Combining genotypic and phenotypic variation in a geospatial framework to identify sources of mussels in northern New Zealand
1.Pineda, J., Hare, J. & Sponaugle, S. Larval transport and dispersal in the Coastal Ocean and consequences for population connectivity. Oceanography 20, 22–39 (2007).Article
Google Scholar
2.Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. U. S. A. 105, 8974–8979 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
3.Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 1–25 (2017).Article
Google Scholar
4.Apte, S., Star, B. & Gardner, J. P. A. A comparison of genetic diversity between cultured and wild populations, and a test of genetic introgression in the New Zealand greenshell mussel, Perna canaliculus (Gmelin 1791). Aquaculture 219, 193–220 (2003).Article
Google Scholar
5.Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of Marine Reserves. Ecol. Appl. 13, S159–S169 (2003).Article
Google Scholar
6.Hilário, A. et al. Estimating dispersal distance in the deep sea: challenges and applications to marine reserves. Front. Mar. Sci. 2, 1–14 (2015).Article
Google Scholar
7.van Gennip, S. J. et al. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23, 2602–2617 (2017).ADS
Article
Google Scholar
8.Silva, C. N. S., MacDonald, H. S., Hadfield, M., Cryer, M. & Gardner, J. P. A. Ocean currents predict fine-scale genetic structure and source-sink dynamics in a marine invertebrate coastal fishery. ICES J. Mar. Sci. 76, 1007–1018 (2019).Article
Google Scholar
9.Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).Article
Google Scholar
10.von der Heyden, S. et al. The application of genetics to marine management and conservation: examples from the Indo-Pacific. Bull. Mar. Sci. 90, 123–158 (2014).Article
Google Scholar
11.Johnson, M. S. & Black, R. Chaotic genetic patchiness in an intertidal Limpet, Siphonaria sp. Mar. Biol. 70, 157–164 (1982).Article
Google Scholar
12.Hedgecock, D. & Pudovkin, A. I. Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull. Mar. Sci. 87, 971–1002 (2011).Article
Google Scholar
13.Reisser, C. M. O., Bell, J. J. & Gardner, J. P. A. Correlation between pelagic larval duration and realised dispersal: long-distance genetic connectivity between northern New Zealand and the Kermadec Islands archipelago. Mar. Biol. 161, 297–312 (2014).Article
Google Scholar
14.Gardner, J. P. A., Bell, J. J., Constable, H. B., Hannan, D. A., Ritchie, P. A. & Zuccarello, G. C. Multi-species coastal marine connectivity: a literature review with recommendations for further research. N. Z. Aquat. Environ. Biodivers. Rep. 58, 1–47. ISSN 1176-9440 (2010).15.White, C. et al. Ocean currents help explain population genetic structure. Proc. R. Soc. Lond. B 277, 1685–1694 (2010).
Google Scholar
16.Hannan, D. A., Constable, H. B., Silva, C. N. S., Bell, J. J., Ritchie, P. A. & Gardner, J. P. A. Genetic population structure connectivity and barriers to gene flow amongst New Zealand’s open sandy shore and estuarine coastal taxa. N. Z. Aquat. Environ. Biodivers. Rep. 172, 1–97. ISSN 1179-6480 (2016).17.Thorrold, S. R. et al. Quantifying larval retention and connectivity in marine populations with artificial and natural markers. Bull. Mar. Sci. 70(Supplement 1), 291–308 (2002).
Google Scholar
18.Elsdon, T. S. et al. Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr. Mar. Biol. Annu. Rev. 46, 297–330 (2008).
