More stories

  • in

    African forest maps reveal areas vulnerable to the effects of climate change

    Preserving the biodiversity of rainforests, and limiting the effects of climate change on them, are global challenges that are recognized in international policy agreements and commitments1. The Central African rainforests are the second largest area of continuous rainforest in the world, after the Amazon rainforest. They store more carbon per hectare than does the Amazon and, on average, have a higher density of large trees2 than does any other continent — a feature attributed to the effects of big herbivores, particularly elephants, on the competition between trees for light, water and space3. Human activities, notably logging and over-hunting, facilitated by an expanding road network4, pose a serious threat to Central African rainforests and their value for society5.
    Read the paper: Unveiling African rainforest composition and vulnerability to global change
    How important is climate change, when acting on top of these existing human-generated pressures, for the future of these rainforests? Writing in Nature, Réjou-Méchain et al.6 provide an answer, and show that expected changes in climate in the region pose serious risks to the rainforests. Some forests in locations that have so far been relatively undisturbed by humans are more vulnerable to climate change than are those in areas already affected. For those areas already affected, the lower tree diversity as a consequence of human intervention reduces the capacity of forests to respond to climate change.The authors had access to an impressive commercial forest-inventory data set from 105 logging concessions (designated areas in which commercial operators are allowed to harvest timber), across five Central African countries. Analysing the abundance distribution of 6.1 million trees across 185,665 plots, the authors generate maps of floristically unique forest types — forests characterized by distinct sets of tree species. The spatial extent of these forest types is predominantly shaped by climate gradients, with further effects arising from human-induced pressures and variation in soil type.Previous research into links between species distribution and environmental variation used approaches such as ecological niche models, which are mechanistic or correlative models that relate field observations of species with environmental variables to predict habitat suitability. But the resulting predictions of how various species will be affected by climate change have been highly uncertain. This is mainly because of sampling bias, challenges such as spatial autocorrelation (locations closer together in space tend to be more similar to each other than do locations farther apart)7, and high variation in the responses of individual species to environmental drivers of distribution, including human-induced factors.
    Satellites could soon map every tree on Earth
    Réjou-Méchain et al. instead applied a modelling approach called supervised component generalized linear regression, which can identify the main predictive factors from an array of possibilities. This enabled them to detect distribution patterns at the scale of species assemblages (the set of species in a community), rather than focusing on individual species, and to model species and assemblage distribution in response to predictive variables, such as those of climate and human pressures, that potentially show linear dependencies on each other (collinearity). Collinearity is a challenge in niche models, and commonly occurs between climate variables, producing results that are unreliable and difficult to interpret.By combining their approach with a method called cluster analysis, Réjou-Méchain and colleagues show that the Central African rainforests are not a single bloc of forests, but instead encompass at least ten distinct forest types. This includes climate-driven types of forest such as the Atlantic coastal evergreen forest in Gabon, which harbours tree species that prefer cool, dark areas for the dry season. Another grouping, semi-deciduous forest, is found along the northern margin of the Central African region studied, and is characterized by species that can tolerate higher rates of water loss to the atmosphere (evapotranspiration).Such spatial variability in the species composition of Central African rainforests has many implications. For example, it will affect forest vulnerability to climate change, how warming might interact with human pressures to change biodiversity, and how it might affect the potential of these forests to mitigate the rise in atmospheric carbon. Global warming is projected to result in a drier, hotter environment in Central Africa, and previous research has suggested potentially dangerous implications for the fate of the rainforests there8. They might respond to limited water availability by opening canopies and becoming more prone to fires and less carbon dense. Using climate-model projections for the year 2085, Réjou-Méchain and colleagues conclude that the current climate niches associated with the ten forest types they have identified might disappear, or move to locations that would be difficult for the forests to reach through dispersal of tree seeds (by means such as wind and animals), and would hence become inaccessible.
    Prioritizing where to restore Earth’s ecosystems
    What do these findings mean for the future, and how can we manage the forests to minimize the threat from climate change? To provide an answer, Réjou-Méchain et al. looked at three components that characterize the vulnerability of forest communities to warming: their sensitivity, exposure and adaptive capacity. The authors conclude that some areas are more sensitive than others, which means that the dominant tree species in some forest types will be less able to tolerate environmental change than will those in other areas — for example, species in the northern and southwestern edge of the rainforest. Some areas, particularly those in the east, are expected to be more exposed to climate change than others. And some, especially areas under pressure from human activities, have lower local biodiversity, and might thus have less capacity to adapt compared with areas of greater biodiversity.Réjou-Méchain et al. report that the areas most vulnerable to climate change and predicted to be highly vulnerable to future human-induced pressures include forests in coastal Gabon, the Democratic Republic of the Congo (Fig. 1) and the northern margin of the domain studied. This finding suggests priority regions for targeted actions to protect forests from environmental changes. One such region under human pressure is in Cameroon and contains a forest group called degraded semi-deciduous forest. Protecting this type of forest offers a fast way of generating a carbon sink that will operate over a long time frame9. This is because it features long-lived ‘pioneer’ taxa, which colonize areas after a disturbance — whether natural or human induced. Such species frequently have a high requirement for light, and in this region have the potential to reach great heights in the absence of further disturbance.

    Figure 1 | Kahuzi-Biéga National Park, Democratic Republic of the Congo. The road marks the boundary of this forest, which is one of the few remaining forest habitats for the eastern lowland gorilla (Gorilla beringei graueri). Rainforests are under threat from human-induced pressures, such as the deforestation visible outside this park. Réjou-Méchain et al.6 present maps of Central African rainforests that could aid conservation work.Credit: Adam Amir

    As for elsewhere in sub-Saharan Africa, climate-change predictions for 2085 are uncertain for Central Africa. Réjou-Méchain and colleagues’ projections for the effects of human pressures for that year are probably underestimates, especially considering that road expansions are likely to continue to push the frontier of wilderness deeper into remote forest areas. Nevertheless, the research offers convincing evidence enabling land users and managers to take decisive actions. This could include efforts to protect the areas most vulnerable to climate change from human pressures, for example by setting up protection schemes, and actions that could include boosting forest connectivity in areas that have already experienced high levels of human pressure. To ensure the effectiveness of any interventions, it will be imperative to engage with local people in developing management solutions. Conservation and the sustainable management of rainforest carbon stocks have key roles in the reduction of carbon emissions.Perhaps most crucially, rainforests in Central Africa and the ecosystem services they provide are intertwined with people’s livelihoods and food security. Developing sustainable management plans that recognize the diversity of the ways in which people interact with and depend on these forests will be a huge challenge. It will require concerted cross-disciplinary and cross-sectoral efforts that move beyond national boundaries. More

  • in

    Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency and balance in subtropical China

    1.Kazunori, M. et al. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 566, 641–651 (2016).
    Google Scholar 
    2.FAOSTAT. http://www.fao.org/statistics/zh. (2018).3.Xu, L. et al. Effects of different fertilization treatment on paddy soil nutrients in red soil hilly region. J. Nat. Resour. 27, 1890–1898 (2012) (In Chinese).
    Google Scholar 
    4.National Bureau of Statistics of China. China Statistical Yearbook (China Statistics Press, 2010) (In Chinese).
    Google Scholar 
    5.Li, H. G. et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44, S274–S285 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44(Suppl. 2), 193–206 (2015).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    7.Huang, Q. H. et al. Effects of long-term organic amendments on soil organic carbon in a paddy field: A case study on red soil. J. Integr. Agric. 13, 570–576 (2014).Article 

    Google Scholar 
    8.Wang, H. et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 195, 104382 (2019).Article 

    Google Scholar 
    9.Qaswar, M. et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 198, 104569 (2020).Article 

    Google Scholar 
    10.Blake, L. et al. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 56, 263–275 (2000).Article 

    Google Scholar 
    11.Dawe, D., Dobermann, A., Ladha, J. K. & Zhen, Q. X. Do organic amendments improve yield trends and profitability in intensive rice systems?. Field Crop. Res. 83, 191–213 (2003).Article 

    Google Scholar 
    12.Nziguheba, G., Merckx, R. & Palm, C. A. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an acrisol in Western Kenya. Plant Soil 243, 1–10 (2002).CAS 
    Article 

    Google Scholar 
    13.Xu, M. G. et al. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in hunan of Southern China. Agric. Sci. China 7, 1245–1252 (2008).Article 

    Google Scholar 
    14.Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).Article 

    Google Scholar 
    15.Zhao, B. Q. et al. Long-term fertilizer experiment network in China: Crop yields and soil nutrient trends. Agron. J. 102, 216–230 (2010).CAS 
    Article 

    Google Scholar 
    16.Gao, Y. et al. Phosphorus and carbon competitive sorption-desorption and associated non-point loss respond to natural rainfall events. J. Hydrol. 517, 447–457 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Abe, S. S. et al. Excessive application of farmyard manure reduces rice yield and enhances environmental pollution risk in paddy fields. Arch. Agron. Soil Sci. 62, 1208–1221 (2016).Article 

