1.Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).CAS
PubMed
Article
Google Scholar
2.Wagner, G. P. & Altenberg, L. Complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).PubMed
Article
Google Scholar
3.Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66, 2891–2902 (2012).PubMed
Article
Google Scholar
4.Cheverud, J. M. Quantitative genetics and developmental constraints on evolution by selection. J. Theor. Biol. 110, 155–171 (1984).CAS
PubMed
Article
Google Scholar
5.Phillips, P. C. & Arnold, S. J. Visualizing multivariate selection. Evolution 43, 1209–1266 (1989).PubMed
Article
Google Scholar
6.Sinervo, B. & Svensson, E. Correlational selection and the evolution of genomic architecture. Heredity 16, 948–955 (2002).
Google Scholar
7.Blows, M. W. & Brooks, R. Measuring nonlinear selection. Am. Nat. 162, 815–820 (2003).PubMed
Article
Google Scholar
8.Blows, M. W., Brooks, R. & Kraft, P. G. Exploring complex fitness surfaces: multiple ornamentation and polymorphism in male guppies. Evolution 57, 1622–1630 (2003).PubMed
Article
Google Scholar
9.Jones, A. G., Arnold, S. J. & Bürger, R. Stability of the G-matrix in a population experiencing pleiotropic mutation, stabilizing selection, and genetic drift. Evolution 57, 1747–1760 (2003).PubMed
Article
Google Scholar
10.Jones, A. G., Arnold, S. J. & Bürger, R. Evolution and stability of the G-matrix on a landscape with a moving optimum. Evolution 58, 1639–1654 (2004).PubMed
Article
Google Scholar
11.Jones, A. G., Arnold, S. J. & Bürger, R. The mutation matrix and the evolution of evolvability. Evolution 61, 727–745 (2007).PubMed
Article
Google Scholar
12.Jones, A. G., Bürger, R. & Arnold, S. J. Epistasis and natural selection shape the mutational architecture of complex traits. Nat. Commun. 5, 3709 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
13.Lande, R. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203–215 (1980).CAS
PubMed
PubMed Central
Google Scholar
14.Armbruster, W. S., Pélabon, C., Hansen, T. F. & Mulder, C. P. H. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 23–49 (Oxford Univ. Press, 2004).15.Bell, A. M. & Sih, A. Exposure to predation generates personality in threespined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).PubMed
Article
Google Scholar
16.Dingemanse, N. J., Barber, I. & Dochtermann, N. A. Non-consumptive effects of predation: does perceived risk strengthen the genetic integration of behaviour and morphology in stickleback? Ecol. Lett. 23, 107–118 (2020).PubMed
Article
Google Scholar
17.Hansen Wheat, C., Fitzpatrick, J. L., Rogell, B. & Temrin, H. Behavioural correlations of the domestication syndrome are decoupled in modern dog breeds. Nat. Commun. 10, 2422 (2019).18.Hurst, L. D., Pál, C. & Lercher, M. J. The evolutionary dynamics of eukaryotic gene order. Nat. Rev. Genet. 5, 299–310 (2004).PubMed
Article
CAS
Google Scholar
19.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).PubMed
Article
Google Scholar
20.Schluter, D. & Nychka, D. Exploring fitness surfaces. Am. Nat. 143, 597–616 (1994).Article
Google Scholar
21.Siepielski, A. M. et al. Precipitation drives global variation in natural selection. Science 355, 959–962 (2017).CAS
PubMed
Article
Google Scholar
22.Roff, D. A. & Fairbairn, D. J. A test of the hypothesis that correlational selection generates genetic correlations. Evolution 66, 2953–2960 (2012).PubMed
Article
Google Scholar
23.Svensson, E. I., McAdam, A. G. & Sinervo, B. Intralocus sexual conflict over immune defense, gender load, and sex-specific signaling in a natural lizard population. Evolution 63, 3124–3135 (2009).PubMed
Article
Google Scholar
24.McGlothlin, J. W., Parker, P. G., Nolan, V. & Ketterson, E. D. Correlational selection leads to genetic integration of body size and an attractive plumage trait in dark-eyed juncos. Evolution 59, 658–671 (2005).PubMed
Article
Google Scholar
25.Duckworth, R. A. & Kruuk, L. E. B. Evolution of genetic integration between dispersal and colonization ability in a bird. Evolution 63, 968–977 (2009).PubMed
Article
Google Scholar
26.Brodie, E. D. III Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46, 1284–1298 (1992).PubMed
Article
Google Scholar
27.Wise, M. J. & Rausher, M. D. Costs of resistance and correlational selection in the multiple-herbivore community of Solanum carolinense. Evolution 70, 2411–2420 (2016).PubMed
Article
Google Scholar
