1.Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed
Article
PubMed Central
Google Scholar
2.Vilà, M. & Hulme, P. (eds) Impact of Biological Invasions on Ecosystem Services (Springer International Publishing, Berlin, 2017).
Google Scholar
3.Gaertner, M., Den Breeyen, A., Hui, C. & Richardson, D. M. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog. Phys. Geogr. Earth Environ. 33, 319–338 (2009).Article
Google Scholar
4.Belnap, J., Phillips, S. L., Sherrod, S. K. & Moldenke, A. Soil biota can change after exotic plant invasion: does this affect ecosystem processes?. Ecology 86, 3007–3017 (2005).Article
Google Scholar
5.Liao, C. et al. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177, 706–714 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
6.Boscutti, F. et al. Cascading effects from plant to soil elucidate how the invasive Amorpha fruticosa L. impacts dry grasslands. J. Veg. Sci. 31(4), 667–677 (2020).Article
Google Scholar
7.Pejchar, L. & Mooney, H. A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 24, 497–504 (2009).PubMed
Article
PubMed Central
Google Scholar
8.Vilà, M. & Ibáñez, I. Plant invasions in the landscape. Landsc. Ecol. 26, 461–472 (2011).Article
Google Scholar
9.Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26(7), 333–339 (2011).PubMed
Article
PubMed Central
Google Scholar
10.Kowarik, I. On the role of alien species in urban flora and vegetation. Plant invasions: general aspects and special problems. In SPB (eds Pysek, P. et al.) 85–103 (Academic Publishing, Amsterdam, 1995).
Google Scholar
11.Hulme, P. E. Climate change and biological invasions: evidence, expectations, and response options. Biol. Rev. 92(3), 1297–1313 (2017).PubMed
Article
PubMed Central
Google Scholar
12.Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol. 196(2), 383–396 (2012).PubMed
Article
PubMed Central
Google Scholar
13.Alexander, J. M. et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl. Acad. Sci. 108, 656–661 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
14.Hulme, P. E. Relative roles of life-form, land use and climate in recent dynamics of alien plant distributions in the British Isles. Weed Res. 49(1), 19–28 (2009).Article
Google Scholar
15.Milbau, A., Stout, J. C., Graae, B. J. & Nijs, I. A hierarchical framework for integrating invasibility experiments incorporating different factors and spatial scales. Biol. Invasions 11(4), 941–950 (2009).Article
Google Scholar
16.González-Moreno, P., Diez, J. M., Ibáñez, I., Font, X. & Vilà, M. Plant invasions are context-dependent: multiscale effects of climate, human activity and habitat. Divers. Distrib. 20(6), 720–731 (2014).Article
Google Scholar
17.Bradley, B. A., Wilcove, D. S. & Oppenheimer, M. Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 12(6), 1855–1872 (2010).Article
Google Scholar
18.Cao, Y., Zhang, S. & Hu, W. Simulated warming enhances biological invasion of Solidago canadensis and Bidens frondosa by increasing reproductive investment and altering flowering phenology pattern. Sci. Rep. 8(1), 1–8 (2018).ADS
Google Scholar
19.Molina-Montenegro, M. A. & Naya, D. E. Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 7(10), e47620 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
20.Gritti, E. S., Smith, B. & Sykes, M. T. Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J. Biogeogr. 33(1), 145–157 (2006).Article
Google Scholar
21.Colautti, R. I. & Barrett, S. C. Rapid adaptation to climate facilitates range expansion of an invasive plant. Science 342(6156), 364–366 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
22.Vitti, S., Pellegrini, E., Casolo, V., Trotta, G. & Boscutti, F. Contrasting responses of native and alien plant species to soil properties shed new light on the invasion of dune systems. J. Plant Ecol. 13, 667–675 (2020).Article
Google Scholar
23.Vilà, M., Pino, J. & Font, X. Regional assessment of plant invasions across different habitat types. J. Veg. Sci. 18, 35–42 (2007).Article
Google Scholar
24.Lambdon, P. W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).
Google Scholar
25.Botham, M. S. et al. Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Divers. Distrib. 15, 338–345 (2009).Article
Google Scholar
26.Boscutti, F., Sigura, M., De Simone, S. & Marini, L. Exotic plant invasion in agricultural landscapes: A matter of dispersal mode and disturbance intensity. Appl. Veget. Sci. 21(2), 250–257 (2018).Article
Google Scholar
27.González-Moreno, P. et al. Quantifying the landscape influence on plant invasions in Mediterranean coastal habitats. Landsc. Ecol. 28(5), 891–903 (2013).Article
Google Scholar
28.Catford, J. A., Vesk, P. A., White, M. D. & Wintle, B. A. Hotspots of plant invasion predicted by propagule pressure and ecosystem characteristics. Divers. Distrib. 17(6), 1099–1110 (2011).Article
Google Scholar
29.McKinney, M. L. Urbanization, biodiversity, and conservation. The impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. Bio. Sci. 52, 883–890 (2002).
