More stories

  • in

    Effect of tectonic processes on biosphere–geosphere feedbacks across a convergent margin

    1.Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).Article 

    Google Scholar 
    2.Merino, N. et al. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).Article 

    Google Scholar 
    3.Colman, D. R. et al. Geobiological feedbacks and the evolution of thermoacidophiles. ISME J. 12, 225–236 (2018).Article 

    Google Scholar 
    4.Reveillaud, J. et al. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ. Microbiol. 18, 1970–1987 (2016).Article 

    Google Scholar 
    5.Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA 113, 7927–7936 (2016).Article 

    Google Scholar 
    6.Momper, L., Jungbluth, S. P., Lee, M. D. & Amend, J. P. Energy and carbon metabolisms in a deep terrestrial subsurface fluid microbial community. ISME J. 11, 2319–2333 (2017).Article 

    Google Scholar 
    7.Brazelton, W. J. et al. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. PeerJ 5, e2945 (2017).Article 

    Google Scholar 
    8.Havig, J. R., Raymond, J., Meyer-Dombard, D. R., Zolotova, N. & Shock, E. L. Merging isotopes and community genomics in a siliceous sinter-depositing hot spring. J. Geophys. Res. Biogeosci. 116, G01005 (2011).Article 

    Google Scholar 
    9.Power, J. F. et al. Microbial biogeography of 925 geothermal springs in New Zealand. Nat. Commun. 9, 2876 (2018).Article 

    Google Scholar 
    10.Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).Article 

    Google Scholar 
    11.Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).Article 

    Google Scholar 
    12.Brovarone, A. V. et al. Subduction hides high-pressure sources of energy that may feed the deep subsurface biosphere. Nat. Commun. 11, 3880 (2020).Article 

    Google Scholar 
    13.Plümper, O. et al. Subduction zone forearc serpentinites as incubators for deep microbial life. Proc. Natl Acad. Sci. USA 114, 4324–4329 (2017).Article 

    Google Scholar 
    14.Syracuse, E. M. & Abers, G. A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 7, Q05017 (2006).Article 

    Google Scholar 
    15.Shaw, A. M., Hilton, D. R., Fischer, T. P., Walker, J. A. & Alvarado, G. E. Contrasting He–C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 214, 499–513 (2003).Article 

    Google Scholar 
    16.Barry, P. H. et al. Forearc carbon sink reduces long-term volatile recycling into the mantle. Nature 568, 487–492 (2019).Article 

    Google Scholar 
    17.Arce-Rodríguez, A. et al. Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica. Extremophiles 23, 177–187 (2019).Article 

    Google Scholar 
    18.Crespo-Medina, M. et al. Methane dynamics in a tropical serpentinizing environment: the Santa Elena ophiolite, Costa Rica. Front. Microbiol. 8, 916 (2017).Article 

    Google Scholar 
    19.Probst, A. J. & Moissl-Eichinger, C. “Altiarchaeales”: uncultivated Archaea from the subsurface. Life https://doi.org/10.3390/life5021381 (2015).20.Giggenbach, W. F. Geothermal solute equilibria, derivation of Na-K-Mg-Ca geoindicators. Geochim. Cosmochim. Acta 52, 2749–2765 (1988).Article 

    Google Scholar 
    21.Giggenbach, W. F. & Soto, R. C. Isotopic and chemical composition of water and steam discharges from volcanic–magmatic–hydrothermal systems of the Guanacaste Geothermal Province, Costa Rica. Appl. Geochem. 7, 309–332 (1992).Article 

    Google Scholar 
    22.Rodríguez, A. & van Bergen, M. J. Superficial alteration mineralogy in active volcanic systems: an example of Poás volcano, Costa Rica. J. Volcanol. Geotherm. Res. 346, 54–80 (2017).Article 

    Google Scholar 
    23.Chan, C. S., Fakra, S. C., Emerson, D., Fleming, E. J. & Edwards, K. J. Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation. ISME J. 5, 717–727 (2011).Article 

    Google Scholar 
    24.Lücke, O. H. & Arroyo, I. G. Density structure and geometry of the Costa Rican subduction zone from 3-D gravity modeling and local earthquake data. Solid Earth 6, 1169–1183 (2015).Article 

    Google Scholar 
    25.Protti, M., Gündel, F. & McNally, K. The geometry of the Wadati–Benioff zone under southern Central America and its tectonic significance: results from a high-resolution local seismographic network. Phys. Earth Planet. Inter. 84, 271–287 (1994).Article 

    Google Scholar 
    26.de Moor, J. M. et al. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: the importance of accurate time-series data sets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions: new volatile budget for Central America. Geochem. Geophys. Geosyst. 18, 4437–4468 (2017).Article 

    Google Scholar 
    27.Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).Article 

    Google Scholar 
    28.Kim, M. S., Jo, S. K., Roh, S. W. & Bae, J. W. Alishewanella agri sp. nov., isolated from landfill soil. Int. J. Syst. Evol. Microbiol. 60, 2199–2203 (2010).Article 

    Google Scholar 
    29.Chen, W. M. et al. Aquabacterium limnoticum sp. nov., isolated from a freshwater spring. Int. J. Syst. Evol. Microbiol. 62, 698–704 (2012).Article 

    Google Scholar 
    30.Garrity, G. M. & Bell, J. A. Bergey’s Manual of Systematics of Archaea and Bacteria (Bergey’s Manual Trust, 2015).31.Hayashi, N. R., Ishida, T., Yokota, A., Kodama, T. & Igarashi, Y. Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int. J. Syst. Evol. Microbiol. 49, 783–786 (1999).Article 

    Google Scholar 
    32.Berg, I. A. et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).Article 

    Google Scholar 
    33.Giovannelli, D. et al. Insight into the evolution of microbial metabolism from the deep-branching bacterium, Thermovibrio ammonificans. eLife 6, e18990 (2017).Article 

    Google Scholar 
    34.Yokochi, R. et al. Noble gas radionuclides in Yellowstone geothermal gas emissions: a reconnaissance. Chem. Geol. 339, 43–51 (2013).Article 

    Google Scholar 
    35.Harris, R. N. & Wang, K. Thermal models of the Middle America Trench at the Nicoya Peninsula, Costa Rica. Geophys. Res. Lett. 29, 6-1–6-4 (2010).
    Google Scholar 
    36.Jelen, B. I., Giovannelli, D. & Falkowski, P. G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 70, 45–62 (2016).Article 

    Google Scholar 
    37.Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science 320, 1034–1039 (2008).Article 

    Google Scholar 
    38.Tassi, F. et al. The geothermal resource in the Guanacaste region (Costa Rica): new hints from the geochemistry of naturally discharging fluids. Front. Earth Sci. 6, 69 (2018).Article 

    Google Scholar 
    39.Tassi, F., Vaselli, O., Barboza, V., Fernandez, E. & Duarte, E. Fluid geochemistry and seismic activity in the period 1998–2002 at Turrialba Volcano (Costa Rica). Ann. Geophys. 47, 4 (2004).
    Google Scholar 
    40.Barry, P. H. et al. Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Sci. Data https://doi.org/10.1038/s41597-019-0302-4 (2019).41.Vetriani, C., Jannasch, H. W., MacGregor, B. J., Stahl, D. A. & Reysenbach, A.-L. Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375–4384 (1999).Article 

    Google Scholar 
    42.Wright, J. J., Lee, S., Zaikova, E., Walsh, D. A. & Hallam, S. J. DNA extraction from 0.22 μm Sterivex filters and cesium chloride density gradient centrifugation. JOVE https://doi.org/10.3791/1352 (2009).43.Teare, J. M. et al. Measurement of nucleic acid concentrations using the DyNA QuantTM and the GeneQuantTM. Biotechniques 22, 1170–1174 (1997).Article 

    Google Scholar 
    44.Simbolo, M. et al. DNA qualification workflow for next generation sequencing of histopathological samples. PLoS ONE 8, e62692 (2013).Article 

    Google Scholar 
    45.Giovannelli, D. et al. Diversity and distribution of prokaryotes within a shallow-water pockmark field. Front. Microbiol. 7, 941 (2016).Article 

    Google Scholar 
    46.Huse, S. M. et al. VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinformatics 15, 41 (2014).Article 

    Google Scholar 
    47.Huse, S. M. et al. Comparison of brush and biopsy sampling methods of the ileal pouch for assessment of mucosa-associated microbiota of human subjects. Microbiome 2, 5 (2014).Article 

    Google Scholar 
    48.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).Article 

    Google Scholar 
    49.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).Article 

    Google Scholar 
    50.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 

    Google Scholar 
    51.Zhu, C. et al. Functional sequencing read annotation for high precision microbiome analysis. Nucleic Acids Res. 46, e23 (2018).Article 

    Google Scholar 
    52.R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).53.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 

    Google Scholar 
    54.vegan (CRAN, 2019).55.Hamilton, N. E. & Ferry, M. ggtern: ternary diagrams using ggplot2. J. Stat. Softw. 87, 1–17 (2018).Article 

    Google Scholar 
    56.Stekhoven, D. J. & Buhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).Article 

    Google Scholar 
    57.Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. VSURF: an R package for variable selection using random forests. R J. 7, 1–19 (2015).Article 

    Google Scholar 
    58.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).59.Sheik, C. S. et al. Identification and removal of contaminant sequences from ribosomal gene databases: lessons from the Census of Deep Life. Front. Microbiol. 9, 840 (2018).Article 

    Google Scholar 
    60.Sugimori, K. et al. Microbial life in the acid lake and hot springs of Poas Volcano, Costa Rica. In Proc. Colima Volcano International Meeting (2002).61.Mcmurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).Article 

    Google Scholar 
    62.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).Article 

    Google Scholar 
    63.Giovannelli, D. et al. Large-scale distribution and activity of prokaryotes in deep-sea surface sediments of the Mediterranean Sea and the adjacent Atlantic Ocean. PLoS ONE 8, e72996 (2013).64.Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    Google Scholar 
    65.Schruben, P. G. Geology and Resource Assessment of Costa Rica DDS-19-R (USGS, 1987).66.Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).Article 

    Google Scholar 
    67.Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226 (2015).Article 

    Google Scholar 
    68.Schwager, E., Mallick, H., Ventz, S. & Huttenhower, C. A Bayesian method for detecting pairwise associations in compositional data. PLoS Comput. Biol. 13, e1005852 (2017).Article 

    Google Scholar 
    69.Zar, J. H. Significance testing of the spearman rank correlation coefficient. J. Am. Stat. Assoc. 67, 578–580 (1972).Article 

    Google Scholar 
    70.Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695, 1–9 (2006).
    Google Scholar 
    71.Braun, S. et al. Microbial turnover times in the deep seabed studied by amino acid racemization modelling. Sci. Rep. 7, 5680 (2017).Article 

    Google Scholar 
    72.Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).Article 

