Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease
1.Biard, C., Monceau, K., Motreuil, S. & Moreau, J. Interpreting immunological indices: the importance of taking parasite community into account. An example in blackbirds Turdus merula. Methods Ecol. Evol. 6, 960–972. https://doi.org/10.1111/2041-210x.12371 (2015).Article
Google Scholar
2.Boughton, R. K., Joop, G. & Armitage, S. A. O. Outdoor immunology: methodological considerations for ecologists. Funct. Ecol. 25, 81–100. https://doi.org/10.1111/j.1365-2435.2010.01817.x (2011).Article
Google Scholar
3.Maizels, R. M. & Nussey, D. H. Into the wild: digging at immunology’s evolutionary roots. Nat. Immunol. 14, 879–883. https://doi.org/10.1038/ni.2643 (2013).CAS
Article
PubMed
Google Scholar
4.Martin, L. B., Weil, Z. M. & Nelson, R. J. Refining approaches and diversifying directions in ecoimmunology. Integr. Comp. Biol. 46, 1030–1039. https://doi.org/10.1093/icb/icl039 (2006).CAS
Article
PubMed
Google Scholar
5.Johnson, W. et al. Pathogenic and humoral immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) are related to viral load in acute infection. Vet. Immunol. Immunopathol. 102, 233–247. https://doi.org/10.1016/j.vetimm.2004.09.010 (2004).CAS
Article
PubMed
Google Scholar
6.Ortiz, R. H. et al. Differences in virulence and immune response induced in a murine model by isolates of Mycobacterium ulcerans from different geographic areas. Clin. Exp. Immunol. 157, 271–281. https://doi.org/10.1111/j.1365-2249.2009.03941.x (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
7.Sela, U., Euler, C. W., da Rosa, J. C. & Fischetti, V. A. Strains of bacterial species induce a greatly varied acute adaptive immune response: the contribution of the accessory genome. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1006726 (2018).Article
PubMed
PubMed Central
Google Scholar
8.Skjesol, A. et al. IPNV with high and low virulence: host immune responses and viral mutations during infection. Virol. J. https://doi.org/10.1186/1743-422x-8-396 (2011).Article
PubMed
PubMed Central
Google Scholar
9.Hornef, M. W., Wick, M. J., Rhen, M. & Normark, S. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat. Immunol. 3, 1033–1040. https://doi.org/10.1038/ni1102-1033 (2002).CAS
Article
PubMed
Google Scholar
10.Fassbinder-Orth, C. A. et al. Immunoglobulin detection inwild birds: effectiveness of three secondary anti-avian IgY antibodies in direct ELISAs in 41 avian species. Methods Ecol. Evol. 7, 1174–1181. https://doi.org/10.1111/2041-210x.12583 (2016).Article
PubMed
PubMed Central
Google Scholar
11.Janeway, C. Immunobiology: The Immune System in Health and Disease (Garland Science, 2005).
Google Scholar
12.Coltman, D. W., Pilkington, J., Kruuk, L. E. B., Wilson, K. & Pemberton, J. M. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 55, 2116–2125 (2001).CAS
Article
Google Scholar
13.Hayward, A. D. et al. Natural selection on individual variation in tolerance of gastrointestinal nematode infection. PLoS. Biol. https://doi.org/10.1371/journal.pbio.1001917 (2014).Article
PubMed
PubMed Central
Google Scholar
14.Johnson, J. S. et al. Antibodies to Pseudogymnoascus destructans are not sufficient for protection against white-nose syndrome. Ecol. Evol. 5, 2203–2214. https://doi.org/10.1002/ece3.1502 (2015).Article
PubMed
PubMed Central
Google Scholar
15.Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal conjunctivitis in wild songbirds: the spread of a new contagious disease in a mobile host population. Emerg. Infect. Dis. 3, 69–72. https://doi.org/10.3201/eid0301.970110 (1997).CAS
Article
PubMed
PubMed Central
Google Scholar
16.Luttrell, M. P., Fischer, J. R., Stallknecht, D. E. & Kleven, S. H. Field investigation of Mycoplasma gallisepticum infections in house finches (Carpodacus mexicanus) from Maryland and Georgia. Avian Dis. 40, 335–341 (1996).CAS
Article
Google Scholar
17.Delaney, N. F. et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. Plos Genet. https://doi.org/10.1371/journal.pgen.1002511 (2012).Article
PubMed
PubMed Central
Google Scholar
18.Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).CAS
Article
Google Scholar
19.Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 961–965 (1998).Article
Google Scholar
20.Bonneaud, C. et al. Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proc. Natl. Acad. Sci. U.S.A. 108, 7866–7871 (2011).ADS
CAS
Article
Google Scholar
21.Bonneaud, C. et al. Rapid antagonistic coevolution in an emerging pathogen and its vertebrate host. Curr. Biol. 28, 2978–2983 (2018).CAS
Article
Google Scholar
22.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in House Finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2018).Article
Google Scholar
23.Tardy, L., Giraudeau, M., Hill, G. E., McGraw, K. J. & Bonneaud, C. Contrasting evolution of virulence and replication rate in an emerging bacterial pathogen. Proc. Natl. Acad. Sci. U.S.A. 116, 16927–16932. https://doi.org/10.1073/pnas.1901556116 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