    Google Scholar 
    19.Sato, S. & Comerford, N. B. Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian ultisol. Rev. Bras. Ciênc. Solo 29, 685–694 (2005).CAS 
    Article 

    Google Scholar 
    20.Shasheen, S. & Tsadilas, C. Phosphorus sorption and availability to canola grown in an alfisol amended with various soil amendments. Commun. Soil Sci. Plan. 44, 89–103 (2013).Article 
    CAS 

    Google Scholar 
    21.Shepherd, M. A. & Withers, P. J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: Effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosyst. 54, 233–242 (1999).Article 

    Google Scholar 
    22.Morteza, Y., Javad, S. & Mahmood, S. S. On dealing with the pollution costs in agriculture: A case study of paddy fields. Sci. Total Environ. 556, 310–318 (2016).Article 
    CAS 

    Google Scholar 
    23.Zhang, N.M., Li, C.X. & Li, Y.H. Accumulation and releasing risk of phosphorus in soils in Dianchi watershed. Soils 39, 665–667. (2007). (in Chinese). 24.Zhang, Z. J., Zhang, J. Y., He, R., Wang, Z. D. & Zhu, Y. M. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin. Environ. Pollut. 145, 425–433 (2007) (In Chinese).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hua, L. et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agric. Ecosyst. Environ. 245, 112–123 (2017).CAS 
    Article 

    Google Scholar 
    26.Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 
    Article 

    Google Scholar 
    27.Shi, W. et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197, 825–837 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Andriamananjara, A. et al. Farmyard manure application in weathered upland soils of Madagascar sharply increase phosphate fertilizer use efficiency for upland rice. Field Crop. Res. 222, 94–100 (2018).Article 

    Google Scholar 
    29.Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115, 407–425 (2019).CAS 
    Article 

    Google Scholar 
    30.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229-U113 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Xin, X. et al. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 208, 27–33 (2017).Article 

    Google Scholar 
    32.Aggarwal, R. K. & Power, J. F. Use of crop residue and manure to conserve water and enhance nutrient availability and pearl millet yields in an arid tropical region. Soil Tillage Res. 41, 43–51 (1997).Article 

    Google Scholar 
    33.Rehman, A., Ullah, A., Nadeem, F. & Farooq, M. Sustainable nutrient management. In Innovations in Sustainable Agriculture 167–211 (Springer, 2019).34.Whalen, J. K., Chang, C., Clayton, G. W. & Carefoot, J. P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64, 962–966 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mowrer, J., Endale, D. M., Schomberg, H. H., Norris, S. E. & Woodroof, R. H. Liming potential of poultry litter in a long-term tillage comparison study. Soil Tillage Res. 196, 104446 (2020).Article 

    Google Scholar 
    36.Miller, J., Beasley, B., Drury, C., Larney, F. & Hao, X. Y. Influence of long-term application of composted or stockpiled feedlot manure with straw or wood chips on soil cation exchange capacity. Compos. Sci. Util. 24, 54–60 (2016).CAS 
    Article 

    Google Scholar 
    37.Liang, Y. et al. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem. 37, 1185–1195 (2005).CAS 
    Article 

    Google Scholar 
    38.Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 243–266 (2004).Article 

    Google Scholar 
    39.Khan, F. et al. Effect of different levels of nitrogen and phosphorus on the phenology and yield of maize varieties. Am. J. Plant Sci. 5, 2582–2590 (2014).CAS 
    Article 

    Google Scholar 
    40.Luo, X. et al. Nitrogen: Phosphorous supply ratio and allometry in five alpine plant species. Ecol. Evol. 6, 8881–8892 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Güsewell, S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecol. 176, 35–55 (2005).Article 

    Google Scholar 
    42.Hu, B. et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Zhang, W. F. et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 80, 131–144 (2008).Article 

    Google Scholar 
    44.Andriamananjara, A. et al. Land management modifies the temperature sensitivity of soil organic carbon, nitrogen and phosphorus dynamics in a Ferralsol. Appl. Soil Ecol. 138, 112–122 (2019).Article 

    Google Scholar 
    45.Nziguheba, G., Merckx, R., Palm, C. A. & Rao, M. R. Organic residues affect phosphorus availability and maize yields in a Nitisol of Western Kenya. Biol. Fertil. Soils 32, 328–339 (2000).CAS 
    Article 

    Google Scholar 
    46.Peretyazhko, T. & Sposito, G. Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim. Cosmochim. Acta 69, 3643–3652 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Wright, A. L. Soil phosphorus stocks and distribution in chemical fractions for long-term sugarcane, pasture, turfgrass, and forest systems in Florida. Nutr. Cycl. Agroecosyst. 83, 223–231 (2009).CAS 
    Article 

    Google Scholar 
    48.Zhong, X. et al. The evaluation of phosphorus leaching risk of 23 Chinese soils I. Leaching criterion. Acta Ecol. Sin. 24, 2275–2280 (2004).
    Google Scholar 
    49.Wang, S. et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems. Soil Sei. Soc. Am. J. 6, 161–167 (2012).Article 
    CAS 

    Google Scholar 
    50.Haynes, R. J. & Mokolobate, M. S. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 59, 47–63 (2001).CAS 
    Article 

    Google Scholar 
    51.Ayaga, G., Todd, A. & Brookes, P. C. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol. Biochem. 38, 81–90 (2006).CAS 
    Article 

    Google Scholar 
    52.Nie, J., Zhou, J., Wang, H., Chen, X. & Du, C. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere 17, 295–302 (2007).CAS 
    Article 

    Google Scholar 
    53.Yu, Y. et al. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Sci. Total Environ. 656, 625–633 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. A. 27, 31–36 (1962).CAS 
    Article 

    Google Scholar 
    55.Kitson, R. E. & Mellon, M. G. Colorimetric determination of phosphorus as molybdivanadophosporic acid. Ind. Eng. Chem. Anal. Ed. 16, 379–383 (1944).CAS 
    Article 

    Google Scholar 
    56.Soon, Y. K. & Kalra, Y. P. A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Can. J. Soil Sci. 75, 243–245 (1995).CAS 
    Article 

    Google Scholar  More

  • in

    The serotonin transporter gene and female personality variation in a free-living passerine

    1.Réale, D., Dingemanse, N. J., Kazem, A. J. N. & Wright, J. Evolutionary and ecological approaches to the study of personality. Philos. Trans. R. Soc. B. 365, 3937–3946 (2010).Article 

    Google Scholar 
    2.Dingemanse, N. J. & Wright, J. Criteria for acceptable studies of animal personality and behavioural syndromes. Ethology 126, 865–869 (2020).Article 

    Google Scholar 
    3.Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. B. 353, 199–205 (1998).Article 

    Google Scholar 
    4.Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206 (2005).Article 

    Google Scholar 
    5.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B. 282, 20142201 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Dochtermann, N. A., Schwab, T., Berdal, M. A., Dalos, J. & Royauté, R. The heritability of behavior: A meta-analysis. J. Hered. 110, 403–410 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    8.Moiron, M., Laskowski, K. L. & Niemelä, P. T. Individual differences in behaviour explain variation in survival: a meta-analysis. Ecol. Lett. 23, 399–408 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B. 365, 3947–3958 (2010).Article 

    Google Scholar 
    10.Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (Chicago University Press, 2013).
    Google Scholar 
    11.Oers, K. V. & Mueller, J. C. Evolutionary genomics of animal personality. Philos. Trans. R. Soc. B. 365, 3991–4000 (2010).Article 

    Google Scholar 
    12.Laine, V. N. & van Oers, K. The quantitative and molecular genetics of individual differences in animal personality. In Personality in Nonhuman Animals (eds Vonk, J. et al.) 55–72 (Springer, 2017).
    Google Scholar 
    13.Bubac, C. M., Miller, J. M. & Coltman, D. W. The genetic basis of animal behavioural diversity in natural populations. Mol. Ecol. 29, 1957–1971 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Brommer, J. E. & Class, B. The importance of genotype-by-age interactions for the development of repeatable behavior and correlated behaviors over lifetime. Front. Zool. 12, S2 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).Article 

    Google Scholar 
    18.Gienapp, P., Laine, V. N., Mateman, A. C., van Oers, K. & Visser, M. E. Environment-dependent genotype-phenotype associations in avian breeding time. Front. Genet. 8, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    19.Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10, 516–525 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mueller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol. Ecol. 22, 3629–3637 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744 (2016).Article 

    Google Scholar 
    25.Class, B., Brommer, J. E. & van Oers, K. Exploratory behavior undergoes genotype–age interactions in a wild bird. Ecol. Evol. 9, 8987–8994 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Savitz, J. B. & Ramesar, R. S. Genetic variants implicated in personality: A review of the more promising candidates. Am. J. Med. Genet. Neuropsychiatr. Genet. 131B, 20–32 (2004).Article 

