Rapid weight loss in free ranging pygmy killer whales (Feresa attenuata) and the implications for anthropogenic disturbance of odontocetes
1.Tyack, P. L. et al. Beaked whales respond to simulated and actual navy sonar. PLoS ONE 6, e17009 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
2.Lusseau, D. Effects of tour boats on the behavior of bottlenose dolphins: using Markov chains to model anthropogenic impacts. Conserv. Biol. 17, 1785–1793 (2003).Article
Google Scholar
3.Currey, R. J. C. et al. Survival rates for a declining population of bottlenose dolphins in Doubtful Sound, New Zealand: an information theoretic approach to assessing the role of human impacts. Aquat. Conserv. Mar. Freshwat. Ecosyst. 19, 658–670 (2009).MathSciNet
Article
Google Scholar
4.Caswell, H., Fujiwara, M. & Brault, S. Declining survival probability threatens the North Atlantic right whale. Proc. Natl. Acad. Sci. 96, 3308–3313 (1999).ADS
CAS
PubMed
Article
Google Scholar
5.Bejder, L. et al. Decline in relative abundance of bottlenose dolphins exposed to long-term disturbance. Conserv. Biol. 20, 1791–1798 (2006).PubMed
Article
Google Scholar
6.Pirotta, E. et al. Understanding the population consequences of disturbance. Ecol. Evol. 8, 9934–9946 (2018).PubMed
PubMed Central
Article
Google Scholar
7.New, L. F., Moretti, D. J., Hooker, S. K., Costa, D. P. & Simmons, S. E. Using energetic models to investigate the survival and reproduction of beaked whales (family Ziphiidae). PLoS ONE 8, e68725 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Fleishman, E. et al. Monitoring population-level responses of marine mammals to human activities. Mar. Mamm. Sci. 32, 1004–1021 (2016).Article
Google Scholar
9.Pirotta, E., Merchant, N. D., Thompson, P. M., Barton, T. R. & Lusseau, D. Quantifying the effect of boat disturbance on bottlenose dolphin foraging activity. Biol. Cons. 181, 82–89 (2015).Article
Google Scholar
10.Benoit-Bird, K. J. Prey caloric value and predator energy needs: foraging predictions for wild spinner dolphins. Mar. Biol. 145, 435–444 (2004).Article
Google Scholar
11.Wisniewska, D. M. et al. Ultra-high foraging rates of harbor porpoises make them vulnerable to anthropogenic disturbance. Curr. Biol. 26, 1441–1446 (2016).CAS
PubMed
Article
Google Scholar
12.Farmer, N. A., Noren, D. P., Fougères, E. M., Machernis, A. & Baker, K. Resilience of the endangered sperm whale Physeter macrocephalus to foraging disturbance in the Gulf of Mexico, USA: a bioenergetics approach. Mar. Ecol. Prog. Ser. 589, 241–261 (2018).ADS
CAS
Article
Google Scholar
13.New, L. F. et al. Modelling the biological significance of behavioural change in coastal bottlenose dolphins in response to disturbance. Funct. Ecol. 27, 314–322 (2013).Article
Google Scholar
14.Christiansen, F. et al. Poor body condition associated with an unusual mortality event in gray whales. Mar. Ecol. Prog. Ser. 658, 237–252 (2021).ADS
Article
Google Scholar
15.Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P. Y. & Bejder, L. Noninvasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere 7, e01468 (2016).Article
Google Scholar
16.Christiansen, F. et al. Maternal body size and condition determine calf growth rates in southern right whales. Mar. Ecol. Prog. Ser. 592, 267–281 (2018).ADS
Article
Google Scholar
17.Kastelein, R. A., Helder-Hoek, L., Jennings, N., van Kester, R. & Huisman, R. Reduction in body mass and blubber thickness of harbor porpoises (Phocoena phocoena) due to near-fasting for 24 hours in four seasons. Aquat. Mamm. 45, 37–47 (2019).Article
Google Scholar
18.Marine mammal populations and ocean noise: determining when noise causes biologically significant effects. In (eds. National Research Council (U.S.) & National Academies Press (U.S.)) 142 (National Academies Press, 2005).19.Booth, C. G., Sinclair, R. R. & Harwood, J. Methods for monitoring for the population consequences of disturbance in marine mammals: a review. Front. Mar. Sci. 7, 115 (2020).ADS
Article
Google Scholar
20.Villegas-Amtmann, S., Schwarz, L. K., Sumich, J. L. & Costa, D. P. A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere 6, art183 (2015).21.Wikelski, M. & Cooke, S. J. Conservation physiology. Trends Ecol. Evol. 21, 38–46 (2006).PubMed
Article
Google Scholar
22.Fearnbach, H., Durban, J., Ellifrit, D. & Balcomb, K. Using aerial photogrammetry to detect changes in body condition of endangered southern resident killer whales. Endanger. Spec. Res. 35, 175–180 (2018).Article
