More stories

  • in

    Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease

    1.Biard, C., Monceau, K., Motreuil, S. & Moreau, J. Interpreting immunological indices: the importance of taking parasite community into account. An example in blackbirds Turdus merula. Methods Ecol. Evol. 6, 960–972. https://doi.org/10.1111/2041-210x.12371 (2015).Article 

    Google Scholar 
    2.Boughton, R. K., Joop, G. & Armitage, S. A. O. Outdoor immunology: methodological considerations for ecologists. Funct. Ecol. 25, 81–100. https://doi.org/10.1111/j.1365-2435.2010.01817.x (2011).Article 

    Google Scholar 
    3.Maizels, R. M. & Nussey, D. H. Into the wild: digging at immunology’s evolutionary roots. Nat. Immunol. 14, 879–883. https://doi.org/10.1038/ni.2643 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Martin, L. B., Weil, Z. M. & Nelson, R. J. Refining approaches and diversifying directions in ecoimmunology. Integr. Comp. Biol. 46, 1030–1039. https://doi.org/10.1093/icb/icl039 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Johnson, W. et al. Pathogenic and humoral immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) are related to viral load in acute infection. Vet. Immunol. Immunopathol. 102, 233–247. https://doi.org/10.1016/j.vetimm.2004.09.010 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Ortiz, R. H. et al. Differences in virulence and immune response induced in a murine model by isolates of Mycobacterium ulcerans from different geographic areas. Clin. Exp. Immunol. 157, 271–281. https://doi.org/10.1111/j.1365-2249.2009.03941.x (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Sela, U., Euler, C. W., da Rosa, J. C. & Fischetti, V. A. Strains of bacterial species induce a greatly varied acute adaptive immune response: the contribution of the accessory genome. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1006726 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Skjesol, A. et al. IPNV with high and low virulence: host immune responses and viral mutations during infection. Virol. J. https://doi.org/10.1186/1743-422x-8-396 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 3, 1033–1040. https://doi.org/10.1038/ni1102-1033 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Fassbinder-Orth, C. A. et al. Immunoglobulin detection inwild birds: effectiveness of three secondary anti-avian IgY antibodies in direct ELISAs in 41 avian species. Methods Ecol. Evol. 7, 1174–1181. https://doi.org/10.1111/2041-210x.12583 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Janeway, C. Immunobiology: The Immune System in Health and Disease (Garland Science, 2005).
    Google Scholar 
    12.Coltman, D. W., Pilkington, J., Kruuk, L. E. B., Wilson, K. & Pemberton, J. M. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55, 2116–2125 (2001).CAS 
    Article 

    Google Scholar 
    13.Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS. Biol. https://doi.org/10.1371/journal.pbio.1001917 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Johnson, J. S. et al. Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome. Ecol. Evol. 5, 2203–2214. https://doi.org/10.1002/ece3.1502 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: the spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72. https://doi.org/10.3201/eid0301.970110 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Luttrell, M. P., Fischer, J. R., Stallknecht, D. E. & Kleven, S. H. Field investigation of Mycoplasma gallisepticum infections in house finches (Carpodacus mexicanus) from Maryland and Georgia. Avian Dis. 40, 335–341 (1996).CAS 
    Article 

    Google Scholar 
    17.Delaney, N. F. et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. Plos Genet. https://doi.org/10.1371/journal.pgen.1002511 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).CAS 
    Article 

    Google Scholar 
    19.Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 961–965 (1998).Article 

    Google Scholar 
    20.Bonneaud, C. et al. Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proc. Natl. Acad. Sci. U.S.A. 108, 7866–7871 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Bonneaud, C. et al. Rapid antagonistic coevolution in an emerging pathogen and its vertebrate host. Curr. Biol. 28, 2978–2983 (2018).CAS 
    Article 

    Google Scholar 
    22.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in House Finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2018).Article 

    Google Scholar 
    23.Tardy, L., Giraudeau, M., Hill, G. E., McGraw, K. J. & Bonneaud, C. Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc. Natl. Acad. Sci. U.S.A. 116, 16927–16932. https://doi.org/10.1073/pnas.1901556116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Grodio, J. L., Buckles, E. L. & Schat, K. A. Production of house finch (Carpodacus mexicanus) IgA specific anti-sera and its application in immunohistochemistry and in ELISA for detection of Mycoplasma gallisepticum-specific IgA. Vet. Immunol. Immunopathol. 132, 288–294 (2009).CAS 
    Article 

    Google Scholar 
    25.Warr, G. W., Magor, K. E. & Higgins, D. A. IgY—clues to the origins of modern antibodies. Immunol. Today 16, 392–398. https://doi.org/10.1016/0167-5699(95)80008-5 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263. https://doi.org/10.1126/science.1248943 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Bonneaud, C. et al. Evolution of both host resistance and tolerance to an emerging bacterial pathogen. Evol. Lett. 3, 544–554. https://doi.org/10.1002/evl3.133 (2019).Article 

    Google Scholar 
    28.Staley, M., Hill, G. E., Josefson, C. C., Armbruster, J. W. & Bonneaud, C. Bacterial pathogen emergence requires more than direct contact with a novel passerine host. Infect. Immun. 86, 9. https://doi.org/10.1128/iai.00863-17 (2018).CAS 
    Article 

    Google Scholar 
    29.Grodio, J. L. et al. Pathogenicity and immunogenicity of three Mycoplasma gallisepticum isolates in house finches (Carpodacus mexicanus). Vet. Microbiol. 155, 53–61. https://doi.org/10.1016/j.vetmic.2011.08.003 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Javed, M. A. et al. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum strain GT5 following challenge with pathogenic M-gallisepticum strain R-low. Infect. Immun. 73, 5410–5419 (2005).CAS 
    Article 

    Google Scholar 
    31.Dumke, R. & Jacobs, E. Antibody response to Mycoplasma pneumoniae: Protection of host and influence on outbreaks?. Front. Microbiol. 7, 7. https://doi.org/10.3389/fmicb.2016.00039 (2016).Article 

    Google Scholar 
    32.Avakian, A. P. & Ley, D. H. Protective immune-response to Mycoplasma-gallisepticum demonstrated in respiratory-tract washings from M-gallisepticum-infected chickens. Avian Dis. 37, 697–705. https://doi.org/10.2307/1592017 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Yagihashi, T. & Tajima, M. Antibody-responses in sera and respiratory secretions from chickens infected with Mycoplasma gallisepticum. Avian Dis. 30, 543–550. https://doi.org/10.2307/1590419 (1986).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Glatman-Freedman, A. & Casadevall, A. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev. 11, 514. https://doi.org/10.1128/cmr.11.3.514 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Vogl, G. et al. Mycoplasma gallisepticum invades chicken erythrocytes during infection. Infect. Immun. 76, 71–77. https://doi.org/10.1128/iai.00871-07 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Dowling, A. J., Hill, G. E. & Bonneaud, C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci. Rep. 10, 6779 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Arfi, Y. et al. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc. Natl. Acad. Sci. U.S.A. 113, 5406–5411. https://doi.org/10.1073/pnas.1600546113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in House Finches (Haemorhous mexicanus) from Arizona. Avian Dis. https://doi.org/10.1637/11610-021317-RegR (2018).Article 
    PubMed 

    Google Scholar 
    39.Roberts, S. R., Nolan, P. M., Lauerman, L. H., Li, L. Q. & Hill, G. E. Characterization of the mycoplasmal conjunctivitis epizootic in a house finch population in the southeastern USA. J. Wildl. Dis. 37, 82–88 (2001).CAS 
    Article 

    Google Scholar 
    40.Papazisi, L. et al. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect. Immun. 70, 6839–6845 (2002).CAS 
    Article 

    Google Scholar 
    41.Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, 12. https://doi.org/10.1093/nar/gkp045 (2009).CAS 
    Article 

    Google Scholar 
    42.Tuomi, J. M., Voorbraak, F., Jones, D. L. & Ruijter, J. M. Bias in the C-q value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50, 313–322. https://doi.org/10.1016/j.ymeth.2010.02.003 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Ruijter, J., Villalba, A., Hellemans, J., Untergasser, A. & van den Hoff, M. Removal of between-run variation in a multi-plate qPCR experiment. Biomol. Detect. Quantif. 5, 10–14 (2015).CAS 
    Article 

    Google Scholar 
    44.Grodio, J. L., Dhondt, K. V., O’Connell, P. H. & Schat, K. A. Detection and quantification of Mycoplasma gallisepticum genome load in conjunctival samples of experimentally infected house finches (Carpodacus mexicanus) using real-time polymerase chain reaction. Avian Pathol. 37, 385–391. https://doi.org/10.1080/03079450802216629 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2016).46.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    47.ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).48.Repeatability Estimation for Gaussian and Non-Gaussian Data v. 0.9.21 (2018). More

  • in

    How many T. rex ever existed? Calculation of dinosaur’s abundance offers an answer

    Fossils, such as this skeleton of a T. rex on display in the Netherlands, may be even rarer than scientists realised. Credit: Marten van Dijl/AFP via Getty

    Ever wondered how many Tyrannosaurus rex ever roamed the Earth? The answer is 2.5 billion over the two million or so years for which the species existed, according to a calculation published today in Science1. The figure has allowed researchers to estimate just how exceedingly rare it is for animals to fossilize.Palaeontologists led by Charles Marshall at the University of California, Berkeley, used a method employed by ecologists studying contemporary creatures to estimate the population density of T. rex during the late Cretaceous period. “You hold a fossil in your hand and you know it’s rare. The question is, how rare?” says Marshall. “To know that, you need to know how many of them existed.”To do that, he and his co-authors turned to a method used to estimate the population density of living animals from their body mass and the geographic ranges that they occupy. Damuth’s Law stipulates that the average population density of a species decreases in a predictable way as body mass increases; for example, there are fewer elephants than mice in a given area.Chances of being fossilized vanishingly smallThe team used their estimates of the total range of T. rex across modern North America, combined with their estimates of the dinosaur’s body mass, to calculate that, at any one time, around 20,000 T. rex would have been alive on the planet. That translates to around 3,800 T. rex in an area the size of California, or just two T. rex patrolling Washington DC. Calculating that T. rex survived for about 127,000 generations before becoming extinct, the researchers came up with a figure of 2.5 billion individuals over the species’ entire existence. Only 32 adult T. rex have been discovered as fossils, so the fossil record accounts for just 1 in about every 80 million T. rex. This means that the chances of being fossilized — even for one of the largest-ever carnivores — were vanishingly small.These numbers suggest that fossils in general are exceedingly rare, and hint that many species that were much less widespread than T. rex were probably never preserved, says Marshall, who adds: “The fossil record is our only direct knowledge of these completely unimaginable past histories of our planet.”Thomas Holtz, a vertebrate palaeontologist at the University of Maryland in College Park, calls the calculation an “interesting speculation”, adding that “we always knew that the chance of any individual becoming a fossil was exceedingly rare, but we lacked the calculation to figure out how rare”.But he says it would be good “to see someone ground-truth these kinds of estimations against living species to get a better sense of accuracy”. He’d also like to see comparable studies made on extinct species with more abundant fossils, such as woolly mammoths, Neanderthals and dire wolves, which might allow us to better understand historic ecosystems. More

