More stories

  • in

    Publisher Correction: Evolutionary assembly of flowering plants into sky islands

    AffiliationsCAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, ChinaHong QianResearch and Collections Center, Illinois State Museum, Springfield, IL, USAHong QianDepartment of Biology, University of Missouri–St. Louis, St. Louis, MO, USARobert E. RicklefsUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Laboratoire d’Ecologie Alpine, Grenoble, FranceWilfried ThuillerAuthorsHong QianRobert E. RicklefsWilfried ThuillerCorresponding authorCorrespondence to
    Hong Qian. More

  • in

    Crop response to El Niño-Southern Oscillation related weather variation to help farmers manage their crops

    The BNNs demonstrated that the average yields of cacao farmer groups, in Sulawesi over distinct time periods, are closely associated with the ENSO OI patterns 9 to 25 months before harvest. The ENSO OI short term pattern explained slightly less (69%) of the variation in the average yield than the long term pattern (77%). We consider both these levels of prediction to be high, however, the short term pattern level was simpler and was used for further analyis. The linear regression between predicted and actual yields indicates that the model will tend to underestimate cacao productivity at high yields (e.g. in excess of 100 kg ha−1 month−1).The predictions made by the BNNs indicated that cacao yields are substantially impacted by ENSO conditions, which accords with prior observations21. The fertilizer response varied according to the ENSO profile: the greatest predicted response was in the Neutral ENSO profile with a smaller response under the MinCent ENSO profile, especially when unfertilized yields were low, and essentially no response under the MaxCent ENSO profile. Hence, the analysis provides insights into the appropriate fertilizer regime for distinct ENSO OI patterns in the period 9 months before harvest. We also note that recent methods to improve prediction of future ENSO OI patterns make it possible to predict them with reasonable accuracy for up to 1 year3. Thus, it is possible to relate average cacao crop performance and management practices directly to ENSO patterns in a given region without the need for weather data when the following conditions are met: (1) data exist on crop performance in any given site over time with distinct management practices; and (2) the weather patterns are driven by ENSO OI. We have used cacao as proof-of-principle, and suggest that this principle can readily be applied to other crops.A great advantage that Bayesian methods have over other machine learning approaches is that they can utilise variance based probability distributions to predict the likelihood of any given outcome. The model was used to predict the most likely monthly yield and expected standard deviation from each farm group under a specific ENSO profile when either fertilized or unfertilized. The standard deviations attained across all predicted responses was remarkably low, typically less than 1 kg ha−1 per month. Both the construction of the model and the subsequent predictions were based upon the mean yield data from 10 farms in each group at each monthly harvest under a single management type. As a result, all variations in yield across those 10 farms would have been excluded from the network constructed. As a consequence, while the predictions returned by the model might precisely reflect the mean response from each group, the limited input data will mean that the range of possible outcomes under any predicted scenario is likely to be underestimated. Up to now we have established proof-of-principle stage, the next stage will be first to improve the assessment of the predicted probability distributions and then to develop channels for communicating the results of the analysis to farmers followed by appraisal of their opinions and use of the information provided. Options for improving estimates of the probability distribution include both incorporating all observations from within each group, to ensure that farm-to-farm variance is adequately captured, and to extend the observations across more seasons to ensure that the variability of response to contrasting ENSO profiles is better represented.The analysis presented here is based on the average yields for each group of farmers. However, previous analysis indicates much variation in yield within the farmers groups20. Furthermore, those farmers with higher average yields tended to maintain their yield advantage relative to those with lower yields, even when conditions were adverse. This supports the view that the differences in yield between the high average yield and the low average yield farmers are due to management skills, rather than more favorable soils and weather conditions20. This suggests that if the average yields of individual farmers relative to the mean of all farmers are known, then the ENSO predictions can be used to predict their yield levels, and also their response to fertilizer applications.The demonstration that on farm yields and response to one management variable, fertilizer, can be linked directly to ENSO OI data supports the view that, in the future, with cacao or other crops, data on farm yields obtained with distinct management practices can be coupled with ENSO OI data to both determine probable crop yields and also to define differential crop response to management at specific sites under distinct ENSO OI patterns without the need for accurate weather data. The ENSO OI data exists, what is often lacking is data on yield with distinct management practices. To obtain this type of information in heterogeneous growing environments using traditional Randomized Control Trials is simply not possible. However, we suggest that schemes, such as those to collect the cacao data we have here with distinct management treatments superimposed on farmers fields20, can be used. Furthermore, even without superimposing management practices, simply monitoring crop performance, weather and the variation in management practices of farmers can be used to relate yield to variation in weather patterns and management28,29,30. However, this is only effective if the data of a large number of cropping events is brought together for analysis, which requires social organization and the willingness to share data28. Our experience with cacao indicates that small farmers are willing to share data, but an external agency is required to manage the overall process of data collection and compilation20. Similar experiences with CropCheck and in Australia and Chile support this point of view31,32. The value of shared information through formation of farmer groups is well established33,34 and we suggest that the methodology described here could be implemented through farmer groups. Hence, through monitoring of crop performance and management coupled with Bayesian based machine learning tools and currently available ENSO OI information and predictions, farmers and agronomists can adjust management practices, in this case fertilizer applications, according to ENSO profiles. This will require social organization and support for the collection, compilation and analysis of the data; however, we believe it offers a route to provide farmers with an improved and cost effective knowledge base, derived from sparse data resources, to better manage their crops.Social organization is not only required for the collection of data to be analysed, but also for the disemination to farmers of the knowledge generated though its interpretation. Current tendencies of providing farmers with the basis to make better decisions recognise the restrictions of the linear model for extension and tend towards active farmer participation in the interpretation of data through such mechanisms as farmers field schools35, formation of farmers groups (see for example Montaner 200434) and innnovation networks (see for example Klerkx et al. 201036, Wood et al. 201437, World Bank, 200838). Further development of farmers´organizations and innovation networks will be required to effectively deploy the concepts presented in this paper.The principles developed here could be applied to other crops, such as coffee, olive and oil palm, and this type of analysis could be extended to other regions, such as Africa where data on crop response to management and weather variation is sparse. At the same time, we note that additional information on, inter alia, crop management, topography and soil types could substantially improve the predictive power of the networks. Furthermore, these machine learning techniques can be used to mine existing big data sets collected by large commercial interests, to discover relationships between environment, management and crop production, and thereby supplement, at low cost, the findings generated by formal controlled scientific experiments. In the case of small farmers, social organization and external support will be required.There are several caveats on the use of this proposed methodology. First, the relationship between the ENSO phenomenon and the weather patterns will be specific to each location or recommendation domain. Hence, models and inferences for management cannot be readily transferred from one recommendation domain to another. Furthermore, the definition of the area that comprises a recommendation domain is not simple. Thus, whilst we consider the principles developed here to be universal, the models themselves will be specific to each recommendation domain, which are currently still difficult to define but new approaches are becoming increasingly available to do so (e.g. Rubiano et. al. 201618; Rattalino Edreira et al. 201817).A further complication of the suggested approach is the lack of understanding of the underlying mechanisms that establish the associations. This deficiency limits the ability to identify the specific causes of different crop productivities, and thus limits our ability to resolve these unidentified problems.Growers decisions on how much to invest in their crop production practices depends on the expected prices of the commodities they produce: when prices are expected to be high, they will invest more, and when prices are low they may even abandon their crops. It has not escaped our notice that the predictive power of the machine learning resources would also provide the cacao industry as a whole with insights into the fluctuations in future cacao supply and hence prices. This would allow farmers and others in the cacao supply chain to minimize uncertainty and better manage the overall industry. The experiences strongly support the idea that machine learning is a useful tool in our armoury opening the opportunity to utilize information from on farm performance coupled with publicly available data to improve agricultural management. More

  • in

    Diet and gut microbiome enterotype are associated at the population level in African buffalo

    1.Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).10.Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Reese, T. & Dunn, R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294–18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Allison, M. J. Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci. 29, 797–807 (1969).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Matthews, C. et al. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10, 115–132 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Cui, K., Qi, M., Wang, S., Diao, Q. & Zhang, N. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Sci. Rep. 9, 16612 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Moeller, A. H. et al. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun. 3, 1179 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Knights, D. et al. Rethinking “Enterotypes. Cell Host Microbe 16, 433–437 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Jeffery, I. B., Claesson, M. J., O’Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Ren, T. et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5, 163 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. USA 116, 23588–23593 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bergmann, G. T., Craine, J. M., Robeson, M. S. 2nd & Fierer, N. Seasonal shifts in diet and gut microbiota of the American Bison (Bison bison). PLoS ONE 10, e0142409 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Couch, C. E. et al. Bighorn sheep gut microbiomes associate with genetic and spatial structure across a metapopulation. Sci. Rep. 10, 6582 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Burkepile, D. E. & Parker, J. D. Recent advances in plant-herbivore interactions. F1000Res. 6, 119 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Dearing, M. D. & Kohl, K. D. Beyond fermentation: other important services provided to endothermic herbivores by their gut microbiota. Integr. Comp. Biol. 57, 723–731 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Sood, U., Bajaj, A., Kumar, R., Khurana, S. & Kalia, V. C. Infection and microbiome: impact of tuberculosis on human gut microbiome of Indian cohort. Indian J. Microbiol. 58, 123–125 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Seetharam, S. & Glass, A. Respiratory infections and their effect on the paediatric lung microbiome. Curr. Opin. Allergy Clin. Immunol. 32, 82–86 (2019).
    Google Scholar 
    32.Worthington, R. W. & Bigalke, R. D. A review of the infectious disease of African wild ruminants. Onderstepoort J. Vet. Res. 68, 291–323 (2001).CAS 
    PubMed 

    Google Scholar 
    33.Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity-biodiversity relationship. Nature 416, 427–430 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bastille-Rousseau, G. et al. Climate change can alter predator—prey dynamics and population viability of prey. Oecologia 186, 141–150 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    36.DuBowy, P. J. Waterfowl communities and seasonal environments: temporal variability in interspecific competition. Ecology 69, 1439–1453 (1988).Article 

    Google Scholar 
    37.Sun, C.-H., Liu, H.-Y., Liu, B., Yuan, B.-D. & Lu, C.-H. Analysis of the gut microbiome of wild and captive Père David’s deer. Front. Microbiol. 10, 2331 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Haworth, S. E., White, K. S., Côté, S. D. & Shafer, A. B. A. Space, time and captivity: quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS Microbiol. Ecol. 95, fiz095 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Li, J.-G. et al. The gut bacterial community composition of wild cervus albirostris (white-lipped deer) detected by the 16S ribosomal RNA gene sequencing. Curr. Microbiol. 74, 1100–1107 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Mao, S., Huo, W. & Zhu, W. Use of pyrosequencing to characterize the microbiota in the ileum of goats fed with increasing proportion of dietary grain. Curr. Microbiol. 67, 341–350 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lau, S. K. P. et al. Differential microbial communities of omnivorous and herbivorous cattle in Southern China. Comput. Struct. Biotechnol. J. 16, 54–60 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Turner, W. C., Jolles, A. E. & Owen-Smith, N. Alternating sexual segregation during the mating season by male African buffalo (Syncerus caffer). J. Zool. 267, 291 (2005).Article 

    Google Scholar 
    43.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Gondaira, S. et al. Immunosuppression in cows following intramammary infusion of Mycoplasma bovis. Infect. Immun. https://doi.org/10.1128/IAI.00521-19 (2019).45.Jones, C. Bovine Herpesvirus 1 counteracts immune responses and immune-surveillance to enhance pathogenesis and virus transmission. Front. Immunol. 10, 1008 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Kapil, S., Walz, P., Wilkerson, M. & Minocha, H. Immunity and immunosuppression. Bovine viral diarrhea virus: diagnosis, management and control (2005).47.Hijmans, R. J. & van Etten, J. raster: Geographic data analysis and modeling. R package version 2, (2016).48.Pebesma, E. & Bivand, R. S. S classes and methods for spatial data: the sp package. R. N. 5, 9–13 (2005).
    Google Scholar 
    49.Bivand, R., Keitt, T., Rowlingson, B. & Pebesma, E. rgdal: Bindings for the geospatial data abstraction library. R package version 1, (2016).50.Bivand, R. & Lewin-Koh, N. maptools: Tools for Reading and Handling Spatial Objects. R package version 0.9-2. (2013).51.Bivand, R. & Rundel, C. rgeos: interface to geometry engine. Open source (GEOS). R package ver. 0.3-8. (2013).52.Kock, M., Meltzer, D. & Burroughs, R. Chemical and Physical Restraint of Wild Animals: A Training and Field Manual for African Species (IWCS, 2006).53.Beechler, B. R., Jolles, A. E. & Ezenwa, V. O. Evaluation of hematologic values in free-ranging African buffalo (Syncerus caffer). J. Wildl. Dis. 45, 57–66 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Couch, C. E. et al. Serum biochemistry panels in African buffalo: Defining reference intervals and assessing variability across season, age and sex. PLoS ONE 12, e0176830 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Glidden, C. K. et al. Detection of pathogen exposure in African buffalo using non-specific markers of inflammation. Front. Immunol. 8, 1944 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Ezenwa, V. O., Jolles, A. E. & O’Brien, M. P. A reliable body condition scoring technique for estimating condition in African buffalo. Afr. J. Ecol. 47, 476–481 (2009).Article 

    Google Scholar 
    57.Ezenwa, V. O. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int. J. Parasitol. 34, 535–542 (2004).PubMed 
    Article 

    Google Scholar 
    58.Christianson, D. & Creel, S. Fecal chlorophyll describes the link between primary production and consumption in a terrestrial herbivore. Ecol. Appl. 19, 1323–1335 (2009).PubMed 
    Article 

    Google Scholar 
    59.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).62.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–44 (2015).Article 

    Google Scholar 
    64.Reynolds, A. P., Richards, G., de la Iglesia, B. & Rayward-Smith, V. J. Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J. Math. Model. Algorithms 5, 475–504 (2006).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    65.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster Analysis Basics and Extensions. (2019).66.Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Simul. Comput. 3, 1–27 (1974).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    67.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    68.Oksanen, J. et al. The vegan package. Community Ecol. package 10, 631–637 (2007).
    Google Scholar 
    69.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Flannery, J. E. et al. Gut feelings begin in childhood: the gut metagenome correlates with early environment, caregiving, and behavior. MBio 11, e02780–19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Sharpton, T. et al. Development of inflammatory bowel disease is linked to a longitudinal restructuring of the gut metagenome in mice. mSystems 2, e00036-17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 23, 743–757 (2013).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar  More

  • in

    The island rule explains consistent patterns of body size evolution in terrestrial vertebrates

    1.Foster, J. B. Evolution of mammals on islands. Nature 202, 234–235 (1964).Article 

    Google Scholar 
    2.Baeckens, S. & Van Damme, R. The island syndrome. Curr. Biol. 30, R338–R339 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Whittaker, R. J. & Fernández-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (Oxford Univ. Press, 2007).4.Lomolino, M. V. Body size of mammals on islands: the island rule reexamined. Am. Nat. 125, 310–316 (1985).Article 

    Google Scholar 
    5.Lomolino, M. V. Body size evolution in insular vertebrates: generality of the island rule. J. Biogeogr. 32, 1683–1699 (2005).Article 

    Google Scholar 
    6.Meiri, S., Cooper, N. & Purvis, A. The island rule: made to be broken? Proc. R. Soc. B 275, 141–148 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Meiri, S., Dayan, T. & Simberloff, D. The generality of the island rule reexamined. J. Biogeogr. 33, 1571–1577 (2006).Article 

    Google Scholar 
    8.Meiri, S., Dayan, T. & Simberloff, D. Body size of insular carnivores: little support for the island rule. Am. Nat. 163, 469–479 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lomolino, M. V., Sax, D. F., Palombo, M. R. & van der Geer, A. A. Of mice and mammoths: evaluations of causal explanations for body size evolution in insular mammals. J. Biogeogr. 39, 842–854 (2012).Article 

    Google Scholar 
    10.Millien, V. Relative effects of climate change, isolation and competition on body-size evolution in the Japanese field mouse, Apodemus argenteus. J. Biogeogr. 31, 1267–1276 (2004).Article 

    Google Scholar 
    11.Angerbjorn, A. Gigantism in island populations of wood mice (Apodemus) in Europe. Oikos 47, 47–56 (1986).Article 

    Google Scholar 
    12.Schillaci, M. A., Meijaard, E. & Clark, T. The effect of island area on body size in a primate species from the Sunda Shelf islands. J. Biogeogr. 36, 362–371 (2009).Article 

    Google Scholar 
    13.Radtkey, R. R., Fallon, S. M. & Case, T. J. Character displacement in some Cnemidophorus lizards revisited: a phylogenetic analysis. Proc. Natl Acad. Sci. USA 94, 9740–9745 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.McClain, C. R., Durst, P. A., Boyer, A. G. & Francis, C. D. Unravelling the determinants of insular body size shifts. Biol. Lett. 9, 20120989 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Clegg, S. M. & Owens, P. The ‘island rule’ in birds: medium body size and its ecological explanation. Proc. R. Soc. B 269, 1359–1365 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Raia, P. & Meiri, S. The island rule in large mammals: paleontology meets ecology. Evolution 60, 1731–1742 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Bromham, L. & Cardillo, M. Primates follow the ‘island rule’: implications for interpreting Homo floresiensis. Biol. Lett. 3, 398–400 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Montesinos, R., da Silva, H. R. & de Carvalho, A. L. G. The ‘island rule’ acting on anuran populations (Bufonidae: Rhinella ornata) of the Southern Hemisphere. Biotropica 44, 506–511 (2012).Article 

    Google Scholar 
    19.Boback, S. M. Body size evolution in snakes: evidence from island populations. Copeia 2003, 81–94 (2003).Article 

    Google Scholar 
    20.Meiri, S. Size evolution in island lizards. Glob. Ecol. Biogeogr. 16, 702–708 (2007).Article 

    Google Scholar 
    21.Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).Article 

    Google Scholar 
    22.Boyer, A. G. & Jetz, W. Biogeography of body size in Pacific island birds. Ecography 33, 369–379 (2010).
    Google Scholar 
    23.Herczeg, G., Gonda, A. & Merilä, J. Evolution of gigantism in nine‐spined sticklebacks. Evolution 63, 3190–3200 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Palmer, M. Testing the ‘island rule’ for a tenebrionid beetle (Coleoptera, Tenebrionidae). Acta Oecol. 23, 103–107 (2002).Article 

    Google Scholar 
    25.McClain, C. R., Boyer, A. G. & Rosenberg, G. The island rule and the evolution of body size in the deep sea. J. Biogeogr. 33, 1578–1584 (2006).Article 

    Google Scholar 
    26.Biddick, M., Hendriks, A. & Burns, K. Plants obey (and disobey) the island rule. Proc. Natl Acad. Sci. USA 116, 17632–17634 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Lokatis, S. & Jeschke, J. M. The island rule: an assessment of biases and research trends. J. Biogeogr. 45, 289–303 (2018).Article 

    Google Scholar 
    28.Gurevitch, J., Koricheva, J., Nakagawa, S. & Stewart, G. Meta-analysis and the science of research synthesis. Nature 555, 175–182 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Nakagawa, S. & Santos, E. S. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    30.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    31.Atchley, W. R., Gaskins, C. T. & Anderson, D. Statistical properties of ratios. I. Empirical results. Syst. Zool. 25, 137–148 (1976).Article 

    Google Scholar 
    32.Prairie, Y. T. & Bird, D. F. Some misconceptions about the spurious correlation problem in the ecological literature. Oecologia 81, 285–288 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Phillips, L. B., Hansen, A. J. & Flather, C. H. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production. Remote Sens. Environ. 112, 3538–3549 (2008).Article 

    Google Scholar 
    34.Olesen, J. M. & Valido, A. Lizards as pollinators and seed dispersers: an island phenomenon. Trends Ecol. Evol. 18, 177–181 (2003).Article 

    Google Scholar 
    35.Zamora‐Camacho, F., Reguera, S. & Moreno‐Rueda, G. Bergmann’s rule rules body size in an ectotherm: heat conservation in a lizard along a 2200‐metre elevational gradient. J. Evol. Biol. 27, 2820–2828 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Valenzuela-Sánchez, A., Cunningham, A. A. & Soto-Azat, C. Geographic body size variation in ectotherms: effects of seasonality on an anuran from the southern temperate forest. Front. Zool. 12, 37 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Ashton, K. G. Do amphibians follow Bergmann’s rule? Can. J. Zool. 80, 708–716 (2002).Article 

    Google Scholar 
    38.Lajeunesse, M. J. Bias and correction for the log response ratio in ecological meta‐analysis. Ecology 96, 2056–2063 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Lomolino, M. V. et al. Of mice and mammoths: generality and antiquity of the island rule. J. Biogeogr. 40, 1427–1439 (2013).Article 

    Google Scholar 
    40.Boback, S. M. & Guyer, C. Empirical evidence for an optimal body size in snakes. Evolution 57, 345–451 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Meiri, S., Raia, P. & Phillimore, A. B. Slaying dragons: limited evidence for unusual body size evolution on islands. J. Biogeogr. 38, 89–100 (2011).Article 

    Google Scholar 
    42.Brown, J. H., Marquet, P. A. & Taper, M. L. Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573–584 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Damuth, J. Cope’s rule, the island rule and the scaling of mammalian population density. Nature 365, 748–750 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Raia, P., Carotenuto, F. & Meiri, S. One size does not fit all: no evidence for an optimal body size on islands. Glob. Ecol. Biogeogr. 19, 475–484 (2010).
    Google Scholar 
    45.Maurer, B. The evolution of body size in birds. II. The role of reproductive power. Evol. Ecol. 12, 935–944 (1998).Article 

    Google Scholar 
    46.Blackburn, T. M. & Gaston, K. J. The distribution of body sizes of the world’s bird species. Oikos 70, 127–130 (1994).Article 

    Google Scholar 
    47.Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).Article 

    Google Scholar 
    48.McNab, B. K. Minimizing energy expenditure facilitates vertebrate persistence on oceanic islands. Ecol. Lett. 5, 693–704 (2002).Article 

    Google Scholar 
    49.McNab, B. K. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia 164, 13–23 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Durst, P. A. & Roth, V. L. Mainland size variation informs predictive models of exceptional insular body size change in rodents. Proc. R. Soc. B 282, 20150239 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Tobias, J. A., Ottenburghs, J. & Pigot, A. L. Avian diversity: speciation, macroevolution, and ecological function. Annu. Rev. Ecol. Evol. Syst. 51, 533–560 (2020).Article 

    Google Scholar 
    52.Li, J.-W. et al. Rejecting strictly allopatric speciation on a continental island: prolonged postdivergence gene flow between Taiwan (Leucodioptron taewanus, Passeriformes Timaliidae) and Chinese (L. canorum canorum) hwameis. Mol. Ecol. 19, 494–507 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Somveille, M., Rodrigues, A. S. & Manica, A. Why do birds migrate? A macroecological perspective. Glob. Ecol. Biogeogr. 24, 664–674 (2015).Article 

    Google Scholar 
    54.Blondel, J. Evolution and ecology of birds on islands: trends and prospects. Vie Milieu 50, 205–220 (2000).
    Google Scholar 
    55.Grant, P. R. in Evolution on Islands (1998).56.Novosolov, M. et al. Power in numbers. Drivers of high population density in insular lizards. Glob. Ecol. Biogeogr. 25, 87–95 (2016).Article 

    Google Scholar 
    57.Santini, L. et al. Global drivers of population density in terrestrial vertebrates. Glob. Ecol. Biogeogr. 27, 968–979 (2018).Article 

    Google Scholar 
    58.Castellano, S. & Giacoma, C. Morphological variation of the green toad, Bufo viridis, in Italy: a test of causation. J. Herpetol. 32, 540–550 (1998).Article 

    Google Scholar 
    59.Ashton, K. G. Body size variation among mainland populations of the western rattlesnake (Crotalus viridis). Evolution 55, 2523–2533 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Athanassiou, A., van der Geer, A. A. & Lyras, G. A. Pleistocene insular Proboscidea of the eastern Mediterranean: a review and update. Quat. Sci. Rev. 218, 306–321 (2019).Article 

    Google Scholar 
    61.Herridge, V. L. & Lister, A. M. Extreme insular dwarfism evolved in a mammoth. Proc. R. Soc. B 279, 3193–3200 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Steadman, D. W. Extinction and Biogeography of Tropical Pacific Birds (Univ. Chicago Press, 2006).64.MacPhee, R. D. & Horovitz, I. New craniodental remains of the Quaternary Jamaican monkey Xenothrix mcgregori (Xenotrichini, Callicebinae, Pitheciidae), with a reconsideration of the Aotus hypothesis. Am. Mus. Novit. 2004, 3434 (2004).65.MacPhee, R. & Fleagle, J. Postcranial remains of Xenothrix mcgregori (Primates, Xenotrichidae) and other Late Quaternary mammals from Long Mile Cave, Jamaica. Bull. Am. Mus. Nat. Hist. 206, 287–321 (1991).
    Google Scholar 
    66.Pregill, G. Body size of insular lizards: a pattern of Holocene dwarfism. Evolution 40, 997–1008 (1986).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Hansen, D. M., Donlan, C. J., Griffiths, C. J. & Campbell, K. J. Ecological history and latent conservation potential: large and giant tortoises as a model for taxon substitutions. Ecography 33, 272–284 (2010).
    Google Scholar 
    68.Boyer, A. G. Extinction patterns in the avifauna of the Hawaiian islands. Divers. Distrib. 14, 509–517 (2008).Article 

    Google Scholar 
    69.White, A. W., Worthy, T. H., Hawkins, S., Bedford, S. & Spriggs, M. Megafaunal meiolaniid horned turtles survived until early human settlement in Vanuatu, southwest Pacific. Proc. Natl Acad. Sci. USA 107, 15512–15516 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Alcover, J. A., Sans, A. & Palmer, M. The extent of extinctions of mammals on islands. J. Biogeogr. 25, 913–918 (1998).Article 

