Division of labor in work shifts by leaf-cutting ants
1.Roces, F. Individual complexity and self-organization in foraging by leaf-cutting ants. Biol. Bull. 202, 306â313 (2002).PubMedÂ
ArticleÂ
Google ScholarÂ
2.CerdĂĄ, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551â562 (2009).ArticleÂ
Google ScholarÂ
3.Dussutour, A., Deneubourg, J.-L., Beshers, S. & FourcassiĂ©, V. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica. Anim. Cogn. 12, 21â30 (2009).PubMedÂ
ArticleÂ
Google ScholarÂ
4.Leboeuf, A. C. & Grozinger, C. M. Me and we: The interplay between individual and group behavioral variation in social collectives. Curr. Opin. Insect Sci. 5, 16â24 (2014).PubMedÂ
ArticleÂ
Google ScholarÂ
5.Feinerman, O. & Korman, A. Individual versus collective cognition in social insects. J. Exp. Biol. 220, 73â82 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
6.Frank, E. T. & Linsenmair, K. E. Individual versus collective decision making: Optimal foraging in the group-hunting termite specialist Megaponera analis. Anim. Behav. 130, 27â35 (2017).ArticleÂ
Google ScholarÂ
7.Menzel, R., Leboulle, G. & Eisenhardt, D. Small brains, bright minds. Cell 124, 237â239 (2006).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
8.Leadbeater, E. & Chittka, L. Social learning in insectsâFrom miniature brains to consensus building. Curr. Biol. 17, 703â713 (2007).ArticleÂ
CASÂ
Google ScholarÂ
9.Giurfa, M. Cognition with few neurons: Higher-order learning in insects. Trends Neurosci. 36, 285â294 (2013).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
10.Guerrieri, F. J. & DâEttorre, P. Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. J. Insect Physiol. 56, 88â92 (2010).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
11.Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402â1419 (1986).ArticleÂ
Google ScholarÂ
12.Goss, S., Aron, S., Deneubourg, J. L. & Pasteels, J. M. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579â581 (1989).ADSÂ
ArticleÂ
Google ScholarÂ
13.Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121â124 (1996).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
14.Czaczkes, T. J. et al. Composite collective decision-making. Proc. Biol. Sci. 282, 20142723 (2015).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
15.Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. TREE 12, 188â194 (1997).CASÂ
PubMedÂ
Google ScholarÂ
16.Boomsma, J. J. & Franks, N. R. Social insects: From selfish genes to self organisation and beyond. Trends Ecol. Evol. 21, 303â308 (2006).PubMedÂ
ArticleÂ
Google ScholarÂ
17.Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E. Self-Organization in Biological Systems. (Princeton University Press, 2003).18.Constant, N., Santorelli, L.A., Lopes, J.F.S., Hughes, W.O.H. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav. Ecol. 23, 1284â1288 (2012).19.Feinerman, O. & Traniello, J. F. A. Social complexity, diet, and brain evolution: Modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70, 1063â1074 (2016).ArticleÂ
Google ScholarÂ
20.McCluskey, E.S. Circadian-rhythms in male-ants of five diverse species. Science (80- ) 150, 1037â1039 (1965).21.North, R. D. Circadian rhythm of locomotor activity in individual workers of the wood ant Formica rufa. Physiol. Entomol. 12, 445â454 (1987).ArticleÂ
Google ScholarÂ
22.Cros, S., CerdĂĄ, X., Retana, J., De, E. U. & De, C. F. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Ăcoscience 4, 269â278 (1997).ArticleÂ
Google ScholarÂ
23.Bellusci, S. & David, M. M. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117â124 (2001).ArticleÂ
Google ScholarÂ
24.Narendra, A., Reid, S.F., Greiner, B., Peters, R.A., Hemmi, J.M., Ribi, W.A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. Biol. Sci. 278, 1141â1149 (2011).25.Yilmaz, A., Aksoy, V., Camlitepe, Y. & Giurfa, M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front. Behav. Neurosci. 8, 205 (2014).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
26.Nickele, M. A., Filho, W. R., Pie, M. R. & Penteado, S. R. C. Daily foraging activity of Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Sociobiology 63, 645â650 (2016).ArticleÂ
Google ScholarÂ
27.Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25, 11â28 (1960).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
28.Hall, J. C. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1â280 (2003).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
29.Sandrelli, F., Costa, R., Kyriacou, C. P. & Rosato, E. Comparative analysis of circadian clock genes in insects. Insect Mol. Biol. 17, 447â463 (2008).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
30.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1â16 (1964).CASÂ
ArticleÂ
Google ScholarÂ
31.Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J.A.C., Andersson, M. et al. Inclusive fitness theory and eusociality. Nature 471, E1âE4 (2011).32.Kost, C., De Oliveira, E. G., Knoch, T. A. & Wirth, R. Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). J. Trop. Ecol. 21, 677â688 (2005).33.Bochynek, T., Meyer, B. & Burd, M. Energetics of trail clearing in the leaf-cutter ant Atta. Behav. Ecol. Sociobiol. 71, 1â10 (2017).ArticleÂ