  • in

    Diversification of terpenoid emissions proposes a geographic structure based on climate and pathogen composition in Japanese cedar

    1.Carslaw, K. S. et al. Atmospheric aerosols in the earth system: a review of interactions and feedbacks. Atmos. Chem. Phys. Discuss. 9, 11087–11183 (2009).ADS 

    Google Scholar 
    2.Müller, A., Miyazaki, Y., Tachibana, E., Kawamura, K. & Hiura, T. Evidence of a reduction in cloud condensation nuclei activity of submicron water-soluble aerosols caused by biogenic emissions in a cool-temperate forest. Sci. Rep. https://doi.org/10.1038/s41598-017-08112-9 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Mentel, T. F. et al. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks. Atmos. Chem. Phys. 13, 8755–8770 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    5.Celedon, J. M. & Bohlmann, J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. New Phytol. 224, 1444–1463 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Hammerbacher, A., Coutinho, T. A. & Gershenzon, J. Roles of plant volitiles in defence aganst microbial pathogens and microbial explotation of volatiles. Plant Cell Environ. 42, 2827–2843 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Ninkovic, V., Markovic, D. & Rensing, M. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. https://doi.org/10.1111/pce.13910 (2020).Article 
    PubMed 

    Google Scholar 
    8.Sharifi, R. & Ryu, C. M. Social networking in crop plants: wired and wireless cross-plant communications. Plant Cell Environ. https://doi.org/10.1111/pce.13966 (2020).Article 
    PubMed 

    Google Scholar 
    9.Garbeva, P. & Weisskopf, L. Airborne medicine: bacterial volatiles and their influence on plant health. New Phytol. 226, 32–43 (2019).PubMed 
    Article 

    Google Scholar 
    10.Thompson, J. N. The Geographic Mosaic of Coevolution (Univ of Chicago Press, 2005).
    Google Scholar 
    11.Hiura, T. & Nakamura, M. Different mechanisms explain feeding type-specific patterns of latitudinal variation in herbivore damage among diverse feeding types of herbivorous insects. Basic Appl. Ecol. 14, 480–488 (2013).Article 

    Google Scholar 
    12.Okuzaki, Y. & Sota, T. Predator size divergence depends on community context. Ecol. Lett. 21, 1097–1107 (2018).PubMed 
    Article 

    Google Scholar 
    13.Karban, R., Wetzel, W. C., Shiojiri, K., Pezzola, E. & Blande, J. D. Geographic dialects in volatile communication between sagebrush individuals. Ecology 97, 2917–2924 (2016).PubMed 
    Article 

    Google Scholar 
    14.Friberg, M., Schwind, C., Guimaraes, P. R. Jr., Raguso, R. A. & Thompson, J. N. Extreme diversification of floral volatiles within and among species of Lithophragma (Saxifragaceae). Proc. Natl. Acad. Sci. USA 116, 4406–4415 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Heilmann-Clausen, J. et al. Communities of wood-inhabiting bryophytes and fungi on dead beech logs in Europe—reflecting substrate quality or shaped by climate and forest conditions?. J. Biogeogr. 41, 2269–2282 (2014).Article 

    Google Scholar 
    16.Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along geographical gradient in Japan. Fung. Ecol. 18, 75–82 (2015).Article 

    Google Scholar 
    17.Kubart, A., Vasaitis, R., Stenlid, J. & Dahlberg, A. Fungal communities in Norway spruce stumps along a latitudinal gradient in Sweden. For. Ecol. Manag. 371, 50–58 (2016).Article 

    Google Scholar 
    18.Peay, K. G., Kennedy, P. G. & Talbot, J. M. Dimensions of biodiversity in the earth mycobiome. Nat. Rev. Microbiol. 14, 434–447 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Manninnen, A. M., Tarhanen, S., Vuorinen, M. & Kainulainen, P. Comparing the variation of needle and wood terpenoids in Scots pine provenances. J. Chem. Ecol. 28, 211–228 (2002).Article 

    Google Scholar 
    20.Wallis, C. M., Reich, R. W., Lewis, K. J. & Huber, D. P. W. Lodgepole pine provenances differ in chemical defense capacities against foliage and stem diseases. Can. J. For. Res. 40, 2333–2344 (2010).Article 

    Google Scholar 
    21.López-Goldar, X. et al. Genetic variation in the constitutive defensive metabolome and its inducibility are geographically structured and largely determined by demographic processes in maritime pine. J. Ecol. 107, 2464–2477 (2019).Article 
    CAS 

    Google Scholar 
    22.Fukuda, M., Iehara, T. & Matsumoto, M. Carbon stock estimates for sugi and hinoki forests in Japan. For. Ecol. Manag. 184, 1–16 (2003).Article 

    Google Scholar 
    23.Forestry Agency of Japan. 2011 Forestry Census (Forestry Agency, 2011).
    Google Scholar 
    24.Memari, H. R., Pazouski, L. & Niinemets, U. The biochemistry and molecular biology of volatile messengers in trees. In Biology, Controls and Models of Tree Volatile Organic Compound Emissions (eds Niinemets, U. & Monson, R. K.) 47–93 (Springer, 2013).
    Google Scholar 
    25.Kimura, M. K. et al. Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. Ann. Bot. 114, 1687–1700 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Nishizono, T., Kitahara, F., Iehara, T. & Mitsuda, Y. Geographical variation in age-height relationships for dominant trees in Japanese cedar (Cryptomeria japonica D. Don) forests in Japan. J. For. Res. 19, 305–316 (2014).Article 

    Google Scholar 
    27.Ohta, T., Niwa, S. & Hiura, T. Geographical variation in Japanese cedar shapes soil nutrient dynamics and invertebrate community. Plant Soil 437, 355–373 (2019).CAS 
    Article 

    Google Scholar 
    28.Moreira, X. et al. Trade-offs between constitutive and induced defences drive geographical and climatic clines in pine chemical defences. Ecol. Lett. 17, 537–546 (2014).PubMed 
    Article 

    Google Scholar 
    29.Suzuki, K., Aihara, H. & Yamada, T. Diseases of Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa) predisposed by weather conditions. Bull. Univ. Tokyo For. 77, 39–48 (1987).
    Google Scholar 
    30.Cheng, S. S., Lin, H. Y. & Chang, S. T. Chemical composition and antifungal activity of essential oils from different tissuee of Japanese Cedar (Cryptomeria japonica).. J. Agr. Food Chem. 53, 614–619 (2005).CAS 
    Article 

    Google Scholar 
    31.Hirooka, Y., Masuya, H., Akiba, M. & Kubono, T. Sydowia japonica, a new name for Leptosphaerulina japonica based on morphological and molecular data. Mycol. Prog. 12, 173–183 (2013).Article 

    Google Scholar 
    32.Kobayashi, T. & Katsumoto, K. Illustrated Genera of Plant Pathogenic Fungi in Japan (Zenkoku-Noson-Kyoiku Kyokai Publishing, 1992).
    Google Scholar 
    33.Rizzo, D. M., Rentmeester, R. M. & Burdsall, H. H. Jr. Sexuality and somatic incompatibility in Phellinus gilvus. Mycologia 87, 805–820 (1995).Article 

    Google Scholar 
    34.Homma, H. et al. Lignin-degrading activitu of edible mushroom Strobilurus ohshimae that forms fruiting bodies on buries sugi (Cryptomeria japonica) twigs. J. Wood Sci. 53, 80–84 (2007).ADS 
    Article 

    Google Scholar 
    35.Ota, Y. et al. Taxonomy and phylogenetic position of Fomitiporia torreyae, a causal agent of trunk rot on Sanbu-sugi, a cultivar of Japanese cedar (Cryptomeria japonica) in Japan. Mycologia 106, 66–76 (2014).PubMed 
    Article 

    Google Scholar 
    36.Fukui, Y., Miyamoto, T., Tamai, Y., Koizumi, A. & Yajima, T. Use of DNA sequence data to identify wood-decay fungi likely associated with stem failure caused by windthrow in urban trees during a typhoon. Trees 32, 1147–1156 (2018).CAS 
    Article 

    Google Scholar 
    37.Kusumoto, N. & Shibutani, S. Evaporation of volatiles from essential oils of Japanese conifers enhances antifungal activity. J. Essential Oil Res. 27, 380–394 (2015).CAS 
    Article 

    Google Scholar 
    38.Yamamoto, H., Noguchi, Y. & Suzuki, J. Synthesis of antibacterial terpenes by photooxidation of terpenes obtained from Cryptomeria japonica D. Don. Bull. Edu. Ibaraki Univ. 46, 53–62 (1997).
    Google Scholar 
    39.Mukai, A., Takahashi, K., Kofujita, H. & Ashitani, T. Antitermite and antifungal activities of thujopsene natural autoxidation products. Eur. J. Wood Prod. 77, 311–317 (2018).Article 
    CAS 

    Google Scholar 
    40.Lee, G. W. et al. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 253, 683–690 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Rodriguez, A. et al. Engineering D-limonen synthase down regulation in orange fruit induces resistance against the fungus Phyllosticta citricarpa through enhanced accumulation of monoterpene alcohols and activation of defence. Mol. Plant Pathol. 19, 2077–2093 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Matsunaga, S. N. et al. Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan. Chemosphere 87, 886–893 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Niinemets, Ü., Fares, S., Harley, P. & Jardine, K. J. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition. Plant Cell Environ. 37, 1790–1809 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Yáñez-Serrano, A. M. et al. Volatile diterpene emission by two Mediterranean Cistaceae shrubs. Sci. Rep. https://doi.org/10.1038/s41598-018-25056-w (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Miyama, T. et al. Seasonal changes in interclone variation following ozone exposure on three major gene pools: an analysis of Cryptomeria japonica clones. Atmosphere 10, 643. https://doi.org/10.3390/atmos10110643 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Ponzio, C., Gols, R., Pieterse, C. M. J. & Dicke, M. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infeststions with herbivores and phytopathogens. Fuct. Ecol. 27, 587–598 (2013).Article 