    Google Scholar 
    71.Steadman, D. W. Prehistoric extinctions of Pacific island birds: biodiversity meets zooarchaeology. Science 267, 1123–1131 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 24820 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    73.Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction‐driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).Article 

    Google Scholar 
    74.van der Geer, A. A. E. Changing invaders: trends of gigantism in insular introduced rats. Environ. Conserv. 45, 203–211 (2018).Article 

    Google Scholar 
    75.van der Geer, A. A. E., Lomolino, M. V. & Lyras, G. ‘On being the right size’ – do aliens follow the rules? J. Biogeogr. 45, 515–529 (2018).Article 

    Google Scholar 
    76.Mathys, B. A. & Lockwood, J. L. Rapid evolution of great kiskadees on Bermuda: an assessment of the ability of the island rule to predict the direction of contemporary evolution in exotic vertebrates. J. Biogeogr. 36, 2204–2211 (2009).Article 

    Google Scholar 
    77.Quinn, J. F. & Dunham, A. E. On hypothesis testing in ecology and evolution. Am. Nat. 122, 602–617 (1983).Article 

    Google Scholar 
    78.McGill, B. J. & Nekola, J. C. Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos 119, 591–603 (2010).Article 

    Google Scholar 
    79.Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Krause, M. A., Burghardt, G. M. & Gillingham, J. C. Body size plasticity and local variation of relative head and body size sexual dimorphism in garter snakes (Thamnophis sirtalis). J. Zool. 261, 399–407 (2003).Article 

    Google Scholar 
    81.Krystufek, B., Tvrtkovic, N., Paunovic, M. & Ozkan, B. Size variation in the northern white-breasted hedgehog Erinaceus roumanicus: latitudinal cline and the island rule. Mammalia 73, 299–306 (2009).Article 

    Google Scholar 
    82.Kubo, M. O. & Takatsuki, S. Geographical body size clines in sika deer: path analysis to discern amongst environmental influences. Evol. Biol. 42, 115–127 (2015).Article 

    Google Scholar 
    83.Kuchling, G., Rhodin, A. G., Ibarrondo, B. R. & Trainor, C. R. A new subspecies of the snakeneck turtle Chelodina mccordi from Timor-Leste (East Timor) (Testudines: Chelidae). Chelonian Conserv. Biol. 6, 213–222 (2007).Article 

    Google Scholar 
    84.Kuo, C.-Y., Lin, Y.-T. & Lin, Y.-S. Sexual size and shape dimorphism in an agamid lizard, Japalura swinhonis (Squamata: Lacertilia: Agamidae). Zool. Stud. 48, 351–361 (2009).
    Google Scholar 
    85.Kurta, A. & Ferkin, M. The correlation between demography and metabolic rate: a test using the beach vole (Microtus breweri) and the meadow vole (Microtus pennsylvanicus). Oecologia 87, 102–105 (1991).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Kutrup, B., Cakir, E., Colak, Z., Bulbul, U. & Karaoglu, H. Age and growth of the green toad, Bufo viridis (Laurenti, 1768) from an island and a mainland population in Giresun, Turkey. J. Anim. Vet. Adv. 10, 1469–1472 (2011).Article 

    Google Scholar 
    87.Kwet, A., Steiner, J. & Zillikens, A. A new species of Adenomera (Amphibia: Anura: Leptodactylidae) from the Atlantic rain forest in Santa Catarina, southern Brazil. Stud. Neotrop. Fauna Environ. 44, 93–107 (2009).Article 

    Google Scholar 
    88.Lampert, K. P., Bernal, X. E., Rand, A. S., Mueller, U. G. & Ryan, M. J. Island populations of Physalaemus pustulosus: history influences genetic diversity and morphology. Herpetologica 63, 311–319 (2007).Article 

    Google Scholar 
    89.Lawlor, T. E. The evolution of body size in mammals: evidence from insular populations in Mexico. Am. Nat. 119, 54–72 (1982).Article 

    Google Scholar 
    90.Lee, D. E. et al. Growth, age at maturity, and age-specific survival of the arboreal salamander (Aneides lugubris) on Southeast Farallon Island, California. J. Herpetol. 46, 64–71 (2012).Article 

    Google Scholar 
    91.Li, Y. et al. Reduced predator species richness drives the body gigantism of a frog species on the Zhoushan Archipelago in China. J. Anim. Ecol. 80, 171–182 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Libois, R. M. & Fons, R. Le mulot des Iles d’Hyeres: un cas de gigantisme insulaire. Vie Milieu 40, 217–222 (1990).
    Google Scholar 
    93.Lichtenbelt, W. D. V. & Albers, K. B. Reproductive adaptations of the green iguana on a semiarid island. Copeia 3, 790–798 (1993).Article 

    Google Scholar 
    94.Lim, B. The distribution, food habits and parasite patterns of the leopard cat (Prionailurus bengalensis) in Peninsular Malaysia. J. Wildl. Parks 17, 17–27 (1999).
    Google Scholar 
    95.Lin, L.-H., Mao, F., Chen, C. & Ji, X. Reproductive traits of the gray ratsnake Ptyas korros from three geographically distinct populations. Curr. Zool. 58, 820–827 (2012).Article 

    Google Scholar 
    96.Lindell, L. E., Forsman, A. & Merila, J. Variation in number of ventral scales in snakes: effects on body size, growth rate and survival in the adder, Vipera berus. J. Zool. 230, 101–115 (1993).Article 

    Google Scholar 
    97.Ljubisavljević, K., Džukić, G., Vukov, T. & Kalezić, M. Morphological variability of the Hermann’s tortoise (Testudo hermanni) in the central Balkans. Acta Herpetol. 7, 253–262 (2012).
    Google Scholar 
    98.Lo Cascio, P. & Corti, C. Indagini sull’ecologia dei rettili sauri della RNO e del SIC ‘Isola di Lampedusa’. Naturalista Sicil. 32, 319–354 (2008).
    Google Scholar 
    99.Lo Cascio, P. & Pasta, S. Preliminary data on the biometry and the diet of a micro-insular population of Podarcis wagleriana (Reptilia: Lacertidae). Acta Herpetol. 1, 147–152 (2006).
    Google Scholar 
    100.Lo Valvo, M. & Giacalone, G. Biometrical analyses of a Sicilian green toad, Bufo siculus (Stõck et al. 2008), population living in Sicily. Int. J. Morphol. 31, 681–686 (2013).Article 

    Google Scholar 
    101.Long, E. S., Courtney, K. L., Lippert, J. C. & Wall-Scheffler, C. M. Reduced body size of insular black-tailed deer is caused by slowed development. Oecologia 189, 675–685 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.López-Martín, J., Ruiz-Olmo, J. & Padró, I. Comparison of skull measurements and sexual dimorphism between the Minorcan pine marten (Martes martes minoricensis) and the Iberian pine marten (M. m. martes): a case of insularity. Mamm. Biol. 71, 13–24 (2006).Article 

    Google Scholar 
    103.Lötters, S. et al. Bio-sketches and partitioning of sympatric reed frogs, genus Hyperolius (Amphibia; Hyperoliidae), in two humid tropical African forest regions. J. Nat. Hist. 38, 1969–1997 (2004).Article 

    Google Scholar 
    104.Luiselli, L., Filippi, E. & Capula, M. Geographic variation in diet composition of the grass snake (Natrix natrix) along the mainland and an island of Italy: the effects of habitat type and interference with potential competitors. Herpetol. J. 15, 221–230 (2005).
    Google Scholar 
    105.Luiselli, L., Petrozzi, F., Mebert, K., Zuffi, M. A. L. & Amori, G. Resource partitioning and dwarfism patterns between sympatric snakes in a micro-insular Mediterranean environment. Ecol. Res. 30, 527–535 (2015).Article 

    Google Scholar 
    106.Luz, A. C., Vicente, L. & Monasterio, C. in Mainland and Insular Lizards: A Mediterranean Perspective (eds Corti, C. et al.) 111–123 (Firenze Univ. Press, 2006).107.Lymberakis, P., Poulakakis, N., Kaliontzopoulou, A., Valakos, E. & Mylonas, M. Two new species of Podarcis (Squamata; Lacertidae) from Greece. Syst. Biodivers. 6, 307–318 (2008).Article 

    Google Scholar 
    108.Lynch, J., Conroy, J., Kitchener, A., Jefferies, D. & Hayden, T. Variation in cranial form and sexual dimorphism among five European populations of the otter Lutra lutra. J. Zool. 238, 81–96 (1996).Article 

    Google Scholar 
    109.Lyon, M. W. Jr. Mammals collected in eastern Sumatra by Dr. WL Abbott during 1903, 1906, and 1907, with descriptions of new species and subspecies. Proc. US Natl Mus. 34, 619–679 (1908).Article 

    Google Scholar 
    110.Lyon, M. W. Mammals of Banka, Mendanau, and Billiton islands, between Sumatra and Borneo. Proc. US Natl Mus. 31, 575–612 (1906).Article 

    Google Scholar 
    111.Lyon, M. W. Mammals collected by Dr. WL Abbott on Borneo and some of the small adjacent islands. Proc. US Natl Mus. 40, 53–146 (1911).Article 

    Google Scholar 
    112.Lyon, M. W. Tree shrews: an account of the mammalian family Tupaiidae. Proc. US Natl Mus. 45, 1–188 (1913).Article 

    Google Scholar 
    113.Lyon, M. W. Mammals collected by Dr. WL Abbott on the chain of islands lying off the western coast of Sumatra, with descriptions of twenty-eight new species and subspecies. Proc. US Natl Mus. 52, 437–462 (1916).Article 

    Google Scholar 
    114.Maddock, S. Systematics and Phylogeography of Seychelles Amphibians. PhD thesis, Univ. College London (2016).115.Madeira, B. D. C. M. A. Sexual Dimorphism and Reproductive Phenology of Common Birds in São Tomé Island: Conservation Implications. PhD thesis, Univ. de Lisboa (2018).116.Madsen, T. & Shine, R. Phenotypic plasticity in body sizes and sexual size dimorphism in European grass snakes. Evolution 47, 321–325 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Mageski, M. et al. The island rule in the Brazilian frog Phyllodytes luteolus (Anura: Hylidae): incipient gigantism? Zoologia 32, 329–333 (2015).Article 

    Google Scholar 
    118.Magnanou, E., Fons, R., Blondel, J. & Morand, S. Energy expenditure in Crocidurinae shrews (Insectivora): is metabolism a key component of the insular syndrome? Comp. Biochem. Physiol. A 142, 276–285 (2005).Article 
    CAS 

    Google Scholar 
    119.Maharadatunkamsi, H. S., Kitchener, D. & Schmitt, L. Relationships between morphology, genetics and geography in the cave fruit bat Eonycteris spelaea (Dobson, 1871) from Indonesia. Biol. J. Linn. Soc. 79, 511–522 (2003).Article 

    Google Scholar 
    120.Major, R. E. Latitudinal and insular variation in morphology of a small Australian passerine: consequences for dispersal distance and conservation. Aust. J. Zool. 60, 210–218 (2012).Article 

    Google Scholar 
    121.Mallick, S., Driessen, M. & Hocking, G. Biology of the southern brown bandicoot (Isoodon obesulus) in south-eastern Tasmania. II. Demography. Aust. Mammal. 20, 339–347 (1998).Article 

    Google Scholar 
    122.Malmquist, M. G. Character displacement and biogeography of the pygmy shrew in northern Europe. Ecology 66, 372–377 (1985).Article 

    Google Scholar 
    123.Manier, M. K. Geographic variation in the long-nosed snake, Rhinocheilus lecontei (Colubridae): beyond the subspecies debate. Biol. J. Linn. Soc. 83, 65–85 (2004).Article 

    Google Scholar 
    124.Manríquez-Morán, N. L., Cruz, M. V.-S. & Mendez-De La Cruz, F. R. Reproductive biology of the parthenogenetic lizard, Aspidoscelis cozumela. Herpetologica 61, 435–439 (2005).Article 

    Google Scholar 
    125.Marinelli, L. & Millar, J. S. The ecology of beach-dwelling Peromyscus maniculatus on the Pacific coast. Can. J. Zool. 67, 412–417 (1989).Article 

    Google Scholar 
    126.Martins, M., Araujo, M. S., Sawaya, R. J. & Nunes, R. Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of neotropical pitvipers (Bothrops). J. Zool. 254, 529–538 (2001).Article 

    Google Scholar 
    127.Martins, M., Arnaud, G. & Avila-Villegas, H. Juvenile recruitment, early growth, and morphological variation in the endangered Santa Catalina Island rattlesnake, Crotalus catalinensis. Herpetol. Conserv. Biol. 7, 376–382 (2012).
    Google Scholar 
    128.Marunouchi, J., Ueda, H. & Ochi, O. Variation in age and size among breeding populations at different altitudes in the Japanese newts, Cynops pyrrhogaster. Amphib.-Reptil. 21, 381–396 (2000).Article 

    Google Scholar 
    129.Matsui, M. & Ota, H. Parameters of fecundity in Microhyla ornata from the Yaeyama group of the Ryukyu Archipelago. Jpn. J. Herpetol. 10, 73–79 (1984).Article 

    Google Scholar 
    130.Matsui, M., Shimada, T. & Sudin, A. First record of the tree frog genus Chiromantis from Borneo with the description of a new species (Amphibia: Rhacophoridae). Zool. Sci. 31, 45–51 (2014).Article 

    Google Scholar 
    131.Matsui, M., Toda, M. & Ota, H. A new species of frog allied to Fejervarya limnocharis from the southern Ryukyus, Japan (Amphibia: Ranidae). Curr. Herpetol. 26, 65–79 (2007).Article 

    Google Scholar 
    132.Mazák, J. H. & Groves, C. P. A taxonomic revision of the tigers (Panthera tigris) of Southeast Asia. Mamm. Biol. 71, 268–287 (2006).Article 

    Google Scholar 
    133.McCord, W. P. & Iverson, J. B. A new species of Ocadia (Testudines: Batagurinae) from southwestern China. Proc. Biol. Soc. Wash. 107, 52–59 (1994).
    Google Scholar 
    134.McCord, W. P. & Thomson, S. A. A new species of Chelodina (Testudines: Pleurodira: Chelidae) from northern Australia. J. Herpetol. 36, 255–267 (2002).Article 

    Google Scholar 
    135.McFadden, K. W. & Meiri, S. Dwarfism in insular carnivores: a case study of the pygmy raccoon. J. Zool. 289, 213–221 (2013).Article 

    Google Scholar 
    136.McLaughlin, J. F. & Roughgarden, J. Avian predation on Anolis lizards in the northeastern caribbean: inter‐island contrast. Ecology 70, 617–628 (1989).Article 

    Google Scholar 
    137.Medway, L. Observations on the fauna of Pulau Tioman and Pulau Tulai. 2. The mammals. Natl Mus. Singapore Bull. 34, 9–32 (1966).
    Google Scholar 
    138.Mees, G. F. A Systematic Review of the Indo-Australian Zosteropidae (Part III) (EJ Brill, 1969).139.Meijaard, E. & Groves, C. A taxonomic revision of the Tragulus mouse-deer (Artiodactyla). Zool. J. Linn. Soc. 140, 63–102 (2004).Article 

    Google Scholar 
    140.Meijaard, E. & Groves, C. P. Morphometrical relationships between South-east Asian deer (Cervidae, tribe Cervini): evolutionary and biogeographic implications. J. Zool. 263, 179–196 (2004).Article 

    Google Scholar 
    141.Meik, J. M., Lawing, A. M. & Pires-daSilva, A. Body size evolution in insular speckled rattlesnakes (Viperidae: Crotalus mitchellii). PLoS ONE 5, e9524 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    142.Melo, M. et al. Multiple lines of evidence support the recognition of a very rare bird species: the Príncipe thrush. J. Zool. 282, 120–129 (2010).
    Google Scholar 
    143.Melo, M. & O’Ryan, C. Genetic differentiation between Príncipe Island and mainland populations of the grey parrot (Psittacus erithacus), and implications for conservation. Mol. Ecol. 16, 1673–1685 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    144.Melton, R. Body size and island Peromyscus: a pattern and a hypothesis. Evol. Theory 6, 113–126 (1982).
    Google Scholar 
    145.Menzies, J. & Tyler, M. The systematics and adaptations of some Papuan microhylid frogs which live underground. J. Zool. 183, 431–464 (1977).Article 

    Google Scholar 
    146.Merriam, C. H. Revision of the shrews of the American genera Blarina and Notiosorex. N. Am. Fauna 10, 5–34 (1895).
    Google Scholar 
    147.Merriam, C. H. Synopsis of the American shrews of the genus Sorex. N. Am. Fauna 10, 57–125 (1895).Article 

    Google Scholar 
    148.Merriam, C. H. Six new mammals from Cozumel Island, Yucatan. Proc. Biol. Soc. Wash. 14, 99–104 (1901).
    Google Scholar 
    149.Merriam, C. H. Descriptions of ten new kangaroo rats. Proc. Biol. Soc. Wash. 20, 75–80 (1907).
    Google Scholar 
    150.Miller, C. & Miller, T. Population dynamics and diet of rodents on Rangitoto Island, New Zealand, including the effect of a 1080 poison operation. New Zeal. J. Ecol. 19, 19–27 (1995).
    Google Scholar 
    151.Miller, G. S. Mammals collected by Dr. WL Abbott in the region of the Indragiri River, Sumatra. Proc. Acad. Nat. Sci. Phila. 54, 143–159 (1902).
    Google Scholar 
    152.Miller, G. S. Catalogue of the Mammals of Western Europe (Europe Exclusive of Russia) in the Collection of the British Museum (Order of the Trustees of the British Museum, 1912).153.Millien, V. & Damuth, J. Climate change and size evolution in an island rodent species: new perspectives on the island rule. Evolution 58, 1353–1360 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    154.Molina-Borja, M. & Rodriguez-Dominguez, M. A. Evolution of biometric and life-history traits in lizards (Gallotia) from the Canary Islands. J. Zool. Syst. Evol. Res. 42, 44–53 (2004).Article 

    Google Scholar 
    155.Monadjem, A., McCleery, R. A. & Collier, B. A. Activity and movement patterns of the tortoise Stigmochelys pardalis in a subtropical savanna. J. Herpetol. 47, 237–242 (2013).Article 

    Google Scholar 
    156.Montesinos, R., da Silva, H. R. & Gomes de Carvalho, A. L. The ‘island rule’ acting on anuran populations (Bufonidae: Rhinella ornata) of the Southern Hemisphere. Biotropica 44, 506–511 (2012).Article 

    Google Scholar 
    157.Montgomery, C. E., Boback, S. M., Green, S. E., Paulissen, M. A. & Walker, J. M. Cnemidophorus lemniscatus (Squamata: Teiidae) on Cayo Cochino Pequeño, Honduras: extent of island occupancy, natural history, and conservation status. Herpetol. Conserv. Biol. 6, 10–24 (2011).
    Google Scholar 
    158.Moratelli, R., Wilson, D. E., Novaes, R. L., Helgen, K. M. & Gutiérrez, E. E. Caribbean Myotis (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. J. Mammal. 98, 994–1008 (2017).Article 

    Google Scholar 
    159.Mori, A. & Hasegawa, M. Early growth of Elaphe quadrivirgata from an insular gigantic population. Curr. Herpetol. 21, 43–50 (2002).Article 

    Google Scholar 
    160.Mori, A., Ikeuchi, I. & Hasegawa, M. Calling activity of an anuran assemblage in a temporary pond in a dry forest of Madagascar. Curr. Herpetol. 34, 140–148 (2015).Article 

    Google Scholar 
    161.Mori, E. et al. Skull shape and Bergmann’s rule in mammals: hints from Old World porcupines. J. Zool. 308, 47–55 (2019).Article 

    Google Scholar 
    162.Motokawa, M. Geographic variation in the Japanese white-toothed shrew Crocidura dsinezumi. Acta Theriol. 48, 145–156 (2003).Article 

    Google Scholar 
    163.Motokawa, M. & Lin, L.-K. Geographic variation in the mole-shrew Anourosorex squamipes. Mammal. Study 27, 113–120 (2002).Article 

    Google Scholar 
    164.Motokawa, M., Lin, L.-K., Harada, M. & Hattori, S. Morphometric geographic variation in the Asian lesser white-toothed shrew Crocidura shantungensis (Mammalia, Insectivora) in East Asia. Zool. Sci. 20, 789–795 (2003).Article 

    Google Scholar 
    165.Munks, S. The breeding biology of Pseudocheirus peregrinus viverrinus on Flinders Island, Bass Straight. Wildl. Res. 22, 521–533 (1995).Article 

    Google Scholar 
    166.MVZ. Museum of Vertebrate Zoology – Herpetological Collection (University of California, Berkeley, accessed 20 August 2020); https://mvz.berkeley.edu/mvzherp/167.Myers, S., Brown, G. & Kleindorfer, S. Divergence in New Holland honeyeaters (Phylidonyris novaehollandiae): evidence from morphology and feeding behavior. J. Ornithol. 151, 287–296 (2010).Article 

    Google Scholar 
    168.Nagorsen, D. W. in Martens, Sables, and Fishers: Biology and Conservation (eds Harestad, A. S. et al.) 85–97 (Cornell Univ. Press, 1994).169.Nagy, Z. T., Glaw, F. & Vences, M. Systematics of the snake genera Stenophis and Lycodryas from Madagascar and the Comoros. Zool. Scr. 39, 426–435 (2010).Article 

    Google Scholar 
    170.Nanova, O. & Prôa, M. Cranial features of mainland and Commander Islands (Russia) Arctic foxes (Vulpes lagopus) reflect their diverging foraging strategies. Polar Res. 36, 7 (2017).Article 

    Google Scholar 
    171.Napier, P. H. Catalogue of Primates in the British Museum (Natural History) and Elsewhere in the British Isles. Part III: Family Cercopithecidae, Subfamily Colobinae Vol. 3 (British Museum (Natural History), 1985).172.Nelson, E. Descriptions of new birds from the Tres Marias Islands, western Mexico. Proc. Biol. Soc. Wash. 12, 5–11 (1898).
    Google Scholar 
    173.Nelson, E. W. The rabbits of North America. N. Am. Fauna 29, 1–314 (1909).Article 

    Google Scholar 
    174.Newman, D. G. Activity, dispersion, and population densities of Hamilton’s frog (Leiopelma hamiltoni) on Maud and Stephens islands, New Zealand. Herpetologica 46, 319–330 (1990).
    Google Scholar 
    175.Nguyen, S. T., Oshida, T., Dang, P. H., Bui, H. T. & Motokawa, M. A new species of squirrel (Sciuridae: Callosciurus) from an isolated island off the Indochina Peninsula in southern Vietnam. J. Mammal. 99, 813–825 (2018).Article 

    Google Scholar 
    176.Nijman, V. Group composition and monandry in grizzled langurs, Presbytis comata, on Java. Folia Primatol. 88, 237–254 (2017).Article 

    Google Scholar 
    177.Nor, S. M. The Mammalian Fauna on the Islands at the Northern Tip of Sabah, Borneo (Field Museum of Natural History, 1996).178.Norman, F. & Hurley, V. Gonad measurements and other parameters from Chestnut Teal Anas castanea collected in the Gippsland Lakes region, Victoria. Emu 84, 52–55 (1984).Article 

    Google Scholar 
    179.Nowak, R. M. & Walker, E. P. Walker’s Mammals of the World Vol. 1 (JHU, 1999).180.O’Connell, D. P. et al. A sympatric pair of undescribed white-eye species (Aves: Zosteropidae: Zosterops) with different origins. Zool. J. Linn. Soc. 186, 701–724 (2019).Article 

    Google Scholar 
    181.Oates, J. F., Davies, A. G. & Delson, E. in Colobine Monkeys: Their Ecology, Behaviour and Evolution (eds Davies, A. G. & Oates, J. F.) 45–73 (Cambridge Univ. Press, 1994).182.Oh, H.-S., Yoshinaga, Y., Kaneko, T., Iida, H. & Mori, T. Taxomic re-examination of the Apodemus agrarius chejuensis, comparing external and cranial morphological characters among four Asian Apodemus species. J. Fac. Agric. 47, 373–386 (2003).
    Google Scholar 
    183.Ohdachi, S., Abe, H., Oh, H. & Han, S. Morphological relationships among populations in the Sorex caecutiens/shinto group (Eulipotyphla, Soricidae) in East Asia, with a description of a new subspecies from Cheju Island, Korea. Mamm. Biol. 70, 345–358 (2005).Article 

    Google Scholar 
    184.Okada, S., Izawa, M. & Ota, H. Growth and reproduction of Gekko hokouensis (Reptilia: Squamata) on Okinawajima Island of the Ryukyu Archipelago, Japan. J. Herpetol. 36, 473–479 (2002).Article 

    Google Scholar 
    185.O’Keeffe, J., O’Boyle, I. & Fogarty, U. Observations on the Pathology of Tuberculosis in Badgers Report No. 1898473838 (University College Dublin Centre for Veterinary Epidemiology and Risk Analysis, 1997).186.Olsen, P., Debus, S., Czechura, G. & Mooney, N. Comparative feeding ecology of the grey goshawk Accipiter novaehollandiae and brown goshawk Accipiter fasciatus. Aust. Field Ornithol. 13, 178–192 (1990).
    Google Scholar 
    187.Oneto, F., Ottonello, D. & Salvidio, S. Primi dati sulla biometria di Euleptes euopaea (Genè, 1839) dell’isola del Tino (La Spezia, Liguria). Doriana 8, 1–8 (2008).
    Google Scholar 
    188.Oromi, N. et al. Geographical variations in adult body size and reproductive life history traits in an invasive anuran, Discoglossus pictus. Zoology 119, 216–223 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    189.Osgood, W. H. Natural history of the Queen Charlotte islands. N. Am. Fauna 21, 1–87 (1901).Article 