Google ScholarÂ
34.Bouchebti, S., Travaglini, R. V., Forti, L. C. & FourcassiĂ©, V. Dynamics of physical trail construction and of trail usage in the leaf-cutting ant Atta laevigata. Ethol. Ecol. Evol. 31, 105â120 (2019).ArticleÂ
Google ScholarÂ
35.Cherrett, J. M. The foraging behavior of Atta cephalotes L. J. Anim. Ecol. 37, 387â403 (1968).ArticleÂ
Google ScholarÂ
36.Lewis, T., Pollard, G.V., Dibley, G.C. Rhythmic foraging in the leaf-cutting ant Atta cephalotes (L.) (Formicidae: Attini). J. Anim. Ecol. 43, 129 (1974).37.Sharma, V. K., Lone, S. R., Mathew, D., Goel, A. & Chandrashekaran, M. K. Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus. Chronobiol. Int. 21, 297â308 (2004).PubMedÂ
ArticleÂ
Google ScholarÂ
38.Koto, A., Mersch, D., Hollis, B. & Keller, L. Social isolation causes mortality by disrupting energy homeostasis in ants. Behav. Ecol. Sociobiol. 69, 583â591 (2015).ArticleÂ
Google ScholarÂ
39.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) I. The overall pattern in A. sexdens. Behav. Ecol. Sociobiol. 7, 143â156 (1980).40.Wilson, E.O. Caste and division of labor in leaf-cutter ants (HymenopteraâŻ: FormicidaeâŻ: Atta) II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 7, 157â165 (1980).41.Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect. Soc. 60, 191â201 (2013).ArticleÂ
Google ScholarÂ
42.Martinoya, C., Bloch, S., Ventura, D. F. & Puglia, N. M. Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J. Comp. Physiol A 104, 205â210 (1975).ArticleÂ
Google ScholarÂ
43.Kaiser, W. Busy bees need rest, too. J. Comp. Physiol. A 163, 565â584 (1988).ArticleÂ
Google ScholarÂ
44.Sauer, S., Herrmann, E. & Kaiser, W. Sleep deprivation in honey bees. J. Sleep Res. 13, 145â152 (2004).PubMedÂ
ArticleÂ
Google ScholarÂ
45.Klein, B. A., Klein, A., Wray, M. K., Mueller, U. G. & Seeley, T. D. Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc. Natl. Acad. Sci. 107, 22705â22709 (2010).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
46.Mildner, S. & Roces, F. Plasticity of daily behavioral rhythms in foragers and nurses of the ant Camponotus rufipes: Influence of social context and feeding times. PLoS ONE 12, e0169244 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
47.Fujioka, H. et al. Ant circadian activity associated with brood care type. Biol. Lett. 13, 20160743 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
48.Klein, B. A., Olzsowy, K. M., Klein, A., Saunders, K. M. & Seeley, T. D. Caste-dependent sleep of worker honey bees. J. Exp. Biol. 211, 3028â3040 (2008).PubMedÂ
ArticleÂ
Google ScholarÂ
49.Bloch, G., Toma, D. P. & Robinson, G. E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J. Biol. Rhythms 16, 444â456 (2001).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
50.Bloch, G. The social clock of the honeybee. J. Biol. Rhythms 25, 307â317 (2010).PubMedÂ
ArticleÂ
Google ScholarÂ
51.Bloch, G., Sullivan, J. P. & Robinson, G. E. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J. Insect Physiol. 48, 1123â1131 (2002).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
52.Bernhard Kraus, F., Gerecke, E., Moritz, R.F.A. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41, 323â328 (2011).53.Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 55â60 (1983).54.Detrain, C., Pasteels, J.M. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, Pheidole pallidula (Nyl.) (Hymenoptera: Myrmicinae). J. Insect Behav. 4, 157â176 (1991).55.Lighton, J. R. B. & QuinlanJr, M. C. D. H. F. Is bigger better? Water balance in the polymorphic desert harvester ant Messor pergandei. Physiol. Entomol. 19, 325â334 (1994).ArticleÂ
Google ScholarÂ
56.CerdĂĄ, X. & Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78, 467 (1997).ArticleÂ
Google ScholarÂ
57.ClĂ©mencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insectes Soc. 57, 11â15 (2010).ArticleÂ
Google ScholarÂ
58.Gadagkar, R. The evolution of caste polymorphism in social insects: Genetic release followed by diversifying evolution. J. Genet. 76, 167â179 (1997).ArticleÂ
Google ScholarÂ
59.Helms Cahan, S. & Keller, L. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424, 306â309 (2003).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
60.Fjerdingstad, E. J. & Crozier, R. H. The evolution of worker caste diversity in social insects. Am. Nat. 167, 390â400 (2012).ArticleÂ
Google ScholarÂ
61.Trible, W. et al. Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170(727â735), e10 (2017).
Google ScholarÂ
62.De, T. M. A. et al. Two castes sizes of leafcutter ants in task partitioning in foraging activity. CiĂȘnc. Rural 46, 1902â1908 (2016).ArticleÂ
Google ScholarÂ
63.Sharkey, K. M. & Eastman, C. I. Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am. J. Physiol. Integr. Comp. Physiol. 282, R454âR463 (2002).CASÂ
ArticleÂ
Google Scholar More