    Google Scholar 
    73.McMahon, S. & Parnell, J. Weighing the deep continental biosphere. FEMS Microbiol. Ecol. 87, 113–120 (2013).Article 

    Google Scholar  More

  • in

    Environmental connectivity controls diversity in soil microbial communities

    Soil resident microbesWe chose sand as a realistic source of a mixed microbial community (which is referred to as the sand community or SC). Because the sand community cannot be preserved as a whole by freezing, we collected fresh material for better consistency for each experiment from the same spot in St. Sulpice near Lake Geneva (GPS coordinates: 46.508032N, 6.544050 E) as described in Moreno et al.51. Sampled sand at different seasons thus likely carried slightly different starting communities and cell densities. The sand was sieved through 2 mm2 pores to remove large particles. The sieved sand was stored at room temperature and used within 7 days for extraction of resident microbial cells.Microbial cells were extracted from four aliquots of 200 g of sand. Each 200 g aliquot was transferred into a 1-l conical flask and submerged in 400 ml of 21 C minimal media salts (MMS) (containing, per litre: 1 g NH4Cl, 3.49 g Na2HPO4·2H2O, 2.77 g KH2PO4, pH 6.8)21. Flasks were incubated at 25 °C under rotary shaking at 120 rpm for 1 h. The sand was allowed to settle and the supernatant was decanted into a set of 50 ml Falcon tubes, which were centrifuged at 800 rpm with an A-4-81 rotor and a 5810R centrifuge (Eppendorf AG.) for 10 min to precipitate heavy soil particles. Supernatants were decanted into clean 50 ml Falcon tubes and centrifuged at 4000 rpm for 30 min to pellet cells. The supernatants were carefully discarded and the cell pellets were resuspended and pooled from the four aliquots (i.e., from the initial 800 g of sand) in one tube using 5 ml of MMS. The pooled liquid suspension was further sieved through a 40 µm Falcon cell strainer (Corning Inc.) in order to remove any particles and large eukaryotic cells that may obstruct flow cytometry analysis (see below). A small proportion of the sieved liquid suspension was used to quantify the numbers of recovered cells (see below); the remainder was used within 12 h for bead encapsulation or for mixed liquid suspended growth (see below). With this gentle method, we extracted approximately 3 × 105 cells g−1 of sand.Flow cytometry cell countingCell numbers in extracted soil communities and in the mixed liquid suspended growth experiments were counted by flow cytometry. SC-suspensions were diluted 100 times in MMS and stained in 200 µl aliquots with 2 µl of diluted SYBR Green I solution (1:100 in DMSO; Molecular Probes) in the dark for 30 min at room temperature. In some experiments, cells were additionally stained with 2 µl propidium iodide solution (10 µg ml–1, Molecular Probes). Aliquots of 20 µl were aspired at 14 µl min–1 on a Novocyte flow cytometer with absolute volumetric cell counting (ACEA Biosciences, USA). Cells were thresholded above a forward scatter signal (FSC-H) of 20 and further gated for propidium iodide-staining (excited at 535 nm and its fluorescence was collected at 617 ± 30 nm) and for SYBR Green I (excitation 488 nm, 530 ± 30 nm band-pass filter; channel voltage at 441 V) above values of 1000 (Supplementary Fig. 5).Cell samples from the mixed liquid suspension growth experiments were diluted to approximately 106 ml−1 and subsampled to aliquots of 100 µl. The subsamples were then mixed with 100 µl of 8 g l–1 sodium azide in phosphate buffered saline and incubated for 1 h at 4 °C to arrest cell respiration and growth. Samples were then stained with SYBR Green I as above and quantified by flow cytometry using the same thresholds and gates as describe above.Bacterial strains and pre-culturing proceduresP. veronii 1YdBTEX2 is a toluene, benzene, m-xylene and p-xylene degrading bacterium isolated from contaminated soil20. The strain was tagged with a single-copy chromosomally inserted mini-Tn7 transposon carrying a Ptac–mCherry cassette (Pve, strain 3433) as described in the ref. 52. A single P. veronii colony from a selective plate with toluene as the sole carbon substrate after 48 h incubation at 30 °C was inoculated into 10 ml of liquid MMS containing 5 mM sodium succinate as the sole carbon source and grown for 24 h at 30 °C with rotary shaking at 180 rpm21. After 24 h, the cells were harvested and washed for bead encapsulation or for comparative liquid mixed suspension growth, as described below.Agarose bead encapsulationSC cell suspensions containing between 2 × 107 to 108 cells ml–1 were encapsulated in agarose using rapid mixing with pluronic acid in dimethylpolysiloxane and subsequent cooling, followed by sieving to achieve beads with a diameter range of 40–70 µm53. The entire procedure was carried at room temperature and near a gas flame to maintain antiseptic conditions. 1% (w/v) low melting agarose (GEPAGA04-62, Eurobio ingen, France) was prepared in PBS solution (PBS contains per L H2O: 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, pH 7.4) and dissolved by heating in a microwave. The molten agarose solution was cooled down and equilibrated in a 37 °C water bath. Separately, 15 ml of dimethylpolysiloxane (Sigma-Aldrich, DMPS5X-500G) was poured in a 30 ml glass test tube. 1 ml of the 37 °C-agarose solution was mixed with 30 µl of pluronic acid (10% Pluronic® F-68, Gibco, Life Technologies) by vortexing at the highest speed (Vortex-Genie 2, Scientific Industries, Inc.) for a minute. Into this mixture of agarose and pluronic acid, 200 µl of prepared SC cell suspension at 0.2–1.0 × 108 cells ml–1 was pipetted and vortexed again at the highest speed for another minute. Five hundred microliter of this mixture was added drop-wise into the glass tube with dimethylpolysiloxane that was being vortexed at maximum speed. Vortexing was continued for 2 min. The tube was then immediately plunged into crushed ice and allowed to stand for a minimum of 10 min. After this, the total content of the tube was transferred into a 50 ml Falcon tube. The tube was centrifuged for 10 min at 2000 rpm using an A-4-81 swinging-bucket rotor (Eppendorf). The oil was carefully decanted while retaining the beads pellet. Fifteen milliliter of sterile PBS was added to the pellet and the beads were resuspended by vortexing at a speed set to 5. The tubes were again centrifuged at 2000 rpm for 10 min and any visible oil phase on the top was removed using a pipette. The process was repeated once more to remove any visible oil phase. Beads of diameter between 40 and 70 µm were then recovered by passing the PBS-resuspended bead content of the tube first over a 70-µm cell strainer (Corning Inc.). A further 5 ml of PBS was added to the cell strainer to flush remaining beads ( 0.25). Finally, we tested further interaction terms that influenced attributed growth rates. The initial carbon concentration was set to 50 mg ml–1, which allowed similar community development in terms of size (i.e., cell numbers) as in the experiments.Growth was simulated for 120 time steps, corresponding to 60 h in the experiments, at which point the substrate is depleted and cells stop dividing (stationary phase). Based on the attributed growth rates to every OTU (i.e., every cell and genotype of the vector or double vector), the model calculates per time step how much substrate is converted into biomass (we allow continuous biomass formation) and lost in form of CO2, which is subtracted to calculate the remaining substrate concentration for the next time step. When the overall substrate concentration is lower than ({S}_{{min }}) = 3 × 10–6 g ml–1, growth stops. The production of cell biomass is converted to cell numbers, which is then subsampled at the last time step per OTU (to an equivalent of 50,000 sequence reads), per single or pair (to an equivalent of 5000 beads) to calculate developed microcolony sizes, diversity measures, and interaction effects (as in Figs. 5 and 6).The following interaction scenarios were simulated. Although we allowed growth penalties and interspecific interactions to influence attributed OTU growth rates, a threshold of ~0.6 h–1 was imposed as the maximum individual OTU growth rate in all simulations.High connectivity random vs. OTU-abundance growth rates. OTU-specific growth rates (µmax,sp) were drawn randomly between 0.01 and 0.6 h–1. Alternatively, growth rates were attributed to the vector of OTUs according to the probability distribution function reflecting their measured log10 empiric abundance at t = 0 h (Supplementary methods, Section 2).Low connectivity single founder cell growth penalty. We contrasted simulations with single founder cells growing according to their OTU-proportional attributed growth rate and those in which that growth rate was multiplied by a penalty, composed by a factor equal to the inverse proportion of the initially attributed µmax,sp per OTU. The assumptiton is that the slower the inherent growth rate, the more likely that OTU is penalized when it is alone (Supplementary methods, Sections 2 and 3). This was combined with testing the effect of random or biased death on the starting community.$${{rm{mu }}}_{{{rm{max}} },{{rm{sp}}}}=frac{1.2}{{{log }}_{10}({{rm{mu }}}_{{{rm{max}} },{{rm{sp}}}})}$$
    (3)
    Low connectivity paired interspecific interaction effects. We further tested different assumptions on the nature of interspecific interactions and simulated how these affected community growth rates and diversity outcomes. These effects directly influenced the OTU attributed growth rates in the doubles (Supplementary methods, Sections 3.1–3.3). In the bimodal scenario (Supplementary methods, Section 3.4.1), we assumed that the community is composed of two underlying distributions; rare and abundant members (the threshold being placed at log10 measured OTU relative abundance = 2.8), with abundant members having a higher probability to be positively influenced in pairs. The probability is drawn from a bimodal interaction curve that attributes an interaction factor (between 0.01 and 2.2), which is multiplied with the assigned OTU growth rate at start.In the biased positive model (Supplementary methods, Section 3.4.2) we allowed a 40% chance for an interaction term imposed independently on each founder cell in a pair to lower the attributed OTU growth rate (factor range 0.4–0.6), and 60% chance for a factor in between 0.6 and 1.4 to modulate or increase the growth rate.In the positive on slow model (Supplementary methods, Section 3.4.3), the attributed OTU growth rates on each founder cell in a pair had a chance of 40% to become improved inversely proportionally to its initial growth rate, thereby favoring slow growers$${{rm{mu }}}_{{max },{{rm{sp}}}}={{mbox{-}}}{rm{ln}}({{rm{mu }}}_{{max },{{rm{sp}}}}),times {{rm{mu }}}_{{max },{{rm{sp}}}}$$
    (4)
    In the biased negative model (Supplemtary methods, Section 3.4.4), we attributed OTU-abundance proportional growth rates to each partner of the founder pair, but penalized faster growers (µ  > 0.15) at 20% chance and the others at 40% chance that their growth rate would be multiplied by a negative interaction factor (range 0.01–0.1).Finally, in a random model (Supplementary methods, Section 3.4.5), we allowed OTU-abundance proportional growth rates in pairs to be multiplied with a factor randomly drawn in the range of 0.01–1.25, independently for each partner in a pair. The models were contrasted to those without any assumed interspecific interactions, and without or with assumed random or fast-growing genotype biased cell death at start (Supplementary methods, Section 2.3.1).All simulations were run five times from the beginning, independently producing five derived parameter values for alpha-diversity, OTU- and microcolony size distributions in stationary phase and partner interactions.Statistics and reproducibilityLiquid suspension growth experiments were carried out in biological quadruplates and all bead experiments were carried out in biological triplicates. Total numbers of analyzed bead and those of beads with single or double occupancy are reported. Derived community growth rates and P. veronii-normalized yields were compared using t-tests (n as reported, two-sided test, unequal variance). Normalized PBP bin-size distributions were globally compared using Fisher’s exact test implemented in R (2000 replicates). Median and 75th percentile aggregate PBPs across different experiments were compared using the non-parametric Wilcoxon signed-rank test. Correlations between simulated species abundance distributions and empirical OTU relative abundances were calculated by bootstrapping (n = 1000) in MATLAB. Correlation coefficients from five independent simulations were compared using t-tests. The proportion correctly predicted OTU abundances by simulation was calculated as the ratio to observed values within a two-fold or four-fold range, and compared by two-sided t-tests on five independent simulations. Simulated and observed microcolony size distributions for single or paired founder cells among different models were compared by principal component analysis in MATLAB (pca), and by Spearman rank correlation (spear) from five independent simulations. Single and paired productivity was then compared between each other using two-sided t-tests of the 75th percentiles of microcolony size distribution (n = 5). Simulated and observed paired growth (excluding pairs with dead cells) was categorized and counted in a grid of 12 × 12 (each bin covering 0.5 log10-distance) using MATLAB’s hist3d function, and then compared by pca from five independent simulations. Confidence intervals on ratios of paired simulated microcolony sizes (excluding those pairs with a non-growing or dead partner) were determined by subsampling (n = 1000) from mean ratio distributions, which were then used to calculate the fractions deviating from experimentally observed paired size ratios.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Soil microbiome predictability increases with spatial and taxonomic scale

