More stories

  • in

    Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress

    1.Julkowska MM, Testerink C. Tuning plant signaling and growth to survive salt. Trends Plant Sci. 2015;20:586–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Li H, Zhao Q, Huang H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci Total Environ. 2019;669:258–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.FAO. Extent of salt-affected soils. 2020. http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/. Accessed 14 June 2020.4.Jamil A, Riaz S, Ashraf M, Foolad MR. Gene expression profiling of plants under salt stress. Crit Rev Plant Sci. 2011;30:435–58.Article 

    Google Scholar 
    5.Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, et al. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem. 2014;83:126–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McFarlane DJ, George RJ, Barrett-Lennard EG, Gilfedder M. Salinity in dryland agricultural systems: challenges and opportunities. In: Farooq M, Siddique KHM, editors. Innovations in dryland agriculture. 1st ed. Switzerland: Springer Nature; 2016. p. 521–47.
    Google Scholar 
    7.Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. N. Phytol. 2018;217:523–39.CAS 
    Article 

    Google Scholar 
    8.Zörb C, Geilfus CM, Dietz KJ. Salinity and crop yield. Plant Biol. 2019;21:31–38.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    9.Flood PJ, Hancock AM. The genomic basis of adaptation in plants. Curr Opin Plant Biol. 2017;36:88–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Yuan F, Leng B, Wang B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Front Plant Sci. 2016;7:977.PubMed 
    PubMed Central 

    Google Scholar 
    11.Yang Y, Guo Y. Unraveling salt stress signaling in plants. J Integr Plant Biol. 2018;60:796–804.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Kazan K, Lyons R. The link between flowering time and stress tolerance. J Exp Bot. 2015;67:47–60.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    13.Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167:313–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Lowry DB, Hall MC, Salt DE, Willis JH. Genetic and physiological basis of adaptive salt tolerance divergence between coastal and inland Mimulus guttatus. N. Phytol. 2009;183:776–88.Article 

    Google Scholar 
    15.Ilangumaran G, Smith DL. Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Front Plant Sci. 2017;8:1768.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Rodriguez PA, Rothballer M, Chowdhury SP, Nussbaumer T, Gutjahr C, Falter-Braun P. Systems biology of plant microbiome interactions. Mol Plant. 2019;12:804–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–86.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kwak MJ, Kong HG, Choi K, Kwon SK, Song JY, Lee J, et al. Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol. 2018;36:1100–9.CAS 
    Article 

    Google Scholar 
    21.Jha B, Gontia I, Hartmann A. The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant Soil. 2012;356:265–77.CAS 
    Article 

    Google Scholar 
    22.Qin S, Zhang YJ, Yuan B, Xu PY, Xing K, Wang J, et al. Isolation of ACC deaminase-produ0cing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil. 2014;374:753–66.CAS 
    Article 

    Google Scholar 
    23.Soldan R, Mapelli F, Crotti E, Schnell S, Daffonchio D, Marasco R, et al. Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res. 2019;223:33–43.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Bal HB, Nayak L, Das S, Adhya TK. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil. 2013;366:93–105.CAS 
    Article 

    Google Scholar 
    25.Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep. 2016;6:34768.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Dong ZY, Rao MPN, Wang HF, Fang BZ, Liu YH, Li L, et al. Transcriptomic analysis of two endophytes involved in enhancing salt stress ability of Arabidopsis thaliana. Sci Total Environ. 2019;686:107–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Yaish MW, Al-Lawati A, Jana GA, Patankar HV, Glick BR. Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). PLoS One. 2016;11:e0159007.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Yang H, Hu J, Long X, Liu Z, Rengel Z. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci Rep. 2016;6:20687.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Thiem D, Gołębiewski M, Hulisz P, Piernik A, Hrynkiewicz K. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Front Microbiol. 2018;9:651.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Paul D, Lade H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: a review. Agron Sustain Dev. 2014;34:737–52.Article 

    Google Scholar 
    31.Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006;57:233–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sasse J, Martinoia E, Northen T. Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci. 2018;23:25–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Badri DV, Vivanco JM. Regulation and function of root exudates. Plant Cell Environ. 2009;32:666–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Philippot L, Spor A, Hénault C, Bru D, Bizouard F, Jones CM, et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 2013;7:1609–19.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Niu B, Paulson JN, Zheng X, Kolter R. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci USA. 2017;114:E2450–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Vargas R, Pankova E, Balyuk A, Krasilnikov P, Khasankhanova G, editors. Handbook for saline soil management. Food and Agriculture Organization of the United Nations and Lomonosov Moscow State University, Rome, Italy, 2018, pp 8–11.37.McNamara NP, Black HIJ, Beresford NA, Parekh NR. Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol. 2003;24:117–32.Article 

    Google Scholar 
    38.Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528:364–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Carrión VJ, Perez-Jaramillo J, Cordovez V, Tracanna V, de Hollander M, Ruiz-Buck D, et al. Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science. 2019;366:606–12.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, et al. NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinforma (Oxf, Engl). 2018;34:2371–5.CAS 
    Article 

    Google Scholar 
    45.Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010;26:266–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Javůrková VG, Kreisinger J, Procházka P, Požgayová M, Ševčíková K, Brlík V, et al. Unveiled feather microcosm: feather microbiota of passerine birds is closely associated with host species identity and bacteriocin-producing bacteria. ISME J. 2019;13:2363–76.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    51.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Community ecology package. R package version 2.5-6. https://cran.r-project.org. Accessed 1 Sep 2019.52.Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Santhanam R, Weinhold A, Goldberg J, Oh Y, Baldwin IT. Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA. 2015;112:E5013–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Dudenhöffer J-H, Scheu S, Jousset A. Systemic enrichment of antifungal traits in the rhizosphere microbiome after pathogen attack. J Ecol. 2016;104:1566–75.Article 
    CAS 

    Google Scholar 
    56.Kong HG, Kim BK, Song GC, Lee S, Ryu C-M. Aboveground whitefly infestation-mediated reshaping of the root microbiota. Front Microbiol. 2016;7:1314.PubMed 
    PubMed Central 

    Google Scholar 
    57.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Pieterse CM, de Jonge R, Berendsen RL. The soil-borne supremacy. Trends Plant Sci. 2016;21:171–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lämke J, Bäurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:124.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    61.Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N. Biotechnol. 2013;30:355–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, et al. Stress tolerance in plants via habitat adapted symbiosis. ISME J. 2008;2:404–16.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hamilton EW III, Frank DA. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology. 2001;82:2397–402.Article 

    Google Scholar 
    64.Cipollini D, Rigsby CM, Barto EK. Microbes as targets and mediators of allelopathy in plants. J Chem Ecol. 2012;38:714–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Ahmed V, Verma MK, Gupta S, Mandhan V, Chauhan NS. Metagenomic profiling of soil microbes to mine salt stress tolerance genes. Front Microbiol. 2018;9:159.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Troost TA, Kooi BW, Kooijman SALM. When do mixotrophs specialize? Adaptive dynamics theory applied to a dynamic energy budget model. Math Biosci. 2005;193:159–82.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Venceslau SS, Lino RR, Pereira IA. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, et al. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiol Res. 2018;209:21–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Kumar M, Etesami H, Kumar V, editors. Saline soil-based agriculture by halotolerant microorganisms. Singapore: Springer Nature Singapore Pte Ltd; 2019.
    Google Scholar 
    70.Etesami H, Glick BR. Halotolerant plant growth–promoting bacteria: Prospects for alleviating salinity stress in plants. Environ Exp Bot. 2020;23:104124.Article 
    CAS 

    Google Scholar 
    71.van der Heijden MG, Schlaeppi K. Root surface as a frontier for plant microbiome research. Proc Natl Acad Sci USA. 2015;112:2299–300.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    72.Bakhshandeh E, Gholamhosseini M, Yaghoubian Y, Pirdashti H. Plant growth promoting microorganisms can improve germination, seedling growth and potassium uptake of soybean under drought and salt stress. Plant Growth Regul. 2020;90:123–36.CAS 
    Article 

    Google Scholar 
    73.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA. 2012;109:1159–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Matos A, Kerkhof L, Garland JL. Effects of microbial community diversity on the survival of Pseudomonas aeruginosa in the wheat rhizosphere. Micro Ecol. 2005;49:257–64.CAS 
    Article 

    Google Scholar 
    77.Hol WHG, de Boer W, Termorshuizen AJ, Meyer KM, Schneider JHM, et al. Reduction of rare soil microbes modifies plant–herbivore interactions. Ecol Lett. 2010;13:292–301.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article 

    Google Scholar 
    79.Fan P, Chen D, He Y, Zhou Q, Tian Y, Gao L. Alleviating salt stress in tomato seedlings using Arthrobacter and Bacillus megaterium isolated from the rhizosphere of wild plants grown on saline–alkaline lands. Int J Phytoremediat. 2016;18:1113–21.CAS 
    Article 

    Google Scholar 
    80.Misra S, Dixit VK, Mishra SK, Chauhan PS. Demonstrating the potential of abiotic stress-tolerant Jeotgalicoccus huakuii NBRI 13E for plant growth promotion and salt stress amelioration. Ann Microbiol. 2019;69:419–34.CAS 
    Article 

    Google Scholar 
    81.Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the Royal Society. Notes Rec R Soc Lond. 2004;58:187–201.PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Olfactory signals and fertility in olive baboons

    1.Andersson, M. Sexual Selection (Princeton University Press, 1994).
    Google Scholar 
    2.van Schaik, C. P., van Noordwijk, M. A. & Nunn, C. L. Sex and social evolution in primates. In Comparative Primate Socioecology (ed. Lee, P. C.) 204–240 (Cambridge University Press, Cambridge, 2000).
    Google Scholar 
    3.Nunn, C. L. The evolution of exaggerated sexual swellings in primates and the graded signal hypothesis. Anim. Behav. 58, 246–299 (1999).Article 

    Google Scholar 
    4.Pagel, M. The evolution of conspicuous oestrous advertisement in Old World monkeys. Anim. Behav. 47, 1333–1341 (1994).Article 

