1.Gross, V. et al. Miniaturization of tardigrades (water bears): Morphological and genomic perspectives. Arthr. Struct. Dev. 48, 12–19 (2019).Article
Google Scholar
2.Møbjerg, N. et al. Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol. 202, 409–420 (2011).Article
CAS
Google Scholar
3.Giribet, G. & Edgecombe, G. D. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr. Comp. Biol. 57, 455–466 (2017).PubMed
Article
PubMed Central
Google Scholar
4.Campbell, L. I. et al. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc. Natl Acad. Sci. USA 108, 15920–15924 (2011).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
5.Jørgensen, A., Møbjerg, N. & Kristensen, R. M. Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada) – an investigation of the congruence between molecules and morphology. J. Zool. Syst. Evol. Res. 49(Suppl. 1), 6–16 (2011).Article
Google Scholar
6.Bertolani, R. et al. Phylogeny of Eutardigrada: new molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phyl. Evol. 76, 110–126 (2014).Article
Google Scholar
7.Fujimoto, S., Jørgensen, A. & Hansen, J. G. A. molecular approach to arthrotardigrade phylogeny (Heterotardigrada, Tardigrada). Zool. Scr. 46, 496–505 (2017).Article
Google Scholar
8.Gąsiorek, P., Stec, D., Morek, W. & Michalczyk, Ł. Deceptive conservatism of claws: distinct phyletic lineages concealed within Isohypsibioidea (Eutardigrada) revealed by molecular and morphological evidence. Contrib. Zool. 88, 78–132 (2019).Article
Google Scholar
9.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Ann. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article
Google Scholar
10.Bartels, P. J., Apodaca, J. J., Mora, C. & Nelson, D. R. A global biodiversity estimate of a poorly known taxon: phylum Tardigrada. Zool. J. Linn. Soc. 178, 730–736 (2016).Article
Google Scholar
11.McInnes, S. J. Zoogeographic distribution of terrestrial/freshwater tardigrades from current literature. J. Nat. Hist. 28, 257–352 (1994).Article
Google Scholar
12.Morek, W., Stec, D., Gąsiorek, P., Surmacz, B. & Michalczyk, Ł. Milnesium tardigradum Doyère, 1840: The first integrative study of interpopulation variability in a tardigrade species. J. Zool. Syst. Evol. Res. 57, 1–23 (2019).Article
Google Scholar
13.Gąsiorek, P., Blagden, B. & Michalczyk, Ł. Towards a better understanding of echiniscid intraspecific variability: A redescription of Nebularmis reticulatus (Murray, 1905) (Heterotardigrada: Echiniscoidea). Zool. Anz. 283, 242–255 (2019).Article
Google Scholar
14.Gąsiorek, P. et al. Echiniscus virginicus complex: the first case of pseudocryptic allopatry and pantropical distribution in tardigrades. Biol. J. Linn. Soc. 128, 789–805 (2019).
Google Scholar
15.Cesari, M., McInnes, S. J., Bertolani, R., Rebecchi, L. & Guidetti, R. Genetic diversity and biogeography of the south polar water bear Acutuncus antarcticus (Eutardigrada : Hypsibiidae) – evidence that it is a truly pan-Antarctic species. Invertebr. Syst. 30, 635–649 (2016).Article
Google Scholar
16.Guidetti, R., McInnes, S. J., Cesari, M., Rebecchi, L. & Rota-Stabelli, O. Evolutionary scenarios for the origin of an Antarctic tardigrade species based on molecular clock analyses and biogeographic data. Contrib. Zool. 86, 97–110 (2017).Article
Google Scholar
17.Stec, D., Krzywański, Ł, Zawierucha, K. & Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 188, 694–716 (2020).Article
Google Scholar
18.Thulin, G. Beiträge zur Kenntnis der Tardigradenfauna Schwedens. Ark. Zool. 7, 1–60 (1911).
Google Scholar
19.Kristensen, R. M. Generic revision of the Echiniscidae (Heterotardigrada), with a discussion of the origin of the family. In Biology of Tardigrada (ed. Bertolani, R.) 261–335 (U.Z.I. Modena, 1987).
Google Scholar
20.Vecchi, M. et al. Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea. Invertebr. Syst. 30, 303–322 (2016).Article
Google Scholar
21.Cesari, M. et al. An integrated study of the biodiversity within the Pseudechiniscus suillus–facettalis group (Heterotardigrada: Echiniscidae). Zool. J. Linn. Soc. 188, 717–732 (2020).