    1.Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: an Analysis of Global Change (Elsevier/Academic Press, 2012).2.Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016).CAS 
    Article 

    Google Scholar 
    3.Glassman, S. I. et al. Decomposition responses to climate depend on microbial community composition. Proc. Natl Acad. Sci. USA 115, 11994–11999 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Mushinski, R. M. et al. Microbial mechanisms and ecosystem flux estimation for aerobic NOy emissions from deciduous forest soils. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1814632116 (2019).5.Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Delgado-Baquerizo, M. et al. A global atlas of the dominant bacteria found in soil. Science 359, 320–325 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Drews, G. The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. FEMS Microbiol. Rev. 24, 225–249 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Chase, J. M. Spatial scale resolves the niche versus neutral theory debate. J. Veg. Sci. 25, 319–322 (2014).Article 

    Google Scholar 
    11.Ricklefs, R. E. & Renner, S. S. Global correlations in tropical tree species richness and abundance reject neutrality. Science 335, 464–467 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, S109–S122 (2006).PubMed 
    Article 

    Google Scholar 
    13.Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).PubMed 
    Article 

    Google Scholar 
    14.Ladau, J. & Eloe-Fadrosh, E. A. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 27, 662–669 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Diaz, S. & Cabido, M. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8, 463–474 (1997).Article 

    Google Scholar 
    17.Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    18.Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).PubMed 
    Article 

    Google Scholar 
    19.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    20.Whittaker, R. H. Communities and Ecosystems (Macmillan, 1975).21.Gibbons, S. M. Microbial community ecology: function over phylogeny. Nat. Ecol. Evol. 1, 0032 (2017).Article 

    Google Scholar 
    22.Locey, K. J. & Lennon, J. T. Scaling laws predict global microbial diversity. Proc. Natl Acad. Sci. USA 113, 5970–5975 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).24.Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).PubMed 
    Article 

    Google Scholar 
    25.Ramirez, K. S. et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat. Microbiol. 3, 189–196 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).CAS 
    Article 

    Google Scholar 
    27.Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001).28.Leibold, M. A., Urban, M. C., De Meester, L., Klausmeier, C. A. & Vanoverbeke, J. Regional neutrality evolves through local adaptive niche evolution. Proc. Natl Acad. Sci. USA 116, 2612–2617 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Dietze, M. & Lynch, H. Forecasting a bright future for ecology. Front. Ecol. Environ. 17, 3 (2019).Article 

    Google Scholar 
    30.Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).Article 

    Google Scholar 
    32.Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 10, 18969–19004 (2013).Article 

    Google Scholar 
    33.Lekberg, Y. et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 220, 971–976 (2018).PubMed 
    Article 

    Google Scholar 
    34.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    35.Running, S., Mu, Q. & Zhao, M. MOD17A3 MODIS/Terra Net Primary Production Yearly L4 Global 1km SIN Grid V055. NASA EOSDIS Land Processes DAAC (NASA, 2011); https://cmr.earthdata.nasa.gov/search/concepts/C198653829-LPDAAC_ECS.html36.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    39.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Albright, M. B. N., Chase, A. B. & Martiny, J. B. H. Experimental evidence that stochasticity contributes to bacterial composition and functioning in a decomposer community. mBio 10, e00568-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Berlemont, R. & Martiny, A. C. Phylogenetic distribution of potential cellulases in bacteria. Appl. Environ. Microbiol. 79, 1545–1554 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Ho, A., Lonardo, D. P. D. & Bodelier, P. L. E. Revisiting life strategy concepts in environmental microbial ecology. Microbiol. Ecol. https://doi.org/10.1093/femsec/fix006 (2017).44.Wang, L. & Wise, M. J. Glycogen with short average chain length enhances bacterial durability. Naturwissenschaften 98, 719–729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Soil Microbe Community Composition (DP1.10081.001) (National Ecological Observatory Network (NEON)); https://data.neonscience.org46.Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).Article 

    Google Scholar 
    47.Pawlowsky-Glahn, V., Egozcue, J. J. & Tolosana-Delgado, R. Modelling and Analysis of Compositional Data (John Wiley & Sons, 2015).48.Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).PubMed 
    Article 

    Google Scholar 
    49.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–22 (2010).
    Google Scholar 
    50.Johnson, N. L., Kotz, S. & Balakrishnan, N. Discrete Multivariate Distributions (Wiley, 1997).51.Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. In Proc. 3rd International Workshop on Distributed Statistical Computing 1–8 (2003); http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Plummer.pdf52.Denwood, M. J. runjags: an R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. J. Stat. Softw. 71, 1–25 (2016).Article 

    Google Scholar 
    53.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).54.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).55.Moran, P. A. P. Notes on continuous stochastic phenomena. Biometrika 37, 17–23 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Declines and recovery in endangered Galapagos pinnipeds during the El Niño event

    1.Baylis, A. M. et al. Disentangling the cause of a catastrophic population decline in a large marine mammal. Ecology 96, 2834–2847 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hernández-Camacho, C. & Trites, A. Population viability analysis of Guadalupe fur seals Arctocephalus townsendi. Endanger. Species Res. 37, 255–267 (2018).Article 

    Google Scholar 
    3.Lee, O. A., Burkanov, V. & Neill, W. H. Population trends of northern fur seals (Callorhinus ursinus) from a metapopulation perspective. J. Exp. Mar. Biol. Ecol. 451, 25–34 (2014).Article 

    Google Scholar 
    4.Williams, P. J., Hooten, M. B., Womble, J. N., Esslinger, G. G. & Bower, M. R. Monitoring dynamic spatio-temporal ecological processes optimally. Ecology 99(3), 524–535 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Wege, M. et al. Trend changes in sympatric Subantarctic and Antarctic fur seal pup populations at Marion Island. Southern Ocean. Mar. Mam. Sci. 32(3), 960–982 (2016).Article 

    Google Scholar 
    6.McIntosh, R. R. et al. Understanding meta-population trends of the Australian fur seal, with insights for adaptive monitoring. PLoS ONE 13(9), e0200253. https://doi.org/10.1371/journal.pone.0200253 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Harwood, J. & Prime, J. H. Some factors affecting the size of British grey seal populations. J. Appl. Ecol. 15, 401–411 (1978).Article 

    Google Scholar 
    8.Trillmich, F. et al. On the challenge of interpreting census data: Insights from a study of an endangered pinniped. PLoS ONE 12(5), e0154588. https://doi.org/10.1371/journal.pone.0154588 (2016).CAS 
    Article 

    Google Scholar 
    9.Taylor, R. H., Barton, K. J., Wilson, P. R., Thomas, B. W. & Karl, B. Population status and breeding of New Zealand fur seals (Arctocephalus forsteri) in the Nelson–northern Marlborough region, 1991–94. New. Zeal. J. Mar. Fresh. 29, 223–234 (1995).Article 

    Google Scholar 
    10.Riofrío-Lazo, M., Arreguín-Sánchez, F. & Páez-Rosas, D. Population abundance of the endangered galapagos Sea Lion Zalophus wollebaeki in the Southeastern galapagos archipelago. PLoS ONE 12(1), e0168829. https://doi.org/10.1371/journal.pone.0168829 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.García-Aguilar, M. C., Elorriaga-Verplancken, F. R., Rosales-Nanduca, H. & Schramm, Y. Population status of the Guadalupe fur seal (Arctocephalus townsendi). J. Mammal. 99(6), 1522–1528 (2018).
    Google Scholar 
    12.Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pup production of Antarctic fur seals. Ecology 86(9), 2408–2417 (2005).Article 

    Google Scholar 
    13.Taylor, B. L., Martinez, M., Gerrodette, T. & Barlow, J. Lessons from monitoring trends in abundance of marine mammals. Mar. Mam. Sci. 23, 157–175 (2007).Article 

    Google Scholar 
    14.Soto, K. H., Trites, A. W. & Arias-Schreiber, M. The effects of prey availability on pup mortality and the timing of birth of South American sea lions (Otaria flavescens) in Peru. J. Zool. 264, 419–428 (2004).Article 

    Google Scholar 
    15.Elorriaga-Verplancken, F., Sierra-Rodríguez, G., Rosales-Nanduca, H., Acevedo-Whitehouse, K. & Sandoval-Sierra, J. Impact of the 2015 El Niño-Southern Oscillation on the Abundance and Foraging Habits of Guadalupe Fur Seals and California Sea Lions from the San Benito Archipelago. Mexico. PLoS ONE. 11(5), e0155034. https://doi.org/10.1371/journal.pone.0155034 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Villegas-Amtmann, S., Simmons, S. E., Kuhn, C. E., Huckstadt, L. A. & Costa, D. P. Latitudinal range influences the seasonal variation in the foraging behavior of marine top predators. PLoS ONE 6(8), e23166. https://doi.org/10.1371/journal.pone.0023166 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Hoskins, A. J., Costa, D. P., Wheatley, K. E., Gibbens, J. R. & Arnould, J. P. Influence of intrinsic variation on foraging behaviour of adult female Australian fur seals. Mar. Ecol. Prog. Ser. 526, 227–239 (2015).ADS 
    Article 