    Google Scholar 
    5.Kücklich, M., Weiß, B. M., Birkemeyer, C., Einspanier, A. & Widding, A. Chemical cues of female fertility states in a non-human primate. Sci. Rep. 9, 131716 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    6.Maestripieri, D. & Roney, J. Primate copulation calls and postcopulatory female choice. Behav. Ecol. 16, 106–113 (2004).Article 

    Google Scholar 
    7.Semple, S. & McComb, K. Perception of female reproductive state from vocal cues in a mammal species. Proc. R Soc. Lond. B 267, 707–712 (2000).CAS 
    Article 

    Google Scholar 
    8.Street, S. E., Cross, C. P. & Brown, G. R. Exaggerated sexual swellings in female nonhuman primates are reliable signals of female fertility and body condition. Anim. Behav. 112, 203–212 (2016).Article 

    Google Scholar 
    9.Tiddi, B., Wheeler, B. C. & Heistermann, M. Female behavioral proceptivity functions as a probabilistic signal of fertility, not female quality, in a New World primate. Horm. Behav. 73, 148–155 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Aujard, F., Heistermann, M., Thierry, B. & Hodges, J. K. Functional significance of behavioral, morphological, and endocrine correlates across the ovarian cycle in semifree ranging female Tonkean macaques. Am. J. Primatol. 46, 285–309 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Engelhardt, A., Hodges, J. K., Niemitz, C. & Heistermann, M. Female sexual behavior, but not sex skin swelling, reliably indicates the timing of the fertile phase in wild long-tailed macaques (Macaca fascicularis). Horm. Behav. 47, 195–204 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Heistermann, M. et al. Female ovarian cycle phase affects the timing of male sexual activity in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar. Am. J. Primatol. 70, 44–53 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Garcia, C., Shimizu, K. & Huffman, M. Relationship between sexual interactions and the timing of the fertile phase in captive female Japanese macaques (Macaca fuscata). Am. J. Primatol. 71, 868–879 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Heistermann, M. et al. Loss of oestrus, concealed ovulation and paternity confusion in free-ranging Hanuman langurs. Proc. Biol. Sci. B 268, 2445–2451 (2001).CAS 
    Article 

    Google Scholar 
    15.Ostner, J. et al. What Hanuman langur males know about female reproductive status. Am. J. Primatol. 68, 701–712 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bielert, C. & Anderson, C. M. Baboon sexual swellings and male response: A possible operational mammalian supernormal stimulus and response interaction. Int. J. Primatol. 6, 377–393 (1985).Article 

    Google Scholar 
    17.Brauch, K. et al. Female sexual behavior and sexual swelling size as potential cues for males to discern the female fertile phase in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar. Horm. Behav. 52, 375–383 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Higham, J. P., MacLarnon, A. M., Ross, C., Heistermann, M. & Semple, S. Baboon sexual swellings: Information content of size and color. Horm. Behav. 53, 452–462 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Higham, J. P., Semple, S., MacLarnon, A., Heistermann, M. & Ross, C. Female reproductive signals, and male mating behavior in the olive baboon. Horm. Behav. 55, 60–67 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Thomas, M. L. Detection of female mating status using chemical signals and cues. Biol. Rev. Camb. Philos. Soc. 86, 1–13 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Dixson, A. F. Primate Sexuality: Comparative Studies of the Prosimians, Monkeys, Apes and Human Beings (Oxford University Press, 2012).
    Google Scholar 
    22.Dulac, C. & Torello, A. T. Molecular detection of pheromone signals in mammals: From genes to behaviour. Nat. Rev. Neurosci. 4, 551–562 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Gilad, Y., Wiebe, V., Prezeworski, M., Lancet, D. & Pääbo, S. Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS. Biol. 2, 0120–0125 (2004).CAS 
    Article 

    Google Scholar 
    24.Negus, V. The Comparative Anatomy and Physiology of the Nose and Paranasal Sinuses (Livingston, 1958).
    Google Scholar 
    25.Dominy, N. J. & Lucas, P. W. Ecological importance of trichromatic vision to primates. Nature 410, 363–366 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Fornalé, F., Vaglio, S., Spiezio, C. & Prato Previde, E. Red-green colour vision in three catarrhine primates. Commun. Integr. Biol. 5, 583–589 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Gerald, M. S. How color may guide the primate world: Possible relationships between sexual selection and sexual dichromatism. In Sexual Selection and Reproductive Competition in Primates: New Perspectives and Directions (ed. Jones, C. B.) (American Society of Primatologists, 2003).
    Google Scholar 
    28.Porter, R. H. & Moore, J. D. Human kin recognition by olfactory cues. Physiol. Behav. 27, 493–495 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Geissman, T. & Hulftegger, A. M. Olfactory communication in gibbons? In Current Primatology: Social Development, Learning and Behaviour (eds Roeder, J. J. et al.) 199–206 (Université Louis Pasteur Press, 1994).
    Google Scholar 
    30.Wedekind, C., Seebeck, T., Bettens, F. & Paepke, A. J. MHC-dependent mate preferences in humans. Proc. Biol. Sci. B 260, 245–249 (1995).CAS 
    Article 

    Google Scholar 
    31.Wedekind, C. & Füri, S. Body odour preferences in men and women: Do they aim for specific MHC combinations or simply heterozygosity?. Proc. Biol. Sci. B 264, 1471–1479 (1997).CAS 
    Article 

    Google Scholar 
    32.Smith, T. et al. The existence of the vomeronasal organ in postnatal chimpanzees and evidence for its homology to that of humans. J. Anat. 198, 77–82 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Jacob, S., McClintock, M. K., Zelano, B. & Ober, C. Paternally inherited HLA alleles are associated with women’s choice of male odor. Nat. Genet. 30, 175–179 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Klailova, M. & Lee, P. C. Wild western lowland gorillas signal selectively using odor. PLoS ONE 9, e99554 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Masi, S. & Bouret, S. Odor signals in wild western lowland gorillas: An involuntary and extra-group communication hypothesis. Physiol. Behav. 145, 123–126 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. Biol. Sci. B 285, 20181527 (2018).
    Google Scholar 
    37.Weiß, B. M. et al. Chemical composition of axillary odorants reflects social and individual attributes in rhesus macaques. Behav. Ecol. Sociobiol. 72, 65 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Jänig, S., Weiß, B. M., Birkemeyer, C. & Widding, A. Comprative chemical analysis of body odor in great apes. Am. J. Primatol. 81, e22976 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Setchell, J. M. et al. Chemical composition of scent-gland secretions in an Old World monkey (Mandrillus sphinx): Influence of sex, male status, and individual identity. Chem. Sens. 35, 205–220 (2010).CAS 
    Article 

    Google Scholar 
    40.Vaglio, S. et al. Sternal gland scent-marking signals sex, age, rank and group identity in captive mandrills. Chem. Sens. 41, 177–186 (2016).
    Google Scholar 
    41.Clarke, P. M., Barrett, L. & Henzi, S. P. What role do olfactory cues play in chacma baboon mating?. Am. J. Primatol. 71, 493–502 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Crawford, J. C., Boulet, M. & Drea, C. M. Smelling wrong: Hormonal contraception in lemurs alters critical female odour cues. Proc. Biol. Sci. B 278, 122–130 (2011).CAS 

    Google Scholar 
    43.Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Sens. 32, 493–504 (2007).CAS 
    Article 

    Google Scholar 
    44.Rahaman, H. & Parthasarathy, M. D. The role of olfactory signals in the mating behaviour of bonnet monkeys, Macaca radiata. Commun. Behav. Biol. 6, 97–104 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Michael, R. P. & Keverne, E. B. Pheromones in the communication of sexual status in primates. Nature 218, 746–749 (1968).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Michael, R. P. & Keverne, E. B. Primate sex pheromones of vaginal origin. Nature 225, 84–85 (1970).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Michael, R. P. Hormonal steroids and sexual communication in primates. J. Steroid. Biochem. 6, 161–170 (1975).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Goldfoot, D. A., Kravetz, M. A., Goy, R. W. & Freeman, S. K. Lack of effect of vaginal lavages and aliphatic acids on ejaculatory responses in rhesus monkeys: Behavioral and chemical analyses. Horm. Behav. 7, 1–27 (1976).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Havlíček, J., Dvořáková, R., Bartoš, L. & Flegr, J. Non-advertised does not mean concealed: Body odour changes across the human menstrual cycle. Ethology 112, 81–90 (2006).Article 

    Google Scholar 
    50.Doty, R. L., Ford, M., Preti, G. & Huggins, G. R. Changes in the intensity and pleasantness of human vaginal odors during the menstrual cycle. Science 190, 1316–1318 (1975).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Kuukasjarvi, S. et al. Attractiveness of women’s body odors over the menstrual cycle: The role of oral contraceptives and receiver sex. Behav. Ecol. 15, 579–584 (2004).Article 

    Google Scholar 
    52.Singh, D. & Bronstad, P. M. Female body odour is a potential cue to ovulation. Proc. R. Soc. Lond. B 268, 797–801 (2001).CAS 
    Article 

    Google Scholar 
    53.Cerda-Molina, A. L., Hernández-López, L., Rojas-Maya, S., Murcia-Mejía, C. & Mondragón-Ceballos, R. Male-induced sociosexual behaviour by vaginal secretions in Macaca arctoides. Int. J. Primatol. 27, 791–807 (2006).Article 

    Google Scholar 
    54.Robinson, J. G. Intrasexual competition and mate choice in primates. Am. J. Primatol. 3, 131–144 (1982).Article 

    Google Scholar 
    55.Penn, D. J. et al. Individual and gender fingerprints in human body odour. J. R. Soc. Interface 4, 331–340 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Smith, T. & Abbott, D. Behavioral discrimination between circumgenital odor from peri-ovulatory dominant and anovulatory female common marmosets (Callithrix jacchus). Am. J. Primatol. 46, 265–284 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Spence-Aizenberg, A., Kimball, B. A., Williams, L. E. & Fernandez-Duque, E. Chemical composition of glandular secretions from a pair-living monogamous primate: Sex, age, and gland differences in captive and wild owl monkeys (Aotus spp.). Am. J. Primatol. 80, e22730 (2018).Article 