    Google Scholar 
    190.Osgood, W. H. Revision of the mice of the American genus Peromyscus. N. Am. Fauna 28, 1–285 (1909).Article 

    Google Scholar 
    191.Ota, H. Taxonomic redefinition of Japalura swinhonis Günther (Agamidae: Squamata), with a description of a new subspecies of J. polygonata from Taiwan. Herpetologica 47, 280–294 (1991).
    Google Scholar 
    192.Ota, H., Lau, M. W., Weidenhofer, T., Yasukawa, Y. & Bogadek, A. Taxonomic review of the geckos allied to Gekko chinensis Gray 1842 (Gekkonidae Reptilia) from China and Vietnam. Trop. Zool. 8, 181–196 (1995).Article 

    Google Scholar 
    193.Owens, J. R. Ecology and Behavior of the Bioko Island Drill (Mandrillus leucophaeus poensis). PhD thesis, Drexel Univ. (2013).194.Pabijan, M., Gehring, P.-S., Koehler, J., Glaw, F. & Vences, M. A new microendemic frog species of the genus Blommersia (Anura: Mantellidae) from the east coast of Madagascar. Zootaxa 2978, 34–50 (2011).Article 

    Google Scholar 
    195.Pafilis, P. et al. Reproductive biology of insular reptiles: marine subsidies modulate expression of the ‘island syndrome’. Copeia 2011, 545–552 (2011).Article 

    Google Scholar 
    196.Pafilis, P., Kapsalas, G., Lymberakis, P., Protopappas, D. & Sotiropoulos, K. Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? Anim. Biodivers. Conserv. 42, 1–8 (2019).Article 

    Google Scholar 
    197.Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    198.Pafilis, P. et al. Body size affects digestive performance in a Mediterranean lizard. Herpetol. J. 26, 199–205 (2016).
    Google Scholar 
    199.Pagh, S. et al. Methods for the identification of farm escapees in feral mink (Neovison vison) populations. PLoS ONE 14, e0224559 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    200.Pahl, L. & Lee, A. Reproductive traits of 2 populations of the common ringtail possum, Pseudocheirus peregrinus, in Victoria. Aust. J. Zool. 36, 83–97 (1988).Article 

    Google Scholar 
    201.Palacios, F. & Fernández, J. A new subspecies of hare from Majorca (Balearic Islands). Mammalia 56, 71–86 (1992).Article 

    Google Scholar 
    202.Papakosta, M. A. Biometric variation in Martes foina from mainland Greece and the Aegean Islands. Turk. J. Zool. 41, 654–663 (2017).Article 

    Google Scholar 
    203.Parker, W. S. & Pianka, E. R. Comparative ecology of populations of the lizard Uta stansburiana. Copeia 1975, 615–632 (1975).Article 

    Google Scholar 
    204.Parrish, G. & Gill, B. Natural history of the lizards of the Three Kings Islands, New Zealand. New Zeal. J. Zool. 30, 205–220 (2003).Article 

    Google Scholar 
    205.Pasachnik, S. A. et al. Body size, demography, and body condition in Utila spiny-tailed iguanas, Ctenosaura bakeri. Herpetol. Conserv. Biol. 7, 391–398 (2012).
    Google Scholar 
    206.Pearson, D. et al. Ecological notes on crowned snakes Elapognathus coronatus from the Archipelago of the Recherche in southwestern Australia. Aust. Zool. 31, 610–617 (2001).Article 

    Google Scholar 
    207.Pedrono, M. & Markwell, T. Maximum size and mass of the ploughshare tortoise, Geochelone yniphora. Chelonian Conserv. Biol. 4, 190 (2001).208.Perez-Ramos, E. et al. Aspidoscelis sexlineata (Sauria: Teiidae) in Mexico: distribution, habitat, morphology, and taxonomy. Southwest. Nat. 55, 419–425 (2010).Article 

    Google Scholar 
    209.Persson, S. et al. Influence of age, season, body condition and geographical area on concentrations of chlorinated and brominated contaminants in wild mink (Neovison vison) in Sweden. Chemosphere 90, 1664–1671 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    210.Peters, J. A. The snakes of the subfamily Dipsadinae. Misc. Publ. Mus. Zool. Univ. Mich. 114, 1–224 (1960).
    Google Scholar 
    211.Pocock, R. The civet cats of Asia. Part II. J. Bombay Nat. Hist. Soc. 36, 629–656 (1933).
    Google Scholar 
    212.Pocock, R. The geographical races of Paradoxurus and Paguma found to the east of the Bay of Bengal. Proc. Zool. Soc. Lond. 104, 613–684 (1934).Article 

    Google Scholar 
    213.Pocock, R. I. The Fauna Of British India Including Ceylon And Burma (Taylor & Francis, 1939).214.Pons, J. M., Kirwan, G. M., Porter, R. F. & Fuchs, J. A reappraisal of the systematic affinities of Socotran, Arabian and East African scops owls (Otus, Strigidae) using a combination of molecular, biometric and acoustic data. Ibis 155, 518–533 (2013).Article 

    Google Scholar 
    215.Abe, H. Habitat factors affecting the geographic size variation of Japanese moles. Mammal. Study 21, 71–87 (1996).Article 

    Google Scholar 
    216.Abramov, A. V., Jenkins, P. D., Rozhnov, V. V. & Kalinin, A. A. Description of a new species of Crocidura (Soricomorpha: Soricidae) from the island of Phu Quoc, Vietnam. Mammalia 72, 269–272 (2008).Article 

    Google Scholar 
    217.Abramov, A. V. & Puzachenko, A. Y. Sexual dimorphism of craniological characters in Eurasian badgers, Meles spp. (Carnivora, Mustelidae). Zool. Anz. 244, 11–29 (2005).Article 

    Google Scholar 
    218.Adams, N. E., Dean, M. D. & Pauly, G. B. Morphological divergence among populations of Xantusia riversiana, a night lizard endemic to the Channel Islands of California. Copeia 106, 550–562 (2018).Article 

    Google Scholar 
    219.Aguilar-Moreno, M. et al. Dimorfismo sexual de Aspidoscelis costata costata (Squamata: Teiidae) en el sur del Estado de México, México. Rev. Chil. Hist. Nat. 83, 585–592 (2010).Article 

    Google Scholar 
    220.Ajtić, R. Morphological, biogeographical and ecological characteristics of Kotschy’s gecko (Cyrtodactylus kotschyi Steindachner, 1870 Gekkonidae) from the mainland portion of its distribution range. Fauna Balk. 3, 1–70 (2014).
    Google Scholar 
    221.Albrecht, G. H., Jenkins, P. D. & Godfrey, L. R. Ecogeographic size variation among the living and subfossil prosimians of Madagascar. Am. J. Primatol. 22, 1–50 (1990).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    222.Allen, G. M. The Mammals of China and Mongolia (American Museum of Natural History, 1938).223.Allen, J. A. A preliminary study of the South American opossums of the genus Didelphis. Bull. Am. Mus. Nat. Hist. 16, 249–279 (1902).
    Google Scholar 
    224.Allen, J. A. Mammals collected in Alaska and northern British Columbia by the Andrew J. Stone expedition of 1902. Bull. Am. Mus. Nat. Hist. 19, 521–567 (1903).
    Google Scholar 
    225.Allen, J. A. Notes on American deer of the genus Mazama. Bull. Am. Mus. Nat. Hist. 34, 521–553 (1915).
    Google Scholar 
    226.Allen, J. A. Review of the South American Sciuridae. Bull. Am. Mus. Nat. Hist. 34, 147–309 (1915).
    Google Scholar 
    227.Allen, J. A. & Chapman, F. M. On a collection of mammals from the island of Trinidad, with descriptions of new species. Bull. Am. Mus. Nat. Hist. 5, 203–234 (1898).
    Google Scholar 
    228.Allen, J. A., Kermode, F. & Andrews, R. C. The white bear of southwestern British Columbia. Bull. Am. Mus. Nat. Hist. 26, 233–238 (1909).
    Google Scholar 
    229.Altunisik, A., Kalayci, T. E., Gul, C., Ozdemir, N. & Tosunoglu, M. A skeletochronological study of the smooth newt Lissotriton vulgaris (Amphibia: Urodela) from an island and a mainland population in Turkey. Ital. J. Zool. 81, 381–388 (2014).Article 

    Google Scholar 
    230.Amor, N. & Farjallah, S. Morphological variation of the African green toad, Bufo boulengeri (Amphibia: Anura) in Tunisia. Pak. J. Zool. 43, 921–926 (2011).
    Google Scholar 
    231.Anderson, R. P. & Handley, C. O. Dwarfism in insular sloths: biogeography, selection, and evolutionary rate. Evolution 56, 1045–1058 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    232.Andrade, P. et al. Ecomorphological patterns in the Blackcap Sylvia atricapilla: insular versus mainland populations. Bird Study 62, 498–507 (2015).Article 

    Google Scholar 
    233.Andrews, R. M. Evolution of life histories: a comparison of Anolis lizards from matched island and mainland habitats. Breviora 454, 1–51 (1979).
    Google Scholar 
    234.Angarita-Sierra, T. & Lynch, J. D. A new species of Ninia (Serpentes: Dipsadidae) from Chocó-Magdalena biogeographical province, western Colombia. Zootaxa 4244, 478–492 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    235.Angelici, F., Capizzi, D., Amori, G. & Luiselli, L. Morphometric variation in the skulls of the crested porcupine Hystrix cristata from mainland Italy, Sicily, and northern Africa. Mamm. Biol. 68, 165–173 (2003).Article 

    Google Scholar 
    236.Aowphol, A., Rujirawan, A., Taksintum, W., Arsirapot, S. & Mcleod, D. S. Re-evaluating the taxonomic status of Chiromantis in Thailand using multiple lines of evidence (Amphibia: Anura: Rhacophoridae). Zootaxa 3702, 101–123 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    237.Araújo, M. & Martins, M. The defensive strike of five species of lanceheads of the genus Bothrops (Viperidae). Braz. J. Biol. 67, 327–332 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    238.Arendt, W. J. & Arendt, A. L. Bill deformity in a pearly-eyed thrasher from Montserrat, West Indies. Auk 54, 324–332 (1986).
    Google Scholar 
    239.Arntzen, J. & García-París, M. Morphological and allozyme studies of midwife toads (genus Alytes), including the description of two new taxa from Spain. Contrib. Zool. 65, 5–34 (1995).
    Google Scholar 
    240.Aubret, F. Island colonisation and the evolutionary rates of body size in insular neonate snakes. Heredity 115, 349–356 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    241.Auer, M. & Taskavak, E. Population structure of syntopic Emys orbicularis and Mauremys rivulata in western Turkey. Biologia 59, 81–84 (2004).
    Google Scholar 
    242.Aumann, T. Aspects of the Biology of the Brown Goshawk Accipiter Fasciatus in South-Eastem Australia. MSc thesis, Monash Univ. (1986).243.Baier, F. & Hoekstra, H. E. The genetics of morphological and behavioural island traits in deer mice. Proc. R. Soc. B 286, 20191697 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    244.Baker-Gabb, D. J. Comparative Ecology and Behaviour of Swamp Harriers Circus approximans, Spotted Harriers C. assimilis and Other Raptors in Australia and New Zealand (Royal Australasian Ornithological Union, 1982).245.Bakhuis, W. L. Size and sexual differentiation in the lizard Iguana iguana on a semi-arid island. J. Herpetol. 16, 322–325 (1982).Article 

    Google Scholar 
    246.Balham, R. W. Grey and mallard ducks in the Manawatu district, New Zealand. Emu 52, 163–191 (1952).Article 

    Google Scholar 
    247.Bangma, J. T. et al. Perfluorinated alkyl acids in plasma of American alligators (Alligator mississippiensis) from Florida and South Carolina. Environ. Toxicol. Chem. 36, 917–925 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    248.Bangma, J. T. et al. Variation in perfluoroalkyl acids in the American alligator (Alligator mississippiensis) at Merritt Island National Wildlife Refuge. Chemosphere 166, 72–79 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    249.Banks, R. A new insular subspecies of spiny pocket mouse (Mammalia: Rodentia). Proc. Biol. Soc. Wash. 80, 101–104 (1967).
    Google Scholar 
    250.Barbo, F. E. et al. Another new and threatened species of lancehead genus Bothrops (Serpentes, Viperidae) from Ilha dos Franceses, southeastern Brazil. Zootaxa 4097, 511–529 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    251.Barbour, T. & Allen, G. M. The white-tailed deer of eastern United States. J. Mammal. 3, 65–78 (1922).Article 

    Google Scholar 
    252.Bartle, J. & Sagar, P. Intraspecific variation in the New Zealand bellbird Anthornis melanura. Notornis 34, 253–306 (1987).
    Google Scholar 
    253.Barwick, R. E. Studies on the Scincid Lizard Egernia cunninghami (Gray, 1832). PhD thesis, Australian National Univ. (1965).254.Başkale, E., Ulubeli, S. A. & Kaska, Y. Age structures and growth parameters of the Levantine frog, Pelophylax bedriagae, at different localities in Denizli, Turkey. Acta Herpetol. 13, 147–154 (2018).
    Google Scholar 
    255.Bee, J. W. & Hall, E. R. Mammals of Northern Alaska on the Arctic Slope (Museum of Natural History, University of Kansas, 1956).256.Bejakovic, D., Kalezic, M. L., Aleksic, I., Dzukic, G. & CrnobrnjaIsailovic, J. Female reproductive cycle and clutch traits in the Dalmatian wall lizard (Podarcis melisellensis). Folia Zool. 44, 371–380 (1995).
    Google Scholar 
    257.Bell, B. D. Observations on the ecology and reproduction of the New Zealand leiopelmid frogs. Herpetologica 34, 340–354 (1978).
    Google Scholar 
    258.Bell, R. C. & Irian, C. G. Phenotypic and genetic divergence in reed frogs across a mosaic hybrid zone on São Tomé Island. Biol. J. Linn. Soc. 128, 672–680 (2019).Article 

    Google Scholar 
    259.Bennett, D. & Hampson, K. Further Observations of Varanus olivaceus on the Polillo Islands. In Wildlife and Conservation in the Pollilo Islands Pollilo Project Final Report, Multimedia CD (eds Hampson, K. et al.) (Viper Press, 2003).260.Benson, S. B. Two new pocket mice: genus Perognathus, from the Californias. Univ. Calif. Publ. Zool. 32, 449–454 (1930).
    Google Scholar 
    261.Bentz, E. J., Rodríguez, M. R., John, R. R., Henderson, R. W. & Powell, R. Population densities, activity, microhabitats, and thermal biology of a unique crevice- and litter-dwelling assemblage of reptiles on Union Island, St. Vincent and the Grenadines. Herpetol. Conserv. Biol. 6, 40–50 (2011).
    Google Scholar 
    262.Beovides-Casas, K. & Mancina, C. A. Natural history and morphometry of the Cuban iguana (Cyclura nubila Gray, 1831) in Cayo Siju, Cuba. Anim. Biodivers. Conserv. 29, 1–8 (2006).
    Google Scholar 
    263.Berardo, F. Habitat Preferenziali e Dinamica di Popolazione di Testudo hermanni Nelle Aree Costiere del Molise. PhD thesis, Univ. Molise (2015).264.Berry, R. The evolution of an island population of the house mouse. Evolution 18, 468–483 (1964).Article 

    Google Scholar 
    265.Berry, R., Jakobson, M. & Peters, J. The house mice of the Faroe Islands: a study in microdifferentiation. J. Zool. 185, 73–92 (1978).Article 

    Google Scholar 
    266.Bertolero, A. in Enciclopedia Virtual de los Vertebrados Españoles (eds Salvador, A. & Marco, A.) (Museo Nacional de Ciencias Naturales, 2015); http://www.vertebradosibericos.org/267.Bertolero, A., Cheylan, M. & Nougarede, J.-P. Accroissement de la fécondité chez la tortue d’Hermann Testudo hermanni hermanni en condition insulaire: un contre-exemple du syndrome insulaire? Rev. Ecol. 62, 93–98 (2007).
    Google Scholar 
    268.Bischoff, W. Bemerkungen zur innerartlichen Variabilität von Gallotia atlantica (Peters & Doria, 1882) (Lacertidae). Bonn. Zool. Beitr. 36, 489–506 (1985).
    Google Scholar 
    269.Bishop, C. A. & Rouse, J. D. Polychlorinated biphenyls and organochlorine pesticides in plasma and the embryonic development in Lake Erie water snakes (Nerodia sipedon insularum) from Pelee Island, Ontario, Canada (1999). Arch. Environ. Contam. Toxicol. 51, 452–457 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    270.Blackburn, D. C. A new squeaker frog (Arthroleptidae: Arthroleptis) from Bioko island, Equatorial Guinea. Herpetologica 66, 320–334 (2010).Article 

    Google Scholar 
    271.Blondel, J., Perret, P., Anstett, M. C. & Thebaud, C. Evolution of sexual size dimorphism in birds: test of hypotheses using blue tits in contrasted Mediterranean habitats. J. Evol. Biol. 15, 440–450 (2002).Article 

    Google Scholar 
    272.Boback, S. M. A morphometric comparison of island and mainland boas (Boa constrictor) in Belize. Copeia 2006, 261–267 (2006).Article 

    Google Scholar 
    273.Bosc, V. Inventaire du Phyllodactyle d’Europe Euleptes europaea sur l’îlot de Roscana (Corse du Sud) (Conservatoire des Espaces Naturels de Corse, 2009).274.Boye, P. Notes on the morphology, ecology and geographic origin of the Cyprus long-eared hedgehog (Hemiechinus auritus dorotheae). Bonn. Zool. Beitr. 42, 115–123 (1991).
    Google Scholar 
    275.Braithwaite, L. & Miller, B. The mallard, Anas platyrhynchos, and mallard-black duck, Anas superciliosa rogersi, hybridization. Wildl. Res. 2, 47–61 (1975).Article 

    Google Scholar 
    276.Brandon-Jones, D. The taxonomic affinities of the Mentawai Islands Sureli, Presbytis potenziani (Bonaparte, 1856) (Mammalia: Primata: Cercopithecidae). Raffles Bull. Zool. 41, 331–357 (1993).
    Google Scholar 
    277.Brasileiro, C. A., Haddad, C. F., Sawaya, R. J. & Sazima, I. A new and threatened island-dwelling species of Cycloramphus (Anura: Cycloramphidae) from southeastern Brazil. Herpetologica 63, 501–510 (2007).Article 

    Google Scholar 
    278.Brecko, J. et al. Functional and ecological relevance of intraspecific variation in body size and shape in the lizard Podarcis melisellensis (Lacertidae). Biol. J. Linn. Soc. 94, 251–264 (2008).Article 

    Google Scholar 
    279.Brisbin, I. L. Jr & Lenarz, M. S. Morphological comparisons of insular and mainland populations of southeastern white-tailed deer. J. Mammal. 65, 44–50 (1984).Article 

    Google Scholar 
    280.Brown, J. L., Maan, M. E., Cummings, M. E. & Summers, K. Evidence for selection on coloration in a Panamanian poison frog: a coalescent‐based approach. J. Biogeogr. 37, 891–901 (2010).Article 

    Google Scholar 
    281.Bruschi, S. et al. Comments on the status of the Sardinian–Corsican lacertid lizard Podarcis tiliguerta. Proc. Calif. Acad. Sci. 57, 225–245 (2006).
    Google Scholar 
    282.Buden, D. W. Morphological variation and distributional ecology of the giant Micronesian gecko (Perochirus scutellatus) of Kapingamarangi Atoll. Pacif. Sci. 52, 250–258 (1998).
    Google Scholar 
    283.Burt, W. H. Descriptions of heretofore unknown mammals from islands in the Gulf of California, Mexico. Trans. San Diego Soc. Nat. Hist. 16, 161–185 (1932).
    Google Scholar 
    284.Butynski, T. M., de Jong, Y. A. & Hearn, G. W. Body measurements for the monkeys of Bioko Island, Equatorial Guinea. Primate Conserv. 24, 99–105 (2009).Article 

    Google Scholar 
    285.Cabot, J. & Urdiales, C. The subspecific status of Sardinian warblers Sylvia melanocephala in the Canary Islands with the description of a new subspecies from Western Sahara. Bull. Br. Ornithol. Club 125, 230–240 (2005).
    Google Scholar 
    286.Camerano, L. Ricerche intorno alla variazione del Phyllodactylus europaeux Gené. Bull. Mus. Zool. Anat. Comp. R. Univ. Torino 19, 1–28 (1904).
    Google Scholar 
    287.Camps, D. in Enciclopedia Virtual de los Vertebrados Españoles (eds Salvador, A. & Barja, I.) (Museo Nacional de Ciencias Naturales, 2017); http://www.vertebradosibericos.org/288.Capula, M. et al. in Scripta Herpetologica: Studies on Amphibians and Reptiles in Honour of Benedetto Lanza (eds Capula, M. & Corti, C.) 39–47 (Edizioni Belvedere, 2014).289.Carbone, M. Caratteristiche della Popolazione di Testudo hermanni Gmelin del Parco Naturale della Maremma. MSc thesis, Univ. Genova (1988).290.Carrascal, L. M., Moreno, E. & Valido, A. Morphological evolution and changes in foraging behaviour of island and mainland populations of blue tit (Parus caeruleus)—a test of convergence and ecomorphological hypotheses. Evol. Ecol. 8, 25–35 (1994).Article 

    Google Scholar 
    291.Carretero, M. & Llorente, G. Morphometry in a community of Mediterranean lacertid lizards, and its ecological relationships. Hist. Anim. 2, 77–99 (1993).
    Google Scholar 
    292.Case, T. J., Cody, M. L. & Ezcurra, E. A New Island Biogeography of the Sea of Cortés (Oxford Univ. Press, 2002).293.Case, T. J. & Schwaner, T. D. Island/mainland body size differences in Australian varanid lizards. Oecologia 94, 102–109 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    294.Castellano, S., Rosso, A., Doglio, S. & Giacoma, C. Body size and calling variation in the green toad (Bufo viridis). J. Zool. 248, 83–90 (1999).Article 

    Google Scholar 
    295.Castilla, A. M. & Bauwens, D. Reproductive characteristics of the lacertid lizard Podarcis atrata. Copeia 2000, 748–756 (2000).Article 

    Google Scholar 
    296.Catzeflis, F., Maddalena, T., Hellwing, S. & Vogel, P. Unexpected findings on the taxonomic status of east Mediterranean Crocidura russula auct. (Mammalia, Insectivora). Z. Säugetierkd. 50, 185–201 (1985).
    Google Scholar 
    297.Celis-Diez, J. L. et al. Population abundance, natural history, and habitat use by the arboreal marsupial Dromiciops gliroides in rural Chiloé Island, Chile. J. Mammal. 93, 134–148 (2012).Article 

    Google Scholar 
    298.Ceríaco, L. M. et al. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from Príncipe Island (Gulf of Guinea). Mammalia 79, 325–341 (2015).Article 

    Google Scholar 
    299.Chamberlain, J. The Block Island meadow mouse, Microtus provectus. J. Mammal. 35, 587–589 (1954).Article 

    Google Scholar 
    300.Charles‐Dominique, P. Urine marking and territoriality in Galago alleni (Waterhouse, 1837—Lorisoidea, Primates)—a field study by radio‐telemetry. Z. Tierpsychol. 43, 113–138 (1977).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    301.Chasen, F. & Kloss, C. B. On a collection of mammals from the lowlands and islands of North Borneo. Bull. Raffles Mus. 6, 1–82 (1931).
    Google Scholar 
    302.Chen, S.-L. et al. Taxonomic status of the Korean populations of the genus Scincella (Squamata: Scincidae). J. Herpetol. 35, 122–129 (2001).Article 

    Google Scholar 
    303.Cherem, J. J., Olimpio, J. & Ximenez, A. Descrição de uma nova espécie do gênero Cavia Pallas, 1766 (Mammalia-Caviidae) das Ilhas dos Moleques do Sul, Santa Catarina, Sul do Brasil. Biotemas 12, 95–117 (1999).
    Google Scholar 
    304.Chondropoulos, B. P. & Lykakis, J. J. Ecology of the Balkan wall lizard, Podarcis taurica ionica (Sauria: Lacertidae) from Greece. Copeia 1983, 991–1001 (1983).Article 

    Google Scholar 
    305.Clark, R. J. Herpetofauna of the islands of the Argo-Saronic Gulf, Greece. Proc. Calif. Acad. Sci. 35, 23–36 (1967).
    Google Scholar 
    306.Clegg, S. M. et al. Microevolution in island forms: the roles of drift and directional selection in morphological divergence of a passerine bird. Evolution 56, 2090–2099 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    307.Clover, R. C. Phenetic relationships among populations of Podarcis sicula and P. melisellensis (Sauria: Lacertidae) from islands in the Adriatic Sea. Syst. Biol. 28, 284–298 (1979).Article 

    Google Scholar 
    308.Cole, C. J., Dessauer, H. C., Townsend, C. R. & Arnold, M. G. Unisexual lizards of the genus Gymnophthalmus (Reptilia, Teiidae) in the Neotropics: genetics, origin, and systematics. Am. Mus. Novit. 2994, 1–29 (1990).
    Google Scholar 
    309.Colyn, M. Données pondérales sur les primates Cercopithecidae d’Afrique Centrale (Bassin du Zaïre/Congo). Mammalia 58, 483–488 (1994).Article 