    Google Scholar 
    18.Guinet, C., Jouventin, P. & Georges, J. Y. Long term population changes of fur seals Arctocephalus gazella and Arctocephalus tropicalis on subantarctic (Crozet) and subtropical (St. Paul and Amsterdam) islands and their possible relationship to El Niño southern oscillation. Antarct. Sci. 6(4), 473–478 (1994).19.Chilvers, B. L., Wilkinson, I. S. & Childerhouse, S. New Zealand sea lion, Phocarctos hookeri, pup production 1995 to 2006. New. Zeal. J. Mar. Fresh. 41, 205–213 (2007).Article 

    Google Scholar 
    20.Weise, M. J. & Harvey, J. T. Temporal variability in ocean climate and California sea lion diet and biomass consumption: implications for fisheries management. Mar. Ecol. Prog. Ser. 373, 157–172 (2008).ADS 
    Article 

    Google Scholar 
    21.Robinson, H., Thayer, J., Sydeman, W. J. & Weise, M. J. Changes in California sea lion diet during a period of substantial climate variability. Mar. Biol. 165, 169. https://doi.org/10.1007/s00227-018-3424-x (2018).Article 

    Google Scholar 
    22.Trillmich, F. & Dellinger, T. The Effects of El Niño on Galapagos Pinnipeds. In: Pinnipeds and El Niño. Ecological Studies (Analysis and Synthesis) (eds. Trillmich, F., & Ono, K. A.) 66–74 (Springer, Heidelberg, 1991).23.Churchill, M., Boessenecker, R. & Clementz, M. Colonization of the Southern Hemisphere by fur seals and sea lions (Carnivora: otariidae), revealed by combined evidence phylogenetic and Bayesian biogeographic analysis. Zool. J. Linn. Soc. 172, 200–225 (2014).Article 

    Google Scholar 
    24.Páez-Rosas, D., Aurioles-Gamboa, D., Alava, J. J. & Palacios, D. Stable isotopes indicate differing foraging strategies in two sympatric otariids of the Galapagos Islands. J. Exp. Mar. Bio. Ecol. 425, 44–52 (2012).Article 
    CAS 

    Google Scholar 
    25.Villegas-Amtmann, S., Jeglinski, J. W. E., Costa, D. P., Robinson, P. W. & Trillmich, F. Individual foraging strategies reveal niche overlap between endangered Galapagos Pinnipeds. PLoS ONE 8(8), e70748. https://doi.org/10.1371/journal.pone.0070748 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Alava, J. J. & Salazar, S. Status and conservation of otariids in Ecuador and the Galapagos Islands. In: Sea lions of the world (eds. Trites, A. W., et al.) 495–519 (Fairbanks, 2006).27.Trillmich, F. Zalophus wollebaeki: The IUCN Red List of Threatened Species. e.T41668A45230540; https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T41668A45230540.en (2015).28.Trillmich, F. Arctocephalus galapagoensis. The IUCN Red List of Threatened Species. e.T2057A45223722; https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T2057A45223722.en (2015).29.Páez-Rosas, D. & Guevara, N. Management strategies and conservation status of Galapagos sea lion populations at San Cristóbal Island, Galapagos, Ecuador. In: Tropical Pinnipeds: Bio- Ecology, Threats and Conservation (ed. Alava, J. J.) 159–175 (Taylor & Francis Group, Abingdon, 2017).30.Trillmich, F. Galapagos sea lions and fur seals. Noticias de Galápagos. 29, 8–14 (1979).
    Google Scholar 
    31.Wolf, J. B. et al. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations. BMC Evol. Biol. 8, 150. https://doi.org/10.1186/1471-2148-8-150 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Palacios, D. Seasonal patterns of sea surface temperature and ocean color around the Galapagos: regional and local influences. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 43–57 (2004).33.Palacios, D., Bograd, S., Foley, D. & Schwing, F. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res. Part II Top. Stud. Oceanogr. 53(3), 250–269 (2006).34.Schaeffer, B. et al. Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system. Remote Sens. Environ. 112(6), 3044–3054 (2008).ADS 
    Article 

    Google Scholar 
    35.Trillmich, F. & Wolf, J. B. Parent-offspring and sibling conflict in Galapagos fur seals and sea lions. Behav. Ecol. Sociobiol. 62, 363–375 (2008).Article 

    Google Scholar 
    36.Mueller, B., Pörschmann, U., Wolf, J. B. & Trillmich, F. Growth under uncertainty: the influence of marine variability on early development of Galapagos sea lions. Mar. Mam. Sci. 27, 350–365 (2011).Article 

    Google Scholar 
    37.Bonnell, M. L. & Ford, R. G. California sea lion distribution: a statistical analysis of aerial transect data. J. Wildl. Manage. 51, 13–20 (1987).Article 

    Google Scholar 
    38.Edgar, G. J. et al. Conservation of threatened species in the Galapagos Marine Reserve through identification and protection of marine key biodiversity areas. Aqua. Conserv. Mar. Freshw. Ecosyst. 18, 955–968 (2008).Article 

    Google Scholar 
    39.Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).Article 

    Google Scholar 
    40.Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Wellington, G. M., Strong, A. E. & Merlen, G. Sea surface temperature variation in the Galápagos Archipelago: a comparison between AVHRR nighttime satellite data and in-situ instrumentation (1982–1988). Bull. Mar. Res. 69, 27–42 (2001).
    Google Scholar 
    42.Le Boeuf, B. J. et al. Size and distribution of the California sea lion population in Mexico. Proc. Calif. Acad. Sci. 43, 77–85 (1983).
    Google Scholar 
    43.Fielder, P. C. & Talley, L. D. Hydrography of the tropical Eastern Pacific: a review. Prog. In Ocean. 69, 143–180 (2006).ADS 
    Article 

    Google Scholar 
    44.Brand, L. E., Guillard, R. R. & Murphy, L. S. A method for therapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton. Res. 3, 193–201 (1981).Article 

    Google Scholar 
    45.Riedman, M. The Pinnipeds: seals, sea lions and walruses (University of California Press, 1990).Book 

    Google Scholar 
    46.Costa, D. P., Weise, M. J. & Arnould, J. P. Potential influences of whaling on the status and trends of pinniped populations (University of California Press, 2006).
    Google Scholar 
    47.Kalberer, S., Meise, K., Trillmich, F. & Krüger, O. Reproductive performance of a tropical apex predator in an unpredictable habitat. Behav. Ecol. Sociobiol. 72, 108. https://doi.org/10.1007/s00265-018-2521-7 (2018).Article 

    Google Scholar 
    48.Trillmich, F. & Limberger, D. Drastic effects of El Niño on Galapagos pinnipeds. Oecologia 67(1), 19–22 (1985).ADS 
    PubMed 
    Article 

    Google Scholar 
    49.Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change. 4, 111–116 (2014).ADS 
    Article 

    Google Scholar 
    50.Wang, G., et al. Continued increase of extreme El Niño frequency long after 1.5 C warming stabilization. Nat. Clim. Change. 7, 568–572 (2017).51.Páez-Rosas, D., Rodríguez-Pérez, M. & Riofrío-Lazo, M. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic bayesian mixing models in Galapagos pinnipeds. Rapid Commun. Mass Spectrom. 28, 2550–2558 (2014).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Jeglinski, J. W. E., Wolf, J. B., Werner, C., Costa, D. & Trillmich, F. Differences in foraging ecology align with genetically divergent ecotypes of a highly mobile marine top predator. Oecologia 179, 1041–1052 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Páez-Rosas, D. & Aurioles-Gamboa, D. Spatial variation in the foraging behaviour of the Galapagos sea lions (Zalophus wollebaeki) assessed using scat collections and stable isotope analysis. J. Mar. Biol. Assoc. U.K. 94, 1099–1107 (2014).54.Drago, M. et al. Stable Isotopes Reveal Long-Term Fidelity to Foraging Grounds in the Galapagos Sea Lion (Zalophus wollebaeki). PLoS ONE 11(1), e0147857. https://doi.org/10.1371/journal.pone.0147857 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Páez-Rosas, D., Villegas-Amtmann, S. & Costa, D. P. Intraspecific variation in feeding strategies of Galapagos sea lions: A case of trophic specialization. PLoS ONE 12(10), e0185165. https://doi.org/10.1371/journal.pone.0185165 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Villegas-Amtmann, S., McDonald, B., Páez-Rosas, D., Aurioles-Gamboa, D. & Costa, D. P. Adapted to change: Low energy requirements in a low and unpredictable productivity environment, the case of the Galapagos sea lion. Deep Sea Res. Part II Top. Stud. Oceanogr. 140, 94–104 (2017).57.Heller, E. Mammals of the Galapagos Archipelago: Exclusive of the Cetacea (University of Harvard Press, 1904).58.Franco-Trecu, V., Aurioles-Gamboa, D., Arim, M. & Lima, M. Pre-partum and postpartum trophic segregation between sympatrically breeding female Arctocephalus australis and Otaria flavenscens. J. Mammal. 93(2), 514–521 (2012).Article 

    Google Scholar 
    59.Trillmich, F. & Kooyman, G. L. Field metabolic rate of lactating female Galapagos fur seals (Arctocephalus galapagoensis): the influence of offspring age and environment. Comp. Biochem. Phys. A. 129(4), 741–749 (2001).CAS 
    Article 

    Google Scholar 
    60.Lopes, F. et al. Fine-scale matrilineal population structure in the Galapagos fur seal and its implications for conservation management. Conserv. Genet. 16, 1099–1113 (2015).Article 

    Google Scholar 
    61.Jeglinski, J. W. E., Goetz, K. T., Werner, C., Costa, D. P. & Trillmich, F. Same size–same niche? Foraging niche separation between sympatric juvenile Galapagos sea lions and adult Galapagos fur seals. J. Anim. Ecol. 82, 694–706 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Lowry, L. F., Frost, K. J., Davis, R., DeMaster, D. P. & Suydam, R. S. Movements and behavior of satellite-tagged spotted seals (Phoca largha) in the Bering and Chukchi Seas. Polar Biol. 19, 221–230 (1998).Article 

    Google Scholar 
    63.O’Corry-Crowe, G., Gelatt, T., Rea, L., Bonin, C. & Rehberg, M. Crossing to safety: dispersal, colonization and mate choice in evolutionarily distinct populations of Steller sea lions. Eumetopias jubatus. Mol. Ecol. 23, 5415–5434 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Forcada, J., Trathan, P. N. & Murphy, E. J. Life history buffering in Antarctic mammals and birds against changing patterns of climate and environmental variation. Glob. Chang. Biol. 14, 2473–2488 (2008).ADS 
    Article 