Google Scholar
19.Carson, H. S. et al. Temporal, spatial, and interspecific variation in geochemical signatures within fish otoliths, bivalve larval shells, and crustacean larvae. Mar. Ecol. Prog. Ser. 473, 133–148 (2013).ADS
CAS
Article
Google Scholar
20.Becker, B. J., Fodrie, F. J., McMillan, P. A. & Levin, L. A. Spatial and temporal variation in trace elemental fingerprints of mytilid mussel shells: a precursor to invertebrate larval tracking. Limnol. Oceanogr. 50, 48–61 (2005).ADS
CAS
Article
Google Scholar
21.Dunphy, B., Millet, M.-A. & Jeffs, A. Elemental signatures in the shells of early juvenile green-lipped mussels (Perna canaliculus) and their potential use for larval tracking. Aquaculture 311, 187–192 (2011).Article
Google Scholar
22.Norrie, C. R., Dunphy, B. J., Ragg, N. L. & Lundquist, C. J. Comparative influence of genetics, ontogeny and the environment on elemental fingerprints in the shell of Perna canaliculus. Sci. Rep. 9, 8533 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
23.van Deurs, M. et al. Marine ecosystem connectivity mediated by migrant-resident interactions and the concomitant cross-system flux of lipids. Ecol. Evol. 6, 4076–4087. https://doi.org/10.1002/ece3.2167 (2016).Article
PubMed
PubMed Central
Google Scholar
24.Huxham, M., Kimani, E., Newton, J. & Augley, J. Stable isotope records from otoliths as tracers of fish migration in a mangrove system. J. Fish Biol. 70, 1554–1567. https://doi.org/10.1111/j.1095-8649.2007.01443.x (2007).Article
Google Scholar
25.Phillips, D. L., Newsome, S. D. & Gregg, J. W. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144, 520–527 (2005).ADS
PubMed
Article
PubMed Central
Google Scholar
26.Phillips, D. L. IsoSource: stable isotope mixing model for partitioning an excess number of sources. http://www.epa.gov/wed/pages/models/stableIsotopes/isosource/isosource.htm (2008).27.Madigan, D. J., Baumann, Z. & Fisher, N. S. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California. Proc. Natl. Acad. Sci. U. S. A. 109, 9483–9486 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
28.Aquaculture New Zealand. New Zealand aquaculture. A sector overview with key facts and statistics. https://www.aquaculture.org.nz/wp-content/uploads/2018/08/New-Zealand-Aquaculture-facts-2018.pdf (2018)29.Jeffs, A., Holland, R., Hooker, S. & Hayden, B. Overview and bibliography of research on the greenshell mussel, Perna canaliculus, from New Zealand waters. J. Shellfish Res. 18, 347–360 (1999).
Google Scholar
30.Alfaro, A., Jeffs, A., Gardner, J. P. A., Breen, B. B. & Wilkin, J. Green-lipped mussels in GLM 9. N. Z. Fish. Assess. Rep. 48, 1–80 (2011).
Google Scholar
31.Sutton, P. J. H. & Bowen, M. M. Currents off the west coast of Northland, New Zealand. N. Z. J. Mar. Freshwat. Res. 45, 609–624. https://doi.org/10.1080/00288330.2011.569729 (2011).Article
Google Scholar
32.Alfaro, A. C., McArdle, B. & Jeffs, A. G. Temporal patterns of arrival of beachcast green-lipped mussel (Perna canaliculus) spat harvested for aquaculture in New Zealand and its relationship with hydrodynamic and meteorological conditions. Aquaculture 302, 208–218 (2010).Article
Google Scholar
33.Dunphy, B. J., Silva, C. N. S. & Gardner, J. P. A. Testing techniques for tracing the provenance of green-lipped mussel spat washed up on Ninety Mile Beach, New Zealand. N. Z. Aquat. Environ. Biodivers. Rep. 164, 1–45. ISSN 1179-6480 (2015).34.Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic and geographic data. Syst. Biol. 61, 897–911 (2012).PubMed
Article
PubMed Central
Google Scholar
35.Forsman, A. Diversity promotes establishment. Proc. Natl. Acad. Sci. 111, 302–307. https://doi.org/10.1073/pnas.1317745111 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