    Google Scholar 
    310.Copley, P., Read, V., Robinson, A. & Watts, C. in Bandicoots and Bilbies (eds Seebeck, J. H. et al.) 345–356 (Surrey Beatty & Sons Pty Ltd, 1990).311.Cordero Rivera, A., Velo-Antón, G. & Galán, P. Ecology of amphibians in small coastal Holocene islands: local adaptations and the effect of exotic tree plantations. Munibe 25, 94–103 (2007).
    Google Scholar 
    312.Corti, C. & Zuffi, M. Aspects of population ecology of Testudo hermanni hermanni from Asinara Island, NW Sardinia (Italy, western Mediterranean Sea): preliminary data. Amphib.-Reptil. 24, 441–447 (2003).Article 

    Google Scholar 
    313.Cowan, I. M. Insularity in the genus Sorex on the north coast of British Columbia. Proc. Biol. Soc. Wash. 54, 95–107 (1941).
    Google Scholar 
    314.Cox, D. T. et al. Patterns of seasonal and yearly mass variation in West African tropical savannah birds. Ibis 153, 672–683 (2011).Article 

    Google Scholar 
    315.Creer, S., Chou, W. H., Malhotra, A. & Thorpe, R. S. Offshore insular variation in the diet of the Taiwanese bamboo viper Trimeresurus stejnegeri (Schmidt). Zool. Sci. 19, 907–913 (2002).Article 

    Google Scholar 
    316.Cruz-Elizalde, R. et al. Sexual dimorphism and natural history of the western Mexico whiptail, Aspidoscelis costata (Squamata: Teiidae), from Isla Isabel, Nayarit, Mexico. North-West J. Zool. 10, 374–381 (2014).
    Google Scholar 
    317.Cumbo, V., Licata, F., Mercurio, E., Anz, S. & Lo Valvo, M. in VIII Congresso Nazionale Societas Herpetologica Italica (eds Di Cerbo, A. R. et al.) 401–404 (Ianieri Edizioni, 2010).318.D’Angelo, S., Galia, F. & Lo Valvo, M. Biometric characterization of two Sicilian pond turtle (Emys trinacris) populations of south-western Sicily. Rev. Esp. Herpetol. 22, 15–22 (2008).
    Google Scholar 
    319.Dagosto, M., Gebo, D. L. & Dolino, C. Positional behavior and social organization of the Philippine tarsier (Tarsius syrichta). Primates 42, 233–243 (2001).Article 

    Google Scholar 
    320.Darevsky, I. Two new species of the worm-like lizard Dibamus (Sauria, Dibamidae), with remarks on the distribution and ecology of Dibamus in Vietnam. Asiatic Herpetol. Res. 4, 1–12 (1992).Article 

    Google Scholar 
    321.David, P., Vidal, N. & Pauwels, O. S. A morphological study of Stejneger’s pitviper Trimeresurus stejnegeri (Serpentes, Viperidae, Crotalinae), with the description of a new species from Thailand. Russian J. Herpetol. 8, 205–222 (2001).
    Google Scholar 
    322.De la Cruz, J. O. & Casas, E. V. Jr Captive observations and comparative morphology of Philippine tarsier (Carlito syrichta) in Brgy. Hugpa, Biliran, Biliran: a preliminary study. Philipp. J. Nat. Sci. 20, 46–54 (2015).
    Google Scholar 
    323.Decker, D. Systematics of the coatis, genus Nasua (Mammalia: Procyonidae). Proc. Biol. Soc. Wash. 104, 370–386 (1991).
    Google Scholar 
    324.Delany, M. Variation in the long-tailed field-mouse (Apodemus sylvaticus (L.)) in north-west Scotland I. Comparisons of individual characters. Proc. R. Soc. B 161, 191–199 (1964).CAS 

    Google Scholar 
    325.Delany, M. & Healy, M. Variation in the white-toothed shrews (Crocidura spp.) in the British Isles. Proc. R. Soc. B 164, 63–74 (1966).
    Google Scholar 
    326.Delany, M. & Healy, M. Variation in the long-tailed field-mouse (Apodemus sylvaticus (L.)) in the Channel Islands. Proc. R. Soc. B 166, 408–421 (1967).CAS 

    Google Scholar 
    327.Delaugerre, M. La variation géographique chez Phyllodactylus europaeus Gené (Reptilia, Sauria, Gekkonidae). Etude de la population de l’îlot Sperduto Grande (Sud de la Corse, réserve naturelle des Iles Lavezzi). Publ. Soc. Linn. Lyon 54, 262–269 (1985).
    Google Scholar 
    328.Delaugerre, M. Le Phyllodactyle d’Europe sur l’île de Port-Cros: mise en place d’un suivi géographique; la population de la Gabinière (Parc national de Port-Cros, 2003).329.Delaugerre, M. & Ouni, R. Archipel de la Galite «Notes herpétologiques 2008» (PIM Initiative, 2009).330.Delaugerre, M. & Dubois, A. La variation geographique et la variabilite intrapopulationnelle chez Phyllodactylus europaeus (Reptilia, Sauria, Gekkonidae). Bull. Mus. Natl Hist. Nat. A 7, 709–736 (1985).
    Google Scholar 
    331.Delibes de Castro, M. Sobre las ginetas de la Isla de Ibiza (Genetta genetta isabelae n. ssp.). Doñana Acta Vertebr. 4, 139–160 (1977).
    Google Scholar 
    332.Delibes, M. & Amores, F. The stone marten Martes foina (Erxleben, 1777) (Mammalia, Carnivora) from Ibiza (Pitiusic, Balearic Islands). Misc. Zool. 10, 335–345 (1986).
    Google Scholar 
    333.Delson, E., Terranova, C. J., Jungers, W. L., Sargis, E. J. & Jablonski, N. G. Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropol. Pap. Am. Mus. Nat. Hist. 83, 1–159 (2000).
    Google Scholar 
    334.Dietzen, C., Garcia-del-Rey, E., Castro, G. D. & Wink, M. Phylogeography of the blue tit (Parus teneriffae-group) on the Canary Islands based on mitochondrial DNA sequence data and morphometrics. J. Ornithol. 149, 1–12 (2008).Article 

    Google Scholar 
    335.Djong, H. T., Matsui, M., Kuramoto, M., Nishioka, M. & Sumida, M. A new species of the Fejervarya limnocharis complex from Japan (Anura, Dicroglossidae). Zool. Sci. 28, 922–929 (2011).Article 

    Google Scholar 
    336.Dodd, C. K. Jr Population structure and the evolution of sexual size dimorphism and sex ratios in an insular population of Florida box turtles (Terrapene carolina bauri). Can. J. Zool. 75, 1495–1507 (1997).Article 

    Google Scholar 
    337.Donihue, C. M., Brock, K. M., Foufopoulos, J. & Herrel, A. Feed or fight: testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Funct. Ecol. 30, 566–575 (2016).Article 

    Google Scholar 
    338.Driessen, M. M. & Rose, R. K. Isoodon obesulus (Peramelemorphia: Peramelidae). Mamm. Species 47, 112–123 (2015).Article 

    Google Scholar 
    339.Du, W.-G., Ji, X. & Zhang, Y.-P. Inter-population variation in life-history traits of a Chinese lizard (Takydromus septentrionalis, Lacertidae). Herpetol. J. 16, 233–237 (2006).
    Google Scholar 
    340.Du, W.-G., Ji, X., Zhang, Y.-P., Xu, X.-F. & Shine, R. Identifying sources of variation in reproductive and life-history traits among five populations of a Chinese lizard (Takydromus septentrionalis, Lacertidae). Biol. J. Linn. Soc. 85, 443–453 (2005).Article 

    Google Scholar 
    341.Dumbell, G. S. The Ecology, Behaviour and Management of New Zealand Brown Teal, or Pateke (Anas aucklandica chlorotis). PhD thesis, Univ. Auckland (1987).342.Dunham, A. E., Tinkle, D. W. & Gibbons, J. W. Body size in island lizards: a cautionary tale. Ecology 59, 1230–1238 (1978).Article 

    Google Scholar 
    343.Dunn, E. R. & Saxe, L. Jr. Results of the Catherwood-Chaplin West Indies expedition, 1948. Part V. Amphibians and reptiles of San Andrés and Providencia. Proc. Acad. Nat. Sci. Phila. 102, 141–165 (1950).
    Google Scholar 
    344.Dunstone, N. et al. Uso del hábitat, actividad y dieta de la güiña (Oncifelis guigna) en el Parque Nacional Laguna San Rafael, XI Región, Chile. B. Mus. Nac. Hist. Nat. 51, 147–158 (2002).
    Google Scholar 
    345.Elton, S. & Morgan, B. J. Muzzle size, paranasal swelling size and body mass in Mandrillus leucophaeus. Primates 47, 151–157 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    346.Esteves, R. G. Comportamento Alimentar e Aspectos Reprodutivos de Bothrops insularis (Amaral, 1921) (Serpentes: Viperidae), na Criação Ex-Situ no Instituto Vital Brazil. MSc thesis, Univ. Federal do Estado do Rio de Janeiro (2016).347.Faaborg, J. & Winters, J. E. Winter resident returns and longevity and weights of Puerto Rican birds. Bird-Band. 50, 216–223 (1979).Article 

    Google Scholar 
    348.Fang, Y.-P. & Lee, L.-L. Re-evaluation of the Taiwanese white-toothed shrew, Crocidura tadae Tokuda and Kano, 1936 (Insectivora: Soricidae) from Taiwan and two offshore islands. J. Zool. 257, 145–154 (2002).Article 

    Google Scholar 
    349.Faraone, F. P. Indagini Sulla Variazione Fenotipica in Ambienti Insulari e Microinsulari delle Specie di Podarcis Wagler, 1820 (Reptilia, Lacertidae) Presenti in Sicilia e in Alcune Isole Circumsiciliane. PhD thesis, Univ. Palermo (2011).350.Faraone, F. P., Giacalone, G. & Lo Valvo, M. in Atti VIII Congresso Nazionale Societas Herpetologica Italica (eds Di Cerbo, A. R. et al.) 247–252 (Ianeri Edizioni, 2010).351.Fitch, H. S. Variation in clutch and litter size in New World reptiles. Univ. Kans. Mus. Nat. Hist. Misc. Publ. 76, 1–76 (1985).
    Google Scholar 
    352.Fooden, J. Systematic review of the rhesus macaques, Macaca mulatta (Zimmermann, 1780). Fieldiana Zool. 96, 1–180 (2000).
    Google Scholar 
    353.Fooden, J. & Albrecht, G. H. Latitudinal and insular variation of skull size in crab‐eating macaques (Primates, Cercopithecidae: Macaca fascicularis). Am. J. Phys. Anthropol. 92, 521–538 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    354.Ford, H. The honeyeaters of Kangaroo Island. S. Aust. Ornithol. 27, 134–138 (1976).
    Google Scholar 
    355.Fornasiero, S., Corti, C., Luiselli, L. & Zuffi, M. A. Sexual size dimorphism, morphometry and phenotypic variation in the whip snake Hierophis viridiflavus from a central Mediterranean area. Rev. Ecol. 62, 73–85 (2007).
    Google Scholar 
    356.Forsman, A. Variation in sexual size dimorphism and maximum body size among adder populations: effects of prey size. J. Anim. Ecol. 60, 253–267 (1991).Article 

    Google Scholar 
    357.Forsman, A., Merila, J. & Ebenhard, T. Phenotypic evolution of dispersal-enhancing traits in insular voles. Proc. R. Soc. B 278, 225–232 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    358.Foster, J. The Evolution of the Native Land Mammals of the Queen Charlotte Islands and the Problem of Insularity. PhD thesis, Univ. British Columbia (1963).359.Fox, N. C. Some morphological data on the Australasian harrier (Circus approximans gouldi) in New Zealand. Notornis 24, 9–19 (1977).
    Google Scholar 
    360.Franco, M., Quijano, A. & Soto-Gamboa, M. Communal nesting, activity patterns, and population characteristics in the near-threatened monito del monte, Dromiciops gliroides. J. Mammal. 92, 994–1004 (2011).Article 

    Google Scholar 
    361.Fukada, H. Growth and maturity of the Japanese rat snake, Elaphe climacophora (Reptilia, Serpentes, Colubridae). J. Herpetol. 12, 269–274 (1978).Article 

    Google Scholar 
    362.Galán, P. Reproductive characteristics of an insular population of the lizard Podarcis hispanica from northwest Spain (Cies Islands, Galicia). Copeia 2003, 657–665 (2003).Article 

    Google Scholar 
    363.Ganem, G., Granjon, L., Ba, K. & Duplantier, J. M. Body size variability and water balance – a comparison between mainland and island populations of Mastomys huberti (Rodentia, Muridae) in Senegal. Experientia 51, 402–410 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    364.Garcés-Restrepo, M. F., Giraldo, A. & Carr, J. L. Population ecology and morphometric variation of the Chocoan river turtle (Rhinoclemmys nasuta) from two localities on the Colombian Pacific coast. Bol. Cient. Mus. Hist. Nat. Univ. Caldas 17, 160–171 (2013).
    Google Scholar 
    365.Garcia-Porta, J., Smid, J., Sol, D., Fasola, M. & Carranza, S. Testing the island effect on phenotypic diversification: insights from the Hemidactylus geckos of the Socotra Archipelago. Sci. Rep. 6, 23729 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    366.Gaulke, M. Overview on the present knowledge on Varanus mabitang Gaulke and Curio, 2001, including new morphological and meristic data. Biawak 4, 50–58 (2010).
    Google Scholar 
    367.Geissmann, T. Evolution of Communication in Gibbons (Hylobatidae). PhD thesis, Univ. Zürich (1993).368.Giacalone, G., Abbate, M., Fritz, U., & Lo Valvo, M. Preliminary data on distribution, morphometric and genetic characterization of Hermann’ tortoise in Sicily. In Herpetologia Sardiniae 282–286 (LATINA: Edizioni Belvedere, 2008).369.Giagia, E. V. Cytotaxonomical Study of Eastern European Hedgehog Erinaceus concolor M. in Greece. PhD thesis, Univ. Patras (1977).370.Gil Escobedo, L. J. Ámbitos de Hogar de la Iguana de Órgano Ctenosaura palearis (Sauria: Iguanidae) en el Bosque Tropical Estacionalmente Seco de Cabañas, Zacapa, Guatemala. BSc thesis, Univ. San Carlos de Guatemala (2016).371.Gill, B. & McLean, I. G. Morphometrics of the whitehead Mohoua albicilla on Little Barrier Island, New Zealand. New Zeal. J. Zool. 13, 267–271 (1986).Article 

    Google Scholar 
    372.Glaw, F., Hawlitschek, O., Glaw, K. & Vences, M. Integrative evidence confirms new endemic island frogs and transmarine dispersal of amphibians between Madagascar and Mayotte (Comoros Archipelago). Sci. Nat. 106, 19 (2019).Article 
    CAS 

    Google Scholar 
    373.Glaw, F., Koehler, J., Townsend, T. M. & Vences, M. Rivaling the world’s smallest reptiles: discovery of miniaturized and microendemic new species of leaf chameleons (Brookesia) from northern Madagascar. PLoS ONE 7, e31314 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    374.Glaw, F., Nagy, Z. T., Franzen, M. & Vences, M. Molecular phylogeny and systematics of the pseudoxyrhophiine snake genus Liopholidophis (Reptilia, Colubridae): evolution of its exceptional sexual dimorphism and descriptions of new taxa. Zool. Scr. 36, 291–300 (2007).Article 

    Google Scholar 
    375.Glaw, F., Vences, M., Andreone, F. & Vallan, D. Revision of the Boophis majori group (Amphibia: Mantellidae) from Madagascar, with descriptions of five new species. Zool. J. Linn. Soc. 133, 495–529 (2001).Article 

    Google Scholar 
    376.Goldberg, S. R., Bursey, C. R. & Arreola, J. Gastrointestinal helminths from eight species of Aspidoscelis (Squamata: Teiidae) from Mexico. West. N. Am. Nat. 74, 223–227 (2014).Article 

    Google Scholar 
    377.Goldman, E. A. & Jackson, H. H. Raccoons of North and Middle America. N. Am. Fauna 60, 1–153 (1950).Article 

    Google Scholar 
    378.Goltsman, M., Kruchenkova, E. P., Sergeev, S., Volodin, I. & Macdonald, D. W. ‘Island syndrome’ in a population of Arctic foxes (Alopex lagopus) from Mednyi Island. J. Zool. 267, 405–418 (2005).Article 

    Google Scholar 
    379.González Quintero, E. P. Análisis Taxonómico del Coyote (Canis latrans) de la Península de Baja Calfornia, México. MSc thesis, Centro de Investigaciones Biológicas del Noroeste S.C (2004).380.González Rossell, A. Ecología y Conservación de la Iguana (Cyclura nubila nubila) en Cuba. PhD thesis, Univ. Alicante (2018).381.Granjon, L. & Cheylan, G. Biometric differentiation of black rat (Rattus rattus) populations in the west Mediterranean islands. Mammalia 54, 213–231 (1990).Article 

    Google Scholar 
    382.Grant, P. A Systematic Study of the Terrestrial Birds of the Tres Marias Islands, Mexico (Yale Peabody Museum of Natural History, 1965).383.Grant, P. The coexistence of two wren species of the genus Thryothorus. Wilson Bull. 78, 266–278 (1966).
    Google Scholar 
    384.Grant, P. Further Information on the Relative Length of the Tarsus in Land Birds (Yale Peabody Museum of Natural History, 1966).385.Grant, P. Ecological and morphological variation of Canary Island blue tits, Parus caeruleus (Aves: Paridae). Biol. J. Linn. Soc. 11, 103–129 (1979).Article 

    Google Scholar 
    386.Grinnell, J. The species of the mammalian genus Sorex of west-central California. Univ. Calif. Publ. Zool. 10, 179–195 (1913).
    Google Scholar 
    387.Grinnell, J., Dixon, J. S. & Linsdale, J. M. The Fur Bearing Mammals of California (Univ. California Press, 1937).388.Guarino, F. M., Garcia, G. & Andreone, F. Huge but moderately long-lived: age structure in the mountain chicken, Leptodactylus fallax, from Montserrat, West Indies. Herpetol. J. 24, 167–173 (2014).
    Google Scholar 
    389.Gursky, S. Effects of radio transmitter weight on a small nocturnal primate. Am. J. Primatol. 46, 145–155 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    390.Gutsche, A. & Streich, W. J. Demography and endangerment of the Utila Island spiny-tailed iguana, Ctenosaura bakeri. J. Herpetol. 43, 105–113 (2009).Article 

    Google Scholar 
    391.Hadi, S., Ziegler, T. & Hodges, J. K. Group structure and physical characteristics of simakobu monkeys (Simias concolor) on the Mentawai Island of Siberut, Indonesia. Folia Primatol. 80, 74–82 (2009).Article 

    Google Scholar 
    392.Hagen, B. Zur Kleinsäugerfauna Siziliens. Bonn. Zool. Beitr. 5, 1–15 (1954).
    Google Scholar 
    393.Hai, B. T., Tu, L. N., Duong, V. T. & Son, N. T. Geographic variation in skull size and shape of Crocidura dracula (Mammalia: Soricidae) in Vietnam. In Proc. 7th National Scientific Conference on Ecology and Biological Resources 670–677 (2017).394.Harding, L. E. Trachypithecus cristatus (Primates: Cercopithecidae). Mamm. Species 42, 149–165 (2010).Article 

    Google Scholar 
    395.Hasegawa, M. Insular radiation in life-history of the lizard Eumeces okadae in the Izu Islands, Japan. Copeia 1994, 732–747 (1994).Article 

    Google Scholar 
    396.Hasegawa, M. & Moriguchi, H. in Current Herpetology in East Asia (eds Matui, M. et al.) 414–432 (Herpetological Society of Japan, 1989).397.Hawlitschek, O., Nagy, Z. T. & Glaw, F. Island evolution and systematic revision of Comoran snakes: why and when subspecies still make sense. PLoS ONE 7, e42970 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    398.Heaney, L. R. Island area and body size of insular mammals: evidence from the tri‐colored squirrel (Callosciurus prevosti) of Southeast Asia. Evolution 32, 29–44 (1978).PubMed 
    PubMed Central 

    Google Scholar 
    399.Heaney, L. R. & Timm, R. M. Systematics and distribution of shrews of the genus Crocidura (Mammalia: Insectivora) in Vietnam. Proc. Biol. Soc. Wash. 96, 115–120 (1983).
    Google Scholar 
    400.Hedges, S. B. & Thomas, R. At the lower size limit in amniote vertebrates: a new diminutive lizard from the West Indies. Caribb. J. Sci. 37, 168–173 (2001).
    Google Scholar 
    401.Heinsohn, G. E. Ecology and Reproduction of the Tasmanian Bandicoots (Perameles gunni and Isoodon obesulus) (Univ. California Press, 1966).402.Hemelaar, A. Age, growth and other population characteristics of Bufo bufo from different latitudes and altitudes. J. Herpetol. 22, 369–388 (1988).Article 

    Google Scholar 
    403.Heo, J.-H. et al. Can an invasive prey species induce morphological and behavioral changes in an endemic predator? Evidence from a South Korean snake (Oocatochus rufodorsatus). Asian Herpetol. Res. 5, 245–254 (2014).
    Google Scholar 
    404.Hernández-Gallegos, O., López Moreno, A. E., Méndez de la Cruz, F. R. & Walker, J. Home range of the parthenogenetic lizard Aspidoscelis maslini (Fritts, 1969), on a beach strand. Herpetozoa 31, 83–86 (2018).
    Google Scholar 
    405.Hernández-Gallegos, O., López-Moreno, A. E., Méndez-Sánchez, J. F., Lloyd Rheubert, J. & Méndez-de la Cruz, F. R. Home range of Aspidoscelis cozumela (Squamata: Teiidae): a parthenogenetic lizard microendemic to Cozumel Island, Mexico. Rev. Biol. Trop. 63, 771–781 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    406.Hernandez-Salinas, U., Ramirez-Bautista, A., Pavon, N. P. & Rosas Pacheco, L. F. Morphometric variation in island and mainland populations of two lizard species from the Pacific coast of Mexico. Rev. Chil. Hist. Nat. 87, 1–9 (2014).Article 

    Google Scholar 
    407.Herrel, A., Cottam, M. D., Godbeer, K., Sanger, T. & Losos, J. B. An ecomorphological analysis of native and introduced populations of the endemic lizard Anolis maynardi of the Cayman Islands. Breviora 522, 1–10 (2011).Article 

    Google Scholar 
    408.Herrel, A., Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).Article 

    Google Scholar 
    409.Hershkovitz, P. Mammals of northern colombia, preliminary report no. 6: rabbits (Leporidae), with notes on the classification and distribution of the South American forms. Proc. US Natl Mus. 100, 327–375 (1950).Article 

    Google Scholar 
    410.Hervias-Parejo, S. et al. Small size does not restrain frugivory and seed dispersal across the evolutionary radiation of Galapagos lava lizards. Curr. Zool. 65, 353–361 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    411.Heyer, M. M., Heyer, W. R. & de Sá, R. O. Leptodactylus pentadactylus. Catalogue of American Amphibians and Reptiles (CAAR) (ed. Price, A. H.) 1–48 (Society for the Study of Amphibians and Reptiles, 2012).412.Heyer, W., Rand, A., Cruz, C., Peixoto, O. L. & Nelson, C. E. Frogs of Boracéia. Arq. Zool. 31, 231–410 (1990).
    Google Scholar 
    413.Higgins, P. J. Handbook of Australian, New Zealand and Antarctic birds: Parrots to Dollarbird Vol. 4 (Oxford Univ. Press, 1999).414.Higgins, P. J. & Davies, S. J. J. F. Handbook of Australian, New Zealand and Antarctic Birds: Snipe to Pigeons Vol. 3 (Oxford Univ. Press, 1996).415.Higgins, P. J. & Peter, J. M. Handbook of Australian, New Zealand and Antarctic Birds: Pardalotes to Shrike-Thrushes Vol. 6 (Oxford Univ. Press, 2002).416.Higgins, P. J., Peter, J. M. & Cowling, S. J. Handbook of Australian, New Zealand and Antarctic Birds: Boatbill to Starlings Vol. 7 (Oxford Univ. Press, 2006).417.Higgins, P. J., Peter, J. M. & Steele, W. K. Handbook of Australian, New Zealand and Antarctic Birds: Tyrant-Flycatchers to Chats Vol. 5 (Oxford Univ. Press, 2001).418.Hill, J. The Robinson collection of Malaysian mammals. Bull. Raffles Mus. 29, 6–22 (1960).
    Google Scholar 
    419.Hitchmough, R. A. & McCallum, J. The mammals, birds, reptiles and freshwater fish of the eastern island group of the Bay of Islands. Tane 26, 127–134 (1980).
    Google Scholar 
    420.Hofmeyr, M. D. Egg production in Chersina angulata: an unusual pattern in a Mediterranean climate. J. Herpetol. 38, 172–179 (2004).Article 

    Google Scholar 
    421.Hollingsworth, B. D. The systematics of chuckwallas (Sauromalus) with a phylogenetic analysis of other iguanid lizards. Herpetol. Monogr. 12, 38–191 (1998).Article 

    Google Scholar 
    422.How, R. A., Cowan, M. A., Teale, R. J. & Schmitt, L. H. Environmental correlates of reptile variation on the Houtman Abrolhos Archipelago, eastern Indian Ocean. J. Biogeogr. 47, 2017–2028 (2020).Article 

    Google Scholar 
    423.Huang, W.-S. Ecology and reproductive patterns of the agamid lizard Japalura swinhonis on an east Asian island, with comments on the small clutch sizes of island lizards. Zool. Sci. 24, 181–188 (2007).Article 