    Google Scholar 
    27.Craig, I. W. & Halton, K. E. Genetics of human aggressive behaviour. Hum. Genet. 126, 101–113 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Miller-Butterworth, C. M., Kaplan, J. R., Barmada, M. M., Manuck, S. B. & Ferrell, R. E. The serotonin transporter: Sequence variation in Macaca fascicularis and its relationship to dominance. Behav. Genet. 37, 678–696 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Jannini, E. A., Burri, A., Jern, P. & Novelli, G. Genetics of human sexual behavior: Where we are, where we are going. Sex. Med. Rev. 3, 65–77 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Timm, K., Van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227 (2019).Article 

    Google Scholar 
    32.Edwards, H. A., Hajduk, G. K., Durieux, G., Burke, T. & Dugdale, H. L. No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE 10, 1–13 (2015).
    Google Scholar 
    33.Van Dongen, W. F. D., Robinson, R. W., Weston, M. A., Mulder, R. A. & Guay, P. J. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evol. Biol. 15, 1–11 (2015).Article 

    Google Scholar 
    34.Sibley, C. G. Behavioral mimicry in the titmice (Paridae) and certain other birds. Wilson Bull. 67, 128–132 (1955).
    Google Scholar 
    35.Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behaviour. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    36.Thys, B., Lambreghts, Y., Pinxten, R. & Eens, M. Nest defence behavioural reaction norms: Testing life-history and parental investment theory predictions. R. Soc. Open Sci. 6, 182180 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    37.Thys, B., Pinxten, R. & Eens, M. Long-term repeatability and age-related plasticity of female behaviour in a free-living passerine. Anim. Behav. 172, 45–54 (2021).Article 

    Google Scholar 
    38.Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    39.Graffelman, J. Exploring diallelic genetic markers: The HardyWeinberg package. J. Stat. Softw. 64, 1–23 (2015).Article 

    Google Scholar 
    40.Solé, X., Guinó, E., Valls, J., Iniesta, R. & Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Benjamini, Y. & Hocherg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    42.Therneau, T. coxme: Mixed effects Cox models. R package version 2.2-16. https://CRAN.R-project.org/package=coxme (2020).43.Balding, D. J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7, 781–791 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).Article 

    Google Scholar 
    45.Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).Article 

    Google Scholar 
    46.Sinnwell, J., Therneau, T. & Schaid, D. The kinship 2 R Package for Pedigree Data. Hum. Hered. 78, 91–93 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    49.Deans, C. & Maggert, K. A. What do you mean, “Epigenetic”?. Genetics 199, 887–896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Evol. Syst. 37, 67–93 (2006).Article 

    Google Scholar 
    52.Krams, I. et al. Hissing calls improve survival in incubating female great tits (Parus major). Acta Ethol. 17, 83–88 (2014).Article 

    Google Scholar 
    53.Munafò, M. R., Yalcin, B., Willis-Owen, S. A. & Flint, J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biol. Psychiatry 63, 197–206 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Pastinen, T. Genome-wide allele-specific analysis: Insights into regulatory variation. Nat. Rev. Genet. 11, 533–538 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Vergnes, M., Depaulis, A. & Boehrer, A. Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol. Behav. 36, 653–658 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Seo, D., Patrick, C. J. & Kennealy, P. J. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress. Violent Behav. 13, 383–395 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Thys, B., Eens, M., Pinxten, R. & Iserbyt, A. Pathways linking female personality with reproductive success are trait- and year-specific. Behav. Ecol. 32, 114–123 (2020).Article 

    Google Scholar  More

  • in

    Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes

    1.Cadwell, K. The virome in host health and disease. Immunity 42, 805–813 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Paez-Espino, D. et al. Uncovering earth’s virome. Nature https://doi.org/10.1038/nature19094 (2016).Article 
    PubMed 

    Google Scholar 
    3.Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Dolja, V. V. & Koonin, E. V. Metagenomics reshapes the concepts of RNA virus evolution by revealing extensive horizontal virus transfer. Virus Res. 244, 36–52 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Li, C.-X. et al. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viruses. Elife 4, e05378 (2015).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    6.Shi, M. et al. Redefining the invertebrate RNA virosphere. Nature 540, 539–543 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Atoni, E. et al. Metagenomic Virome Analysis of Culex Mosquitoes from Kenya and China. Viruses 10, 30 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    8.Sadeghi, M. et al. Virome of > 12 thousand Culex mosquitoes from throughout California. Virology 523, 74–88 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Zakrzewski, M. et al. Mapping the virome in wild-caught Aedes aegypti from Cairns and Bangkok. Nat. Publ. Group https://doi.org/10.1038/s41598-018-22945-y (2018).Article 

    Google Scholar 
    10.Xia, H. et al. Comparative metagenomic profiling of viromes associated with four common mosquito species in China. Virol. Sin. 33, 59–66 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Frey, K. G. et al. Bioinformatic characterization of mosquito viromes within the eastern United States and Puerto Rico: ciscovery of novel viruses. Evolut. Bioinform. 12s2, EBO.S38518 (2016).Article 

    Google Scholar 
    12.Chandler, J. A., Liu, R. M. & Bennett, S. N. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 06, 403 (2015).Article 

    Google Scholar 
    13.Chandler, J. A. et al. Metagenomic shotgun sequencing of a Bunyavirus in wild-caught Aedes aegypti from Thailand informs the evolutionary and genomic history of the Phleboviruses. Virology 464–465, 312–319 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Cholleti, H. et al. Discovery of novel viruses in mosquitoes from the Zambezi valley of Mozambique. PLoS ONE 11, e0162751 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Scarpassa, V. M. et al. An insight into the sialotranscriptome and virome of Amazonian anophelines. BMC Genom. https://doi.org/10.1186/s12864-019-5545-0 (2019).Article 

    Google Scholar 
    16.Hameed, M. et al. A viral metagenomic analysis reveals rich viral abundance and diversity in mosquitoes from pig farms. Transbound. Emerg. Dis. 67, 328–343 (2019).PubMed 
    Article 

    Google Scholar 
    17.Fauver, J. R. et al. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-speci. Virology 498, 288–299 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Xiao, P. et al. Metagenomic sequencing from mosquitoes in China reveals a variety of insect and human viruses. Front. Cell. Infect. Microbiol. 8, 131–211 (2018).Article 
    CAS 

    Google Scholar 
    19.Shi, C. et al. Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics. Microbiome https://doi.org/10.1186/s40168-019-0734-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.World Health Organization. A global brief on vector-borne diseases. (2014).21.Vasilakis, N. & Tesh, R. B. Insect-specific viruses and their potential impact on arbovirus transmission. Curr. Opin. Virol. 15, 69–74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Goenaga, S. et al. Potential for co-infection of a mosquito-specific flavivirus, Nhumirim virus, to block West Nile virus transmission in mosquitoes. Viruses 7, 5801–5812 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Hall-Mendelin, S. et al. The insect-specific Palm Creek virus modulates West Nile virus infection in and transmission by Australian mosquitoes. Parasit. Vectors 9, 414 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Colmant, A. M. G. et al. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl. Trop. Dis. 12, e0006886 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Romo, H., Kenney, J. L., Blitvich, B. J. & Brault, A. C. Restriction of Zika virus infection and transmission in Aedes aegypti mediated by an insect-specific flavivirus. Emerg. Microbes Infect 7, 181 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Schultz, M. J., Frydman, H. M. & Connor, J. H. Dual Insect specific virus infection limits Arbovirus replication in Aedes mosquito cells. Virology 518, 406–413 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Thongsripong, P. et al. Mosquito vector diversity across habitats in central Thailand endemic for dengue and other arthropod-borne diseases. PLoS Negl. Trop. Dis. 7, e2507 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kukutla, P., Steritz, M. & Xu, J. Depletion of ribosomal RNA for mosquito gut metagenomic RNA-seq. JoVE https://doi.org/10.3791/50093 (2013).Article 
    PubMed 

    Google Scholar 
    29.Rattanarithikul, R., Harrison, B. A. & Panthusiri, P. Coleman RE (2005) Illustrated keys to the mosquitoes of Thailand I. Background; geographic distribution; lists of genera, subgenera, and species; and a key to the genera. Southeast Asian J. Trop. Med. Public Health 36 Suppl 1, 1–80 (2005).PubMed 

    Google Scholar 
    30.Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. II. Genera Culex and Lutzia. Southeast Asian J. Trop. Med. Public Health 36 Suppl 2, 1–97 (2005).PubMed 

    Google Scholar 
    31.Rattanarithikul, R., Harrison, B. A., Panthusiri, P., Peyton, E. L. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J. Trop. Med. Public Health 37 Suppl 1, 1–85 (2006).PubMed 

    Google Scholar 
    32.Rattanarithikul, R., Harrison, B. A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian J. Trop. Med. Public Health 37 Suppl 2, 1–128 (2006).PubMed 

    Google Scholar 
    33.Rattanarithikul, R., Harbach, R. E., Harrison, B. A., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand V. Genera Orthopodomyia, Kimia, Malaya, Topomyia, Tripteroides, and Toxorhynchites. Southeast Asian J. Trop. Med. Public Health 38, 1–65 (2007).PubMed 