    Google Scholar 
    58.Setchell, J. M. Sexual selection and the differences between the sexes in mandrills (Mandrillus sphinx). Yearb. Phys. Anthropol. 159, S105–S129 (2016).Article 

    Google Scholar 
    59.Higham, J. P., Heistermann, M., Ross, C., Semple, S. & MacIarnon, A. The timing of ovulation with respect to sexual swelling detumescence in wild olive baboons. Primates 49, 295–299 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hasson, O. Towards a general theory of biological signalling. J. Theor. Biol. 185, 139–156 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Packer, C., Tatar, M. & Collins, A. Reproductive cessation in female mammals. Nature 392, 807–811 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Melnick, D. C. & Pearl, M. C. Cercopithecines in multimale groups: Genetic diversity and population structure. In Primate Societies (eds Smuts, B. B. et al.) 121–134 (University of Chicago Press, 1987).
    Google Scholar 
    63.Honoré, E. K. & Tardif, S. D. Reproductive biology of baboons. In The Baboon in Biomedical Research (eds VandeBerg, J. L. et al.) 89–110 (Springer-Verlag, 2009).
    Google Scholar 
    64.Pomerantz, O. & Terkel, J. Effects of positive reinforcement training techniques on the psychological welfare of zoo-housed chimpanzees (Pan troglodytes). Am. J. Primatol. 71, 687–695 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Bercovitch, F. B. Reproductive Tactics in Adult Female and Adult Male Olive Baboons. (Ph.D. thesis, University of California, 1985).66.Hendrickx, A. G. & Kraemer, D. C. Observation of the menstrual cycle, optimal mating time, and preimplantation embryos of the baboon. J. Reprod. Fert. S6, 119–128 (1969).
    Google Scholar 
    67.Koyama, T., De La Pena, A. & Hagino, N. Plasma estrogen, progestin, and luteinizing hormone during the normal menstrual cycle in the baboon: Role of luteinizing hormone. Am. J. Obstet. Gynecol. 127, 67–71 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Shaikh, A. A., Celaya, C. L., Gomez, I. & Shaikh, S. A. Temporal relationship of hormonal peaks to ovulation and sex skin deturgescence in the baboon. Primates 23, 444–452 (1982).CAS 
    Article 

    Google Scholar 
    69.Vaglio, S. et al. Female copulation calls vary with male ejaculation in captive olive baboons. Behaviour 157, 807–822 (2020).Article 

    Google Scholar 
    70.Shambayati, B. Cytopathology (Oxford University Press, 2011).
    Google Scholar 
    71.Wilcox, A. J., Weingberg, C. R. & Baird, D. D. Timing of sexual intercourse in relation to ovulation: Effects on the probability of conception, survival of the pregnancy and sex of the baby. N. Engl. J. Med. 333, 189–194 (1995).Article 

    Google Scholar 
    72.Walker, D. & Vaglio, S. Sampling and analysis of animal scent signals. J. Vis. Exp. 168, e60902 (2021).
    Google Scholar 
    73.El‐Sayed, A. The Pherobase: Database of Pheromones and Semiochemicals. www.pherobase.com (2016).74.Oksanen, J. et al. VEGAN: Community Ecology Package. R Package Version 2.5-5 (2019).75.R Studio Team R Studio: Integrated Development for R (2019).76.R Core Team R: A language and Environment for Statistical Computing (2018).77.StataCorp. Stata Statistical Software, 16th Release (2019).78.Mundry, R. & Sommer, C. Discriminant function analysis with nonindependent data: Consequences and an alternative. Anim. Behav. 74, 965–976 (2007).Article 

    Google Scholar 
    79.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).
    Google Scholar 
    80.Breslow, N. E. & Clayton, D. G. Approximate inference in generalized linear mixed models. J. Am. Stat. Ass. 88, 9–25 (1993).MATH 

    Google Scholar 
    81.Bell, B. A., Morgan, G. B., Schoeneberger, J. A. & Loudermilk, B. L. Dancing the sample size limbo with mixed models: How low can you go? SAS Global Forum, Paper 197 (2010).82.Heymann, E. W. The neglected sense-olfaction in primate behavior, ecology, and evolution. Am. J. Primatol. 68, 519–524 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Hayes, R., Morelli, T. & Wright, P. Anogenital gland secretions of Lemur catta and Propithecus verreauxi coquereli: A preliminary chemical examination. Am. J. Primatol. 63, 49–62 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Janda, E. D., Perry, K., Hankinson, E., Walker, D. & Vaglio, S. Sex differences in scent-marking in captive red-ruffed lemurs. Am. J. Primatol. 81, 60–68 (2019).Article 

    Google Scholar 
    85.Smith, T., Tomlinson, A., Mlotkiewicz, J. & Abbott, D. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Sens. 26, 449–458 (2001).CAS 
    Article 

    Google Scholar 
    86.Hurst, J. L., Robertson, D., Tolladay, U. & Beynon, J. Proteins in urine scent marks of male house mice extend the longevity of olfactory signals. Anim. Behav. 55, 1289–1297 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Belcher, A. M. et al. Proteins: biologically relevant components of the scent marks of a primate (Saguinus fuscicollis). Chem. Sens. 15, 431–446 (1990).CAS 
    Article 

    Google Scholar 
    88.Doty, R. L. Olfactory communication in humans. Chem. Sens. 6, 351–376 (1981).Article 

    Google Scholar 
    89.Curtis, R. F., Ballantine, J. A., Keverne, E. B., Bonsall, R. W. & Michael, R. P. Identification of primate sexual pheromones and the properties of synthetic attractants. Nature 232, 396–398 (1971).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Jha, S. K., Marina, N., Liu, C. & Hayashi, K. Human body odor discrimination by GC-MS spectra data mining. Anal. Methods 7, 9549–9561 (2015).CAS 
    Article 

    Google Scholar 
    91.Balcerzak, L., Gibka, J., Sikora, M., Kula, J. & Strub, D. J. Minor constituents of essential oils and aromatic extracts. Oximes derived from natural flavor and fragrance raw materials: Sensory evaluation, spectral and gas chromatographic characteristics. Food Chem. 301, 125283 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Baker, M. Fur rubbing: use of medicinal plants by capuchin monkeys (Cebus capucinus). Am. J. Primatol. 38, 263–270 (1996).Article 

    Google Scholar 
    93.Wyatt, T. Pheromones and Animal Behaviour. Chemical Signal and Signatures (Cambridge University Press, 2014).
    Google Scholar 
    94.DelBarco-Trillo, J., Harelimana, I. H., Goodwin, T. E. & Drea, C. M. Chemical differences between voided and bladder urine in the aye-aye (Daubentonia madagascariensis): Implications for olfactory communication studies. Am. J. Primatol. 75, 695–702 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Smith, T. Individual olfactory signatures in common marmosets (Callithrix jacchus). Am. J. Primatol. 68, 585–604 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Drea, C. M. Design, delivery and perception of conditiondependent chemical signals in strepsirrhine primates: Implications for human olfactory communication. Phil. Trans. R. Soc. B 375, 20190264 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Poirier, A. C. et al. On the trail of primate scent signals: A field analysis of callitrichid scent-gland secretions by portable gas chromatography-mass spectrometry. Am. J. Primatol. 1, e23236 (2021).
    Google Scholar 
    98.Mason, R. T. & Parker, M. R. Social behaviour and pheromonal communication in reptiles. J. Comp. Physiol. A 196, 729–749 (2010).CAS 
    Article 

    Google Scholar 
    99.Shirasu, M. & Touhara, K. The scent of disease: Volatile organic compounds of the human body related to disease and disorder. J. Biochem. 150, 257–266 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Rivera, A. J., Stumpf, R. M., Wilson, B., Leigh, S. & Salyers, A. A. Baboon vaginal microbiota: An overlooked aspect of primate physiology. Am. J. Primatol. 72, 467–474 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Pener, M. P. & Simpson, S. J. Locust phase polyphenism: An update. Adv. Insect Physiol. 36, 1–272 (2009).Article 

    Google Scholar 
    102.Andersson, J., Borg-Karlson, A. K. & Wiklund, C. Antiaphrodisiacs in pierid butterflies: A theme with variation!. J. Chem. Ecol. 29, 1489–1499 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Ramirez, S. R. et al. Asynchronous diversification in a specialized plant-pollinator mutualism. Science 333, 1742–1746 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Rigaill, L., Higham, J. P., Lee, P. C., Blin, A. & Garcia, C. Multimodal sexual signaling and mating behavior in olive baboons (Papio anubis). Am. J. Primatol. 75, 774–787 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Candolin, U. The use of multiple cues in mate choice. Biol. Rev. Camb. Philos. Soc. 78, 575–595 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Johnstone, R. A., Reynolds, J. D. & Deutsch, J. C. Mutual mate choice and sex differences in choosiness. Evolution 50, 1382–1391 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Johnstone, R. A. Multiple displays in animal communication: “Backup signals” and “multiple messages”. Phil. Trans. R. Soc. B 351, 329–338 (1996).ADS 
    Article 

    Google Scholar 
    108.Greene, L. K. et al. Mix it and fix it: Functions of composite olfactory signals in ring-tailed lemurs. R. Soc. Open Sci. 3, 160076 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Mitro, S., Gordon, A. R., Olsson, M. J. & Lundström, J. N. The smell of age: Perception and discrimination of body odors of different ages. PLoS ONE 7(5), e38110 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Beauchamp, G. K. & Yamazaki, K. Chemical signalling in mice. Biochem. Soc. Trans. 31, 147–151 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Kean, E. F., Muller, C. T. & Chadwick, E. A. Otter scent signals age, sex, and reproductive status. Chem. Sens. 36, 555–564 (2011).CAS 
    Article 

    Google Scholar 
    112.MacDonald, E. A., Fernandez-Duque, E., Evans, S. & Hagey, L. R. Sex, age, and family differences in the chemical composition of owl monkey (Aotus nancymaae) subcaudal scent secretions. Am. J. Primatol. 70, 12–18 (2007).Article 
    CAS 

    Google Scholar 
    113.Osada, K. et al. The scent of age. Proc. R. Soc. Lond. B 270, 929–933 (2003).CAS 
    Article 