    Google Scholar 
    424.Hummelinck, P. W. Studies on the Fauna of Curaçao, Aruba, Bonaire, and the Venezuelan Islands: No. 6 (Nijhoff, 1940).425.Hutterer, R. Variation and evolution of the Sicilian shrew: taxonomic conclusions and description of a possibly related species from the Pleistocene of Morocco (Mammalia: Soricidae). Bonn. Zool. Beitr. 42, 241–251 (1991).
    Google Scholar 
    426.Huyghe, K., Vanhooydonck, B., Herrel, A., Tadić, Z. & Van Damme, R. Morphology, performance, behavior and ecology of three color morphs in males of the lizard Podarcis melisellensis. Integr. Comp. Biol. 47, 211–220 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    427.Iliopoulou-Georgudaki, J. The relationship between climatic factors and forearm length of bats: evidence from the chiropterofauna of Lesvos island (Greece–east Aegean). Mammalia 50, 475–482 (1986).Article 

    Google Scholar 
    428.Inger, R. F., Stuart, B. L. & Iskandar, D. T. Systematics of a widespread Southeast Asian frog, Rana chalconota (Amphibia: Anura: Ranidae). Zool. J. Linn. Soc. 155, 123–147 (2009).Article 

    Google Scholar 
    429.Iverson, J. B., Hines, K. N. & Valiulis, J. M. The nesting ecology of the Allen Cays rock iguana, Cyclura cychlura inornata in the Bahamas. Herpetol. Monogr. 18, 1–36 (2004).Article 

    Google Scholar 
    430.Jacobs, D. Morphological divergence in an insular bat, Lasiurus cinereus semotus. Funct. Ecol. 10, 622–630 (1996).Article 

    Google Scholar 
    431.Jenkins, P. & Veitch, C. Sexual dimorphism and age determination in the North Island saddleback (Philesturnus carunculatus rufaster). New Zeal. J. Zool. 18, 445–450 (1991).Article 

    Google Scholar 
    432.Jenkins, P. D., Abramov, A. V., Bannikova, A. A. & Rozhnov, V. V. Bones and genes: resolution problems in three Vietnamese species of Crocidura (Mammalia, Soricomorpha, Soricidae) and the description of an additional new species. ZooKeys 2013, 61–79 (2013).Article 

    Google Scholar 
    433.Jenssen, T. A. et al. Morphological characteristics of the lizard Anolis carolinensis from South Carolina. Herpetologica 51, 401–411 (1995).
    Google Scholar 
    434.Jessop, R. Biometrics and moult of red-capped plovers in Victoria, Tasmania, South Australia and north west Australia. Stilt 17, 29–35 (1990).
    Google Scholar 
    435.Jessop, T. S. et al. Maximum body size among insular Komodo dragon populations covaries with large prey density. Oikos 112, 422–429 (2006).Article 

    Google Scholar 
    436.Ji, X. & Wang, Z. W. Geographic variation in reproductive traits and trade-offs between size and number of eggs of the Chinese cobra (Naja atra). Biol. J. Linn. Soc. 85, 27–40 (2005).Article 

    Google Scholar 
    437.Ji, X., Xie, Y. Y., Sun, P. Y. & Zheng, X. Z. Sexual dimorphism and female reproduction in a viviparous snake, Elaphe rufodorsata. J. Herpetol. 31, 420–422 (1997).Article 

    Google Scholar 
    438.Jimenez, J. E. & McMahon, E. in Canids: Foxes, Wolves, Jackals, and Dogs: Status Survey and Conservation Action Plan (eds Sillero-Zubiri, C. et al.) 50–55 (IUCN, 2004).439.Joubert, L. & Cheylan, M. La tortue d’Hermann de Corse: résultat des recherches menées en 1985 et 1986. Trav. Sci. Parc Nat. Rég. Réserves Nat. Corse 22, 1–54 (1989).
    Google Scholar 
    440.Judd, F. W. & Ross, R. K. Year-to-year variation in clutch size of island and mainland populations of Holbrookia propinqua (Reptilia, Lacertilia, Iguanidae). J. Herpetol. 12, 203–207 (1978).Article 

    Google Scholar 
    441.Kang, C. et al. Differential predation drives the geographical divergence in multiple traits in aposematic frogs. Behav. Ecol. 28, 1122–1130 (2017).Article 

    Google Scholar 
    442.Keast, A. Competitive interactions and the evolution of ecological niches as illustrated by the Australian honeyeater genus Melithreptus (Meliphagidae). Evolution 22, 762–784 (1968).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    443.Keehn, J. E., Nieto, N. C., Tracy, C. R., Gienger, C. M. & Feldman, C. R. Evolution on a desert island: body size divergence between the reptiles of Nevada’s Anaho Island and the mainland around Pyramid Lake. J. Zool. 291, 269–278 (2013).Article 

    Google Scholar 
    444.Kim, D.-I. et al. Patterns of morphological variation in the Schlegel’s Japanese gecko (Gekko japonicus) across populations in China, Japan, and Korea. J. Ecol. Environ. 43, 34 (2019).Article 

    Google Scholar 
    445.Kim, S.-I., Oshida, T., Lee, H., Min, M.-S. & Kimura, J. Evolutionary and biogeographical implications of variation in skull morphology of raccoon dogs (Nyctereutes procyonoides, Mammalia: Carnivora). Biol. J. Linn. Soc. 116, 856–872 (2015).Article 

    Google Scholar 
    446.King, R. B. Body size variation among island and mainland snake populations. Herpetologica 45, 84–88 (1989).
    Google Scholar 
    447.King, R. B. Variation in brown snake (Storeria dekayi) morphology and scalation: sex, family, and microgeographic differences. J. Herpetol. 31, 335–346 (1997).Article 

    Google Scholar 
    448.King, T. The birds of the Lesio-Louna and Lefini reserves, Batéké Plateau, Republic of Congo. Malimbus 33, 1–41 (2011).
    Google Scholar 
    449.Kitchener, D., Hisheh, S., Schmitt, L. & Maryanto, I. Morphological and genetic variation in Aethalops alecto (Chiroptera, Pteropodidae) from Java, Bali and Lombok Is, Indonesia. Mammalia 57, 255–272 (1993).
    Google Scholar 
    450.Kitchener, D. & Schmitt, L. Morphological and genetic variation in Suncus murinus (Soricidae: Crocidurinae) from Java, Lesser Sunda Islands, Maluku and Sulawesi, Indonesia. Mammalia 58, 433–452 (1994).Article 

    Google Scholar 
    451.Kitchener, D., Schmitt, L., Hisheh, S., How, R. & Cooper, N. Morphological and genetic variation in the bearded tomb bats (Taphozous: Emballonuridae) of Nusa Tenggara, Indonesia. Mammalia 57, 63–84 (1993).
    Google Scholar 
    452.Klauber, L. M. The gopher snakes of Baja California: with descriptions of a new subspecies of Pituophis catenifer. Trans. San Diego Soc. Nat. Hist. 11, 1–40 (1946).Article 

    Google Scholar 
    453.Klauber, L. M. A new gopher snake (Pituophis) from Santa Cruz Island, California. Trans. San Diego Soc. Nat. Hist. 11, 41–48 (1946).Article 

    Google Scholar 
    454.Klauber, L. M. Some new and revived subspecies of rattlesnakes. Trans. San Diego Soc. Nat. Hist. 11, 61–116 (1949).Article 

    Google Scholar 
    455.Klauber, L. M. Rattlesnakes: Their Habits, Life Histories, and Influence on Mankind (Univ. California Press, 1997).456.Kloss, C. B. On mammals collected in Siam. J. Nat. Hist. Soc. Siam 4, 333–407 (1919).
    Google Scholar 
    457.Klütsch, C., Misof, B., Grosse, W. R. & Moritz, R. Genetic and morphometric differentiation among island populations of two Norops lizards (Reptilia: Sauria: Polychrotidae) on independently colonized islands of the Islas de Bahia (Honduras). J. Biogeogr. 34, 1124–1135 (2007).Article 

    Google Scholar 
    458.Knapp, C. R., Iverson, J. B. & Owens, A. K. Geographic variation in nesting behavior and reproductive biology of an insular iguana (Cyclura cychlura). Can. J. Zool. 84, 1566–1575 (2006).Article 

    Google Scholar 
    459.Kohno, H. Reptiles in a seabird colony: herpetofauna of Nakanokamishima Island of the Yaeyama group, Ryukyu Archipelago. Isl. Stud. Okinawa 9, 73–89 (1991).
    Google Scholar 
    460.Koopman, K. F. & Diamond, J. Zoogeography of mammals from islands off the northeastern coast of New Guinea. Am. Mus. Novit. 2690, 1–17 (1979).
    Google Scholar 
    461.Kraus, C., Trillmich, F. & Künkele, J. Reproduction and growth in a precocial small mammal, Cavia magna. J. Mammal. 86, 763–772 (2005).Article 

    Google Scholar 
    462.Proetzel, D., Ruthensteiner, B., Scherz, M. D. & Glaw, F. Systematic revision of the Malagasy chameleons Calumma boettgeri and C. linotum (Squamata: Chamaeleonidae). Zootaxa 4048, 211–231 (2015).Article 

    Google Scholar 
    463.Qualls, C. P., Shine, R., Donnellan, S. & Hutchinsonm, M. The evolution of viviparity within the Australian scincid lizard Lerista bougainvillii. J. Zool. 237, 13–26 (1995).Article 

    Google Scholar 
    464.Quin, D. G., Smith, A. P. & Norton, T. W. Eco-geographic variation in size and sexual dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae). Aust. J. Zool. 44, 19–45 (1996).Article 

    Google Scholar 
    465.Rader, J. A., Dillon, M. E., Chesser, R. T., Sabat, P. & del Rio, C. M. Morphological divergence in a continental adaptive radiation: South American ovenbirds of the genus Cinclodes. Auk 132, 180–190 (2015).Article 

    Google Scholar 
    466.Radočaj, M., Jelić, D., Karaica, D. & Kapelj, S. Morphological and reproductive traits of the insular population of Podarcis siculus (Reptilia: Lacertidae) from Krk Island (Croatia). Hyla 2, 5–22 (2011).
    Google Scholar 
    467.Raia, P. et al. The blue lizard spandrel and the island syndrome. BMC Evol. Biol. 10, 289 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    468.Rajaratnam, R. Ecology of Leopard Cat (Prionailurus bengalensis) in Tabin Wildlife Reserve,Sabah, Malaysia. PhD thesis, Univ. Kebangsaan Malaysia (2000).469.Rausch, R. L. Geographic variation in size in North American brown bears, Ursus arctos L., as indicated by condylobasal length. Can. J. Zool. 41, 33–45 (1963).Article 

    Google Scholar 
    470.Reboucas, R., da Silva, H. R., Sanuy, D. & Sole, M. Sexual maturity and growth of male toads (Rhinella ornata): a comparison between insular and mainland populations. Zool. Anz. 283, 12–19 (2019).Article 

    Google Scholar 
    471.Reboucas, R., da Silva, H. R. & Sole, M. Frog size on continental islands of the coast of Rio de Janeiro and the generality of the island rule. PLoS ONE 13, e0190153 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    472.Redfield, J. Distribution, abundance, size, and genetic variation of Peromyscus maniculatus on the Gulf Islands of British Columbia. Can. J. Zool. 54, 463–474 (1976).Article 

    Google Scholar 
    473.Renaud, S. et al. Morphometrics and genetics highlight the complex history of eastern Mediterranean spiny mice. Biol. J. Linn. Soc. 130, 599–614 (2020).Article 

    Google Scholar 
    474.Reynolds, R. G., Niemiller, M. L. & Fitzpatrick, B. M. Genetic analysis of an endemic archipelagic lizard reveals sympatric cryptic lineages and taxonomic discordance. Conserv. Genet. 13, 953–963 (2012).Article 

    Google Scholar 
    475.Rhodin, A. G. Chelid turtles of the Australasian Archipelago: a new species of Chelodina from Roti Island, Indonesia. Breviora 498, 1–31 (1994).
    Google Scholar 
    476.Rickart, E. A., Heaney, L. R., Goodman, S. M. & Jansa, S. Review of the Philippine genera Chrotomys and Celaenomys (Murinae) and description of a new species. J. Mammal. 86, 415–428 (2005).Article 

    Google Scholar 
    477.Ridgway, R. The Birds of North and Middle America: A Descriptive Catalogue of the Higher Groups, Genera, Species, and Subspecies of Birds Known to Occur in North America, from the Arctic Lands to the Isthmus of Panama, the West Indies and Other Islands of the Caribbean Sea, and the Galapagos Archipelago (US Government Printing Office, 1904).478.Rivas, G. A. et al. A distinctive new species of Gonatodes (Squamata: Sphaerodactylidae) from Isla La Blanquilla, Venezuela, with remarks on the distribution of some other Caribbean sphaerodactylid lizards. S. Am. J. Herpetol. 8, 5–18 (2013).Article 

    Google Scholar 
    479.Robertson, H., Whitaker, A. & Fitzgerald, B. Morphometrics of forest birds in the Orongorongo Valley, Wellington, New Zealand. New Zeal. J. Zool. 10, 87–97 (1983).Article 

    Google Scholar 
    480.Rocha, C. F. & Vrcibradic, D. Reproductive traits of two sympatric viviparous skinks (Mabuya macrorhyncha and Mabuya agilis) in a Brazilian restinga habitat. Herpetol. J. 9, 43–53 (1999).
    Google Scholar 
    481.Rodríguez-Cabal, M. A., Amico, G. C., Novaro, A. J. & Aizen, M. A. Population characteristics of Dromiciops gliroides (Philippi, 1893), an endemic marsupial of the temperate forest of Patagonia. Mamm. Biol. 73, 74–76 (2008).Article 

    Google Scholar 
    482.Rog, S., Ryan, M. J., Mueller, U. & Lampert, K. P. Evidence for morphological and genetic diversification of túngara frog populations on islands. Herpetol. Conserv. Biol. 8, 228–239 (2013).
    Google Scholar 
    483.Rogers, K., Rogers, A. & Rogers, D. Bander’s Aid: Supplement Number One RAOU Report No. 67 (Royal Australasian Ornithologists Union, 1990).484.Ross, R. K. & Judd, F. W. Comparison of lipid cycles of Holbrookia propinqua from Padre Island and mainland Texas. J. Herpetol. 16, 53–60 (1982).Article 

    Google Scholar 
    485.Rowe-Rowe, D. & Crafford, J. Density, body size, and reproduction of feral house mice on Gough Island. S. Afr. J. Zool. 27, 1–5 (1992).
    Google Scholar 
    486.Runemark, A., Sagonas, K. & Svensson, E. I. Ecological explanations to island gigantism: dietary niche divergence, predation, and size in an endemic lizard. Ecology 96, 2077–2092 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    487.Sabater Pi, J. Contribution to the ecology of Colobus polykomos satanas (Waterhouse, 1838) of Rio Muni, Republic of Equatorial Guinea. Folia Primatol. 19, 193–207 (1973).CAS 
    Article 

    Google Scholar 
    488.Sagonas, K., Pafilis, P. & Valakos, E. D. Effects of insularity on digestion: living on islands induces shifts in physiological and morphological traits in island reptiles. Sci. Nat. 102, 55 (2015).Article 
    CAS 

    Google Scholar 
    489.Sahimi, H. N. M., Chubo, J. K., Mohd, M., Saripuddin, N. B. & Ab Rahim, S. S. The distribution and population density of Bornean tarsier, Tarsius bancanus borneanus (Elliot) in secondary and rehabilitated forests of Universiti Putra Malaysia, Bintulu Sarawak Campus, Sarawak, Malaysia. Trop. Life Sci. Res. 29, 139–154 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    490.Salvidio, S., Cresta, P. & Dolmen, D. The common toad Bufo bufo population of Hitra Island, central Norway. Fauna Norv. 14, 51–55 (1993).
    Google Scholar 
    491.Sanches, V. Q. A. & Grings, D. R. Daily movement and habitat use of Iguana iguana (Linnaeus, 1758) in an urban second growth Amazonian forest fragment in Brazil. Herpetol. Notes 11, 93–96 (2018).
    Google Scholar 
    492.Sanderson, J., Sunquist, M. E. & Iriarte, A. W. Natural history and landscape-use of guignas (Oncifelis guigna) on Isla Grande de Chiloé, Chile. J. Mammal. 83, 608–613 (2002).Article 

    Google Scholar 
    493.Sargis, E. J., Millien, V., Woodman, N. & Olson, L. E. Rule reversal: ecogeographical patterns of body size variation in the common treeshrew (Mammalia, Scandentia). Ecol. Evol. 8, 1634–1645 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    494.Sá‐Sousa, P., Almeida, A., Rosa, H., Vicente, L. & Crespo, E. Genetic and morphological relationships of the Berlenga wall lizard (Podarcis bocagei berlengensis: Lacertidae). J. Zool. Syst. Evol. Res. 38, 95–102 (2000).Article 

    Google Scholar 
    495.Sá-Sousa, P. & Harris, D. J. Podarcis carbonelli Pérez-Mellado, 1981 is a distinct species. Amphib.-Reptil. 23, 459–468 (2002).Article 

    Google Scholar 
    496.Sá-Sousa, P., Vicente, L. & Crespo, E. Morphological variability of Podarcis hispanica (Sauria: lacertidae) in Portugal. Amphib.-Reptil. 23, 55–69 (2002).Article 

    Google Scholar 
    497.Scali, S. et al. Continental versus Mediterranean European whip snake (Hierophis viridiflavus): a morphometric approach. Biota 3, 161–166 (2003).
    Google Scholar 
    498.Scheffer, V. B. & Dalquest, W. W. A new shrew from Destruction Island, Washington. J. Mammal. 23, 333–335 (1942).Article 

    Google Scholar 
    499.Schifter, H., Cunningham-van Someren, G. & van Someren, G. C. The avifauna of the North Nandi Forest, Kenya. Ann. Naturhist. Mus. Wien. B 100, 425–479 (1998).
    Google Scholar 
    500.Schlotfeldt, B. E. & Kleindorfer, S. Adaptive divergence in the superb fairy-wren (Malurus cyaneus): a mainland versus island comparison of morphology and foraging behaviour. Emu 106, 309–319 (2006).Article 

    Google Scholar 
    501.Schultz, A. H. Observations on the growth, classification and evolutionary specialization of gibbons and siamangs. Hum. Biol. 5, 212–255 (1933).
    Google Scholar 
    502.Schultz, A. H. The relative weight of the testes in primates. Anat. Rec. 72, 387–394 (1938).Article 

    Google Scholar 
    503.Schwaner, T. D. & Sarre, S. D. Body size of tiger snakes in southern Australia, with particular reference to Notechis ater serventyi (Elapidae) on Chappell Island. J. Herpetol. 22, 24–33 (1988).Article 

    Google Scholar 
    504.Schwaner, T. D. & Sarre, S. D. Body size and sexual dimorphism in mainland and island tiger snakes. J. Herpetol. 24, 320–322 (1990).Article 

    Google Scholar 
    505.Schwartz, A. Three new mammals from southern Florida. J. Mammal. 33, 381–385 (1952).Article 

    Google Scholar 
    506.Schwartz, A. Snakes of the genus Alsophis in Puerto Rico and the Virgin Islands. Stud. Fauna Curaçao Caribb. Isl. 23, 177–227 (1966).
    Google Scholar 
    507.Scott, D. Notes on the eastern hogsnose snake, Heterodon platyrhinos Latreille (Squamata, Colubridae), on a Virginia barrier island. Brimleyana 12, 51–55 (1986).
    Google Scholar 
    508.Selcer, K. W. & Judd, F. W. Variation in the reproductive ecology of Holbrookia propinqua (Sauria, Iguanidae). Tex. J. Sci. 34, 125–135 (1982).
    Google Scholar 
    509.Senczuk, G., García, A., Colangelo, P., Annesi, F. & Castiglia, R. Morphometric and genetic divergence in island and mainland populations of Anolis nebulosus (Squamata: Polychrotidae) from Jalisco (Mexico): an instance of insular gigantism. Ital. J. Zool. 81, 204–214 (2014).Article 

    Google Scholar 
    510.Seock, M., Nam, K.-B. & Yoo, J.-C. Distribution and movement tendencies of short-tailed viper snakes (Gloydius saxatilis) by altitude. Asian Herpetol. Res. 8, 39–47 (2017).
    Google Scholar 
    511.Serrano-Cardozo, V. H., Ramírez-Pinilla, M. P., Ortega, J. E. & Cortes, L. A. Annual reproductive activity of Gonatodes albogularis (Squamata: Gekkonidae) living in an anthropic area in Santander, Colombia. S. Am. J. Herpetol. 2, 31–38 (2007).Article 

    Google Scholar 
    512.Shaidani, N.-I. The Biogeographic Origins and Trophic Ecology of Maine’s Island Red-Backed Salamanders (Plethodon cinereus). MSc thesis, Univ. Maine (2017).513.Sharples, C. M., Fa, J. E. & BELL, D. J. Geographical variation in size in the European rabbit Oryctolagus cuniculus (Lagomorpha: Leporidae) in western Europe and North Africa. Zool. J. Linn. Soc. 117, 141–158 (1996).Article 

    Google Scholar 
    514.Shekelle, M. Observations of wild Sangihe Island tarsiers Tarsius sangirensis. Asian Primates J. 3, 18–23 (2013).
    Google Scholar 
    515.Shimada, T., Maeda, S. & Sakakibara, M. A morphological study of Cynops pyrrhogaster from the Chita Peninsula: rediscovery of the ‘extinct’ Atsumi race endemic to peninsular regions of Aichi Prefecture, central Japan. Curr. Herpetol. 35, 38–52 (2016).Article 

    Google Scholar 
    516.Shine, R. Venomous snakes in cold climates: ecology of the Australian genus Drysdalia (Serpentes: Elapidae). Copeia 1981, 14–25 (1981).Article 

    Google Scholar 
    517.Shine, R., Sun, L.-X., Zhao, E. & Bonnet, X. A review of 30 years of ecological research on the Shedao pitviper, Gloydius shedaoensis. Herpetol. Nat. Hist. 9, 1–14 (2003).
    Google Scholar 
    518.Sicuro, F. L. & Oliveira, L. F. B. Variations in leopard cat (Prionailurus bengalensis) skull morphology and body size: sexual and geographic influences. PeerJ 3, e1309 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    519.Siler, C. D., McVay, J. D., Diesmos, A. C. & Brown, R. M. A new species of fanged frog, genus Limnonectes (Amphibia: Anura: Dicroglossidae) from southeast Mindanao Island, Philippines. Herpetologica 65, 105–114 (2009).Article 

    Google Scholar 
    520.Siliceo-Cantero, H. H., García, A., Reynolds, R. G., Pacheco, G. & Lister, B. C. Dimorphism and divergence in island and mainland Anoles. Biol. J. Linn. Soc. 118, 852–872 (2016).Article 

    Google Scholar 
    521.Simberloff, D., Dayan, T., Jones, C. & Ogura, G. Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology 81, 2086–2099 (2000).Article 

    Google Scholar 
    522.Sinclair, E. Morphological variation among populations of the quokka, Setonix brachyurus (Macropodidae: Marsupialia), in Western Australia. Aust. J. Zool. 46, 439–449 (1998).Article 

    Google Scholar 
    523.Siqueira, C. C., Van Sluys, M., Ariani, C. V. & Rocha, C. F. Feeding ecology of Thoropa miliaris (Anura, Cycloramphidae) in four areas of Atlantic rain forest, southeastern Brazil. J. Herpetol. 40, 520–525 (2006).Article 

    Google Scholar 
    524.Slábová, M. & Frynta, D. Morphometric variation in nearly unstudied populations of the most studied mammal: the non-commensal house mouse (Mus musculus domesticus) in the Near East and northern Africa. Zool. Anz. 246, 91–101 (2007).Article 

    Google Scholar 
    525.Sleeman, D., Cussen, R., Southey, A. & O’Leary, D. The badgers Meles meles (L.) of Coney Island, Co. Sligo. Ir. Nat. J. 27, 10–18 (2002).
    Google Scholar 
    526.Sleeman, D. P., Davenport, J., Cussen, R. E. & Hammond, R. F. The small-bodied badgers (Meles meles (L.)) of Rutland Island, Co. Donegal. Ir. Nat. J. 30, 1–6 (2009).
    Google Scholar 
    527.Sleeman, P., Cussen, R., O’Donoughue, T. & Costello, E. Badgers (Meles meles) on Fenit Island, and their presence or absence on other Islands in Co. Kerry, Ireland. Small Carniv. Conserv. 24, 10–12 (2001).
    Google Scholar 
    528.Smith, F. A. Evolution of body size among woodrats from Baja California, Mexico. Funct. Ecol. 6, 265–273 (1992).Article 

    Google Scholar 
    529.Smith, R. J. & Jungers, W. L. Body mass in comparative primatology. J. Hum. Evol. 32, 523–559 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    530.Smith, T. B. & Temple, S. A. Feeding habits and bill polymorphism in hook-billed kites. Auk 99, 197–207 (1982).
    Google Scholar 
    531.Mitchell, C. & Mitchell, P. Translocation of shore skink (Oligosoma smithi) from Mimiwhangata to Matakohe-Limestone Island (November/December 2007) (Friends of Matakohe-Limestone Island Society, 2008).532.Sody, H. Notes on some primates, carnivora, and the babirusa from the Indo-Malayan and Indo-Australian regions. Treubia 20, 121–190 (1949).
    Google Scholar 
    533.Song, L., Fa-Hong, Y. & Xue-Fei, L. Cranial morphometric study of four giant flying squirrels (Petaurista) (Rodentia: Sciuridae) from China. Zool. Res. 33, 119–126 (2012).
    Google Scholar 
    534.Sparkman, A. M. et al. Convergence in reduced body size, head size, and blood glucose in three island reptiles. Ecol. Evol. 8, 6169–6182 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    535.Stager, K. E. The avifauna of the Tres Marias Islands, Mexico. Auk 74, 413–432 (1957).Article 