28.Fenster, C. B., Reynolds, R. J., Williams, C. W., Makowsky, R. & Dudash, M. R. Quantifying hummingbird preference for floral trait combinations: the role of selection on trait interactions in the evolution of pollination syndromes. Evolution 69, 1113–1127 (2015).PubMed
Article
Google Scholar
29.Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Martin, C. H. & Wainwright, P. C. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339, 208–211 (2013).CAS
PubMed
Article
Google Scholar
31.Phillips, P. C. Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nat. Rev. Genet. 9, 855–867 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Steppan, S. J., Phillips, P. C. & Houle, D. Comparative quantitative genetics: evolution of the G matrix. Trends Ecol. Evol. 17, 320–327 (2002).Article
Google Scholar
33.Blows, M. W. & McGuigan, K. The distribution of genetic variance across phenotypic space and the response to selection. Mol. Ecol. 24, 2056–2072 (2015).PubMed
Article
Google Scholar
34.Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996).PubMed
Article
Google Scholar
35.Lande, R. The maintenance of genetic variability by mutation in a polygenic character with linked loci. Genet. Res. 26, 221–235 (1976).Article
Google Scholar
36.Lande, R. The genetic correlation between characters maintained by selection, linkage and inbreeding. Genet. Res. 44, 309–320 (1984).CAS
PubMed
Article
Google Scholar
37.Bulmer, M. G. The effect of selection on genetic variability: a simulation study. Genet. Res. 28, 101–117 (1976).CAS
PubMed
Article
Google Scholar
38.Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, 1998).39.Guillaume, F. & Whitlock, M. C. Effects of migration on the genetic covariance matrix. Evolution 61, 2398–2409 (2007).PubMed
Article
Google Scholar
40.Noble, D. W. A., Radersma, R. & Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc. Natl Acad. Sci. USA 116, 13452–13461 (2019).CAS
PubMed
Article
Google Scholar
41.Houle, D., Bolstad, G. H., van der Linde, K. & Hansen, T. F. Mutation predicts 40 million years of fly wing evolution. Nature 548, 447–450 (2017).CAS
PubMed
Article
Google Scholar
42.Svensson, E. I. & Berger, D. The role of mutation bias in adaptive evolution. Trends Ecol. Evol. 34, 422–434 (2019).PubMed
Article
Google Scholar
43.Schweizer, G. & Wagner, A. Genotype networks of 80 quantitative Arabidopsis thaliana phenotypes reveal phenotypic evolvability despite pervasive epistasis. PLoS Comput. Biol. 16, e1008082 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
44.Delph, L. F., Steven, J. C., Anderson, I. A., Herlihy, C. R. & Brodie, E. D. III Elimination of a genetic correlation between the sexes via artificial correlational selection. Evolution 65, 2872–2880 (2011).PubMed
Article
Google Scholar
45.Conner, J. K. Genetic mechanisms of floral trait correlations in a natural population. Nature 420, 407–410 (2002).CAS
PubMed
Article
Google Scholar
46.Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12, 204–213 (2011).CAS
PubMed
Article
Google Scholar
47.Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).CAS
PubMed
Article
Google Scholar
48.Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–948 (1998).PubMed
Article
Google Scholar
49.Flint, J. & Mackay, T. F. C. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19, 723–733 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Stinchcombe, J. R., Weinig, C., Heath, K. D., Brock, M. T. & Schmitt, J. Polymorphic genes of major effect: consequences for variation, selection and evolution in Arabidopsis thaliana. Genetics 182, 911–922 (2009).PubMed
PubMed Central
Article
Google Scholar
51.Orr, H. A. The genetics of species differences. Trends Ecol. Evol. 16, 343–350 (2001).Article
Google Scholar
52.Nadeau, N. J. et al. The gene cortex controls mimicry and crypsis in butterflies and moths. Nature 534, 106–110 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Pitchers, W. et al. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics 211, 1429–1447 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Mackay, T. F. C. Epistasis and quantitative traits: using model organisms to study gene–gene interactions. Nat. Rev. Genet. 15, 22–33 (2014).CAS
PubMed
Article
Google Scholar
56.Sailer, Z. R. & Harms, M. J. Detecting high-order epistasis in nonlinear genotype–phenotype maps. Genetics 205, 1079–1088 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Hill, W. G. “Conversion” of epistatic into additive genetic variance in finite populations and possible impact on long-term selection response. J. Anim. Breed. Genet. 134, 196–201 (2017).CAS
PubMed
Article
Google Scholar
