1.Garcia, J. R. & Gerardo, N. M. The symbiont side of symbiosis: do microbes really benefit? Front. Microbiol. 5, 510 (2014).PubMed
PubMed Central
Article
Google Scholar
2.Law, R. & Dieckmann, U. Symbiosis through exploitation and the merger of lineages in evolution. Proc. Biol. Sci. 265, 1245–1253 (1998).PubMed Central
Article
PubMed
Google Scholar
3.Keeling, P. J. & McCutcheon, J. P. Endosymbiosis: the feeling is not mutual. J. Theor. Biol. 434, 75–79 (2017).PubMed
PubMed Central
Article
Google Scholar
4.Wooldridge, S. A. Is the coral-algae symbiosis really ‘mutually beneficial’ for the partners? BioEssays 32, 615–625 (2010).CAS
PubMed
Article
Google Scholar
5.Mushegian, A. A. & Ebert, D. Rethinking ‘mutualism’ in diverse host-symbiont communities. BioEssays 38, 100–108 (2016).PubMed
Article
Google Scholar
6.Mathis, K. A. & Bronstein, J. L. Our current understanding of commensalism. Ann. Rev. Ecol. Evol. Syst. 51, 167–189 (2020).Article
Google Scholar
7.Ewald, P. W. Transmission modes and evolution of the parasitism-mutualism continuum. Ann. N. Y. Acad. Sci. 503, 295–306 (1987).CAS
PubMed
Article
Google Scholar
8.Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 (1994).CAS
PubMed
Article
Google Scholar
9.Schu, M. G. & Schrallhammer, M. Cultivation conditions can cause a shift from mutualistic to parasitic behavior in the symbiosis between Paramecium and its bacterial symbiont Caedibacter taeniospiralis. Curr. Microbiol. 75, 1099–1102 (2018).CAS
PubMed
Article
Google Scholar
10.Osman, E. O. et al. Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8, 8 (2020).PubMed
PubMed Central
Article
Google Scholar
11.Kümmerli, R., Jiricny, N., Clarke, L. S., West, S. A. & Griffin, A. S. Phenotypic plasticity of a cooperative behaviour in bacteria. J. Evol. Biol. 22, 589–598 (2009).PubMed
Article
PubMed Central
Google Scholar
12.Kumamoto, C. A. Niche-specific gene expression during C. albicans infection. Curr. Opin. Microbiol. 11, 325–330 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Thrall, P. H., Hochberg, M. E., Burdon, J. J. & Bever, J. D. Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol. Evol. 22, 120–126 (2007).PubMed
Article
PubMed Central
Google Scholar
14.Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions? Ecol. Lett. 17, 881–890 (2014).PubMed
Article
PubMed Central
Google Scholar
15.Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108 (Suppl. 2), 10800–10807 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Hosokawa, T. et al. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat. Microbiol. 1, 1–7 (2016).Article
CAS
Google Scholar
17.Gupta, A. & Nair, S. Dynamics of insect–microbiome interaction influence host and microbial symbiont. Front. Microbiol. 11, 1357 (2020).PubMed
PubMed Central
Article
Google Scholar
18.Lutzoni, F. & Pagel, M. Accelerated evolution as a consequence of transitions to mutualism. Proc. Natl Acad. Sci. USA 94, 11422–11427 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
19.Kaltenpoth, M. et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc. Natl Acad. Sci. USA 111, 6359–6364 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Manzano-Marı́n, A. et al. Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems. ISME J. 14, 259–273 (2020).Article
CAS
Google Scholar
21.Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
22.McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-Vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Brown, S. P., Cornforth, D. M. & Mideo, N. Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol. 20, 336–342 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Fisher, R. M., Henry, L. M., Cornwallis, C. K., Kiers, E. T. & West, S. A. The evolution of host-symbiont dependence. Nat. Commun. 8, 15973 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
25.McDowell, J. M. Genomes of obligate plant pathogens reveal adaptations for obligate parasitism. Proc. Natl Acad. Sci. USA 108, 8921–8922 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Wilson, B. A. & Salyers, A. A. Is the evolution of bacterial pathogens an out-of-body experience? Trends Microbiol. 11, 347–350 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).PubMed
Article
PubMed Central
Google Scholar
28.Bull, J. J. & Rice, W. R. Distinguishing mechanisms for the evolution of co-operation. J. Theor. Biol. 149, 63–74 (1991).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. Biol. Sci. 281, 20132146 (2014).PubMed
PubMed Central
Google Scholar
30.Duron, O. et al. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii. PLoS Pathog. 11, e1004892 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
31.Clayton, A. L. et al. A novel human-infection-derived bacterium provides insights into the evolutionary origins of mutualistic insect–bacterial symbioses. PLoS Genet. 8, e1002990 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
32.West, S. A., Kiers, E. T., Simms, E. L. & Denison, R. F. Sanctions and mutualism stability: why do rhizobia fix nitrogen? Proc. Biol. Sci. 269, 685–694 (2002).PubMed
PubMed Central
Article
Google Scholar
33.Sørensen, M. E. S. et al. The role of exploitation in the establishment of mutualistic microbial symbioses. FEMS Microbiol. Lett. 366, fnz148 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
34.Trivers, R. L. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57 (1971).Article
Google Scholar
35.Frederickson, M. E. Mutualisms are not on the verge of breakdown. Trends Ecol. Evol. 32, 727–734 (2017).PubMed
Article
PubMed Central
Google Scholar