    Google Scholar 
    536.Stamenković, S. & Matić, R. Morphological correlates of prey consumed by Podarcis melisellensis (Braun, 1877) and P. siculus (Rafinesque, 1810) (Sauria, Lacertidae) from two mainland regions in the eastern Adriatic area. Arch. Biol. Sci. 65, 1015–1025 (2013).Article 

    Google Scholar 
    537.Steven, D. M. Recent evolution in the genus Clethrionomys. Symp. Soc. Exp. Biol. 7, 310–319 (1953).
    Google Scholar 
    538.Stoddart, D. M. & Braithwaite, R. W. A strategy for utilization of regenerating heathland habitat by the brown bandicoot (Isoodon obesulus; Marsupialia, Peramelidae). J. Anim. Ecol. 48, 165–179 (1979).Article 

    Google Scholar 
    539.Storer, R. W. Variation in the red-tailed hawks of southern Mexico and Central America. Condor 64, 77–78 (1962).
    Google Scholar 
    540.Strickland, D. & Norris, D. R. An example of phenotypic adherence to the island rule? Anticosti gray jays are heavier but not structurally larger than mainland conspecifics. Ecol. Evol. 5, 3687–3694 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    541.Struhsaker, T. T. The Red Colobus Monkeys: Variation in Demography, Behavior, and Ecology of Endangered Species (Oxford Univ. Press, 2010).542.Stuart-Smith, J. F., Stuart-Smith, R. D., Swain, R. & Wapstra, E. Size dimorphism in Rankinia Tympanocryptis diemensis (Family Agamidae): sex-specific patterns and geographic variation. Biol. J. Linn. Soc. 94, 699–709 (2008).Article 

    Google Scholar 
    543.Stubbs, D. & Swingland, I. R. The ecology of a Mediterranean tortoise (Testudo hermanni): a declining population. Can. J. Zool. 63, 169–180 (1985).Article 

    Google Scholar 
    544.Swarth, H. The lemming of Nunivak Island, Alaska. Proc. Biol. Soc. Wash. 44, 101–104 (1931).
    Google Scholar 
    545.Swarth, H. S. in University of California Publications in Zoology Vol. 7 (eds Ritter, W. E. & Kofoid, C. A.) 9–172 (Univ. California Press, 1911).546.Takada, Y., Sakai, E., Uematsu, Y. & Tateishi, T. Morphometric variation of house mice (Mus musculus) on the Izu Islands. Mammal. Study 24, 51–65 (1999).Article 

    Google Scholar 
    547.Takada, Y., Sakai, E., Uematsu, Y. & Tateishi, T. Morphological variation of large Japanese field mice, Apodemus speciosus on the Izu and Oki islands. Mammal. Study 31, 29–40 (2006).Article 

    Google Scholar 
    548.Takada, Y., Yamada, H. & Tateishi, T. Morphometric variation of Japanese wild mice on islands. J. Mamm. Soc. Jpn 19, 113–128 (1994).
    Google Scholar 
    549.Takenaka, T. & Hasegawa, M. Female-biased mortality and its consequence on adult sex ratio in the freshwater turtle Chinemys reevesii on an island. Curr. Herpetol. 20, 11–17 (2001).Article 

    Google Scholar 
    550.Tamarin, R. H. Dispersal, population regulation, and K-selection in field mice. Am. Nat. 112, 545–555 (1978).Article 

    Google Scholar 
    551.Tanaka, K. Phenotypic plasticity of body size in an insular population of a snake. Herpetologica 67, 46–57 (2011).Article 

    Google Scholar 
    552.Tanaka, K. & Ota, H. Natural history of two colubrid snakes, Elaphe quadrivirgata and Rhabdophis tigrinus, on Yakushima Island, southwestern Japan. Amphib.-Reptil. 23, 323–331 (2002).Article 

    Google Scholar 
    553.Taverne, M. et al. Diet variability among insular populations of Podarcis lizards reveals diverse strategies to face resource‐limited environments. Ecol. Evol. 9, 12408–12420 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    554.Taylor, E. H. The lizards of Thailand. Univ. Kans. Sci. Bull. 44, 687–1077 (1963).
    Google Scholar 
    555.Taylor, H. L. & Cooley, C. R. A multivariate analysis of morphological variation among parthenogenetic teiid lizards of the Cnemidophorus cozumela complex. Herpetologica 51, 67–76 (1995).
    Google Scholar 
    556.Terada, C., Tatsuzawa, S. & Saitoh, T. Ecological correlates and determinants in the geographical variation of deer morphology. Oecologia 169, 981–994 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    557.Terborgh, J., Faaborg, J. & Brockmann, H. J. Island colonization by Lesser Antillean birds. Auk 95, 59–72 (1978).Article 

    Google Scholar 
    558.Tessa, G., Crottini, A., Giacoma, C., Guarino, F. M. & Randrianirina, J. E. Comparative longevity and age at sexual maturity in twelve rainforest frogs of the genera Boophis, Gephyromantis, and Mantidactylus (Anura: Mantellidae) from Madagascar. Phyllomedusa 16, 13–21 (2017).Article 

    Google Scholar 
    559.Thomas, D. & Broughton, E. Status of Three Canadian Caribou Populations North of 70 in Winter 1977 (Canadian Wildlife Service, 1978).560.Thouless, C. & Bassri, K. A. Taxonomic status of the Farasan Island gazelle. J. Zool. 223, 151–159 (1991).Article 

    Google Scholar 
    561.Tsai, T. Sexual dimorphism of Chinese green tree viper. Trimeresurus stejnegeri stejnegeri. Biol. Bull. Natl Taiwan Normal Univ. 33, 13–22 (1998).
    Google Scholar 
    562.Uller, T. et al. Genetic differentiation predicts body size divergence between island and mainland populations of common wall lizards (Podarcis muralis). Biol. J. Linn. Soc. 127, 771–786 (2019).Article 

    Google Scholar 
    563.Ursin, E. Geographical Variation in Apodemus sylvaticus and A. flavicollis (Rodentia, Muridae) in Europe, with Special Reference to Danish and Latvian Populations (Munksgaard, 1956).564.Valakos, E. D. & Polymeni, R. M. The food of Cyrtodactylus kotschyi (Steindachner, 1870) (Sauria – Gekkonidae) during the wet season in the Mediterranean insular ecosystems of the Aegean. Herpetol. J. 1, 474–477 (1990).
    Google Scholar 
    565.Van Heezik, Y. M., Cooper, J. & Seddon, P. J. Population characteristics and morphometrics of angulate tortoises on Dassen Island, South Africa. J. Herpetol. 28, 447–453 (1994).Article 

    Google Scholar 
    566.Van Weenen, J. Aspects of the Ecology of Cunningham’s Skink, Egernia cunninghami, on West Island, South Australia. BSc thesis, Univ. Adelaide (1995).567.Vanek, J. P. & Burke, R. L. Insular dwarfism in female eastern hog-nosed snakes (Heterodon platirhinos; Dipsadidae) on a barrier island. Can. J. Zool. 98, 157–164 (2020).Article 

    Google Scholar 
    568.Vanzolini, P. E. & Reboucas-Spieker, R. Distribution and differentiation of animals along the coast and in continental islands of the state of São Paulo, Brazil. 3. Reproductive differences between Mabuya caissara and Mabuya macrorhyncha (Sauria, Scincidae). Pap. Avulsos Zool. 29, 95–109 (1976).
    Google Scholar 
    569.Vasconcelos, R. & Carranza, S. Systematics and biogeography of Hemidactylus homoeolepis Blanford, 1881 (Squamata: Gekkonidae), with the description of a new species from Arabia. Zootaxa 3835, 501–527 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    570.Velo-Anton, G. & Cordero-Rivera, A. Ethological and phenotypic divergence in insular fire salamanders: diurnal activity mediated by predation? Acta Ethol. 20, 243–253 (2017).Article 

    Google Scholar 
    571.Vences, M. Erste untersuchungen über die fortpflanzungsbiologie des Iberisichen scheibenzünglers Discoglossus galganoi (Amphibia: Anura: Discoglossidae). Acta Biol. Benrodis 6, 89–98 (1994).
    Google Scholar 
    572.Vences, M., Glaw, F., Mercurio, V. & Andreone, F. Review of the Malagasy tree snakes of the genus Stenophis (Colubridae). Salamandra 40, 161–179 (2004).
    Google Scholar 
    573.Vences, M., Köhler, J., Pabijan, M. & Glaw, F. Two syntopic and microendemic new frogs of the genus Blommersia from the east coast of Madagascar. Afr. J. Herpetol. 59, 133–156 (2010).Article 

    Google Scholar 
    574.Ventura, J. & Fuster, M. J. L. Morphometric analysis of the black rat, Rattus rattus, from Congreso Island (Chafarinas Archipielago, Spain). Orsis 15, 91–102 (2000).
    Google Scholar 
    575.Verdon, E. & Donnelly, M. A. Population structure of Florida box turtles (Terrapene carolina bauri) at the southernmost limit of their range. J. Herpetol. 39, 572–577 (2005).Article 

    Google Scholar 
    576.Vershinin, A. The biology and trapping of the ermine in Kamchatka. Byull. Mosk. Ova. Ispyt. Prir. Otd. Biol. 77, 16–26 (1972).
    Google Scholar 
    577.Vervust, B., Grbac, I. & Van Damme, R. Differences in morphology, performance and behaviour between recently diverged populations of Podarcis sicula mirror differences in predation pressure. Oikos 116, 1343–1352 (2007).Article 

    Google Scholar 
    578.Villeneuve, A. R. Habitat selection and population density of the world’s smallest chameleon, Brookesia micra, on Nosy Hara, Madagascar. Herpetol. Conserv. Biol. 12, 334–341 (2017).
    Google Scholar 
    579.Vogel, P. & Sofianidou, T. The shrews of the genus Crocidura on Lesbos, an eastern Mediterranean island. Bonn. Zool. Beitr. 46, 339–347 (1996).
    Google Scholar 
    580.Vogrin, M. Sexual dimorphism in Podarcis sicula campestris. Turk. J. Zool. 29, 189–191 (2005).
    Google Scholar 
    581.Vrcibradic, D. & Rocha, C. F. Observations on the natural history of the lizard Mabuya macrorhyncha Hoge (Scincidae) in Queimada Grande Island, Sao Paulo, Brazil. Rev. Bras. Zool. 22, 1185–1190 (2005).Article 

    Google Scholar 
    582.Walker, R., Woods-Ballard, A. J. & Rix, C. E. Population density and seasonal activity of the threatened Madagascar spider tortoise (Pyxis arachnoides arachnoides) of the southern dry forests; south west Madagascar. Afr. J. Ecol. 46, 67–73 (2008).Article 

    Google Scholar 
    583.Wang, Y., Li, Y., Wu, Z. & Murray, B. Insular shifts and trade‐offs in life‐history traits in pond frogs in the Zhoushan Archipelago, China. J. Zool. 278, 65–73 (2009).CAS 
    Article 

    Google Scholar 
    584.Watkins, G. G. Proximate causes of sexual size dimorphism in the iguanian lizard Microlophus occipitalis. Ecology 77, 1473–1482 (1996).Article 

    Google Scholar 
    585.Wayne, R. K. et al. A morphologic and genetic study of the island fox, Urocyon littoralis. Evolution 45, 1849–1868 (1991).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    586.West, A. G. Variation in Mandible Shape and Body Size of House Mice Mus musculus Across the New Zealand Archipelago: A Trans-Tasman Comparison Using Geometric Morphometrics. MSc thesis, Univ. Waikato (2017).587.Whitehead, V. Population Dynamics of the Eastern Box Turtle (Terrapene carolina carolina) in the Maryville College Woods, Maryville, Tennessee: A Report of a Senior Study. BSc thesis, Maryville College (2017).588.Woodman, N. et al. A new southern distributional limit for the Central American rodent Peromyscus stirtoni. Caribb. J. Sci. 38, 281–284 (2002).
    Google Scholar 
    589.Wu, Z., Li, Y. & Murray, B. R. Insular shifts in body size of rice frogs in the Zhoushan Archipelago, China. J. Anim. Ecol. 75, 1071–1080 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    590.Xu, F., Adler, G. H. & Li, Y. Covariation in insular life-history traits of the rice frog (Fejervarya limnocharis) in eastern China. Asian Herpetol. Res. 4, 28–35 (2013).Article 

    Google Scholar 
    591.Yabe, T. Population structure and male melanism in the Reeves’ turtle, Chinemys reevesii. Jpn. J. Herpetol. 15, 131–137 (1994).Article 

    Google Scholar 
    592.Yasukawa, Y., Ota, H. & Iverson, J. B. Geographic variation and sexual size dimorphism in Mauremys mutica (Cantor, 1842) (Reptilia: Bataguridae), with description of a new subspecies from the southern Ryukyus, Japan. Zool. Sci. 13, 303–317 (1996).Article 

    Google Scholar 
    593.Yurgenson, P. B. Ermines of the Far East territory. Byull. Mosk. Ova. Ispyt. Prir. Otd. Biol. 45, 239–243 (1936).
    Google Scholar 
    594.Yusefi, G. H., Kiabi, B. H., Khalatbari, L., Faizolahi, K. & Monteiro, N. M. Morphological analysis of Brandt’s hedgehog (Paraechinus hypomelas) reflects the isolation history of Persian Gulf islands and has implications for taxonomy. Biol. J. Linn. Soc. 119, 497–510 (2016).Article 

    Google Scholar 
    595.Yustian, I. Ecology and Conservation Status of Tarsius bancanus saltator on Belitung Island, Indonesia (Cuvillier, 2007).596.Ziegler, T., Vences, M., Glaw, F. & Böhme, W. Remarks on the genital morphology of the Malagasy snake genus Liophidium (Reptilia, Serpentes, Colubridae). Acta Biol. Benrodis 8, 157–159 (1996).
    Google Scholar 
    597.Zihlman, A. L., Mootnick, A. R. & Underwood, C. E. Anatomical contributions to hylobatid taxonomy and adaptation. Int. J. Primatol. 32, 865–877 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    598.Zuffi, M. & Gariboldi, A. Sexual dimorphism of the European pond terrapin, Emys orbicularis (L., 1758) from Italy. Sci. Herpetol. 1995, 124–129 (1995).
    Google Scholar 
    599.Zuffi, M. A., Sacchi, R., Pupin, F. & Cencetti, T. Sexual size and shape dimorphism in the Moorish gecko (Tarentola mauritanica, Gekkota, Phyllodactylidae). North-West. J. Zool. 7, 189–197 (2011).
    Google Scholar 
    600.Zuffi, M. A. L., Odetti, F., Batistoni, R. & Mancino, G. Geographic variation of sexual size dimorphism and genetics in the European pond turtle, Emys orbicularis and Emys trinacris, of Italy. Ital. J. Zool. 73, 363–372 (2006).CAS 
    Article 

    Google Scholar 
    601.Zug, G. R., Hedges, S. B. & Sunkel, S. Variation in reproductive parameters of three neotropical snakes, Coniophanes fissidens, Dipsas catesbyi, and Imantodes cenchoa. Smithson. Contrib. Zool. 300, 1–20 (1979).
    Google Scholar 
    602.Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions (John Wiley & Sons, 2019).603.Santini, L., Benítez‐López, A., Ficetola, G. F. & Huijbregts, M. A. Length–mass allometries in amphibians. Integr. Zool. 13, 36–45 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    604.Lislevand, T., Figuerola, J. & Székely, T. Avian body sizes in relation to fecundity, mating system, display behavior, and resource sharing. Ecology 88, 1605–1605 (2007).Article 

    Google Scholar 
    605.Van Valkenburgh, B. in Body Size in Mammalian Paleobiology: Estimation and Biological Implications (eds Damuth, J. & MacFadden, B. J.) 181–206 (Cambridge Univ. Press, 1990).606.Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    607.Scharf, I. et al. Late bloomers and baby boomers: ecological drivers of longevity in squamates and the tuatara. Glob. Ecol. Biogeogr. 24, 396–405 (2015).Article 

    Google Scholar 
    608.Regis, K. W. & Meik, J. M. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 5, e2914 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    609.Gosler, A., Greenwood, J., Baker, J. & Davidson, N. The field determination of body size and condition in passerines: a report to the British Ringing Committee. Bird Study 45, 92–103 (1998).Article 

    Google Scholar 
    610.Rising, J. D. & Somers, K. M. The measurement of overall body size in birds. Auk 106, 666–674 (1989).Article 

    Google Scholar 
    611.Jetz, W., Thomas, G., Joy, J., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    612.Wan, X., Wang, W., Liu, J. & Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 14, 135 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    613.Bracken, M. in Effective Care of the Newborn Infant (eds Sinclair, J. C. & Bracken, M. B.) 13–20 (Oxford Univ. Press, 1992).614.Pettorelli, N. et al. The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Clim. Res. 46, 15–27 (2011).Article 

    Google Scholar 
    615.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    616.Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).Article 

    Google Scholar 
    617.Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    618.Meiri, S. Traits of lizards of the world: variation around a successful evolutionary design. Glob. Ecol. Biogeogr. 27, 1168–1172 (2018).Article 

    Google Scholar 
    619.Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    620.Solé, M. & Rödder, D. in Amphibian Ecology and Conservation: A Handbook of Techniques (ed. Dodd, C. K. Jr) 167–184 (Oxford Univ. Press, 2010).621.McClain, C. R., Durst, P. A. P., Boyer, A. G. & Francis, C. D. Unravelling the determinants of insular body size shifts. Biol. Lett. 9, 20120989 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    622.Rozzi, R. Space–time patterns of body size variation in island bovids: the key role of predatory release. J. Biogeogr. 45, 1196–1207 (2018).Article 

    Google Scholar 
    623.Hadfield, J. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi‐trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    624.Lajeunesse, M. J. On the meta‐analysis of response ratios for studies with correlated and multi‐group designs. Ecology 92, 2049–2055 (2011).Article 

    Google Scholar 
    625.Lindstedt, S. L. & Boyce, M. S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878 (1985).Article 

    Google Scholar 
    626.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    627.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).628.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    629.Lajeunesse, M. J. Facilitating systematic reviews, data extraction and meta‐analysis with the metagear package for R. Methods Ecol. Evol. 7, 323–330 (2016).Article 

    Google Scholar 
    630.Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high‐throughput data extraction from primary literature: the metaDigitise R package. Methods Ecol. Evol. 10, 426–431 (2019).Article 

    Google Scholar 
    631.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    632.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    633.Rees, J. A. & Cranston, K. Automated assembly of a reference taxonomy for phylogenetic data synthesis. Biodivers. Data J. 5, e12581 (2017).Article 

    Google Scholar 
    634.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    635.Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    636.Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling (2015); https://rspatial.org/raster637.Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 0.4.3. https://CRAN.R-project.org/package=dplyr (2015).638.Wickham, H. reshape2: Flexibly Reshape Data: A Reboot of the reshape Package. R package version 1 (2012); https://github.com/hadley/reshape639.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).640.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.1. 6. (2017); https://rpkgs.datanovia.com/ggpubr/ More

  • in

    Behavioral responses of the European mink in the face of different threats: conspecific competitors, predators, and anthropic disturbances

    1.Becker, L. J. S. & Gabor, C. R. Effects of turbidity and visual vs. chemical cues on anti-predator response in the endangered fountain darter (Etheostoma fonticola). Ethology 118, 994–1000. https://doi.org/10.1111/eth.12002 (2010).Article 

    Google Scholar 
    2.Hettyey, A., Roelli, F., Thürlimann, N., Zürcher, A. & Van Buskirk, J. Visual cues contribute to predator detection in anuran larvae. Biol. J. Linn. Soc. 106, 820–827. https://doi.org/10.1111/j.1095-8312.2012.01923.x (2012).Article 

    Google Scholar 
    3.Sánchez-González, B., Barja, I. & Navarro-Castilla, Á. Wood mice modify food intake under different degrees of predation risk: influence of acquired experience and degradation of predator’s faecal volatile compounds. Chemoecoly. 27, 115–122. https://doi.org/10.1007/s00049-017-0237-1 (2017).CAS 
    Article 

    Google Scholar 
    4.Pereira, A. & Moita, M. A. Is there anybody out there? Neural circuits of threat detection in vertebrates. Curr. Opin. Neurobiol. 41, 179–187. https://doi.org/10.1016/j.conb.2016.09.011 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Hernández, M. C., Navarro-Castilla, A., Piñeiro, A. & Barja, I. Wood mice agressiveness and flight response to human handling: Effect of individual and environmental factors. Ethology 124, 559–569. https://doi.org/10.1111/eth.12760 (2018).Article 

    Google Scholar 
    6.Sánchez-González, B., Planillo, A., Navarro-Castilla, Á. & Barja, I. The concentration of fear: mice’s behavioural and physiological stress responses to different degrees of predation risk. Sci. Nat. 105, 16. https://doi.org/10.1007/s00114-018-1540-6 (2018).CAS 
    Article 

    Google Scholar 
    7.Verdolin, J. L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. 60, 457–464. https://doi.org/10.1007/s00265-006-0172-6 (2006).Article 

    Google Scholar 
    8.Barja, I., Silván, G., Martínez-Fernández, L. & Illera, J. C. Physiological stress responses, fecal marking behavior, and reproduction in wild European pine martens (Martes martes). J. Chem. Ecol. 37, 253–259. https://doi.org/10.1007/s10886-011-9928-1 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Barja, I., Silván, G. & Illera, J. C. Relationships between sex and stress hormone levels in feces and marking behavior in a wild population of Iberian wolves (Canis lupus signatus). J. Chem. Ecol. 34, 697–701. https://doi.org/10.1007/s10886-008-9460-0 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Barja, I. Decision making in plant selection during the faecal-marking behavior of wild wolves. Anim. Behav. 77, 489–493 (2009).Article 

    Google Scholar 
    11.Barja, I. Winter distribution of European pine marten (Martes martes) scats in a protected area of Galicia, Spain. Mammalia 69, 435–438 (2005).Article 

    Google Scholar 
    12.Berzins, R. & Helder, R. Olfactory communication and the importance of different odour sources in the ferret (Mustela putorius f. furo). Mamm. Biol. 73, 379–387. https://doi.org/10.1016/j.mambio.2007.12.002 (2008).Article 

    Google Scholar 
    13.Barja, I. & List, R. Faecal marking behavior in ringtails (Bassariscus astutus) during the non-breeding period: spatial characteristics of latrines and single faeces. Chemoecoly. 16, 2019–2222. https://doi.org/10.1007/s00049-006-0352-x (2006).Article 

    Google Scholar 
    14.Lowry, A. C., Frank, L. & Moore, L. F. Regulation of behavioral responses by corticotropin-releasing factor. Gen. Comp. Endocr. 146, 19–27. https://doi.org/10.1016/j.ygcen.2005.12.006 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Romero, L. M. & Gormally, B. M. G. How truly conserved is the “well-conserved” vertebrate stress response?. Integr. Comp. Biol. 59, 273–281. https://doi.org/10.1093/icb/icz011 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470. https://doi.org/10.1006/anbe.2003.2100 (2003).Article 

    Google Scholar 
    17.Hernández, M. C., Navarro-Castilla, Á. & Barja, I. Wood mouse feeding effort and decision-making when encountering a restricted unknown food source. PLoS ONE https://doi.org/10.1371/journal.pone.0212716 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Creel, S., Christianson, D., Liley, S. & Winnie, J. A. Predation risk affects reproductive physiology and demography of elk. Science 315, 960. https://doi.org/10.1126/science.1135918 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Navarro-Castilla, Á. & Barja, I. Antipredatory response and food intake in wood mice (Apodemus sylvaticus) under simulated predation risk by resident and novel carnivorous predators. Ethology 120, 90–98. https://doi.org/10.1111/eth.12184 (2014).Article 

    Google Scholar 
    20.Navarro-Castilla, Á. & Barja, I. Does predation risk, through moon phase and predator cues, modulate food intake, antipredatory and physiological responses in wood mice (Apodemussylvaticus)?. Behav. Ecol. Sociobiol. 68, 1505–1512. https://doi.org/10.1007/s00265-014-1759-y (2014).Article 

    Google Scholar 
    21.Navarro-Castilla, Á., Díaz, D. M. & Barja, I. Does ungulate disturbance mediate behavioural and physiological stress responses in Algerian mice (Mus spretus)? a wild exclosure experiment. Hystrix. 28, 165–172 (2017).
    Google Scholar 
    22.Brown, J. S. & Kotler, B. P. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7, 999–1014. https://doi.org/10.1111/j.1461-0248.2004.00661.x (2004).Article 

    Google Scholar 
    23.Navarro-Castilla, Á. & Barja, I. Stressful living in lower-quality habitats? Body mass, feeding behaviour and physiological stress responses in wild wood mouse populations. Integr. Zool. 4, 114–126. https://doi.org/10.1111/1749-4877.12351 (2018).Article 

    Google Scholar 
    24.Navarro-Castilla, Á., Sánchez-González, B. & Barja, I. Latrine behaviour and faecal corticosterone metabolites as indicators of habitat-related responses of wild rabbits to predation risk. Ecol. Indic. 97, 175–182. https://doi.org/10.1016/j.ecolind.2018.10.016 (2019).Article 

    Google Scholar 
    25.Clarke, E., Reichard, H. U. & Zuberbühle, K. The anti-predator behavior of wild white-handed gibbons (Hylobates bar). Behav. Ecol. Sociobiol. 66, 85–96 (2012).Article 

    Google Scholar 
    26.Hughes, K. K., Kelley, J. L. & Banks, P. B. Dangerous liaisons: the predation risks of receiving social signals. Ecol. Lett. 15, 11326–11339. https://doi.org/10.1111/j.1461-0248.2012.01856.x (2012).Article 

    Google Scholar 
    27.MacLean, S. A. & Bonter, D. N. The sound of danger: Threat sensitivity to predator vocalizations, alarm calls, and novelty in gulls. PLoS ONE 8, e82384. https://doi.org/10.1371/journal.pone.0082384 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Barber, J. R., Crooks, K. R. & Fristrup, K. M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 25, 180–189. https://doi.org/10.1016/j.tree.2009.08.002 (2010).Article 
    PubMed 