Google Scholar
23.Harwood, J. et al. Understanding the Population Consequences of Acoustic Disturbance for Marine Mammals. In The Effects of Noise on Aquatic Life II (eds. Popper, A. N. & Hawkins, A.) 417–423 (Springer, 2016). https://doi.org/10.1007/978-1-4939-2981-8_49.24.Christiansen, F., Rojano-Doñate, L., Madsen, P. T. & Bejder, L. Noise levels of multi-rotor unmanned aerial vehicles with implications for potential underwater impacts on marine mammals. Front. Mar. Sci. 3, 277 (2016).Article
Google Scholar
25.Christiansen, F., Nielsen, M. L. K., Charlton, C., Bejder, L. & Madsen, P. T. Southern right whales show no behavioral response to low noise levels from a nearby unmanned aerial vehicle. Mar. Mam. Sci. mms.12699 (2020) https://doi.org/10.1111/mms.12699.26.Castrillon, J. & Nash, S. B. Evaluating cetacean body condition; a review of traditional approaches and new developments. Ecol. Evol. 10, 6144–6162 (2020).PubMed
PubMed Central
Article
Google Scholar
27.Durban, J. W. et al. Photogrammetry of blue whales with an unmanned hexacopter. Mar. Mamm. Sci. 32, 1510–1515 (2016).Article
Google Scholar
28.Christiansen, F. et al. Estimating body mass of free‐living whales using aerial photogrammetry and 3D volumetrics. Methods Ecol. Evol. 2041–210X.13298 (2019). https://doi.org/10.1111/2041-210X.13298.29.Krause, D. J., Hinke, J. T., Perryman, W. L., Goebel, M. E. & LeRoi, D. J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 12, e0187465 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
30.Fiori, L., Doshi, A., Martinez, E., Orams, M. B. & Bollard-Breen, B. The use of unmanned aerial systems in marine mammal research. Remote Sensing 9, 543 (2017).ADS
Article
Google Scholar
31.Lusseau, D. The hidden cost of tourism: detecting long-term effects of tourism using behavioral information. Ecol. Soc. 9, 2 (2004).Article
Google Scholar
32.Bejder, L., Samuels, A., Whitehead, H. & Gales, N. Interpreting short-term behavioural responses to disturbance within a longitudinal perspective. Anim. Behav. 72, 1149–1158 (2006).Article
Google Scholar
33.Baird, R. Odontocete cetaceans around the main Hawaiian Islands: habitat use and relative abundance from small-boat sighting surveys. Aquat. Mamm. 39, 253–269 (2013).Article
Google Scholar
34.Hawaii Tourism Authority. Monthly Visitor Statistics. https://www.hawaiitourismauthority.org/research/monthly-visitor-statistics/ (2020).35.Tyne, J. A., Johnston, D. W., Rankin, R., Loneragan, N. R. & Bejder, L. The importance of spinner dolphin (Stenella longirostris) resting habitat: implications for management. J. Appl. Ecol. 52, 621–630 (2015).Article
Google Scholar
36.Wiener, C., Bejder, L., Johnston, D., Fawcett, L. & Wilkinson, P. Cashing in on spinners: revenue estimates of wild Dolphin-Swim Tourism in the Hawaiian Islands. Front. Mar. Sci. 7, (2020).37.Stack, S. H. et al. Identifying spinner dolphin Stenella longirostris longirostris movement and behavioral patterns to inform conservation strategies in Maui Nui, Hawai‘i. Mar. Ecol. Prog. Ser. 644, 187–197 (2020).ADS
Article
Google Scholar
38.Tyne, J. A., Christiansen, F., Heenehan, H. L., Johnston, D. W. & Bejder, L. Chronic exposure of Hawaii Island spinner dolphins (Stenella longirostris) to human activities. R. Soc. Open Sci. 5, 171506 (2018).PubMed
PubMed Central
Article
Google Scholar
39.Heenehan, H. et al. Using Ostrom’s common-pool resource theory to build toward an integrated ecosystem-based sustainable cetacean tourism system in Hawai`i. J. Sustain. Tour. 23, 536–556 (2015).Article
Google Scholar
40.Baird, R. W. et al. Movements of two satellite-tagged pygmy killer whales (Feresa attenuata) off the island of Hawai‘i. Mar. Mamm. Sci. 27, E332–E337 (2011).Article
Google Scholar
41.Baird, R. W. et al. Movements and Spatial Use of Odontocetes in the Western Main Hawaiian Islands: Results of a Three-Year Study Off O’ahu and Kaua’i: http://www.dtic.mil/docs/citations/ADA602078 (2013). https://doi.org/10.21236/ADA602078.42.Forrester, D. J., Odell, D. K., Thompson, N. P. & White, J. R. Morphometrics, parasites, and chlorinated hydrocarbon residues of pygmy killer whales from Florida. J. Mammal. 61, 356–360 (1980).Article
Google Scholar
43.Kastelein, R. A., Mosterd, J., Schooneman, N. M. & Wiepkema, P. R. Food consumption, growth, body dimensions, and respiration rates of captive false killer whales (Pseudorca crassidens). Aquat. Mamm. 26, 33–44 (2000).