36.Mueller, U. G., Ishak, H., Lee, J. C., Sen, R. & Gutell, R. R. Placement of attine ant-associated Pseudonocardia in a global Pseudonocardia phylogeny (Pseudonocardiaceae, Actinomycetales): a test of two symbiont-association models. Antonie Van Leeuwenhoek 98, 195–212 (2010).PubMed
PubMed Central
Article
Google Scholar
37.Dietel, A.-K., Kaltenpoth, M. & Kost, C. Convergent evolution in intracellular elements: plasmids as model endosymbionts. Trends Microbiol. 26, 755–768 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Hurst, G. D. D. Extended genomes: symbiosis and evolution. Interface Focus. 7, 20170001 (2017).PubMed
PubMed Central
Article
Google Scholar
39.Melnyk, R. A., Hossain, S. S. & Haney, C. H. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME J. 13, 1575–1588 (2019).PubMed
PubMed Central
Article
Google Scholar
40.King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Shapiro, J. W. & Turner, P. E. Evolution of mutualism from parasitism in experimental virus populations. Evolution 72, 707–712 (2018).PubMed
Article
Google Scholar
42.Zhang, H. et al. A 2-kb mycovirus converts a pathogenic fungus into a beneficial endophyte for brassica protection and yield enhancement. Mol. Plant. 13, 1420–1433 (2020).CAS
PubMed
Article
Google Scholar
43.Tso, G. H. W. et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science 362, 589–595 (2018).CAS
PubMed
Article
Google Scholar
44.Harrison, E., Guymer, D., Spiers, A. J., Paterson, S. & Brockhurst, M. A. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr. Biol. 25, 2034–2039 (2015).CAS
PubMed
Article
Google Scholar
45.Porter, S. S., Faber-Hammond, J., Montoya, A. P., Friesen, M. L. & Sackos, C. Dynamic genomic architecture of mutualistic cooperation in a wild population of Mesorhizobium. ISME J. 13, 301–315 (2019).PubMed
Article
Google Scholar
46.Herrera, P. et al. Molecular causes of an evolutionary shift along the parasitism–mutualism continuum in a bacterial symbiont. Proc. Natl Acad. Sci. USA 117, 21658–21666 (2020).CAS
PubMed
Article
Google Scholar
47.Li, E. et al. Rapid evolution of bacterial mutualism in the plant rhizosphere. Preprint at bioRxiv https://doi.org/10.1101/2020.12.07.414607 (2020).Article
PubMed
PubMed Central
Google Scholar
48.Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 6, e24414 (2017).Article
Google Scholar
49.Jansen, G. et al. Evolutionary transition from pathogenicity to commensalism: global regulator mutations mediate fitness gains through virulence attenuation. Mol. Biol. Evol. 32, 2883–2896 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Chain, P. S. G. et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 101, 13826–13831 (2004).CAS
PubMed
Article
Google Scholar
51.Hendry, T. A. et al. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. mBio 9, e01033-18 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Nygaard, S. et al. Reciprocal genomic evolution in the ant–fungus agricultural symbiosis. Nat. Commun. 7, 12233 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Bennett, G. M. & Moran, N. A. Heritable symbiosis: the advantages and perils of an evolutionary rabbit hole. Proc. Natl Acad. Sci. USA 112, 10169–10176 (2015).CAS
PubMed
Article
Google Scholar
54.Gluck-Thaler, E. et al. Repeated gain and loss of a single gene modulates the evolution of vascular pathogen lifestyles. bioRxiv https://doi.org/10.1101/2020.04.24.058529 (2020).Article
Google Scholar
55.Arredondo-Alonso, S. et al. Plasmids shaped the recent emergence of the major nosocomial pathogen Enterococcus faecium. mBio 11, e03284-19 (2020).PubMed
PubMed Central
Article
Google Scholar
56.Driscoll, T. P. et al. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. Preprint at bioRxiv https://doi.org/10.1101/2020.06.01.128066 (2020).Article
Google Scholar
57.Frantzeskakis, L. et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
58.Savory, E. A. et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 6, e30925 (2017).PubMed
PubMed Central
Article
Google Scholar
59.Barreto, H. C., Sousa, A. & Gordo, I. The landscape of adaptive evolution of a gut commensal bacteria in aging mice. Curr. Biol. 30, 1102–1109.e5 (2020).CAS
PubMed
Article
Google Scholar
60.Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).CAS
PubMed
Article
Google Scholar
61.Deng, W. et al. Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Achtman, M. et al. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc. Natl Acad. Sci. USA 96, 14043–14048 (1999).CAS
PubMed
Article
Google Scholar
63.Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Hinnebusch, B. J. et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735 (2002).CAS
PubMed
Article
Google Scholar
65.Lindler, L. E., Plano, G. V., Burland, V., Mayhew, G. F. & Blattner, F. R. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect. Immun. 66, 5731–5742 (1998).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Du, Y., Rosqvist, R. & Forsberg, Å. Role of fraction 1 antigen of Yersinia pestis in inhibition of phagocytosis. Infect. Immun. 70, 1453–1460 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Sun, Y.-C., Jarrett, C. O., Bosio, C. F. & Hinnebusch, B. J. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe 15, 578–586 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Ohnishi, M., Kurokawa, K. & Hayashi, T. Diversification of Escherichia coli genomes: are bacteriophages the major contributors? Trends Microbiol. 9, 481–485 (2001).CAS
PubMed
Article
Google Scholar