    Google Scholar 
    114.White, A. M., Swaisgood, R. R. & Zhang, H. Chemical communication in the giant panda (Ailuropoda melanoleuca): The role of age in the signaller and assessor. J. Zool. 259, 171–178 (2006).Article 

    Google Scholar 
    115.Anderson, C. M. Female age: Male preference and reproductive success in primates. Int. J. Primatol. 7, 305–326 (1986).Article 

    Google Scholar 
    116.Cant, A. C. & Young, A. J. Resolving social conflict among females without overt aggression. Phil. Trans. R. Soc. B 368, 20130076 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Alberts, S. C., Altmann, J. & Wilson, M. L. Mate guarding constrains foraging activity of male baboons. Anim. Behav. 51, 1269–1277 (1996).Article 

    Google Scholar 
    118.Brennan, P. A. & Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Phil. Trans. R. Soc. B 361, 2061–2078 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    119.Wyatt, T. Pheromones and Animal Behaviour (Cambridge University Press, 2003).
    Google Scholar 
    120.Thom, M. D. & Hurst, J. L. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787 (2004).
    Google Scholar 
    121.Setchell, J. M., Lee, P. C., Wickings, E. J. & Dixson, A. F. Growth and ontogeny of sexual size dimorphism in the mandrill (Mandrillus sphinx). Am. J. Phys. Anthropol. 115, 349–360 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    122.Palagi, E. & Dapporto, L. Beyond odor discrimination: Demonstrating individual recognition by scent in Lemur catta. Chem. Sens. 31, 437–443 (2006).Article 

    Google Scholar 
    123.Epple, G., Kuderling, I. & Belcher, A. M. Some communicatory functions of scent marking in the cotton-top tamarin Saguinus oedipus oedipus. J. Chem. Ecol. 14, 503–515 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    124.Laska, M., Genzel, D. & Wieser, A. The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers. Chem. Sens. 30, 171–175 (2005).CAS 
    Article 

    Google Scholar  More

  • in

    Individual and collective foraging in autonomous search agents with human intervention

    Loose coupling and human intervention promote collective foraging successWe first determined group search performance by assessing the average search time, consumption time, and total targets found in each movement condition with and without intervention.Results showed that search performance as measured by mean trial time was better with loose coupling and human intervention, as seen in the lowest average trial times in Fig. 3. Movement type had a reliable effect on performance without human intervention, F(1,59) = 27.65, p  More

  • in

    Edaphic and climatic factors influence on the distribution of soil transmitted helminths in Kogi East, Nigeria

    Study areaKogi East located in Kogi State, North Central Nigeria. It is a geographical region comprising of nine (9) Local Government Areas (LGAs); Ankpa, Bassa, Dekina, Ibaji, Idah, Igalamela/Odolu, Ofu, Olamaboro and Omala. The region is located between latitude 6º32′33.8′′N to 8º02′44.8′′N and longitude 6º42′08.5′′E to 7º51′50.3′′E. It occupies an area of 26,197 square kilometres sharing boundaries with six (6) states of Nigeria28. The population of the region at 2006 is 1,479,144 with a projected population of 1,996,700 at 201629.Ethical approval and informed consentEthical clearance was obtained from Research Ethics Committee, Kogi State Ministry of Health (KSMoH), Lokoja with reference number MOH/KGS/1376/1/82 and permission was obtained from the State Universal Basic Education Board (SUBEB), Lokoja with reference number KG/SUBEB/GEN/04/’T’ which was conveyed to the Education Secretaries of the 9 LGAs and the Headmasters (mistress) of the schools.This study follows guidelines for the care and use of human samples established by the Human Care and Use Committee of the Ahmadu Bello University, Zaria, Kaduna State, Nigeria and the Research Ethics Committee, Kogi State Ministry of Health (KSMoH), Lokoja.Statement of consent from participantsWritten consents were obtained from the guardians/parents of study participants, informing them of their rights and granting permission for their children to participate in the study.Source of epidemiological dataThe epidemiological data used for this study were obtained from an earlier district-wide survey carried out in 2018 (Table 1)25 in rural communities of Kogi East, Kogi State, Nigeria. The study obtained samples from school-children of age 5 to 14 years. Samples collected were examined using formal ether sedimentation technique. The study was carried out in schools that did not receive anthelminthic drugs during the yearly periodic deworming exercise carried out by the State Ministry of Health. During the survey, the geographical coordinates of each school and community were captured within the school premises using a handheld Global Positioning system (GPS) device, Garmin 12XL (Garmin Corp, USA).Table 1 Epidemiological Data from District Wide Survey Conducted in 2018 by Yaro et al. (2020) in Kogi East, North Central Nigeria.Full size tableSpatial analysis of STHsCo-ordinate of schools sampled and the mean prevalence of each parasites from the baseline study for A. lumbricoides, Hookworms and S. stercoralis were computed in Microsoft Excel version 2013 and converted to comma delimited file (.csv). These files were further converted from text files to shapefiles using DIVA-GIS version 7.5.0 and were geo-referenced on the map of Kogi East, Nigeria. The prevalence of these parasites were categorized; 0.0–1.0,  > 1.0–5.0,  > 5.0–10.0,  > 10.0–20.0,  > 20.0–50.0 and  > 50.0 on the map (Figs. 1 and 2).Figure 1Source of Satellite Imagery: Image Google Earth: Landsat/Copernicus (Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maps were visualized on ArcMap 10.1. https://www.google.com/maps/place/Kogi/@7.3195959,7.2632804,189324m/data=!3m1!1e3!4m5!3m4!1s0x104f41e9d61f12dd:0xbdc9f94f2d58aafd!8m2!3d7.7337325!4d6.6905836.Spatial Distribution of STHs in Communities of Kogi East, North Central Nigeria.Full size imageFigure 2Source of Satellite Imagery: Image Google Earth: Landsat/Copernicus (Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Maps were visualized on ArcMap 10.1. https://www.google.com/maps/place/Kogi/@7.3195959,7.2632804,189324m/data=!3m1!1e3!4m5!3m4!1s0x104f41e9d61f12dd:0xbdc9f94f2d58aafd!8m2!3d7.7337325!4d6.6905836.Spatial Distribution of STHs in Local Government Areas of Kogi East, North Central Nigeria.Full size imageEnvironmental data collectionClimatic and elevation variablesRemotely sensed environmental data for altitude, temperature and precipitation were obtained from Worldclim database30. The climatic variables such as temperature and precipitation are at global and meso scales and topographic variables such as elevation and aspect likely affect species distributions at meso and topo-scales31. Hence, the use of the climatic and topographic variables in the prediction of distributions of soil transmitted helminths in Kogi East, Nigeria. Also, temperature was considered in the analysis because A. lumbricoides, hookworms and S. stercoralis have thermal thresholds of 38 °C, 40 °C and 40 °C respectively outside of which the survival of the infective stages in the soil decline32,33.In this study, a total of 19 bioclimatic factors of present climate for Nigeria were downloaded at 1 km spatial resolution (Table 2) from Worldclim database30 and were used in the prediction of soil transmitted helminths distribution in Kogi East. Elevation data derived from the Shuttle Radar Topography Mission (SRTM) (aggregated to 30 arc-seconds, “1 km”) were also downloaded from WorldClim database30.Table 2 Characteristics of Environmental Variables Used in Predicting the Distribution of STHs in Nigeria.Full size tableEdaphic variableThe influence of edaphic factors on the distribution of STHs have been reported by several researchers globally34,35,36 as important factors in the biology of STH parasites. In view of this, data for soil pH, soil moisture content, soil organic carbon and soil clay content for Africa continent were downloaded from International Soil Reference Centre (ISRIC) soil database as spatial layers (Table 2)37.File conversions and resamplingThe 19 bioclimatic factors downloaded from WorldClim data are in geographic coordinates of latitudes and longitudes which comes as .bil files were extracted into a folder. These data were transformed into predefined geographic coordinate system (GCS_WGS_1984), this projection was done on ArcMap 10.1 and were converted to asci files on DIVA-GIS 7.5. These files were transferred back to ArcMap and assigned a projected coordinate system of Universal Transverse Mercator (UTM) Zone 32 N (Nigeria is located on UTM Zone 31, 32 and 33). Also, the edaphic factors obtained were also assigned a projected coordinate system. The projected raster files (i.e. climatic, elevation and edaphic) were all clipped into a layer using the administrative boundary map of the study area, this was downloaded on DIVA-GIS database38.Prior to modelling, all variables were resampled from their native resolution to a common resolution of 1 km spatial resolution using the nearest neighbour technique on ArcMap 10.1 to enable overlaying of variables. The resampled raster files were converted to float files on ArcMap 10.1 and transferred to DIVA-GIS 7.5. Float files were converted to grid files and then to asci files on DIVA-GIS 7.5 and were used on MaxEnt tool for modelling the distribution of STHs in Kogi East.Ecological niche modellingThe potential distribution of STHs were modelled using maximum entropy (MaxEnt) software version 3.3.3k39. MaxEnt uses environmental data at occurrence and background locations to predict the distribution of a species across a landscape31,40. This modelling tool was selected based on the reasons of Sarma et al.41, they stated that this tool allows the use of presence only datasets and model robustness is hardly influenced by small sample sizes. It has been shown to be one of the top performing modelling tools42.Probability of presence of each of the STH was estimated by MaxEnt using the prevalence of each of the STH parasites obtained for 45 sampled communities in the 9 LGAs of Kogi East during the district-wide survey carried out in 201825 served as the presence records to generate background points were used41. Regularization of the prevalence was performed to control over-fitting. This modelling tool uses five different features to perform its statistics; linear, quadratic, product, threshold and hinge features to produce a geographical distribution of species within a define area. The MaxEnt produces a logistic output format used in the production of a continuous map that provides a visualization with an estimated probability of species between 0 and 1. This map distinguish areas of high and low risk for STH infections41.The 19 bioclimatic factors, elevation data and the edaphic factors obtained were used for the ecological niche modelling. The level of significance of contribution of the altitude and 19 bioclimatic factors was used to calculate the area under the receiver operating characteristics curve (AUC) was used to evaluate the model performance. The AUC values varies from 0.5 to 1.0; an AUC value of 0.5 indicates that model predictions are not better than random, values  0.9 indicates high model performance43.Model validation was performed as follows41, using the ‘sub-sampling’ procedure in MaxEnt. 75% of the parasites prevalence data were used for model calibration and the remaining 25% for model validation. Ten replicates were run and average AUC values for training and test datasets were calculated. Maximum iterations were set at 5000. Sensitivity, which is also named the true positive rate, can measure the ability to correctly identify areas infected. Its value equals the rate of true positive and the sum value of true positive and false negative. Specificity, which is also named the true negative rate, can measure the ability to correctly identify areas uninfected. Its value equals the rate of true negative and the sum value of false positive and true negative.Ethics approvalThis study follows guidelines for the care and use of experimental animals established by the Animal Care and Use Committee of the Ahmadu Bello University, Zaria for the purpose of control and supervision of experiments on animals and ethical permission for the study was obtained from the ethical Board of Kogi State Ministry of Health, Lokoja with reference number: MOH/KGS/1376/1/82. More