    Google Scholar 
    65.Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 87–94 (2013).
    Google Scholar 
    66.Dellinger, T. & Trillmich, F. Fish prey of the sympatric Galapagos fur seals and sea lions: seasonal variation and niche separation. Can. J. Zool. 77, 1204–1216 (1999).Article 

    Google Scholar 
    67.Trillmich, F. Attendance behavior of Galapagos sea lions. In: Fur Seals: Maternal Strategies on Land and at Sea. (eds. Gentry, R. L. & Kooyman, G. L.) 196–208 (Princeton University Press, 1986).68.Trillmich, F. Maternal investment and sex-allocation in the Galapagos fur seal. Arctocephalus galapagoensis. Behav. Ecol. Sociobiol. 19(3), 157–164 (1986).
    Google Scholar 
    69.Riofrío-Lazo, M. & Páez-Rosas, D. Galapagos sea lions and fur seals: adaptations to environmental variability. In: Ethology and Behavioral Ecology of Otariids and the Odobenid (eds. Campagna, C. & Harcourt, R.) (Springer Science & Business Media, Germany, 2021).70.Adame, F., Elorriaga-Verplancken, F., Beier, E., Acevedo-Whitehouse, K. & Pardo, M. The demographic decline of a sea lion population followed multi-decadal sea surface warming. Sci. Rep. 10, 10499. https://doi.org/10.1038/s41598-020-67534-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.García-Aguilar, M. C., Turrent, C., Elorriaga-Verplancken, F. R., Arias-Del-Razo, A. & Schramm, Y. Climate change and the northern elephant seal (Mirounga angustirostris) population in Baja California. Mexico. PLoS ONE. 13(2), e0193211. https://doi.org/10.1371/journal.pone.0193211 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Mueller, B., Porschmann, U., Wolf, J. B. W. & Trillmich, F. Growth under uncertainty: the influence of marine variability on early development of Galapagos sea lions. Mar. Mammal. Sci. 27, 350–365 (2011).Article 

    Google Scholar 
    73.Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2011).Article 

    Google Scholar 
    74.Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change. 3, 78–82 (2013).ADS 
    Article 

    Google Scholar 
    75.Páez-Rosas, D., Moreno-Sánchez, X., Tripp-Valdez, A., Elorriaga-Verplancken, F. & Carranco-Narváez, S. Changes in the Galapagos sea lion diet as a response to El Niño-Southern Oscillation. Reg. Stud. Mar. Sci. 40, 101485. https://doi.org/10.1016/j.rsma.2020.101485 (2020).Article 

    Google Scholar 
    76.Urquía, D. & Páez-Rosas, D. δ13C and δ15N values in pup whiskers as a proxy for the trophic behavior of Galapagos sea lion females. Mamm. Biol. 96, 28–36 (2019).Article 

    Google Scholar 
    77.Martin, J. H. et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific-Ocean. Nature 371(6493), 123–129 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    78.Sakamoto, C.M., et al. Surface seawater distributions of inorganic carbon and nutrients around the Galapagos Islands: results from the PlumEx experiment using automated chemical mapping. Deep Sea Res. Part 2 Top Stud. Oceanogr. 45(6), 1055–1071 (1998).79.Fritz, L. W. & Hinckley, S. A. Critical review of the regime shift “junk food” nutritional stress hypothesis for the decline of the western stock of Steller sea lion. Mar. Mammal. Sci. 21, 476–518 (2005).Article 

    Google Scholar 
    80.McClatchie, S. et al. Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Sci. 3, 150628. https://doi.org/10.1098/rsos.150628 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Villegas-Amtmann, S., Costa, D., Tremblay, Y., Aurioles-Gamboa, D. & Salazar, S. Multiple foraging strategies in a marine apex predator, the Galapagos Sea Lion. Mar. Ecol. Prog. Ser. 363, 299–309 (2008).ADS 
    Article 

    Google Scholar 
    82.Kraus, C. et al. Mama’s boy: sex differences in juvenile survival in a highly dimorphic large mammal, the Galapagos sea lion. Oecologia 171, 893–903 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Gentry, R. L. & Kooyman, G. L. Fur seals: Maternal Strategies on Land and at Sea (Princeton University Press, 1987). More

  • in

    Diet and trophic niche of the invasive signal crayfish in the first invaded Italian stream ecosystem

    1.Holdich, D. M. M., Reynolds, J. D. D., Souty-Grosset, C. & Sibley, P. J. J. A review of the ever increasing threat to European crayfish from non- indigenous crayfish species. Knowl. Manag. Aquat. Ecosyst. 11, 394–395 (2009).
    Google Scholar 
    2.Kouba, A., Petrusek, A. & Kozák, P. Continental-wide distribution of crayfish species in Europe: Update and maps. Knowl. Manag. Aquat. Ecosyst. 05, 413 (2014).
    Google Scholar 
    3.Edgerton, B. F. et al. Understanding the causes of disease in European freshwater crayfish. Conserv. Biol. 18, 1466–1474 (2004).Article 

    Google Scholar 
    4.Jussila, J., Vrezec, A., Makkonen, J., Kortet, R. & Kokko, H. Invasive crayfish and their invasive diseases in Europe with the focus on the virulence evolution of the crayfish plague invasive crayfish and their invasive diseases. In Biological Invasions in Changing Ecosystems (ed. Canning-Clode, J.) 183–204 (De Gruyter Open Ltd, 2015).
    Google Scholar 
    5.Nyström, P. Ecological impact of introduced and native crayfish on freshwater communities: European perspectives. In Crayfish in Europe as Alien Species – How to Make the Best of Bad Situation? (eds Gherardi, F. & Holdich, D. M.) 63–85 (Rotterdam, 1999).
    Google Scholar 
    6.McCarthy, J.M., Hein, C.L., Olden, J.D. & Vander Zanden, M.J. Coupling long-term studies with meta-analysis to investigate impacts of non-native crayfish on zoobenthic communities. Freshw. Biol. 51, 224–235 (2006).7.Twardochleb, L. A., Julian, D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Fresh. Sci. 4, 1367–1382 (2013).Article 

    Google Scholar 
    8.Galib, S. M., Findlay, J. S. & Lucas, M. C. Strong impacts of signal crayfish invasion on upland stream fish and invertebrate communities. Freshw. Biol. 66, 223–240 (2021).Article 

    Google Scholar 
    9.Rosenthal, S.K., Stevens, S.S. & Lodge, D.M. Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Can. J. Fish. Aquat. Sci. 63, 1276–1285 (2006).10.Parkyn, S. M., Collier, K. J. & Hicks, B. J. New Zealand stream crayfish: functional omnivores but trophic predators?. Freshw. Biol. 46, 641–652 (2001).Article 

    Google Scholar 
    11.Stenroth, P. et al. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): The influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci. 63, 821–831 (2006).CAS 
    Article 

    Google Scholar 
    12.Correia, A. M. Food choice by the introduced crayfish Procambarus clarkii food choice by the introduced crayfish Procambarus clarkii. Ann. Zool. Fenn. 40, 517–528 (2014).
    Google Scholar 
    13.Abrahamsson, S. A. Dynamics of an isolated population of the crayfish, Astacus astacus Linneo. Oikos 17, 96–107 (1966).Article 

    Google Scholar 
    14.France, R. Ontogenetic shift in crayfish δ13C as a measure of land-water ecotonal coupling. Oecologia 107, 239–242 (1996).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Guan, R. Z. & Wiles, P. R. Feeding ecology of the signal crayfish Pacifastacus leniusculus in a British lowland river. Aquaculture 169, 177–193 (1998).Article 

    Google Scholar 
    16.Hanson, J. M., Chambers, P. A. & Prepas, E. E. Selective foraging by the crayfish Orconectes virilis and its impact on macroinvertebrates. Freshw. Biol. 24, 69–80 (1990).Article 

    Google Scholar 
    17.Chambers, P. A., Hanson, J. M., Burke, J. M. & Prepas, E. E. The impact of the crayfish Orconectes virilis on aquatic macrophytes. Freshw. Biol. 24, 81–91 (1990).Article 

    Google Scholar 
    18.Usio, N. & Townsend, C. R. Functional significance of crayfish in stream food webs : Roles of omnivory, substrate heterogeneity and sex. Oikos 98, 512–522 (2002).Article 

    Google Scholar 
    19.Bondar, C. A., Bottriell, K., Zeron, K. & Richardson, J. S. Does trophic position of the omnivorous signal crayfish (Pacifastacus leniusculus) in a stream food web vary with life history stage or density?. Can. J. Fish. Aquat. Sci. 62, 2632–2639 (2005).Article 

    Google Scholar 
    20.Dekar, M. P., Magoulick, D. D. & Huxel, G. R. Shifts in the trophic base of intermittent stream food webs. Hydrobiologia 635, 263–277 (2009).CAS 
    Article 

    Google Scholar 
    21.Evans-White, M. A., Dodds, W. K. & Whiles, M. R. Ecosystem significance of crayfishes and stonerollers in a prairie stream: Functional differences between co-occurring omnivores. J. N. Am. Benthol. Soc. 22, 423–441 (2003).Article 

    Google Scholar 
    22.Machino, Y. Présence de l’écrevisse de Californie (Pacifastacus leniusculus) en Italie. L’Astaciculteur France 52, 2–5 (1997).
    Google Scholar 
    23.Capurro, M. et al. The signal crayfish, Pacifastacus leniusculus (Dana, 1852) [Crustacea: Decapoda: Astacidae], in the Brugneto Lake (Liguria, NW Italy). The beginning of the invasion of the River Po watershed? Aquat. Invas. 2, 17–24 (2007).24.Candiotto, A., Delmastro, G. B., Dotti, L. & Sindaco, R. Pacifastacus leniusculus (Dana, 1852), un nuovo gambero esotico naturalizzato in Piemonte (Crustacea, Decapoda, Astacidae). Riv. Piemontese Storia Nat. 31, 73–82 (2010).
    Google Scholar 
    25.Ghia, D. et al. Distribuzione e naturalizzazione del gambero invasivo Pacifastacus leniusculus nel torrente Valla (Italia nord-occidentale). Ital. J. Freshw. Ichthyol. 4, 101–108 (2017).
    Google Scholar 
    26.Füreder, L. et al. Austropotamobius pallipes. In The IUCN Red List of Threatened Species 2010: e.T2430A9438817 (2010).27.Almeida, D., Ellis, A., England, J. & Copp, G. H. Time-series analysis of native and non-native crayfish dynamics in the Thames River Basin (south-eastern England). Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 192–202 (2014).Article 

    Google Scholar 
    28.Westman, K., Savolainen, R. & Julkunen, M. Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: A 30-year study. Ecography 25, 53–73 (2002).Article 

    Google Scholar 
    29.Ghia, D. et al. Il gambero autoctono italiano e il gambero della California coesistono in un tratto del torrente Valla (Italia nord-occidentale). Ital. J. Freshw. Ichthyol. 5, 120–131 (2018).
    Google Scholar 
    30.Ruokonen, T. J. et al. Introduced alien signal crayfish (Pacifastacus leniusculus) in Finland—Uncontrollable expansion despite numerous crayfisheries strategies. Knowl. Manag. Aquat. Ecosyst. 419, 27 (2018).Article 