69.Franzin, F. M. & Sircili, M. P. Locus of enterocyte effacement: a pathogenicity island involved in the virulence of enteropathogenic and enterohemorragic Escherichia coli subjected to a complex network of gene regulation. Biomed. Res. Int. 2015, 534738 (2015).PubMed
PubMed Central
Article
Google Scholar
70.Brito, I. L. et al. Mobile genes in the human microbiome are structured from global to individual scales. Nature 535, 435–439 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Broaders, E., O’Brien, C., Gahan, C. G. M. & Marchesi, J. R. Evidence for plasmid-mediated salt tolerance in the human gut microbiome and potential mechanisms. FEMS Microbiol. Ecol. 92, fiw019 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
72.McCarthy, A. J. et al. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol. Evol. 6, 2697–2708 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).PubMed
Article
CAS
Google Scholar
74.Niehus, R., Mitri, S., Fletcher, A. G. & Foster, K. R. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat. Commun. 6, 8924 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Koonin, E. V. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res https://doi.org/10.12688/f1000research.8737.1 (2016).Article
PubMed
PubMed Central
Google Scholar
76.Nowack, E. C. M. et al. Gene transfers from diverse bacteria compensate for reductive genome evolution in the chromatophore of Paulinella chromatophora. Proc. Natl Acad. Sci. USA 113, 12214–12219 (2016).CAS
PubMed
Article
Google Scholar
77.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Waterworth, S. C. et al. Horizontal gene transfer to a defensive symbiont with a reduced genome in a multipartite beetle microbiome. mBio 11, e02430-19 (2020).PubMed
PubMed Central
Article
Google Scholar
79.Ma, W., Dong, F. F. T., Stavrinides, J. & Guttman, D. S. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genet. 2, e209 (2006).PubMed
PubMed Central
Article
CAS
Google Scholar
80.Nikoh, N. et al. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc. Natl Acad. Sci. USA 111, 10257–10262 (2014).CAS
PubMed
Article
Google Scholar
81.Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).CAS
PubMed
Article
Google Scholar
82.Day, T., Gandon, S., Lion, S. & Otto, S. P. On the evolutionary epidemiology of SARS-CoV-2. Curr. Biol. 30, R849–R857 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Tardy, L., Giraudeau, M., Hill, G. E., McGraw, K. J. & Bonneaud, C. Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc. Natl Acad. Sci. USA 116, 16927–16932 (2019).CAS
PubMed
Article
Google Scholar
84.Alves, J. M. et al. Parallel adaptation of rabbit populations to myxoma virus. Science 363, 1319–1326 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Kerr, P. J. Myxomatosis in Australia and Europe: a model for emerging infectious diseases. Antivir. Res. 93, 387–415 (2012).CAS
PubMed
Article
Google Scholar
86.Longdon, B. et al. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathog. 11, e1004728 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
87.van Boven, M. et al. Detecting emerging transmissibility of avian influenza virus in human households. PLoS Comput. Biol. 3, e145 (2007).PubMed
PubMed Central
Article
CAS
Google Scholar
88.Moses, A. S., Millar, J. A., Bonazzi, M., Beare, P. A. & Raghavan, R. Horizontally acquired biosynthesis genes boost Coxiella burnetii’s physiology. Front. Cell Infect. Microbiol. 7, 174 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
89.Flórez, L. V. et al. Antibiotic-producing symbionts dynamically transition between plant pathogenicity and insect-defensive mutualism. Nat. Commun. 8, 1–9 (2017).Article
Google Scholar
90.Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).PubMed
Article
Google Scholar
91.Ewald, P. W. Host-parasite relations, vectors, and the evolution of disease severity. Annu. Rev. Ecol. Syst. 14, 465–485 (1983).Article
Google Scholar
92.Bull, J. J. Perspective: Virulence. Evolution 48, 1423–1437 (1994).CAS
PubMed
Google Scholar
93.Rafaluk, C., Jansen, G., Schulenburg, H. & Joop, G. When experimental selection for virulence leads to loss of virulence. Trends Parasitol. 31, 426–434 (2015).PubMed
Article
Google Scholar
94.Alizon, S. & Van Baalen, M. Transmission-virulence trade-offs in vector-borne diseases. Theor. Popul. Biol. 74, 6–15 (2008).PubMed
Article
Google Scholar
95.Cressler, C. E., McLeod, D. V., Rozins, C., Hoogen, J. V. D. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).PubMed
Article
Google Scholar
96.Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390–1396 (1981).CAS
PubMed
Article
Google Scholar
97.Yamamura, N. Vertical transmission and evolution of mutualism from parasitism. Theor. Popul. Biol. 44, 95–109 (1993).Article
Google Scholar
98.Hall, J. P. J., Brockhurst, M. A., Dytham, C. & Harrison, E. The evolution of plasmid stability: are infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid 91, 90–95 (2017).CAS
PubMed
Article
Google Scholar
99.Kiers, E. T. & Denison, R. F. Sanctions, cooperation, and the stability of plant-rhizosphere mutualisms. Annu. Rev. Ecol. Evol. Syst. 39, 215–236 (2008).Article
Google Scholar
100.Werner, G. D. A. et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc. Natl Acad. Sci. USA 115, 5229–5234 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
101.Herre, E. A. et al. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol. Evol. 14, 49–53 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
102.Nussbaumer, A. D., Fisher, C. R. & Bright, M. Horizontal endosymbiont transmission in hydrothermal vent tubeworms. Nature 441, 345–348 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
