More stories

  • in

    Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency and balance in subtropical China

    1.Kazunori, M. et al. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 566, 641–651 (2016).
    Google Scholar 
    2.FAOSTAT. http://www.fao.org/statistics/zh. (2018).3.Xu, L. et al. Effects of different fertilization treatment on paddy soil nutrients in red soil hilly region. J. Nat. Resour. 27, 1890–1898 (2012) (In Chinese).
    Google Scholar 
    4.National Bureau of Statistics of China. China Statistical Yearbook (China Statistics Press, 2010) (In Chinese).
    Google Scholar 
    5.Li, H. G. et al. Past, present, and future use of phosphorus in Chinese agriculture and its influence on phosphorus losses. Ambio 44, S274–S285 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Withers, P. J. A. et al. Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio 44(Suppl. 2), 193–206 (2015).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    7.Huang, Q. H. et al. Effects of long-term organic amendments on soil organic carbon in a paddy field: A case study on red soil. J. Integr. Agric. 13, 570–576 (2014).Article 

    Google Scholar 
    8.Wang, H. et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 195, 104382 (2019).Article 

    Google Scholar 
    9.Qaswar, M. et al. Yield sustainability, soil organic carbon sequestration and nutrients balance under long-term combined application of manure and inorganic fertilizers in acidic paddy soil. Soil Tillage Res. 198, 104569 (2020).Article 

    Google Scholar 
    10.Blake, L. et al. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 56, 263–275 (2000).Article 

    Google Scholar 
    11.Dawe, D., Dobermann, A., Ladha, J. K. & Zhen, Q. X. Do organic amendments improve yield trends and profitability in intensive rice systems?. Field Crop. Res. 83, 191–213 (2003).Article 

    Google Scholar 
    12.Nziguheba, G., Merckx, R. & Palm, C. A. Soil phosphorus dynamics and maize response to different rates of phosphorus fertilizer applied to an acrisol in Western Kenya. Plant Soil 243, 1–10 (2002).CAS 
    Article 

    Google Scholar 
    13.Xu, M. G. et al. Effects of organic manure application with chemical fertilizers on nutrient absorption and yield of rice in hunan of Southern China. Agric. Sci. China 7, 1245–1252 (2008).Article 

    Google Scholar 
    14.Bi, L. et al. Long-term effects of organic amendments on the rice yields for double rice cropping systems in subtropical China. Agric. Ecosyst. Environ. 129, 534–541 (2009).Article 

    Google Scholar 
    15.Zhao, B. Q. et al. Long-term fertilizer experiment network in China: Crop yields and soil nutrient trends. Agron. J. 102, 216–230 (2010).CAS 
    Article 

    Google Scholar 
    16.Gao, Y. et al. Phosphorus and carbon competitive sorption-desorption and associated non-point loss respond to natural rainfall events. J. Hydrol. 517, 447–457 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Powers, S. M. et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 9, 353–356 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Abe, S. S. et al. Excessive application of farmyard manure reduces rice yield and enhances environmental pollution risk in paddy fields. Arch. Agron. Soil Sci. 62, 1208–1221 (2016).Article 

    Google Scholar 
    19.Sato, S. & Comerford, N. B. Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian ultisol. Rev. Bras. Ciênc. Solo 29, 685–694 (2005).CAS 
    Article 

    Google Scholar 
    20.Shasheen, S. & Tsadilas, C. Phosphorus sorption and availability to canola grown in an alfisol amended with various soil amendments. Commun. Soil Sci. Plan. 44, 89–103 (2013).Article 
    CAS 

    Google Scholar 
    21.Shepherd, M. A. & Withers, P. J. Applications of poultry litter and triple superphosphate fertilizer to a sandy soil: Effects on soil phosphorus status and profile distribution. Nutr. Cycl. Agroecosyst. 54, 233–242 (1999).Article 

    Google Scholar 
    22.Morteza, Y., Javad, S. & Mahmood, S. S. On dealing with the pollution costs in agriculture: A case study of paddy fields. Sci. Total Environ. 556, 310–318 (2016).Article 
    CAS 

    Google Scholar 
    23.Zhang, N.M., Li, C.X. & Li, Y.H. Accumulation and releasing risk of phosphorus in soils in Dianchi watershed. Soils 39, 665–667. (2007). (in Chinese). 24.Zhang, Z. J., Zhang, J. Y., He, R., Wang, Z. D. & Zhu, Y. M. Phosphorus interception in floodwater of paddy field during the rice-growing season in TaiHu Lake Basin. Environ. Pollut. 145, 425–433 (2007) (In Chinese).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Hua, L. et al. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agric. Ecosyst. Environ. 245, 112–123 (2017).CAS 
    Article 

    Google Scholar 
    26.Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).ADS 
    Article 

    Google Scholar 
    27.Shi, W. et al. Source-sink dynamics and proteomic reprogramming under elevated night temperature and their impact on rice yield and grain quality. New Phytol. 197, 825–837 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Andriamananjara, A. et al. Farmyard manure application in weathered upland soils of Madagascar sharply increase phosphate fertilizer use efficiency for upland rice. Field Crop. Res. 222, 94–100 (2018).Article 

    Google Scholar 
    29.Andriamananjara, A. et al. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutr. Cycl. Agroecosyst. 115, 407–425 (2019).CAS 
    Article 

    Google Scholar 
    30.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229-U113 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Xin, X. et al. Yield, phosphorus use efficiency and balance response to substituting long-term chemical fertilizer use with organic manure in a wheat-maize system. Field Crop. Res. 208, 27–33 (2017).Article 

    Google Scholar 
    32.Aggarwal, R. K. & Power, J. F. Use of crop residue and manure to conserve water and enhance nutrient availability and pearl millet yields in an arid tropical region. Soil Tillage Res. 41, 43–51 (1997).Article 

    Google Scholar 
    33.Rehman, A., Ullah, A., Nadeem, F. & Farooq, M. Sustainable nutrient management. In Innovations in Sustainable Agriculture 167–211 (Springer, 2019).34.Whalen, J. K., Chang, C., Clayton, G. W. & Carefoot, J. P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 64, 962–966 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Mowrer, J., Endale, D. M., Schomberg, H. H., Norris, S. E. & Woodroof, R. H. Liming potential of poultry litter in a long-term tillage comparison study. Soil Tillage Res. 196, 104446 (2020).Article 

    Google Scholar 
    36.Miller, J., Beasley, B., Drury, C., Larney, F. & Hao, X. Y. Influence of long-term application of composted or stockpiled feedlot manure with straw or wood chips on soil cation exchange capacity. Compos. Sci. Util. 24, 54–60 (2016).CAS 
    Article 

    Google Scholar 
    37.Liang, Y. et al. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biol. Biochem. 37, 1185–1195 (2005).CAS 
    Article 

    Google Scholar 
    38.Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 243–266 (2004).Article 

    Google Scholar 
    39.Khan, F. et al. Effect of different levels of nitrogen and phosphorus on the phenology and yield of maize varieties. Am. J. Plant Sci. 5, 2582–2590 (2014).CAS 
    Article 

    Google Scholar 
    40.Luo, X. et al. Nitrogen: Phosphorous supply ratio and allometry in five alpine plant species. Ecol. Evol. 6, 8881–8892 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Güsewell, S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus. Plant Ecol. 176, 35–55 (2005).Article 

    Google Scholar 
    42.Hu, B. et al. Nitrate-NRT1.1B-SPX4 cascade integrates nitrogen and phosphorus signalling networks in plants. Nat. Plants 5, 401–413 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Zhang, W. F. et al. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr. Cycl. Agroecosyst. 80, 131–144 (2008).Article 

    Google Scholar 
    44.Andriamananjara, A. et al. Land management modifies the temperature sensitivity of soil organic carbon, nitrogen and phosphorus dynamics in a Ferralsol. Appl. Soil Ecol. 138, 112–122 (2019).Article 

    Google Scholar 
    45.Nziguheba, G., Merckx, R., Palm, C. A. & Rao, M. R. Organic residues affect phosphorus availability and maize yields in a Nitisol of Western Kenya. Biol. Fertil. Soils 32, 328–339 (2000).CAS 
    Article 

    Google Scholar 
    46.Peretyazhko, T. & Sposito, G. Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim. Cosmochim. Acta 69, 3643–3652 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Wright, A. L. Soil phosphorus stocks and distribution in chemical fractions for long-term sugarcane, pasture, turfgrass, and forest systems in Florida. Nutr. Cycl. Agroecosyst. 83, 223–231 (2009).CAS 
    Article 

    Google Scholar 
    48.Zhong, X. et al. The evaluation of phosphorus leaching risk of 23 Chinese soils I. Leaching criterion. Acta Ecol. Sin. 24, 2275–2280 (2004).
    Google Scholar 
    49.Wang, S. et al. Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems. Soil Sei. Soc. Am. J. 6, 161–167 (2012).Article 
    CAS 

    Google Scholar 
    50.Haynes, R. J. & Mokolobate, M. S. Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: A critical review of the phenomenon and the mechanisms involved. Nutr. Cycl. Agroecosyst. 59, 47–63 (2001).CAS 
    Article 

    Google Scholar 
    51.Ayaga, G., Todd, A. & Brookes, P. C. Enhanced biological cycling of phosphorus increases its availability to crops in low-input sub-Saharan farming systems. Soil Biol. Biochem. 38, 81–90 (2006).CAS 
    Article 

    Google Scholar 
    52.Nie, J., Zhou, J., Wang, H., Chen, X. & Du, C. Effect of long-term rice straw return on soil glomalin, carbon and nitrogen. Pedosphere 17, 295–302 (2007).CAS 
    Article 

    Google Scholar 
    53.Yu, Y. et al. Responses of paddy soil bacterial community assembly to different long-term fertilizations in southeast China. Sci. Total Environ. 656, 625–633 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Murphy, J. & Riley, J. P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. A. 27, 31–36 (1962).CAS 
    Article 

    Google Scholar 
    55.Kitson, R. E. & Mellon, M. G. Colorimetric determination of phosphorus as molybdivanadophosporic acid. Ind. Eng. Chem. Anal. Ed. 16, 379–383 (1944).CAS 
    Article 

    Google Scholar 
    56.Soon, Y. K. & Kalra, Y. P. A comparison of plant tissue digestion methods for nitrogen and phosphorus analyses. Can. J. Soil Sci. 75, 243–245 (1995).CAS 
    Article 

    Google Scholar  More

  • in

    The serotonin transporter gene and female personality variation in a free-living passerine

    1.Réale, D., Dingemanse, N. J., Kazem, A. J. N. & Wright, J. Evolutionary and ecological approaches to the study of personality. Philos. Trans. R. Soc. B. 365, 3937–3946 (2010).Article 

    Google Scholar 
    2.Dingemanse, N. J. & Wright, J. Criteria for acceptable studies of animal personality and behavioural syndromes. Ethology 126, 865–869 (2020).Article 

    Google Scholar 
    3.Wilson, D. S. Adaptive individual differences within single populations. Philos. Trans. R. Soc. B. 353, 199–205 (1998).Article 

    Google Scholar 
    4.Van Oers, K., De Jong, G., Van Noordwijk, A. J., Kempenaers, B. & Drent, P. J. Contribution of genetics to the study of animal personalities: A review of case studies. Behaviour 142, 1185–1206 (2005).Article 