Google Scholar
30.Mattingly, W. B. & Orrock, J. L. Historic land use influences contemporary establishment of invasive plant species. Oecologia 172(4), 1147–1157 (2013).ADS
PubMed
Article
PubMed Central
Google Scholar
31.Chytrý, M. et al. Separating Habitat Invasibility by Alien Plants from the Actual Level of Invasion. Ecology 89, 1541–1553 (2008).PubMed
Article
PubMed Central
Google Scholar
32.Jauni, M. & Hyvönen, T. TInvasion level of alien plants in semi-natural agricultural habitats in boreal region. Agric. Ecosyst. Environ. 138, 109–115 (2010).Article
Google Scholar
33.Carboni, M., Thuiller, W., Izzi, F. & Acosta, A. Disentangling the relative effects of environmental versus human factors on the abundance of native and alien plant species in Mediterranean sandy shores. Divers. Distrib. 16(4), 537–546 (2010).Article
Google Scholar
34.O’Reilly-Nugent, A. et al. Landscape effects on the spread of invasive species. Curr. Landsc. Ecol. Rep. 1, 107–114 (2016).Article
Google Scholar
35.Stohlgren, T. J. et al. Species richness and patterns of invasions in plants, birds and fishes in the United States. Biol. Invasions 8, 427–444 (2006).Article
Google Scholar
36.Chytrý, M. et al. Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45, 448–458 (2008).Article
Google Scholar
37.Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl. Acad. Sci. 107(27), 12157–12162 (2010).ADS
PubMed
Article
Google Scholar
38.Szymura, T. H., Szymura, M., Zając, M. & Zając, A. Effect of anthropogenic factors, landscape structure, land relief, soil and climate on risk of alien plant invasion at regional scale. Sci. Total Environ. 626, 1373–1381 (2018).ADS
CAS
PubMed
Article
Google Scholar
39.Marini, L. et al. Alien and native plant life-forms respond differently to human and climate pressures. Global Ecol. Biogeogr. 21, 534–544 (2012).Article
Google Scholar
40.Buccheri, M., Boscutti, F., Pellegrini, E. & Martini, F. Alien flora in Friuli Venezia Giulia. Gortania 40, 7–78 (2019) (in Italian).
Google Scholar
41.Barros, A. & Pickering, C. M. Non-native plant invasion in relation to tourism use of Aconcagua Park, Argentina, the highest protected area in the Southern Hemisphere. Mt. Res. Dev. 34(1), 13–26 (2014).Article
Google Scholar
42.Boscutti, F. et al. Conservation tillage affects species composition but not species diversity: a comparative study in northern Italy. Environ. Manag. 55(2), 443–452 (2015).ADS
Article
Google Scholar
43.Galasso, G. et al. An updated checklist of the vascular flora alien to Italy . Plant Biosyst Int. J. Deal. Asp. Plant Biol. 152, 556–592 (2018).
Google Scholar
44.Gao, T. et al. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol. Biol. 10(1), 324 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
45.Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29(2), 360–369 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8, 1066–1074 (2005).Article
Google Scholar
47.Ahern, R. G., Landis, D. A., Reznicek, A. A. & Schemske, D. W. Spread of exotic plants in the landscape: the role of time, growth habit, and history of invasiveness. Biol. Invasions 12(9), 3157–3169 (2010).Article
Google Scholar
48.Ohlemüller, R., Walker, S. & Bastow Wilson, J. Local vs regional factors as determinants of the invasibility of indigenous forest fragments by alien plant species. Oikos 112, 493–501 (2006).Article
Google Scholar
49.Zhu, L., Sun, O. J., Sang, W., Li, Z. & Ma, K. Predicting the spatial distribution of an invasive plant species (Eupatorium adenophorum) in China. Landsc. Ecol. 22(8), 1143–1154 (2007).Article
Google Scholar
50.Timsina, B., Shrestha, B. B., Rokaya, M. B. & Münzbergová, Z. Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora-Morphol. Distrib. Funct. Ecol. Plants 206(3), 233–240 (2011).Article
Google Scholar
51.Francis, A. P. & Currie, D. J. A globally consistent richness-climate relationship for angiosperms. Am. Nat. 161, 523–536 (2003).PubMed
Article
PubMed Central
Google Scholar
52.Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).Article
Google Scholar
53.Tordoni, E. et al. Climate and landscape heterogeneity drive spatial pattern of endemic plant diversity within local hotspots in South-Eastern Alps. Perspect. Plant. Ecol. 43, 125512 (2020).Article
Google Scholar
54.Alpert, P., Bone, E. & Holzapfel, C. Invasiveness, invisibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3, 52–66 (2000).Article
Google Scholar
55.Richardson, D. & Pyšek, P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409 (2006).Article
Google Scholar
56.Marini, L. et al. Beta diversity and alien plant invasion. Global Ecol. Biogeogr. 22, 450–460 (2013).Article
Google Scholar
57.Haider, S. et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Global Ecol. Biogeogr. 27, 667–678 (2018).Article
Google Scholar
58.Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9(12), 1293–1298 (2006).PubMed
Article
PubMed Central
Google Scholar
