854–863 (2007).Article
Google Scholar
13.Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533 (1999).Article
Google Scholar
14.Osborne, J. L. & Williams, I. H. Site constancy of bumble bees in an experimentally patchy habitat. Agric. Ecosyst. Environ. 83, 129–141 (2001).Article
Google Scholar
15.Saville, N. M., Dramstad, W. E., Fry, G. L. A. & Corbet, S. A. Bumblebee movement in a fragmented agricultural landscape. Agric. Ecosyst. Environ. 61, 145–154 (1997).Article
Google Scholar
16.Ogilvie, J. E. & Thomson, J. D. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species. Ecology 97, 1442–1451 (2016).PubMed
Article
PubMed Central
Google Scholar
17.Cresswell, J. E. & Osborne, J. L. The effect of patch size and separation on bumblebbe foraging in oilseed rape: implications for gene flow. J. Appl. Ecol. 41, 539–546 (2004).Article
Google Scholar
18.Ohashi, K. & Thomson, J. D. Trapline foraging by pollinators: its ontogeny, economics and possible consequences for plants. Ann. Bot. 103, 1365–1378 (2009).PubMed
PubMed Central
Article
Google Scholar
19.Saleh, N. & Chittka, L. Traplining in bumblebees (Bombus impatiens): a foraging strategy’s ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia 151, 719–730 (2007).ADS
PubMed
Article
PubMed Central
Google Scholar
20.Woodgate, J. L., Makinson, J. C., Lim, K. S., Reynolds, A. M. & Chittka, L. Continuous radar tracking illustrates the development of multi-destination routes of bumblebees. Sci. Rep. 7, 1–15 (2017).CAS
Article
Google Scholar
21.Lihoreau, M., Chittka, L. & Raine, N. E. Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees. Funct. Ecol. 25, 1284–1292 (2011).PubMed
PubMed Central
Article
Google Scholar
22.Lihoreau, M., Chittka, L. & Raine, N. E. Travel optimization by foraging bumblebees through readjustments of traplines after discovery of new feeding locations. Am. Nat. 176, 744–757 (2010).PubMed
Article
PubMed Central
Google Scholar
23.Lihoreau, M., Chittka, L., Le Comber, S. C. & Raine, N. E. Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biol. Lett. 8, 13–16 (2012).PubMed
Article
PubMed Central
Google Scholar
24.Minahan, D. F. & Brunet, J. Strong interspecific differences in foraging activity observed between honey bees and bumble bees using miniaturized radio frequency identification (RFID). Front. Ecol. Evol. 6, 156 (2018).Article
Google Scholar
25.Brunet, J., Zhao, Y. & Clayton, M. K. Linking the foraging behavior of three bee species to pollen dispersal and gene flow. PLoS ONE 14, e0212561 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
26.Reynolds, A. M., Lihoreau, M. & Chittka, L. A simple iterative model accurately captures complex trapline formation by bumblebees across spatial scales and flower arrangements. PLoS Comput. Biol. 9, e1002938 (2013).ADS
MathSciNet
CAS
PubMed
PubMed Central
Article
Google Scholar
27.Marschall, E. A., Chesson, P. L. & Stein, R. A. Foraging in a patchy environment: prey-encounter rate and residence time distributions. Anim. Behav. 37, 444–454 (1989).Article
Google Scholar
28.Pyke, G. H. Optimal foraging theory : a critical review. Ann. Rev. Ecol. Syst. 15, 523–575 (1984).Article
Google Scholar
29.Rands, S. A. Landscape fragmentation and pollinator movement within agricultural environments: a modelling framework for exploring foraging and movement ecology. PeerJ 2, e269 (2014).PubMed
PubMed Central
Article
Google Scholar
30.Lima, S. L. & Zollner, P. A. Towards a behavioral ecology of ecological landscapes. Trends Ecol. Evol. 11, 131–135 (1996).CAS
PubMed
Article
Google Scholar
31.Brunet, J. A conceptual framework that links pollinator foraging behavior to gene flow. In Proceedings for the 2018 Winter Seed Conference 63–67 (2018).32.Macarthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article
Google Scholar
33.Pyke, G. H. Understanding movements of organisms: it’s time to abandon the Lévy foraging hypothesis. Methods Ecol. Evol. 6, 1–16 (2015).Article
Google Scholar
34.Heinrich, B. ‘Majoring’ and ‘minoring’ by foraging bumblebees, Bombus vagans: an experimental analysis. Ecology 60, 245–255 (1979).Article