    Google Scholar 
    29.Sillero, N. Amphibian mortality levels on Spanish country roads: Descriptive and spatial analysis. Amphibia-Reptilia 29, 337–347. https://doi.org/10.1163/156853808785112066 (2008).Article 

    Google Scholar 
    30.Taylor, B. D. & Goldingay, R. L. Roads and wildlife: Impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 37, 320–331. https://doi.org/10.1071/WR09171 (2010).Article 

    Google Scholar 
    31.Iglesias-Merchán, C., Diaz-Balteiro, L. & de la Puente, J. Road traffic noise impact assessment in a breeding colony of cinereous vultures (Aegypius monachus) in Spain. J. Acoust. Soc. Am. or JASA. 139, 1124. https://doi.org/10.1121/1.4943553 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Iglesias-Merchan, C. et al. A new large-scale index (AcED) for assessing traffic noise disturbance on wildlife: Stress response in a roe deer (Capreolus capreolus) population. Environ. Monit. Assess. 190, 185. https://doi.org/10.1007/s10661-018-6573-y (2018).Article 
    PubMed 

    Google Scholar 
    33.Ortiz-Urbina, E., Diaz-Balteiro, L. & Iglesias-Merchan, C. Influence of anthropogenic noise for predicting cinereous vulture nest distribution. Sustainability. 12, 503. https://doi.org/10.3390/su12020503 (2020).Article 

    Google Scholar 
    34.Bamford, A. J., Monadjem, A. & Hardy, I. C. W. Nesting habitat preference of the African White-backed Vulture Gyps africanus and the effects of anthropogenic disturbance. Ibis 151, 51–62. https://doi.org/10.1111/j.1474-919X.2008.00878.x (2009).Article 

    Google Scholar 
    35.Zwijacz-Kozica, T. et al. Concentration of fecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol. 58, 215–222. https://doi.org/10.1007/s13364-012-0108-7 (2013).Article 

    Google Scholar 
    36.Barja, I. et al. Stress physiological responses to tourist pressure in a wild population of European pine marten. J. Steroid Biochem. 104, 136–142. https://doi.org/10.1016/j.jsbmb.2007.03.008 (2007).CAS 
    Article 

    Google Scholar 
    37.Piñeiro, A., Barja, I., Silván, G. & Illera, J. C. Effects of tourist pressure and reproduction on physiological stress response in wildcats: Management implications for species conservation. Wildl. Res. 39, 532–539. https://doi.org/10.1071/WR10218 (2012).Article 

    Google Scholar 
    38.Tarjuelo, R. et al. Effects of human activity on physiological and behavioral responses of an endangered steppe bird. Behav. Ecol. 26, 828–838. https://doi.org/10.1093/beheco/arv016 (2015).Article 

    Google Scholar 
    39.Beale, C. M. & Monaghan, P. Behavioural responses to human disturbance: A matter of choice?. Anim. Behav. 68, 1065–1069 (2004).Article 

    Google Scholar 
    40.Thiel, D., Jenni-Eiermann, S., Braunisch, V., Palme, R. & Jenni, L. Ski tourism affects habitat use and evokes a physiological stress response in capercaillie Tetrao urogallus: A new methodological approach. J. Appl. Ecol. 45, 845–853 (2008).Article 

    Google Scholar 
    41.Casas, F., Mougeot, F., Viñuela, J. & Bretagnolle,. Effects of hunting on the behaviour and spatial distribution of farmland birds: Importance of hunting-free refuges in agricultural areas. Anim. Conserv. 12, 346–354. https://doi.org/10.1111/j.1469-1795.2009.00259.x (2009).Article 

    Google Scholar 
    42.Wang, Z., Li, Z., Beuchamp, G. & Jiang, Z. Flock size and human disturbance affect vigilance of endangered red-crowned cranes (Grus japonensis). Biol. Conserv. 144, 101–105. https://doi.org/10.1016/j.biocon.2010.06.025 (2011).Article 

    Google Scholar 
    43.Maran, T. et al. Mustela lutreola. IUCN. (2010). e.T14018A4381596.44.Gómez, A., Oreca, S., Podra, M., Sanz, B. & Palazón, S. Expansión del visón europeo Mustela lutreola (Linnaeus, 1761) hacia el este de su área de distribución en España: primeros datos en Aragón. Galemys. 23, 37–45 (2011).
    Google Scholar 
    45.Amstislavsky, S. & Ternovskaya, Y. Reproduction in mustelids. Anim. Reprod. Sci. 60–61, 571–581 (2000).Article 

    Google Scholar 
    46.Harrington, L. A., Harrigton, A. L. & Macdonald, D. W. The smell of new competitors: the response of American mink Mustela vison, to the odours of otter, Lutra lutra and polecat, Mustela putorius. Ethology 115, 421–428. https://doi.org/10.1111/j.1439-0310.2008.01593.x (2008).Article 

    Google Scholar 
    47.Caro, T. M. & Stoner, C. J. The potential for interspecific competition among African carnivores. Biol. Conserv. 110, 67–75 (2003).Article 

    Google Scholar 
    48.Maran, T., Põdra, M., Põlma, M. & Macdonald, D. W. The survival of captive-born animals in restoration programmes—Case study of the endangered European mink Mustela lutreola. Biol. Conserv. 142, 1685–1692. https://doi.org/10.1016/j.biocon.2009.03.003 (2009).Article 

    Google Scholar 
    49.Palazón, S. (2017). Visón europeo – Mustela lutreola. In: Enciclopedia Virtual de los Vertebrados Españoles. Salvador, A., Barja, I. (Eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/50.Gorman, M. L. & Trowbridge, B. J. The role of odor in the social lives of carnivores. In Carnivore Behavior, Ecology, and Evolution (ed. Gittleman, J. L.) (Springer, 1989). https://doi.org/10.1007/978-1-4757-4716-4_3.
    Google Scholar 
    51.Pruitt, C. H. & Burghardt, G. M. Communicationin terrestrial carnivores: Mustelidae, Procyonidae, and Ursidae. In How Animals Communicate (ed. Seboek, T. A.) 767–793 (Indiana University Press, 1977).
    Google Scholar 
    52.Zschille, J., Stier, N. & Roth, M. Gender differences in activity patterns of American mink Neovison vison in Germany. Eur. J. Wildl. Res. 56, 187–194. https://doi.org/10.1007/s10344-009-0303-2 (2010).Article 

    Google Scholar 
    53.Hall, K. L. et al. Vigilance of kit foxes at water sources: A test of competing hypotheses for a solitary carnivore subject to predation. Behav. Process. 94, 76–82. https://doi.org/10.1016/j.beproc.2012.12.007 (2013).Article 

    Google Scholar 
    54.Maji, C. Dynamical analysis of a fractional-order predator–prey model incorporating a constant prey refuge and nonlinear incident rate. Model. Earth Syst. Environ. https://doi.org/10.1007/s40808-020-01061-9 (2021).Article 

    Google Scholar 
    55.Li, D., Zhou, Q., Tang, X., Huang, H. & Huang, C. Sleeping site use of the white-headed langur Trachypithecus leucocephalus: The role of predation risk, territorial defense, and proximity to feeding sites. Curr. Zool. 57, 260–268. https://doi.org/10.1093/czoolo/57.3.260 (2011).Article 

    Google Scholar 
    56.Kats, B. L. & Dill, M. L. The scent of death: Chemosensory assessment of predation risk by prey animals. Écoscience. 5, 361–394. https://doi.org/10.1080/11956860.1998.11682468 (1998).Article 

    Google Scholar 
    57.Šlipogor, V., Gunhold-de Oliveira, T., Tadić, Z., Massen, J. J. & Bugnyar, T. Consistent inter-individual differences in common marmosets (Callithrix jacchus) in boldness-shyness, stress-activity, and exploration-avoidance. Am. J. Primatol. 78, 961–973. https://doi.org/10.1002/ajp.22566 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Hall, B. A., Melfi, V., Burns, A., McGill, D. M. & Doyle, R. E. Curious creatures: A multi-taxa investigation of responses to novelty in a zoo environment. Peer J. 6, e4454. https://doi.org/10.7717/peerj.4454 (2018).Article 
    PubMed 

    Google Scholar 
    59.Fernández-Lázaro, G., Latorre, R., Alonso-García, E. & Barja, I. Nonhuman primate welfare: Can there be arelationship between personality, lateralization and physiological indicators?. Behav. Proc. 166, 103897 (2019).Article 

    Google Scholar 
    60.de Miguel, J & Barja, I. Manual de métodos de estudio del comportamiento en carnívoros. Técnicas de Biología de la Conservación – Nº5. (ed. Tundra Ediciones) (2015).61.le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: Comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107. https://doi.org/10.1007/s00265-009-0762-1 (2009).Article 

    Google Scholar 
    62.Hayes, R. A., Morelli, T. L. & Wright, P. C. Volatile components of lemur scent secretions vary throughout the year. Am. J. Primatol. 68, 1202–1207. https://doi.org/10.1002/ajp.20319 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Scordato, S. E. & Drea, M. C. Scents and sensibility: Information content of olfactory signals in the ringtailed lemur, Lemur catta. Anim. Behav. 7, 301–314. https://doi.org/10.1016/j.anbehav.2006.08.006 (2007).Article 

    Google Scholar 
    64.Martín, J., Barja, I. & López, P. Chemical scent constituents in feces of wild Iberian wolves (Canis lupus signatus). Biochem. Syst. Ecol. 38, 1096–1102. https://doi.org/10.1016/j.bse.2010.10.014 (2010).CAS 
    Article 

    Google Scholar 
    65.Sánchez-González, B., Planillo, A., Navarro-Castilla, Á. & Barja, I. The concentration of fear: Mice’s behavioural and physiological stress responses to different degrees of predation risk. Sci Nat. 105, 16. https://doi.org/10.1007/s00114-018-1540-6 (2018).CAS 
    Article 

    Google Scholar 
    66.Brawata, L. R. & Neeman, T. Is water the key? Dingo management, intraguild interactions and predator distribution around water points in arid Australia. Wildl. Res. 38, 426–436. https://doi.org/10.1071/WR10169 (2011).Article 

    Google Scholar 
    67.Erlinge, S., Sandell, M. & Brinck, C. Scent-marking and its territorial significance in stoats, Mustela erminea. Anim. Behav. 30, 811–818. https://doi.org/10.1016/S0003-3472(82)80154-1 (1982).Article 

    Google Scholar 
    68.Brown, J. A., Harris, S. & Cheeseman, C. L. The development of field techniques for studying potential modes of transmission of bovine tuberculosis from badgers to cattle. (ed. Hayden, T. J,) Royal Irish Academy (1993).69.Roper, T. J. et al. Territorial marking with faeces in badgers (Meles meles): A comparison of boundary and hinterland use. Behaviour 127, 289–307 (1993).Article 

    Google Scholar 
    70.Hutchings, M. R. & White, P. C. L. Mustelid scent-marking in managed ecosystems: Implications for population management. Mammal Rev. 30, 157–169. https://doi.org/10.1046/j.1365-2907.2000.00065.x (2000).Article 

    Google Scholar 
    71.McCormick, M. I. & Manassa, R. Predation risk assessment by olfactory and visual cues in a coral reef fish. Coral Reefs 27, 105–113. https://doi.org/10.1007/s00338-007-0296-9 (2008).ADS 
    Article 

    Google Scholar 
    72.Palazón, S. & Gómez, A. (2007). Mustela lutreola (Linnaeus, 1761). Atlas y libro rojo de los mamíferos terrestres de España. Chapter: Mustela lutreola: ficha roja. (ed. Palomo J., Gisbert, J. & Blanco, J. C.) (Dirección General para la Biodiversidad-SECEM-SECEMU 2007).73.Laundre, W. J., Hernandez, L. & Ripple, J. W. The landscape of fear: Ecological implications of being afraid. Open J. Ecol. 3, 1–7 (2010).Article 

    Google Scholar 
    74.Steven, R., Pickering, C. & Castley, J. G. A review of the impacts of nature based recreation on birds. J. Environ. Manag. 92, 2287–2294. https://doi.org/10.1016/j.jenvman.2011.05.005 (2011).Article 

    Google Scholar 
    75.Lima, L. S. & Dill, M. L. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640. https://doi.org/10.1139/z90-092 (1990).Article 

    Google Scholar 
    76.Lima, L. S., Blackwell, F. B., DeVault, L. T. & Fernández-Juricic, E. Animal reactions to oncoming vehicles: A conceptual review. Biol. Rev. 90, 60–76. https://doi.org/10.1111/brv.12093 (2015).Article 
    PubMed 

    Google Scholar 
    77.Kotler, B. P. et al. Forag-ing games between gerbils and their predators: Temporal dynamics of resource depletion and apprehension in gerbils. Evol. Ecol. Res. 4, 495–518 (2002).ADS 

    Google Scholar 
    78.Palazón, S. et al. Causes and patterns of human-induced mortality in the critically endangered European mink Mustela lutreola in Spain. Oryx 46, 614–616. https://doi.org/10.1017/S0030605312000920 (2012).Article 

    Google Scholar 
    79.De Bellefroid, M.D.N. & Rosoux, R. (2005) Le Vison d’Europe. BELIN Eveil Nature Collection (2005).80.Griffin, A. S., Blumstein, D. T. & Evans, C. S. Training captive-bred or translocated animals to avoid predators. Conserv. Biol. 14, 1317–1326 (2000).Article 

    Google Scholar 
    81.Palazón, S. Distribución, morfología y ecología del visón europeo (Mustela lutreola L. 1761) en la Península Ibérica. Tesis Doctoral. Universidad de Barcelona, Barcelona (1998).82.Palazón, S.; Ruíz-Olmo, J. (1998). A preliminary study of behaviour of the European mink (Mustela lutreola), by means of radio-tracking. In: Dustone, N.; Gorman, M. L. (eds). Behaviour and ecology of riparian mammals: 93–105. Cambridge University Press.83.Garin, I. et al. Home ranges of European mink Mustela lutreola in southwestern Europe. Acta Theriol. 47, 55–62. https://doi.org/10.1007/BF03193566 (2002).Article 

    Google Scholar 
    84.Iglesias, C., Mata, C. & Malo, J. E. The influence of traffic noise on vertebrate road crossing through underpasses. Ambio 41, 193–201. https://doi.org/10.1007/s13280-011-0145-5 (2012).Article 
    PubMed 

    Google Scholar 
    85.Palazón, S., Ruiz-Olmo, J. & Gosàlbez, J. Diet of European mink (Mustela lutreola) in Northern Spain. Mammalia 68, 159–165. https://doi.org/10.1515/mamm.2004.016 (2004).Article 

    Google Scholar 
    86.Fey, K., Banks, P. B., Ylönen, H. & Korpimäki, E. Behavioural responses of voles to simulated risk of predation by a native and an alien mustelid: An odour manipulation experiment. Wild. Res. 37, 273–282 (2010).Article 

    Google Scholar 
    87.Foster, S. A. The geography of behaviour: An evolutionary perspective. Trends Evol. Ecol. 14, 190–195 (1999).CAS 
    Article 

    Google Scholar 
    88.Ellis, R. & Heimbach, R. Bugs and birds: Children’s acquisition of second language vocabulary through interaction. System 25, 247–259. https://doi.org/10.1016/S0346-251X(97)00012-2 (1997).Article 

    Google Scholar 
    89.Miller, B. et al. Development of survival skills in captive-raised Siberian polecats (Mustela eversmanni) II: Predator avoidance. J. Ethol. 8, 95–104. https://doi.org/10.1007/BF02350280 (1990).CAS 
    Article 

    Google Scholar 
    90.McLean, I. G., Lundie-Jenkins, G. & Jarman, P. J. Teaching an endangered mammal to recognise predators. Biol. Conserv. 75, 51–62. https://doi.org/10.1016/0006-3207(95)00038-0 (1996).Article 

    Google Scholar 
    91.Rhoznov V. & Petrin, A. New hypothesis on the reasons of disappearance of European mink based on the study of behavioral interactions. International Conference on Conservation of European mink (2003). Logroño, Spain, Proceedings Book 209–221 (2006).92.Cole, D. N. & Landres, P. B. Threats to wilderness ecosystems: Impacts and research needs. Ecol. Appl. 6, 168–184. https://doi.org/10.2307/2269562 (1996).Article 

    Google Scholar 
    93.Juutinen, A. et al. Combining ecological and recreational aspects in national park management: A choice experiment application. Ecol. econ. 70, 1231–1239. https://doi.org/10.1016/j.ecolecon.2011.02 (2011).Article 

    Google Scholar  More

  • in

    Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions

    1.Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–185 (2007).Article 

    Google Scholar 
    2.Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).Article 

    Google Scholar 
    3.Drake, T. W., Raymond, P. A. & Spencer, R. G. M. Terrestrial carbon inputs to inland waters: a current synthesis of estimates and uncertainty. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2/.10055 (2017).4.Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Global Biogeochem. Cycles 29, 534–554 (2015).Article 

    Google Scholar 
    5.Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8, 637–642 (2015).Article 

    Google Scholar 
    6.Sawakuchi, H. O. et al. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 4, 76 (2017).7.Hastie, A., Lauerwald, R., Ciais, P. & Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon basin: an analysis of the interannual variability in the boundless carbon cycle. Glob. Change Biol. 25, 2094–2111 (2019).Article 

    Google Scholar 
    8.Horgby, Å. et al. Unexpected large evasion fluxes of carbon dioxide from turbulent streams draining the world’s mountains. Nat. Commun. 10, 4888 (2019).9.Peter, H. et al. Scales and drivers of temporal (p_{{mathrm{CO}}_2}) dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 119, 1078–1091 (2014).Article 

    Google Scholar 
    10.Rocher-Ros, G., Sponseller, R. A., Bergstr, A., Myrstener, M. & Giesler, R. Stream metabolism controls diel patterns and evasion of CO2 in Arctic streams. Glob. Change Biol. https://doi.org/10.1111/gcb.14895 (2020).11.Wallin, M. B., Audet, J., Peacock, M., Sahlée, E. & Winterdahl, M. Carbon dioxide dynamics in an agricultural headwater stream driven by hydrology and primary production. Biogeosciences 17, 2487–2498 (2020).12.Crawford, J. T., Stanley, E. H., Dornblaser, M. M. & Striegl, R. G. CO2 time series patterns in contrasting headwater streams of North America. Aquat. Sci. 79, 473–486 (2017).Article 

    Google Scholar 
    13.Reiman, J. & Xu, Y. J. Diel variability of (p_{{mathrm{CO}}_2}) and CO2 outgassing from the lower Mississippi River: implications for riverine CO2 outgassing estimation. Water 11, 43 (2018).Article 

    Google Scholar 
    14.Hensley, R. T. & Cohen, M. J. On the emergence of diel solute signals in flowing waters. Water Resour. Res. 52, 759–772 (2016).Article 

    Google Scholar 
    15.Odum, H. T. Primary production in flowing waters. Limnol. Oceanogr. 1, 102–117 (1955).Article 

    Google Scholar 
    16.Johnson, M. S. et al. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology 3, 68–78 (2010).
    Google Scholar 
    17.Stets, E. G. et al. Carbonate buffering and metabolic controls on carbon dioxide in rivers. Global Biogeochem. Cycles 31, 663–677 (2017).Article 

    Google Scholar 
    18.Cory, R. M., Ward, C. P., Crump, B. C. & Kling, G. W. Sunlight controls water column processing of carbon in Arctic fresh waters. Science 345, 925–928 (2014).Article 

    Google Scholar 
    19.Riml, J., Campeau, A., Bishop, K. & Wallin, M. B. Spectral decomposition reveals new perspectives on CO2 concentration patterns and soil–stream linkages. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2018JG004981 (2019).20.Hartmann, J., Lauerwald, R. & Moosdorf, N. A brief overview of the GLObal RIver CHemistry Database, GLORICH. Procedia Earth Planet. Sci. 10, 23–27 (2014).Article 

    Google Scholar 
    21.Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).Article 

    Google Scholar 
    22.Demars, B. O. L. & Manson, J. R. Temperature dependence of stream aeration coefficients and the effect of water turbulence: a critical review. Water Res. 47, 1–15 (2013).Article 

    Google Scholar 
    23.Koenig, L. E. et al. Emergent productivity regimes of river networks. Limnol. Oceanogr. 4, 173–181 (2019).Article 

    Google Scholar 
    24.Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).Article 

    Google Scholar 
    25.Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53 (2012).Article 

    Google Scholar 
    26.Mulholland, P. J. et al. Inter-biome comparison of factors controlling stream metabolism. Freshw. Biol. 46, 1503–1517 (2001).Article 

    Google Scholar 
    27.Roberts, B. J., Mulholland, P. J. & Hill, W. R. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).Article 

    Google Scholar 
    28.Vanote, R. L., Minshall, W. G., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    29.Finlay, J. C. Stream size and human influences on ecosystem production in river networks. Ecosphere 2, art87 (2011).Article 

    Google Scholar 
    30.Kirk, L., Hensley, R. T., Savoy, P., Heffernan, J. B. & Cohen, M. J. Estimating benthic light regimes improves predictions of primary production and constrains light-use efficiency in streams and rivers. Ecosystems https://doi.org/10.1007/s10021-020-00552-1 (2020).31.Julian, J. P., Doyle, M. W., Powers, S. M., Stanley, E. H. & Riggsbee, J. A. Optical water quality in rivers. Water Resour. Res. 44, W10411 (2008).32.Aitkenhead, J. A. & McDowell, W. H. Soil C:N ratio as a predictor of annual riverine DOC flux at local and global scales. Global Biogeochem. Cycles 14, 127–138 (2000).Article 

    Google Scholar 
    33.Harrison, J. A., Caraco, N. & Seitzinger, S. P. Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem. Cycles 19, GB4S04 (2005).34.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).Article 

    Google Scholar 
    35.Liu, S., Butman, D. E. & Raymond, P. A. Evaluating CO2 calculation error from organic alkalinity and pH measurement error in low ionic strength freshwaters. Limnol. Oceanogr. Methods 18, 606–622 (2020).36.Abril, G. et al. Technical Note: Large overestimation of (p_{{mathrm{CO}}_2}) calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).Article 

    Google Scholar 
    37.Duvert, C., Butman, D. E., Marx, A., Ribolzi, O. & Hutley, L. B. CO2 evasion along streams driven by groundwater inputs and geomorphic controls. Nat. Geosci. 11, 813–818 (2018).Article 

    Google Scholar 
    38.Rocher‐Ros, G., Sponseller, R. A., Lidberg, W., Mörth, C. & Giesler, R. Landscape process domains drive patterns of CO2 evasion from river networks. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10108 (2019).39.Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).Article 

    Google Scholar 
    40.Guth, P. L. Drainage basin morphometry: a global snapshot from the shuttle radar topography mission. Hydrol. Earth Syst. Sci. 15, 2091–2099 (2011).Article 

    Google Scholar 
    41.Schneider, C. L. et al. Carbon dioxide (CO2) fluxes from terrestrial and aquatic environments in a high-altitude tropical catchment. J. Geophys. Res. Biogeosci. 125, e2020JG005844 (2020).Article 

    Google Scholar 
    42.Rocher‐Ros, G. et al. Metabolism overrides photo-oxidation in CO2 dynamics of Arctic permafrost streams. Limnol. Oceanogr. https://doi.org/10.1002/lno.11564 (2020).43.Dinsmore, K. J., Billett, M. F. & Dyson, K. E. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment. Glob. Change Biol. 19, 2133–2148 (2013).Article 

    Google Scholar 
    44.Lynch, J. K., Beatty, C. M., Seidel, M. P., Jungst, L. J. & DeGrandpre, M. D. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution (p_{{mathrm{CO}}_2}) measurements. J. Geophys. Res. Biogeosci. 115, G03016 (2010).45.Teodoru, C. R. et al. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12, 2431–2453 (2015).Article 

    Google Scholar 
    46.Borges, A. V. et al. Variations in dissolved greenhouse gases (CO2, CH4, N2O) in the Congo River network overwhelmingly driven by fluvial–wetland connectivity. Biogeosciences 16, 3801–3834 (2019).Article 

    Google Scholar 
    47.Le, T. P. Q. et al. CO2 partial pressure and CO2 emission along the lower Red River (Vietnam). Biogeosciences 15, 4799–4814 (2018).Article 

    Google Scholar 
    48.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    49.Ulseth, A. J. et al. Distinct air–water gas exchange regimes in low- and high-energy streams. Nat. Geosci. 12, 259–263 (2019).Article 

    Google Scholar 
    50.Lapierre, J.-F., Guillemette, F., Berggren, M. & del Giorgio, P. A. Increases in terrestrially derived carbon stimulate organic carbon processing and CO2 emissions in boreal aquatic ecosystems. Nat. Commun. 4, 2972 (2013).Article 

    Google Scholar  More

  • in

    Antennal transcriptome sequencing and identification of candidate chemoreceptor proteins from an invasive pest, the American palm weevil, Rhynchophorus palmarum

    1.Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Breer, H., Fleischer, J., Pregitzer, P. & Krieger, J. Molecular mechanism of insect olfaction: olfactory receptors. in Olfactory Concepts of Insect Control-Alternative to insecticides 93–114 (Springer, 2019).3.Robertson, H. M. Molecular evolution of the major arthropod chemoreceptor gene families. Annu. Rev. Entomol. 64, 227–242 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Yan, H. et al. Evolution, developmental expression and function of odorant receptors in insects. J. Exp. Biol. 223, jeb20821 (2020).Article 