36.Castillo, J. M. et al. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific coast of North America. Ecol. Evol. 8, 4992–5007. https://doi.org/10.1002/ece3.4063 (2018).Article
PubMed
PubMed Central
Google Scholar
37.Villellas, J., Berjano, R., Terrab, A. & García, M. B. Divergence between phenotypic and genetic variation within populations of a common herb across Europe. Ecosphere 5, 1–14 (2014).Article
Google Scholar
38.Tanner, S. E., Pérez, M., Presa, P., Thorrold, S. R. & Cabral, H. N. Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius). Estuar. Coast. Shelf Sci. 142, 68–75 (2014).ADS
CAS
Article
Google Scholar
39.Wei, K., Wood, A. R. & Gardner, J. P. A. Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Mar. Biol. 160, 931–949 (2013).Article
Google Scholar
40.Apte, S. & Gardner, J. P. A. Population genetic variation in the New Zealand greenshell mussel, Perna canaliculus: SSCP and RFLP analyses of mitochondrial DNA. Mol. Ecol. 11, 1617–1628 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Star, B., Apte, S. & Gardner, J. P. A. Genetic structuring among populations of the greenshell mussel Perna canaliculus (Gmelin 1791) revealed by analysis of Randomly Amplified Polymorphic DNA. Mar. Ecol. Prog. Ser. 249, 171–182 (2003).ADS
CAS
Article
Google Scholar
42.Norrie, C. R., Dunphy, B. J., Roughan, M., Weppe, S. & Lundquist, C. J. Spill-over from aquaculture may provide a larval subsidy for the restoration of mussel reefs. Aquac. Environ. Interact. 12, 231–249 (2020).Article
Google Scholar
43.Reis-Santos, P. et al. Reconciling differences in natural tags to infer demographic and genetic connectivity in marine fish populations. Sci. Rep. 8, 10343. https://doi.org/10.1038/s41598-018-28701-6 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
44.Sorte, C. J. B., Etter, R. J., Spackman, R., Boyle, E. E. & Hannigan, R. E. Elemental fingerprinting of mussel shells to predict population sources and redistribution potential in the Gulf of Maine. PLoS ONE 8(11), e80868 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
45.Gillanders, B., Sanchez-Jerez, P., Bayle-Sempere, J. & Ramos-Espla, A. Trace elements in otoliths of the two-banded bream from a coastal region in the south-west Mediterranean: are there differences among locations?. J. Fish Biol. 59, 350–363 (2001).CAS
Article
Google Scholar
46.Burton, J. D. Basic properties and processes in estuarine chemistry. In Estuarine Chemistry (eds Burton, J. D. & Liss, P. S.) 1–31 (Academic Press, 1976).
Google Scholar
47.Gillespie, J. L. & Nelson, C. S. Distribution and control of mixed terrigenous-carbonate surficial sediment facies, Wanganui shelf, New Zealand. N. Z. J. Geol. Geophys. 39, 533–549 (1996).CAS
Article
Google Scholar
48.Churchman, G., Hunt, J., Glasby, G., Renner, R. & Griffiths, G. Input of river-derived sediment to the New Zealand continental shelf: II mineralogy and composition. Estuar. Coast. Shelf Sci. 27, 397–411 (1988).ADS
CAS
Article
Google Scholar
49.Nelson, C. S., Keane, S. L. & Head, P. S. Non-tropical carbonate deposits on the modern New Zealand shelf. Sed. Geol. 60, 71–94 (1988).CAS
Article
Google Scholar
50.Payne, D. S. Shelf-to-Slope Sedimentation on the North Kaipara Continental Margin, Northwestern North Island, New Zealand. MSc thesis held by the University of Waikato (2008).51.Ricardo, F., Pimentel, T., Génio, L. & Calado, R. Spatio-temporal variability of trace elements fingerprints in cockle (Cerastoderma edule) shells and its relevance for tracing geographic origin. Sci. Rep. 7, 3475 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