Google Scholar
22.Tumanov, D. V. Analysis of non-morphometric morphological characters used in the taxonomy of the genus Pseudechiniscus (Tardigrada: Echiniscidae). Zool. J. Linn. Soc. 188, 753–775 (2020).
Google Scholar
23.Grobys, D. et al. High diversity in the Pseudechiniscus suillus–facettalis complex (Heterotardigrada: Echiniscidae) with remarks on the morphology of the genus Pseudechiniscus. Zool. J. Linn. Soc. 188, 733–752 (2020).Article
Google Scholar
24.Roszkowska, M. et al. Integrative description of five Pseudechiniscus species (Heterotardigrada: Echiniscidae: the suillus-facettalis complex). Zootaxa 4763, 451–484 (2020).Article
Google Scholar
25.Gąsiorek, P. et al. New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalise a pseudocryptic horn of plenty. Zool. J. Linn. Soc. (in press).26.Fontoura, P. & Morais, P. Assessment of traditional and geometric morphometrics for discriminating cryptic species of the Pseudechiniscus suillus complex (Tardigrada, Echiniscidae). J. Zool. Syst. Evol. Res. 49(Suppl. 1), 26–33 (2011).Article
Google Scholar
27.Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol. Phyl. Evol. 56, 848–850 (2010).Article
Google Scholar
28.Matzke, N. J. Probabilistic historical biogeography: new models for founder- event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).Article
Google Scholar
29.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).PubMed
Article
PubMed Central
Google Scholar
30.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
31.Rocha, A., Doma, I., Gonzalez-Reyes, A. & Lisi, O. Two new tardigrade species (Echiniscidae, Doryphoribiidae) from Salta province (Argentina). Zootaxa 4878, 267–286 (2020).Article
Google Scholar
32.Ehrenberg, C. G. Diagnoses novarum formarum. Verhandl. König. Preuss. Akad. Wiss Berlin 8, 526–533 (1853).
Google Scholar
33.Mihelčič, F. Zwei neue Tardigradenarten aus Spanien. Zool. Anz. 155, 309–311 (1955).
Google Scholar
34.Mihelčič, F. Beitrag zur Systematik de Tardigraden . Arch. Zool. Ital. 36, 57–103 (1951).
Google Scholar
35.Iharos, A. Zwei neue Tardigraden-Arten. Zool. Anz. 115, 218–220 (1936).
Google Scholar
36.Murray, J. Some South African Tardigrada. J. R. Microsc. Soc. 12, 515–524 (1907).Article
Google Scholar
37.Yang, T. Three new species and one new record of the Tardigrada from China. Acta Hydrobiol. Sin. 26, 504–507 (2002).
Google Scholar
38.Mihelčič, F. Beiträge zur Kenntnis der Tardigrada Jugoslawiens. Zool. Anz. 121, 95–96 (1938).
Google Scholar
39.Bartoš, E. Eine neue Tardigradenart aus der Tschechoslowakei. Zool. Anz. 106, 175–176 (1934).
Google Scholar
40.Richters, F. Beitrag zur Kenntnis der Moosfauna Australiens und der Inseln des Pazifischen Ozeans. Zool. Jahrb. Abt. Syst. Ökol. Geogr. Tiere 26, 196–213 (1908).
Google Scholar
41.Vončina, K., Kristensen, R. M. & Gąsiorek, P. Pseudechiniscus in Japan: re-description of Pseudechiniscus asper Abe et al., 1998 and description of Pseudechiniscus shintai sp. nov. Zoosyst. Evol. 96, 527–536 (2020).Article
Google Scholar
42.Wang, L. Tardigrades from the Yunnan-Guizhou Plateau (China) with description of two new species in the genera Mixibius (Eutardigrada: Hypsibiidae) and Pseudechiniscus (Heterotardigrada: Echiniscidae). J. Nat. Hist. 43, 2553–2570 (2009).Article
Google Scholar
43.Hulings, N. C. & Gray, J. S. A manual for the study of meiofauna. Smithson. Contrib. Zool. 78, 1–84 (1971).