    Google Scholar 
    31.Kouba, A., Buric, M. & Petrusek, A. Crayfish species in Europe. In Crayfish Biology and Culture (ed. Kozák, P. et al.) 79–163 (University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and protection of Waters, 2015).32.Ercoli, F., Ruokonen, T. J., Hämäläinen, H. & Jones, R. I. Does the introduced signal crayfish occupy an equivalent trophic niche to the lost native noble crayfish in boreal lakes?. Biol. Invasions 16, 2025–2036 (2014).Article 

    Google Scholar 
    33.Olsson, K., Stenroth, P., Nyström, P. & Graneli, W. Invasions and niche width: Does niche width of an introduced crayfish differ from a native crayfish?. Freshw. Biol. 54, 1731–1740 (2009).Article 

    Google Scholar 
    34.Chucholl, C. Understanding invasion success : Life-history traits and feeding habits of the alien crayfish Orconectes immunis (Decapoda, Astacida, Cambaridae). Knowl. Manag. Aquat. Ecosyst. 404, 04 (2012).Article 

    Google Scholar 
    35.Nakata, K. & Goshima, S. Competition for shelter of preferred sizes between the native crayfish species Cambaroides japonicus and the alien crayfish species Pacifastacus leniusculus in Japan in relation to prior residence, sex difference, and body size. J. Crustac Biol. 23, 897–907 (2003).Article 

    Google Scholar 
    36.Alcorlo, P., Geiger, W. & Otero, M. Feeding preferences and food selection of the red swamp crayfish, Procambarus clarkii, in habitat differing in food item diversity. Crustaceana 77, 435–453. https://doi.org/10.1163/1568540041643283 (2004).Article 

    Google Scholar 
    37.Bondar, C. & Richardson, J. S. Effects of ontogenetic stage and density on the ecological role of the signal crayfish (Pacifastacus leniusculus ) in a coastal Pacific stream. J. N. Am. Benthol. Soc. 28, 294–304 (2009).Article 

    Google Scholar 
    38.Usio, N., Kamiyama, R., Saji, A. & Takamura, N. Size-dependent impacts of invasive alien crayfish on a littoral marsh community. Biol. Conserv. 142, 1480–1490 (2009).Article 

    Google Scholar 
    39.Whitledge, G. W. & Rabeni, C. F. Energy sources and ecological role of crayfishes in an Ozark stream: Insights from stable isotopes and gut analysis. Can. J. Fish. Aquat. Sci. 54, 2555–2563 (1997).Article 

    Google Scholar 
    40.Momot, W. T. Redefining the role of crayfish in aquatic ecosystems. Rev. Fish. Sci. https://doi.org/10.1080/10641269509388566 (1995).Article 

    Google Scholar 
    41.Nyström, P., Brönmark, C. & Granéli, W. Patterns in benthic food webs: A role for omnivorous crayfish?. Freshw. Biol. 36, 631–646 (1996).Article 

    Google Scholar 
    42.Stites, A. J., Taylor, C. A. & Kessler, E. J. Trophic ecology of the North American crayfish genus Barbicambarus Hobbs, 1969 (Decapoda: Astacoidea: Cambaridae): Evidence for a unique relationship between body size and trophic position. J. Crustacean Biol. 37, 263–271 (2017).Article 

    Google Scholar 
    43.Correia, A.M. & Anastácio, P.M. Shifts in aquatic macroinvertebrate biodiversity associated with the presence and size of an alien crayfish. Ecol. Res. 23, 729–734 (2008).44.Johnson, M. F., Rice, S. P. & Reid, I. The activity of signal crayfish (Pacifastacus leniusculus) in relation to thermal and hydraulic dynamics of an alluvial stream, UK. Hydrobiologia 724, 41–54 (2014).Article 

    Google Scholar 
    45.Guan, R. Z. Abundance and production of the introduced signal crayfish in a British lowland river. Aquac. Int. 8, 59–76 (2000).Article 

    Google Scholar 
    46.Almeida, D. et al. Environmental biology of an invasive population of signal crayfish in the River Stort catchment (southeastern England). Limnologica 43, 177–184 (2013).Article 

    Google Scholar 
    47.Hein, C.L., Roth, B.M., Ives, A.R. & Vander Zanden, M.J. Fish predation and trapping for rusty crayfish (Orconectes rusticus) control: A whole-lake experiment. Can. J. Fish. Aquat. Sci. 63, 383–393 (2006).48.Houghton, R. J., Wood, C. & Lambin, X. Size-mediated, density-dependent cannibalism in the signal crayfish Pacifastacus leniusculus (Dana, 1852) (Decapoda, Astacidea), an invasive crayfish in Britain. Crustaceana 90, 417–435 (2017).Article 

    Google Scholar 
    49.Bondar, C. A. & Richardson, J. S. Stage-specific interactions between dominant consumers within a small stream ecosystem: Direct and indirect consequences. Freshw. Sci. 32, 183–192 (2013).Article 

    Google Scholar 
    50.Nyström, P. Ecology. In Biology of Freshwater Crayfish (ed. Holdich, D.M.) 192–235 (Blackwel Science, 2002).51.Gherardi, F., Acquistapace, P. & Santini G. Food selection in freshwater omnivores: A case study of crayfish Austropotamobius pallipes. Arch. Hydrobiol.159, 357–376 (2004).52.Moorhouse, T. P. et al. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species. Ecol. Evol. https://doi.org/10.1002/ece3.903 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Ishikawa, N. F., Doi, H. & Finlay, J. C. Global dataset for carbon and nitrogen stable isotope ratios of lotic periphyton. Ecol. Res. 33, 1089 (2018).CAS 
    Article 

    Google Scholar 
    54.Westman, K., Savolainen, R. & Pursiainen, M. Development of the introduced North American signal crayfish, Pacifastacus leniusculus (Dana), population in a small Finnish forest lake in 1970–1997. Boreal Environ. Res. 4, 387–407 (1999).
    Google Scholar 
    55.Stewart, K. W. & Stark, B. P. Nymphs of North American Stonefly Genera (Plecoptera) (The Caddis Press, 2002).
    Google Scholar 
    56.Bo, T., Cammarata, M., Candiotto, A. & Fenoglio, S. Trophic preferences of three allochthonous fishes in Bormida River (Alessandria, NW Italy). Hidrobiologica 22, 195–200 (2012).
    Google Scholar 
    57.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-stable isotope Bayesian ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.R Development Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2016).59.Jackson, A.L. Ellipse Overlap. https://cran.rproject.org/web/packages/SIBER/vignettes/Ellipse-Overlap.html (2020).60.Stock, B. C. & Semmens, B. X. MixSIAR GUI user manual version 31, 1–42. https://doi.org/10.5281/zenodo.47719 (2016).Article 

    Google Scholar 
    61.Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Carolan, J. V., Mazumder, D., Dimovski, C., Diocares, R. & Twining, J. Biokinetics and discrimination factors for δ13C and δ15N in the omnivorous freshwater crustacean, Cheraxdestructor. Mar. Freshw. Res. 63, 878–886. https://doi.org/10.1071/MF11240 (2012).CAS 
    Article 

    Google Scholar 
    64.Jussila, J. et al. It takes time to see the menu from the body: An experiment on stable isotope composition in freshwater crayfishes. Knowl. Manag. Aquat. Ecosyst. 416, 25. https://doi.org/10.1051/kmae/2015021 (2015).Article 

    Google Scholar 
    65.Glon, M.G., Larson, E.R. & Pangle, K.L. Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae). Hydrobiologia 768, 51–61. https://doi.org/10.1007/s10750-015-2527-3 (2016). 66.Vander Zanden, M.J. & Rasmussen, J.B. Variation in delta N-15 and delta C-13 trophic fractionation: Implication for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).67.McCutchan, J. H. Jr., Lewis, W. M., Kendal, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and suphur. Oikos 102, 378–390 (2003).CAS 
    Article 

    Google Scholar  More

  • in

    Division of labor in work shifts by leaf-cutting ants

    1.Roces, F. Individual complexity and self-organization in foraging by leaf-cutting ants. Biol. Bull. 202, 306–313 (2002).PubMed 
    Article 

    Google Scholar 
    2.Cerdá, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551–562 (2009).Article 

    Google Scholar 
    3.Dussutour, A., Deneubourg, J.-L., Beshers, S. & Fourcassié, V. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica. Anim. Cogn. 12, 21–30 (2009).PubMed 
    Article 

    Google Scholar 
    4.Leboeuf, A. C. & Grozinger, C. M. Me and we: The interplay between individual and group behavioral variation in social collectives. Curr. Opin. Insect Sci. 5, 16–24 (2014).PubMed 
    Article 

    Google Scholar 
    5.Feinerman, O. & Korman, A. Individual versus collective cognition in social insects. J. Exp. Biol. 220, 73–82 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Frank, E. T. & Linsenmair, K. E. Individual versus collective decision making: Optimal foraging in the group-hunting termite specialist Megaponera analis. Anim. Behav. 130, 27–35 (2017).Article 

    Google Scholar 
    7.Menzel, R., Leboulle, G. & Eisenhardt, D. Small brains, bright minds. Cell 124, 237–239 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Leadbeater, E. & Chittka, L. Social learning in insects—From miniature brains to consensus building. Curr. Biol. 17, 703–713 (2007).Article 
    CAS 

    Google Scholar 
    9.Giurfa, M. Cognition with few neurons: Higher-order learning in insects. Trends Neurosci. 36, 285–294 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Guerrieri, F. J. & D’Ettorre, P. Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. J. Insect Physiol. 56, 88–92 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).Article 

    Google Scholar 
    12.Goss, S., Aron, S., Deneubourg, J. L. & Pasteels, J. M. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989).ADS 
    Article 

    Google Scholar 
    13.Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Czaczkes, T. J. et al. Composite collective decision-making. Proc. Biol. Sci. 282, 20142723 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    15.Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. TREE 12, 188–194 (1997).CAS 
    PubMed 

    Google Scholar 
    16.Boomsma, J. J. & Franks, N. R. Social insects: From selfish genes to self organisation and beyond. Trends Ecol. Evol. 21, 303–308 (2006).PubMed 
    Article 

    Google Scholar 
    17.Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E. Self-Organization in Biological Systems. (Princeton University Press, 2003).18.Constant, N., Santorelli, L.A., Lopes, J.F.S., Hughes, W.O.H. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav. Ecol. 23, 1284–1288 (2012).19.Feinerman, O. & Traniello, J. F. A. Social complexity, diet, and brain evolution: Modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70, 1063–1074 (2016).Article 