    Google Scholar 
    34.Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J. Trop. Med. Public Health 41 Suppl 1, 1–225 (2010).PubMed 

    Google Scholar 
    35.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. https://doi.org/10.1093/bib/bbx108 (2017).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    39.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference. bioRxiv 447110 (2018).42.Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES science gateway for interface of large phylogenetic trees. 1–8 (2010).43.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz239 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Ryan, F. P. Human endogenous retroviruses in multiple sclerosis: potential for novel neuro-pharmacological research. Curr. Neuropharmacol. 9, 360–369 (2011).47.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15, R46 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kopylova, E., Noe, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J. Gen. Virol. 98, 2–3 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Kyaw, A. K. et al. Virus research. Virus Res. 247, 120–124 (2018).Article 
    CAS 

    Google Scholar 
    51.Valles, S. M. et al. ICTV virus taxonomy profile: Iflaviridae. J. Gen. Virol. 98, 527–528 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Kobayashi, D. et al. Isolation and characterization of a new iflavirus from Armigeres spp. mosquitoes in the Philippines. J. Gen. Virol. 98, 2876–2881 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Viruses, I. C. O. T. O., King, A. M. Q., Adams, M. J., Lefkowitz, E. & Carstens, E. B. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses (Elsevier, Amsterdam, 2011).
    Google Scholar 
    54.Hillman, B. I. & Cai, G. The family narnaviridae: Simplest of RNA viruses. Adv. Virus Res. 86, 149–176 (2013).PubMed 
    Article 

    Google Scholar 
    55.Turina, M. et al. ICTV virus taxonomy profile: Ourmiavirus. J. Gen. Virol. 98, 129–130 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Yong, C. Y., Yeap, S. K., Omar, A. R. & Tan, W. S. Advances in the study of nodavirus. PeerJ 5, e3841 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Sahul Hameed, A. S. et al. ICTV virus taxonomy profile: Nodaviridae. J. Gen. Virol. 100, 3–4 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Sanborn, M. et al. Metagenomic analysis reveals three novel and prevalent mosquito biruses from a single pool of Aedes vexans nipponii collected in the Republic of Korea. Viruses 11, 222 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    59.Olendraite, I. et al. ICTV virus taxonomy profile: Polycipiviridae. J. Gen. Virol. 100, 554–555 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Wichgers Schreur, P. J., Kormelink, R. & Kortekaas, J. Genome packaging of the Bunyavirales. Curr. Opin. Virol. 33, 151–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Marklewitz, M., Zirkel, F., Kurth, A., Drosten, C. & Junglen, S. Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family. Proc. Natl. Acad. Sci. U.S.A. 112, 7536–7541 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Walker, P. J. et al. ICTV virus taxonomy profile: Rhabdoviridae. J. Gen. Virol. 99, 447–448 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Sun, Q. et al. Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China. Adv. Virol. 162, 1103–1106 (2017).CAS 

    Google Scholar 
    64.Hilgenboecker, K., Hammerstein, P., Schlattmann, P., Telschow, A. & Werren, J. H. How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiol Lett 281, 215–220 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Flegontov, P. et al. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol 23, 1787–1793 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Kaur, D. et al. Occurrence of Setaria digitata in a cow. J Parasit Dis 39, 477–478 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Heneberg, P. et al. Intermediate hosts of the trematode Collyriclum faba (Plagiochiida: Collyriclidae) identified by an integrated morphological and genetic approach. Parasit. Vectors 8, 85 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Enabulele, E. E., Lawton, S. P., Walker, A. J. & Kirk, R. S. Molecular and morphological characterization of the cercariae of Lecithodendrium linstowi (Dollfus, 1931), a trematode of bats, and incrimination of the first intermediate snail host Radix balthica. Parasitology 145, 307–312 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Greiman, S. E. et al. Real-time PCR detection and phylogenetic relationships of Neorickettsia spp. in digeneans from Egypt, Philippines, Thailand, Vietnam and the United States. Parasitol. Int. 66, 1003–1007 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Lantova, L. & Volf, P. Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)—Overview of their taxonomy, life cycle, host specificity and pathogenicity. Infect. Genet. Evol. 28, 616–627 (2014).PubMed 
    Article 

    Google Scholar 
    71.Roychoudhury, S. et al. Comparison of the morphology of oocysts and the phylogenetic analysis of four Ascogregarina species (Eugregarinidae: Lecudinidae) as inferred from small subunit ribosomal DNA sequences. Parasitol. Int. 56, 113–118 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Muslim, A., Fong, M.-Y., Mahmud, R., Lau, Y.-L. & Sivanandam, S. Armigeres subalbatus incriminated as a vector of zoonotic Brugia pahangi filariasis in suburban Kuala Lumpur Peninsular Malaysia. Parasites Vectors 6, 219 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Hiscox, A. et al. Armigeres subalbatus colonization of damaged pit latrines: A nuisance and potential health risk to residents of resettlement villages in Laos. Med. Vet. Entomol. 30, 95–100 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Chaves, L. F., Imanishi, N. & Hoshi, T. Population dynamics of Armigeres subalbatus (Diptera: Culicidae) across a temperate altitudinal gradient. Bull. Entomol. Res. 105, 589–597 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Ohba, S.-Y., Van Soai, N., Van Anh, D. T., Nguyen, Y. T. & Takagi, M. Study of mosquito fauna in rice ecosystems around Hanoi, northern Vietnam. Acta Trop. 142, 89–95 (2015).PubMed 
    Article 

    Google Scholar 
    76.Tsuda, Y., Takagi, M., Suwonkerd, W., Sugiyama, A. & Wada, Y. Comparisons of rice field mosquito (Diptera: Culicidae) abundance among areas with different agricultural practices in northern Thailand. J. Med. Entom. 35, 845–848 (1998).CAS 
    Article 

    Google Scholar 
    77.Ohba, S.-Y. et al. Mosquitoes and their potential predators in rice agroecosystems of the Mekong Delta, southern Vietnam. J. Am. Mosq. Control Assoc. 27, 384–392 (2011).PubMed 
    Article 

    Google Scholar 
    78.Su, C.-L. et al. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005–2012. PLoS Negl. Trop. Dis. 8, e3122 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Keiser, J. et al. Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop. 95, 40–57 (2005).PubMed 
    Article 

    Google Scholar 
    80.Apiwathnasorn, C., Samung, Y., Prummongkol, S., Asavanich, A. & Komalamisra, N. Surveys for natural host plants of Mansonia mosquitoes inhabiting Toh Daeng peat swamp forest, Narathiwat Province, Thailand. Southeast Asian J. Trop. Med. Public Health 37, 279–282 (2006).PubMed 

    Google Scholar 
    81.Surtees, G., Simpson, D. I. H., Bowen, E. T. W. & Grainger, W. E. Ricefield development and arbovirus epidemiology, Kano Plain, Kenya. Trans. R. Soc. Trop. Med. Hyg. 64, 511–518 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Kwa, B. H. Environmental change, development and vector-borne disease: Malaysia’s experience with filariasis, scrub typhus and dengue. Environ. Dev. Sustain. 10, 209–217 (2008).Article 

    Google Scholar 
    83.Cook, S. et al. Molecular evolution of the insect-specific flaviviruses. J. Gen. Virol. 93, 223–234 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Parry, R. & Asgari, S. Aedes anphevirus: an insect-specific virus distributed worldwide in Aedes aegypti mosquitoes that has complex interplays with Wolbachia and Dengue Virus Infection in Cells. J. Virol. 92, e00224–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Shi, M. et al. High-resolution metatranscriptomics reveals the ecological dynamics of mosquito-associated RNA viruses in western Australia. J. Virol. 91, e00680–17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    86.Thongsripong, P. et al. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol. Evol. 8, 1352–1368 (2018).PubMed 
    Article 

    Google Scholar 
    87.Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 27, 105–117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 1–12 (2014).MathSciNet 
    Article 
    CAS 

    Google Scholar 
    89.Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus ‘best practice’ for 16S microbiome studies. Appl. Environ. Microbiol. 84, e02627–17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Blair, C. D., Olson, K. E. & Bonizzoni M. The widespread occurrence and potential biological roles of endogenous viral elements in insect genomes. Curr. Issues Mol. Biol. 34, 13–30 (2020).PubMed 
    Article 

    Google Scholar  More

  • in

    Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress

    1.Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20:586–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ. 2019;669:258–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.FAO. Extent of salt-affected soils. 2020. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed 14 June 2020.4.Jamil A, Riaz S, Ashraf M, Foolad MR. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–58.Article 

    Google Scholar 
    5.Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, et al. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem. 2014;83:126–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McFarlane DJ, George RJ, Barrett-Lennard EG, Gilfedder M. Salinity in dryland agricultural systems: challenges and opportunities. In: Farooq M, Siddique KHM, editors. Innovations in dryland agriculture. 1st ed. Switzerland: Springer Nature; 2016. p. 521–47.
    Google Scholar 
    7.Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. N. Phytol. 2018;217:523–39.CAS 
    Article 