52.Cathey, A. M., Miller, N. R. & Kimmel, D. G. Spatiotemporal stability of trace and minor elemental signatures in early larval shell of the Northern quahog (Hard Clam) Mercenaria mercenaria. J. Shellfish Res. 33, 247–255 (2014).Article
Google Scholar
53.Bennion, M. et al. Trace element fingerprinting of blue mussel (Mytilus edulis) shells and soft tissues successfully reveals harvesting locations. Sci. Total Environ. 685, 50–58. https://doi.org/10.1016/j.scitotenv.2019.05.233 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
54.Aquaculture New Zealand. New Zealand Greenshell Mussel Spat Strategy, pp. 1–23. www.aquaculture.org.nz (2020)55.SPATnz. Newspaper Story (accessed 5 November 2019); http://www.scoop.co.nz/stories/BU1910/S00425/spatnz-reveals-200m-results-of-mussel-breeding-programme.htm (2019).56.New Zealand Government Aquaculture Strategy. https://www.fisheries.govt.nz/dmsdocument/15895-The-Governments-Aquaculture-Strategy-to-2025 (2019).57.Gardner, J. P. A., Wenne, R., Westfall, K. R. & Zbawicka, M. Invasive mussels threaten regional scale genetic diversity in mainland and remote offshore locations: the need for baseline data and enhanced protection in the Southern Ocean. Glob. Change Biol. 22, 3182–3195 (2016).ADS
Article
Google Scholar
58.Larraín, M. A., Zbawicka, M., Araneda, C., Gardner, J. P. A. & Wenne, R. Native and invasive taxa on the Pacific coast of South America: impacts on aquaculture, traceability and biodiversity of blue mussels (Mytilus spp.). Evol. Appl. 11, 298–311 (2018).Article
CAS
Google Scholar
59.Nowland, S. J., Silva, C. N. S., Southgate, P. C. & Strugnell, J. M. Mitochondrial and nuclear genetic analyses of the tropical black-lip rock oyster (Saccostrea echinata) reveals population subdivision and informs sustainable aquaculture development. BMC Genom. 20, 71 (2019).Article
CAS
Google Scholar
60.Hickman, R. Allometry and growth of the green-lipped mussel Perna canaliculus in New Zealand. Mar. Biol. 51, 311–327 (1979).Article
Google Scholar
61.MacAvoy, E. S., Wood, A. R. & Gardner, J. P. A. Development and evaluation of microsatellite markers for identification of individual Greenshell mussels (Perna canaliculus) in a selective breeding programme. Aquaculture 274, 41–48 (2008).CAS
Article
Google Scholar
62.Guichoux, E. et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 11, 591–611 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
63.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article
CAS
Google Scholar
64.Rousset, F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed
Article
PubMed Central
Google Scholar
65.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 57, 289–300 (1995).MathSciNet
MATH
Google Scholar
66.Clarke, K. R. & Gorley, R. N. PRIMER V6: User Manual/Tutorial (PRIMER-E Ltd, 2006).
Google Scholar
67.Piry, S. et al. GENECLASS2: a software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
69.Strasser, C. A., Mullineaux, L. S. & Walther, B. D. Growth rate and age effects on Mya arenaria shell chemistry: Implications for biogeochemical studies. J. Exp. Mar. Biol. Ecol. 355, 153–163 (2008).CAS
Article
Google Scholar
70.Bello, A. On the performance of rank transform discriminant method in error-rate estimation. J. Stat. Comput. Simul. 48, 153–165 (1993).Article
Google Scholar
71.JMP 13.0 Software. SAS Institute.72.Team RC. R: A Language and Environment for Statistical Computing (Team RC, 2014).
Google Scholar
73.Silva, C. N. S. & Gardner, J. P. A. Emerging patterns of genetic variation in the New Zealand endemic scallop Pecten novaezelandiae. Mol. Ecol. 24, 5379–5393 (2015).PubMed
Article
PubMed Central
Google Scholar More