103.Dusi, E., Krenek, S., Petzoldt, T., Kaltz, O. & Berendonk, T. U. When enemies do not become friends: experimental evolution of heat-stress adaptation in a vertically transmitted parasite. Preprint at bioRxiv https://doi.org/10.1101/2020.01.23.917773 (2020).Article
Google Scholar
104.Engelstädter, J. & Hurst, G. D. D. The ecology and evolution of microbes that manipulate host reproduction. Annu. Rev. Ecol. Evol. Syst. 40, 127–149 (2009).Article
Google Scholar
105.Fenton, A., Johnson, K. N., Brownlie, J. C. & Hurst, G. D. D. Solving the Wolbachia paradox: modeling the tripartite interaction between host, Wolbachia, and a natural enemy. Am. Nat. 178, 333–342 (2011).PubMed
Article
PubMed Central
Google Scholar
106.Zug, R. & Hammerstein, P. Evolution of reproductive parasites with direct fitness benefits. Heredity 120, 266–281 (2018).PubMed
Article
PubMed Central
Google Scholar
107.Drew, G. C., Frost, C. L. & Hurst, G. D. Reproductive parasitism and positive fitness effects of heritable microbes. in eLS https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470015902.a0028327 (2019).108.Parratt, S. R. et al. Superparasitism drives heritable symbiont epidemiology and host sex ratio in a wasp. PLoS Pathog. 12, e1005629 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
109.Sachs, J. L. & Wilcox, T. P. A shift to parasitism in the jellyfish symbiont Symbiodinium microadriaticum. Proc. Biol. Sci. 273, 425–429 (2006).PubMed
PubMed Central
Google Scholar
110.Le Clec’h, W., Dittmer, J., Raimond, M., Bouchon, D. & Sicard, M. Phenotypic shift in Wolbachia virulence towards its native host across serial horizontal passages. Proc. Biol. Sci. 284, 20171076 (2017).PubMed
PubMed Central
Google Scholar
111.Stewart, A. D., Logsdon, J. M. & Kelley, S. E. An empirical study of the evolution of virulence under both horizontal and vertical transmission. Evolution 59, 730–739 (2005).PubMed
Article
PubMed Central
Google Scholar
112.Rigaud, T., Souty-Grosset, C., Raimond, R., Mocquard, J.-P. & Juchault, P. Feminizing endocytobiosis in the terrestrial crustacean Armadilidium vulgare Latr. (isopoda) – recent acquisitions. Cell Res. 15, 259–273 (1991).
Google Scholar
113.King, K. C. Defensive symbionts. Curr. Biol. 29, R78–R80 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
114.Flórez, L. V., Biedermann, P. H. W., Engl, T. & Kaltenpoth, M. Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat. Prod. Rep. 32, 904–936 (2015).PubMed
Article
PubMed Central
Google Scholar
115.Couret, J., Huynh-Griffin, L., Antolic-Soban, I., Acevedo-Gonzalez, T. S. & Gerardo, N. M. Even obligate symbioses show signs of ecological contingency: impacts of symbiosis for an invasive stinkbug are mediated by host plant context. Ecol. Evol. 9, 9087–9099 (2019).PubMed
PubMed Central
Article
Google Scholar
116.Ashby, B. & King, K. Friendly foes: the evolution of host protection by a parasite. Evol. Lett. 1, 211–221 (2017).PubMed
PubMed Central
Article
Google Scholar
117.Duron, O. Arsenophonus insect symbionts are commonly infected with APSE, a bacteriophage involved in protective symbiosis. FEMS Microbiol. Ecol. 90, 184–194 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
118.Ferrari, J., Darby, A. C., Daniell, T. J., Godfray, H. C. J. & Douglas, A. E. Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol. Entomol. 29, 60–65 (2004).Article
Google Scholar
119.Oliver, K. M., Russell, J. A., Moran, N. A. & Hunter, M. S. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc. Natl Acad. Sci. USA 100, 1803–1807 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
120.Polin, S., Simon, J.-C. & Outreman, Y. An ecological cost associated with protective symbionts of aphids. Ecol. Evol. 4, 826–830 (2014).PubMed
PubMed Central
Article
Google Scholar
121.Degnan, P. H., Yu, Y., Sisneros, N., Wing, R. A. & Moran, N. A. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc. Natl Acad. Sci. USA 106, 9063–9068 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
122.Weldon, S. R., Strand, M. R. & Oliver, K. M. Phage loss and the breakdown of a defensive symbiosis in aphids. Proc. Biol. Sci. 280, 20122103 (2013).CAS
PubMed
PubMed Central
Google Scholar
123.Weeks, A. R., Turelli, M., Harcombe, W. R., Reynolds, K. T. & Hoffmann, A. A. From parasite to mutualist: rapid evolution of Wolbachia in natural populations of Drosophila. PLoS Biol. 5, e114 (2007).PubMed
PubMed Central
Article
CAS
Google Scholar
124.Kwong, W. K., del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
125.Tuovinen, V. et al. Two basidiomycete fungi in the cortex of wolf lichens. Curr. Biol. 29, 476–483.e5 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
126.Spribille, T. et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353, 488–492 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
127.Coyte, K. Z. & Rakoff-Nahoum, S. Understanding competition and cooperation within the mammalian gut microbiome. Curr. Biol. 29, R538–R544 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
128.Lopez-Medina, E. et al. Candida albicans inhibits Pseudomonas aeruginosa virulence through suppression of pyochelin and pyoverdine biosynthesis. PLoS Pathog. 11, e1005129 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
129.Harriott, M. M. & Noverr, M. C. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob. Agents Chemother. 53, 3914–3922 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
130.Diebel, L. N., Liberati, D. M., Diglio, C. A., Dulchavsky, S. A. & Brown, W. J. Synergistic effects of Candida and Escherichia coli on gut barrier function. J. Trauma. Acute Care Surg. 47, 1045 (1999).CAS