    Google Scholar 
    8.Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol. 2019;21:31–38.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Flood PJ, Hancock AM. The genomic basis of adaptation in plants. Curr Opin Plant Biol. 2017;36:88–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Yuan F, Leng B, Wang B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci. 2016;7:977.PubMed 
    PubMed Central 

    Google Scholar 
    11.Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol. 2018;60:796–804.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2015;67:47–60.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    13.Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Lowry DB, Hall MC, Salt DE, Willis JH. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. N. Phytol. 2009;183:776–88.Article 

    Google Scholar 
    15.Ilangumaran G, Smith DL. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci. 2017;8:1768.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant microbiome interactions. Mol Plant. 2019;12:804–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.CAS 
    Article 

    Google Scholar 
    21.Jha B, Gontia I, Hartmann A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil. 2012;356:265–77.CAS 
    Article 

    Google Scholar 
    22.Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, et al. Isolation of ACC deaminase-produ0cing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil. 2014;374:753–66.CAS 
    Article 

    Google Scholar 
    23.Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R, et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res. 2019;223:33–43.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 2013;366:93–105.CAS 
    Article 

    Google Scholar 
    25.Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 2016;6:34768.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dong ZY, Rao MPN, Wang HF, Fang BZ, Liu YH, Li L, et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ. 2019;686:107–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Yaish MW, Al-Lawati A, Jana GA, Patankar HV, Glick BR. Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One. 2016;11:e0159007.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Yang H, Hu J, Long X, Liu Z, Rengel Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep. 2016;6:20687.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Front Microbiol. 2018;9:651.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34:737–52.Article 

    Google Scholar 
    31.Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013;7:1609–19.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114:E2450–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Vargas R, Pankova E, Balyuk A, Krasilnikov P, Khasankhanova G, editors. Handbook for saline soil management. Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University, Rome, Italy, 2018, pp 8–11.37.McNamara NP, Black HIJ, Beresford NA, Parekh NR. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol. 2003;24:117–32.Article 

    Google Scholar 
    38.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, et al. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinforma (Oxf, Engl). 2018;34:2371–5.CAS 
    Article 

    Google Scholar 
    45.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–76.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community ecology package. R package version 2.5-6. https://cran.r-project.org. Accessed 1 Sep 2019.52.Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Santhanam R, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dudenhöffer J-H, Scheu S, Jousset A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J Ecol. 2016;104:1566–75.Article 
    CAS 

    Google Scholar 
    56.Kong HG, Kim BK, Song GC, Lee S, Ryu C-M. Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol. 2016;7:1314.PubMed 
    PubMed Central 

    Google Scholar 
    57.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Pieterse CM, de Jonge R, Berendsen RL. The soil-borne supremacy. Trends Plant Sci. 2016;21:171–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:124.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N. Biotechnol. 2013;30:355–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, et al. Stress tolerance in plants via habitat adapted symbiosis. ISME J. 2008;2:404–16.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hamilton EW III, Frank DA. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology. 2001;82:2397–402.Article 

    Google Scholar 
    64.Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol. 2012;38:714–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol. 2018;9:159.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Troost TA, Kooi BW, Kooijman SALM. When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model. Math Biosci. 2005;193:159–82.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Venceslau SS, Lino RR, Pereira IA. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018;209:21–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Kumar M, Etesami H, Kumar V, editors. Saline soil-based agriculture by halotolerant microorganisms. Singapore: Springer Nature Singapore Pte Ltd; 2019.
    Google Scholar 
    70.Etesami H, Glick BR. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Exp Bot. 2020;23:104124.Article 
    CAS 

    Google Scholar 
    71.van der Heijden MG, Schlaeppi K. Root surface as a frontier for plant microbiome research. Proc Natl Acad Sci USA. 2015;112:2299–300.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regul. 2020;90:123–36.CAS 
    Article 

    Google Scholar 
    73.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Matos A, Kerkhof L, Garland JL. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Micro Ecol. 2005;49:257–64.CAS 
    Article 

    Google Scholar 
    77.Hol WHG, de Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM, et al. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett. 2010;13:292–301.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article 

    Google Scholar 
    79.Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediat. 2016;18:1113–21.CAS 
    Article 

    Google Scholar 
    80.Misra S, Dixit VK, Mishra SK, Chauhan PS. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol. 2019;69:419–34.CAS 
    Article 

    Google Scholar 
    81.Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the Royal Society. Notes Rec R Soc Lond. 2004;58:187–201.PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Olfactory signals and fertility in olive baboons

    1.Andersson, M. Sexual Selection (Princeton University Press, 1994).
    Google Scholar 
    2.van Schaik, C. P., van Noordwijk, M. A. & Nunn, C. L. Sex and social evolution in primates. In Comparative Primate Socioecology (ed. Lee, P. C.) 204–240 (Cambridge University Press, Cambridge, 2000).
    Google Scholar 
    3.Nunn, C. L. The evolution of exaggerated sexual swellings in primates and the graded signal hypothesis. Anim. Behav. 58, 246–299 (1999).Article 

    Google Scholar 
    4.Pagel, M. The evolution of conspicuous oestrous advertisement in Old World monkeys. Anim. Behav. 47, 1333–1341 (1994).Article 

    Google Scholar 
    5.Kücklich, M., Weiß, B. M., Birkemeyer, C., Einspanier, A. & Widding, A. Chemical cues of female fertility states in a non-human primate. Sci. Rep. 9, 131716 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Maestripieri, D. & Roney, J. Primate copulation calls and postcopulatory female choice. Behav. Ecol. 16, 106–113 (2004).Article 

    Google Scholar 
    7.Semple, S. & McComb, K. Perception of female reproductive state from vocal cues in a mammal species. Proc. R Soc. Lond. B 267, 707–712 (2000).CAS 
    Article 

    Google Scholar 
    8.Street, S. E., Cross, C. P. & Brown, G. R. Exaggerated sexual swellings in female nonhuman primates are reliable signals of female fertility and body condition. Anim. Behav. 112, 203–212 (2016).Article 

    Google Scholar 
    9.Tiddi, B., Wheeler, B. C. & Heistermann, M. Female behavioral proceptivity functions as a probabilistic signal of fertility, not female quality, in a New World primate. Horm. Behav. 73, 148–155 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Aujard, F., Heistermann, M., Thierry, B. & Hodges, J. K. Functional significance of behavioral, morphological, and endocrine correlates across the ovarian cycle in semifree ranging female Tonkean macaques. Am. J. Primatol. 46, 285–309 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Engelhardt, A., Hodges, J. K., Niemitz, C. & Heistermann, M. Female sexual behavior, but not sex skin swelling, reliably indicates the timing of the fertile phase in wild long-tailed macaques (Macaca fascicularis). Horm. Behav. 47, 195–204 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Heistermann, M. et al. Female ovarian cycle phase affects the timing of male sexual activity in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar. Am. J. Primatol. 70, 44–53 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Garcia, C., Shimizu, K. & Huffman, M. Relationship between sexual interactions and the timing of the fertile phase in captive female Japanese macaques (Macaca fuscata). Am. J. Primatol. 71, 868–879 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Heistermann, M. et al. Loss of oestrus, concealed ovulation and paternity confusion in free-ranging Hanuman langurs. Proc. Biol. Sci. B 268, 2445–2451 (2001).CAS 
    Article 

    Google Scholar 
    15.Ostner, J. et al. What Hanuman langur males know about female reproductive status. Am. J. Primatol. 68, 701–712 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bielert, C. & Anderson, C. M. Baboon sexual swellings and male response: A possible operational mammalian supernormal stimulus and response interaction. Int. J. Primatol. 6, 377–393 (1985).Article 

    Google Scholar 
    17.Brauch, K. et al. Female sexual behavior and sexual swelling size as potential cues for males to discern the female fertile phase in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar. Horm. Behav. 52, 375–383 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Higham, J. P., MacLarnon, A. M., Ross, C., Heistermann, M. & Semple, S. Baboon sexual swellings: Information content of size and color. Horm. Behav. 53, 452–462 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Higham, J. P., Semple, S., MacLarnon, A., Heistermann, M. & Ross, C. Female reproductive signals, and male mating behavior in the olive baboon. Horm. Behav. 55, 60–67 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Thomas, M. L. Detection of female mating status using chemical signals and cues. Biol. Rev. Camb. Philos. Soc. 86, 1–13 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Dixson, A. F. Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Human Beings (Oxford University Press, 2012).
    Google Scholar 
    22.Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: From genes to behaviour. Nat. Rev. Neurosci. 4, 551–562 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Gilad, Y., Wiebe, V., Prezeworski, M., Lancet, D. & Pääbo, S. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS. Biol. 2, 0120–0125 (2004).CAS 
    Article 

