More stories

  • in

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity

    1.Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Ballou, J. D. et al. Demographic and genetic management of captive populations. in Wild Mammals in Captivity: Principles and Techniques for Zoo Management (eds. Kleiman, D. G., Thompson, K. V. & Kirk Baer, C.) 219–252 (The University of Chicago Press, 2010).3.Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. in Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Elsevier Academic Press, 2013). https://doi.org/10.1016/B978-0-12-384719-5.00268-9.4.IUCN. Guidelines on the Use of Ex Situ Management for Species Conservation (2nd ed.). www.iucn.org/about/work/programmes/species/publications/iucn_guidelines_and__policy__statements/ (2014).5.Lacy, R. C. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).Article 

    Google Scholar 
    6.Lockyear, K. M., MacDonald, S. E., Waddell, W. T. & Goodrowe, K. L. Investigation of captive red wolf ejaculate characteristics in relation to age and inbreeding. Theriogenology 86, 1369–1375 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    9.Robert, A., Couvet, D. & Sarrazin, F. Integration of demography and genetics in population restorations. Écoscience 14, 463–471 (2007).Article 

    Google Scholar 
    10.Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).Article 

    Google Scholar 
    11.McPhee, M. E. & McPhee, N. F. Relaxed selection and environmental change decrease reintroduction success in simulated populations: altered selection in captive populations. Anim. Conserv. 15, 274–282 (2012).Article 

    Google Scholar 
    12.Ford, M. J. Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv. Biol. 16, 815–825 (2002).Article 

    Google Scholar 
    13.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    14.Robert, A. Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915–2922 (2009).Article 

    Google Scholar 
    15.Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. 109, 238–242 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    18.Gordon, S. P., Hendry, A. P. & Reznick, D. N. Predator-induced contemporary evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. Copeia 105, 514–522 (2017).Article 

    Google Scholar 
    19.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Smith, J. M. Review lectures on senescence—I. The causes of ageing. Proc. R. Soc. Lond. B Biol. Sci. 157, 115–127 (1962).ADS 
    Article 

    Google Scholar 
    21.Partridge, L. & Barton, N. H. Optimally, mutation and the evolution of ageing. Nature 362, 305–311 (1993).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J. & Thünken, T. Effects of ageing and inbreeding on the reproductive traits in a cichlid fish I: the male perspective. Biol. J. Linn. Soc. 120, 752–761 (2017).Article 

    Google Scholar 
    24.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301 (1977).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.de Boer, R. A., Eens, M. & Müller, W. Sex-specific effects of inbreeding on reproductive senescence. Proc. R. Soc. B Biol. Sci. 285, 20180231 (2018).Article 

    Google Scholar 
    27.Promislow, D. E. L. & Tatar, M. Mutation and senescence: where genetics and demography meet. Genetica 102, 299–314 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. 93, 6140–6145 (1996).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Snoke, M. S. & Promislow, D. E. L. Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity 91, 546–556 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Robert, A., Toupance, B., Tremblay, M. & Heyer, E. Impact of inbreeding on fertility in a pre-industrial population. Eur. J. Hum. Genet. 17, 673–681 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lesobre, L. et al. Conservation genetics of Houbara Bustard (Chlamydotis undulata undulata): population structure and its implications for the reinforcement of wild populations. Conserv. Genet. 11, 1489–1497 (2010).Article 

    Google Scholar 
    32.Rabier, R., Robert, A., Lacroix, F. & Lesobre, L. Genetic assessment of a conservation breeding program of the houbara bustard (Chlamydotis undulata undulata) in Morocco, based on pedigree and molecular analyses. Zoo Biol. 39, 365–447 (2020).Article 

    Google Scholar 
    33.Hardouin, L. A., Legagneux, P., Hingrat, Y. & Robert, A. Sex-specific dispersal responses to inbreeding and kinship. Anim. Behav. https://doi.org/10.1016/j.anbehav.2015.04.002 (2015).Article 

    Google Scholar 
    34.Cornec, C., Robert, A., Rybak, F. & Hingrat, Y. Male vocalizations convey information on kinship and inbreeding in a lekking bird. Ecol. Evol. 9, 4421–4430 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bacon, L., Hingrat, Y. & Robert, A. Evidence of reproductive senescence of released individuals in a reinforced bird population. Biol. Conserv. 215, 288–295 (2017).Article 

    Google Scholar 
    37.Chantepie, S. et al. Quantitative genetics of the aging of reproductive traits in the houbara bustard. PLoS ONE 10, e0133140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. Sexually extravagant males age more rapidly. Ecol. Lett. 14, 1017–1024 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. The sperm of aging male bustards retards their offspring’s development. Nat. Commun. 6, 1–9 (2015).Article 
    CAS 