    Google Scholar 
    5.Zhu, J., Iovinella, I., Dani, F. R., Pelosi, P. & Wang, G.  Chemosensory proteins: a versatile binding family. in Olfactory Concepts of Insect Control-Alternative to insecticides 147–169 (Springer, 2019).6.Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Vosshall, L. B. & Hansson, B. S. A unified nomenclature system for the insect olfactory coreceptor. Chem. Senses 36, 497–498 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Stengl, M. & Funk, N. W. The role of the coreceptor Orco in insect olfactory transduction. J. Comp. Physiol. A. 199, 897–909 (2013).CAS 
    Article 

    Google Scholar 
    9.Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu. Rev. Entomol. 58, 373–391 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Rogers, M. E., Sun, M., Lerner, M. R. & Vogt, R. G. Snmp-1, a novel membrane protein of olfactory neurons of the silk moth Antheraea polyphemus with homology to the CD36 family of membrane proteins. J. Biol. Chem. 272, 14792–14799 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Jin, X., Ha, T. S. & Smith, D. P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. 105, 10996–11001 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Vosshall, L. B. & Stocker, R. F. Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Clyne, P. J. et al. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22, 327–338 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Gao, Q. & Chess, A. Identification of candidate Drosophila olfactory receptors from genomic DNA sequence. Genomics 60, 31–39 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Vosshall, L. B., Amrein, H., Morozov, P. S., Rzhetsky, A. & Axel, R. A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96, 725–736 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Montagné, N., de Fouchier, A., Newcomb, R. D. & Jacquin-Joly, E. Advances in the identification and characterization of olfactory receptors in insects. in Progress in molecular biology and translational science, Vol. 130 55–80 (Elsevier, 2015).18.Liu, Y., Gu, S., Zhang, Y., Guo, Y. & Wang, G. Candidate olfaction genes identified within the Helicoverpa armigera antennal transcriptome. PLoS ONE 7, e48260 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Bengtsson, J. M. et al. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis. PLoS ONE 7, e31620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Gonzalez, F., Witzgall, P. & Walker, W. B. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues. Sci. Rep. 7, 41829 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cao, D. et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. Int. J. Biol. Sci. 10, 846 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Andersson, M. N. et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics 14, 1–16 (2013).Article 
    CAS 

    Google Scholar 
    23.Liu, S. et al. Identification of candidate chemosensory genes in the antennal transcriptome of Tenebrio molitor (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. D: Genomics Proteomics 13, 44–51 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hu, P., Wang, J., Cui, M., Tao, J. & Luo, Y. Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    25.Engsontia, P. et al. The red flour beetle’s large nose: an expanded odorant receptor gene family in Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 387–397 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Mitchell, R. F. et al. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem. Mol. Biol. 42, 499–505 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bin, S.-Y., Qu, M.-Q., Pu, X.-H., Wu, Z.-Z. & Lin, J.-T. Antennal transcriptome and expression analyses of olfactory genes in the sweetpotato weevil Cylas formicarius. Sci. Rep. 7, 1–14 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    28.Antony, B. et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics 17, 69. https://doi.org/10.1186/s12864-016-2362-6 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Tang, Q. F. et al. Antennal transcriptome analysis of the maize weevil Sitophilus zeamais: Identification and tissue expression profiling of candidate odorant-binding protein genes. Arch. Insect Biochem. Physiol. 101, e21542 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Hallett, R. et al. Aggregation pheromones of two Asian palm weevils, Rhynchophorus ferrugineus and R. vulneratus. Naturwissenschaften 80, 328–331 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Peri, E. et al. Rhynchophorus ferrugineus: behavior, ecology, and communication. in Handbook of Major Palm Pests: Biology and Management, 105–130 (2017).32.Oehlschlager, A., Chinchilla, C. & Gonzalez, L. Optimization of a pheromone-baited trap for the American palm weevil Rhynchophorus palmarum (L.). in Proceedings of International Oil Palm Congress 645–660 (Kuala Lumpur, September, 1993).33.Gonzalez, F., Kharrat, S., Rodríguez, C., Calvo, C. & Oehlschlager, A. Research paper (integrated management: insects) red palm weevil (Rhynchophorus ferrugineus Olivier): recent advances. Arab J. Pl. Prot. 37, 178–187 (2019).
    Google Scholar 
    34.Hagley, E. A. The role of the palm weevil, Rhynchophorus palmarum, as a vector of red ring disease of coconuts. I. Results of preliminary investigations. J. Econ. Entomol. 56, 375–380 (1963).Article 

    Google Scholar 
    35.Chinchilla, C. M. The red ring-little leaf syndrome in oil palm and coconut. Bol. Tec Opo-CB 2, 113–136 (1988).
    Google Scholar 
    36.Gerber, K. & Giblin-Davis, R. M. Association of the red ring nematode and other nematode species with the palm weevil, Rhynchophorus palmarum. J. Nematol. 22, 143 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Oehlschlager, A. C., Chinchilla, C., Castillo, G. & Gonzalez, L. Control of red ring disease by mass trapping of Rhynchophorus palmarum (Coleoptera: Curculionidae). Florida Entomol. 85, 507–513 (2002).Article 

    Google Scholar 
    38.Rodríguez, C., Oehlschlager, A. & Chinchilla, C. Examination of critical components of Rhynchophorus palmarum pheromone traps. ASD Oil Palm Papers 46, 15 (2016).
    Google Scholar 
    39.Oehlschlager, C. Optimizing trapping of palm weevils and beetles. Acta Hortic. 736, 347–368. https://doi.org/10.17660/ActaHortic.2007.736.33 (2007).40.Rochat, D. et al. Rhynchophorus ferrugineus: Taxonomy, distribution, biology, and life cycle. in Handbook of Major Palm Pests: Biology and Management, 69–104 (2017).41.Antony, B. et al. Global transcriptome profiling and functional analysis reveal that tissue-specific constitutive overexpression of cytochrome P450s confers tolerance to imidacloprid in palm weevils in date palm fields. BMC Genomics 20, 1–23 (2019).CAS 
    Article 

    Google Scholar 
    42.Antony, B., Johny, J. & Aldosari, S. A. Silencing the odorant binding protein RferOBP1768 reduces the strong preference of palm weevil for the major aggregation pheromone compound ferrugineol. Front. Physiol. 9, 252 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Antony, B. et al. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). Mol. Ecol. 30, 1–15. https://doi.org/10.1111/mec.15874 (2021).44.Nagnan-Le Meillour, P., François, M.-C. & Jacquin-Joly, E. Identification and molecular cloning of putative odorant-binding proteins from the American palm weevil, Rhynchophorus palmarum L.. J. Chem. Ecol. 30, 1213–1223 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    47.Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Boil. Evolut. 30, 2725–2729 (2013).CAS 
    Article 

    Google Scholar 
    50.Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0 beta: a graphical interface and toolkit for phylogenetic analyses using RAxML. BioRxiv, 800912 (2019).51.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL): An online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Wojtasek, H., Hansson, B. S. & Leal, W. S. Attracted or repelled?—A matter of two neurons, one pheromone binding protein, and a chiral center. Biochem. Biophys. Res. Commun. 250, 217–222 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Diakite, M. M., Wang, J., Ali, S. & Wang, M.-Q. Identification of chemosensory gene families in Rhyzopertha dominica (Coleoptera: Bostrichidae). Can. Entomol. 148, 8–21 (2016).Article 

    Google Scholar 
    54.Vogt, R. G. et al. The insect SNMP gene family. Insect Biochem. Mol. Biol. 39, 448–456 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Mitchell, R. F., Schneider, T. M., Schwartz, A. M., Andersson, M. N. & McKenna, D. D. The diversity and evolution of odorant receptors in beetles (Coleoptera). Insect Mol. Biol. 29, 77–91 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Oehlschlager, A. C. et al. Development of a pheromone-based trapping system for Rhynchophorus palmarum (Coleoptera: Curculionidae). J. Econ. Entomol. 86, 1381–1392 (1993).Article 

    Google Scholar 
    57.Rochat, D. et al. Ecologie chimique des charançons des palmiers, Rhynchophorus spp.(Coleoptera). Oléagineux 48, 225–236 (1993).58.Hoddle, M. & Hoddle, C. Palmageddon: the invasion of California by the South American palm weevil is underway. CAPCA Advis 20, 40–44 (2017).
    Google Scholar 
    59.Witzgall, P., Kirsch, P. & Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 36, 80–100 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Venthur, H. & Zhou, J.-J. Odorant receptors and odorant-binding proteins as insect pest control targets: A comparative analysis. Front. Physiol. 9, 1163 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Andersson, M. N., Keeling, C. I. & Mitchell, R. F. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics 20, 1–17 (2019).CAS 
    Article 

    Google Scholar 
    62.Yang, H. et al. Molecular characterization, expression pattern and ligand-binding properties of the pheromone-binding protein gene from Cyrtotrachelus buqueti. Physiol. Entomol. 42, 369–378 (2017).CAS 
    Article 

    Google Scholar 
    63.Jacquin-Joly, E., Vogt, R. G., François, M.-C. & Nagnan-Le Meillour, P. Functional and expression pattern analysis of chemosensory proteins expressed in antennae and pheromonal gland of Mamestra brassicae. Chem. Senses 26, 833–844 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Gu, S.-H. et al. Functional characterizations of chemosensory proteins of the alfalfa plant bug Adelphocoris lineolatus indicate their involvement in host recognition. PLoS ONE 7, e42871 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Liu, Y.-L., Guo, H., Huang, L.-Q., Pelosi, P. & Wang, C.-Z. Unique function of a chemosensory protein in the proboscis of two Helicoverpa species. J. Exp. Biol. 217, 1821–1826 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Peng, Y. et al. Identification of odorant binding proteins and chemosensory proteins in Microplitis mediator as well as functional characterization of chemosensory protein 3. PLoS ONE 12, e0180775 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Nomura, A., Kawasaki, K., Kubo, T. & Natori, S. Purification and localization of p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana (American cockroach). Int. J. Dev. Biol. 36, 391–398 (2002).
    Google Scholar 
    68.Maleszka, J., Foret, S., Saint, R. & Maleszka, R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev. Genes. Evol. 217, 189–196 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Benton, R., Vannice, K. S. & Vosshall, L. B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289–293 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Zhang, H.-J. et al. A phylogenomics approach to characterizing sensory neuron membrane proteins (SNMPs) in Lepidoptera. Insect Biochem. Mol. Biol. 118, 103313 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Liu, S. et al. Molecular characterization of two sensory neuron membrane proteins from Chilo suppressalis (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 106, 378–384 (2013).CAS 
    Article 

    Google Scholar 
    72.Liu, S. et al. Identification and characterization of two sensory neuron membrane proteins from Cnaphalocrocis medinalis (Lepidoptera: Pyralidae). Arch. Insect Biochem. Physiol. 82, 29–42 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Zhang, J., Liu, Y., Walker, W. B., Dong, S. L. & Wang, G. R. Identification and localization of two sensory neuron membrane proteins from Spodoptera litura (Lepidoptera: Noctuidae). Insect Sci. 22, 399–408 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    74.Giblin-Davis, R. M., Weissling, T. J., Oehlschlager, A. & Gonzalez, L. M. Field response of Rhynchophorus cruentatus (Coleoptera: Curculionidae) to its aggregation pheromone and fermenting plant volatiles. Florida Entomol. 77, 164–177 (1994).CAS 
    Article 

    Google Scholar 
    75.Jaffé, K. et al. Chemical ecology of the palm weevil Rhynchophorus palmarum (L.) (Coleoptera: Curculionidae): Attraction to host plants and to a male-produced aggregation pheromone. J. Chem. Ecol. 19, 1703–1720 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Saïd, I., Renou, M., Morin, J.-P., Ferreira, J. M. & Rochat, D. Interactions between acetoin, a plant volatile, and pheromone in Rhynchophorus palmarum: Behavioral and olfactory neuron responses. J. Chem. Ecol. 31, 1789–1805 (2005).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    77.Mansourian, S. & Stensmyr, M. C. The chemical ecology of the fly. Curr. Opin. Neurobiol. 34, 95–102 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Andersson, M. N., Löfstedt, C. & Newcomb, R. D. Insect olfaction and the evolution of receptor tuning. Front. Ecol. Evol. 3, 53 (2015).
    Google Scholar 
    79.Caballero-Vidal, G. et al. Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    80.Yuvaraj, J. K. et al. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biol. 19, 16 (2021). More

  • in

    A unified survival-analysis approach to insect population development and survival times

    Experimental data of Russian wheat aphid (RWA) development and survivalThe RWA development and survival data are from our laboratory experiments which involve the observations of 1800 RWA individuals in a factorial arrangement of five temperature and five barley plant-growth stage regimes with a total of 25 treatments. Each treatment has 72 RWA individuals as replicates. The experiment was designed to investigate the influence of temperature and barley plant-growth stage treatments on RWA development, survival and reproduction in controlled environment growth chambers. Temperature treatments were 8–1 °C, 17–10 °C, 23–16 °C, 28–21 °C, and 33–26 °C, fluctuating on a 14:10-h rectangular-wave cycle. The photoperiod was 14 vs. 10 (light vs. dark) for all treatments, with the higher constant temperature during the light phase and the lower temperature during the dark phase. Mean temperatures weighted by photoperiod were 5.1 °C, 14.1 °C, 20.1 °C, 25.1 °C and 30.1 °C, respectively. Barley plant-growth stages were two-leaf, tillering, flag leaf, inflorescence and soft dough, respectively corresponding to 12, 23, 39, 59, and 85 on the Zadoks (1974) scale38. More detailed information on the experiment design can also be found in Ma (1997) and Ma & Bechinski (2008a, 2008b)1,2,39.For analysis, we divided the life cycle of the RWA into 9 stages: first to fifth instar (abbreviated as 1st-5th), pre-reproductive period (from the time of last molting until the first nymphal production, designated Pre_R), immature period (1st + 2nd + 3rd + 4th + 5th, designated immature), mature (immature + R_age, designated mature), adult (from the time of last molting until death, designated adult). We also treat lifespan as a special variable, i.e., time from birth to death, designated lifespan. There is a response time T associated with each RWA stage and the lifespan; T is either development time (for individuals that successfully developed from one stage to the next), or death time (for individuals that died within the stage), depending on the state indication variable (short as ‘state variable’ or ‘state’). The unit for time (T) is calendar day (24 h). For stages other than adult and lifespan, if the state indication variable takes a value 1, then T is developmental time; if state is 0, then T is the death time or other censored time (e.g. lost accidentally in observation). In contrast, for the adult and lifespan stages, if state is 1, then T is death time of an individual; if state is 0, then T records the time when observation stopped due to some laboratory handling accident before the individual naturally died. Further information on the laboratory experiments is also described in Ma (1997), and Ma & Bechinski (2008a, 2008b)1,2,39.Unified survival analysis approach to insect development and survivalIssues of censoring in entomological researchCensoring occurs when the failure times of some individuals within the observation sample cannot be observed. Censoring is often unavoidable in time-to-event studies. A patient in a clinical trial may be withdrawn from the study after a period of participation; similarly, insects under observation may be lost tracks due to accidental events such as operational faults. Such kind of censoring belongs to the so-termed random censoring. In other cases, observing all individuals for the full time course to failure (such as the occurrence of death) is too costly or unacceptable, leading to the so-terms right censoring. In other situations, the process may have been going on but unnoticed prior to formal study, and consequently a starting point has to be selected, such as the exposure to some newly discovered risks, or the occurrence of a new infectious disease. This last category of censoring is known as left censoring.All three censorings exemplified above may occur in entomological experiments. Whereas the censorings discussed so far might be avoided or minimized, we realize that, in the study of insect populations, even with a perfect experiment design being perfectly executed, at least two types of natural censoring mechanisms seem uncontrollable thanks to the very nature of insect development and instarship. Two examples are presented here: (i) In a life table study, when a cohort of insects is observed, the insect development (molting, emergence, etc.) or survival (death) are typical examples of time-to-event or failure time random variable. This is not the focal point of our arguments. The point is that some insect individuals may die and never emerge from the observed instar or stage. From the perspective of observing insect development, the data may be censored due to the “premature” death events. How long it would have taken for those prematurely dead individuals to complete their developments is hardly knowable. (ii) It is well known that the number of instars in an insect species may be different among individuals of the same population; one may never know the exact number of instars an individual can potentially experience if it dies prior to reaching adult stage. For example, in the case of RWA, the majority of individuals has 4 instars, but 2, 3, 5 are also possible. If a RWA nymph died before reaching the adult stage, we may never know how many instars this prematurely dead individual would pass through. Hence, unless zero mortality in immature stages is possible, censoring in studies of insect developments occurs naturally and is incontrollable. Therefore, insect development and survival are dependent in the sense that in order to develop to the next stage, an insect individual must survive through the current stage. Such kind of dependence can be addressed ideally with conditional probability models in survival analysis including Cox proportional hazards models, which is applied to modeling the development and survival of RWA in this paper.With most statistical methods other than survival analysis, censoring presents a dilemma. If a researcher chooses to exclude the censored observations, the resulting sample may be too small to conduct proper statistical analysis. Even if the resulting sample is large enough, the parameters estimated are biased, and there is no well-established statistical procedure to quantify the bias, because there is no guarantee that the censored individuals can be represented by the remaining sample. On the other hand, if the censored individuals are included, although compartmental modeling (using a probabilistic approach, or invoking differential equations) might be useful so that the numbers of individuals in the different instars (compartments) are modeled over time with estimation of the rates of transition, there are no objective procedures to process their “partial” lifetime information, which again may introduce bias without even knowing the degree of bias introduced.How significant can the difference be between the two schemes—one with censored individuals excluded before applying survival analysis, and the other processed with survival analysis directly (i.e., the partial information of the censored individual is preserved)? Ma (1997, 2010)1,15 and Ma & Bechinski (2008b, 2009b)2,14 treated the prematurely dead RWA individuals as censored with survival analysis approach, and found that the difference between two treatments: survival analysis vs. excluding the premature dead individuals range from 4%–25% in the estimate of median development, depending on the severity of censoring (death rates)15. The treatment resolves the previously identified dilemma because survival analysis has developed effective procedures and methods (based on the asymptotical theory or more recently on the counting stochastic process) that can properly extract the partial information in those censored data.While the previous type of censoring due to premature death or variable instarships seems more likely to occur in insect demography and phenology studies under laboratory conditions, there is another subtle but hardly avoidable censoring mechanism, which is termed as interval censoring in survival analysis and it may be more likely to be encountered in field insect research such as life table study by sampling insect population periodically. This type of censoring is required because sampling is discrete and linear, whereas the process under investigation is continuous and possibly nonlinear with respect to time, which makes the precise recording of the survival times for all individuals in an experiment impossible. With interval censored data, each event time is then only known to lie in some interval, and the precise time to an event is often not known due to the limited sampling points.Ma & Bechinski (2008b, 2009b, Ma 1997, 2010) argued that1,2,14,15, whenever time-to-event data is in concern, survival analysis can be harnessed to perform the two fundamental statistical analyses in lieu of traditional statistical methods, that is: (i) hypothesis testing—replacing procedures such as significance testing, ANOVA, life tables analysis etc.; (2) model-parameter estimation—replacing conventional regression modeling. The prevalence of time-to-event data as one of the two major categories of time-dependent process data (the other is time-series data as noted previously), as well as the fact that survival analysis is developed to study time-to-event variables with observation censoring, make a very strong case for entomologists to adopt survival analysis as an appropriate statistical tool. In a previous study, we demonstrated the use of survival analysis for hypothesis testing and life table analysis (Ma 2010)15. In the present paper, we demonstrate the second area—model-parameter estimation. Specifically, we try to show that survival analysis offers a unified approach to model both insect development and survival.Survival Analysis and Proportional Hazards Model (PHM)Survivor, hazards and probability density functionsGiven response time (survival or failure time) T of a subject, three functions are usually used to describe the random variable (T): the survivor function, the probability density function, and the hazard function.The survivor function S(t) is defined as the probability that T is at least as great as a value t; that is,$$S(t) = P(T ge t)quad t > 0.$$
    (1)
    The survivor function is actually 1′s complement of the distribution function of random variable (T), that is, S(t) = 1–F(t), where F(t) is the distribution function of T.The probability density function (p.d.f) of T is$$f(t) = mathop {lim }limits_{{Delta t to 0^{ + } }} frac{{P(t le T le t + Delta t)}}{{Delta t}} = – frac{{dS(t)}}{{dt}}.$$
    (2)
    Conversely,(S(t) = int_{t}^{infty } {f(u)du}) and f(t) ≥ 0 with (int_{0}^{infty } {f(t)dt = 1.})The hazard function specifies the instantaneous rate of failure at T = t, conditional upon survival to time t. It is defined as$$lambda (t) = mathop {lim }limits_{{Delta t to 0^{ + } }} frac{{P(t le T < t + Delta t|T ge t)}}{{Delta t}} = frac{{f(t)}}{{S(t)}}.$$ (3) The relationships among S(t), f(t), and λ(t) are expressed as follows:$$lambda (t) = frac{ - dlog S(t)}{{dt}}$$ (4) $$S(t) = exp left( { - int_{0}^{t} {lambda (u)du} } right)$$ (5) $$f(t) = lambda (t)exp left( { - int_{0}^{t} {lambda (u)du} } right).$$ (6) Proportional hazards model (PHM)Cox (1972, 1975) proposed the proportional hazards model (PHM)16,40$$lambda (t,,z) = lambda_{0} (t)exp (zbeta ) = lambda_{0} (t)exp (beta_{1} z_{1} + beta_{2} z_{2} + ...beta_{n} z_{n} ),$$ (7) where λ(t, z) denotes the hazard function at time t for an individual with the characteristic represented by the covariate vector z of n elements. In entomological research, examples of z may include environmental factors (temperature and plant growth stage in this paper) that influence the development and survival of insects. Here λ0(t) is an arbitrary unspecified baseline hazard function for continuous time t. The hazards function λ(t, z) is a product of an underlying age-dependent risk, λ0(t) (baseline hazard function) and another factor, exp(zβ), which depends on covariates z and the vector β of parameters. Baseline hazard function λ0(t) is the hazard function for individuals on which covariates have “neutral effect”—the values of covariates are equal to either zero or to their averages (an example is shown later) depending on the model form adopted. The PHM estimates the risks of other groups in relation to this baseline. Other specifications of the hazard relationship are possible (e.g., λ(t, z) = λ0(t) + zβ), but the problem with these alternatives is the mathematical possibility of predicting negative hazard rates, which then requires extra constraints on estimation procedures to ensure positive values.The PHM invokes two assumptions. The first is the proportionality assumption, that there is a multiplicative relationship between the underlying hazard function and the log-linear function of the covariates such that the ratio of hazard functions for two individuals with different sets of covariates is constant in time (from which the PHM derived its name). The second assumption is that effects of covariates on the hazard function are log-linear.The conditional (with respect to the covariate vector z) probability density function of T given z for the PHM is$$f(t;,z) = lambda _{0} (t)exp (zbeta )exp left[ { - exp (zbeta )int_{0}^{t} {mathop lambda nolimits_{0} (u)du} } right].$$ (8) where λ0(t) is the baseline hazard function as explained previously, z is the vector of covariates (e.g.. air temperature and crop growth state in this study), and β is the vector of Cox’s PHM regression coefficients (parameters).The conditional survivor function (or simply called the survivor function) of T given z for the PHM is$$S(t;,z) = [S_{0} (t)]^{exp (zbeta )} ,$$ (9) where$$S_{0} (t) = exp left[ { - int_{0}^{t} {lambda _{0} (u)du} } right].$$ (10) S0(t) is called the baseline survivor function; it is computed for the default categories of the covariates (e.g., average temperature and plant growth stage in the case of this study). Therefore, the survivor function of t for a covariate vector z is obtained by raising the baseline survivor function S0(t) to a power. The usefulness of Eq. (9) is that one can predict survivor probabilities under different covariate values.If λ0(t) is arbitrary, this model is sufficiently flexible for many applications. There are two important generalizations that do not substantially complicate the estimation of β, but broadly expanding their applications: the stratified proportional hazards model and the proportional hazards model with time-dependent covariates.In the stratified version, the function λ0(t) is allowed to vary in specific subsets of the data. In particular, the population is divided into r strata wherein the hazard λj(t; z) in the j-th stratum depends on an arbitrary shape function λ0j(t). The model can be written as$$lambda_{j} (t,,z) = lambda_{0j} (t)exp (zbeta )quad j = {1},{ 2}, ldots ,r.$$ (11) This generalization is useful when the covariates do not seem to have a multiplicative effect on the hazard function. Here the range of those variables can be divided into strata where only the remaining regression variables contribute to the exponential factor in Eq. (11).The second generalization to the PHM is to allow the variable z to depend on time itself, without (Eq. 12) or with (Eq. 13) stratification:$$lambda [t,,z(t)] = lambda_{0} (t)exp [z(t)beta ],$$ (12) $$lambda_{j} [t,,z(t)] = lambda_{0j} (t)exp [z(t)beta ]quad j = 1,2, ldots ,r.$$ (13) The estimation of β depends only on the rank ordering of the variable vector z and is invariant with respect to the monotonic transformation on the dependent variable, i.e., survival time. The procedure used to estimate β is to maximize the so-called partial likelihood functions as described by Cox (1975), Kalbfleisch & Prentice (1980, 2002) and Kleinbaum and Klein (2012)19,20,30,40. BMDP™ 2L program, Survival Analysis with Covariates (BMDP 1993)41, was used to construct the proportional hazards models. The input data set was as described in Ma (1997)1. Finally, as an example, we use 1989 air temperature and barley plant-growth stage data from Moscow, ID., reported by Elberson (1992)42, as inputs to run the proportional hazards model for survival of RWA during the entire life cycle (i.e., model for LifeSpan stage). We further used coxphf function in the Survival package of open source R-Project to cross-verify the results from BMDP software. The information of Survival package, which is the cornerstone of R implementation of survival analysis, can be accessed at: (https://cran.r-project.org/web/views/Survival.html). More