  • in

    Combined effects of crude oil exposure and warming on eggs and larvae of an arctic forage fish

    1.IPCC. The Ocean and Cryosphere in a changing Climate—Summary for Policymakers (2019).2.Carmack, E. et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new arctic. Bull. Am. Meteorol. Soc. 96, 2079–2105 (2015).ADS 
    Article 

    Google Scholar 
    3.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    4.Borgå, K. The Arctic ecosystem: a canary in the coal mine for global multiple stressors. Environ. Toxicol. Chem. 38, 487–488 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    5.Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).ADS 
    Article 

    Google Scholar 
    6.Onarheim, I. H., Eldevik, T., Smedsrud, L. H. & Stroeve, J. C. Seasonal and regional manifestation of Arctic Sea ice loss. J. Clim. 31, 4917–4932 (2018).ADS 
    Article 

    Google Scholar 
    7.Screen, J. A. & Simmonds, I. Increasing fall-winter energy loss from the Arctic Ocean and its role in Arctic temperature amplification. Geophys. Res. Lett. 37, 1–5 (2010).Article 

    Google Scholar 
    8.Onarheim, I. H. & Årthun, M. Toward an ice-free Barents Sea. Geophys. Res. Lett. 44, 8387–8395 (2017).ADS 
    Article 

    Google Scholar 
    9.Champine, R. D., Morris, R. & Elder, S. The melting Arctic is now open for business. National Geographic Magazine (2019).10.Orourke, R. et al. Changes in the Arctic: Background and Issues for Congress 129 (DIANE Publishing, 2020).
    Google Scholar 
    11.Eriksen, E., Huserbråten, M., Gjøsæter, H., Vikebø, F. & Albretsen, J. Polar cod egg and larval drift patterns in the Svalbard archipelago. Polar Biol. https://doi.org/10.1007/s00300-019-02549-6 (2019).Article 

    Google Scholar 
    12.Eguíluz, V. M., Fernández-Gracia, J., Irigoien, X. & Duarte, C. M. A quantitative assessment of Arctic shipping in 2010–2014. Sci. Rep. 6, 30682 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Ellis, B., & Brigham, L. Arctic Marine Shipping Assessment 2009 Report. (2009).14.Pörtner, H.-O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).PubMed 
    Article 

    Google Scholar 
    15.Pollino, C. A. & Holdway, D. A. Toxicity testing of crude oil and related compounds using early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Ecotoxicol. Environ. Saf. 52, 180–189 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Miller, B. & Kendall, A. W. Early Life History of Marine Fishes (University of California Press, 2009). https://doi.org/10.1525/9780520943766.
    Google Scholar 
    17.Dahlke, F. T. et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5°C. Sci. Adv. 4, 8821 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    18.Petersen, G. I. & Kristensen, P. Bioaccumulation of lipophilic substances in fish early life stages. Environ. Toxicol. Chem. 17, 1385–1395 (1998).CAS 
    Article 

    Google Scholar 
    19.Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Jung, J.-H. et al. Differential toxicokinetics determines the sensitivity of two marine embryonic fish exposed to Iranian heavy crude oil. Environ. Sci. Technol. 49, 13639–13648 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Ingvarsdóttir, A. et al. Effects of different concentrations of crude oil on first feeding larvae of Atlantic herring (Clupea harengus). J. Mar. Syst. 93, 69–76 (2012).Article 

    Google Scholar 
    22.Pasparakis, C., Esbaugh, A. J., Burggren, W. & Grosell, M. Physiological impacts of deepwater horizon oil on fish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 224, 108558 (2019).CAS 
    Article 

    Google Scholar 
    23.Steiner, N. S. et al. Impacts of the changing ocean-sea ice system on the key forage fish arctic cod (Boreogadus saida) and subsistence fisheries in the western Canadian arctic—evaluating linked climate, ecosystem and economic (CEE) models. Front. Mar. Sci. 6, 179 (2019).Article 

    Google Scholar 
    24.Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. R. Soc. B Biol. Sci. 282, 20151546 (2015).Article 

    Google Scholar 
    25.Harter, B. B., Elliott, K. H., Divoky, G. J. & Davoren, G. K. Arctic cod (Boreogadus saida) as prey: fish length-energetics relationships in the Beaufort Sea and Hudson Bay. Arctic 66, 191–196 (2013).Article 

    Google Scholar 
    26.Graham, M. & Hop, H. Aspects of reproduction and larval biology of Arctic cod (Boreogadus saida). Arctic 48, 130–135 (1995).Article 

    Google Scholar 
    27.Gradinger, R. R. & Bluhm, B. A. In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the High Arctic Canada Basin. Polar Biol. 27, 595–603 (2004).Article 

    Google Scholar 
    28.Laurel, B. J., Copeman, L. A., Spencer, M. & Iseri, P. Comparative effects of temperature on rates of development and survival of eggs and yolk-sac larvae of Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2403–2412 (2018).Article 

    Google Scholar 
    29.ICES. Report of the Arctic Fisheries Working Group. 859 http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2018/AFWG/00-AFWG%202018%20Report.pdf (2018).30.Eriksen, E., Ingvaldsen, R. B., Nedreaas, K. & Prozorkevich, D. The effect of recent warming on polar cod and beaked redfish juveniles in the Barents Sea. Reg. Stud. Mar. Sci. 2, 105–112 (2015).Article 

    Google Scholar 
    31.Astthorsson, O. S. Distribution, abundance and biology of polar cod, Boreogadus saida, in Iceland–East Greenland waters. Polar Biol. 39, 995–1003 (2016).Article 

    Google Scholar 
    32.Divoky, G. J., Lukacs, P. M. & Druckenmiller, M. L. Effects of recent decreases in arctic sea ice on an ice-associated marine bird. Prog. Oceanogr. 136, 151–161 (2015).ADS 
    Article 

    Google Scholar 
    33.Hansen, M. O., Nielsen, T. G., Stedmon, C. A. & Munk, P. Oceanographic regime shift during 1997 in Disko Bay, Western Greenland. Limnol. Oceanogr. 57, 634–644 (2012).ADS 
    Article 

    Google Scholar 
    34.Nahrgang, J. et al. Gender specific reproductive strategies of an Arctic key species (Boreogadus saida) and implications of climate change. PLoS ONE 9, e98452 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Huserbråten, M. B. O., Eriksen, E., Gjøsæter, H. & Vikebø, F. Polar cod in jeopardy under the retreating Arctic sea ice. Commun. Biol. 2, 1–8 (2019).Article 

    Google Scholar 
    36.Nahrgang, J. et al. Early life stages of an arctic keystone species (Boreogadus saida) show high sensitivity to a water-soluble fraction of crude oil. Environ. Pollut. 218, 605–614 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Laurel, B. J. et al. Embryonic crude oil exposure impairs growth and lipid allocation in a keystone arctic forage fish. iScience 19, 1101–1113 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Politis, S. N. et al. Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae. PLoS ONE 12, e0182726 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.O’Dea, R. E., Lagisz, M., Hendry, A. P. & Nakagawa, S. Developmental temperature affects phenotypic means and variability: a meta-analysis of fish data. Fish Fish. 20, 1005–1022 (2019).Article 

    Google Scholar 
    40.Réalis-Doyelle, E., Pasquet, A., De Charleroy, D., Fontaine, P. & Teletchea, F. Strong effects of temperature on the early life stages of a cold stenothermal fish species, brown trout (Salmo trutta L.). PLoS ONE 11, e0155487 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Réalis-Doyelle, E., Pasquet, A., Fontaine, P. & Teletchea, F. How climate change may affect the early life stages of one of the most common freshwater fish species worldwide: the common carp (Cyprinus carpio). Hydrobiologia 805, 365–375 (2018).Article 
    CAS 

    Google Scholar 
    42.Hicken, C. E. et al. Sublethal exposure to crude oil during embryonic development alters cardiac morphology and reduces aerobic capacity in adult fish. Proc. Natl. Acad. Sci. 108, 7086–7090 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Carls, M. G., Rice, S. D. & Hose, J. E. Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval pacific herring (Clupea pallasi). Environ. Toxicol. Chem. 18, 481–493 (1999).CAS 
    Article 

    Google Scholar 
    44.Incardona, J. P. Molecular mechanisms of crude oil developmental toxicity in fish. Arch. Environ. Contam. Toxicol. 73, 19–32 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Sørhus, E. et al. Novel adverse outcome pathways revealed by chemical genetics in a developing marine fish. Elife 6, e20707 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Incardona, J. P. & Scholz, N. L. The influence of heart developmental anatomy on cardiotoxicity-based adverse outcome pathways in fish. Aquat. Toxicol. 177, 515–525 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Perrichon, P. et al. Combined effects of elevated temperature and Deepwater Horizon oil exposure on the cardiac performance of larval mahi–mahi, Coryphaena hippurus. PLoS ONE 13, e0203949 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Pasparakis, C. et al. Combined effects of oil exposure, temperature and ultraviolet radiation on buoyancy and oxygen consumption of embryonic mahi–mahi, Coryphaena hippurus. Aquat. Toxicol. 191, 113–121 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Pasparakis, C., Mager, E. M., Stieglitz, J. D., Benetti, D. & Grosell, M. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi–mahi (Coryphaena hippurus). Aquat. Toxicol. 181, 113–123 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Gunderson, A. R., Armstrong, E. J. & Stillman, J. H. Multiple stressors in a changing world: the need for an improved perspective on physiological responses to the dynamic marine environment. Annu. Rev. Mar. Sci. 8, 357–378 (2016).ADS 
    Article 