Article
Google Scholar
131.Barroso-Batista, J. et al. Specific eco-evolutionary contexts in the mouse gut reveal Escherichia coli metabolic versatility. Curr. Biol. 30, 1049–1062.e7 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
132.King, K. C., Stevens, E. & Drew, G. C. Microbiome: evolution in a world of interaction. Curr. Biol. 30, R265–R267 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
133.Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32, 723–735 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
134.Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host-microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
135.Bakken, J. S. et al. Treating Clostridium difficile infection with fecal microbiota transplantation. Clin. Gastroenterol. Hepatol. 9, 1044–1049 (2011).PubMed
PubMed Central
Article
Google Scholar
136.Bourtzis, K. et al. Harnessing mosquito–Wolbachia symbiosis for vector and disease control. Acta Tropica 132, S150–S163 (2014).PubMed
Article
PubMed Central
Google Scholar
137.O’Neill, S. L. in Dengue and Zika: Control and Antiviral Treatment Strategies (eds Hilgenfeld, R. & Vasudevan, S. G.) 355–360 (Springer, 2018).138.Nelson, P. G. & May, G. Coevolution between mutualists and parasites in symbiotic communities may lead to the evolution of lower virulence. Am. Nat. 190, 803–817 (2017).PubMed
Article
PubMed Central
Google Scholar
139.Nelson, P. & May, G. Defensive symbiosis and the evolution of virulence. Am. Nat. 196, 333–343 (2020).PubMed
Article
PubMed Central
Google Scholar
140.Ford, S. A. & King, K. C. Harnessing the power of defensive microbes: evolutionary implications in nature and disease control. PLoS Pathog. 12, e1005465 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
141.Nowak, M. A. & May, R. M. Superinfection and the evolution of parasite virulence. Proc. Biol. Sci. 255, 81–89 (1994).CAS
PubMed
Article
PubMed Central
Google Scholar
142.Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).PubMed
Article
PubMed Central
Google Scholar
143.Frank, S. A. Host–symbiont conflict over the mixing of symbiotic lineages. Proc. Biol. Sci. 263, 339–344 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
144.Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 1–9 (2016).Article
CAS
Google Scholar
145.Engl, T. et al. Evolutionary stability of antibiotic protection in a defensive symbiosis. Proc. Natl Acad. Sci. USA 115, E2020–E2029 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
146.Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
147.Schneider, D. S. & Ayres, J. S. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat. Rev. Immunol. 8, 889–895 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
148.Voges, M. J. E. E. E., Bai, Y., Schulze-Lefert, P. & Sattely, E. S. Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc. Natl Acad. Sci. USA 116, 12558–12565 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
149.Gandon, S. & Michalakis, Y. Evolution of parasite virulence against qualitative or quantitative host resistance. Proc. Biol. Sci. 267, 985–990 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
150.Best, A., White, A. & Boots, M. The coevolutionary implications of host tolerance. Evolution 68, 1426–1435 (2014).PubMed
Article
PubMed Central
Google Scholar
151.Bor, B. et al. Rapid evolution of decreased host susceptibility drives a stable relationship between ultrasmall parasite TM7x and its bacterial host. Proc. Natl Acad. Sci. USA 115, 12277–12282 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
152.Schulte, R. D., Makus, C., Hasert, B., Michiels, N. K. & Schulenburg, H. Multiple reciprocal adaptations and rapid genetic change upon experimental coevolution of an animal host and its microbial parasite. Proc. Natl Acad. Sci. USA 107, 7359–7364 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
153.Kerr, P. J. et al. Next step in the ongoing arms race between myxoma virus and wild rabbits in Australia is a novel disease phenotype. Proc. Natl Acad. Sci. USA 114, 9397–9402 (2017).CAS
PubMed
Article
Google Scholar
154.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume–rhizobium mutualism. Nature 425, 78–81 (2003).CAS
PubMed
Article
Google Scholar
155.Frederickson, M. E. Rethinking mutualism stability: cheaters and the evolution of sanctions. Q. Rev. Biol. 88, 269–295 (2013).PubMed
Article
Google Scholar
156.Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011).CAS
PubMed
Article
Google Scholar
157.Fitt, W. K. & Trench, R. K. The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Symbiodinium microadriaticum Freudenthal in culture. N. Phytol. 94, 421–432 (1983).Article
Google Scholar
158.Wilkerson, F. P., Kobayashi, D. & Muscatine, L. Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7, 29–36 (1988).Article
Google Scholar
159.Lowe, C. D., Minter, E. J., Cameron, D. D. & Brockhurst, M. A. Shining a light on exploitative host control in a photosynthetic endosymbiosis. Curr. Biol. 26, 207–211 (2016).CAS
PubMed
Article
Google Scholar
160.Kodama, Y. & Fujishima, M. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria. FEMS Microbiol. Ecol. 90, 946–955 (2014).CAS
PubMed
Article
Google Scholar
161.Iwai, S., Fujita, K., Takanishi, Y. & Fukushi, K. Photosynthetic endosymbionts benefit from host’s phagotrophy, including predation on potential competitors. Curr. Biol. 29, 3114–3119.e3 (2019).CAS
PubMed
Article
Google Scholar
162.Reisser, W. et al. Viruses distinguish symbiotic Chlorella spp. of Paramecium bursaria. Endocytobiosis Cell Res. 7, 245–251 (1991).