    Google Scholar 
    20.McCluskey, E.S. Circadian-rhythms in male-ants of five diverse species. Science (80- ) 150, 1037–1039 (1965).21.North, R. D. Circadian rhythm of locomotor activity in individual workers of the wood ant Formica rufa. Physiol. Entomol. 12, 445–454 (1987).Article 

    Google Scholar 
    22.Cros, S., Cerdá, X., Retana, J., De, E. U. & De, C. F. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Écoscience 4, 269–278 (1997).Article 

    Google Scholar 
    23.Bellusci, S. & David, M. M. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117–124 (2001).Article 

    Google Scholar 
    24.Narendra, A., Reid, S.F., Greiner, B., Peters, R.A., Hemmi, J.M., Ribi, W.A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. Biol. Sci. 278, 1141–1149 (2011).25.Yilmaz, A., Aksoy, V., Camlitepe, Y. & Giurfa, M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front. Behav. Neurosci. 8, 205 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nickele, M. A., Filho, W. R., Pie, M. R. & Penteado, S. R. C. Daily foraging activity of Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Sociobiology 63, 645–650 (2016).Article 

    Google Scholar 
    27.Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25, 11–28 (1960).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Hall, J. C. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1–280 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Sandrelli, F., Costa, R., Kyriacou, C. P. & Rosato, E. Comparative analysis of circadian clock genes in insects. Insect Mol. Biol. 17, 447–463 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).CAS 
    Article 

    Google Scholar 
    31.Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J.A.C., Andersson, M. et al. Inclusive fitness theory and eusociality. Nature 471, E1–E4 (2011).32.Kost, C., De Oliveira, E. G., Knoch, T. A. & Wirth, R. Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). J. Trop. Ecol. 21, 677–688 (2005).33.Bochynek, T., Meyer, B. & Burd, M. Energetics of trail clearing in the leaf-cutter ant Atta. Behav. Ecol. Sociobiol. 71, 1–10 (2017).Article 

    Google Scholar 
    34.Bouchebti, S., Travaglini, R. V., Forti, L. C. & Fourcassié, V. Dynamics of physical trail construction and of trail usage in the leaf-cutting ant Atta laevigata. Ethol. Ecol. Evol. 31, 105–120 (2019).Article 

    Google Scholar 
    35.Cherrett, J. M. The foraging behavior of Atta cephalotes L. J. Anim. Ecol. 37, 387–403 (1968).Article 

    Google Scholar 
    36.Lewis, T., Pollard, G.V., Dibley, G.C. Rhythmic foraging in the leaf-cutting ant Atta cephalotes (L.) (Formicidae: Attini). J. Anim. Ecol. 43, 129 (1974).37.Sharma, V. K., Lone, S. R., Mathew, D., Goel, A. & Chandrashekaran, M. K. Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus. Chronobiol. Int. 21, 297–308 (2004).PubMed 
    Article 

    Google Scholar 
    38.Koto, A., Mersch, D., Hollis, B. & Keller, L. Social isolation causes mortality by disrupting energy homeostasis in ants. Behav. Ecol. Sociobiol. 69, 583–591 (2015).Article 

    Google Scholar 
    39.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) I. The overall pattern in A. sexdens. Behav. Ecol. Sociobiol. 7, 143–156 (1980).40.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera : Formicidae : Atta) II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 7, 157–165 (1980).41.Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect. Soc. 60, 191–201 (2013).Article 

    Google Scholar 
    42.Martinoya, C., Bloch, S., Ventura, D. F. & Puglia, N. M. Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J. Comp. Physiol A 104, 205–210 (1975).Article 

    Google Scholar 
    43.Kaiser, W. Busy bees need rest, too. J. Comp. Physiol. A 163, 565–584 (1988).Article 

    Google Scholar 
    44.Sauer, S., Herrmann, E. & Kaiser, W. Sleep deprivation in honey bees. J. Sleep Res. 13, 145–152 (2004).PubMed 
    Article 

    Google Scholar 
    45.Klein, B. A., Klein, A., Wray, M. K., Mueller, U. G. & Seeley, T. D. Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc. Natl. Acad. Sci. 107, 22705–22709 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Mildner, S. & Roces, F. Plasticity of daily behavioral rhythms in foragers and nurses of the ant Camponotus rufipes: Influence of social context and feeding times. PLoS ONE 12, e0169244 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Fujioka, H. et al. Ant circadian activity associated with brood care type. Biol. Lett. 13, 20160743 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Klein, B. A., Olzsowy, K. M., Klein, A., Saunders, K. M. & Seeley, T. D. Caste-dependent sleep of worker honey bees. J. Exp. Biol. 211, 3028–3040 (2008).PubMed 
    Article 

    Google Scholar 
    49.Bloch, G., Toma, D. P. & Robinson, G. E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J. Biol. Rhythms 16, 444–456 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Bloch, G. The social clock of the honeybee. J. Biol. Rhythms 25, 307–317 (2010).PubMed 
    Article 

    Google Scholar 
    51.Bloch, G., Sullivan, J. P. & Robinson, G. E. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J. Insect Physiol. 48, 1123–1131 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Bernhard Kraus, F., Gerecke, E., Moritz, R.F.A. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41, 323–328 (2011).53.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 55–60 (1983).54.Detrain, C., Pasteels, J.M. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, Pheidole pallidula (Nyl.) (Hymenoptera: Myrmicinae). J. Insect Behav. 4, 157–176 (1991).55.Lighton, J. R. B. & QuinlanJr, M. C. D. H. F. Is bigger better? Water balance in the polymorphic desert harvester ant Messor pergandei. Physiol. Entomol. 19, 325–334 (1994).Article 

    Google Scholar 
    56.Cerdá, X. & Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78, 467 (1997).Article 

    Google Scholar 
    57.Clémencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insectes Soc. 57, 11–15 (2010).Article 

    Google Scholar 
    58.Gadagkar, R. The evolution of caste polymorphism in social insects: Genetic release followed by diversifying evolution. J. Genet. 76, 167–179 (1997).Article 

    Google Scholar 
    59.Helms Cahan, S. & Keller, L. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424, 306–309 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Fjerdingstad, E. J. & Crozier, R. H. The evolution of worker caste diversity in social insects. Am. Nat. 167, 390–400 (2012).Article 

    Google Scholar 
    61.Trible, W. et al. Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170(727–735), e10 (2017).
    Google Scholar 
    62.De, T. M. A. et al. Two castes sizes of leafcutter ants in task partitioning in foraging activity. Ciênc. Rural 46, 1902–1908 (2016).Article 

    Google Scholar 
    63.Sharkey, K. M. & Eastman, C. I. Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am. J. Physiol. Integr. Comp. Physiol. 282, R454–R463 (2002).CAS 
    Article 

    Google Scholar  More

  • in

    Deep-sea shipwrecks represent island-like ecosystems for marine microbiomes

    1.Anderson RE, Sogin ML, Baross JA. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol. 2015;91:1–11.Article 

    Google Scholar 
    2.Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA. 2009;106:22427–32.CAS 
    Article 

    Google Scholar 
    3.Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol. 2012;10:497–506.CAS 
    Article 

    Google Scholar 
    4.Lindstrom ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Env Microbiol Rep. 2012;4:1–9.Article 

    Google Scholar 
    5.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    Article 

    Google Scholar 
    6.Ramette A, Tiedje JM. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Micro Ecol. 2007;53:197–207.Article 

    Google Scholar 
    7.Teittinen A, Soininen J. Testing the theory of island biogeography for microorganisms-patterns for spring diatoms. Aquat Micro Ecol. 2015;75:239–50.Article 

    Google Scholar 
    8.Salazar G, Cornejo-Castillo FM, Benitez-Barrios V, Fraile-Nuez E, Alvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10:596–608.Article 

    Google Scholar 
    9.Longhurst AR. Chapter 1 – Toward an ecological geography of the sea. Ecological Geography of the Sea, 2nd ed. Burlington: Academic Press; 2007. p. 1–17.10.Duchinski K, Moyer CL, Hager K, Fullerton H. Fine-scale biogeography and the inference of ecological interactions among neutrophilic iron-oxidizing Zetaproteobacteria as determined by a rule-based microbial network. Front Microbiol. 2019;10:1–11.Article 

    Google Scholar 
    11.Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin. Proc Natl Acad Sci USA. 2006;103:2815–20.CAS 
    Article 

    Google Scholar 
    12.Ruff SE, Biddle JF, Teske AP, Knittel K, Boetius A, Ramette A. Global dispersion and local diversification of the methane seep microbiome. Proc Natl Acad Sci USA. 2015;112:4015–20.CAS 
    Article 

    Google Scholar 
    13.Meyer KS. Chapter One – Islands in a sea of mud: Insights from terrestrial island theory for community assembly on insular marine substrata. In: Curry BE, editor. Advances in Marine Biology. 76: Cambridge, Massachusetts: Academic Press; 2017. p. 1–40.14.Paul WS, Amy DA, Gregory SB. Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar Ecol Prog Ser. 2004;280:129–43.Article 

    Google Scholar 
    15.Perkol-Finkel S, Benayahu Y. Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Mar Environ Res. 2005;59:79–99.CAS 
    Article 

    Google Scholar 
    16.Perkol-Finkel S, Shashar N, Barneah O, Ben-David-Zaslow R, Oren U, Reichart T, et al. Fouling reefal communities on artificial reefs: does age matter? Biofouling. 2005;21:127–40.CAS 
    Article 

    Google Scholar 
    17.Svane I, Petersen JK. On the problems of epibioses, fouling and artificial reefs, a review. Mar Ecol. 2001;22:169–88.Article 

    Google Scholar 
    18.Meyer-Kaiser K, Brooke SD, Sweetman A, Wolf M, Young C. Invertebrate communities on historical shipwrecks in the western Atlantic: relation to islands. Mar Ecol Prog Ser. 2017;566:17–29.Article 

    Google Scholar 
    19.Macarthur RH, Wilson EO, Wilson EO. The theory of island biogeography. Revised ed: Princeton, New Jersey: Princeton University Press; 1967.20.Losos JB, Ricklefs RE, MacArthur RH. The theory of island biogeography revisited. Princeton: Princeton University Press; 2010. xvi, 476 p.21.Stieglitz TC. Habitat engineering by decadal-scale bioturbation around shipwrecks on the Great Barrier Reef mid-shelf. Mar Ecol Prog Ser. 2013;477:29–40.Article 

    Google Scholar 
    22.Hamdan LJ, Salerno JL, Reed A, Joye SB, Damour M. The impact of the Deepwater Horizon blowout on historic shipwreck-associated sediment microbiomes in the northern Gulf of Mexico. Sci Rep. 2018;8:9057.Article 