    Google Scholar 
    47.Salazar, D. et al. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nat. Ecol. Evol. 2, 983–990 (2018).PubMed 
    Article 

    Google Scholar 
    48.Japan Meteorological Agency. Mesh Climate Data of Japan (Japan Meteorological Agency, 2014).
    Google Scholar 
    49.Kimura, M. K. et al. Effects of genetic and environmental factors on clonal reproduction in old-growth natural populations of Cryptomeria japonica. For. Ecol. Manag. 304, 10–19 (2013).Article 

    Google Scholar 
    50.Yasue, M. et al. Geographical differentiation of natural Cryptomeria stands analyzed by diterpene hydrocarbon constituents of individual trees. J. Jpn. For. Soc. 69, 152–156 (1987).
    Google Scholar 
    51.Tsumura, Y. et al. Genetic differentiation and evolutionary adaptation in Cryptomeria japonica. G3 4, 2389–2402 (2014).PubMed 
    Article 

    Google Scholar 
    52.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).53.Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G. & Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geol. 35, 279–300 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    54.van den Boogaart, K. G. & Tolosana-Delgado, R. Analyzing Compositional Data in R (Springer, 2013).
    Google Scholar 
    55.Kobayashi, T. Index of fungi inhabiting woody plants in Japan–Host, Distribution and Literature (Zenkoku-Noson-Kyoiku Kyokai Publishing, 2007).
    Google Scholar 
    56.Oksanen, J. et al. Vegan: Community Ecology Package, Version 2.5-6. http://CRAN.R-project.org/package=vegan (2019). More

  • in

    Crop response to El Niño-Southern Oscillation related weather variation to help farmers manage their crops

    The BNNs demonstrated that the average yields of cacao farmer groups, in Sulawesi over distinct time periods, are closely associated with the ENSO OI patterns 9 to 25 months before harvest. The ENSO OI short term pattern explained slightly less (69%) of the variation in the average yield than the long term pattern (77%). We consider both these levels of prediction to be high, however, the short term pattern level was simpler and was used for further analyis. The linear regression between predicted and actual yields indicates that the model will tend to underestimate cacao productivity at high yields (e.g. in excess of 100 kg ha−1 month−1).The predictions made by the BNNs indicated that cacao yields are substantially impacted by ENSO conditions, which accords with prior observations21. The fertilizer response varied according to the ENSO profile: the greatest predicted response was in the Neutral ENSO profile with a smaller response under the MinCent ENSO profile, especially when unfertilized yields were low, and essentially no response under the MaxCent ENSO profile. Hence, the analysis provides insights into the appropriate fertilizer regime for distinct ENSO OI patterns in the period 9 months before harvest. We also note that recent methods to improve prediction of future ENSO OI patterns make it possible to predict them with reasonable accuracy for up to 1 year3. Thus, it is possible to relate average cacao crop performance and management practices directly to ENSO patterns in a given region without the need for weather data when the following conditions are met: (1) data exist on crop performance in any given site over time with distinct management practices; and (2) the weather patterns are driven by ENSO OI. We have used cacao as proof-of-principle, and suggest that this principle can readily be applied to other crops.A great advantage that Bayesian methods have over other machine learning approaches is that they can utilise variance based probability distributions to predict the likelihood of any given outcome. The model was used to predict the most likely monthly yield and expected standard deviation from each farm group under a specific ENSO profile when either fertilized or unfertilized. The standard deviations attained across all predicted responses was remarkably low, typically less than 1 kg ha−1 per month. Both the construction of the model and the subsequent predictions were based upon the mean yield data from 10 farms in each group at each monthly harvest under a single management type. As a result, all variations in yield across those 10 farms would have been excluded from the network constructed. As a consequence, while the predictions returned by the model might precisely reflect the mean response from each group, the limited input data will mean that the range of possible outcomes under any predicted scenario is likely to be underestimated. Up to now we have established proof-of-principle stage, the next stage will be first to improve the assessment of the predicted probability distributions and then to develop channels for communicating the results of the analysis to farmers followed by appraisal of their opinions and use of the information provided. Options for improving estimates of the probability distribution include both incorporating all observations from within each group, to ensure that farm-to-farm variance is adequately captured, and to extend the observations across more seasons to ensure that the variability of response to contrasting ENSO profiles is better represented.The analysis presented here is based on the average yields for each group of farmers. However, previous analysis indicates much variation in yield within the farmers groups20. Furthermore, those farmers with higher average yields tended to maintain their yield advantage relative to those with lower yields, even when conditions were adverse. This supports the view that the differences in yield between the high average yield and the low average yield farmers are due to management skills, rather than more favorable soils and weather conditions20. This suggests that if the average yields of individual farmers relative to the mean of all farmers are known, then the ENSO predictions can be used to predict their yield levels, and also their response to fertilizer applications.The demonstration that on farm yields and response to one management variable, fertilizer, can be linked directly to ENSO OI data supports the view that, in the future, with cacao or other crops, data on farm yields obtained with distinct management practices can be coupled with ENSO OI data to both determine probable crop yields and also to define differential crop response to management at specific sites under distinct ENSO OI patterns without the need for accurate weather data. The ENSO OI data exists, what is often lacking is data on yield with distinct management practices. To obtain this type of information in heterogeneous growing environments using traditional Randomized Control Trials is simply not possible. However, we suggest that schemes, such as those to collect the cacao data we have here with distinct management treatments superimposed on farmers fields20, can be used. Furthermore, even without superimposing management practices, simply monitoring crop performance, weather and the variation in management practices of farmers can be used to relate yield to variation in weather patterns and management28,29,30. However, this is only effective if the data of a large number of cropping events is brought together for analysis, which requires social organization and the willingness to share data28. Our experience with cacao indicates that small farmers are willing to share data, but an external agency is required to manage the overall process of data collection and compilation20. Similar experiences with CropCheck and in Australia and Chile support this point of view31,32. The value of shared information through formation of farmer groups is well established33,34 and we suggest that the methodology described here could be implemented through farmer groups. Hence, through monitoring of crop performance and management coupled with Bayesian based machine learning tools and currently available ENSO OI information and predictions, farmers and agronomists can adjust management practices, in this case fertilizer applications, according to ENSO profiles. This will require social organization and support for the collection, compilation and analysis of the data; however, we believe it offers a route to provide farmers with an improved and cost effective knowledge base, derived from sparse data resources, to better manage their crops.Social organization is not only required for the collection of data to be analysed, but also for the disemination to farmers of the knowledge generated though its interpretation. Current tendencies of providing farmers with the basis to make better decisions recognise the restrictions of the linear model for extension and tend towards active farmer participation in the interpretation of data through such mechanisms as farmers field schools35, formation of farmers groups (see for example Montaner 200434) and innnovation networks (see for example Klerkx et al. 201036, Wood et al. 201437, World Bank, 200838). Further development of farmers´organizations and innovation networks will be required to effectively deploy the concepts presented in this paper.The principles developed here could be applied to other crops, such as coffee, olive and oil palm, and this type of analysis could be extended to other regions, such as Africa where data on crop response to management and weather variation is sparse. At the same time, we note that additional information on, inter alia, crop management, topography and soil types could substantially improve the predictive power of the networks. Furthermore, these machine learning techniques can be used to mine existing big data sets collected by large commercial interests, to discover relationships between environment, management and crop production, and thereby supplement, at low cost, the findings generated by formal controlled scientific experiments. In the case of small farmers, social organization and external support will be required.There are several caveats on the use of this proposed methodology. First, the relationship between the ENSO phenomenon and the weather patterns will be specific to each location or recommendation domain. Hence, models and inferences for management cannot be readily transferred from one recommendation domain to another. Furthermore, the definition of the area that comprises a recommendation domain is not simple. Thus, whilst we consider the principles developed here to be universal, the models themselves will be specific to each recommendation domain, which are currently still difficult to define but new approaches are becoming increasingly available to do so (e.g. Rubiano et. al. 201618; Rattalino Edreira et al. 201817).A further complication of the suggested approach is the lack of understanding of the underlying mechanisms that establish the associations. This deficiency limits the ability to identify the specific causes of different crop productivities, and thus limits our ability to resolve these unidentified problems.Growers decisions on how much to invest in their crop production practices depends on the expected prices of the commodities they produce: when prices are expected to be high, they will invest more, and when prices are low they may even abandon their crops. It has not escaped our notice that the predictive power of the machine learning resources would also provide the cacao industry as a whole with insights into the fluctuations in future cacao supply and hence prices. This would allow farmers and others in the cacao supply chain to minimize uncertainty and better manage the overall industry. The experiences strongly support the idea that machine learning is a useful tool in our armoury opening the opportunity to utilize information from on farm performance coupled with publicly available data to improve agricultural management. More

  • in

    Diet and gut microbiome enterotype are associated at the population level in African buffalo

    1.Tringe, S. G. & Hugenholtz, P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Gilbert, J. A. et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Thaiss, C. A. et al. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature 540, 544–551 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289 (2014).10.Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. Biol. Sci. 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    11.Nishida, A. H. & Ochman, H. Rates of gut microbiome divergence in mammals. Mol. Ecol. 27, 1884–1897 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Reese, T. & Dunn, R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. mBio 9, e01294–18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Allison, M. J. Biosynthesis of amino acids by ruminal microorganisms. J. Anim. Sci. 29, 797–807 (1969).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Matthews, C. et al. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 10, 115–132 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Cui, K., Qi, M., Wang, S., Diao, Q. & Zhang, N. Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Sci. Rep. 9, 16612 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Moeller, A. H. et al. Chimpanzees and humans harbour compositionally similar gut enterotypes. Nat. Commun. 3, 1179 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Knights, D. et al. Rethinking “Enterotypes. Cell Host Microbe 16, 433–437 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Jeffery, I. B., Claesson, M. J., O’Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1786 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Ren, T. et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome 5, 163 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Kartzinel, T. R., Hsing, J. C., Musili, P. M., Brown, B. R. P. & Pringle, R. M. Covariation of diet and gut microbiome in African megafauna. Proc. Natl Acad. Sci. USA 116, 23588–23593 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bergmann, G. T., Craine, J. M., Robeson, M. S. 2nd & Fierer, N. Seasonal shifts in diet and gut microbiota of the American Bison (Bison bison). PLoS ONE 10, e0142409 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Couch, C. E. et al. Bighorn sheep gut microbiomes associate with genetic and spatial structure across a metapopulation. Sci. Rep. 10, 6582 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Burkepile, D. E. & Parker, J. D. Recent advances in plant-herbivore interactions. F1000Res. 6, 119 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Dearing, M. D. & Kohl, K. D. Beyond fermentation: other important services provided to endothermic herbivores by their gut microbiota. Integr. Comp. Biol. 57, 723–731 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Honda, K. & Littman, D. R. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30, 759–795 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Buffie, C. G. & Pamer, E. G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13, 790–801 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Sood, U., Bajaj, A., Kumar, R., Khurana, S. & Kalia, V. C. Infection and microbiome: impact of tuberculosis on human gut microbiome of Indian cohort. Indian J. Microbiol. 58, 123–125 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Seetharam, S. & Glass, A. Respiratory infections and their effect on the paediatric lung microbiome. Curr. Opin. Allergy Clin. Immunol. 32, 82–86 (2019).
    Google Scholar 
    32.Worthington, R. W. & Bigalke, R. D. A review of the infectious disease of African wild ruminants. Onderstepoort J. Vet. Res. 68, 291–323 (2001).CAS 
    PubMed 