    Google Scholar 
    51.McNicholl, D. G., Davoren, G. K., Majewski, A. R. & Reist, J. D. Isotopic niche overlap between co-occurring capelin (Mallotus villosus) and polar cod (Boreogadus saida) and the effect of lipid extraction on stable isotope ratios. Polar Biol. 41, 423–432 (2018).Article 

    Google Scholar 
    52.Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Bouchard, C. & Fortier, L. Circum-arctic comparison of the hatching season of polar cod Boreogadus saida: a test of the freshwater winter refuge hypothesis. Prog. Oceanogr. 90, 105–116 (2011).ADS 
    Article 

    Google Scholar 
    54.Laurel, B. J., Spencer, M., Iseri, P. & Copeman, L. A. Temperature-dependent growth and behavior of juvenile Arctic cod (Boreogadus saida) and co-occurring North Pacific gadids. Polar Biol. 39, 1127–1135 (2016).Article 

    Google Scholar 
    55.Drost, H. E. et al. Upper thermal limits of the hearts of Arctic cod Boreogadus saida : adults compared with larvae: boreogadus saida thermal limits. J. Fish Biol. 88, 718–726 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Bender, M. L. et al. Effects of chronic dietary petroleum exposure on reproductive development in polar cod (Boreogadus saida). Aquat. Toxicol. 180, 196–208 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Bender, M. L. et al. Effects of acute exposure to dispersed oil and burned oil residue on long-term survival, growth, and reproductive development in polar cod (Boreogadus saida). Mar. Environ. Res. 140, 468–477 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Boehm, P. D., Neff, J. M. & Page, D. S. Assessment of polycyclic aromatic hydrocarbon exposure in the waters of Prince William Sound after the Exxon Valdez oil spill: 1989–2005. Mar. Pollut. Bull. 54, 339–356 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Sammarco, P. W. et al. Distribution and concentrations of petroleum hydrocarbons associated with the BP/Deepwater Horizon Oil Spill, Gulf of Mexico. Mar. Pollut. Bull. 73, 129–143 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Berenshtein, I. et al. Invisible oil beyond the Deepwater Horizon satellite footprint. Sci. Adv. 6, eaaw8863 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Incardona, J. P. et al. Cardiac arrhythmia is the primary response of embryonic pacific herring (Clupea pallasi) exposed to crude oil during weathering. Environ. Sci. Technol. 43, 201–207 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Incardona, J. P. et al. Exxon Valdez to Deepwater Horizon: comparable toxicity of both crude oils to fish early life stages. Aquat. Toxicol. Amst. Neth. 142–143, 303–316 (2013).Article 
    CAS 

    Google Scholar 
    63.de Soysa, T. Y. et al. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis. BMC Biol. 10, 40 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Incardona, J. P. et al. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. 5, 13499 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Heintz, R. A. et al. Delayed effects on growth and marine survival of pink salmon Oncorhynchus gorbuscha after exposure to crude oil during embryonic development. Mar. Ecol. Prog. Ser. 208, 205–216 (2000).ADS 
    Article 

    Google Scholar 
    66.Sorheim, K. R. & Moldestad, M. O. Weathering properties of the Goliat Kobbe and two Goliat Blend of Kobbe and Realgrunnen crude oils. (2008).67.Sørensen, L., Melbye, A. G. & Booth, A. M. Oil droplet interaction with suspended sediment in the seawater column: influence of physical parameters and chemical dispersants. Mar. Pollut. Bull. 78, 146–152 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    68.Sørensen, L. et al. Accumulation and toxicity of monoaromatic petroleum hydrocarbons in early life stages of cod and haddock. Environ. Pollut. 251, 212–220 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Meador, J. P. & Nahrgang, J. Characterizing crude oil toxicity to early-life stage fish based on a complex mixture: Are we making unsupported assumptions?. Environ. Sci. Technol. 53, 11080–11092 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Sørensen, L. et al. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod. PLoS ONE 12, e0180048 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Carls, M. G. et al. Fish embryos are damaged by dissolved PAHs, not oil particles. Aquat. Toxicol. 88, 121–127 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Hansen, B. H. et al. Developmental effects in fish embryos exposed to oil dispersions—the impact of crude oil micro-droplets. Mar. Environ. Res. 150, 104753 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Olsvik, P. A., Berntssen, M. H. G., Hylland, K., Eriksen, D. Ø. & Holen, E. Low impact of exposure to environmentally relevant doses of 226Ra in Atlantic cod (Gadus morhua) embryonic cells. J. Environ. Radioact. 109, 84–93 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Sundby, S. & Kristiansen, T. The principles of buoyancy in marine fish eggs and their vertical distributions across the world oceans. PLoS ONE 10, e0138821 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Spencer, M. L., Vestfals, C. D., Mueter, F. J. & Laurel, B. J. Ontogenetic changes in the buoyancy and salinity tolerance of eggs and larvae of polar cod (Boreogadus saida) and other gadids. Polar Biol. 18, 1141–1158. https://doi.org/10.1007/s00300-020-02620-7 (2020).Article 

    Google Scholar 
    76.Pasparakis, C., Wang, Y., Stieglitz, J. D., Benetti, D. D. & Grosell, M. Embryonic buoyancy control as a mechanism of ultraviolet radiation avoidance. Sci. Total Environ. 651, 3070–3078 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Kent, D., Drost, H. E., Fisher, J., Oyama, T. & Farrell, A. P. Laboratory rearing of wild Arctic cod Boreogadus saida from egg to adulthood: rearing boreogadus saida from egg to adulthood. J. Fish Biol. 88, 1241–1248 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Jordaan, A., Hayhurst, S. E. & Kling, L. J. The influence of temperature on the stage at hatch of laboratory reared Gadus morhua and implications for comparisons of length and morphology. J. Fish Biol. 68, 7–24 (2006).Article 

    Google Scholar 
    79.Porter, S. M. & Bailey, K. M. The effect of early and late hatching on the escape response of walleye pollock (Theragra chalcogramma) larvae. J. Plankton Res. 29, 291–300 (2007).Article 

    Google Scholar 
    80.Spicer, J. I., Tills, O., Truebano, M. & Rundle, S. D. Developmental plasticity and heterokairy. In Development and Environment (eds Burggren, W. & Dubansky, B.) 73–96 (Springer, 2018). https://doi.org/10.1007/978-3-319-75935-7_4.
    Google Scholar 
    81.Bouchard, C. et al. Climate warming enhances polar cod recruitment, at least transiently. Prog. Oceanogr. 156, 121–129 (2017).Article 

    Google Scholar 
    82.Koenker, B. L., Laurel, B. J., Copeman, L. A. & Ciannelli, L. Effects of temperature and food availability on the survival and growth of larval Arctic cod (Boreogadus saida) and walleye pollock (Gadus chalcogrammus). ICES J. Mar. Sci. 75, 2386–2402 (2018).Article 

    Google Scholar 
    83.Bouchard, C. & Fortier, L. The importance of Calanus glacialis for the feeding success of young polar cod: a circumpolar synthesis. Polar Biol. https://doi.org/10.1007/s00300-020-02643-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Balazy, K., Trudnowska, E., Wichorowski, M. & Błachowiak-Samołyk, K. Large versus small zooplankton in relation to temperature in the Arctic shelf region. Polar Res. 37, 1427409 (2018).Article 

    Google Scholar 
    85.Weydmann, A. et al. Shift towards the dominance of boreal species in the Arctic: inter-annual and spatial zooplankton variability in the West Spitsbergen Current. Mar. Ecol. Prog. Ser. 501, 41–52 (2014).ADS 
    Article 

    Google Scholar 
    86.Marsh, J. M., Mueter, F. J. & Quinn, T. J. Environmental and biological influences on the distribution and population dynamics of polar cod (Boreogadus saida) in the US Chukchi Sea. Polar Biol. https://doi.org/10.1007/s00300-019-02561-w (2019).Article 

    Google Scholar 
    87.Lange, R. & Marshall, D. Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects. Sci. Rep. 7, 6281 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Liess, M., Foit, K., Knillmann, S., Schäfer, R. B. & Liess, H.-D. Predicting the synergy of multiple stress effects. Sci. Rep. 6, 32965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article 
    CAS 

    Google Scholar 
    90.Holst, J. C. & McDonald, A. FISH-LIFT: a device for sampling live fish with trawls. Fish. Res. 48, 87–91 (2000).Article 

    Google Scholar 
    91.Hall, T. E., Smith, P. & Johnston, I. A. Stages of embryonic development in the Atlantic cod Gadus morhua. J. Morphol. 259, 255–270 (2004).PubMed 
    Article 

    Google Scholar 
    92.Houde, E. D. Mortality. In Fishery Science (ed. Fuiman, L. A.) (Wiley, 1989).
    Google Scholar 
    93.Sørensen, L., Silva, M. S., Booth, A. M. & Meier, S. Optimization and comparison of miniaturized extraction techniques for PAHs from crude oil exposed Atlantic cod and haddock eggs. Anal. Bioanal. Chem. 408, 1023–1032 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    94.Sørensen, L., Meier, S. & Mjøs, S. A. Application of gas chromatography/tandem mass spectrometry to determine a wide range of petrogenic alkylated polycyclic aromatic hydrocarbons in biotic samples. Rapid Commun. Mass Spectrom. 30, 2052–2058 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    95.Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, 45e–445 (2001).Article 

    Google Scholar 
    96.Riley, P. & Skirrow, G. Chemical Oceanography 56–74 (Academic Press, 1975).
    Google Scholar 
    97.Laurel, B. J., Copeman, L. A., Hurst, T. P. & Parrish, C. C. The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Mar. Biol. 157, 1713–1724 (2010).CAS 
    Article 