    Google Scholar 
    23.Church R, Warren D, Cullimore R, Johnston L, Schroeder WW, Patterson W, et al. Archaeological and biological analysis of World War II shipwrecks in the Gulf of Mexico: Artifical reef effect in deep water. New Orleans, LA: U.S. Department of the Interior; 2007. Report No.: MMS 2007-015.24.Mugge RL, Brock ML, Salerno JL, Damour M, Church RA, Lee JS, et al. Deep-sea biofilms, historic shipwreck preservation and the Deepwater Horizon spill. Front Marine Sci. 2019;6:1–17.Article 

    Google Scholar 
    25.Comeau AM, Li WK, Tremblay JE, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. Plos One. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    26.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    27.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    Article 

    Google Scholar 
    28.Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.Article 

    Google Scholar 
    29.Levin LA, Baco AR, Bowden DA, Colaco A, Cordes EE, Cunha MR, et al. Hydrothermal vents and methane seeps: rethinking the sphere of influence. Front Mar Sci. 2016;3:1–23.Article 

    Google Scholar 
    30.Goffredi SK, Orphan VJ. Bacterial community shifts in taxa and diversity in response to localized organic loading in the deep sea. Environ Microbiol. 2010;12:344–63.CAS 
    Article 

    Google Scholar 
    31.Smith CR, Baco-Taylor A. Ecology of whale falls at the deep-sea floor. Oceanography and marine biology: an annual review. London: Abredeen University Press; 2003.32.Smith C, Baco-Taylor A, Glover A. Faunal succession on replicate deep-sea whale falls: time scales and vent-seep affinities. Cah Biol Mar. 2002;43:293–7.
    Google Scholar 
    33.Grupe BM, Krach ML, Pasulka AL, Maloney JM, Levin LA, Frieder CA. Methane seep ecosystem functions and services from a recently discovered southern California seep. Mar Ecol. 2015;36:91–108.CAS 
    Article 

    Google Scholar 
    34.Harris PT. Shelf and deep-sea sedimentary environments and physical benthic disturbance regimes: a review and synthesis. Mar Geol. 2014;353:169–84.Article 

    Google Scholar 
    35.Damour M, Church R, Warren D, Horrell C, Hamdan LJ. Gulf of Mexico Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology (GOM-SCHEMA) Project: studying the effects of a major oil spill on submerged cultural resources. In 2015 Society for Historical Archaeology Annual Conference Proceedings; Seattle, WA: Society for Historical Archaeology; 2016. p. 51–61.36.BOEM. Bureau of Ocean Energy Management Data Center BOEM; 2020. https://www.data.boem.gov/.37.BSEE. Bureau of Safety and Environmental Enforcement (BSEE): Gulf of Mexico OCS Region Facts. New Orleans, Louisiana: Bureau of Safety and Environmental Enforcement; 2020.38.Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudhary C. Marine biogeographic realms and species endemicity. Nat Commun. 2017;8:1057.Article 

    Google Scholar  More

  • in

    Barrier properties of fungal fruit body skins, pileipelles, contribute to protection against water loss

    1.Nobel, P. S. Physicochemical and Environmental Plant Physiology (Academic Press, 2005).
    Google Scholar 
    2.Hsiao, T. C. Plant responses to water stress. Annu. Rev. Plant Physiol. 24, 519–570 (1973).CAS 
    Article 

    Google Scholar 
    3.Schönherr, J. Resistance of plant surfaces to water loss : transport properties of cutin, suberin and associated lipids. In Encyclopedia Plant Physiology, NS Vol. 12B (eds Lange, O. L. et al.) 154–179 (Springer, 1982).
    Google Scholar 
    4.Lendzian, K. J. Gas permeability of plant cuticles: oxygen permeability. Planta 155, 310–315 (1982).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Langenfeld-Heyser, R. Physiological functions of lenticels. In Trees—Contributions to Modern Tree Physiology (eds Rennenberg, H. et al.) 43–56 (Backhuys, 1997).
    Google Scholar 
    6.Riederer, M. & Schreiber, L. Protecting against water loss: analysis of the barrier properties of plant cuticles. J. Exp. Bot. 52, 2023–2032 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Kerstiens, G. Parameterization, comparison, and validation of models quantifying relative change of cuticular permeability with physicochemical properties of diffusants. J. Exp. Bot. 57, 2525–2533 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Schönherr, J. Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. J. Exp. Bot. 57, 2471–2491 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Groh, B., Hübner, C. & Lendzian, K. J. Water and oxygen permeance of phellems isolated from trees: the role of waxes and lenticels. Planta 215, 794–801 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Lendzian, K. J. Survival strategies of plants during secondary growth: barrier properties of phellems and lenticels towards water, oxygen, and carbon dioxide. J. Exp. Bot. 57, 2535–2546 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Renault, H. et al. (2017) A phenol-enriched cuticle is ancestral to lignin evolution in land plants. Nat. Commun. 8, 14713 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Haas, K. Phytochemische und rasterelektronenmikroskopische Untersuchungen zum Oberflächenwachs von Laubmoosen (Bryatae) (Grauer, 1999).
    Google Scholar 
    13.Clémençon, H., Emmett, V. & Emmett, E. E. Cytology and Plectology of the Hymenomycetes (J Cramer, 2012).
    Google Scholar 
    14.Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: their production and development in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) 79–103 (Elsevier Academic Press, 2008).
    Google Scholar 
    15.Halbwachs, H., Simmel, J. & Bässler, C. Tales and mysteries of fungal fruiting: how morphological and physiological traits affect a pileate lifestyle. Fungal Biol. Rev. 30, 36–61 (2016).Article 

    Google Scholar 
    16.Sakamoto, Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. Fungal Biol. Rev. 32, 236–248 (2018).Article 

    Google Scholar 
    17.Straatsma, G., Ayer, F. & Egli, S. Species richness, abundance, and phenology of fungal fruit bodies over 21 years in a Swiss forest plot. Mycol. Res. 105(5), 515–523 (2001).Article 

    Google Scholar 
    18.Kües, U. & Liu, Y. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 54, 141–152 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Beluhan, S. & Ranogajec, A. Chemical composition and non-volatile components of Croatian wild edible mushrooms. Food Chem. 124, 1076–1082 (2011).CAS 
    Article 

    Google Scholar 
    20.Beecher, T. M., Magan, N. & Burton, K. S. Water potentials and soluble carbohydrate concentrations in tissues of freshly harvested and stored mushrooms (Agaricusbisporus). Postharvest Biol. Technol. 22, 121–131 (2001).CAS 
    Article 

    Google Scholar 
    21.Bonnier G, Mangin L (1884) Recherches sur la respiration et la transpiration des champignons. Ann. Sc. Natur., sér. VI, t. XVII:210–30522.Moser, M. Transpirationsschutz bei höheren Pilzen. Schweizerische Zeitschrift für Pilzkunde 42(4), 50–54 (1964).
    Google Scholar 
    23.Pieschel, E. Über die Transpiration und die Wasserversorgung der Hymenomyceten. Bot. Archiv. VIII, 64–104 (1924).
    Google Scholar 
    24.Seybold, A. Weitere Beiträge zur Transpirationsanalyse. IV. Über die Transpiration der Hutpilze. Planta 16, 518–525 (1932).Article 

    Google Scholar 
    25.Becker, M., Kerstiens, G. & Schönherr, J. Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1, 54–60 (1986).CAS 
    Article 

    Google Scholar 
    26.Schreiber, L. & Schönherr, J. Water and Solute Permeability of Plant Cuticles. Measurement and Data Analysis (Springer, 2009).
    Google Scholar 
    27.Schönherr, J. & Lendzian, K. J. A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102, 321–327 (1981).Article 

    Google Scholar 
    28.Weast, R. C. CRC Handbook of Chemistry and Physics: Humidity Constant (CRC Press, 1983).
    Google Scholar 
    29.Riederer, M. & Schneider, G. Comparative study of the composition of waxes extracted from isolated leaf cuticules and from whole leaves of Citrus: evidence for selective extraction. Physiol. Plant 77, 373–384 (1989).CAS 
    Article 

    Google Scholar 
    30.Lendzian, K. J. & Kerstiens, G. Sorption and transport of gases and vapors in plant cuticles. Rev. Environ. Cont. Tox. 121, 65–128 (1991).CAS 

    Google Scholar 
    31.Kerstiens, G., Federholzner, R. & Lendzian, K. J. Dry deposition and cuticular uptake of pollutant gases. Agric. Ecosyst. Environ. 42, 239–253 (1992).CAS 
    Article 

    Google Scholar 
    32.Metzler, H. & Krause, B. Angewandte Statistik (Dt Verlag Wiss, 1983).
    Google Scholar 
    33.Baur, P. Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 20, 167–177 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Stamets, P. Growing Gourmet and Medicinal Mushrooms (Ten Speed Press, 1993).
    Google Scholar 
    35.Moser, M. Fungal growth and fructification under stress conditions. Ukrainian Botanical J. 50, 5–12 (1993).
    Google Scholar 
    36.Pinna, S., Gevry, M. F., Côté, M. & Sirois, L. Factors influencing fructification phenology of edible mushrooms in a boreal mixed forest of Eastern Canada. For. Ecol. Manag. 260(3), 294–301 (2010).Article 

    Google Scholar 
    37.Buller, A. H. R. Researches on Fungi. II. Further Investigations Upon the Production and Liberation of Spores in Hymenomyctes (Hafner Publishing Co, 1922).
    Google Scholar 
    38.Kües, U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol. Mol. Biol. Rev. 64, 316–353 (2000).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Money, N. More g’s than the space shuttle: ballistospore discharge. Mycologia 90, 547–558 (1998).Article 

    Google Scholar 
    40.Husher, J. et al. Evaporative cooling of mushrooms. Mycologia 91, 351–352 (1999).Article 

    Google Scholar 
    41.Dressaire, E., Yamada, L., Song, B. & Roper, M. Mushrooms use convectively created airflows to disperse their spores. Proc. Natl. Acad. Sci. U. S. A. 113, 2833–2838 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.De Groot, P. W., Schaap, P. J., Sonnenberg, A. S., Visser, J. & Van Griensven, L. J. The Agaricus bisporus hypAgene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J. Mol. Biol. 257, 1008–1018 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Wösten, H. A. B. & Wessels, J. G. H. The emergence of fruiting bodies in basidiomycetes. In Growth, Differentiation and Sexuality. The Mycota (A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research), Vol. 1 (eds. Kües, U. & Fischer, R.) (Springer, 2006).44.Itoh, Y. H., Sugai, A., Uda, I. & Itoh, T. The evolution of lipids. Adv. Space Res. 28, 719–724 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Segré, D., Ben-Eli, D., Deamer, D. W. & Lancet, D. The lipid world. Origins Life Evol. Biosphere 31, 119–145 (2001).ADS 
    Article 

    Google Scholar 
    46.Samson, R. A., Stalpers, J. A. & Verkerke, W. A simplified technique to prepare fungal specimens for scanning electronmicroscopy. Cytobios 24, 7–11 (1979).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More