    Google Scholar 
    33.Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity-biodiversity relationship. Nature 416, 427–430 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bastille-Rousseau, G. et al. Climate change can alter predator—prey dynamics and population viability of prey. Oecologia 186, 141–150 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    36.DuBowy, P. J. Waterfowl communities and seasonal environments: temporal variability in interspecific competition. Ecology 69, 1439–1453 (1988).Article 

    Google Scholar 
    37.Sun, C.-H., Liu, H.-Y., Liu, B., Yuan, B.-D. & Lu, C.-H. Analysis of the gut microbiome of wild and captive Père David’s deer. Front. Microbiol. 10, 2331 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Haworth, S. E., White, K. S., Côté, S. D. & Shafer, A. B. A. Space, time and captivity: quantifying the factors influencing the fecal microbiome of an alpine ungulate. FEMS Microbiol. Ecol. 95, fiz095 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Li, J.-G. et al. The gut bacterial community composition of wild cervus albirostris (white-lipped deer) detected by the 16S ribosomal RNA gene sequencing. Curr. Microbiol. 74, 1100–1107 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Mao, S., Huo, W. & Zhu, W. Use of pyrosequencing to characterize the microbiota in the ileum of goats fed with increasing proportion of dietary grain. Curr. Microbiol. 67, 341–350 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Lau, S. K. P. et al. Differential microbial communities of omnivorous and herbivorous cattle in Southern China. Comput. Struct. Biotechnol. J. 16, 54–60 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Turner, W. C., Jolles, A. E. & Owen-Smith, N. Alternating sexual segregation during the mating season by male African buffalo (Syncerus caffer). J. Zool. 267, 291 (2005).Article 

    Google Scholar 
    43.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Gondaira, S. et al. Immunosuppression in cows following intramammary infusion of Mycoplasma bovis. Infect. Immun. https://doi.org/10.1128/IAI.00521-19 (2019).45.Jones, C. Bovine Herpesvirus 1 counteracts immune responses and immune-surveillance to enhance pathogenesis and virus transmission. Front. Immunol. 10, 1008 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Kapil, S., Walz, P., Wilkerson, M. & Minocha, H. Immunity and immunosuppression. Bovine viral diarrhea virus: diagnosis, management and control (2005).47.Hijmans, R. J. & van Etten, J. raster: Geographic data analysis and modeling. R package version 2, (2016).48.Pebesma, E. & Bivand, R. S. S classes and methods for spatial data: the sp package. R. N. 5, 9–13 (2005).
    Google Scholar 
    49.Bivand, R., Keitt, T., Rowlingson, B. & Pebesma, E. rgdal: Bindings for the geospatial data abstraction library. R package version 1, (2016).50.Bivand, R. & Lewin-Koh, N. maptools: Tools for Reading and Handling Spatial Objects. R package version 0.9-2. (2013).51.Bivand, R. & Rundel, C. rgeos: interface to geometry engine. Open source (GEOS). R package ver. 0.3-8. (2013).52.Kock, M., Meltzer, D. & Burroughs, R. Chemical and Physical Restraint of Wild Animals: A Training and Field Manual for African Species (IWCS, 2006).53.Beechler, B. R., Jolles, A. E. & Ezenwa, V. O. Evaluation of hematologic values in free-ranging African buffalo (Syncerus caffer). J. Wildl. Dis. 45, 57–66 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Couch, C. E. et al. Serum biochemistry panels in African buffalo: Defining reference intervals and assessing variability across season, age and sex. PLoS ONE 12, e0176830 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Glidden, C. K. et al. Detection of pathogen exposure in African buffalo using non-specific markers of inflammation. Front. Immunol. 8, 1944 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Ezenwa, V. O., Jolles, A. E. & O’Brien, M. P. A reliable body condition scoring technique for estimating condition in African buffalo. Afr. J. Ecol. 47, 476–481 (2009).Article 

    Google Scholar 
    57.Ezenwa, V. O. Interactions among host diet, nutritional status and gastrointestinal parasite infection in wild bovids. Int. J. Parasitol. 34, 535–542 (2004).PubMed 
    Article 

    Google Scholar 
    58.Christianson, D. & Creel, S. Fecal chlorophyll describes the link between primary production and consumption in a terrestrial herbivore. Ecol. Appl. 19, 1323–1335 (2009).PubMed 
    Article 

    Google Scholar 
    59.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2020).62.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–44 (2015).Article 

    Google Scholar 
    64.Reynolds, A. P., Richards, G., de la Iglesia, B. & Rayward-Smith, V. J. Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J. Math. Model. Algorithms 5, 475–504 (2006).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    65.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster Analysis Basics and Extensions. (2019).66.Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. Simul. Comput. 3, 1–27 (1974).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    67.Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    68.Oksanen, J. et al. The vegan package. Community Ecol. package 10, 631–637 (2007).
    Google Scholar 
    69.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: an R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Flannery, J. E. et al. Gut feelings begin in childhood: the gut metagenome correlates with early environment, caregiving, and behavior. MBio 11, e02780–19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Sharpton, T. et al. Development of inflammatory bowel disease is linked to a longitudinal restructuring of the gut metagenome in mice. mSystems 2, e00036-17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Zhang, Y. Likelihood-based and Bayesian methods for Tweedie compound Poisson linear mixed models. Stat. Comput. 23, 743–757 (2013).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar  More

  • in

    Long-term patterns of cave-exiting activity of hibernating bats in western North America

    1.Hope, P. R. & Jones, G. Warming up for dinner: Torpor and arousal in hibernating Natterer’s bats (Myotis nattereri) studied by radio telemetry. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 182, 569–578. https://doi.org/10.1007/s00360-011-0631-x (2012).Article 

    Google Scholar 
    2.Czenze, Z. J., Jonasson, K. A. & Willis, C. K. R. Thrifty females, frisky males: Winter energetics of hibernating bats from a cold climate. Physiol. Biochem. Zool. 90, 502–511. https://doi.org/10.1086/692623 (2017).Article 
    PubMed 

    Google Scholar 
    3.Reynolds, D. S., Shoemaker, K., von Oettingen, S. & Najjar, S. High rates of winter activity and arousals in two New England bat species: Implications for a reduced white-nose syndrome impact?. Northeast. Nat. 24, B188–B208 (2017).Article 

    Google Scholar 
    4.Kunz, T. H. & Martin, R. A. Plecotus townsendii. Mamm. Species 175, 1–6 (1982).
    Google Scholar 
    5.Twente, J. W. Aspects of a population study of cavern-dwelling bats. J. Mamm. 36, 379–390 (1955).Article 

    Google Scholar 
    6.Humphrey, S. R. & Kunz, T. H. Ecology of a Pleistocene relict, the western big-eared bat (Plecotus townsendii), in the southern Great Plains. J. Mamm. 57, 470–494. https://doi.org/10.2307/1379297 (1976).Article 

    Google Scholar 
    7.Czenze, Z. J., Park, A. D. & Willis, C. K. R. Staying cold through dinner: Cold-climate bats rewarm with conspecifics but not sunset during hibernation. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 859–866. https://doi.org/10.1007/s00360-013-0753-4 (2013).Article 

    Google Scholar 
    8.Pearson, O. P., Koford, M. R. & Pearson, A. K. Reproduction of the lump-nosed bat (Corynorhinus rafinesquei) in California. J. Mamm. 33, 273–320 (1952).Article 

    Google Scholar 
    9.Johnson, J. S., Lacki, M. J., Thomas, S. C. & Grider, J. F. Frequent arousals from winter torpor in Rafinesque’s big-eared bat (Corynorhinus rafinesquii). PLoS ONE 7, e49754. https://doi.org/10.1371/journal.pone.0049754 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Lausen, C. L. & Barclay, R. M. R. Winter bat activity in the Canadian prairies. Can. J. Zool.-Rev. Can. Zool. 84, 1079–1086. https://doi.org/10.1139/z06-093 (2006).Article 

    Google Scholar 
    11.Thomas, D. W. & Cloutier, D. Evaporative water-loss by hibernating little brown bats, Myotis lucifugus. Physiol. Zool. 65, 443–456 (1992).Article 

    Google Scholar 
    12.Ben-Hamo, M., Munoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: Rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol. 216, 573–577. https://doi.org/10.1242/jeb.078790 (2013).Article 
    PubMed 

    Google Scholar 
    13.Czenze, Z. J. & Willis, C. K. R. Warming up and shipping out: Arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 185, 575–586. https://doi.org/10.1007/s00360-015-0900-1 (2015).Article 

    Google Scholar 
    14.Choate, J. R. & Anderson, J. M. Bats of jewel cave national monument, South Dakota. Prairie Nat. 29, 39–47 (1997).
    Google Scholar 
    15.Klüg-Baerwald, B. J., Gower, L. E., Lausen, C. L. & Brigham, R. M. Environmental correlates and energetics of winter flight by bats in southern Alberta, Canada. Can. J. Zool. 94, 829–836. https://doi.org/10.1139/cjz-2016-0055 (2016).Article 

    Google Scholar 
    16.Johnson, J. S. et al. Migratory and winter activity of bats in Yellowstone National Park. J. Mamm. 98, 211–221. https://doi.org/10.1093/jmammal/gyw175 (2017).Article 

    Google Scholar 
    17.Norquay, K. & Willis, C. Hibernation phenology of Myotis lucifugus. J. Zool. 294, 85–92 (2014).Article 

    Google Scholar 
    18.Barclay, R. M. et al. Variation in the reproductive rate of bats. Can. J. Zool. 82, 688–693 (2004).Article 

    Google Scholar 
    19.Jonasson, K. A. & Willis, C. K. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE 6, e21061. https://doi.org/10.1371/journal.pone.0021061 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Speakman, J. R., Webb, P. I. & Racey, P. A. Effects of disturbance on the energy expenditure of hibernating bats. J. Appl. Ecol. 28, 1087–1104. https://doi.org/10.2307/2404227 (1991).Article 