    Google Scholar 
    40.Vuarin, P. et al. Post-copulatory sexual selection allows females to alleviate the fitness costs incurred when mating with senescing males. Proc. R. Soc. B Biol. Sci. 286, 20191675 (2019).Article 

    Google Scholar 
    41.Chargé, R. et al. Quantitative genetics of sexual display, ejaculate quality and size in a lekking species. J. Anim. Ecol. 82, 399–407 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Chargé, R. et al. Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits?. Evol. Appl. 7, 521–532 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Gaucher, P. et al. Taxonomy of the Houbara Bustard Chlamydotis undulata subspecies considered on the basis of sexual display and genetic divergence. Ibis 138, 273–282 (1996).Article 

    Google Scholar 
    44.Hingrat, Y., Saint Jalme, M., Chalah, T., Orhant, N. & Lacroix, F. Environmental and social constraints on breeding site selection. Does the exploded-lek and hotspot model apply to the Houbara bustard Chlamydotis undulata undulata?. J. Avian Biol. 39, 393–404 (2008).Article 

    Google Scholar 
    45.Duursma, D. E., Gallagher, R. V., Price, J. J. & Griffith, S. C. Variation in avian egg shape and nest structure is explained by climatic conditions. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    46.Cucco, M., Grenna, M. & Malacarne, G. Female condition, egg shape and hatchability: a study on the grey partridge. J. Zool. 287, 186–194 (2012).Article 

    Google Scholar 
    47.Adamou, A.-E. et al. Egg size and shape variation in Rufous Bush Chats Cercotrichas galactotes breeding in date palm plantations: hatching success increases with egg elongation. Avian Biol. Res. 11, 100–107 (2018).Article 

    Google Scholar 
    48.Goriup, P. D. The world status of the Houbara Bustard Chlamydotis undulata. Bird Conserv. Int. 7, 373–397 (1997).Article 

    Google Scholar 
    49.BirdLife International. Chlamydotis undulata. The IUCN Red List of Threatened Species 2016: e.T22728245A90341807. (2016) https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22728245A90341807.en.50.Lacroix, F., Seabury, J., Al Bowardi, M. & Renaud, J. The Emirates Center for Wildlife Propagation: developing a comprehensive strategy to secure a self-sustaining population of houbara bustard (Chlamydotis undulata undulata) in Eastern Morocco. Houbara News 5, (2003).
    51.Conway, W. Wild and zoo animal interactive management and habitat conservation. Biodivers. Conserv. 4, 573–594 (1995).Article 

    Google Scholar 
    52.Saint Jalme, M., Gaucher, P. & Paillat, P. Artificial insemination in Houbara bustards (Chlamydotis undulata): influence of the number of spermatozoa and insemination frequency on fertility and ability to hatch. Reproduction 100, 93–103 (1994).CAS 
    Article 

    Google Scholar 
    53.Allendorf, F. W. Delay of adaptation to captive breeding by equalizing family size. Conserv. Biol. 7, 416–419 (1993).Article 

    Google Scholar 
    54.Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Vuarin, P. et al. Sperm competition accentuates selection on ejaculate attributes. Biol. Lett. 15, 20180889 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Chalah, T., Seigneurin, F., Blesbois, E. & Brillard, J. P. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39, 185–191 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hoyt, D. F. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96, 73–77 (1979).
    Google Scholar 
    58.Wellmann, R. optiSel: Optimum Contribution Selection and Population Genetics. R package version 2.0.2. https://CRAN.R-project.org/package=optiSel (2018).59.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2019).60.Princée, F. P. G. Exploring Studbooks for Wildlife Management and Conservation (Springer, Berlin, 2016).
    Google Scholar 
    61.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal. 9, 378–400 (2017).Article 

    Google Scholar 
    62.Ludecke, D., Makowski, D. & Waggoner, P. performance: Assessment of Regression Models Performance. R package version 0.3.0. https://CRAN.R-project.org/package=performance (2019).63.Ludecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772. https://doi.org/10.21105/joss.00772 (2018).ADS 
    Article 

    Google Scholar 
    64.Wickham, H. ggplot2: elegant graphics for data analysis (Springer, Berlin, 2009).
    Google Scholar 
    65.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    66.Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. B Biol. Sci. 276, 2769–2777 (2009).CAS 
    Article 

    Google Scholar 
    67.Angelier, F., Shaffer, S. A., Weimerskirch, H. & Chastel, O. Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen. Comp. Endocrinol. 149, 1–9 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Angelier, F., Weimerskirch, H., Dano, S. & Chastel, O. Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav. Ecol. Sociobiol. 61, 611–621 (2007).Article 