Google Scholar
44.Elorriaga-Verplancken, F. R. et al. First record of pygmy killer whales (Feresa attenuata) in the Gulf of California, Mexico: diet inferences and probable relation with warm conditions during 2014. Aquat. Mamm. 42, 20–26 (2016).Article
Google Scholar
45.Castrillon, J., Huston, W. & Nash, S. B. The blubber adipocyte index: a nondestructive biomarker of adiposity in humpback whales (Megaptera novaeangliae). Ecol. Evol. 7, 5131–5139 (2017).PubMed
PubMed Central
Article
Google Scholar
46.Fahlman, A. et al. Field energetics and lung function in wild bottlenose dolphins, Tursiops truncatus, in Sarasota Bay Florida. R. Soc. Open Sci. 5, 171280 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Nowacek, D. P., Christiansen, F., Bejder, L., Goldbogen, J. A. & Friedlaender, A. S. Studying cetacean behaviour: new technological approaches and conservation applications. Anim. Behav. 120, 235–244 (2016).Article
Google Scholar
48.Adamczak, S. K., Pabst, A., McLellan, W. A. & Thorne, L. H. Using 3D models to improve estimates of marine mammal size and external morphology. Front. Mar. Sci. 6, 334 (2019).Article
Google Scholar
49.Lindstedt, S. L. & Boyce, M. S. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878 (1985).Article
Google Scholar
50.Blueweiss, L. et al. Relationships between body size and some life history parameters. Oecologia 37, 257–272 (1978).ADS
CAS
PubMed
Article
Google Scholar
51.Senigaglia, V. et al. Meta-analyses of whale-watching impact studies: comparisons of cetacean responses to disturbance. Mar. Ecol. Prog. Ser. 542, 251–263 (2016).ADS
CAS
Article
Google Scholar
52.Sprogis, K. R., Christiansen, F., Wandres, M. & Bejder, L. E. Niño Southern Oscillation influences the abundance and movements of a marine top predator in coastal waters. Glob. Change Biol. 24, 1085–1096 (2018).ADS
Article
Google Scholar
53.Henderson, E. E. et al. Delphinid behavioral responses to incidental mid-frequency active sonar. J. Acoust. Soc. America 136, 2003–2014 (2014).ADS
Article
Google Scholar
54.Schwacke, L. H. et al. Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex- and class-structured population model. Endanger. Spec. Res. 33, 265–279 (2017).Article
Google Scholar
55.Rolland, R. M. et al. Health of North Atlantic right whales Eubalaena glacialis over three decades: from individual health to demographic and population health trends. Mar. Ecol. Prog. Ser. 542, 265–282 (2016).ADS
CAS
Article
Google Scholar
56.Dawson, S., Bowmwn, H., Leunissen, E. & Sirguey, P. Inexpensive aerial photogrammetry for studies of whales and large marine animals. Front. Mar. Sci. 4, 366 (2017).Article
Google Scholar
57.Karns, B. L., Ewing, R. Y. & Schaefer, A. M. Evaluation of body mass index as a prognostic indicator from two rough-toothed dolphin (Steno bredanensis) mass strandings in Florida. Ecol. Evol. 9, 10544–10552 (2019).PubMed
PubMed Central
Article
Google Scholar
58.Stevenson, R. D. & Woods, W. A. Condition indices for conservation: new uses for evolving tools. Integr. Comp. Biol. 46, 1169–1190 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Kershaw, J. L., Sherrill, M., Davison, N. J., Brownlow, A. & Hall, A. J. Evaluating morphometric and metabolic markers of body condition in a small cetacean, the harbor porpoise (Phocoena phocoena). Ecol. Evol. 7, 3494–3506 (2017).PubMed
PubMed Central
Article
Google Scholar More