    Google Scholar 
    5.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: Heritability of personality. Proc. R. Soc. B. 282, 20142201 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Dochtermann, N. A., Schwab, T., Berdal, M. A., Dalos, J. & Royauté, R. The heritability of behavior: A meta-analysis. J. Hered. 110, 403–410 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    8.Moiron, M., Laskowski, K. L. & Niemelä, P. T. Individual differences in behaviour explain variation in survival: a meta-analysis. Ecol. Lett. 23, 399–408 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B. 365, 3947–3958 (2010).Article 

    Google Scholar 
    10.Dingemanse, N. J. & Réale, D. What is the evidence that natural selection maintains variation in animal personalities? In Animal Personalities: Behavior, Physiology, and Evolution (eds Carere, C. & Maestripieri, D.) 201–220 (Chicago University Press, 2013).
    Google Scholar 
    11.Oers, K. V. & Mueller, J. C. Evolutionary genomics of animal personality. Philos. Trans. R. Soc. B. 365, 3991–4000 (2010).Article 

    Google Scholar 
    12.Laine, V. N. & van Oers, K. The quantitative and molecular genetics of individual differences in animal personality. In Personality in Nonhuman Animals (eds Vonk, J. et al.) 55–72 (Springer, 2017).
    Google Scholar 
    13.Bubac, C. M., Miller, J. M. & Coltman, D. W. The genetic basis of animal behavioural diversity in natural populations. Mol. Ecol. 29, 1957–1971 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Brommer, J. E. & Class, B. The importance of genotype-by-age interactions for the development of repeatable behavior and correlated behaviors over lifetime. Front. Zool. 12, S2 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).Article 

    Google Scholar 
    18.Gienapp, P., Laine, V. N., Mateman, A. C., van Oers, K. & Visser, M. E. Environment-dependent genotype-phenotype associations in avian breeding time. Front. Genet. 8, 1–9 (2017).Article 
    CAS 

    Google Scholar 
    19.Korsten, P. et al. Association between DRD4 gene polymorphism and personality variation in great tits: A test across four wild populations. Mol. Ecol. 19, 832–843 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mueller, J. C. et al. Haplotype structure, adaptive history and associations with exploratory behaviour of the DRD4 gene region in four great tit (Parus major) populations. Mol. Ecol. 22, 2797–2809 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Riyahi, S., Sánchez-Delgado, M., Calafell, F., Monk, D. & Senar, J. C. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics 10, 516–525 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Mueller, J. C., Partecke, J., Hatchwell, B. J., Gaston, K. J. & Evans, K. L. Candidate gene polymorphisms for behavioural adaptations during urbanization in blackbirds. Mol. Ecol. 22, 3629–3637 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Holtmann, B. et al. Population differentiation and behavioural association of the two ‘personality’ genes DRD4 and SERT in dunnocks (Prunella modularis). Mol. Ecol. 25, 706–722 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Class, B. & Brommer, J. E. Senescence of personality in a wild bird. Behav. Ecol. Sociobiol. 70, 733–744 (2016).Article 

    Google Scholar 
    25.Class, B., Brommer, J. E. & van Oers, K. Exploratory behavior undergoes genotype–age interactions in a wild bird. Ecol. Evol. 9, 8987–8994 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Savitz, J. B. & Ramesar, R. S. Genetic variants implicated in personality: A review of the more promising candidates. Am. J. Med. Genet. Neuropsychiatr. Genet. 131B, 20–32 (2004).Article 

    Google Scholar 
    27.Craig, I. W. & Halton, K. E. Genetics of human aggressive behaviour. Hum. Genet. 126, 101–113 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Miller-Butterworth, C. M., Kaplan, J. R., Barmada, M. M., Manuck, S. B. & Ferrell, R. E. The serotonin transporter: Sequence variation in Macaca fascicularis and its relationship to dominance. Behav. Genet. 37, 678–696 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Jannini, E. A., Burri, A., Jern, P. & Novelli, G. Genetics of human sexual behavior: Where we are, where we are going. Sex. Med. Rev. 3, 65–77 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Timm, K., Van Oers, K. & Tilgar, V. SERT gene polymorphisms are associated with risk-taking behaviour and breeding parameters in wild great tits. J. Exp. Biol. 221, jeb171595 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Timm, K., Koosa, K. & Tilgar, V. The serotonin transporter gene could play a role in anti-predator behaviour in a forest passerine. J. Ethol. 37, 221–227 (2019).Article 

    Google Scholar 
    32.Edwards, H. A., Hajduk, G. K., Durieux, G., Burke, T. & Dugdale, H. L. No association between personality and candidate gene polymorphisms in a wild bird population. PLoS ONE 10, 1–13 (2015).
    Google Scholar 
    33.Van Dongen, W. F. D., Robinson, R. W., Weston, M. A., Mulder, R. A. & Guay, P. J. Variation at the DRD4 locus is associated with wariness and local site selection in urban black swans. BMC Evol. Biol. 15, 1–11 (2015).Article 

    Google Scholar 
    34.Sibley, C. G. Behavioral mimicry in the titmice (Paridae) and certain other birds. Wilson Bull. 67, 128–132 (1955).
    Google Scholar 
    35.Thys, B. et al. The female perspective of personality in a wild songbird: Repeatable aggressiveness relates to exploration behaviour. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    36.Thys, B., Lambreghts, Y., Pinxten, R. & Eens, M. Nest defence behavioural reaction norms: Testing life-history and parental investment theory predictions. R. Soc. Open Sci. 6, 182180 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    37.Thys, B., Pinxten, R. & Eens, M. Long-term repeatability and age-related plasticity of female behaviour in a free-living passerine. Anim. Behav. 172, 45–54 (2021).Article 

    Google Scholar 
    38.Grunst, A. S. et al. Variation in personality traits across a metal pollution gradient in a free-living songbird. Sci. Total Environ. 630, 668–678 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    39.Graffelman, J. Exploring diallelic genetic markers: The HardyWeinberg package. J. Stat. Softw. 64, 1–23 (2015).Article 

    Google Scholar 
    40.Solé, X., Guinó, E., Valls, J., Iniesta, R. & Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 22, 1928–1929 (2006).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Benjamini, Y. & Hocherg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    42.Therneau, T. coxme: Mixed effects Cox models. R package version 2.2-16. https://CRAN.R-project.org/package=coxme (2020).43.Balding, D. J. A tutorial on statistical methods for population association studies. Nat. Rev. Genet. 7, 781–791 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.van de Pol, M. & Wright, J. A simple method for distinguishing within- versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).Article 

    Google Scholar 
    45.Araya-Ajoy, Y. G., Mathot, K. J. & Dingemanse, N. J. An approach to estimate short-term, long-term and reaction norm repeatability. Methods Ecol. Evol. 6, 1462–1473 (2015).Article 

    Google Scholar 
    46.Sinnwell, J., Therneau, T. & Schaid, D. The kinship 2 R Package for Pedigree Data. Hum. Hered. 78, 91–93 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    49.Deans, C. & Maggert, K. A. What do you mean, “Epigenetic”?. Genetics 199, 887–896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Evol. Syst. 37, 67–93 (2006).Article 

    Google Scholar 
    52.Krams, I. et al. Hissing calls improve survival in incubating female great tits (Parus major). Acta Ethol. 17, 83–88 (2014).Article 

    Google Scholar 
    53.Munafò, M. R., Yalcin, B., Willis-Owen, S. A. & Flint, J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biol. Psychiatry 63, 197–206 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: Non-neutral evolution at synonymous sites in mammals. Nat. Rev. Genet. 7, 98–108 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Sauna, Z. E. & Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human disease. Nat. Rev. Genet. 12, 683–691 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Pastinen, T. Genome-wide allele-specific analysis: Insights into regulatory variation. Nat. Rev. Genet. 11, 533–538 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Vergnes, M., Depaulis, A. & Boehrer, A. Parachlorophenylalanine-induced serotonin depletion increases offensive but not defensive aggression in male rats. Physiol. Behav. 36, 653–658 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lesch, K. P. & Merschdorf, U. Impulsivity, aggression, and serotonin: A molecular psychobiological perspective. Behav. Sci. Law 18, 581–604 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Seo, D., Patrick, C. J. & Kennealy, P. J. Role of serotonin and dopamine system interactions in the neurobiology of impulsive aggression and its comorbidity with other clinical disorders. Aggress. Violent Behav. 13, 383–395 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Thys, B., Eens, M., Pinxten, R. & Iserbyt, A. Pathways linking female personality with reproductive success are trait- and year-specific. Behav. Ecol. 32, 114–123 (2020).Article 

    Google Scholar  More

  • in

    Assessing the effectiveness of two intervention methods for stony coral tissue loss disease on Montastraea cavernosa

    1.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Hurricanes and caribbean coral reefs: impacts, recovery patterns, and role in long-term decline. Ecology 86, 174–184 (2005).Article 

    Google Scholar 
    2.Harvell, D. et al. Coral disease, environmental drivers, and the balance between coral and microbial associates. Oceanography 20, 172–195 (2007).Article 

    Google Scholar 
    3.Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36, 1–5 (2009).Article 

    Google Scholar 
    4.Jackson, J., Donovan, M., Cramer, K. & Lam, W. Status and Trends of Caribbean Coral Reefs 1970–2012 (2012).5.IPCC. Climate Change 2014 Synthesis Report. IPCC Fifth Assessment Report 151 (2014).6.Zaneveld, J. R. et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat. Commun. 7, 1–12 (2016).Article 

    Google Scholar 
    7.Bruno, J. F., Petes, L. E., Drew Harvell, C. & Hettinger, A. Nutrient enrichment can increase the severity of coral diseases. Ecol. Lett. 6, 1056–1061 (2003).Article 

    Google Scholar 
    8.Danovaro, R. et al. Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. 116, 441–447 (2008).CAS 
    Article 

    Google Scholar 
    9.Díaz, M. & Madin, J. Macroecological relationships between coral species’ traits and disease potential. Coral Reefs 30, 73–84 (2011).ADS 
    Article 

    Google Scholar 
    10.Bruno, J. F. The coral disease triangle. Nat. Clim. Chang. 5, 302–303 (2015).ADS 
    Article 

    Google Scholar 
    11.Muller, E. M. et al. Low pH reduces the virulence of black band disease on Orbicella faveolata. PLoS ONE 12, e0178869 (2017).Article 

    Google Scholar 
    12.Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus-host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017).CAS 
    Article 

    Google Scholar 
    13.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7 (2011).14.Beeden, R., Maynard, J. A., Marshall, P. A., Heron, S. F. & Willis, B. L. A framework for responding to coral disease outbreaks that facilitates adaptive management. Environ. Manag. 49, 1–13 (2012).ADS 
    Article 

    Google Scholar 
    15.Walton, C. J., Hayes, N. K. & Gilliam, D. S. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front. Mar. Sci. 5 (2018).16.Harvell, C. D. et al. Emerging marine diseases: Climate links and anthropogenic factors. Manter Lab. 580 (1999).17.Wilkinson, C. Status of Coral Reefs of the World: 2008. (2008).18.Ruiz-Moreno, D. et al. Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis. Aquat. Organ. 100, 249–261 (2012).Article 