58.Gienapp, P. et al. Genomic quantitative genetics to study evolution in the wild. Trends Ecol. Evol. 32, 897–908 (2017).PubMed
Article
Google Scholar
59.Nosil, P. et al. Ecology shapes epistasis in a genotype–phenotype–fitness map for stick insect colour. Nat. Ecol. Evol. 4, 1673–1684 (2020).60.Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018).PubMed
Article
CAS
Google Scholar
61.Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)parallel evolution. Annu. Rev. Ecol. Evol. Syst. 49, 303–330 (2018).Article
Google Scholar
62.Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).CAS
PubMed
Article
Google Scholar
63.Stern, D. L. & Orgogozo, V. Is genetic evolution predictable? Science 323, 746–751 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307, 1928–1933 (2005).CAS
PubMed
Article
Google Scholar
65.Archambeault, S. L., Bärtschi, L. R., Merminod, A. D. & Peichel, C. L. Adaptation via pleiotropy and linkage: association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol. Lett. 4, 282–301 (2020).PubMed
PubMed Central
Article
Google Scholar
66.van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic disease traits: from theory to practice. Nat. Rev. Genet. 20, 567–581 (2019).PubMed
Article
CAS
Google Scholar
67.Stapley, J., Feulner, P. G. D., Johnston, S. E., Santure, A. W. & Smadja, C. M. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Phil. Trans. R. Soc. B 372, 20160455 (2017).PubMed
Article
Google Scholar
68.Choudhury, R. R., Rogivue, A., Gugerli, F. & Parisod, C. Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Mol. Ecol. 28, 1550–1562 (2019).CAS
PubMed
Article
Google Scholar
69.Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
70.Yeaman, S. Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc. Natl Acad. Sci. USA 110, E1743–E1751 (2013).CAS
PubMed
Article
Google Scholar
71.Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving inversions. Trends Ecol. Evol. 34, 239–248 (2019).PubMed
Article
Google Scholar
72.Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Kupper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).CAS
PubMed
Article
Google Scholar
74.Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).CAS
PubMed
Article
Google Scholar
75.Huu, C. N., Keller, B., Conti, E., Kappel, C. & Lenhard, M. Supergene evolution via stepwise duplications and neofunctionalization of a floral-organ identity gene. Proc. Natl Acad. Sci. USA 117, 23148–23157 (2020).CAS
PubMed
Article
Google Scholar
76.Merrill, R. M. et al. Genetic dissection of assortative mating behavior. PLoS Biol. 17, e2005902 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
77.Whitlock, M. C., Phillips, P. C., Moore, F. B.-G. & Tonsor, S. J. Multiple fitness peaks and epistasis. Annu. Rev. Ecol. Syst. 26, 601–629 (1995).Article
Google Scholar
78.Dudley, S. A. The response to selection on plant physiological traits: evidence for local adaptation. Evolution 50, 103–110 (1996).PubMed
Article
Google Scholar
79.Kirkpatrick, M. & Ravigné, V. Speciation by natural and sexual selection: models and experiments. Am. Nat. 159, S22–S35 (2002).PubMed
Article
Google Scholar
80.Hohenlohe, P. A., Bassham, S., Currey, M. & Cresko, W. A. Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Phil. Trans. R. Soc. B 367, 395–408 (2012).81.Hench, K., Vargas, M., Höppner, M. P., McMillan, W. O. & Puebla, O. Inter-chromosomal coupling between vision and pigmentation genes during genomic divergence. Nat. Ecol. Evol. 3, 657–667 (2019).PubMed
Article
Google Scholar
82.Gienapp, P., Calus, M. P. L., Laine, V. N. & Visser, M. E. Genomic selection on breeding time in a wild bird population. Evol. Lett. 3, 142–151 (2019).PubMed
PubMed Central
Article
Google Scholar
83.McGuigan, K., Collet, J. M., Allen, S. L., Chenoweth, S. F. & Blows, M. W. Pleiotropic mutations are subject to strong stabilizing selection. Genetics 197, 1051–105 (2014).PubMed
PubMed Central
Article
Google Scholar
84.McGuigan, K. et al. The nature and extent of mutational pleiotropy in gene expression of male Drosophila serrata. Genetics 196, 911–921 (2014).PubMed
PubMed Central
Article
Google Scholar
85.Hine, E., Runcie, D. E., McGuigan, K. & Blows, M. W. Uneven distribution of mutational variance across the transcriptome of Drosophila serrata revealed by high-dimensional analysis of gene expression. Genetics https://doi.org/10.1534/genetics.118.300757 (2018).86.Estes, S., Ajie, B. C., Lynch, M. & Phillips, P. C. Spontaneous mutational correlations for life-history, morphological and behavioral characters in Caenorhabditis elegans. Genetics 170, 645–653 (2005).PubMed