    Google Scholar 
    21.Reeder, D. M., Field, K. A. & Slater, M. H. Balancing the costs of wildlife research with the benefits of understanding a panzootic disease, white-nose syndrome. ILAR J. 56, 275–282. https://doi.org/10.1093/ilar/ilv035 (2015).CAS 
    Article 

    Google Scholar 
    22.Boyles, J. G. Benefits of knowing the costs of disturbance to hibernating bats. Wildl. Soc. Bull. 41, 388–392. https://doi.org/10.1002/wsb.755 (2017).Article 

    Google Scholar 
    23.Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mamm. 76, 940–946. https://doi.org/10.2307/1382764 (1995).Article 

    Google Scholar 
    24.Furey, N. M. & Racey, P. A. Bats in the Anthropocene: Conservation of Bats in a Changing World 463–500 (Springer, 2016).
    Google Scholar 
    25.Sheffield, S. R., Shaw, J. H., Heidt, G. A. & McClenaghan, L. R. Guidelines for the protection of bat roosts. J. Mamm. 73, 707–710 (1992).
    Google Scholar 
    26.Jones, G., Jacobs, D. S., Kunz, T. H., Willig, M. R. & Racey, P. A. Carpe noctem: The importance of bats as bioindicators. Endang. Species Res. 8, 93–115 (2009).Article 

    Google Scholar 
    27.Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227. https://doi.org/10.1126/science.1163874 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Foley, J., Clifford, D., Castle, K., Cryan, P. & Ostfeld, R. S. Investigating and managing the rapid emergence of white-nose syndrome, a novel, fatal, infectious disease of hibernating bats. Conserv. Biol. 25, 223–231. https://doi.org/10.1111/j.1523-1739.2010.01638.x (2011).Article 
    PubMed 

    Google Scholar 
    29.Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Effects of white-nose syndrome on regional population patterns of 3 hibernating bat species. Conserv. Biol. 30, 1048–1059. https://doi.org/10.1111/cobi.12690 (2016).Article 
    PubMed 

    Google Scholar 
    30.Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117, 638–649. https://doi.org/10.1016/j.funbio.2013.07.001 (2013).Article 
    PubMed 

    Google Scholar 
    31.Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature 480, 376 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14, 10 (2014).Article 

    Google Scholar 
    33.Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. U.S.A. 109, 6999–7003. https://doi.org/10.1073/pnas.1200374109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Lilley, T. M. et al. White-nose syndrome survivors do not exhibit frequent arousals associated with Pseudogymnoascus destructans infection. Front. Zool. https://doi.org/10.1186/s12983-016-0143-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.McGuire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol.-Regulat. Integr. Compar. Physiol. 313, R680–R686. https://doi.org/10.1152/ajpregu.00058.2017 (2017).CAS 
    Article 

    Google Scholar 
    36.Knudsen, G. R., Dixon, R. D. & Amelon, S. K. Potential spread of white-nose syndrome of bats to the Northwest: Epidemiological considerations. Northwest Sci. 87, 292–306. https://doi.org/10.3955/046.087.0401 (2013).Article 

    Google Scholar 
    37.Bernard, R. F. & McCracken, G. F. Winter behavior of bats and the progression of white-nose syndrome in the southeastern United States. Ecol. Evol. 7, 1487–1496. https://doi.org/10.1002/ece3.2772 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Cheng, T. L. et al. Higher fat stores contribute to persistence of little brown bat populations with white-nose syndrome. J. Anim. Ecol. 88, 591–600 (2019).Article 

    Google Scholar 
    39.Turner, J. M. et al. Conspecific disturbance contributes to altered hibernation patterns in bats with white-nose syndrome. Physiol. Behav. 140, 71–78 (2015).CAS 
    Article 

    Google Scholar 
    40.Blazek, J. et al. Numerous cold arousals and rare arousal cascades as a hibernation strategy in European Myotis bats. J. Therm. Biol 82, 150–156. https://doi.org/10.1016/j.jtherbio.2019.04.002 (2019).Article 
    PubMed 

    Google Scholar 
    41.Lorch, J. M. et al. First detection of bat white-nose syndrome in Western North America. mSphere 1(4), e00148. https://doi.org/10.1128/mSphere.00148-16 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE https://doi.org/10.1371/journal.pone.0205647 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Whiting, J. C. et al. Bat hibernacula in caves of southern Idaho: Implications for monitoring and management. West. N. Am. Nat. 78, 165–173 (2018).Article 

    Google Scholar 
    44.Whiting, J. C. et al. Long-term bat abundance in sagebrush steppe. Sci. Rep. 8, 12288 (2018).ADS 
    Article 

    Google Scholar 
    45.Call, R. S. et al. Maternity roosts of Townsend’s big-eared bats in lava tube caves of southern Idaho. Northwest Sci. 92, 158–165 (2018).ADS 
    Article 

    Google Scholar 
    46.Clark, B. S., Clark, B. K. & Leslie, D. M. Seasonal variation in activity patterns of the endangered Ozark big-eared bat (Corynorhinus townsendii ingens). J. Mamm. 83, 590–598. https://doi.org/10.1644/1545-1542(2002)083%3c0590:sviapo%3e2.0.co;2 (2002).Article 

    Google Scholar 
    47.French, A. R. The patterns of mammalian hibernation. Am. Sci. 76, 568–575 (1988).ADS 

    Google Scholar 
    48.Reynolds, T. D., Connelly, J. W., Halford, D. K. & Arthur, W. J. Vertebrate fauna of the Idaho National Environmental Research Park. Gt. Basin Nat. 46, 513–527 (1986).
    Google Scholar 
    49.Genter, D. L. Wintering bats of the upper Snake River Plain: Occurrence in lava-tube caves. Gt. Basin Nat. 46, 241–244 (1986).
    Google Scholar 
    50.Gillies, K. E., Murphy, P. J. & Matocq, M. D. Hibernacula characteristics of Townsend’s big-eared bats in southeastern Idaho. Nat. Areas J. 34, 24–30 (2014).Article 

    Google Scholar 
    51.Sikes, R. S. et al. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J. Mamm. 97(663–688), 2016. https://doi.org/10.1093/jmammal/gyw078 (2016).Article 

    Google Scholar 
    52.Schwab, N. A. & Mabee, T. J. Winter acoustic activity of bats in Montana. Northwest. Nat. 95, 13–27 (2014).Article 

    Google Scholar 
    53.Britzke, E. R., Slack, B. A., Armstrong, M. P. & Loeb, S. C. Effects of orientation and weatherproofing on the detection of bat echolocation calls. J. Fish Wildl. Manage. 1, 136–141. https://doi.org/10.3996/072010-jfwm-025 (2010).Article 

    Google Scholar 
    54.Skalak, S. L., Sherwin, R. E. & Brigham, R. M. Sampling period, size and duration influence measures of bat species richness from acoustic surveys. Methods Ecol. Evol. 3, 490–502. https://doi.org/10.1111/j.2041-210X.2011.00177.x (2012).Article 

    Google Scholar 
    55.Miller, B. W. A method for determining relative activity of free flying bats using a new activity index for acoustic monitoring. Acta Chiropt. 3, 93–105 (2001).
    Google Scholar 
    56.Nocera, T., Ford, W. M., Silvis, A. & Dobony, C. A. Patterns of acoustical activity of bats prior to and 10 years after WNS on Fort drum army installation, New York. Glob. Ecol. Conserv. https://doi.org/10.1016/j.gecco.2019.e00633 (2019).Article 

    Google Scholar 
    57.Britzke, E. R., Gillam, E. H. & Murray, K. L. Current state of understanding of ultrasonic detectors for the study of bat ecology. Acta Theriol. 58, 109–117. https://doi.org/10.1007/s13364-013-0131-3 (2013).Article 

    Google Scholar 
    58.O’Farrell, M. J., Miller, B. W. & Gannon, W. L. Qualitative identification of free-flying bats using the Anabat detector. J. Mamm. 80, 11–23. https://doi.org/10.2307/1383203 (1999).Article 

    Google Scholar 
    59.Whiting, J. C., Doering, B. & Pennock, D. Acoustic surveys for local, free-flying bats in zoos: An engaging approach for bat education and conservation. J. Bat Res. Conserv. 12, 94–99. https://doi.org/10.14709/BarbJ.12.1.2019.12 (2019).Article 

    Google Scholar 
    60.O’Farrell, M. J. & Gannon, W. L. A comparison of acoustic versus capture techniques for the inventory of bats. J. Mamm. 80, 24–30. https://doi.org/10.2307/1383204 (1999).Article 

    Google Scholar 
    61.Stahlschmidt, P. & Bruhl, C. A. Bats as bioindicators—The need of a standardized method for acoustic bat activity surveys. Methods Ecol. Evol. 3, 503–508. https://doi.org/10.1111/j.2041-210X.2012.00188.x (2012).Article 

    Google Scholar 
    62.Avery, M. I. Winter activity of pipistrelle bats. J. Anim. Ecol. 54, 721–738. https://doi.org/10.2307/4374 (1985).Article 

    Google Scholar 
    63.McCulloch, C. E. & Neuhaus, J. M. Generalized linear mixed models. In Encyclopedia of Biostatistics (eds Armitage, P. & Colton, T.) (Wiley, 2005).
    Google Scholar 
    64.Nelder, J. A. & Wedderburn, R. W. Generalized linear models. J. R. Stat. Soc. Ser. A (Gen.) 135, 370–384 (1972).Article 

    Google Scholar 
    65.Hardin, J. W. & Hilbe, J. M. Generalized Linear Models and Extensions (Stata Press, 2007).
    Google Scholar 
    66.Consul, P. & Famoye, F. Generalized Poisson regression model. Commun. Stat. Theory Methods 21, 89–109 (1992).Article 

    Google Scholar 
    67.Aho, K. A. Foundational and Applied Statistics for Biologists using R (CRC Press, 2013).
    Google Scholar 
    68.Akaike, H. Selected Papers of Hirotugu Akaike 199–213 (Springer, 1998).
    Google Scholar 
    69.Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A practical Information-Theoretic Approach 2nd edn. (Springer, 2002).
    Google Scholar 
    70.RCoreTeam. R: A Language and Environment for Statistical Computing (2020).71.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer, 2013).
    Google Scholar 
    72.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    73.Perkins, J. M., Barss, J. M. & Peterson, J. Winter records of bats in Oregon and Washington. Northwest. Nat. 71, 59–62. https://doi.org/10.2307/3536594 (1990).Article 