    Google Scholar 
    24.Negus, V. The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses (Livingston, 1958).
    Google Scholar 
    25.Dominy, N. J. & Lucas, P. W. Ecological importance of trichromatic vision to primates. Nature 410, 363–366 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Fornalé, F., Vaglio, S., Spiezio, C. & Prato Previde, E. Red-green colour vision in three catarrhine primates. Commun. Integr. Biol. 5, 583–589 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Gerald, M. S. How color may guide the primate world: Possible relationships between sexual selection and sexual dichromatism. In Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (ed. Jones, C. B.) (American Society of Primatologists, 2003).
    Google Scholar 
    28.Porter, R. H. & Moore, J. D. Human kin recognition by olfactory cues. Physiol. Behav. 27, 493–495 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Geissman, T. & Hulftegger, A. M. Olfactory communication in gibbons? In Current Primatology: Social Development, Learning and Behaviour (eds Roeder, J. J. et al.) 199–206 (Université Louis Pasteur Press, 1994).
    Google Scholar 
    30.Wedekind, C., Seebeck, T., Bettens, F. & Paepke, A. J. MHC-dependent mate preferences in humans. Proc. Biol. Sci. B 260, 245–249 (1995).CAS 
    Article 

    Google Scholar 
    31.Wedekind, C. & Füri, S. Body odour preferences in men and women: Do they aim for specific MHC combinations or simply heterozygosity?. Proc. Biol. Sci. B 264, 1471–1479 (1997).CAS 
    Article 

    Google Scholar 
    32.Smith, T. et al. The existence of the vomeronasal organ in postnatal chimpanzees and evidence for its homology to that of humans. J. Anat. 198, 77–82 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jacob, S., McClintock, M. K., Zelano, B. & Ober, C. Paternally inherited HLA alleles are associated with women’s choice of male odor. Nat. Genet. 30, 175–179 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Klailova, M. & Lee, P. C. Wild western lowland gorillas signal selectively using odor. PLoS ONE 9, e99554 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Masi, S. & Bouret, S. Odor signals in wild western lowland gorillas: An involuntary and extra-group communication hypothesis. Physiol. Behav. 145, 123–126 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. Biol. Sci. B 285, 20181527 (2018).
    Google Scholar 
    37.Weiß, B. M. et al. Chemical composition of axillary odorants reflects social and individual attributes in rhesus macaques. Behav. Ecol. Sociobiol. 72, 65 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Jänig, S., Weiß, B. M., Birkemeyer, C. & Widding, A. Comprative chemical analysis of body odor in great apes. Am. J. Primatol. 81, e22976 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Setchell, J. M. et al. Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): Influence of sex, male status, and individual identity. Chem. Sens. 35, 205–220 (2010).CAS 
    Article 

    Google Scholar 
    40.Vaglio, S. et al. Sternal gland scent-marking signals sex, age, rank and group identity in captive mandrills. Chem. Sens. 41, 177–186 (2016).
    Google Scholar 
    41.Clarke, P. M., Barrett, L. & Henzi, S. P. What role do olfactory cues play in chacma baboon mating?. Am. J. Primatol. 71, 493–502 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Crawford, J. C., Boulet, M. & Drea, C. M. Smelling wrong: Hormonal contraception in lemurs alters critical female odour cues. Proc. Biol. Sci. B 278, 122–130 (2011).CAS 

    Google Scholar 
    43.Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Sens. 32, 493–504 (2007).CAS 
    Article 

    Google Scholar 
    44.Rahaman, H. & Parthasarathy, M. D. The role of olfactory signals in the mating behaviour of bonnet monkeys, Macaca radiata. Commun. Behav. Biol. 6, 97–104 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Michael, R. P. & Keverne, E. B. Pheromones in the communication of sexual status in primates. Nature 218, 746–749 (1968).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Michael, R. P. & Keverne, E. B. Primate sex pheromones of vaginal origin. Nature 225, 84–85 (1970).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Michael, R. P. Hormonal steroids and sexual communication in primates. J. Steroid. Biochem. 6, 161–170 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Goldfoot, D. A., Kravetz, M. A., Goy, R. W. & Freeman, S. K. Lack of effect of vaginal lavages and aliphatic acids on ejaculatory responses in rhesus monkeys: Behavioral and chemical analyses. Horm. Behav. 7, 1–27 (1976).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Havlíček, J., Dvořáková, R., Bartoš, L. & Flegr, J. Non-advertised does not mean concealed: Body odour changes across the human menstrual cycle. Ethology 112, 81–90 (2006).Article 

    Google Scholar 
    50.Doty, R. L., Ford, M., Preti, G. & Huggins, G. R. Changes in the intensity and pleasantness of human vaginal odors during the menstrual cycle. Science 190, 1316–1318 (1975).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Kuukasjarvi, S. et al. Attractiveness of women’s body odors over the menstrual cycle: The role of oral contraceptives and receiver sex. Behav. Ecol. 15, 579–584 (2004).Article 

    Google Scholar 
    52.Singh, D. & Bronstad, P. M. Female body odour is a potential cue to ovulation. Proc. R. Soc. Lond. B 268, 797–801 (2001).CAS 
    Article 

    Google Scholar 
    53.Cerda-Molina, A. L., Hernández-López, L., Rojas-Maya, S., Murcia-Mejía, C. & Mondragón-Ceballos, R. Male-induced sociosexual behaviour by vaginal secretions in Macaca arctoides. Int. J. Primatol. 27, 791–807 (2006).Article 

    Google Scholar 
    54.Robinson, J. G. Intrasexual competition and mate choice in primates. Am. J. Primatol. 3, 131–144 (1982).Article 

    Google Scholar 
    55.Penn, D. J. et al. Individual and gender fingerprints in human body odour. J. R. Soc. Interface 4, 331–340 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Smith, T. & Abbott, D. Behavioral discrimination between circumgenital odor from peri-ovulatory dominant and anovulatory female common marmosets (Callithrix jacchus). Am. J. Primatol. 46, 265–284 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Spence-Aizenberg, A., Kimball, B. A., Williams, L. E. & Fernandez-Duque, E. Chemical composition of glandular secretions from a pair-living monogamous primate: Sex, age, and gland differences in captive and wild owl monkeys (Aotus spp.). Am. J. Primatol. 80, e22730 (2018).Article 

    Google Scholar 
    58.Setchell, J. M. Sexual selection and the differences between the sexes in mandrills (Mandrillus sphinx). Yearb. Phys. Anthropol. 159, S105–S129 (2016).Article 

    Google Scholar 
    59.Higham, J. P., Heistermann, M., Ross, C., Semple, S. & MacIarnon, A. The timing of ovulation with respect to sexual swelling detumescence in wild olive baboons. Primates 49, 295–299 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hasson, O. Towards a general theory of biological signalling. J. Theor. Biol. 185, 139–156 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Packer, C., Tatar, M. & Collins, A. Reproductive cessation in female mammals. Nature 392, 807–811 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Melnick, D. C. & Pearl, M. C. Cercopithecines in multimale groups: Genetic diversity and population structure. In Primate Societies (eds Smuts, B. B. et al.) 121–134 (University of Chicago Press, 1987).
    Google Scholar 
    63.Honoré, E. K. & Tardif, S. D. Reproductive biology of baboons. In The Baboon in Biomedical Research (eds VandeBerg, J. L. et al.) 89–110 (Springer-Verlag, 2009).
    Google Scholar 
    64.Pomerantz, O. & Terkel, J. Effects of positive reinforcement training techniques on the psychological welfare of zoo-housed chimpanzees (Pan troglodytes). Am. J. Primatol. 71, 687–695 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Bercovitch, F. B. Reproductive Tactics in Adult Female and Adult Male Olive Baboons. (Ph.D. thesis, University of California, 1985).66.Hendrickx, A. G. & Kraemer, D. C. Observation of the menstrual cycle, optimal mating time, and preimplantation embryos of the baboon. J. Reprod. Fert. S6, 119–128 (1969).
    Google Scholar 
    67.Koyama, T., De La Pena, A. & Hagino, N. Plasma estrogen, progestin, and luteinizing hormone during the normal menstrual cycle in the baboon: Role of luteinizing hormone. Am. J. Obstet. Gynecol. 127, 67–71 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Shaikh, A. A., Celaya, C. L., Gomez, I. & Shaikh, S. A. Temporal relationship of hormonal peaks to ovulation and sex skin deturgescence in the baboon. Primates 23, 444–452 (1982).CAS 
    Article 

    Google Scholar 
    69.Vaglio, S. et al. Female copulation calls vary with male ejaculation in captive olive baboons. Behaviour 157, 807–822 (2020).Article 

    Google Scholar 
    70.Shambayati, B. Cytopathology (Oxford University Press, 2011).
    Google Scholar 
    71.Wilcox, A. J., Weingberg, C. R. & Baird, D. D. Timing of sexual intercourse in relation to ovulation: Effects on the probability of conception, survival of the pregnancy and sex of the baby. N. Engl. J. Med. 333, 189–194 (1995).Article 