PubMed Central
Article
Google Scholar
87.Houle, D. & Fierst, J. Properties of spontaneous mutational variance and covariance for wing size and shape in Drosophila melanogaster. Evolution 67, 1116–1130 (2013).PubMed
Article
Google Scholar
88.Ovaskainen, O., Karhunen, M., Zheng, C., Arias, J. M. C. & Merilä, J. A new method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics 189, 621–632 (2011).PubMed
PubMed Central
Article
Google Scholar
89.Csilléry, K. et al. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity 124, 77–92 (2020).PubMed
Article
Google Scholar
90.Berg, J. J. & Coop, G. A population genetic signal of polygenic adaptation. PLoS Genet. 10, e1004412 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
91.Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).CAS
PubMed
Article
Google Scholar
92.Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, 1930).93.Pavlicev, M. & Hansen, T. F. Genotype–phenotype maps maximizing evolvability: modularity revisited. Evol. Biol. 38, 371–389 (2011).Article
Google Scholar
94.Hine, E., McGuigan, K. & Blows, M. W. Evolutionary constraints in high-dimensional trait sets. Am. Nat. 184, 119–131 (2014).PubMed
Article
Google Scholar
95.Melo, D. & Marroig, G. Directional selection can drive the evolution of modularity in complex traits. Proc. Natl Acad. Sci. USA 112, 470–475 (2015).CAS
PubMed
Article
Google Scholar
96.Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773–13778 (2005).CAS
PubMed
Article
Google Scholar
97.Espinosa-Soto, C. & Wagner, A. Specialization can drive the evolution of modularity. PLoS Comput. Biol. 6, e1000719 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
98.Ancel, L. W. & Fontana, W. in Modularity: Understanding the Development and Evolution of Natural Complex Systems (eds Callebaut, W. & Rasskin-Gutman, D.) 129–141 (MIT Press, 2009).99.Wagner, G. P. & Mezey, J. G. in Modularity in Development and Evolution (eds Schlosser, G. & Wagner, G. P.) 338–358 (Univ. Chicago Press, 2004).100.Fokkens, L. & Snel, B. Cohesive versus flexible evolution of functional modules in eukaryotes. PLoS Comput. Biol. 5, e1000276 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
101.Huang, W. et al. Genetic basis of transcriptome diversity in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 112, E6010–E6019 (2015).CAS
PubMed
Article
Google Scholar
102.Schweizer, R. M. et al. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice. PLoS Genet. 15, e1008420 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
103.Hämälä, T. et al. Gene expression modularity reveals footprints of polygenic adaptation in Theobroma cacao. Mol. Biol. Evol. 37, 110–123 (2020).PubMed
Article
CAS
Google Scholar
104.Collet, J. M., McGuigan, K., Allen, S. L., Chenoweth, S. F. & Blows, M. W. Mutational pleiotropy and the strength of stabilizing selection within and between functional modules of gene expression. Genetics 208, 1601–1616 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
105.Jiménez, A., Cotterell, J., Munteanu, A. & Sharpe, J. A spectrum of modularity in multi‐functional gene circuits. Mol. Syst. Biol. 13, 925 (2017).PubMed
PubMed Central
Article
Google Scholar
106.Verd, B., Monk, N. A. & Jaeger, J. Modularity, criticality, and evolvability of a developmental gene regulatory network. eLife 8, e42832 (2019).PubMed
PubMed Central
Article
Google Scholar
107.Pallares, L. F. et al. Mapping of craniofacial traits in outbred mice identifies major developmental genes involved in shape determination. PLoS Genet. 11, e1005607 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
108.Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112–113, 9–32 (2001).PubMed
Article
Google Scholar
109.Rockman, M. V. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution 66, 1–17 (2012).PubMed
Article
Google Scholar
110.Shikov, A. E., Skitchenko, R. K., Predeus, A. V. & Barbitoff, Y. A. Phenome-wide functional dissection of pleiotropic effects highlights key molecular pathways for human complex traits. Sci. Rep. 10, 1037 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
111.Sella, G. & Barton, N. H. Thinking about the evolution of complex traits in the era of genome-wide association studies. Annu. Rev. Genom. Hum. Genet. 20, 461–493 (2019).CAS
Article
Google Scholar
112.Walsh, B. & Blows, M. W. Abundant genetic variation plus strong selection = multivariate genetic constraints: a geometric view of adaptation. Annu. Rev. Ecol. Evol. Syst. 40, 41–59 (2009).Article