    Google Scholar 
    74.Nagorsen, D. W. et al. Winter bat records for British Columbia. Northwest Nat. 74, 61–66 (1993).Article 

    Google Scholar 
    75.Hayman, D. T., Cryan, P. M., Fricker, P. D. & Dannemiller, N. G. Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods Ecol. Evol. 8, 1813–1821 (2017).Article 

    Google Scholar 
    76.Boyles, J. G., Dunbar, M. B. & Whitaker, J. O. Activity following arousal in winter in North American vespertilionid bats. Mamm. Rev. 36, 267–280. https://doi.org/10.1111/j.1365-2907.2006.00095.x (2006).Article 

    Google Scholar 
    77.Speakman, J. R. & Racey, P. A. Hibernal ecology of the pipistrelle bat: Energy expenditure, water requirements and mass-loss, implications for survial and the function of winter emergence flights. J. Anim. Ecol. 58, 797–813. https://doi.org/10.2307/5125 (1989).Article 

    Google Scholar 
    78.Lawrence, B. D. & Simmons, J. A. Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J. Acoust. Soc. Am. 71, 585–590 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    79.Dunbar, M. B. & Tomasi, T. E. Arousal patterns, metabolic rate, and an energy budget of eastern red bats (Lasiurus borealis) in winter. J. Mamm. 87, 1096–1102. https://doi.org/10.1644/05-mamm-a-254r3.1 (2006).Article 

    Google Scholar 
    80.Ford, W. M., Britzke, E. R., Dobony, C. A., Rodrigue, J. L. & Johnson, J. B. Patterns of acoustical activity of bats prior to and following white-nose syndrome occurrence. J. Fish Wildl. Manage. 2, 125–134. https://doi.org/10.3996/042011-jfwm-027 (2011).Article 

    Google Scholar 
    81.Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on Rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the southeastern USA. J. Wildl. Dis. 51, 519–522. https://doi.org/10.7589/2014-08-202 (2015).Article 
    PubMed 

    Google Scholar 
    82.Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: the impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2010).Article 

    Google Scholar 
    83.Brooks, R. T. Declines in summer bat activity in central New England 4 years following the initial detection of white-nose syndrome. Biodivers. Conserv. 20, 2537–2541. https://doi.org/10.1007/s10531-011-9996-0 (2011).Article 

    Google Scholar 
    84.Holloway, G. L. & Barclay, R. M. R. Myotis ciliolabrum. Mamm. Species 670, 1–5. https://doi.org/10.1644/1545-1410(2001)670%3c0001:mc%3e2.0.co;2 (2001).Article 

    Google Scholar 
    85.Halsall, A. L., Boyles, J. G. & Whitaker, J. O. Jr. Body temperature patterns of big brown bats during winter in a building hibernaculum. J. Mamm. 93, 497–503 (2012).Article 

    Google Scholar 
    86.Paige, K. N. Bats and barometric pressure: conserving limited energy and tracking insects from the roost. Funct. Ecol. 9, 463–467 (1995).Article 

    Google Scholar 
    87.Frick, W. F. Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya 4, 69–78 (2013).ADS 
    Article 

    Google Scholar 
    88.Whitaker, J. O. & Rissler, L. J. Winter activity of bats at a mine entrance in Vermillion County, Indiana. Am. Midl. Nat. 127, 52–59. https://doi.org/10.2307/2426321 (1992).Article 

    Google Scholar  More

  • in

    Stock delineation of striped snakehead, Channa striata using multivariate generalised linear models with otolith shape and chemistry data

    1.Carlson, A. K., Phelps, Q. E. & Graeb, B. D. S. Chemistry to conservation: Using otoliths to advance recreational and commercial fisheries management. J. Fish Biol. 90, 505–527 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ward, R. D. Genetics in fisheries management. Hydrobiologia 420, 191–201 (2000).CAS 
    Article 

    Google Scholar 
    3.Tracey, S. R., Lyle, J. M. & Duhamel, G. Application of elliptical Fourier analysis of otolith form as a tool for stock identification. Fish. Res. 77, 138–147 (2006).Article 

    Google Scholar 
    4.Ferguson, G. J., Ward, T. M. & Gillanders, B. M. Otolith shape and elemental composition: Complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia. Fish. Res. 110, 75–83 (2011).Article 

    Google Scholar 
    5.Campana, S. E. & Casselman, J. M. Stock discrimination using otolith shape analysis. Can. J. Fish. Aquat. Sci. 50(5), 1062-1083 (1993).Article 

    Google Scholar 
    6.Begg, G. A., Overholtz, W. J. & Munroe, N. J. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on Georges Bank. Fish. Bull. 99, 1–1 (2001).
    Google Scholar 
    7.Miyan, K., Khan, M. A., Patel, D. K., Khan, S. & Ansari, N. G. Truss morphometry and otolith microchemistry reveal stock discrimination in Clarias batrachus (Linnaeus, 1758) inhabiting the Gangetic river system. Fish. Res. 173, 294–302 (2016).Article 

    Google Scholar 
    8.Nazir, A. & Khan, M. A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshw. Fish 28, 499–511 (2019).Article 

    Google Scholar 
    9.Bird, J. L., Eppler, D. T. & Checkley, D. M. Jr. Comparisons of herring otoliths using Fourier series shape analysis. Can. J. Fish. Aquat. Sci. 43(6), 1228-1234 (1986).Article 

    Google Scholar 
    10.Castonguay, M., Simard, P. & Gagnon, P. Usefulness of Fourier analysis of otolith shape for Atlantic Mackerel (Scomber scombrus) stock discrimination. Can. J. Fish. Aquat. Sci. 48(2), 296-302 (1991).Article 

    Google Scholar 
    11.Friedland, K. D. & Reddin, D. G. Use of otolith morphology in stock discriminations of Atlantic Salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 51(1), 91-98 (1994).Article 

    Google Scholar 
    12.Vignon, M. & Morat, F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish. Mar. Ecol. Prog. Ser. 411, 231–241 (2010).ADS 
    Article 

    Google Scholar 
    13.Campana, S. E., Chouinard, G. A., Hanson, J. M., Fréchet, A. & Brattey, J. Otolith elemental fingerprints as biological tracers of fish stocks. Fish. Res. 46, 343–357 (2000).Article 

    Google Scholar 
    14.Elsdon, T. S. & Gillanders, B. M. Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Rev. Fish Biol. Fish. 13, 217–235 (2003).Article 

    Google Scholar 
    15.Stransky, C. Geographic variation of golden redfish (Sebastes marinus) and deep-sea redfish (S. mentella) in the North Atlantic based on otolith shape analysis. ICES J. Mar. Sci. 62, 1691–1698 (2005).Article 

    Google Scholar 
    16.Grammer, G. L. et al. Coupling biogeochemical tracers with fish growth reveals physiological and environmental controls on otolith chemistry. Ecol. Monogr. 87, 487–507 (2017).Article 

    Google Scholar 
    17.Izzo, C., Reis-Santos, P. & Gillanders, B. M. Otolith chemistry does not just reflect environmental conditions: A meta-analytic evaluation. Fish Fish. 19, 441–454 (2018).Article 

    Google Scholar 
    18.Elsdon, T. S. & Gillanders, B. M. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269–284 (2004).CAS 
    Article 

    Google Scholar 
    19.Khan, M. A., Miyan, K., Khan, S., Patel, D. K. & Ansari, G. Studies on the elemental profile of otoliths and truss network analysis for stock discrimination of the threatened stinging catfish Heteropneustes fossilis (Bloch 1794) from the Ganga river and its tributaries. Zool. Stud. 51, 1195–1206 (2012).
    Google Scholar 
    20.Miyan, K., Khan, M. A. & Khan, S. Stock structure delineation using variation in otolith chemistry of snakehead, Channa punctata (Bloch, 1793), from three Indian rivers. J. Appl. Ichthyol. 30, 881–886 (2014).CAS 
    Article 

    Google Scholar 
    21.Miyan, K., Khan, M. A., Patel, D. K., Khan, S. & Prasad, S. Otolith fingerprints reveal stock discrimination of Sperata seenghala inhabiting the Gangetic river system. Ichthyol. Res. 63, 294–301 (2016).Article 

    Google Scholar 
    22.Fowler, A. M., Macreadie, P. I., Bishop, D. P. & Booth, D. J. Using otolith microchemistry and shape to assess the habitat value of oil structures for reef fish. Mar. Environ. Res. 106, 103–113 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Schilling, H. T. et al. Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia. Mar. Ecol. Prog. Ser. 598, 187–199 (2018).ADS 
    Article 

    Google Scholar 
    24.Biolé, F. G. et al. Fish stocks of Urophycis brasiliensis revealed by otolith fingerprint and shape in the Southwestern Atlantic Ocean. Estuar. Coast. Shelf Sci. 229, 106406 (2019).Article 
    CAS 

    Google Scholar 
    25.Maguffee, A. C., Reilly, R., Clark, R. & Jones, M. L. Examining the potential of otolith chemistry to determine natal origins of wild Lake Michigan Chinook salmon. Can. J. Fish. Aquat. Sci. 76(11), 2035-2044 (2019).Article 

    Google Scholar 
    26.Tanner, S. E., Vasconcelos, R. P., Cabral, H. N. & Thorrold, S. R. Testing an otolith geochemistry approach to determine population structure and movements of European hake in the northeast Atlantic Ocean and Mediterranean Sea. Fish. Res. 125–126, 198–205 (2012).Article 

    Google Scholar 
    27.Andrade, H. et al. Ontogenetic movements of cod in Arctic fjords and the Barents Sea as revealed by otolith microchemistry. Polar Biol. 43, 409–421 (2020).Article 

    Google Scholar 
    28.Warton, D. I. Why you cannot transform your way out of trouble for small counts. Biometrics 74, 362–368 (2018).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    29.Foster, S. D. & Bravington, M. V. A Poisson-Gamma model for analysis of ecological non-negative continuous data. Environ. Ecol. Stat. 20, 533–552 (2013).MathSciNet 
    Article 

    Google Scholar 
    30.Taylor, L. R. Aggregation, variance and the mean. Nature 189, 732–735 (1961).ADS 
    Article 

    Google Scholar 
    31.Kendal, R. L., Coolen, I. & Laland, K. N. The role of conformity in foraging when personal and social information conflict. Behav. Ecol. 15, 269–277 (2004).Article 

    Google Scholar 
    32.Warton, D. I., Wright, S. T. & Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 3, 89–101 (2012).Article 

    Google Scholar 
    33.Warton, D. I., Foster, S. D., De’ath, G., Stoklosa, J. & Dunstan, P. K. Model-based thinking for community ecology. Plant Ecol. 216, 669–682 (2015).Article 