Google Scholar
163.Ahmadjian, V. The lichen symbiosis. Ann. Botany 75, 101–102 (1993).
Google Scholar
164.Wilson, C. G. & Sherman, P. W. Anciently asexual bdelloid rotifers escape lethal fungal parasites by drying up and blowing away. Science 327, 574–576 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
165.Matsuura, Y. et al. Recurrent symbiont recruitment from fungal parasites in cicadas. Proc. Natl Acad. Sci. USA 115, E5970–E5979 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
166.Bergstrom, C. T. & Lachmann, M. The Red King effect: when the slowest runner wins the coevolutionary race. Proc. Natl Acad. Sci. USA 100, 593–598 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
167.Veller, C., Hayward, L. K., Hilbe, C. & Nowak, M. A. The Red Queen and King in finite populations. Proc. Natl Acad. Sci. USA 114, E5396–E5405 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
168.Vigneron, A. et al. Insects recycle endosymbionts when the benefit is over. Curr. Biol. 24, 2267–2273 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
169.Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
170.Hom, E. F. Y. & Murray, A. W. Niche engineering demonstrates a latent capacity for fungal-algal mutualism. Science 345, 94–98 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
171.Hall, J. P. J. et al. Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects. Env. Microbiol. 17, 5008–5022 (2015).CAS
Article
Google Scholar
172.Banaszak, A. T., García Ramos, M. & Goulet, T. L. The symbiosis between the gastropod Strombus gigas and the dinoflagellate Symbiodinium: an ontogenic journey from mutualism to parasitism. J. Exp. Mar. Biol. Ecol. 449, 358–365 (2013).Article
Google Scholar
173.Nakazawa, T. & Katayama, N. Stage-specific parasitism by a mutualistic partner can increase the host abundance. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.602675 (2020).Article
Google Scholar
174.Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).PubMed
PubMed Central
Article
Google Scholar
175.Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl Acad. Sci. USA 113, 6236–6241 (2016).CAS
PubMed
Article
Google Scholar
176.Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
177.Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl Acad. Sci. USA 107, 2124–2129 (2010).CAS
PubMed
Article
Google Scholar
178.Regus, J. U., Gano, K. A., Hollowell, A. C., Sofish, V. & Sachs, J. L. Lotus hosts delimit the mutualism–parasitism continuum of Bradyrhizobium. J. Evol. Biol. 28, 447–456 (2015).CAS
PubMed
Article
Google Scholar
179.Hay, M. E. et al. Mutualisms and aquatic community structure: the enemy of my enemy is my friend. Annu. Rev. Ecol. Evol. Syst. 35, 175–197 (2004).Article
Google Scholar
180.Pike, V. L., Lythgoe, K. A. & King, K. C. On the diverse and opposing effects of nutrition on pathogen virulence. Proc. Biol. Sci. 286, 20191220 (2019).PubMed
PubMed Central
Google Scholar
181.Corbin, C., Heyworth, E. R., Ferrari, J. & Hurst, G. D. D. Heritable symbionts in a world of varying temperature. Heredity 118, 10–20 (2017).CAS
PubMed
Article
Google Scholar
182.Thomas, M. B. & Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 18, 344–350 (2003).Article
Google Scholar
183.Delor, I. & Cornelis, G. R. Role of Yersinia enterocolitica Yst toxin in experimental infection of young rabbits. Infect. Immun. 60, 4269–4277 (1992).CAS
PubMed
PubMed Central
Article
Google Scholar
184.Kouse, A. B., Righetti, F., Kortmann, J., Narberhaus, F. & Murphy, E. R. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLoS ONE 8, e63781 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
185.Kishimoto, M., Baird, A. H., Maruyama, S., Minagawa, J. & Takahashi, S. Loss of symbiont infectivity following thermal stress can be a factor limiting recovery from bleaching in cnidarians. ISME J. 14, 3149–3152 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
186.Zhang, B., Leonard, S. P., Li, Y. & Moran, N. A. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proc. Natl Acad. Sci. USA 116, 24712–24718 (2019).CAS
PubMed
Article
Google Scholar
187.Guay, J.-F., Boudreault, S., Michaud, D. & Cloutier, C. Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J. Insect Physiol. 55, 919–926 (2009).CAS
PubMed
Article
Google Scholar
188.Bensadia, F., Boudreault, S., Guay, J.-F., Michaud, D. & Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 52, 146–157 (2006).CAS
PubMed
Article
Google Scholar
189.Vorburger, C. & Gouskov, A. Only helpful when required: a longevity cost of harbouring defensive symbionts. J. Evol. Biol. 24, 1611–1617 (2011).CAS
PubMed
Article
Google Scholar
190.Parratt, S. R. & Laine, A.-L. The role of hyperparasitism in microbial pathogen ecology and evolution. ISME J. 10, 1815–1822 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
191.Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
192.Hajishengallis, G. & Lamont, R. J. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 24, 477–489 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