    Google Scholar 
    72.Walker, D. & Vaglio, S. Sampling and analysis of animal scent signals. J. Vis. Exp. 168, e60902 (2021).
    Google Scholar 
    73.El‐Sayed, A. The Pherobase: Database of Pheromones and Semiochemicals. www.pherobase.com (2016).74.Oksanen, J. et al. VEGAN: Community Ecology Package. R Package Version 2.5-5 (2019).75.R Studio Team R Studio: Integrated Development for R (2019).76.R Core Team R: A language and Environment for Statistical Computing (2018).77.StataCorp. Stata Statistical Software, 16th Release (2019).78.Mundry, R. & Sommer, C. Discriminant function analysis with nonindependent data: Consequences and an alternative. Anim. Behav. 74, 965–976 (2007).Article 

    Google Scholar 
    79.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
    Google Scholar 
    80.Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Ass. 88, 9–25 (1993).MATH 

    Google Scholar 
    81.Bell, B. A., Morgan, G. B., Schoeneberger, J. A. & Loudermilk, B. L. Dancing the sample size limbo with mixed models: How low can you go? SAS Global Forum, Paper 197 (2010).82.Heymann, E. W. The neglected sense-olfaction in primate behavior, ecology, and evolution. Am. J. Primatol. 68, 519–524 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Hayes, R., Morelli, T. & Wright, P. Anogenital gland secretions of Lemur catta and Propithecus verreauxi coquereli: A preliminary chemical examination. Am. J. Primatol. 63, 49–62 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Janda, E. D., Perry, K., Hankinson, E., Walker, D. & Vaglio, S. Sex differences in scent-marking in captive red-ruffed lemurs. Am. J. Primatol. 81, 60–68 (2019).Article 

    Google Scholar 
    85.Smith, T., Tomlinson, A., Mlotkiewicz, J. & Abbott, D. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Sens. 26, 449–458 (2001).CAS 
    Article 

    Google Scholar 
    86.Hurst, J. L., Robertson, D., Tolladay, U. & Beynon, J. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Belcher, A. M. et al. Proteins: biologically relevant components of the scent marks of a primate (Saguinus fuscicollis). Chem. Sens. 15, 431–446 (1990).CAS 
    Article 

    Google Scholar 
    88.Doty, R. L. Olfactory communication in humans. Chem. Sens. 6, 351–376 (1981).Article 

    Google Scholar 
    89.Curtis, R. F., Ballantine, J. A., Keverne, E. B., Bonsall, R. W. & Michael, R. P. Identification of primate sexual pheromones and the properties of synthetic attractants. Nature 232, 396–398 (1971).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Jha, S. K., Marina, N., Liu, C. & Hayashi, K. Human body odor discrimination by GC-MS spectra data mining. Anal. Methods 7, 9549–9561 (2015).CAS 
    Article 

    Google Scholar 
    91.Balcerzak, L., Gibka, J., Sikora, M., Kula, J. & Strub, D. J. Minor constituents of essential oils and aromatic extracts. Oximes derived from natural flavor and fragrance raw materials: Sensory evaluation, spectral and gas chromatographic characteristics. Food Chem. 301, 125283 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Baker, M. Fur rubbing: use of medicinal plants by capuchin monkeys (Cebus capucinus). Am. J. Primatol. 38, 263–270 (1996).Article 

    Google Scholar 
    93.Wyatt, T. Pheromones and Animal Behaviour. Chemical Signal and Signatures (Cambridge University Press, 2014).
    Google Scholar 
    94.DelBarco-Trillo, J., Harelimana, I. H., Goodwin, T. E. & Drea, C. M. Chemical differences between voided and bladder urine in the aye-aye (Daubentonia madagascariensis): Implications for olfactory communication studies. Am. J. Primatol. 75, 695–702 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Smith, T. Individual olfactory signatures in common marmosets (Callithrix jacchus). Am. J. Primatol. 68, 585–604 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Drea, C. M. Design, delivery and perception of conditiondependent chemical signals in strepsirrhine primates: Implications for human olfactory communication. Phil. Trans. R. Soc. B 375, 20190264 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Poirier, A. C. et al. On the trail of primate scent signals: A field analysis of callitrichid scent-gland secretions by portable gas chromatography-mass spectrometry. Am. J. Primatol. 1, e23236 (2021).
    Google Scholar 
    98.Mason, R. T. & Parker, M. R. Social behaviour and pheromonal communication in reptiles. J. Comp. Physiol. A 196, 729–749 (2010).CAS 
    Article 

    Google Scholar 
    99.Shirasu, M. & Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Rivera, A. J., Stumpf, R. M., Wilson, B., Leigh, S. & Salyers, A. A. Baboon vaginal microbiota: An overlooked aspect of primate physiology. Am. J. Primatol. 72, 467–474 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Pener, M. P. & Simpson, S. J. Locust phase polyphenism: An update. Adv. Insect Physiol. 36, 1–272 (2009).Article 

    Google Scholar 
    102.Andersson, J., Borg-Karlson, A. K. & Wiklund, C. Antiaphrodisiacs in pierid butterflies: A theme with variation!. J. Chem. Ecol. 29, 1489–1499 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Ramirez, S. R. et al. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333, 1742–1746 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Rigaill, L., Higham, J. P., Lee, P. C., Blin, A. & Garcia, C. Multimodal sexual signaling and mating behavior in olive baboons (Papio anubis). Am. J. Primatol. 75, 774–787 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Candolin, U. The use of multiple cues in mate choice. Biol. Rev. Camb. Philos. Soc. 78, 575–595 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Johnstone, R. A. Multiple displays in animal communication: “Backup signals” and “multiple messages”. Phil. Trans. R. Soc. B 351, 329–338 (1996).ADS 
    Article 

    Google Scholar 
    108.Greene, L. K. et al. Mix it and fix it: Functions of composite olfactory signals in ring-tailed lemurs. R. Soc. Open Sci. 3, 160076 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Mitro, S., Gordon, A. R., Olsson, M. J. & Lundström, J. N. The smell of age: Perception and discrimination of body odors of different ages. PLoS ONE 7(5), e38110 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Beauchamp, G. K. & Yamazaki, K. Chemical signalling in mice. Biochem. Soc. Trans. 31, 147–151 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Kean, E. F., Muller, C. T. & Chadwick, E. A. Otter scent signals age, sex, and reproductive status. Chem. Sens. 36, 555–564 (2011).CAS 
    Article 

    Google Scholar 
    112.MacDonald, E. A., Fernandez-Duque, E., Evans, S. & Hagey, L. R. Sex, age, and family differences in the chemical composition of owl monkey (Aotus nancymaae) subcaudal scent secretions. Am. J. Primatol. 70, 12–18 (2007).Article 
    CAS 

    Google Scholar 
    113.Osada, K. et al. The scent of age. Proc. R. Soc. Lond. B 270, 929–933 (2003).CAS 
    Article 

    Google Scholar 
    114.White, A. M., Swaisgood, R. R. & Zhang, H. Chemical communication in the giant panda (Ailuropoda melanoleuca): The role of age in the signaller and assessor. J. Zool. 259, 171–178 (2006).Article 

    Google Scholar 
    115.Anderson, C. M. Female age: Male preference and reproductive success in primates. Int. J. Primatol. 7, 305–326 (1986).Article 

    Google Scholar 
    116.Cant, A. C. & Young, A. J. Resolving social conflict among females without overt aggression. Phil. Trans. R. Soc. B 368, 20130076 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Alberts, S. C., Altmann, J. & Wilson, M. L. Mate guarding constrains foraging activity of male baboons. Anim. Behav. 51, 1269–1277 (1996).Article 

    Google Scholar 
    118.Brennan, P. A. & Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Phil. Trans. R. Soc. B 361, 2061–2078 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Wyatt, T. Pheromones and Animal Behaviour (Cambridge University Press, 2003).
    Google Scholar 
    120.Thom, M. D. & Hurst, J. L. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787 (2004).
    Google Scholar 
    121.Setchell, J. M., Lee, P. C., Wickings, E. J. & Dixson, A. F. Growth and ontogeny of sexual size dimorphism in the mandrill (Mandrillus sphinx). Am. J. Phys. Anthropol. 115, 349–360 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    122.Palagi, E. & Dapporto, L. Beyond odor discrimination: Demonstrating individual recognition by scent in Lemur catta. Chem. Sens. 31, 437–443 (2006).Article 

    Google Scholar 
    123.Epple, G., Kuderling, I. & Belcher, A. M. Some communicatory functions of scent marking in the cotton-top tamarin Saguinus oedipus oedipus. J. Chem. Ecol. 14, 503–515 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    124.Laska, M., Genzel, D. & Wieser, A. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers. Chem. Sens. 30, 171–175 (2005).CAS 
    Article 

    Google Scholar  More

  • in

    Individual and collective foraging in autonomous search agents with human intervention

    Loose coupling and human intervention promote collective foraging successWe first determined group search performance by assessing the average search time, consumption time, and total targets found in each movement condition with and without intervention.Results showed that search performance as measured by mean trial time was better with loose coupling and human intervention, as seen in the lowest average trial times in Fig. 3. Movement type had a reliable effect on performance without human intervention, F(1,59) = 27.65, p  More