    Google Scholar 
    19.Bruckner, A. W. Proceedings of the Caribbean Acropora Workshop: Potential Application of the U.S. Endangered Species Act as a Conservation Strategy. in Proceedings of the Caribbean Acropora Workshop 199 (2003).20.Casas, V. et al. Widespread association of a Rickettsiales-like bacterium with reef-building corals. Environ. Microbiol. 6, 1137–1148 (2004).Article 

    Google Scholar 
    21.Aronson, R. B. & Precht, W. F. White-band disease and the changing face of Caribbean coral reefs. Hydrobiologia 460, 25–38 (2001).Article 

    Google Scholar 
    22.Gladfelter, W. B. White-band disease in Acropora palmata: Implications for the structure and growth of shallow reefs. Bull. Mar. Sci. 32, 639–643 (1982).
    Google Scholar 
    23.Richardson, L. L. Coral diseases: What is really known?. TREE 13, 438–443 (1998).CAS 
    PubMed 

    Google Scholar 
    24.Richardson, L. L. et al. Florida’s mystery coral-killer identified. Sci. Corresp. 392, 557–558 (1998).CAS 

    Google Scholar 
    25.Richardson, L. & Voss, J. Changes in a coral population on reefs of the northern Florida Keys following a coral disease epizootic. Mar. Ecol. Prog. Ser. 297, 147–156 (2005).ADS 
    Article 

    Google Scholar 
    26.Berkelmans, R., De’ath, G., Kininmonth, S. & Skirving, W. J. A comparison of the 1998 and 2002 coral bleaching events on the Great Barrier Reef: Spatial correlation, patterns, and predictions. Coral Reefs 23, 74–83 (2004).Article 

    Google Scholar 
    27.Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).Article 

    Google Scholar 
    28.Maynard, J. et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat. Clim. Chang. 5, 688–694 (2015).ADS 
    Article 

    Google Scholar 
    29.Roth, L., Kramer, P. R., Doyle, E. & and O’Sullivan, C. Caribbean SCTLD Dashboard. ArcGIS Online (2020). https://www.agrra.org/coral-disease-outbreak/.30.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ https://doi.org/10.7717/peerj.8069 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial epidemiology of the stony-coral-tissue-loss disease in Florida. Front. Mar. Sci. 7, 163 (2020).Article 

    Google Scholar 
    32.Aeby, G. S. et al. Pathogenesis of a tissue loss disease affecting multiple species of corals along the florida reef tract. Front. Mar. Sci. 6, 1–18 (2019).ADS 
    Article 

    Google Scholar 
    33.Weil, E. & Rogers, C. S. Coral reef diseases in the Atlantic-Caribbean. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 465–491 (Springer, 2011). https://doi.org/10.1007/978-94-007-0114-4.
    Google Scholar 
    34.Rippe, J. P., Kriefall, N. G., Davies, S. W. & Castillo, K. D. Differential disease incidence and mortality of inner and outer reef corals of the upper Florida Keys in association with a white syndrome outbreak. Bull. Mar. Sci. 95, 305–316 (2019).Article 

    Google Scholar 
    35.Neely, K. Ex-Situ Disease Treatment Trials. 1–3 (2018). https://floridadep.gov/sites/default/files/Ex-Situ-Disease-Treatment-Trials.pdf.36.Neely, K. Ex Situ Disease Treatment Trials Final Report. 1–3 (2019). Available at: https://floridadep.gov/sites/default/files/DEPLabTrialsFINALReport2019.01508comp_0.pdf.37.Miller, C. V., May, L. A., Moffitt, Z. J. & Woodley, C. M. Exploratory Treatments for Stony Coral Tissue Loss Disease: Pillar Coral (Dendrogyra cylindrus). (2020). https://doi.org/10.7289/V5/TM-NOS-NCCOS-24538.Favero, M., Balut, K., Levine, M. & Circle, M. Amoxicillin Trihydrate Stability in Correlation with Coral Ointment Batch #18006-B and Simulated Seawater. 1–9 (2019). https://floridadep.gov/sites/default/files/AmoxicillinStabilityinBothSeawaterBatch18006-B_FINAL_508C_0.pdf.39.Aeby, G. S. et al. First record of black band disease in the Hawaiian archipelago: Response, outbreak status, virulence, and a method of treatment. PLoS ONE 10, 1–17 (2015).Article 

    Google Scholar 
    40.Walker, B. K. & Brunelle, A. Southeast Florida large ( >2 meter) diseased coral colony intervention summary report. 1–164 (2018). https://floridadep.gov/sites/default/files/Large-Coral-Disease-Intervention-Summary-Report.pdf.41.Combs, I. Characterizing the Impacts of Scleractinian Tissue Loss Disease Outbreak on Corals in Southeast Florida. (2019).42.Combs, I. R., Studivan, M. S., Eckert, R. J. & Voss, J. D. Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PLoS One (In the press).43.Voss, J. D., Shilling, E. N. & Combs, I. R. Intervention and fate tracking for corals affected by stony coral tissue loss disease in the northern Florida Reef Tract. 1–23 (2019). Available at: https://floridadep.gov/sites/default/files/VossSEFLDiseaseReport2018_FINAL_508compliant.pdf.44.Veron, J. E. N. Corals of the World. (2000).45.NOAA. Stony Coral Tissue Loss Disease Case Definition. Florida Keys National Marine Sanctuary (2018).46.Banks, K. W. et al. The Reef Tract of Continental Southeast Florida (Miami-Dade, Broward and Palm Beach Counties, USA). in Coral Reefs of the USA 175–220 (2008).47.González-Barrios, F. J. & Álvarez-Filip, L. A framework for measuring coral species-specific contribution to reef functioning in the Caribbean. Ecol. Indic. 95, 877–886 (2018).Article 

    Google Scholar 
    48.R Core Team. R: A language and environment for statistical computing. (2020).49.Wickham, H. Package ‘ggplot2’: Create Elegant Data Visualizations Using the Grammar of Graphics. 277 (2020).50.Hope, R. M. Package ‘ Rmisc ’: Ryan Miscellaneous. (2016).51.Kassambara, A. Package ‘ rstatix ’: Pipe-Friendly Framework for Basic Statistical Tests. (2020).52.Derek, O., Wheeler, P. & Dinno, A. Package ‘ FSA ’: Simple Fisheries Stock Assessment Methods. (2020).53.Sweet, M. J., Croquer, A. & Bythell, J. C. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis. Proc. R. Soc. B Biol. Sci. 281, 20140094–20140094 (2014).CAS 
    Article 

    Google Scholar 
    54.Neely, K. L., Macaulay, K. A., Hower, E. K. & Dobler, M. A. Effectiveness of topical antibiotics in treating corals affected by Stony Coral Tissue Loss Disease. PeerJ 8, e9289 (2020).Article 

    Google Scholar 
    55.Voss, J. D., Mills, D. K., Myers, J. L., Remily, E. R. & Richardson, L. L. Black band disease microbial community variation on corals in three regions of the wider Caribbean. Microb. Ecol. 54, 730–739 (2007).CAS 
    Article 

    Google Scholar 
    56.Sekar, R., Kaczmarsky, L. & Richardson, L. Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar. Ecol. Prog. Ser. 362, 85–98 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Sato, Y., Willis, B. L. & Bourne, D. G. Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. ISME J. 4, 203–214 (2010).Article 

    Google Scholar 
    58.Miller, A. W. & Richardson, L. L. A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. FEMS Microbiol. Ecol. 75, 231–241 (2010).Article 

    Google Scholar 
    59.Hudson, H. First Aid for Massive Corals Infected With Black Band Disease, Phormidium corallyticum: An Underwater Aspirator and Post-Treatment Sealant to Curtail Reinfection. In AAUS 20th Symposium Proceedings 2000 (2000).60.Randall, C. J. et al. Testing methods to mitigate Caribbean yellow-band disease on Orbicella faveolata. PeerJ 2018, 1–20 (2018).
    Google Scholar 
    61.Walker, B. K. & Pitts, K. SE FL Reef-building-coral Response to Amoxicillin Intervention and Broader-scale Coral Disease Intervention. 1–17 (2019). https://floridadep.gov/sites/default/files/WalkerMCAVDiseaseExperimentSummaryReportJune2019_final_14Aug2019.pdf.62.Neely, K. Florida Keys Coral Disease Strike Team: FY 2019/2020 Final Report. 1–17 (2020). Available at: https://floridadep.gov/sites/default/files/FloridaKeysCoralDiseaseStrikeTeam_FY19-20FinalReport.pdf.63.Paterson, I. K., Hoyle, A., Ochoa, G., Baker-Austin, C. & Taylor, N. G. H. Optimising antibiotic usage to treat bacterial infections. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar  More

  • in

    Environmental factors shape the epiphytic bacterial communities of Gracilariopsis lemaneiformis

    1.Roth-Schulze, A. J. et al. Functional biogeography and host specificity of bacterial communities associated with the Marine Green Alga Ulva spp. Mol. Ecol. 27, 1952–1965 (2018).PubMed 
    Article 

    Google Scholar 
    2.Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. J. Exp. Mar. Biol. Ecol. 492, 81–98 (2017).Article 

    Google Scholar 
    3.Goecke, F., Labes, A., Wiese, J. & Imhoff, J. F. Chemical interactions between marine macroalgae and bacteria. Mar. Ecol. Prog. Ser. 409, 267–300 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Singh, R. P. & Reddy, C. R. K. Seaweed-microbial interactions: Key functions of seaweed-associated bacteria. FEMS Microbiol. Ecol. 88, 213–230 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M. & Kim, H. S. Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Ismail, A. et al. Antimicrobial activities of bacteria associated with the brown alga padina pavonica. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    7.Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. 6, 339–367 (2014).PubMed 
    Article 

    Google Scholar 
    8.Karthick, P. & Mohanraju, R. Antimicrobial potential of epiphytic bacteria associated with seaweeds of little Andaman, India. Front. Microbiol. 9, 1–11 (2018).Article 

    Google Scholar 
    9.El Shafay, S. M., Ali, S. S. & El-Sheekh, M. M. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt. J. Aquat. Res. 42, 65–74 (2016).Article 

    Google Scholar 
    10.Dobretsov, S. V. & Qian, P. Y. Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18, 217–228 (2002).Article 

    Google Scholar 
    11.Mieszkin, S., Callow, M. E. & Callow, J. A. Interactions between microbial biofilms and marine fouling algae: A mini review. Biofouling 29, 1097–1113 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Burke, C., Thomas, T., Lewis, M., Steinberg, P. & Kjelleberg, S. Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME J. 5, 590–600 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Tujula, N. A. et al. Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME J. 4, 301–311 (2010).PubMed 
    Article 

    Google Scholar 
    14.Burke, C., Steinberg, P., Rusch, D., Kjelleberg, S. & Thomas, T. Bacterial community assembly based on functional genes rather than species. Proc. Natl. Acad. Sci. 108, 14288–14293 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Roth-Schulze, A. J., Zozaya-Valdés, E., Steinberg, P. D. & Thomas, T. Partitioning of functional and taxonomic diversity in surface-associated microbial communities. Environ. Microbiol. 18, 4391–4402 (2016).PubMed 
    Article 

    Google Scholar 
    16.Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 1–13 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    17.Aires, T., Serrão, E. A. & Engelen, A. H. Host and environmental specificity in bacterial communities associated to two highly invasive marine species (genus Asparagopsis). Front. Microbiol. 7, 1–14 (2016).Article 