59.Roy, D. B., Hill, M. O. & Rothery, P. Effects of urban land cover on the local species pool in Britain. Ecography 22, 507–515 (1999).Article
Google Scholar
60.McIntyre, S. & Lavorel, S. Predicting richness of native, rare, and exotic plants in response to habitat and disturbance variables across a variegated landscape. Conserv. Biol. 8(2), 521–531 (1994).Article
Google Scholar
61.Aikio, S., Duncan, R. P. & Hulme, P. E. The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Glob. Ecol. Biogeogr. 21, 778–786 (2012).Article
Google Scholar
62.Cilliers, S. S., Williams, N. S. G. & Barnard, F. J. Patterns of exotic plant invasions in fragmented urban and rural grasslands across continents. Landsc. Ecol. 23, 1243–1256 (2008).Article
Google Scholar
63.Pyšek, P. Alien and native species in Central European urban floras: a quantitative comparison. J. Biogeogr. 25, 155–163 (1998).Article
Google Scholar
64.Hulme, P.E. Nursery crimes: agriculture as victim and perpetrator in the spread of invasive species. Crop Sci. Technol. 733–740 (2005).65.McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20, 3461–3473 (2018).Article
Google Scholar
66.Groves, R. H., Austin, M. P. & Kaye, P. E. Competition between Australian native and introduced grasses along a nutrient gradient. Austral. Ecol. 28, 491–498 (2003).Article
Google Scholar
67.Dupouey, J. L., Dambrine, E., Laffite, J. D. & Moares, C. Irreversible impact of past land use on forest soils and biodiversity. Ecology 83(11), 2978–2984 (2002).Article
Google Scholar
68.Foster, D. et al. The importance of land-use legacies to ecology and conservation. Bioscience 53(1), 77–88 (2003).Article
Google Scholar
69.Spooner, P. G. & Lunt, I. D. The influence of land-use history on roadside conservation values in an Australian agricultural landscape. Aust. J. Bot. 52, 445–458 (2004).Article
Google Scholar
70.Lindborg, R., Plue, J., Andersson, K. & Cousins, S. A. O. Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol. Conserv. 169, 206–213 (2014).Article
Google Scholar
71.Dorrough, J. & Scroggie, M. P. Plant responses to agricultural intensification. J. Appl. Ecol. 45(4), 1274–1283 (2008).Article
Google Scholar
72.Stoate, C. et al. Ecological impacts of arable intensification in Europe. J. Environ. Manag. 63, 337–365 (2001).CAS
Article
Google Scholar
73.Deutschewitz, K., Lausch, A., Kühn, I. & Klotz, S. Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany. Glob. Ecol. Biogeogr. 12(4), 299–311 (2003).Article
Google Scholar
74.Grime, J. P. Plant Strategies and Vegetation Processes (Wiley, Chichester, 1979).
Google Scholar
75.Molino, J. F. & Sabatier, D. Tree diversity in tropical rain forests: a validation of the intermediate disturbance hypothesis. Science 294(5547), 1702–1704 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
76.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article
Google Scholar
77.Carulli, G.B. Carta geologica del Friuli Venezia Giulia (scale 1:150000) (Geological Map of Friuli Venezia Giulia, scale 1:150000). Ed. S.E.L.C.A. Firenze (2006).78.Gortani, L. & Gortani, M. Flora friulana con particolare riguardo alla Carnia. Udine: ed. Tipografia Doretti (in Italian) (1906).79.Bonfanti, P., Fregonese, A. & Sigura, M. Landscape analysis in areas affected by land consolidation. Landsc. Urban Plan. 37(1–2), 91–98 (1997).Article
Google Scholar
80.Ehrendorfer, F. & Hamann, U. Vorschläge zu einer floristischen Kartierung von Mitteleuropa. Berichte der Deutschen Botanischen Gesellschaft (in German) (1965).81.Bartolucci, F. et al. An updated checklist of the vascular flora native to Italy . Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 152, 179–303 (2018).
Google Scholar
82.Engelen, G., Lavalle, C., Barredo, J. I., Van der Meulen, M. & White, R. The moland modelling framework for urban and regional land-use dynamics. In Modelling Land-Use Change: Progress and Applications (eds Koomen, E. et al.) 297–320 (Springer , Berlin, 2007).
Google Scholar
83.Quantum GIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2017).84.Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article
Google Scholar
85.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage Publications , Thousand Oaks, 2011).
Google Scholar
86.Dormann, C. F. et al. Effects of landscape structure and land-use intensity on similarity of plant and animal communities. Glob. Ecol. Biogeogr. 16, 774–787 (2007).Article
Google Scholar
87.Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-Plus (Springer , Berlin, 2000).
Google Scholar
88.R Core Team R. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2019).
Google Scholar
89.Barton, K. MuMIn: Multi-model inference. R package version 1.15.6 (2016).90.Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & R core team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–131 (2017).91.Burham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference—A Pratical Information-Theoretic Approach (Springer , Berlin, 2002).
Google Scholar More