    Google Scholar 
    34.Wang, Y., Naumann, U., Wright, S. T. & Warton, D. I. mvabund– an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474 (2012).Article 

    Google Scholar 
    35.Niku, J., Warton, D. I., Hui, F. K. C. & Taskinen, S. Generalized linear latent variable models for multivariate count and biomass data in ecology. J. Agric. Biol. Environ. Stat. 22, 498–522 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    36.Dunn, P. K. & Smyth, G. K. Randomized quantile residuals. J. Comput. Graph. Stat. 5, 236–244 (1996).
    Google Scholar 
    37.Dunn, P. K. & Smyth, G. K. Chapter 8: generalized linear models: Diagnostics. In Generalized Linear Models With Examples in R (eds. Dunn, P. K. & Smyth, G. K.) 297–331 (Springer, 2018). https://doi.org/10.1007/978-1-4419-0118-7_8.38.Hui, F. K. C., Taskinen, S., Pledger, S., Foster, S. D. & Warton, D. I. Model-based approaches to unconstrained ordination. Methods Ecol. Evol. 6, 399–411 (2015).Article 

    Google Scholar 
    39.Hui, F. K. C. Boral–Bayesian ordination and regression analysis of multivariate abundance Data in r. Methods Ecol. Evol. 7, 744–750 (2016).Article 

    Google Scholar 
    40.Popovic, G. C., Warton, D. I., Thomson, F. J., Hui, F. K. C. & Moles, A. T. Untangling direct species associations from indirect mediator species effects with graphical models. Methods Ecol. Evol. 10, 1571–1583 (2019).Article 

    Google Scholar 
    41.Jones, C. M., Palmer, M. & Schaffler, J. J. Beyond Zar: The use and abuse of classification statistics for otolith chemistry. J. Fish Biol. 90, 492–504 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Rahman, M. A. & Awal, S. Development of captive breeding, seed production and culture techniques of snakehead fish for species conservation and sustainable aquaculture. Int. J. Adv. Agric. Environ. Eng. 3, 117–120 (2016).
    Google Scholar 
    43.Khan, M. A., Khan, S. & Miyan, K. Stock identification of the Channa striata inhabiting the Gangetic River System using Truss Morphometry. Russ. J. Ecol. 50, 391–396 (2019).Article 

    Google Scholar 
    44.Phen, C., Thang, T. B., Baran, E. & Vann, L. S. Biological reviews of important Cambodian fish species, based on FishBase 2004. Volume 1: Channa striata; Channa micropeltes; Barbonymus altus; Barbonymus gonionotus; Cyclocheilichthys apogon; Cyclocheilichthys enoplos; Henicorhynchus lineatus; Henicorhynchus siamensis; Pangasius hypophthalmus; Pangasius djambal. (WorldFish Center and Inland Fisheries Research and Development Institute, 2005).45.War, M. & Haniffa, M. A. Growth and survival of larval snakehead Channa striatus (Bloch, 1793) fed different live feed organisms. Turk. J. Fish. Aquat. Sci. 11, 523–528 (2011).
    Google Scholar 
    46.Cagauan, A. G. Exotic aquatic species introduction in the Philippines for aquaculture—A threat to biodiversity or a boon to the economy?. J. Environ. Sci. Manag. 10, 48–62 (2007).
    Google Scholar 
    47.Jayaram, K. C. The Freshwater Fishes of the Indian Region (Narendra Publishing House, 1999).
    Google Scholar 
    48.Talwar, P. K. & Jhingran, A. G. Inland fishes of India and adjacent countries Vol. 2 (CRC Press, 1991).
    Google Scholar 
    49.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).50.Libungan, L. A. & Pálsson, S. ShapeR: An R package to study otolith shape variation among fish populations. PLoS ONE 10, e0121102 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Graps, A. An introduction to wavelets. IEEE Comput. Sci. Eng. 2, 50–61 (1995).Article 

    Google Scholar 
    52.Turan, C. The use of otolith shape and chemistry to determine stock structure of Mediterranean horse mackerel Trachurus mediterraneus (Steindachner). J. Fish Biol. 69, 165–180 (2006).CAS 
    Article 

    Google Scholar 
    53.Oksanen, J. vegan: Community Ecology Package. (2019).54.Venables, W. N. & Ripley, B. D. Modern applied statistics with S-PLUS (Springer Science & Business Media, 2013).
    Google Scholar 
    55.Warton, D. I. Raw data graphing: An informative but under-utilized tool for the analysis of multivariate abundances. Austral. Ecol. 33, 290–300 (2008).Article 

    Google Scholar 
    56.Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: An overview. Fish. Res. 43, 1–8 (1999).Article 

    Google Scholar 
    57.Sengupta, B. Water Quality Status of Yamuna River (1999-2005), Assessment and Development of River Basin Series: ADSORBS/41/2006-07. Cent. Pollut. Control Board Delhi (2006).58.Bhardwaj, R., Gupta, A. & Garg, J. K. Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Sci. 31, 52–66 (2017).Article 

    Google Scholar  More

  • in

    Phytoplankton community structuring and succession in a competition-neutral resource landscape

    1.MacArthur, R. H., Wilson, E. O. The theory of island biogeography. in Monographs in Population Biology (Princeton University Press, Princeton, NJ, 1967)2.Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. in Monographs in Population Biology, Vol. 32 (Princeton University Press, Princeton, NJ, 2001).3.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).
    Google Scholar 
    4.Ryther, J. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Cushing, D. A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified. J. Plankton Res. 11, 1–13 (1989).Article 

    Google Scholar 
    6.Barber, R. T. & Hiscock, M. R. A rising tide lifts all phytoplankton: growth response of other phytoplankton taxa in diatom‐dominated blooms. Glob. Biogeoch. Cycl. 20, GB4S03 (2006).
    Google Scholar 
    7.Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Global Biogeochem. Cycl. 28, 181–196 (2014).CAS 
    Article 

    Google Scholar 
    8.Buesseler, K. O., Boyd, P. W., Black, E. E. & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Irwin, A. J., Finkel, Z. V., Schofield, O. M. & Falkowski, P. G. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. J. Plankt. Res. 28, 459–471 (2006).Article 

    Google Scholar 
    10.Litchman, E., Klausmeier, C. A. & Yoshiyama, K. Contrasting size evolution in marine and freshwater diatoms. Proc. Natl Acad. Sci. USA 106, 2665–2670 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Tozzi, S., Schofield, O. & Falkowski, P. Historical climate change and ocean turbulence as selective agents for two key phytoplankton functional groups. Mar. Ecol. Prog. Ser. 274, 123–132 (2004).Article 

    Google Scholar 
    12.Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gregg, W. W., Casey, N. W. & Rousseaux, C. S. Global surface ocean carbon estimates in a model forced by MERRA NASA Technical Report Series on Global Modeling and Data Assimilation. NASA TM-2013-104606, Vol. 31, 39 (2013).14.Hulburt, E. M. Competition for nutrients by marine phytoplankton in oceanic, coastal, and estuarine regions. Ecology 51, 475–484 (1970).Article 

    Google Scholar 
    15.Siegel, D. A. Resource competition in a discrete environment: why are plankton distributions paradoxical? Limnol. Oceanogr. 43, 1133–1146 (1998).Article 

    Google Scholar 
    16.Cyr, H., Peters, R. H. & Downing, J. A. Population density and community size structure: comparison of aquatic and terrestrial systems. Oikos 80, 139–149 (1997).Article 

    Google Scholar 
    17.White, E. P., Ernest, S. M., Kerkhoff, A. J. & Enquist, B. J. Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323–330 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.McCauley, D. J. et al. On the prevalence and dynamics of inverted trophic pyramids and otherwise top-heavy communities. Ecol. Lett. 21, 439–454 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.West, G. B., Brown, J. H. & Enquist, B. J. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284, 1677–1679 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sheldon, R. W., Prakash, A. & Sutcliffe, W. Jr The size distribution of particles in the Ocean 1. Limnol. Oceanogr. 17, 327–340 (1972).Article 

    Google Scholar 
    22.Jonasz, M. & Fournier, G. Light Scattering by Particles in Water: Theoretical and Experimental Foundations. (Elsevier, 2011).23.Huete-Ortega, M., Cermeno, P., Calvo-Díaz, A. & Maranon, E. Isometric size-scaling of metabolic rate and the size abundance distribution of phytoplankton. Proc. Royal Soc. B 279, 1815–1823 (2012).Article 

    Google Scholar 
    24.Marañón, E. Cell size as a key determinant of phytoplankton metabolism and community structure. Annu. Rev. Mar. Sci. 7, 241–264 (2015).Article 

    Google Scholar 
    25.Riley, G. A., Stommel, H. M., Bumpus, D. F. Quantitative ecology of the plankton of the western North Atlantic. Bulletin of the Bingham Oceanographic Collection 12 (Yale Univ., New Haven, CT, 1949)26.Evans, G. T. & Parslow, J. S. A model of annual plankton cycles. Biol. Oceanogr. 3, 327–347 (1985).
    Google Scholar 
    27.Margalef, R. Perspectives in Ecological Theory. 111 pp (Univ. Chicago Press, Chicago, Ill, 1968).28.Behrenfeld, M. J. & Boss, E. S. Resurrecting the ecological underpinnings of ocean plankton blooms. Ann. Rev. Mar. Sci. 6, 167–194 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Behrenfeld, M. J. & Boss, E. S. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob. Change Biol. 24, 55–77 (2018).Article 

    Google Scholar 
    30.Strom, S. L. & Buskey, E. J. Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda. Limnol. Oceanogr. 38, 965–977 (1993).Article 

    Google Scholar 
    31.Strom, S. L., Macri, E. L. & Olson, M. B. Microzooplankton grazing in the coastal Gulf of Alaska: Variations in top-down control of phytoplankton. Limnol. Oceanogr. 52, 1480–1494 (2007).Article 

    Google Scholar 
    32.Wirtz, K. W. Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar. Ecol. Progr. Ser. 445, 1–12 (2012).Article 

    Google Scholar 
    33.Kiørboe, T. How zooplankton feed: mechanisms, traits and trade-offs. Biol. Rev. 86, 311–339 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Hansen, B., Bjornsen, P. K. & Hansen, P. J. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39, 395–403 (1994).Article 

    Google Scholar 
    35.Sommer, U. & Sommer, F. Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147, 183–194 (2006).PubMed 
    Article 

    Google Scholar 
    36.Hébert, M.-P., Beisner, B. E. & Maranger, R. Linking zooplankton communities to ecosystem functioning: Toward an effect-trait framework. J. Plankton Res. 39, 3–12 (2017).Article 
    CAS 