    Google Scholar 
    18.Lachnit, T., Fischer, M., Künzel, S., Baines, J. F. & Harder, T. Compounds associated with algal surfaces mediate epiphytic colonization of the marine macroalga Fucus vesiculosus. FEMS Microbiol. Ecol. 84, 411–420 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Nylund, G. M. et al. The red alga Bonnemaisonia asparagoides regulates epiphytic bacterial abundance and community composition by chemical defence. FEMS Microbiol. Ecol. 71, 84–93 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Campbell, A. H., Marzinelli, E. M., Gelber, J. & Steinberg, P. D. Spatial variability of microbial assemblages associated with a dominant habitat-forming seaweed. Front. Microbiol. 6, 1–10 (2015).Article 

    Google Scholar 
    21.Munday, P. L. Competitive coexistence of coral-dwelling fishes: The lottery hypothesis revisited. Ecology 85, 623–628 (2004).Article 

    Google Scholar 
    22.Geange, S. W., Poulos, D. E., Stier, A. C. & McCormick, M. I. The relative influence of abundance and priority effects on colonization success in a coral-reef fish. Coral Reefs 36, 151–155 (2017).ADS 
    Article 

    Google Scholar 
    23.Stratil, S. B., Neulinger, S. C., Knecht, H., Friedrichs, A. K. & Wahl, M. Temperature-driven shifts in the epibiotic bacterial community composition of the brown macroalga Fucus vesiculosus. Microbiologyopen 2, 338–349 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Stratil, S. B., Neulinger, S. C., Knecht, H., Friedrichs, A. K. & Wahl, M. Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus. FEMS Microbiol. Ecol. 88, 272–279 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Zhang, Y. et al. Effect of salinity on the microbial community and performance on anaerobic digestion of marine macroalgae. J. Chem. Technol. Biotechnol. 92, 2392–2399 (2017).CAS 
    Article 

    Google Scholar 
    26.Liao, L. & Xu, Y. Effects of nitrogen nutrients on growth and epiphytic bacterial composition in sea weed Gracilaria lemaneiformis. Fish. Sci. 28, 130–135 (2009).ADS 
    CAS 

    Google Scholar 
    27.Zozaya-Valdés, E., Roth-Schulze, A. J. & Thomas, T. Effects of temperature stress and aquarium conditions on the red macroalga Delisea pulchra and its associated microbial community. Front. Microbiol. 7, 1–10 (2016).Article 

    Google Scholar 
    28.Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–356 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Liu, X. et al. Isolation and pathogenicity identification of bacterial pathogens in bleached disease and their physiological effects on the red macroalga Gracilaria lemaneiformis. Aquat. Bot. 153, 1–7 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Xie, X. et al. Large-scale seaweed cultivation diverges water and sediment microbial communities in the coast of Nan’ao Island, South China Sea. Sci. Total Environ. 598, 97–108 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Yang, Y. et al. Cultivation of seaweed Gracilaria in Chinese coastal waters and its contribution to environmental improvements. Algal Res. 9, 236–244 (2015).Article 

    Google Scholar 
    32.Lindström, E. S. & Langenheder, S. Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep. 4, 1–9 (2012).PubMed 
    Article 

    Google Scholar 
    33.Hellweger, F. L., Van Sebille, E. & Fredrick, N. D. Biogeographic patterns in ocean microbes emerge in a neutral agent-based model. Science (80-. ). 345, 1346–1349 (2014).34.Longford, S. R. et al. Comparisons of diversity of bacterial communities associated with three sessile marine eukaryotes. Aquat. Microb. Ecol. 48, 217–229 (2007).Article 

    Google Scholar 
    35.Lachnit, T., Meske, D., Wahl, M., Harder, T. & Schmitz, R. Epibacterial community patterns on marine macroalgae are host-specific but temporally variable. Environ. Microbiol. 13, 655–665 (2010).PubMed 
    Article 

    Google Scholar 
    36.Pei, P. et al. Effects of biological water purification grid on microbial community of culture environment and intestine of the shrimp Litopenaeus vannamei. Aquac. Res. 50, 1300–1312 (2019).CAS 
    Article 

    Google Scholar 
    37.Shade, A. & Handelsman, J. Beyond the Venn diagram: The hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Spoerner, M., Wichard, T., Bachhuber, T., Stratmann, J. & Oertel, W. Growth and thallus morphogenesis of Ulva mutabilis (chlorophyta) depends on a combination of two bacterial species excreting regulatory factors. J. Phycol. 48, 1433–1447 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Kessler, R. W., Weiss, A., Kuegler, S., Hermes, C. & Wichard, T. Macroalgal–bacterial interactions: Role of dimethylsulfoniopropionate in microbial gardening by Ulva (Chlorophyta). Mol. Ecol. 27, 1808–1819 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Malmstrom, R. R., Kiene, R. P. & Kirchman, D. L. Identification and enumeration of bacteria assimilating dimethylsulfoniopropionate (DMSP) in the North Atlantic and Gulf of Mexico. Limnol. Oceanogr. 49, 597–606 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Holmström, C., Egan, S., Franks, A., McCloy, S. & Kjelleberg, S. Antifouling activities expressed by marine surface associated Pseudoalteromonas species. FEMS Microbiol. Ecol. 41, 47–58 (2002).PubMed 
    Article 

    Google Scholar 
    42.Holmström, C. & Kjelleberg, S. The effect of external biological factors on settlement of marine invertebrate and new antifouling technology. Biofouling 8, 147–160 (1994).Article 

    Google Scholar 
    43.Lachnit, T., Blümel, M., Imhoff, J. F. & Wahl, M. Specific epibacterial communities on macroalgae : Phylogeny matters more than habitat. Aquat. Biol. 5, 181–186 (2009).Article 

    Google Scholar 
    44.Fan, X. et al. The effect of nutrient concentrations, nutrient ratios and temperature on photosynthesis and nutrient uptake by Ulva prolifera : Implications for the explosion in green tides. J. Appl. Phycol. 26, 537–544 (2014).CAS 
    Article 

    Google Scholar 
    45.Van Alstyne, K. L. Seawater nitrogen concentration and light independently alter performance, growth, and resource allocation in the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura ( Chlorophyta ). Harmful Algae 78, 27–35 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Lachnit, T., Wahl, M. & Harder, T. Isolated thallus-associated compounds from the macroalga Fucus vesiculosus mediate bacterial surface colonization in the field similar to that on the natural alga. Biofouling 26, 247–255 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Su, H. et al. Persistence and spatial variation of antibiotic resistance genes and bacterial populations change in reared shrimp in South China. Environ. Int. 119, 327–333 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Ekwanzala, M. D., Dewar, J. B. & Momba, M. N. B. Environmental resistome risks of wastewaters and aquatic environments deciphered by shotgun metagenomic assembly. Ecotoxicol. Environ. Saf. 197, 110612 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Numberger, D. et al. Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci. Rep. 9, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    50.Teklehaimanot, G. Z., Genthe, B., Kamika, I. & Momba, M. N. B. Prevalence of enteropathogenic bacteria in treated effluents and receiving water bodies and their potential health risks. Sci. Total Environ. 518–519, 441–449 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Kelley, S. E. Experimental studies of the evolutionary significance of sexual reproduction. V. A field test of the sib-competition hypotheses. Evolution (N. Y). 43, 1066 (1989).52.Browne, L. & Karubian, J. Rare genotype advantage promotes survival and genetic diversity of a tropical palm. New Phytol. 218, 1658–1667 (2018).PubMed 
    Article 

    Google Scholar 
    53.Gressler, V. et al. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem. 120, 585–590 (2010).CAS 
    Article 

    Google Scholar 
    54.Gu, D. et al. Purification of R-phycoerythrin from Gracilaria lemaneiformis by centrifugal precipitation chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1087–1088, 138–141 (2018).55.Su, Y. bin et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl. Acad. Sci. U. S. A. 115, E1578–E1587 (2018).56.Hollants, J., Leliaert, F., De Clerck, O. & Willems, A. What we can learn from sushi: A review on seaweed-bacterial associations. FEMS Microbiol. Ecol. 83, 1–16 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.AQSIQ. Specifications for Oceanographic Survey. Part 4: Survey of Chemical Parameters in Sea Water. 16–26 (Standards Press of China, 2007).58.Burke, C., Kjelleberg, S. & Thomas, T. Selective extraction of bacterial DNA from the surfaces of macroalgae. Appl. Environ. Microbiol. 75, 252–256 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Xu, Y., Le, G. & Zhang, Y. Comparison with several methods to isolate epiphytic bacteria from Gracilaria lemaneiformis (Rhodophyta). Microbiol. China 34, 123–126 (2007).
    Google Scholar 
    60.Pei, P. et al. Analysis of the bacterial community composition of the epiphytes on diseased Gracilaria lemaneiformis using PCR-DGGE fingerprinting technology. J. Fish. Sci. China 25 (2018).61.Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS One 9 (2014).62.Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Liu, T. et al. Joining Illumina paired-end reads for classifying phylogenetic marker sequences. BMC Bioinform. 21, 1–13 (2020).Article 

    Google Scholar 
    64.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Cole, J. R. et al. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, 633–642 (2014).Article 
    CAS 

    Google Scholar 
    67.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    68.Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264–8271 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Somerfield, P. J. Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008). Mar. Ecol. Prog. Ser. 372, 303–306 (2008).ADS 
    Article 

    Google Scholar 
    70.Higgins, M. A., Robbins, G. A., Maas, K. R. & Binkhorst, G. K. Use of bacteria community analysis to distinguish groundwater recharge sources to shallow wells. J. Environ. Qual. 49, 1530–1540 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Yang, J., Ma, L., Jiang, H., Wu, G. & Dong, H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci. Rep. 6, 6–11 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    72.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Distance to native climatic niche margins explains establishment success of alien mammals

    1.Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Richardson, D. M. Fifty Years of Invasion Ecology: The Legacy of Charles Elton. (John Wiley & Sons, 2011).4.Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Brown, J. H. Patterns, modes and extents of invasions by vertebrates. Biological Invasions: A Global Perspective. 85–110 (John Wiley & Sons, 1989).6.Holt, R. D., Barfield, M. & Gomulkiewicz, R. Theories of niche conservatism and evolution: could exotic species be potential tests. in: Species Invasions: Insights into Ecology, Evolution and Biogeography (eds. Sax, Stachowicz & Gaines) 259–290 (Sinauer Associates, Mass, 2005).7.Brown, J. H., Stevens, G. C. & Kaufman, D. M. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27, 597–623 (1996).Article 

    Google Scholar 
    8.Sagarin, R. D., Gaines, S. D. & Gaylord, B. Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol. Evol. 21, 524–530 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C. & Kueffer, C. Unifying niche shift studies: insights from biological invasions. Trends Ecol. Evol. 29, 260–269 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Forsyth, D. M., Duncan, R. P., Bomford, M. & Moore, G. Climatic suitability, life-history traits, introduction effort, and the establishment and spread of introduced mammals in Australia. Conserv. Biol. 18, 557–569 (2004).Article 

    Google Scholar 
    11.Bomford, M., Kraus, F., Barry, S. C. & Lawrence, E. Predicting establishment success for alien reptiles and amphibians: a role for climate matching. Biol. Invasions 11, 713–724 (2009).Article 