Google Scholar
44.Gąsiorek, P. & Michalczyk, Ł. Revised Cornechiniscus (Heterotardigrada) and new phylogenetic analyses negate echiniscid subfamilies and tribes. R. Soc. Open Sci. 7, 200581 (2020).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
45.Dastych, H. Notes on the revision of the genus Mopsechiniscus (Tardigrada). Zool. Anz. 240, 299–308 (2001).Article
Google Scholar
46.Rebecchi, L., Altiero, T., Eibye-Jacobsen, J., Bertolani, R. & Kristensen, R. M. A new discovery of Novechiniscus armadilloides (Schuster, 1975) (Tardigrada, Echiniscidae) from Utah, USA with considerations on non-marine Heterotardigrada phylogeny and biogeography. Org. Divers. Evol. 8, 58–65 (2008).Article
Google Scholar
47.Binda, M. G. & Kristensen, R. M. Notes on the genus Oreella (Oreellidae) and the systematic position of Carphania fluviatilis Binda, 1978 (Carphaniidae fam. nov., Heterotardigrada). Animalia 13, 9–20 (1986).
Google Scholar
48.Binda, M. G. Risistemazione di alcuni Tardigradi con l’instituzione di un nuovo genere di Oreellidae e della nuova famiglia Archechiniscidae. Animalia 5, 307–314 (1978).
Google Scholar
49.Kristensen, R. M. & Hallas, T. E. The tidal genus Echiniscoides and its variability, with erection of Echiniscoididae fam. n. (Tardigrada). Zool. Scr. 9, 113–127 (1980).Article
Google Scholar
50.Møbjerg, N., Kristensen, R. M. & Jørgensen, A. Data from new taxa infer Isoechiniscoides gen. nov. and increase the phylogenetic and evolutionary understanding of echiniscoidid tardigrades (Echiniscoidea: Tardigrada). Zool. J. Linn. Soc. 178, 804–818 (2016).Article
Google Scholar
51.Møbjerg, N., Jørgensen, A. & Kristensen, R. M. Ongoing revision of Echiniscoididae (Heterotardigrada: Echiniscoidea), with the description of a new interstitial species and genus with unique anal structures. Zool. J. Linn. Soc. 188, 663–680 (2020).Article
Google Scholar
52.Gąsiorek, P., Suzuki, A. C., Kristensen, R. M., Lachowska-Cierlik, D. & Michalczyk, Ł. Untangling the Echiniscus Gordian knot: Stellariscus gen. nov. (Heterotardigrada: Echiniscidae) from Far East Asia. Invertebr. Syst. 32, 1234–1247 (2018).Article
Google Scholar
53.Dastych, H. Echiniscus rackae sp. n., a new species of Tardigrada from the Himalayas. Entomol. Mitt. Zool. Mus. Hamburg 8, 246–250 (1986).
Google Scholar
54.McInnes, S. J. Tardigrades from Signy Island, South Orkney Islands, with particular reference to freshwater species. J. Nat. Hist. 29, 1419–1445 (1995).Article
Google Scholar
55.Dastych, H. Two new species of Tardigrada from the Canadian Subarctic with some notes on sexual dimorphism in the family Echiniscidae. Entomol. Mitt. Zool. Mus. Hamburg 8, 319–334 (1987).
Google Scholar
56.Pilato, G., Binda, M. G. & Lisi, O. Remarks on some Echiniscidae (Heterotardigrada) from New Zealand with the description of two new species. Zootaxa 1027, 27–45 (2005).Article
Google Scholar
57.Pilato, G., Binda, M. G., Napolitano, A. & Moncada, E. Notes on South American tardigrades with the description of two new species: Pseudechiniscus spinerectus and Macrobiotus danielae. Trop. Zool. 14, 223–231 (2001).Article
Google Scholar
58.Fontoura, P., Pilato, G. & Lisi, O. First record of Tardigrada from São Tomé (Gulf of Guinea, Western Equatorial Africa) and description of Pseudechiniscus santomensis sp. nov. (Heterotardigrada: Echiniscidae). Zootaxa 2564, 31–42 (2010).Article
Google Scholar
59.Bartoš, E. Die Tardigraden der Chinesischen und Javanischen Moosproben. Acta Soc. Zool. Bohem. 27, 108–114 (1963).
Google Scholar
60.Beijerinck, M.W. De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie v. Wetenschappen. Amsterdam: Müller (1913).61.Baas-Becking, L. G. M. Geobiologie of inleiding tot de milieukunde (W.P. Van Stockum & Zoon, 1934).