    Google Scholar 
    98.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Wassenberg, D. M. & Di Giulio, R. T. Synergistic embryotoxicity of polycyclic aromatic hydrocarbon aryl hydrocarbon receptor agonists with cytochrome P4501A inhibitors in Fundulus heteroclitus. Environ. Health Perspect. 112, 1658–1664 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, version 2018). https://www.R-project.org/.101.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Van Willigen, B. nlme: Linear and Nonlinear Mixed Effects Models. (2020).102.Pinheiro, J. & Bates, D. Fitting linear mixed-effects models. In Mixed-Effects Models in S and S-Plus 133–199 (Springer, 2000).103.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).
    Google Scholar 
    104.Folt, C. L., Chen, C. Y., Moore, M. V. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).ADS 
    Article 

    Google Scholar 
    105.Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p < 0.05”. Am. Stat. 73, 1–19 (2019).MathSciNet  Article  Google Scholar  106.Amrheim, V., Greenland, S. & McShane, B. Time to retire statistical significance Nature2019.pdf. Nature 567, 305–307 (2019).ADS  Article  CAS  Google Scholar  More

  • in

    Occurrence of bioluminescent and nonbioluminescent species in the littoral earthworm genus Pontodrilus

    In this study, we confirmed that P. longissimus is nonbioluminescent, despite its close relationship to the luminous species P. litoralis (Supplementary Fig. S2)8. The presence of both luminous and nonluminous species in a single genus is likely widespread, but only a few examples have been confirmed; for example, the genera Vibrio and Photobacterium (marine bacteria)9, Epigonus (deep-sea fishes)10, Mycena (bonnet mushrooms)11 and Eisenia (terrestrial earthworms)12 have been reported to contain both luminous and nonluminous species. P. litoralis and P. longissimus can easily be collected at the same beach8 and reared in a laboratory; thus, they are suitable for studying the ecology and evolution of bioluminescence.In vitro luciferin-luciferase cross-reaction tests of P. longissimus and P. litoralis confirmed that the luminescence ability of P. litoralis is due to the presence of multiple bioluminescent components in coelomic fluid, i.e., luciferin, luciferase and the light emitter. Cross-reaction tests have previously indicated that luminous earthworms in the genera Pontodrilus (Megascolecidae), Microscolex and Diplocardia (Acanthodrilidae) share the same basic bioluminescence mechanisms5,7,13,14, despite their distant relationships to each other15,16. It is expected that the ancestral state of Pontodrilus is nonbioluminescent because the nearest extant relatives of Pontodrilus belong to the genus Plutellus Perrier, 1873, and all members of this group are nonbioluminescent6,17. These findings suggested that P. litoralis secondarily acquired bioluminescent properties through parallel evolution, similar to the case of bioluminescence in lampyrid and elaterid beetles18. We detected a clear difference in the protein composition of the secreted fluid between P. litoralis and P. longissimus (Supplementary Fig. S1). Luciferase and other bioluminescent components of luminous earthworms were not identified, and further comparative analyses of the protein bands, which appear only in the secreted fluid of luminous species, will be useful to understand the mechanisms of bioluminescence and its parallel evolution.In Thailand, P. longissimus was found sympatrically with P. litoralis at the beaches along the coast, but the microhabitats of the two congeners are different; P. litoralis was collected on the beach surface (under trash or leaf litter on sandy beaches), whereas P. longissimus was found at a greater depth than P. litoralis, i.e., a depth of more than 10 cm, where trash and leaves are scarce8 (Fig. 4A–D). It has been hypothesized that the biological function of bioluminescence in Annelida, including P. litoralis, is to stun or divert attention as an anti-predator defense19,20,21,22,23,24,25, but experiments and observations of the prey are limited. Sivinski & Forrest25 reported that the luminescence of Microscolex phosphoreus deterred predation by the mole cricket Scapteriscus acletus under laboratory conditions, although the specimen was ultimately consumed. A British television program26 presented by David Attenborough showed that the French luminous earthworm Avelona ligra glowed when attacked by the carabid beetle, but the beetle consumed the luminescent worm without any hesitation. We suggest that the absence of bioluminescence in P. longissimus may be associated with its presence in habitats with low predation pressure, whereas P. litoralis acquired a bioluminescent property during evolution that enabled it live on the surface of the beach, which is rich in nutrition and food sources3,27 as well as potential predators.Figure 4(A) The microhabitat of Pontodrilus litoralis from Aichi Prefecture, Japan. (B) The microhabitat of P. longissimus in Ranong, Thailand; sympatric Pontodrilus specimens were collected from this location8. (C) P. longissimus was found at a depth of 10–30 cm in muddy sand; the earthworm is shown by an arrow. (D) Bright field image of the Pontodrilus species included in this study. (E) An earwig (Anisolabis maritima) (a potential Pontodrilus predator) grooming its forelegs after attacking P. litoralis. (F) A. maritima (arrowhead) was found in the same microhabitat as P. litoralis in Aichi Prefecture, Japan.Full size imageIndeed, while we observed some burrowing bivalves, no potential predators were observed in the deep sand inhabited by P. longissimus. In contrast, various carnivorous invertebrates, such as earwigs, rove beetles and carabid beetles, were observed on the surface of beaches in Thailand and Japan, where P. litoralis live (Seesamut pers. obs.). We therefore performed a feeding experiment using maritime earwigs sympatrically distributed in a P. litoralis habitat. The maritime earwig Anisolabis maritima (Dermaptera, Anisolabididae) is a cosmopolitan species that can be found in Japan. It has well-developed compound eyes (Fig. 4E) and is considered a carnivorous animal that forages for prey at night28, 29. A. maritima (body length ≤ 30 mm) was the predominant predator at the beach where P. litoralis was collected (Fig. 4F). Some rove beetles (Coleoptera, Staphylinidae) were found in the same habitat, but they seemed to be too small ( More

  • in

    Flowers adapt to welcome the birds — but not the bees

    In Europe, bumblebees pollinate the flowers called foxgloves, but foxgloves that spread to the Americas are also pollinated by hummingbirds and have evolved as a result. Credit: Getty

    Ecology
    16 April 2021
    Flowers adapt to welcome the birds — but not the bees

    Once in the Americas, foxgloves swiftly evolved under pressure by pollinating hummingbirds.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Evolution can forge new relationships between plants and pollinators in fewer than 85 generations.The showy purple flowers called common foxgloves (Digitalis purpurea) are native to Europe, where they are pollinated by bumblebees. When admiring humans took the foxglove to the Americas, it was enthusiastically embraced by a new guild of nectar-drinkers — the hummingbirds.Maria Clara Castellanos at the University of Sussex in Brighton, UK, and her colleagues tallied visitors to foxgloves in the United Kingdom, Colombia and Costa Rica during more than 2,000 3-minute study periods. They found that hummingbirds pollinate up to 27% of foxgloves in Colombia and Costa Rica, where the flowers’ corollas — the long purple tubes that gardeners love so much — are 13% and 26% longer, respectively, than those of UK foxgloves.So why would foxgloves with longer corollas do better? Plants with corollas too long for bumblebees to reach their nectar are guaranteed to be pollinated by hummingbirds, which are more effective than bees at depositing pollen on the next flower. The longer corolla also creates a more comfortable fit for a hovering hummingbird, perhaps improving pollination rates.Hummingbirds can travel further between flowers than can bees, which might reduce plant inbreeding.

    J. Ecol. (2021)

    Ecology More

  • in

    A decadal perspective on north water microbial eukaryotes as Arctic Ocean sentinels

    1.Lovejoy, C., Massana, R. & Pedros-Alio, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microb. 72, 3085–3095. https://doi.org/10.1128/aem.72.5.3085-3095.2006 (2006).CAS 
    Article 

    Google Scholar 
    2.Chamnansinp, A., Li, Y., Lundholm, N. & Moestrup, Ø. Global diversity of two widespread, colony-forming diatoms of the marine plankton, Chaetoceros socialis (syn. C. radians) and Chaetoceros gelidus sp. nov.. J. Phycol. 49, 1128–1141. https://doi.org/10.1111/jpy.12121 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Bluhm, B. A. & Gradinger, R. Regional variability in food availability for Arctic marine mammals. Ecol. Appl. 18, S77-96. https://doi.org/10.1890/06-0562.1 (2008).Article 
    PubMed 

    Google Scholar 
    4.Bâcle, J., Carmack, E. C. & Ingram, R. G. Water column structure and circulation under the North Water during spring transition: April–July 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4907–4925. https://doi.org/10.1016/S0967-0645(02)00170-4 (2002).ADS 
    Article 

    Google Scholar 
    5.Dumont, D., Gratton, Y. & Arbetter, T. E. Modeling wind-driven circulation and landfast ice-edge processes during polynya events in Northern Baffin Bay. J. Phys. Oceanogr. 40, 1356–1372. https://doi.org/10.1175/2010JPO4292.1 (2010).ADS 
    Article 

    Google Scholar 
    6.Tremblay, J. -É., Gratton, Y., Fauchot, J. & Price, N. M. Climatic and oceanic forcing of new, net, and diatom production in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4927–4946. https://doi.org/10.1016/S0967-0645(02)00171-6 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Progr. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).ADS 
    Article 

    Google Scholar 
    8.Møller, E. F. et al. Zooplankton phenology may explain the North Water polynya’s importance as a breeding area for little auks. Mar. Ecol. Progr. Ser. 605, 207–223. https://doi.org/10.3354/meps12745 (2018).ADS 
    Article 

    Google Scholar 
    9.Mei, Z.-P. et al. Physical control of spring–summer phytoplankton dynamics in the North Water, April–July 1998. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 4959–4982. https://doi.org/10.1016/S0967-0645(02)00173-X (2002).ADS 
    Article 

    Google Scholar 
    10.Marchese, C. et al. Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol. 40, 1721–1737. https://doi.org/10.1007/s00300-017-2095-2 (2017).Article 