    Google Scholar 
    12.Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl Acad. Sci. U.S.A. 117, 23643–23651 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.González-Suárez, M., Bacher, S. & Jeschke, J. M. Intraspecific trait variation is correlated with establishment success of alien mammals. Am. Nat. 185, 737–746 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Redding, D. W. et al. Location-level processes drive the establishment of alien bird populations worldwide. Nature https://doi.org/10.1038/s41586-019-1292-2 (2019).17.Titeux, N. et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 23, 1393–1407 (2017).Article 

    Google Scholar 
    18.Chevalier, M., Broennimann, O., Cornuault, J., & Guisan, A. Data integration methods to account for spatial niche truncation effects in regional projections of species distribution. Ecol. Appl. (in press).19.Blackburn, T. M. & Duncan, R. P. Determinants of establishment success in introduced birds. Nature 414, 195–197 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Bacon, S. J., Aebi, A., Calanca, P. & Bacher, S. Quarantine arthropod invasions in Europe: the role of climate, hosts and propagule pressure. Divers. Distrib. 20, 84–94 (2014).Article 

    Google Scholar 
    21.Abellán, P., Tella, J. L., Carrete, M., Cardador, L. & Anadón, J. D. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. Proc. Natl Acad. Sci. 114, 9385–9390 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    22.Long, J. L. Introduced Mammals of the World: Their History, Distribution and Influence. (CSIRO PUBLISHING, 2003).23.Pulliam, H. R. On the relationship between niche and distribution. Ecol. Lett. 3, 349–361 (2000).Article 

    Google Scholar 
    24.Godsoe, W., Jankowski, J., Holt, R. D. & Gravel, D. Integrating biogeography with contemporary niche theory. Trends Ecol. Evol. 32, 488–499 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Csergő, A. M. et al. Less favourable climates constrain demographic strategies in plants. Ecol. Lett. 20, 969–980 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Capellini, I., Baker, J., Allen, W. L., Street, S. E. & Venditti, C. The role of life history traits in mammalian invasion success. Ecol. Lett. 18, 1099–1107 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Sol, D., Bacher, S., Reader, S. M., & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172(S1), S63–S71 (2008).Article 

    Google Scholar 
    29.Duncan, R. P., Blackburn, T. M., Rossinelli, S. & Bacher, S. Quantifying invasion risk: the relationship between establishment probability and founding population size. Methods Ecol. Evol. 5, 1255–1263 (2014).Article 

    Google Scholar 
    30.Allen, C. R. et al. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob. Ecol. Biogeogr. 22, 889–899 (2013).Article 

    Google Scholar 
    31.Cassey, P., Delean, S., Lockwood, J. L., Sadowski, J. S. & Blackburn, T. M. Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect. PLoS Biol. 16, e2005987 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species? J. Ecol. 99, 214–224 (2011).Article 

    Google Scholar 
    33.Broennimann, O., Mráz, P., Petitpierre, B., Guisan, A. & Müller-Schärer, H. Contrasting spatio-temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. J. Biogeogr. 41, 1126–1136 (2014).Article 

    Google Scholar 
    34.Shea, K. & Chesson, P. Community ecology theory as a framework for biological invasions. Trends Ecol. Evol. 17, 170–176 (2002).Article 

    Google Scholar 
    35.Facon, B. et al. A general eco-evolutionary framework for understanding bioinvasions. Trends Ecol. Evol. 21, 130–135 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Escobar, L. E., Qiao, H., Cabello, J. & Townsend Peterson, A. Ecological niche modeling re-examined: a case study with the Darwin’s fox. Ecol. Evolut. 8, 4757–4770 (2018).Article 

    Google Scholar 
    37.Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Pheloung, P. C., Williams, P. A. & Halloy, S. R. A weed risk assessment model for use as a biosecurity tool evaluating plant introductions. J. Environ. Manag. 57, 239–251 (1999).Article 

    Google Scholar 
    39.Pluess, T. et al. Which factors affect the success or failure of eradication campaigns against alien species? PLoS One 7, e48157 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Pyšek, P. et al. MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context dependence in biological invasions. NeoBiota 62, 407–461 (2020).Article 

    Google Scholar 
    41.Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522 (1999).Article 

    Google Scholar 
    42.Leung, B. et al. TEASIng apart alien species risk assessments: a framework for best practices. Ecol. Lett. 15, 1475–1493 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Fourcade, Y. Comparing species distributions modelled from occurrence data and from expert-based range maps. Implication for predicting range shifts with climate change. Ecol. Inform. 36, 8–14 (2016).Article 

    Google Scholar 
    44.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    45.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture. Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    46.Bellard, C. et al. Will climate change promote future invasions? Glob. Chang. Biol. 19, 3740–3748 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    48.Cola, V. D. et al. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    49.Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. U.S.A. 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22, Vienna, Austria. (2003).51.R Core Team. R: a language and environment for statistical computing. (2014).52.Su, Y.-S. & Yajima, M. R2jags: a package for running jags from R. (2013).53.Gelman, A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1, 515–534 (2006).MathSciNet 
    MATH 

    Google Scholar 
    54.Little, R. & Rubin, D. Statistical Analysis with Missing Data, Second Edition. (Wiley Series in Probability and Statistics, 2002).55.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    56.Gelman, A., Meng, X.-L. & Stern, H. Posterior predictive assessment of model fitness via realized discrepancies. Stat. Sin. 6, 733–760 (1996).MathSciNet 
    MATH 

    Google Scholar 
    57.Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    58.Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. (Cambridge University Press, 2017).59.Broennimann, O., et al. Distance to native climatic niche margins explains establishment success of alien mammals. ecospat/NMI: NMI v1.0. Zenodo. https://doi.org/10.5281/zenodo.4588999. (2021). More

  • in

    SMART targets for meaningful action

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Potential of indigenous crop microbiomes for sustainable agriculture

    1.Savci, S. An agricultural pollutant: chemical fertilizer. Int. J. Environ. Sci. Dev. 3, 77–80 (2012).CAS 

    Google Scholar 
    2.Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Raza, S. et al. Dramatic loss of inorganic carbon by nitrogen‐induced soil acidification in Chinese croplands. Glob. Change Biol. 26, 3738–3751 (2020).ADS 
    Article 

    Google Scholar 
    4.Jez, J. M., Lee, S. G. & Sherp, A. M. The next green movement: plant biology for the environment and sustainability. Science 353, 1241–1244 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Cordovez, V., Dini-Andreote, F., Carrion, V. J. & Raaijmakers, J. M. Ecology and evolution of plant microbiomes. Annu. Rev. Microbiol. 73, 69–88 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Duran, P. et al. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175, 973–983.e914 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Dini-Andreote, F. & Raaijmakers, J. M. Embracing community ecology in plant microbiome research. Trends Plant Sci. 23, 467–469 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Hubbard, C. J. et al. The effect of rhizosphere microbes outweighs host plant genetics in reducing insect herbivory. Mol. Ecol. 28, 1801–1811 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Oldroyd, G. E. D. & Leyser, O. A plant’s diet, surviving in a variable nutrient environment. Science 368, eaba0196 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Martín‐Robles, N. et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334 (2018).PubMed 
    Article 

    Google Scholar 
    13.Genre, A., Lanfranco, L., Perotto, S. & Bonfante, P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 18, 649–660 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).PubMed 
    Article 

    Google Scholar 
    15.Varoquaux, N. et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl Acad. Sci. USA 116, 27124–27132 (2019).CAS 
    Article 

    Google Scholar 
    16.Lazcano, C., Barrios-Masias, F. H. & Jackson, L. E. Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biol. Biochem. 74, 184–192 (2014).CAS 
    Article 

    Google Scholar 
    17.Sprent, J. I. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol. 174, 11–25 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Soltis, D. E. et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA 92, 2647–2651 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Young, N. D. et al. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480, 520–524 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.van Velzen, R. et al. Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing Rhizobium symbioses. Proc. Natl Acad. Sci. USA 115, E4700–E4709 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    21.Smil, V. Nitrogen in crop production: an account of global flows. Glob. Biogeochem. Cycles 13, 647–662 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    22.O’Hara, G. W. The role of nitrogen fixation in crop production. J. Crop Prod. 1, 115–138 (1998).Article 

    Google Scholar 
    23.Remigi, P., Zhu, J., Young, J. P. W. & Masson-Boivin, C. Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol. 24, 63–75 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Garcia, K., Delaux, P. M., Cope, K. R. & Ané, J. M. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol. 208, 79–87 (2015).PubMed 
    Article 

    Google Scholar 
    25.Fisher, R. F. & Long, S. R. Rhizobium–plant signal exchange. Nature 357, 655–660 (1992).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Cao, Y., Halane, M. K., Gassmann, W. & Stacey, G. The role of plant innate immunity in the legume–Rhizobium symbiosis. Annu. Rev. Plant Biol. 68, 535–561 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Ferguson, B. J. et al. Legume nodulation: the host controls the party. Plant Cell Environ. 42, 41–51 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Remans, R. et al. Effect of Rhizobium–Azospirillum coinoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant Soil 312, 25–37 (2008).CAS 
    Article 

    Google Scholar 
    29.Cassán, F. & Diaz-Zorita, M. Azospirillum sp. in current agriculture: from the laboratory to the field. Soil Biol. Biochem. 103, 117–130 (2016).Article 
    CAS 

    Google Scholar 
    30.Han, Q. et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 14, 1915–1928 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Saharan, B. S. & Nehra, V. Plant growth promoting rhizobacteria: a critical review. Life Sci. Med. Res. 21, 30 (2011).
    Google Scholar 
    32.Cheng, Y. T., Zhang, L. & He, S. Y. Plant–microbe interactions facing environmental challenge. Cell Host Microbe 26, 183–192 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Dini-Andreote, F. Endophytes: the second layer of plant defense. Trends Plant Sci. 25, 319–322 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Carrión, V. J. et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science 366, 606–612 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    35.Sieber, M. et al. Neutrality in the metaorganism. PLoS Biol. 17, e3000298 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18, 607–621 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Burns, A. R. et al. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10, 655–664 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ. Microbiol. 8, 732–740 (2006).PubMed 
    Article 

    Google Scholar 
    39.Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 16892–16898 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Carlström, C. I. et al. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat. Ecol. Evol. 3, 1445–1454 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Chen, Y. H., Gols, R. & Benrey, B. Crop domestication and its impact on naturally selected trophic interactions. Annu. Rev. Entomol. 60, 35–58 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Szoboszlay, M. et al. Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars. Soil Biol. Biochem. 80, 34–44 (2015).CAS 
    Article 

    Google Scholar 
    44.Perez-Jaramillo, J. E., Mendes, R. & Raaijmakers, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol. Biol. 90, 635–644 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Perez-Jaramillo, J. E., Carrion, V. J., de Hollander, M. & Raaijmakers, J. M. The wild side of plant microbiomes. Microbiome 6, 143 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Emmett, B. D., Buckley, D. H., Smith, M. E. & Drinkwater, L. E. Eighty years of maize breeding alters plant nitrogen acquisition but not rhizosphere bacterial community composition. Plant Soil 431, 53–69 (2018).CAS 
    Article 