Google Scholar
62.Wallace, A. R. The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Macmillan and Company, 1876).
Google Scholar
63.Niedbała, W. The ptyctimous mites fauna of the Oriental and Australian regions and their centres of origin (Acari: Oribatida). Genus Suppl. 10, 1–493 (2000).
Google Scholar
64.Niedbała, W. Ptyctimous mites (Acari: Oribatida) of South Africa. Ann. Zool. 56(Suppl. 1), 1–97 (2006).
Google Scholar
65.Janion-Scheepers, C., Deharveng, L., Bedos, A. & Chown, S. Updated list of Collembola species currently recorded from South Africa. ZooKeys 503, 55–88 (2015).Article
Google Scholar
66.Kisielewski, J. Inland-water Gastrotricha from Brazil. Ann. Zool. 43(Suppl. 2), 1–168 (1991).
Google Scholar
67.Tuxen, S. L. Ecology and zoogeography of the Brazilian Protura (Insecta). Stud. Neotrop. Fauna Environ. 12, 225–247 (1977).Article
Google Scholar
68.Greenslade, P. Why are there so many exotic springtails in Australia? A review. Soil Org. 90, 141–156 (2018).
Google Scholar
69.Smit, H. Australian water mites of the subfamily Notoaturinae Besch (Acari: Hydrachnidia: Aturidae), with the description of 24 new species. Int. J. Acarol. 36, 101–146 (2010).Article
Google Scholar
70.Moir, M. L., Brennan, K. E. C. & Harvey, M. S. Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. J. Biogeogr. 36, 1958–1971 (2009).Article
Google Scholar
71.Harvey, M. S., Abrams, K. M., Beavis, A. S., Hillyer, M. J. & Huey, J. A. Pseudoscorpions of the family Feaellidae (Pseudoscorpiones: Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism. Invertebr. Syst. 30, 491–508 (2016).Article
Google Scholar
72.Claxton, S.K. The taxonomy and distribution of Australian terrestrial tardigrades. PhD thesis, Macquarie University: Sydney (2004).73.Simpson, G. G. Tempo and mode in evolution (Columbia University Press, 1944).
Google Scholar
74.Dastych, H. The Tardigrada of Poland. Monogr. Faun. Pol. 16, 1–255 (1988).
Google Scholar
75.Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
76.Petersen, B. The tardigrade fauna of Greenland. Medd. Grønl. 150, 1–94 (1951).
Google Scholar
77.de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).PubMed
Article
PubMed Central
Google Scholar
78.Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).Article
Google Scholar
79.Casquet, J. T., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12, 136–141 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Stec, D., Kristensen, R.M. & Michalczyk, Ł. An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). Zool. Anz. 286, 117–134 (2020).81.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS
Google Scholar
82.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
84.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 14, 587–589 (2017).CAS
Article
Google Scholar
85.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
87.Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
88.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article
Google Scholar
90.Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).PubMed
PubMed Central
Article
Google Scholar
91.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
92.Suchard, M.A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 Virus Evol. 4, vey016 (2018).93.Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. Tracer v1.6 (2014). Available from http://beast.bio.ed.ac.uk/Tracer.94.Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).PubMed
PubMed Central
Article
Google Scholar
95.Ferreira, M. A. R. & Suchard, M. A. (2008) Bayesian analysis of elapsed times in continuous-time Markov chains. Can. J. Stat. 36, 355–368 (2008).MATH
Article
Google Scholar
96.Münkemüller, T. et al. How to measure and test phylogenetic signal. Meth. Ecol. Evol. 3, 743–756 (2012).Article
Google Scholar
97.Yu, Y., Harris, A. J., Blair, C. & He, X. J. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phyl. Evol. 87, 46–49 (2015).Article
Google Scholar
98.Yu, Y., Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
99.Jombart, T., Balloux, F. & Dray, S. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26, 1907–1909 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
100.Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
101.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).PubMed
Article
PubMed Central
Google Scholar
102.Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).Article
Google Scholar
103.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).Article
Google Scholar
104.Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).PubMed
PubMed Central
Article
Google Scholar
105.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).106.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
107.Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G. & Peterson, A. T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat. Health 9, 221–229 (2014).PubMed
Article
PubMed Central
Google Scholar
108.Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72 (2008).Article
Google Scholar
109.Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).Article
Google Scholar
110.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020). More