    Google Scholar 
    11.Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Progr. Ser. 412, 69–84. https://doi.org/10.3354/meps08666 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Joli, N. et al. Need for focus on microbial species following ice melt and changing freshwater regimes in a Janus Arctic Gateway. Sci. Rep. 8, 9405. https://doi.org/10.1038/s41598-018-27705-6 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Lehmann, N. et al. Remote western Arctic nutrients fuel remineralization in deep Baffin Bay. Global Biogeochem. Cycles 33, 649–667. https://doi.org/10.1029/2018GB006134 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Blais, M. et al. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean. Limnol. Oceanogr. 62, 2480–2497. https://doi.org/10.1002/lno.10581 (2017).ADS 
    Article 

    Google Scholar 
    15.Ardyna, M., Gosselin, M., Michel, C., Poulin, M. & Tremblay, J. -É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: Contrasting oligotrophic and eutrophic regions. Mar. Ecol. Progr. Ser. 442, 37–57. https://doi.org/10.3354/meps09378 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).ADS 
    Article 

    Google Scholar 
    17.Lovejoy, C., Legendre, L., Martineau, M.-J., Bâcle, J. & Von Quillfeldt, C. H. Distribution of phytoplankton and other protists in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5027–5047. https://doi.org/10.1016/S0967-0645(02)00176-5 (2002).ADS 
    Article 

    Google Scholar 
    18.Tremblay, J. -É., Michel, C., Hobson, K. A., Gosselin, M. & Price, N. M. Bloom dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr. 51, 900–912. https://doi.org/10.4319/lo.2006.51.2.0900 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mayzaud, P., Boutoute, M., Noyon, M., Narcy, F. & Gasparini, S. Lipid and fatty acids in naturally occurring particulate matter during spring and summer in a high arctic fjord (Kongsfjorden, Svalbard). Mar. Biol. 160, 383–398. https://doi.org/10.1007/s00227-012-2095-2 (2013).CAS 
    Article 

    Google Scholar 
    20.Dumont, D., Gratton, Y. & Arbetter, T. E. Modeling the dynamics of the North Water Polynya Ice Bridge. J. Phys. Oceanogr. 39, 1448–1461. https://doi.org/10.1175/2008jpo3965.1 (2009).ADS 
    Article 

    Google Scholar 
    21.Simo-Matchim, A.-G., Gosselin, M., Poulin, M., Ardyna, M. & Lessard, S. Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador fjords, with special emphasis on Phaeocystis pouchetii. Mar. Ecol. Progr. Ser. 572, 19–42. https://doi.org/10.3354/meps12125 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Flynn, K. J. et al. Mixotrophic protists and a new paradigm for marine ecology: where does plankton research go now?. J. Plankton Res. 41, 375–391. https://doi.org/10.1093/plankt/fbz026 (2019).Article 

    Google Scholar 
    23.Levinsen, H. & Nielsen, T. G. The trophic role of marine pelagic ciliates and heterotrophic dinoflagellates in arctic and temperate coastal ecosystems: A cross-latitude comparison. Limnol. Oceanogr. 47, 427–439. https://doi.org/10.4319/lo.2002.47.2.0427 (2002).ADS 
    Article 

    Google Scholar 
    24.Marquardt, M., Vader, A., Stübner, E. I., Reigstad, M. & Gabrielsen, T. M. Strong seasonality of marine microbial eukaryotes in a high-Arctic fjord (Isfjorden, in West Spitsbergen, Norway). Appl. Environ. Microb. 82, 1868–1880. https://doi.org/10.1128/AEM.03208-15 (2016).CAS 
    Article 

    Google Scholar 
    25.Terrado, R., Vincent, W. F. & Lovejoy, C. Mesopelagic protists: diversity and succession in a coastal Arctic ecosystem. Aquat. Microb. Ecol. 56, 25–39. https://doi.org/10.3354/ame01327 (2009).Article 

    Google Scholar 
    26.Johnson, M. D. & Beaudoin, D. J. The genetic diversity of plastids associated with mixotrophic oligotrich ciliates. Limnol. Oceanogr. 64, 2187–2201. https://doi.org/10.1002/lno.11178 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Onda, D. F. et al. Seasonal and interannual changes in ciliate and dinoflagellate species assemblages in the Arctic Ocean (Amundsen Gulf, Beaufort Sea, Canada). Front. Mar. Sci. 4, 16. https://doi.org/10.3389/fmars.2017.00016 (2017).ADS 
    Article 

    Google Scholar 
    28.Olsen, L. M. et al. A red tide in the pack ice of the Arctic Ocean. Sci. Rep. 9, 9536. https://doi.org/10.1038/s41598-019-45935-0 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted Picoprasinophytes in Arctic seas 1. J. Phycol. 43, 78–89. https://doi.org/10.1111/j.1529-8817.2006.00310.x (2007).CAS 
    Article 

    Google Scholar 
    30.Metfies, K., von Appen, W.-J., Kilias, E., Nicolaus, A. & Nöthig, E.-M. Biogeography and photosynthetic biomass of arctic marine pico-eukaroytes during summer of the record sea ice minimum 2012. PLoS ONE 11, e0148512. https://doi.org/10.1371/journal.pone.0148512 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 1372. https://doi.org/10.1038/ismej.2017.7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Piedade, G. J., Wesdorp, E. M., Montenegro-Borbolla, E., Maat, D. S. & Brussaard, C. P. D. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses 10, 676. https://doi.org/10.3390/v10120676 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    33.Maat, D. S. et al. Characterization and temperature dependence of Arctic Micromonas polaris viruses. Viruses 9, 134. https://doi.org/10.3390/v9060134 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    34.Demory, D. et al. Picoeukaryotes of the Micromonas genus: sentinels of a warming ocean. ISME J. 13, 132–146. https://doi.org/10.1038/s41396-018-0248-0 (2019).Article 
    PubMed 

    Google Scholar 
    35.Ardyna, M. et al. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr. 62, 2113–2132. https://doi.org/10.1002/lno.10554 (2017).ADS 
    Article 

    Google Scholar 
    36.Luddington, I. A., Lovejoy, C. & Kaczmarska, I. Species-rich meta-communities of the diatom order Thalassiosirales in the Arctic and northern Atlantic Ocean. J. Plankton Res. 38, 781–797. https://doi.org/10.1093/plankt/fbw030 (2016).CAS 
    Article 

    Google Scholar 
    37.Booth, B. C. et al. Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 49, 5003–5025. https://doi.org/10.1016/S0967-0645(02)00175-3 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate phytoplankton in the Arctic Ocean. Nat. Commun. 11, 1–8. https://doi.org/10.1038/s41467-020-15485-5 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Dı́ez, B., Pedrós-Alió, C. & Massana, R. Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA Gene cloning and sequencing. Appl. Environ. Microb. 67, 2932. https://doi.org/10.1128/AEM.67.7.2932-2941.2001 (2001).Article 

    Google Scholar 
    40.Crawford, D. W., Cefarelli, A. O., Wrohan, I. A., Wyatt, S. N. & Varela, D. E. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano-and microphytoplankton in subarctic and Arctic Seas. Prog. Oceanogr. 162, 132–159. https://doi.org/10.1016/j.pocean.2018.01.006 (2018).ADS 
    Article 

    Google Scholar 
    41.Fu, R. & Gong, J. Single cell analysis linking ribosomal (r) DNA and r RNA copy numbers to cell size and growth rate provides insights into molecular protistan ecology. J. Eukaryot. Microbiol. 64, 885–896. https://doi.org/10.1111/jeu.12425 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Lewis, K., Van Dijken, G. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Fetterer, F., Knowles, K., Meier, W. N., Savoie, M. & Windnagel, A. K. Updated daily Sea Ice Index, Version 3 (NSIDC: National Snow and Ice Data Center, Boulder, CO USA). https://doi.org/10.7265/N5K072F8 (2017).44.Ryan, P. A. & Münchow, A. Sea ice draft observations in Nares Strait from 2003 to 2012. J. Geophys. Res. Oceans 122, 3057–3080. https://doi.org/10.1002/2016JC011966 (2017).ADS 
    Article 

    Google Scholar 
    45.Grasshoff, K. et al. (eds). Methods of seawater analysis 3rd edn (John Wiley & Sons). https://doi.org/10.1002/9783527613984 (2009).46.Terrado, R. et al. Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol. 34, 1901–1914. https://doi.org/10.1007/s00300-011-1039-5 (2011).Article 

    Google Scholar 
    47.Dasilva, C. R., Li, W. K. W. & Lovejoy, C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J. Plankton Res. 36, 344–363. https://doi.org/10.1093/plankt/fbt123 (2014).CAS 
    Article 

    Google Scholar 
    48.Comeau, A. M., Li, W. K., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6, e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Bushnell, B., Rood, J. & Singer, E. BBMerge–accurate paired shotgun read merging via overlap. PLoS ONE 12, e0185056. https://doi.org/10.1371/journal.pone.0185056 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microb. 75, 7537–7541. https://doi.org/10.1128/AEM.01541-09 (2009).CAS 
    Article 

    Google Scholar 
    53.Comeau, A. M. et al. Protists in Arctic drift and land-fast sea ice. J. Phycol. 49, 229–240. https://doi.org/10.1111/jpy.12026 (2013).Article 
    PubMed 

    Google Scholar 
    54.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604. https://doi.org/10.1093/nar/gks1160 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under Maximum Likelihood. Syst. Biol. 60, 291–302. https://doi.org/10.1093/sysbio/syr010 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Thomson, R. E. & Fine, I. V. Estimating mixed layer depth from oceanic profile data. J. Atmos. Ocean. Technol. 20, 319–329. https://doi.org/10.1175/1520-0426(2003)020%3c0319:EMLDFO%3e2.0.CO;2 (2003).ADS 
    Article 

    Google Scholar 
    61.Chazdon, R. L. et al. A novel statistical method for classifying habitat generalists and specialists. Ecology 92, 1332–1343. https://doi.org/10.1890/10-1345.1 (2011).Article 
    PubMed 

    Google Scholar 
    62.Melling, H., Gratton, Y. & Ingram, G. Ocean circulation within the North Water polynya of Baffin Bay. Atmos. Ocean 39, 301–325. https://doi.org/10.1080/07055900.2001.9649683 (2001).Article 

    Google Scholar  More