    Google Scholar 
    47.Mutch, L. A. & Young, J. P. W. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol. Ecol. 13, 2435–2444 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Kiers, E. T., Hutton, M. G. & Denison, R. F. Human selection and the relaxation of legume defences against ineffective rhizobia. Proc. R. Soc. B 274, 3119–3126 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. 11, 2244–2257 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Zachow, C., Müller, H., Tilcher, R. & Berg, G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets. Front. Microbiol. 5, 415 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Coleman‐Derr, D. et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 209, 798–811 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    52.Warschefsky, E., Penmetsa, R. V., Cook, D. R. & von Wettberg, E. J. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am. J. Bot. 101, 1791–1800 (2014).PubMed 
    Article 

    Google Scholar 
    53.Brozynska, M., Furtado, A. & Henry, R. J. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol. J. 14, 1070–1085 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Zhang, H., Mittal, N., Leamy, L. J., Barazani, O. & Song, B. H. Back into the wild—apply untapped genetic diversity of wild relatives for crop improvement. Evol. Appl. 10, 5–24 (2017).PubMed 
    Article 

    Google Scholar 
    55.Maxted, N. & Kell, S. P. Establishment of a Global Network for the In Situ Conservation of Crop Wild Relatives: Status and Needs (FAO Commission on Genetic Resources for Food and Agriculture, 2009).56.Stenberg, J. A., Heil, M., Åhman, I. & Björkman, C. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 20, 698–712 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Heil, M. & Baldwin, I. T. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7, 61–67 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Liu, H. & Brettell, L. E. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 24, 187–189 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Schulz-Bohm, K. et al. Calling from distance: attraction of soil bacteria by plant root volatiles. ISME J. 12, 1252–1262 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Ehlers, B. K. et al. Plant secondary compounds in soil and their role in belowground species interactions. Trends Ecol. Evol. 35, 716–730 (2020).PubMed 
    Article 

    Google Scholar 
    61.Preece, C. & Penuelas, J. A return to the wild: root exudates and food security. Trends Plant Sci. 25, 14–21 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Köllner, T. G. et al. A maize (E)-β-caryophyllene synthase implicated in indirect defense responses against herbivores is not expressed in most American maize varieties. Plant Cell 20, 482–494 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Lebeis, S. L. et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349, 860–864 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Vorholt, J. A., Vogel, C., Carlstrom, C. I. & Muller, D. B. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22, 142–155 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Zhang, J. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. 37, 676–684 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Hatzenpichler, R., Krukenberg, V., Spietz, R. L. & Jay, Z. J. Next-generation physiology approaches to study microbiome function at single cell level. Nat. Rev. Microbiol. 18, 241–256 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Cui, L., Zhang, D., Yang, K., Zhang, X. & Zhu, Y. G. Perspective on surface-enhanced Raman spectroscopic investigation of microbial world. Anal. Chem. 91, 15345–15354 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Wang, Y., Huang, W. E., Cui, L. & Wagner, M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr. Opin. Biotechnol. 41, 34–42 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Cui, L. et al. Functional single-cell approach to probing nitrogen-fixing bacteria in soil communities by resonance Raman spectroscopy with 15N2 labeling. Anal. Chem. 90, 5082–5089 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Yang, K. et al. Rapid antibiotic susceptibility testing of pathogenic bacteria using heavy-water-labeled single-cell Raman spectroscopy in clinical samples. Anal. Chem. 91, 6296–6303 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Li, H. Z. et al. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy. Anal. Chem. 91, 2239–2246 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Moutia, J.-F. Y., Saumtally, S., Spaepen, S. & Vanderleyden, J. Plant growth promotion by Azospirillum sp. in sugarcane is influenced by genotype and drought stress. Plant Soil 337, 233–242 (2010).CAS 
    Article 

    Google Scholar 
    74.Bashan, Y. & De-Bashan, L. E. How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv. Agron. 108, 77–136 (2010).CAS 
    Article 

    Google Scholar 
    75.Figueiredo, M. V. B., Burity, H. A., Martínez, C. R. & Chanway, C. P. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40, 182–188 (2008).Article 

    Google Scholar 
    76.Uma, C., Sivagurunathan, P. & Sangeetha, D. Performance of bradyrhizobial isolates under drought conditions. Int. J. Curr. Microbiol. App. Sci. 2, 228–232 (2013).
    Google Scholar 
    77.Tank, N. & Saraf, M. Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J. Plant Interact. 5, 51–58 (2010).CAS 
    Article 

    Google Scholar 
    78.Tahir, H. A. et al. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 8, 171 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Vardharajula, S., Zulfikar Ali, S., Grover, M., Reddy, G. & Bandi, V. Drought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J. Plant Interact. 6, 1–14 (2011).CAS 
    Article 

    Google Scholar 
    80.Santoyo, G., Orozco-Mosqueda, M. D. C. & Govindappa, M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci. Technol. 22, 855–872 (2012).Article 

    Google Scholar 
    81.Leclere, V. et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71, 4577–4584 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Hu, J. et al. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning. Soil Biol. Biochem. 113, 122–129 (2017).CAS 
    Article 

    Google Scholar 
    83.Kohler, J., Hernández, J. A., Caravaca, F. & Roldán, A. Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct. Plant Biol. 35, 141–151 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Nassar, A. H., El-Tarabily, K. A. & Sivasithamparam, K. Growth promotion of bean (Phaseolus vulgaris L.) by a polyamine-producing isolate of Streptomyces griseoluteus. Plant Growth Reg. 40, 97–106 (2003).CAS 
    Article 

    Google Scholar 
    85.Gopalakrishnan, S. et al. Evaluation of Streptomyces strains isolated from herbal vermicompost for their plant growth-promotion traits in rice. Microbiol. Res. 169, 40–48 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Kwak, M.-J. et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat. Biotechnol. 36, 1100–1109 (2018).CAS 
    Article 

    Google Scholar 
    87.Sang, M. K. & Kim, K. D. The volatile‐producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J. Appl. Microbiol. 113, 383–398 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Naznin, H. A. et al. Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana. PLoS ONE 9, e86882 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Kiss, L., Russell, J. C., Szentiványi, O., Xu, X. & Jeffries, P. Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci. Technol. 14, 635–651 (2004).Article 

    Google Scholar 
    90.Lee, S., Yap, M., Behringer, G., Hung, R. & Bennett, J. W. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol. Biotechnol. 3, 1–14 (2016).CAS 
    Article 

    Google Scholar 
    91.Zhang, S., Gan, Y. & Xu, B. Application of plant-growth-promoting fungi Trichoderma longibrachiatum t6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front. Plant Sci. 7, 1405 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    92.van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    93.Bhatti, A. A., Haq, S. & Bhat, R. A. Actinomycetes benefaction role in soil and plant health. Microb. Pathog. 111, 458–467 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Chaurasia, A. et al. Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops. World J. Microbiol. Biotechnol. 34, 1–16 (2018).Article 

    Google Scholar 
    95.Ercoli, L., Schüßler, A., Arduini, I. & Pellegrino, E. Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil 419, 153–167 (2017).CAS 
    Article 

    Google Scholar 
    96.Xu, L. et al. Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway. Appl. Soil Ecol. 125, 213–221 (2018).Article 

    Google Scholar 
    97.Ghorchiani, M., Etesami, H. & Alikhani, H. A. Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agric. Ecosyst. Environ. 258, 59–70 (2018).CAS 
    Article 

    Google Scholar 
    98.Meeds, J. A. et al. Phosphorus deficiencies invoke optimal allocation of exoenzymes by ectomycorrhizas. ISME J. https://doi.org/10.1038/s41396-020-00864-z (2021). More

  • in

    An integrative approach reveals a new species of flightless leaf beetle (Chrysomelidae: Suinzona) from South Korea