Google Scholar
35.Somme, L. et al. Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie 46, 92–106 (2015).ADS
Article
Google Scholar
36.Levey, D. J., Bolker, B. M., Tewksbury, J. J., Sargent, S. & Haddad, N. M. Effects of landscape corridors on seed dispersal by birds. Science 309, 146–148 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
37.Levey, D. J., Tewksbury, J. J. & Bolker, B. M. Modelling long-distance seed dispersal in heterogeneous landscapes. J. Ecol. 96, 599–608 (2008).Article
Google Scholar
38.Pasquet, R. S. et al. Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc. Natl. Acad. Sci. U. S. A. 105, 13456–13461 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
39.Smith, K. & Spangenberg, G. Considerations for managing agricultural co-existence between transgenic and non-transgenic cultivars of outcrossing perennial forage plants in dairy pastures. Agronomy 6, 59–68 (2016).Article
Google Scholar
40.Ellstrand, N. C. et al. Introgression of crop alleles into wild or weedy populations. Annu. Rev. Ecol. Evol. Syst. 44, 325–345 (2013).Article
Google Scholar
41.Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).PubMed
PubMed Central
Article
Google Scholar
42.Esch, H. E. & Burns, J. E. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).CAS
PubMed
PubMed Central
Google Scholar
43.Srinivasan, M. V., Zhang, S., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the ‘odometer’. Science (80-.) 287, 851–853 (2000).ADS
CAS
Article
Google Scholar
44.Collett, M. & Collett, T. S. How do insects use path integration for their navigation?. Biol. Cybern. 83, 245–259 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23, R789–R800 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Chittka, L., Geiger, K. & Kunze, J. The influences of landmarks on distance estimation of honey bees. Anim. Behav. 50, 23–31 (1995).Article
Google Scholar
47.Srinivasan, M. V., Lehrer, M. & Horridge, G. A. Visual figure-ground discrimination in the honeybee: the role of motion parallax at boundaries. Proc. R. Soc. B Biol. Sci. 238, 331–350 (1990).ADS
Google Scholar
48.Lehrer, M. Looking all around: honeybees use different cues in different eye regions. J. Exp. Biol. 201, 3275–3292 (1998).PubMed
PubMed Central
Google Scholar
49.Goulson, D. Foraging strategies of insects for gathering nectar and pollen, and implications for plant ecology and evolution. Perspect. Plant Ecol. Evol. Syst. 2, 185–209 (1999).Article
Google Scholar
50.Ohashi, K., Thomson, J. D. & D’Souza, D. Trapline foraging by bumble bees: IV. Optimization of route geometry in the absence of competition. Behav. Ecol. 18, 1–11 (2007).Article
Google Scholar
51.Comba, L. Patch use by bumblebees (hymenoptera apidae): temperature, wind, flower density and traplining. Ethol. Ecol. Evol. 11, 243–264 (1999).Article
Google Scholar
52.Ohashi, K., Leslie, A. & Thomson, J. D. Trapline foraging by bumble bees: V. Effects of experience and priority on competitive performance. Behav. Ecol. 19, 936–948 (2008).Article
Google Scholar
53.Klein, S., Pasquaretta, C., Barron, A. B., Devaud, J. M. & Lihoreau, M. Inter-individual variability in the foraging behaviour of traplining bumblebees. Sci. Rep. 7, 1–12 (2017).Article
CAS
Google Scholar
54.Chittka, L. Bee cognition. Curr. Biol. 27, R1049–R1053 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Ohashi, K. & Yahara, T. Visit larger displays but probe proportionally fewer flowers: counterintuitive behaviour of nectar-collecting bumble bees achieves an ideal free distribution. Funct. Ecol. 16, 492–503 (2002).Article
Google Scholar
56.Brunet, J. & Stewart, C. M. Impact of bee species and plant density on alfalfa pollination and potential for gene flow. Psyche A J. Entomol. https://doi.org/10.1155/2010/201858 (2010).Article
Google Scholar
57.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Google Scholar
58.Weisberg, S. Applied Linear Regression (Wiley, 2013). https://doi.org/10.2307/3150981.Book
MATH
Google Scholar More