Google Scholar
113.Teplitsky, C. et al. Assessing multivariate constraints to evolution across ten long-term avian studies. PLoS ONE 9, e90444 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
114.Pavlicev, M. & Cheverud, J. M. Constraints evolve: context dependency of gene effects allows evolution of pleiotropy. Annu. Rev. Ecol. Evol. Syst. 46, 413–434 (2015).115.Wei, X. & Zhang, J. Environment-dependent pleiotropic effects of mutations on the maximum growth rate r and carrying capacity K of population growth. PLoS Biol. 17, e3000121 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
116.Parter, M., Kashtan, N. & Alon, U. Facilitated variation: how evolution learns from past environments to generalize to new environments. PLoS Comput. Biol. 4, e1000206 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
117.Lande, R. Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution 33, 402–416 (1979).PubMed
Article
Google Scholar
118.Bolstad, G. H. et al. Complex constraints on allometry revealed by artificial selection on the wing of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 112, 13284–13289 (2015).CAS
PubMed
Article
Google Scholar
119.Tsuboi, M. et al. Breakdown of brain–body allometry and the encephalization of birds and mammals. Nat. Ecol. Evol. 2, 1492–1500 (2018).PubMed
Article
Google Scholar
120.White, C. R. et al. The origin and maintenance of metabolic allometry in animals. Nat. Ecol. Evol. 3, 598–603 (2019).PubMed
Article
Google Scholar
121.Mullon, C., Keller, L. & Lehmann, L. Social polymorphism is favoured by the co-evolution of dispersal with social behaviour. Nat. Ecol. Evol. 2, 132–140 (2018).PubMed
Article
Google Scholar
122.Schweizer, R. M. et al. Natural selection and origin of a melanistic allele in North American gray wolves. Mol. Biol. Evol. 35, 1190–1209 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
123.Hämälä, T., Gorton, A. J., Moeller, D. A. & Tiffin, P. Pleiotropy facilitates local adaptation to distant optima in common ragweed (Ambrosia artemisiifolia). PLoS Genet. 16, e1008707 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
124.Roda, F., Walter, G. M., Nipper, R. & Ortiz-Barrientos, D. Genomic clustering of adaptive loci during parallel evolution of an Australian wildflower. Mol. Ecol. 26, 3687–3699 (2017).CAS
PubMed
Article
Google Scholar
125.Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).CAS
Article
Google Scholar
126.Hughes, K. A., Houde, A. E., Price, A. C. & Rodd, F. H. Mating advantage for rare males in wild guppy populations. Nature 503, 108–110 (2013).CAS
PubMed
Article
Google Scholar
127.Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2, 1128–1138 (2018).PubMed
PubMed Central
Article
Google Scholar
128.Brodie, E. D. III Genetic correlations between morphology and antipredator behaviour in natural populations of the garter snake Thamnophis ordinoides. Nature 342, 542–543 (1989).PubMed
Article
Google Scholar
129.Auinger, H.-J. et al. Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.). Theor. Appl. Genet. 129, 2043–2053 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
130.Xie, K. T. et al. DNA fragility in the parallel evolution of pelvic reduction in stickleback fish. Science 363, 81–84 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
131.Slate, J. Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol. Ecol. 14, 363–379 (2005).CAS
PubMed
Article
Google Scholar
132.Brieuc, M. S. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Resour. 18, 755–766 (2018).PubMed
Article
Google Scholar
133.Nielsen, R. Molecular signatures of natural selection. Annu. Rev. Genet. 39, 197–218 (2005).CAS
PubMed
Article
Google Scholar
134.Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020).135.Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319, 91–93 (2008).CAS
PubMed
Article
Google Scholar
136.Haddad, R., Meter, B. & Ross, J. A. The genetic architecture of intra-species hybrid mito-nuclear epistasis. Front. Genet. 9, 481 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
137.Long, A., Liti, G., Luptak, A. & Tenaillon, O. Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nat. Rev. Genet. 16, 567–582 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
138.Bollback, J. P., York, T. L. & Nielsen, R. Estimation of 2Nes from temporal allele frequency data. Genetics 179, 497–502 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
139.Svensson, E. I. & Calsbeek, R. The Adaptive Landscape in Evolutionary Biology (Oxford Univ. Press, 2012). More