    Description of Suinzona borowieci sp. nov. (Figs. 1, 2 and 3)Figure 1Morphology of Suinzona borowieci sp. nov. and related species: (a,b) Holotype of S. borowieci sp. nov. (a) Dorsal habitus, (b) lateral habitus; (c–e) exposed hind wing, (c) S. borowieci sp. nov., (d) S. cyrtonoides, (e) Potaninia assamensis; (f–g) aedeagus with everted internal sac (left) and flagellum (right); (f) S. borowieci sp. nov., (g) S. cyrtonoides.Full size imageFigure 2Genitalia of Suinzona borowieci sp. nov. and related species: (a–d) S. borowieci sp. nov. (a) Aedeagus, dorsal view; (b) aedeagus, lateral view; (c) aedeagus, apical view; (d) spermatheca. (e) Aedeagus of Suinzona cyrtonoides, apical view.Full size imageFigure 3Distribution map of Suinzona and sampling sites: (a) Distribution of Suinzona species in China, South Korea and Japan, (b) type locality and collection sites of Suinzona borowieci sp. nov. in South Korea. Records of distribution are taken from Ge et al.3, Suzuki et al.21 and the results of this work. The map is redrawn and modified from National Geographic Information Institute of Korea (https://www.ngii.go.kr).Full size imageFamily Chrysomelidae Latreille, 1802Subfamily Chrysomelinae Latreille, 1802Genus Suinzona Chen, 1931Type localitySouth Korea: Gyeongbuk Province, Yeongyang County, Irwolsan Mountain, 36° 48′ 30.42″ N, 129° 5′ 23.56″ E, ca. 1135 m.Type materialHolotype: male (NMPC), South Korea: Gyeongbuk Prov., Yeongyang, Mt. Irwolsan, 36° 48′ 30.42″ N, 129° 5′ 23.56″ E, ca. 1135 m, 12.VI.2011, H.W. Cho // HOLOTYPUS Suinzona borowieci sp. n. Cho & Kim 2020. Paratype: SOUTH KOREA – Gyeongbuk Prov.: 1 female (NMPC), same data as holotype plus PARATYPUS Suinzona borowieci sp. n. Cho & Kim 2020; 1 female (HCC), same data as holotype except 31.VII.2004; 1 female (HCC), same data as holotype except 31.VII.2004; 4 males 2 females (HCC), same data as holotype except 22.V.2009; 8 males 2 females (HCC), same data as holotype except 25.VI.2010; 4 males 2 females (HCC), same data as holotype except 10.VI.2017; 1 male 1 female (HCC), same data as holotype except 17.VI.2017; 1 male (HCC), same data as holotype except 36° 48′ 11.74″ N, 129° 6′ 10.01″ E, ca. 1190 m, 17.V.2020; 3 males 1 female (HCC), same data as holotype except 7.VI.2020; 2 males (KNAE), Yeongyang, Irwol-myeon, Mt. Irwolsan, 7.VI.2014, J.K. Park // I14_KNAE483613 // I14_KNAE483649; 1 male 1 female (HCC), Bongwha, Myeongho-myeon, Bukgok-ri, Mt. Cheongnyangsan, 36° 47′ 47″ N, 128° 54′ 30″ E, 21–22.V.2015, J.S. Lee; 1 female (HCC), Daegu, Dong-gu, Mt. Palgongsan, 21.V.1998; 2 males 1 female (HCC), Gunwi, Bugye-myeon, Dongsan-ri, Mt. Palgongsan, 9.V.2009, S.S. Jung; 1 male 1 female (HCC), Yecheon, Bomun-myeon, Urae-ri, Mt. Hakgasan, 26.V.2010, Y.J. You; 1 male (HCC), Yecheon, Bomun-myeon, Mt. Hakgasan, 36° 40′ 32.16″ N, 128° 35′ 38.24″ E, ca. 330 m, 3.VI.2020, H.W. Cho; 1 female (HCC), Cheongsong, Hyeonseo-myeon, Galcheon-ri, 26.V.2004, H.W. Cho; Gangwon Prov.: 2 females (HCC), Taebaek, Hwangji-dong, Mt. Hambaeksan, 37° 9′ 53.22″ N, 128° 55′ 1.35″ E, ca. 1470 m, 6.VI.2005, H.W. Cho; 2 males 3 females (HCC), same data as preceding one except 6.VI.2006; 1 female (HCC), same data as preceding one except 29.V.2009; 1 female (HCC), same data as preceding one except 10.VI.2017; 1 female (HCC), same data as preceding one except 5.VI.2020; Chungnam Prov.: 1 male (HCC), Buyeo, Gyuam-myeon, Sumok-ri, 1–15.VI.2005, J.W. Lee.Other materialSix mature larvae (HCC), same data as holotype except 29.VI.2017; 5 mature larvae (HCC), Gangwon Prov., Taebaek, Hwangji-dong, Mt. Hambaeksan, 19.VI.2006, H.W. Cho; 8 mature larvae (HCC), Gyeongbuk Prov., Yecheon, Bomun-myeon, Mt. Hakgasan, 31.V.2020, H.W. Cho; 7 mature larvae (HCC), same data as preceding one except 3.VI.2020.DiagnosisSuinzona borowieci sp. nov. is almost identical to S. cyrtonoides in the shape of the flagellum of the aedeagus. However, it can be distinguished by its larger body size (5.5–7.0 mm vs. 4.8–6.0 mm), denser punctures on elytra (less dense punctures in S. cyrtonoides), larger and broader aedeagus with the distal tips of the flagellum quadrifurcated and slightly curved, arising from two sclerotized tubes (with a smaller and narrower aedeagus with distal tips of the flagellum quadrifurcated and almost straight, arising from a sclerotized tube in S. cyrtonoides).DescriptionMeasurements in mm (n = 5): length of body: 5.50–7.00 (mean 6.18); width of body: 3.50–4.50 (mean 3.97); height of body: 2.60–3.40 (mean 2.94); width of head: 1.65–1.95 (mean 1.81); interocular distance: 1.15–1.50 (mean 1.33); width of apex of pronotum: 1.90–2.20 (mean 2.02); width of base of pronotum: 2.70–3.25 (mean 2.94); length of pronotum along midline: 1.75–2.05 (mean 1.90); length of elytra along suture: 3.75–5.20 (mean 4.41). Body: oval and strongly convex (Fig. 1a,b). Body dark bluish-black with weak metallic lustre, rarely with a dark brass dorsum. Antenna, mouthparts and tarsus partially dark reddish-brown. Head. Vertex weakly convex, covered with sparse punctures, becoming coarser and denser towards sides, with convex area above antennal insertion. Eyes strongly transverse-oblong and protuberant. Frontal suture V-shaped, forming obtuse angle, arms bent at middle, reaching anterior margin. Frons flat, strongly depressed at anterior margin, covered with dense punctures. Clypeus narrow and trapezoidal. Anterior margin of labrum weakly concave. Mandibles with 2 blunt apical teeth and dense punctures bearing setae on outer side. Maxillary palp 4-segmented with apical palpomere fusiform, truncate apically. Antennae in males much longer than half the length of the body; antennomere 1 robust; antennomere 2 shorter than 3; antennomere 3 longer than 4; antennomeres 7–10 each moderately widened, much longer than wide; antennomere 11 longest, approximately 2.4 times as long as wide. Antennae in females less than half the length of the body. Pronotum. 1.50–1.63 times as wide as long. Lateral sides widest at or near base, roundly narrowed anteriorly, anterior angles strongly produced. Anterior and lateral margins bordered, lateral margins barely visible in dorsal view. Trichobothria present on posterior angles. Disc glabrous, covered with moderately dense punctures, becoming coarser along basal margin; interspaces covered with fine and moderately dense punctures. Scutellum much wider than long, widely rounded apically, with a few fine punctures. Elytra. 1.07–1.16 times as long as wide. Lateral sides widest near middle, roundly narrowed posteriorly. Humeral calli not developed. Disc glabrous and finely rugose, covered with rather irregular punctures arranged in longitudinal rows near suture and lateral margin, more irregular in median region; interspaces covered with fine and sparse punctures. Epipleura wholly visible in lateral view. Hind wings steno- and brachypterous (Fig. 1c). Venter. Hypomera weakly rugose, with a few punctures near anterolateral corners of prosternum. Prosternum covered with coarse and dense punctures bearing long setae; prosternal process broad and strongly expanded apicolaterally, closing procoxal cavities posteriorly. Metasternum covered with punctures bearing long setae, dense medially, sparse laterally. Abdominal ventrites covered with moderately dense punctures bearing long or short setae; apex of last visible abdominal ventrite deeply emarginate in males while rounded in females. Legs. Moderately robust. Tibiae simple without preapical tooth. Tarsomere 1 subequal in width to tarsomere 3 in males but distinctly narrower than tarsomere 3 in females. Tarsal claws simple. Genitalia. Aedeagus broad, lateral margins shallowly concave, with apex moderately produced and truncate in dorsal view (Fig. 2a,c); regularly curved, tapering from middle to apex, with apex pointed and slightly bent upward in lateral view (Fig. 2b); flagellum club-shaped with sharp, sclerotized and quadrifid tips (Fig. 1f). Spermatheca U-shaped, long and rounded at apex (Fig. 2d).EtymologyDedicated to the first author’s mentor Prof. dr hab. Lech Borowiec (University of Wrocław, Poland), the world’s leading specialist in tortoise beetles.DistributionSouth Korea: Chungnam, Gangwon, Gyeongbuk, Daegu (Fig. 3a,b).RemarksThe shape of the apical part of the male genitalia exhibits a certain degree of variation even within the same population. It is difficult to recognize a significant difference in the shape of the male genitalia between populations, but individuals from Yeongyang have a relatively large aedeagus. All specimens that we examined had a dark bluish-black dorsum with a weak metallic lustre, but a single specimen with a dark brass dorsum was found in Yecheon.Mature larva and biology of Suinzona borowieci sp. nov. (Figs. 4, 5 and 6)DiagnosisThe fourth (last) instar larva of S. borowieci sp. nov. is very similar to that of S. cyrtonoides comb. nov. in body shape, colouration and tubercular pattern. However, this species can be distinguished by the 4–5 small secondary tubercles between Dae and DLai on the meso- and metathorax and more densely setose bodies (1 large tubercle between Dae and DLai on the meso- and metathorax and less densely setose body in S. cyrtonoides).Figure 4Mature larva of Suinzona borowieci sp. nov.: (a) Dorsal habitus, (b) lateral habitus, (c) ventral habitus.Full size imageFigure 5Larval morphology of Suinzona borowieci sp. nov.: (a) Head, (b) maxillae and labium, (c) tibiotarsus and pretarsus, (d) mandible, (e) labrum and epipharynx, (f) Schematic presentation of tubercular patterns (top: prothorax; middle: mesothorax; bottom: 2nd abdominal segment).Full size imageFigure 6Host plants of Suinzona borowieci sp. nov.: (a) Arabis pendula L. from Yeongyang, (b) Urtica angustifolia Fisch. ex Hornem. from Yeongyang, (c) Aconitum pseudolaeve Nakai from Taebaek, (d) Isodon inflexus (Thunb.) Kudo from Yecheon; (e–f) A. pseudolaeve Nakai and U. angustifolia Fisch. ex Hornem. for laboratory tests (e) Adult from Yeongyang feeding on leaves, (f) larvae from Yecheon feeding on leaves.Full size imageDescriptionBody length 8.1–8.8 mm, width 2.9–3.2 mm, head width 1.75–1.80 mm (n = 3). Body elongate, rather broad, widest at abdominal segments III–IV, thence moderately narrowed posteriorly and slightly convex dorsally (Fig. 4a). Head pale yellowish-brown, densely setose, with a blackish-brown V-shaped mark along frontal arms; lateral regions of epicrania largely blackish-brown; posterior half of clypeus brown to dark brown; apex of labrum and mandibles blackish-brown. General colouration of integument yellowish-white, but dorsal integument densely covered with minute brown spinules (Fig. 4b); dorsal tubercles dark brown and ventral ones unpigmented (Fig. 4c), both densely setose; spiracles blackish-brown. Legs pale yellow with apex of tibiotarsus and pretarsus brown. Eversible glands absent. Pseudopods present on abdominal segments VI–VII. Head. Hypognathous, rounded, strongly sclerotized (Fig. 5a). Epicranium with 72–77 pairs of setae of varying length; epicranial stem distinct; frontal arms V-shaped, slightly sinuate, not extending to antennal insertions; median endocarina distinct, extending to frontoclypeal suture. Frons slightly depressed medially with 25–29 pairs of setae of varying length. Clypeus almost straight at anterior margin with 3 pairs of setae. Labrum deeply concave anteriorly with 2 pairs of setae and 2 pairs of campaniform sensilla (Fig. 5e, left); epipharynx with 6–7 pairs of setae at anterior margin (Fig. 5e, right). Mandible robust, palmate and 5-toothed, with 4–5 setae and 3 campaniform sensilla; penicillus present (Fig. 5d). Maxillary palp 3-segmented; palpomere I rectangular with 2 setae and 2 campaniform sensilla; II swollen cylindrical with 3 setae and 1 campaniform sensillum; III subconical