193.Neville, B. A., d’Enfert, C. & Bougnoux, M.-E. Candida albicans commensalism in the gastrointestinal tract. FEMS Yeast Res. 15, fov081 (2015).PubMed
Article
CAS
Google Scholar
194.Chow, J., Tang, H. & Mazmanian, S. K. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr. Opin. Immunol. 23, 473–480 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
195.Bonhoeffer, S., Lenski, R. E. & Ebert, D. The curse of the pharaoh: the evolution of virulence in pathogens with long living propagules. Proc. Biol. Sci. 263, 715–721 (1996).CAS
PubMed
Article
Google Scholar
196.Rafaluk-Mohr, C. The relationship between parasite virulence and environmental persistence: a meta-analysis. Parasitology 146, 897–902 (2019).PubMed
Article
Google Scholar
197.Ebert, D., Joachim Carius, H., Little, T. & Decaestecker, E. The evolution of virulence when parasites cause host castration and gigantism. Am. Nat. 164, S19–S32 (2004).PubMed
Article
Google Scholar
198.McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).CAS
PubMed
Article
Google Scholar
199.Moran, N. A. Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc. Natl Acad. Sci. USA 93, 2873–2878 (1996).CAS
PubMed
Article
Google Scholar
200.Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).CAS
PubMed
Article
Google Scholar
201.Wernegreen, J. J. Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS ONE 6, e28905 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
202.Wernegreen, J. J. Genome evolution in bacterial endosymbionts of insects. Nat. Rev. Genet. 3, 850–861 (2002).CAS
PubMed
Article
Google Scholar
203.Mao, M., Yang, X. & Bennett, G. M. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc. Natl Acad. Sci. USA 115, E11691–E11700 (2018).CAS
PubMed
Article
Google Scholar
204.Husnik, F. et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153, 1567–1578 (2013).CAS
PubMed
Article
Google Scholar
205.Łukasik, P. et al. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc. Natl Acad. Sci. USA 115, E226–E235 (2018).PubMed
Article
CAS
Google Scholar
206.Keeling, P. J., McCutcheon, J. P. & Doolittle, W. F. Symbiosis becoming permanent: survival of the luckiest. Proc. Natl Acad. Sci. USA 112, 10101–10103 (2015).CAS
PubMed
Article
Google Scholar
207.Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).CAS
PubMed
Article
Google Scholar
208.John, U. et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci. Adv. 5, eaav1110 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
209.Venkova, T., Yeo, C. C. & Espinosa, M. Editorial: The good, the bad, and the ugly: multiple roles of bacteria in human life. Front. Microbiol. 9, 1702 (2018).PubMed
PubMed Central
Article
Google Scholar
210.Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: breaking through microbial stereotypes. Cell Host Microbe 23, 10–13 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
211.Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
212.Leonard, S. P. et al. Engineered symbionts activate honey bee immunity and limit pathogens. Science 367, 573–576 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
213.Wolinska, J. & King, K. C. Environment can alter selection in host–parasite interactions. Trends Parasitol. 25, 236–244 (2009).PubMed
Article
PubMed Central
Google Scholar
214.Kiers, E. T., Palmer, T. M., Ives, A. R., Bruno, J. F. & Bronstein, J. L. Mutualisms in a changing world: an evolutionary perspective. Ecol. Lett. 13, 1459–1474 (2010).Article
Google Scholar
215.Lafferty, K. D. The ecology of climate change and infectious diseases. Ecology 90, 888–900 (2009).PubMed
Article
PubMed Central
Google Scholar
216.Magalon, H., Nidelet, T., Martin, G. & Kaltz, O. Host growth conditions influence experimental evolution of life history and virulence of a parasite with vertical and horizontal transmission. Evolution 64, 2126–2138 (2010).PubMed
PubMed Central
Google Scholar
217.Bull, J. J., Molineux, I. J. & Rice, W. R. Selection of benevolence in a host-parasite system. Evolution 45, 875–882 (1991).CAS
PubMed
Article
PubMed Central
Google Scholar
218.Gibson, A. K. et al. The evolution of reduced antagonism—a role for host–parasite coevolution. Evolution 69, 2820–2830 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
219.Kubinak, J. L. & Potts, W. K. Host resistance influences patterns of experimental viral adaptation and virulence evolution. Virulence 4, 410–418 (2013).PubMed
PubMed Central
Article
Google Scholar
220.Matthews, A. C., Mikonranta, L. & Raymond, B. Shifts along the parasite–mutualist continuum are opposed by fundamental trade-offs. Proc. Biol. Sci. 286, 20190236 (2019).CAS
PubMed
PubMed Central
Google Scholar
221.Marchetti, M. et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 8, e1000280 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
222.Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Biol. Sci. 102, 3004–3009 (2005).CAS
Google Scholar
223.Jeon, K. W. Genetic and physiological interactions in the amoeba-bacteria symbiosis. J. Eukaryot. Microbiol. 51, 502–508 (2004).PubMed
Article
PubMed Central
Google Scholar
224.Wang, X. et al. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1, 1–9 (2010).PubMed Central