  • in

    Edaphic and climatic factors influence on the distribution of soil transmitted helminths in Kogi East, Nigeria

    Study areaKogi East located in Kogi State, North Central Nigeria. It is a geographical region comprising of nine (9) Local Government Areas (LGAs); Ankpa, Bassa, Dekina, Ibaji, Idah, Igalamela/Odolu, Ofu, Olamaboro and Omala. The region is located between latitude 6º32′33.8′′N to 8º02′44.8′′N and longitude 6º42′08.5′′E to 7º51′50.3′′E. It occupies an area of 26,197 square kilometres sharing boundaries with six (6) states of Nigeria28. The population of the region at 2006 is 1,479,144 with a projected population of 1,996,700 at 201629.Ethical approval and informed consentEthical clearance was obtained from Research Ethics Committee, Kogi State Ministry of Health (KSMoH), Lokoja with reference number MOH/KGS/1376/1/82 and permission was obtained from the State Universal Basic Education Board (SUBEB), Lokoja with reference number KG/SUBEB/GEN/04/’T’ which was conveyed to the Education Secretaries of the 9 LGAs and the Headmasters (mistress) of the schools.This study follows guidelines for the care and use of human samples established by the Human Care and Use Committee of the Ahmadu Bello University, Zaria, Kaduna State, Nigeria and the Research Ethics Committee, Kogi State Ministry of Health (KSMoH), Lokoja.Statement of consent from participantsWritten consents were obtained from the guardians/parents of study participants, informing them of their rights and granting permission for their children to participate in the study.Source of epidemiological dataThe epidemiological data used for this study were obtained from an earlier district-wide survey carried out in 2018 (Table 1)25 in rural communities of Kogi East, Kogi State, Nigeria. The study obtained samples from school-children of age 5 to 14 years. Samples collected were examined using formal ether sedimentation technique. The study was carried out in schools that did not receive anthelminthic drugs during the yearly periodic deworming exercise carried out by the State Ministry of Health. During the survey, the geographical coordinates of each school and community were captured within the school premises using a handheld Global Positioning system (GPS) device, Garmin 12XL (Garmin Corp, USA).Table 1 Epidemiological Data from District Wide Survey Conducted in 2018 by Yaro et al. (2020) in Kogi East, North Central Nigeria.Full size tableSpatial analysis of STHsCo-ordinate of schools sampled and the mean prevalence of each parasites from the baseline study for A. lumbricoides, Hookworms and S. stercoralis were computed in Microsoft Excel version 2013 and converted to comma delimited file (.csv). These files were further converted from text files to shapefiles using DIVA-GIS version 7.5.0 and were geo-referenced on the map of Kogi East, Nigeria. The prevalence of these parasites were categorized; 0.0–1.0,  > 1.0–5.0,  > 5.0–10.0,  > 10.0–20.0,  > 20.0–50.0 and  > 50.0 on the map (Figs. 1 and 2).Figure 1Source of Satellite Imagery: Image Google Earth: Landsat/Copernicus (Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maps were visualized on ArcMap 10.1. https://www.google.com/maps/place/Kogi/@7.3195959,7.2632804,189324m/data=!3m1!1e3!4m5!3m4!1s0x104f41e9d61f12dd:0xbdc9f94f2d58aafd!8m2!3d7.7337325!4d6.6905836.Spatial Distribution of STHs in Communities of Kogi East, North Central Nigeria.Full size imageFigure 2Source of Satellite Imagery: Image Google Earth: Landsat/Copernicus (Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maps were visualized on ArcMap 10.1. https://www.google.com/maps/place/Kogi/@7.3195959,7.2632804,189324m/data=!3m1!1e3!4m5!3m4!1s0x104f41e9d61f12dd:0xbdc9f94f2d58aafd!8m2!3d7.7337325!4d6.6905836.Spatial Distribution of STHs in Local Government Areas of Kogi East, North Central Nigeria.Full size imageEnvironmental data collectionClimatic and elevation variablesRemotely sensed environmental data for altitude, temperature and precipitation were obtained from Worldclim database30. The climatic variables such as temperature and precipitation are at global and meso scales and topographic variables such as elevation and aspect likely affect species distributions at meso and topo-scales31. Hence, the use of the climatic and topographic variables in the prediction of distributions of soil transmitted helminths in Kogi East, Nigeria. Also, temperature was considered in the analysis because A. lumbricoides, hookworms and S. stercoralis have thermal thresholds of 38 °C, 40 °C and 40 °C respectively outside of which the survival of the infective stages in the soil decline32,33.In this study, a total of 19 bioclimatic factors of present climate for Nigeria were downloaded at 1 km spatial resolution (Table 2) from Worldclim database30 and were used in the prediction of soil transmitted helminths distribution in Kogi East. Elevation data derived from the Shuttle Radar Topography Mission (SRTM) (aggregated to 30 arc-seconds, “1 km”) were also downloaded from WorldClim database30.Table 2 Characteristics of Environmental Variables Used in Predicting the Distribution of STHs in Nigeria.Full size tableEdaphic variableThe influence of edaphic factors on the distribution of STHs have been reported by several researchers globally34,35,36 as important factors in the biology of STH parasites. In view of this, data for soil pH, soil moisture content, soil organic carbon and soil clay content for Africa continent were downloaded from International Soil Reference Centre (ISRIC) soil database as spatial layers (Table 2)37.File conversions and resamplingThe 19 bioclimatic factors downloaded from WorldClim data are in geographic coordinates of latitudes and longitudes which comes as .bil files were extracted into a folder. These data were transformed into predefined geographic coordinate system (GCS_WGS_1984), this projection was done on ArcMap 10.1 and were converted to asci files on DIVA-GIS 7.5. These files were transferred back to ArcMap and assigned a projected coordinate system of Universal Transverse Mercator (UTM) Zone 32 N (Nigeria is located on UTM Zone 31, 32 and 33). Also, the edaphic factors obtained were also assigned a projected coordinate system. The projected raster files (i.e. climatic, elevation and edaphic) were all clipped into a layer using the administrative boundary map of the study area, this was downloaded on DIVA-GIS database38.Prior to modelling, all variables were resampled from their native resolution to a common resolution of 1 km spatial resolution using the nearest neighbour technique on ArcMap 10.1 to enable overlaying of variables. The resampled raster files were converted to float files on ArcMap 10.1 and transferred to DIVA-GIS 7.5. Float files were converted to grid files and then to asci files on DIVA-GIS 7.5 and were used on MaxEnt tool for modelling the distribution of STHs in Kogi East.Ecological niche modellingThe potential distribution of STHs were modelled using maximum entropy (MaxEnt) software version 3.3.3k39. MaxEnt uses environmental data at occurrence and background locations to predict the distribution of a species across a landscape31,40. This modelling tool was selected based on the reasons of Sarma et al.41, they stated that this tool allows the use of presence only datasets and model robustness is hardly influenced by small sample sizes. It has been shown to be one of the top performing modelling tools42.Probability of presence of each of the STH was estimated by MaxEnt using the prevalence of each of the STH parasites obtained for 45 sampled communities in the 9 LGAs of Kogi East during the district-wide survey carried out in 201825 served as the presence records to generate background points were used41. Regularization of the prevalence was performed to control over-fitting. This modelling tool uses five different features to perform its statistics; linear, quadratic, product, threshold and hinge features to produce a geographical distribution of species within a define area. The MaxEnt produces a logistic output format used in the production of a continuous map that provides a visualization with an estimated probability of species between 0 and 1. This map distinguish areas of high and low risk for STH infections41.The 19 bioclimatic factors, elevation data and the edaphic factors obtained were used for the ecological niche modelling. The level of significance of contribution of the altitude and 19 bioclimatic factors was used to calculate the area under the receiver operating characteristics curve (AUC) was used to evaluate the model performance. The AUC values varies from 0.5 to 1.0; an AUC value of 0.5 indicates that model predictions are not better than random, values  0.9 indicates high model performance43.Model validation was performed as follows41, using the ‘sub-sampling’ procedure in MaxEnt. 75% of the parasites prevalence data were used for model calibration and the remaining 25% for model validation. Ten replicates were run and average AUC values for training and test datasets were calculated. Maximum iterations were set at 5000. Sensitivity, which is also named the true positive rate, can measure the ability to correctly identify areas infected. Its value equals the rate of true positive and the sum value of true positive and false negative. Specificity, which is also named the true negative rate, can measure the ability to correctly identify areas uninfected. Its value equals the rate of true negative and the sum value of false positive and true negative.Ethics approvalThis study follows guidelines for the care and use of experimental animals established by the Animal Care and Use Committee of the Ahmadu Bello University, Zaria for the purpose of control and supervision of experiments on animals and ethical permission for the study was obtained from the ethical Board of Kogi State Ministry of Health, Lokoja with reference number: MOH/KGS/1376/1/82. More