24.Grodio, J. L., Buckles, E. L. & Schat, K. A. Production of house finch (Carpodacus mexicanus) IgA specific anti-sera and its application in immunohistochemistry and in ELISA for detection of Mycoplasma gallisepticum-specific IgA. Vet. Immunol. Immunopathol. 132, 288–294 (2009).CAS
Article
Google Scholar
25.Warr, G. W., Magor, K. E. & Higgins, D. A. IgY—clues to the origins of modern antibodies. Immunol. Today 16, 392–398. https://doi.org/10.1016/0167-5699(95)80008-5 (1995).CAS
Article
PubMed
Google Scholar
26.Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263. https://doi.org/10.1126/science.1248943 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
27.Bonneaud, C. et al. Evolution of both host resistance and tolerance to an emerging bacterial pathogen. Evol. Lett. 3, 544–554. https://doi.org/10.1002/evl3.133 (2019).Article
Google Scholar
28.Staley, M., Hill, G. E., Josefson, C. C., Armbruster, J. W. & Bonneaud, C. Bacterial pathogen emergence requires more than direct contact with a novel passerine host. Infect. Immun. 86, 9. https://doi.org/10.1128/iai.00863-17 (2018).CAS
Article
Google Scholar
29.Grodio, J. L. et al. Pathogenicity and immunogenicity of three Mycoplasma gallisepticum isolates in house finches (Carpodacus mexicanus). Vet. Microbiol. 155, 53–61. https://doi.org/10.1016/j.vetmic.2011.08.003 (2012).CAS
Article
PubMed
Google Scholar
30.Javed, M. A. et al. Correlates of immune protection in chickens vaccinated with Mycoplasma gallisepticum strain GT5 following challenge with pathogenic M-gallisepticum strain R-low. Infect. Immun. 73, 5410–5419 (2005).CAS
Article
Google Scholar
31.Dumke, R. & Jacobs, E. Antibody response to Mycoplasma pneumoniae: Protection of host and influence on outbreaks?. Front. Microbiol. 7, 7. https://doi.org/10.3389/fmicb.2016.00039 (2016).Article
Google Scholar
32.Avakian, A. P. & Ley, D. H. Protective immune-response to Mycoplasma-gallisepticum demonstrated in respiratory-tract washings from M-gallisepticum-infected chickens. Avian Dis. 37, 697–705. https://doi.org/10.2307/1592017 (1993).CAS
Article
PubMed
Google Scholar
33.Yagihashi, T. & Tajima, M. Antibody-responses in sera and respiratory secretions from chickens infected with Mycoplasma gallisepticum. Avian Dis. 30, 543–550. https://doi.org/10.2307/1590419 (1986).CAS
Article
PubMed
Google Scholar
34.Glatman-Freedman, A. & Casadevall, A. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev. 11, 514. https://doi.org/10.1128/cmr.11.3.514 (1998).CAS
Article
PubMed
PubMed Central
Google Scholar
35.Vogl, G. et al. Mycoplasma gallisepticum invades chicken erythrocytes during infection. Infect. Immun. 76, 71–77. https://doi.org/10.1128/iai.00871-07 (2008).CAS
Article
PubMed
Google Scholar
36.Dowling, A. J., Hill, G. E. & Bonneaud, C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci. Rep. 10, 6779 (2020).ADS
CAS
Article
Google Scholar
37.Arfi, Y. et al. MIB-MIP is a mycoplasma system that captures and cleaves immunoglobulin G. Proc. Natl. Acad. Sci. U.S.A. 113, 5406–5411. https://doi.org/10.1073/pnas.1600546113 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
38.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in House Finches (Haemorhous mexicanus) from Arizona. Avian Dis. https://doi.org/10.1637/11610-021317-RegR (2018).Article
PubMed
Google Scholar
39.Roberts, S. R., Nolan, P. M., Lauerman, L. H., Li, L. Q. & Hill, G. E. Characterization of the mycoplasmal conjunctivitis epizootic in a house finch population in the southeastern USA. J. Wildl. Dis. 37, 82–88 (2001).CAS
Article
Google Scholar
40.Papazisi, L. et al. GapA and CrmA coexpression is essential for Mycoplasma gallisepticum cytadherence and virulence. Infect. Immun. 70, 6839–6845 (2002).CAS
Article
Google Scholar
41.Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37, 12. https://doi.org/10.1093/nar/gkp045 (2009).CAS
Article
Google Scholar
42.Tuomi, J. M., Voorbraak, F., Jones, D. L. & Ruijter, J. M. Bias in the C-q value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods 50, 313–322. https://doi.org/10.1016/j.ymeth.2010.02.003 (2010).CAS
Article
PubMed
Google Scholar
43.Ruijter, J., Villalba, A., Hellemans, J., Untergasser, A. & van den Hoff, M. Removal of between-run variation in a multi-plate qPCR experiment. Biomol. Detect. Quantif. 5, 10–14 (2015).CAS
Article
Google Scholar
44.Grodio, J. L., Dhondt, K. V., O’Connell, P. H. & Schat, K. A. Detection and quantification of Mycoplasma gallisepticum genome load in conjunctival samples of experimentally infected house finches (Carpodacus mexicanus) using real-time polymerase chain reaction. Avian Pathol. 37, 385–391. https://doi.org/10.1080/03079450802216629 (2008).CAS
Article
PubMed
Google Scholar
45.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2016).46.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article
Google Scholar
47.ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).48.Repeatability Estimation for Gaussian and Non-Gaussian Data v. 0.9.21 (2018). More