Google Scholar
225.Bull, J. J. & Molineux, I. J. Molecular genetics of adaptation in an experimental model of cooperation. Evolution 46, 882–895 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
226.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. An ancient but promiscuous host-symbiont association between Burkholderia gut symbionts and their heteropteran hosts. ISME J. 5, 446–460 (2011).PubMed
Article
PubMed Central
Google Scholar
227.Kikuchi, Y., Hosokawa, T. & Fukatsu, T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl. Env. Microbiol. 73, 4308–4316 (2007).CAS
Article
Google Scholar
228.Shapiro, J. W., Williams, E. S. C. P. & Turner, P. E. Evolution of parasitism and mutualism between filamentous phage M13 and Escherichia coli. PeerJ 4, e2060 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
229.Porter, S. S. & Simms, E. L. Selection for cheating across disparate environments in the legume-rhizobium mutualism. Ecol. Lett. 17, 1121–1129 (2014).PubMed
Article
PubMed Central
Google Scholar
230.Weese, D. J., Heath, K. D., Dentinger, B. T. M. & Lau, J. A. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution 69, 631–642 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
231.Slater, S. C. et al. Genome sequences of three Agrobacterium biovars help elucidate the evolution of multichromosome genomes in bacteria. J. Bacteriol. 191, 2501–2511 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
232.Proença, J. T., Barral, D. C. & Gordo, I. Commensal-to-pathogen transition: one-single transposon insertion results in two pathoadaptive traits in Escherichia coli–macrophage interaction. Sci. Rep. 7, 4504 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
233.Hu, G. et al. Microevolution during serial mouse passage demonstrates FRE3 as a virulence adaptation gene in Cryptococcus neoformans. mBio 5, e00941-14 (2014).PubMed
PubMed Central
Article
Google Scholar
234.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
235.Sicard, M. et al. When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). J. Evol. Biol. 17, 985–993 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
236.Margulis, L. Words as battle cries: symbiogenesis and the new field of endocytobiology. BioScience 40, 673–677 (1990).CAS
PubMed
Article
PubMed Central
Google Scholar
237.Didelot, X., Barker, M., Falush, D. & Priest, F. G. Evolution of pathogenicity in the Bacillus cereus group. Syst. Appl. Microbiol. 32, 81–90 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
238.Oishi, S., Moriyama, M., Koga, R. & Fukatsu, T. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae). Zool. Lett. 5, 16 (2019).Article
Google Scholar
239.Kang, Y. et al. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis. PLoS Pathog. 10, e1004232 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
240.Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T. & Poon, A. F. Y. Ancestral reconstruction. PLoS Comput. Biol. 12, e1004763 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
241.Rafaluk-Mohr, C., Ashby, B., Dahan, D. A. & King, K. C. Mutual fitness benefits arise during coevolution in a nematode-defensive microbe model. Evol. Lett. 2, 246–256 (2018).PubMed
PubMed Central
Article
Google Scholar
242.Ford, S. A., Williams, D., Paterson, S. & King, K. C. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Mol. Ecol. 26, 1778–1789 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
243.Hall, A. R., Ashby, B., Bascompte, J. & King, K. C. Measuring coevolutionary dynamics in species-rich communities. Trends Ecol. Evol. 35, 539–550 (2020).PubMed
Article
PubMed Central
Google Scholar
244.Betts, A., Rafaluk, C. & King, K. C. Host and parasite evolution in a tangled bank. Trends Parasitol. 32, 863–873 (2016).PubMed
Article
PubMed Central
Google Scholar
245.Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed
PubMed Central
Article
Google Scholar
246.Unterholzner, S. J., Poppenberger, B. & Rozhon, W. Toxin-antitoxin systems: biology, identification, and application. Mob. Genet. Elem. 3, e26219 (2013).Article
CAS
Google Scholar
247.Croucher, N. J. et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331, 430–434 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
248.Wu, M. et al. Phylogenomics of the reproductive parasite wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2, E69 (2004).PubMed
PubMed Central
Article
Google Scholar
249.Frost, C. L. et al. The hypercomplex genome of an insect reproductive parasite highlights the importance of lateral gene transfer in symbiont biology. mBio 11, e02590-19 (2020).PubMed
PubMed Central
Article
Google Scholar
250.Bamford, D. H. Do viruses form lineages across different domains of life? Res. Microbiol. 154, 231–236 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
251.Casjens, S. et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35, 490–516 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
252.Casjens, S. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol. 49, 277–300 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar More