The non-indigenous Oithona davisae in a Mediterranean transitional environment: coexistence patterns with competing species
1.Carlton, J. T. & Geller, J. B. Ecological roulette: The global transport of non-indigenous marine organisms. Sciences 261, 78–82 (1993).Article
Google Scholar
2.Ruiz, G. M., Fofonov, P. & Hines, A. H. Non-indigenous species as stressors in estuarine and marine communities: Assessing invasion impacts and interactions. Limnol. Oceanogr. 44, 950–972 (1999).ADS
Article
Google Scholar
3.Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).Article
Google Scholar
4.Tsiamis, K. et al. Non-indigenous species refined national baseline inventories: A synthesis in the context of the European Union’s Marine Strategy Framework Directive. Mar. Pollut. Bull. 145, 429–435 (2019).CAS
Article
Google Scholar
5.Gollasch, S. Overview on introduced aquatic species in European navigational and adjacent waters. Helgol. Mar. Res. 60(2), 84–89 (2006).ADS
Article
Google Scholar
6.Zenetos, A. et al. Alien species in the Mediterranean Sea by 2010 A contribution to the application of European Union’ Marine Strategy Framework Directive (MSFD) Part I. Spatial distribution. Mediterr. Mar. Sci. 11, 381–493 (2010).Article
Google Scholar
7.Zenetos, A. et al. Uncertainties and validation of alien species catalogues: The Mediterranean as an example. Est. Coast. Shelf. Sci. 191, 171–187 (2017).ADS
Article
Google Scholar
8.Uttieri, M. et al. Towards a EURopean OBservatory of the non-indigenous calanoid copepod Pseudodiaptomus marinUS. Biol. Invasions 22(3), 885–906. https://doi.org/10.1007/s10530-019-02174-8 (2020).Article
Google Scholar
9.Vidjak, O. et al. Zooplankton in Adriatic port environments: Indigenous communities and non-indigenous species. Mar. Pollut. Bull. 147, 133–149. https://doi.org/10.1016/j.marpolbul.2018.06.055 (2019).CAS
Article
PubMed
Google Scholar
10.Malej, A. et al. Mnemiopsis leidyi in the northern Adriatic: Here to stay?. J. Sea Res. 124, 10–16. https://doi.org/10.1016/j.seares.2017.04.010 (2017).ADS
Article
Google Scholar
11.Marchini, A., Ferrario, J., Sfriso, A. & Occhipinti-Ambrogi, A. Current status and trends of biological invasions in the Lagoon of Venice, a hotspot of marine NIS introductions in the Mediterranean Sea. Biol. Invasions 17, 2943–2962. https://doi.org/10.1007/s10530-015-0922-3 (2015).Article
Google Scholar
12.Galliene, C. P. & Robins, D. B. Is Oithona the most important copepod in the world’s oceans?. J. Plankton Res. 23(12), 1421–1432 (2001).Article
Google Scholar
13.Saiz, E., Calbet, A. & Broglio, E. Effects of small-scale turbolence on copepods: The case of Oithona davisae. Limnol. Oceanogr. 48, 1304–1311. https://doi.org/10.4319/lo.2003.48.3.1304 (2003).ADS
Article
Google Scholar
14.Turner, T. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zool. Stud. 43(2), 255–266 (2004).
Google Scholar
15.Hwang, I. S., Kumar, R., Dahms, H. U., Tseng, L. C. & Chen, Q. C. Mesh size affects abundance estimates of Oithona spp. (Copepoda, Cyclopoida). Crustaceana 80(7), 827–837 (2007).Article
Google Scholar
16.Nishida, S., Tanaka, O. & Omori, M. Cyclopoid copepods of the family Oithonidae in Suruga bay and adjacent waters. Bull. Plankton Soc. Japan 24, 120–157 (1977).
Google Scholar
17.Uye, S. I. & Sano, K. Seasonal reproductive biology of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser. 118, 121–128 (1995).ADS
Article
Google Scholar
18.Zagami, G. et al. Biogeographical distribution and ecology of the planktonic copepod Oithona davisae: Rapid invasion in Lakes Faro and Ganzirri (Central Mediterranean Sea). In Trends in Copepod Studies-Distribution, Biology and Ecology (ed. Uttieri, M.) 59–82 (Nova Science Publisher, New York, 2018).
Google Scholar
19.Cornils, A. & Wend-Heckmann, B. First report of the planktonic copepod Oithona davisae in the northern Wadden Sea (North Sea): Evidence for recent invasion?. Helgol. Mar. Res. 69, 243–248. https://doi.org/10.1007/s10152-015-0426-7 (2015).ADS
Article
Google Scholar
20.Uye, S. I. & Sano, K. Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Progr. Ser. 163, 37–44 (1998).ADS
Article
Google Scholar
21.Ferrari, F. D. & Orsi, J. Oithona davisae, new species, and Limnoithona sinensis (Burckhardt, 1912) (Copepoda, Oithonidae) from the Sacramento San-Joaquin Estuary, California. J. Crustac. Biol. 4, 106–126. https://doi.org/10.2307/1547900 (1984).Article
Google Scholar
22.Cordell, J. R. et al. Factors influencing densities of non-indigenous species in the ballast water of ships arriving at ports in Puget Sound, Washington, United States. Aquat. Conserv. Mar. Freshw. Ecosyst. 19, 322–343. https://doi.org/10.1002/aqc.986 (2009).Article
Google Scholar
23.Dexter, E., Bollens, S. M., Cordell, J. & Rollwagen-Bollenseric, G. Zooplankton invasion on a grand scale: Insights from a 20-yr time series across 38 Northeast Pacific estuaries. Ecosphere 11(5), e03040 (2020).Article
Google Scholar
24.Temnykh, A. & Nishida, S. New record of the planktonic copepod Oithona davisae Ferrari and Orsi in the Black Sea with notes on the identity of Oithona brevicornis. Aquat. Invasions 7, 425–431 (2012).Article
Google Scholar
25.Uriarte, I., Villate, F. & Iriarte, A. Zooplankton recolonization of the inner estuary of Bilbao: Influence of pollution abatement, climate and non-indigenous species. J. Plankton Res. 38, 718–731. https://doi.org/10.1093/plankt/fbv060 (2015).Article
Google Scholar
26.Isinibilir, M., Svetlichny, L. & Hubareva, E. Competitive advantage of the invasive copepod Oithona davisae over the indigenous copepod Oithona nana in the Marmara Sea and Golden Horn Estuary. Mar. Freshw. Behav. Physiol. 49(6), 391–405. https://doi.org/10.1080/10236244.2016.1236528 (2016).CAS
Article
Google Scholar
27.Terbıyık Kurt, T. & Beşiktepe, Ş. First distribution record of the invasive copepod Oithona davisae Ferrari and Orsi, 1984, in the coastal waters of the Aegean Sea. Mar. Ecol. 40(3), e12548. https://doi.org/10.1111/maec.12548 (2019).Article
Google Scholar
28.Cucco, A. & Umgiesser, G. Modeling the Venice Lagoon residence time. Ecol. Model. 193, 34–51 (2006).Article
Google Scholar
29.Gačić, M. et al. Temporal variations of water flow between the Venetian lagoon and the open sea. J. Mar. Syst. 51, 33–47. https://doi.org/10.1016/j.jmarsys.2004.05.025 (2004).Article
Google Scholar
30.Zuliani, A., Zaggia, L., Collavini, F. & Zonta, R. Freshwater discharge from the drainage basin to the Venice Lagoon (Italy). Environ. Int. 31, 929–938 (2005).Article
Google Scholar
31.Sigovini, M. Multiscale dynamics of zoobenthic communities and relationships with environmental factors in the Lagoon of Venice. 207 pp (2011).32.Zirino, A. et al. Salinity and its variability in the Lagoon of Venice, 2000–2009. Adv. Oceanogr. Limnol. 5, 41–59. https://doi.org/10.1080/19475721.2014.900113 (2014).Article
Google Scholar
33.Amos, C. L., Umgiesser, G., Ghezzo, M., Kassem, H. & Ferrarin, C. Sea Surface Temperature Trends in Venice Lagoon and the Adjacent Waters. J. Coast. Res. 33(2), 385–395. https://doi.org/10.2112/JCOASTRES-D-16-00017.1 (2016).Article
Google Scholar
34.Ravera, O. The Lagoon of Venice: The result of both natural factors and human influence. J. Limnol. 59, 19–30 (2000).Article
Google Scholar
35.Solidoro, C. et al. Response of the Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal lagoons: Critical habitats of environmental change (eds Kennish, M. J. & Paerl, H. W.) 483–511 (CRC Press, New York, 2010).
Google Scholar
36.Camatti, E., Pansera, M. & Bergamasco, A. The copepod Acartia tonsa Dana in a microtidal Mediterranean lagoon: History of a successful invasion. Water 11(6), 1200. https://doi.org/10.3390/w11061200 (2019).CAS
Article
Google Scholar
37.Schroeder, A. et al. DNA metabarcoding and morphological analysis-Assessment of zooplankton biodiversity in transitional waters. Mar. Environ. Res. https://doi.org/10.1016/j.marenvres.2020.104946 (2020).Article
PubMed
Google Scholar
38.Camatti, E. et al. Analisi dei popolamenti zooplanctonici nella laguna di Venezia dal 1975 al 2004. Biol. Mar. Mediterr. 13, 46–53 (2006).
Google Scholar
39.Riccardi, N. Selectivity of plankton nets over mesozooplankton taxa: Implications for abundance, biomass and diversity estimation. J. Limnol. 69(2), 287–296. https://doi.org/10.3274/JL10-69-2-10 (2010).Article
Google Scholar
40.Pansera, M. et al. How does mesh-size selection reshape the description of zooplankton community structure in coastal lakes?. Est. Coast. Shelf. Sci. 151, 221–235 (2014).ADS
Article
Google Scholar
41.Harris, R., Wiebe, P., Lenz, J., Skjoldal, H. R. & Huntley, M. ICES Zooplankton methodology manual (Elsevier, New York, 2000).
Google Scholar
42.Clarke, K.R. & Gorley, R.N. PRIMERv6: User Manual/Tutorial. PRIMER-E, Plymouth, 192 pp (2006).43.Legendre, L. & Legendre, P. Ecologie numerique, Tome 2: La structure de données écologiques. Québec, Canada Masson, Paris, France and Presses de l’Univ. du (1984).44.Tokeshi, M. Niche apportionment or random assortment e species abundance patterns revisited. J. Anim. Ecol. 59, 1129–1146 (1990).Article
Google Scholar
45.Tokeshi, M. Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993).Article
Google Scholar
46.Fesl, C. Niche-oriented species-abundance models: Different approaches of their application to larval chironomid (Diptera) assemblages in a large river. J. Anim. Ecol. 71, 1085–1094 (2002).Article
Google Scholar
47.Spatharis, S., Orfanidis, S., Panayotidis, P. & Tsirtsis, G. Assembly processes in upper subtidal macroalgae: The effect of wave exposure. Est. Coast. Shelf. Sci. 91(2), 298–305. https://doi.org/10.1016/j.ecss.2010.10.032 (2011).ADS
Article
Google Scholar
48.Ferreira, F. C. & Petrere, J. M. Comments about some species abundance patterns: Classic, neutral, and niche partitioning models. Braz. J. Biol. 68(4), 1003–1012. https://doi.org/10.1590/S1519-69842008000500008 (2008).CAS
Article
PubMed
Google Scholar
49.Spatharis, S., Mouillot, D., Do Chi, T., Danielidis, D. B. & Tsirtsis, G. A niche-based modeling approach to phytoplankton community assembly rules. Oecol. 159(1), 171–180. https://doi.org/10.1007/s00442-008-1178-8 (2009).ADS
Article
Google Scholar
50.Johansson, F., Englund, G., Brodin, T. & Gardfjell, H. Species abundance models and patterns in dragonfly communities: Effects of fish predators. Oikos 114(1), 27–36 (2006).Article
Google Scholar
51.Anderson, B. J. & Mouillot, D. Influence of scale and resolution on niche apportionment rules in saltmeadow vegetation. Aquat. Biol. 1(2), 195–204. https://doi.org/10.3354/ab00017 (2007).Article
Google Scholar
52.Tokeshi, M. Power fraction: A new explanation of relative abundance patterns in species-rich assemblages. Oikos 75, 543–550 (1996).Article
Google Scholar
53.Seebens, H., Gastner, M. T., Blasius, B. & Courchamp, F. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16(6), 782–790. https://doi.org/10.1111/ele.12111 (2013).CAS
Article
PubMed
Google Scholar
54.Casal, C. M. V. Global documentation of fish introductions: The growing crisis and recommendations for actions. Biol. Invasions 8, 3–11 (2006).Article
Google Scholar
55.Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf. Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).ADS
Article
Google Scholar
56.Schroeder, K. et al. Rapid response to climate change in a marginal sea. Sci. Rep. 7(1), 1–7. https://doi.org/10.1038/s41598-017-04455-5 (2017).CAS
Article
Google Scholar
57.Elliott, M. Biological pollutants and biological pollution — an increasing cause for concern. Mar. Pollut. Bull. 46, 275–280 (2003).CAS
Article
Google Scholar
58.Elton, C. S. The Ecology of Invasions by Animals and Plants (Methuen, London, 1958).
Google Scholar
59.Gubanova, A., Garbazey, O. A., Popova, E. V., Altukhov, D. A. & Mukhanov, V. S. Oithona davisae: Naturalization in the Black Sea, interannual and seasonal dynamics, and effect on the structure of the planktonic copepod community. Oceanol. 59(6), 912–919. https://doi.org/10.31857/S0030-15745961008-1015 (2019).ADS
Article
Google Scholar
60.Altukhov, D. A., Gubanova, A. D. & Mukhanov, V. S. New invasive copepod Oithona davisae, Ferrari and Orsi, 1984: Seasonal dynamics in Sevastopol Bay and expansion along the Black Sea coasts. Mar. Ecol. 35, 28–34 (2014).ADS
Article
Google Scholar
61.Svetlichny, L. et al. Adaptive strategy of thermophilic Oithona davisae in the cold Black Sea environment. Turk. J. Fish. Aquat. Sci. 16(1), 077–090. https://doi.org/10.4194/1303-2712-v16_1_09 (2016).Article
Google Scholar
62.Hubareva, E. & Svetlichny, L. Salinity and temperature tolerance of alien copepods Acartia tonsa and Oithona davisae in the Black Sea. Rapp. Comm. Int. Mer. Mediterr. 40, 742. https://doi.org/10.13140/2.1.1145.3445 (2013).Article
Google Scholar
63.Svetlichny, L., Hubareva, E. & İşi̇ni̇bi̇li̇r, M. ,. Population dynamics of the copepod invader Oithona davisae in the Black Sea. Turk. J. Zool. 42(6), 684–693. https://doi.org/10.3906/zoo-1804-48 (2018).Article
Google Scholar
64.Uye, S. I. Replacement of large copepods by small ones with eutrophication of embayments: Cause and consequence. Hydrobiol. 292(293), 513–519. https://doi.org/10.1007/BF00229979 (1994).Article
Google Scholar
65.Saiz, E., Griffell, K., Calbet, A. & Isari, S. Feeding rates and prey: Predator size ratios of the nauplii and adult females of the marine cyclopoid copepod Oithona davisae. Limnol. Oceanography 59(6), 2077–2088 (2014).ADS
Article
Google Scholar
66.Cheng, W., Akiba, T., Omura, T. & Tanaka, Y. On the foraging and feeding ability of Oithona davisae (Crustacea, Copepoda). Hydrobiol. 741(1), 167–176. https://doi.org/10.1007/s10750-014-1867-8 (2014).Article
Google Scholar
67.Khanaychenko, A., Mukhanov, V., Aganesova, L., Besiktepe, S. & Gavrilova, N. Grazing and feeding selectivity of Oithona davisae in the Black Sea: Importance of cryptophytes. Turk. J. Fish. Aquat. Sci. 18(8), 937–949. https://doi.org/10.4194/1303-2712-v18_8_02 (2018).Article
Google Scholar
68.Uchima, M. Gut content analysis of neritic copepods Acartia omorii and Oithona davisae by a new method. Mar. Ecol. Prog. Ser. 48(1), 93–97 (1988).ADS
Article
Google Scholar
69.Uchima, M. & Hirano, R. Swimming behavior of the marine copepod Oithona davisae: Internal control and search for environment. Mar. Biol. 99(1), 47–56 (1988).Article
Google Scholar
70.Bernardi Aubry, F., Acri, F., Bianchi, F. & Pugnetti, A. Looking for patterns in the phytoplankton community of the Mediterranean microtidal Venice Lagoon: Evidence from ten years of observations. Sci. Mar. 77(1), 47–60. https://doi.org/10.3989/scimar.03638.21A (2013).CAS
Article
Google Scholar
71.Facca, C. et al. Description of a Multimetric Phytoplankton Index (MPI) for the assessment of transitional waters. Mar. Pollut. Bull. 79(1–2), 145–154. https://doi.org/10.1016/j.marpolbul.2013.12.025 (2014).CAS
Article
PubMed
Google Scholar
72.Acri, F., Braga, F. & Bernardi Aubry, F. Long-term dynamics in nutrients, chlorophyll a and water quality parameters in the Lagoon of Venice. Sci. Mar. https://doi.org/10.3989/scimar.05022.30A (2020).Article
Google Scholar
73.Bandelj, V. et al. Analysis of multitrophic plankton assemblages in the Lagoon of Venice. Mar. Ecol. Prog. Ser. 368, 23–40. https://doi.org/10.3354/meps07565 (2008).ADS
Article
Google Scholar
74.Gubanova, A. et al. Species composition of Black Sea marine planktonic copepods. J. Mar. Syst. 135, 44–52. https://doi.org/10.1016/j.jmarsys.2013.12.004 (2014).Article
Google Scholar
75.Sacca, A., Guglielmo, L. & Bruni, V. Vertical and temporal microbial community patterns in a meromictic coastal lake influenced by the Straits of Messina upwelling system. Hydrobiology 600(1), 89–104 (2008).Article
Google Scholar
76.Tagliapietra, D., Zanon, V., Frangipane, G., Umgiesser, G. & Sigovini, M. Physiographic zoning of the Venetian Lagoon. In Scientific Research and Safeguarding of Venice (ed. Campostrini, P.) 161–164 (2010). More