with 1 seta, 1 digitiform sensillum and 1 campaniform sensillum on sides and a group of peg-like sensilla at the apex; palpifer well developed with 2 setae (Fig. 5b). Mala rounded with 13–14 setae and 1 campaniform sensillum; stipes distinctly longer than wide with 12–14 setae; cardo with 2–3 setae. Labial palp 2-segmented; palpomere I rectangular with 1 campaniform sensillum; II subconical with 1 seta, 1 campaniform sensillum and a group of peg-like sensilla at the apex. Hypopharynx bilobed, densely covered with minute spinules; prementum with four pairs of setae and three pairs of campaniform sensilla; postmentum basolaterally covered with minute spinules, with 8–9 pairs of setae. Six stemmata present on each side, 4 of them located above the antenna and 2 behind the antenna. Antenna 3-segmented; antenomere I wider than long with 2 campaniform sensilla; II approximately as wide as long, with a conical sensorium and 3–4 min setae; III subconical with 5–6 min setae. Thorax. Prothorax with D-DL-EP (dorsal, dorsolateral and epipleural tubercles fused together, 164–179) largest; P (pleural tubercle, 9–11) and ES-SS (eusternal and sternellar tubercles fused, 6–7) unpigmented (Fig. 5f). Meso- and metathorax with dorsal tubercles more or less arranged in 3 transverse rows; Dai (dorsal anterior interior, 6–10) on both sides separated, smaller than Dae (dorsal anterior exterior, 11–15); DLai (dorsolateral anterior interior, 4–5); Dpi (dorsal posterior interior, 12–15); Dpe (dorsal posterior exterior, 10–13) smaller than Dpi; DLpi (dorsolateral posterior interior, 17–19); DLe (dorsolateral exterior, 40–47) large; dorsal region with 8–9 secondary tubercles, 3 of them located anterior to Dai and Dae, 4–5 between Dae and DLai and 1 anterior to DLe; EPa (epipleural anterior, 17–22) larger than EPp (epipleural posterior, 8–11), both unpigmented; P (9–13), SS (1) and ES (3–4) unpigmented; sternal region with 4–5 additional setae arising from weakly sclerotized base. Mesothoracic spiracles annuliform and largest. Legs moderately long, 5-segmented; tibiotarsus with 23–25 setae; pretarsus large, strongly curved, basal tooth well developed, with 1 short seta (Fig. 5c). Abdomen. Segments I–VI with dorsal tubercles arranged in 3 transverse rows; Dai (5–8) on both sides separated, smaller than Dae (13–14); DLae (12–14) larger than DLai (7); Dpi (16–19), Dpe (15–19) and DLp (24–29) transverse, subequal in size; dorsal region with 5–10 small secondary tubercles; EP (23–27), P (12–13), PS-SS (parasternal and sternellar tubercles fused, 5–7) and ES (5–7) unpigmented; as1 (secondary tubercle on antero-exterior part of ES, 1) and as2 (secondary tubercle between P and PS, 1); sternal region with 3–4 additional setae arising from weakly sclerotized base. Segment VII with Dai and Dae fused and Dpi and Dpe fused. Segments VIII with dorsal and dorso-lateral tubercles completely fused (30–37). Segment IX with dorsal to epipleural tubercles completely fused (34–36). Segment X not visible from above, with paired pygopods. Spiracles annuliform, present on segments I–VIII.Host plantsBrassicaceae: Arabis pendula L.; Lamiaceae: Isodon inflexus (Thunb.) Kudo; Ranunculaceae: Aconitum pseudolaeve Nakai; Urticaceae: Urtica angustifolia Fisch. ex Hornem.Biological notesSuinzona borowieci sp. nov. is univoltine. Overwintered adults appear in late May. They mate and lay 15–18 eggs per cluster on the leaves of host plants in early June. Eggs are pale yellow to yellowish-orange and hatch after 8–9 days. The larvae are solitary during the instar stages and feed on the leaves. There are four larval instars, and pupation occurs in soil. The larvae take 14–16 days to pupate and then take 7–8 days to emerge as adults. Newly emerged adults are found during July. We observed larvae or adults of this species in nearby localities (~ 62 km), feeding on A. pendula L. (Fig. 6a) and U. angustifolia Fisch. ex Hornem. (Fig. 6b) from Yeongyang (at 1135 ~ 1190 m a.s.l.), A. pseudolaeve Nakai (Fig. 6c) from Taebaek (at 1,470 m a.s.l.), and I. inflexus (Thunb.) Kudo (Fig. 6d) from Yecheon (at 330 m a.s.l.). Each population showed a preference for its natural host plant but fed on other host plants and completed its life cycle in laboratory tests (Fig. 6e,f).
    Suinzona cyrtonoides (Jacoby, 1885) comb. nov. (Figs. 1, 2 and 3)Type localityJapan: Kyushu, Kumamoto Prefecture, Konose.Type materialSyntypes: 1 female (BMNH), Lectotype [mislabelled, not lectotype] // Type // DATA under card // Japan, G. Lewis, 1910–320. // Chrysomela crytonoides Jac. // Lectotype, Chrysomela crytonoides Jacoby, Designated. S. GE 2004 // Potaninia cyrtonoides Jacoby, Det. S. GE 2004 // Suinzona cyrtonoides (Jacoby, 1885) det. H.W. Cho 2014; 1 female (BMNH), Japan, G. Lewis, 1910–320. // Paralectotype // Paralectotype, Chrysomela crytonoides Jacoby, Designated. S. GE 2004 // Potaninia cyrtonoides Jacoby, Det. S. GE 2004 // Suinzona cyrtonoides (Jacoby, 1885) det. H.W. Cho 2014; 1 male (MCZC), Japan Lewis // 1st Jacoby Coll. // cyrtonoides Jac. // Type 17,474; 1 female (MCZC), Japan Lewis // 1st Jacoby Coll.Other materialJAPAN – Kyushu: 1 male (BMNH), Yuyama 1883 // Japan, G. Lewis, 1910–320. // Paralectotype [mislabelled, not type series] // Paralectotype, Chrysomela crytonoides Jacoby, Designated. S. GE 2004 // Potaninia cyrtonoides Jacoby, Det. S. GE 2004 // Suinzona cyrtonoides (Jacoby, 1885) det. H.W. Cho 2014; Honshu: 3 males 2 females (KMNH), Nippara, Okutama, Tokyo, 5.VI.1955, Y. Tominaga; 2 males 3 females (BMNH), Mt. Mitake, Ome-shi, Tokyo, 15.VII.2005, Y. Komiya; 1 male (HSC), Chichibu, Saitama Pref., 18.VI.1984, M. Minami; 1 male (HSC), Tochigi, Sano-shi, Tanuma, 4.VI.2008, H. Ohkawa; 1 male (HSC), Gumma, Fujioka-shi, Mikabo-yama rindo, 8.VI.2009, H. Ohkawa; 1 male 2 females (HSC), same data as preceding one except 21.VII.2009; 1 male 1 female (HSC), same data as preceding one except 1.V.2010; Shikoku: 1 female (HSC), Tokushima, Yoshinokawa-shi, Mt. Kotsu-zan, 18.V.1987, S. Mano; 2 females (EUMJ), Tokushima, Mt. Tsurugi, 15.VII.1984, M. Miyatake; 1 male 1 female (EUMJ), Ehime: Omogo-Sibukusa, Kamiukena-gun, 5.VI.2005, Y. Satoh; 7 males (HCC), Ehime, Kamiukena, Kumakogen, Wakayama, 33° 43′ 59.4″ N, 133° 08′ 06.5″ E, 5.VI.2019, H.W. Cho & Y. Hiroyuki; 1 male (HSC), Ehime, Saijo-shi, Mt. Ishizuchizan, 30.V.2009, H. Suenaga; 2 males (HSC), Ehime, Saijo-shi, Nishinokawa, 16.V.2010, H. Suenaga; 1 male 1 female (HSC), Ehime, Saijo-shi, Nishinokawa, 5.VI.2010, H. Suenaga; 1 female (EUMJ), Jiyoshi-toge, Ehime Pref., 26.IV.1976, A. Oda; 1 male (EUMJ), Mt. Ishizuchi, Ehime pref., 1.VI.1975, H. Kan; 1 female (EUMJ), Iwayaji, Ehime Pref., 1.VI.1969, M. Miyatake; 1 male (EUMJ), Ehime: Yokono, 750 m alt. Yanadani-mura, 7.V.1994, M. Sakai; 1 male (EUMJ), Ehime: Yokono, 660 m alt. Yanadani-mura, 6.V.1994, M. Sakai; 1 female (EUMJ), Ehime: Yokono, 700 m alt. Yanadani-mura, 15.VII.1994, M. Sakai.DistributionJapan: Honshu, Shikoku, Kyushu (Fig. 3a).Host plantsUrticaceae: Boehmeria spicata (Thunb.) Thunb., Boehmeria tricuspis (Hance) Makino.Biological notesDetailed descriptions of larvae and pupae and the life cycle have been published by Kimoto16 and Kimoto and Takizawa11. Its life cycle is similar to that of S. borowieci sp. nov., but they feed on different host plants.RemarksThe apical part of the aedeagus is highly variable, narrow to broad, apex narrowly to widely rounded or weakly truncate, mainly with two weak or strong denticles on the apicolateral margin. The aedeagus of the type specimen is narrowly rounded without apicolateral denticles (Fig. 2e). However, we were not able to find an obvious tendency in the morphological variation of the aedeagus at the intrapopulation or interpopulation level. Chrysomela cyrtonoides Jacoby, 1885 was described from Japan. Later, it was transferred to the genus Potaninia by Chûjô and Kimoto17 and then accepted by various authors until now. However, we found that all materials of P. cyrtonoides have reduced hind wings (Fig. 1d), which are the key diagnostic features of the genus Suinzona, and molecular analysis also suggests its placement in Suinzona. Therefore, Suinzona cyrtonoides (Jacoby, 1885) comb. nov. is proposed. Jacoby18 gave ‘Konose’ as the type locality and used at least two specimens collected by G. Lewis for the description. A male specimen (BMNH) from ‘Yuyama’, designated by Ge et al.3 as a lectotype, did not belong to the type series of S. cyrtonoides and thus lost its lectotype status (ICZN: Article 74.2). Indeed, a female specimen (BMNH) was mislabelled as a lectotype. We were able to find four specimens collected from Japan that might belong to the type series of S. cyrtonoides in the G. Lewis collection (BMNH, MCZC), but more precise locality data were not available. Therefore, we regard them as syntypes and defer selection of a lectotype.Molecular phylogenetic analysesIt is evident from the clarified phylogenetic inference based on mitogenomes that the genus Suinzona differs from the genus Potaninia, S. borowieci sp. nov. as the sister species of S. cyrtonoides (Fig. 7a). The phylogenetic inferences included a total of 20 mitogenomes of Chrysomelinae and outgroups of Galerucinae (Supplementary Table S1). The complete mitogenomes of the four Suinzona species and one Potaninia species (incomplete) were newly sequenced in the present study. Each mitogenome contains a typical set of mitochondrial genes (13 PCGs, 22 tRNAs and two rRNAs) and a control region. Phylogenetic trees based on ML and BI inferences revealed the presence of two well-supported clades (Chrysomelini and Doryphorini + Entomoscelini + Gonioctenini), placing the genus Suinzona as the sister group of the genus Potaninia. This result matched the morphological character of the hind wing. The COI haplotype network of the genus Suinzona complex (Fig. 7b) confirms the previous results and shows that the currently known single species is well distinguished as a species. Two independent networks were completely separated without any connection due to the existence of the mutation (62 steps) exceeding the 95% parsimony limits between them.Figure 7Phylogenetic tree and parsimonious network: (a) Bayesian consensus tree inferred from the combined mitochondrial 13 PCGs + 2 rRNA gene. Bayesian inference (left) and maximum likelihood (right) support values are shown on the branch nodes. Only the values over 70% are reported, (b) Parsimonious network of COI haplotypes. Circles correspond to haplotypes, the frequency and geographic origin of which are indicated by circle size. The geographical origins of the haplotypes are noted at the bottom right of the figure.Full size imageKey to Suinzona borowieci sp. nov. and related species1. Hind wings well developed (Fig. 1e); humeral calli present; trichobothria present on anterior angles of pronotum; lateral margins of pronotum distinctly visible from above. China, India, Laos, Myanmar, Thailand and Vietnam……………………………………………………………… Potaninia assamensis (Baly, 1879)– Hind wings reduced (Fig. 1c,d); humeral calli absent; trichobothria absent on anterior angles of pronotum; lateral margins of pronotum not or barely visible from above. China, Korea and Japan……………………… 22. Aedeagus with apex of flagellum quadrifid (Fig. 1f,g). South Korea, Japan……………. 3– Aedeagus with apex of flagellum varied in shape, but not quadrifid (see Ge et al.3 for key to 23 species). China (Sichuan, Yunnan)……………………………………………… Suinzona spp.3. Larger, body length 5.5–7.0 mm; elytra more densely punctate (Fig. 1a); aedeagus larger and broader (Fig. 2c). South Korea…………………………………. Suinzona borowieci sp. nov.– Smaller, body length 4.8–6.0 mm; elytra less densely punctate (Fig. 1d); aedeagus smaller and narrower (Fig. 2e). Japan…………………………….. Suinzona cyrtonoides (Jacoby, 1885) More