    Google Scholar 
    37.Fuchs, H. L. & Franks, P. J. Plankton community properties determined by nutrients and size-selective feeding. Mar. Ecol. Progr. Ser. 413, 1–15 (2010).Article 

    Google Scholar 
    38.Sutherland, K. R., Madin, L. P. & Stocker, R. Filtration of submicrometer particles by pelagic tunicates. Proc. Natl Acad. Sci. USA 107, 15129–15134 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Dadon-Pilosof, A., Lombard, F., Genin, A., Sutherland, K. R. & Yahel, G. Prey taxonomy rather than size determines salp diets. Limnol. Oceanogr. 64, 1996–2010 (2019).Article 

    Google Scholar 
    40.Antoine, D., Andre, J. M. & Morel, A. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem. Cycl. 10, 57–69 (1996).CAS 
    Article 

    Google Scholar 
    41.Brewin, R. J. W. et al. A three-component model of phytoplankton size class for the Atlantic Ocean. Ecol. Model. 221, 1472–1483 (2010).CAS 
    Article 

    Google Scholar 
    42.Marañón, E., Cermeño, P., Latasa, M. & Tadonléké, R. D. Temperature, resources, and phytoplankton size structure in the ocean. Limnol. Oceanogr. 5, 1266–1278 (2012).Article 

    Google Scholar 
    43.Kerr, S. R., Dickie, L. M. The Biomass Spectrum: a Predator-prey Theory of Aquatic Production (Columbia University Press, 2001).44.Behrenfeld, M. J., et al. Annual boom-bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2017; https://doi.org/10.1038/NGEO2861.45.Kiorboe, T. Turbulence, phytoplankton cell size, and the structure of pelagic food-webs. Adv. Mar. Biol. 29, 1–72 (1993).Article 

    Google Scholar 
    46.DeLong, J. P. & Vasseur, D. A. Size-density scaling in protists and the links between consumer–resource interaction parameters. J. Animal Ecol. 81, 1193–1201 (2012).Article 

    Google Scholar 
    47.Smetacek, V. Diatoms and the ocean carbon cycle. Protist 150, 25–32 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Smetacek, V., Assmy, P. & Henjes, J. The role of grazing in structuring Southern Ocean pelagic ecosystems and biogeochemical cycles. Antarct. Sci. 16, 541–558 (2004).Article 

    Google Scholar 
    49.Behrenfeld, M. J., Halsey, K. H., Boss, E., Karp-Boss, L., Milligan, A. J. & Peers, G. Thoughts on the evolution and ecological niche of diatoms. Ecol. Monogr. 2021; in press.50.Glibert, P. M. Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55, 25–30 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanolog. Acta 1, 493–509 (1978).
    Google Scholar 
    52.Cullen, J. J. & MacIntyre, J. G. Behavior, physiology and the niche of depth-regulating phytoplankton. Nato ASI Ser. G Ecol. Sci. 41, 559–580 (1998).53.Kemp, A. E. & Villareal, T. A. The case of the diatoms and the muddled mandalas: Time to recognize diatom adaptations to stratified waters. Prog. Oceanogr. 167, 138–149 (2018).Article 

    Google Scholar 
    54.Kudela, R. M. Does horizontal mixing explain phytoplankton dynamics? Proc. Natl Acad. Sci. USA 107, 18235–18236 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Wyatt, T. Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Res. II 101, 32–49 (2014).Article 

    Google Scholar 
    56.Waite, A., Fisher, A., Thompson, P. A. & Harrison, P. J. Sinking rate versus cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar. Ecol. Prog. Ser. 157, 97–108 (1997).Article 

    Google Scholar 
    57.Moore, J. K. & Villareal, T. A. Size-ascent rate relationships in positively buoyant marine diatoms. Limnol. Oceanogr. 41, 1514–1520 (1996).Article 

    Google Scholar 
    58.Bienfang, P. & Szyper, J. Effects of temperature and salinity on sinking rates of the centric diatom Ditylum brightwellii. Biol. Oceanogr. 1, 211–223 (1982).
    Google Scholar 
    59.Bienfang, P., Szyper, J. & Laws, E. Sinking rate and pigment responses to light-limitation of a marine diatom – implications to dynamics of chlorophyll maximum layers. Oceanolog. Acta 6, 55–62 (1983).CAS 

    Google Scholar 
    60.Villareal, T. A., Pilskaln, C. H., Montoya, J. P. & Dennett, M. Upward nitrate transport by phytoplankton in oceanic waters: balancing nutrient budgets in oligotrophic seas. PeerJ 2, e302 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Irigoien, X., Flynn, K. J. & Harris, R. P. Phytoplankton blooms: a “loophole” in micozooplankton grazing impact? J. Plankton Res. 27, 313–321 (2005).Article 

    Google Scholar 
    62.Bolaños, L. M., et al. Small phytoplankton dominate western North Atlantic biomass. ISME J: 1–12, https://doi.org/10.1038/s41396-020-0636-0 (2020).63.Guillard, R., Kilham, P. The ecology of marine planktonic diatoms. in The Biology of Diatoms, Vol. 13, 372–469 (Blackwell Oxford, 1977).64.Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Barton, A. D., Finkel, Z. V., Ward, B. A., Johns, D. G. & Follows, M. J. On the roles of cell size and trophic strategy in North Atlantic diatom and dinoflagellate communities. Limnol. Oceanogr. 58, 254–266 (2013).Article 

    Google Scholar 
    66.Edwards, K. F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl Acad. Sci. USA 116, 6211–6220 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Boyd, P. W. Environmental factors controlling phytoplankton processes in the Southern Ocean. J. Phycol. 38, 844–861 (2002).Article 

    Google Scholar 
    68.Fauchereau, N., Tagliabue, A., Bopp, L. & Monteiro, P. M. The response of phytoplankton biomass to transient mixing events in the Southern Ocean. Geophys. Res. Lett. 38, L17601 (2011).Article 

    Google Scholar 
    69.Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).CAS 
    Article 

    Google Scholar 
    70.Colin, S. P. & Dam, H. G. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar. Ecol. Prog. Ser. 248, 55–65 (2003).Article 

    Google Scholar 
    71.Van Donk, E., Ianora, A. & Vos, M. Induced defences in marine and freshwater phytoplankton: a review. Hydrobiol. 668, 3–19 (2011).Article 
    CAS 

    Google Scholar 
    72.Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defense metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.DeMott, W. R. & Moxter, F. Foraging cyanobacteria by copepods: responses to chemical defense and resource abundance. Ecology 72, 1820–1834 (1991).Article 

    Google Scholar 
    74.Ger, K. A., Naus-Wiezer, S., De Meester, L. & Lürling, M. Zooplankton grazing selectivity regulates herbivory and dominance of toxic phytoplankton over multiple prey generations. Limnol. Oceanogr. 64, 1214–1227 (2019).Article 

    Google Scholar 
    75.Smayda, T. J. & Reynolds, C. S. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. J. Plankt. Res. 23, 447–461 (2001).Article 

    Google Scholar 
    76.Acevedo-Trejos, E., Brandt, G., Bruggeman, J. & Merico, A. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Sci. Rep 5, 8918 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Cuesta, J. A., Delius, G. W. & Law, R. Sheldon spectrum and the plankton paradox: two sides of the same coin—a trait-based plankton size-spectrum model. J. Math. Biol. 76, 67–96 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Hutchinson, G. E. Ecological aspects of succession in natural populations. Amer. Nat. 75, 406–418 (1941).Article 

    Google Scholar 
    79.Tilman, D. Resource competition between plankton algae: an experimental and theoretical approach. Ecology 58, 338–348 (1977).CAS 
    Article 

    Google Scholar 
    80.Tilman, D., Mattson, M. & Langer, S. Competition and nutrient kinetics along a temperature gradient: An experimental test of a mechanistic approach to niche theory 1. Limnol. Oceanogr. 26, 1020–1033 (1981).Article 

    Google Scholar 
    81.Sommer, U. Nutrient competition between phytoplankton species in multispecies chemostat experiments. Archiv hydrobiol. 96, 399–416 (1983).
    Google Scholar 
    82.Sommer, U. Comparison between steady state and non-steady state competition: experiments with natural phytoplankton. Limnol. Oceanogr. 30, 335–346 (1985).CAS 
    Article 

    Google Scholar 
    83.Tilman, D. Resource Competition and Community Structure (Princeton University Press, 1982).84.Sommer, U. The role of competition for resources in phytoplankton succession. in Plankton Ecology. Berlin, Heidelberg: Springer. 1989, pp. 57-106.85.Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).Article 

    Google Scholar 
    86.Kahl, L. A., Vardi, A. & Schofield, O. Effects of phytoplankton physiology on export flux. Mar. Ecol. Prog. Ser. 354, 3–19 (2008).CAS 
    Article 

    Google Scholar 
    87.Guidi, L. et al. Effects of phytoplankton community on production, size and export of large aggregates: a world-ocean analysis. Limnol. Oceanogr. 54, 1951–1963 (2009).Article 

    Google Scholar 
    88.Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: a field experiment to test coagulation theory. J. Mar. Res. 52, 297–323 (1994).Article 

    Google Scholar 
    89.Prairie, J. C., Montgomery, Q. W., Proctor, K. W. & Ghiorso, K. S. Effects of phytoplankton growth phase on settling properties of marine aggregates. J. Mar. Sci. Engineer. 7, 265 (2019).Article 

    Google Scholar 
    90.Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348, 6237 (2015).Article 
    CAS 

    Google Scholar 
    91.Sañudo-Wilhelmy, S. A., Gómez-Consarnau, L., Suffridge, C. & Webb, E. A. The role of B vitamins in marine biogeochemistry. Ann. Rev. Mar. Sci. 6, 339–367 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Helliwell, K. E. The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects. New Phytol. 216, 62–68 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Chisholm, S. W. et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340–343 (1988).Article 

    Google Scholar 
    94.Caputo, A., Nylander, J. A. & Foster, R. A. The genetic diversity and evolution of diatom-diazotroph associations highlights traits favoring symbiont integration. FEMS Microbiol. Lett. 366, fny297 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    95.Decelle, J. et al. An original mode of symbiosis in open ocean plankton. Proc. Natl Acad. Sci. USA 109, 18000–18005 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Decelle, J. et al. Algal remodeling in a ubiquitous planktonic photosymbiosis. Curr. Biol. 29, 968–978 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): science motive and mission overview. Front. Mar. Sci. 6, 122 (2019).Article 

    Google Scholar 
    98.Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).CAS 
    Article 

    Google Scholar  More