    Google Scholar 
    69.Ottinger, M. A. et al. The Japanese quail: a model for studying reproductive aging of hypothalamic systems. Exp. Gerontol. 39, 1679–1693 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lecomte, V. J. et al. Patterns of aging in the long-lived wandering albatross. Proc. Natl. Acad. Sci. 107, 6370–6375 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Opatová, P. et al. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 6, 295–304 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Croquet, C. et al. Linear and curvilinear effects of inbreeding on production traits for Walloon Holstein cows. J. Dairy Sci. 90, 465–471 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Leroy, G. Inbreeding depression in livestock species: review and meta-analysis. Anim. Genet. 45, 618–628 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations: genetic management. Conserv. Lett. 11, e12412 (2018).Article 

    Google Scholar 
    75.Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. 113, 3585–3590 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity 95, 235–242 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Robert, A. Negative environmental perturbations may improve species persistence. Proc. R. Soc. B Biol. Sci. 273, 2501–2506 (2006).Article 

    Google Scholar 
    79.Crnokrak, P. & Roff, D. A. Inbreeding depression in the wild. Heredity 83, 260–270 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lynch, M. & O’Hely, M. Captive breeding and genetic fitness of natural populations. Conserv. Genet. 2, 363–378 (2001).Article 

    Google Scholar 
    82.Robert, A., Sarrazin, F., Couvet, D. & Legendre, S. Releasing adults versus young in reintroductions: interactions between demography and genetics. Conserv. Biol. 18, 1078–1087 (2004).Article 

    Google Scholar 
    83.Roche, E. A., Cuthbert, F. J. & Arnold, T. W. Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population?. Biol. Conserv. 141, 3079–3088 (2008).Article 

    Google Scholar 
    84.Ford, N. B. & Seigel, R. A. Phenotypic plasticity in reproductive traits: evidence from a viviparous snake. Ecology 70, 1768–1774 (1989).Article 

    Google Scholar 
    85.Bacon, L. Etude des paramètres de reproduction et de la dynamique d’une population renforcée d’outardes Houbara nord-africaines (Chlamydotis undulata undulata) au Maroc. (Museum National d’Histoire Naturelle, 2017).86.Robert, A. et al. Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim. Conserv. 18, 397–406 (2015).Article 

    Google Scholar 
    87.Bacon, L., Robert, A. & Hingrat, Y. Long lasting breeding performance differences between wild-born and released females in a reinforced North African Houbara bustard (Chlamydotis undulata undulata) population: a matter of release strategy. Biodivers. Conserv. 28, 553–570 (2019).Article 

    Google Scholar 
    88.Vuarin, P. et al. Paternal age negatively affects sperm production of the progeny. Ecol. Lett. https://doi.org/10.1111/ele.13696 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Keller, L. F., Reid, J. M. & Arcese, P. Testing evolutionary models of senescence in a natural population: age and inbreeding effects on fitness components in song sparrows. Proc. R. Soc. B Biol. Sci. 275, 597–604 (2008).CAS 
    Article 

    Google Scholar 
    90.Reynolds, R. M. et al. Age specificity of inbreeding load in Drosophila melanogaster and implications for the evolution of late-life mortality plateaus. Genetics 177, 587–595 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Tan, C. K. W., Pizzari, T. & Wigby, S. Parental age, gametic age, and inbreeding interact to modulate offspring viability in Drosophila melanogaster. Evolution 67, 3043–3051 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    92.Deubel, W., Bassukas, I. D., Schlereth, W., Lorenz, R. & Hempel, K. Age dependent selection against HPRT deficient T lymphocytes in the HPRT± heterozygous mouse. Mutat. Res. Mol. Mech. Mutagen. 351, 67–77 (1996).CAS 
    Article 

    Google Scholar 
    93.Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470 (2003).Article 

    Google Scholar 
    94.Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against Inbred Soay Sheep in a free-living, island population. Evolution 53, 1259 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    95.Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res. 74, 165–178 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation

    Combined culture-dependent and culture-independent approach identifies the prevalent and viable bacterial community members of the human lung post-transplantTo characterize the bacterial community composition of the lung microbiota post-transplant, we performed 16S rRNA gene amplicon sequencing of 234 longitudinal BALF samples from 64 lung transplant recipients collected over a 49-month period (Fig. 1a, Supplementary Table 1). A total of 7164 operational taxonomic units (OTUs) were identified, excluding OTUs contributing to reads in 11 negative control samples32 (see “Methods”, Supplementary Fig. 1a, Supplementary Data 1 and 2). In accordance with previous studies on BALF samples from healthy non-transplant individuals4,5,6,26, we found that Bacteroidetes and Firmicutes followed by Proteobacteria and Actinobacteria are the most abundant phyla in the post-transplant lung (Fig. 1b). Prevalence analysis across all BALF samples showed that the community composition is highly variable with only 22 OTUs shared by ≥50% of the samples (Supplementary Fig. 1b, Supplementary Data 3). However, these 22 OTUs constituted 42% of the total number of rarefied reads, indicating that they are predominant members of the post-transplant lung microbiota (Fig. 1c, Supplementary Fig. 1c, Supplementary Table 2, Supplementary Data 3). They belonged to the genera Prevotella 7, Streptococcus, Veillonella, Neisseria, Alloprevotella, Pseudomonas, Gemella, Granulicatella, Campylobacter, Porphyromonas and Rothia, the majority of which are also prevailing community members in the healthy human lung3,5,7,26, suggesting a considerable overlap in the overall composition of the lung microbiota between the healthy and the transplanted lung.Fig. 1: Combining BALF amplicon sequencing and bacterial culturing to deduce the microbial ecology of deep lung microbiota.a Schematic of the sampling of Bronchoalveolar lavage fluid (BALF) from lung transplant recipients over time (months post-transplant). b Relative abundances (%) of most abundant phyla across BALF samples. Box plots show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). c Prevalence (% samples) vs contribution to total reads across samples for most abundant phyla. Dot color shows different genera and size show total rarefied reads. Gray dashed horizontal line shows prevalence ≥50%. d Scatter plot shows correlation between number of observed OTUs and bacterial counts per BALF sample obtained by quantifying 16S rRNA gene copies with qPCR. Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval (n = 234, two-sided, F(1, 232) = 91.04, P = 2.2 × 10−16), Coefficient of correlation; R2 = 0.28. e Bar chart shows lung taxa (genera; OTU IDs) that contributed ≥75% of total bacterial biomass across samples (n = 234). Venn diagram inset shows overlap (yellow) between the most prevalent (≥50% incidence, light blue) and the most abundant (≥75% total count, red) taxa in the transplanted lung. Bar colors also show the same.Full size imageDifferences in bacterial loads between samples can skew community analyses when based on relative abundance profiling alone. Therefore, we used qPCR to determine the total copies of the 16S rRNA gene as an estimate for bacterial counts, and normalized the abundances of each OTU across the 234 samples (absolute abundance). We found that the bacterial counts vastly differed between samples, ranging between 101 and 106 gene copies per ml of BALF (Supplementary Fig. 1d). The number of observed OTUs increased with decreasing counts (Fig. 1d) suggesting that a large fraction of the OTUs were detected in samples of low bacterial biomass and hence represent either transient or extremely low-abundant community members, or sequencing artefacts and contaminations. In turn, 19 of the 7164 OTUs constituted >75% of the total bacterial biomass detected across the 234 BALF samples (Fig. 1e). This included 11 of the 22 most prevalent OTUs (see above) plus eight OTUs that were detected in only a few samples but at very high abundance (Staphylococcus; OTU_2, Corynebacterium 1; OTU_16 and OTU_24, Anaerococcus; OTU_49 and OTU_234, Haemophilus; OTU_78, Streptococcus; OTU_6768, Peptoniphilus; OTU_63, Supplementary Table 2). It is important to differentiate these opportunistic colonizers from other community members with low incidence, as they reached very high bacterial counts in some samples with potential implications for lung health.To demonstrate the viability of prevalent lung microbiota members and to establish a reference catalogue of bacterial isolates from the human lung for experimental studies, we complemented the amplicon sequencing with a bacterial culturing approach (Supplementary Fig. 2). We cultivated 21 random BALF samples from 18 individuals, on 15 different semi-solid media (both general and selective) in combination with 3 oxygen concentrations; aerobic, 5% CO2, and anaerobic (See “Methods” and Supplementary Table 3), representing 26 different conditions. We cultured fresh BALF immediately upon extraction (within 2 h), as we observed loss in bacterial diversity upon cultivating frozen samples. This resulted in a total of 300 bacterial isolates, representing 5 phyla, 7 classes, 13 orders, and 17 families from which we built an open-access biobank called the Lung Microbiota culture Collection (LuMiCol, Supplementary Data 4, https://github.com/sudu87/Microbial-ecology-of-the-transplanted-human-lung).To examine the extent of overlap between bacteria in LuMiCol and the diversity obtained by amplicon sequencing, we included 16S rRNA gene sequences from 215 isolates that passed our quality filter into the community analysis, which allowed for the retrieval of OTU-isolate matching pairs32 (Methods). We found that 213 isolates matched to 47 OTUs (Fig. 2a, c, Supplementary Data 5), including 17 of the most prevalent and abundant bacteria (Fig. 1e, Supplementary Table 2). As expected, bacteria with high abundance in the amplicon sequencing-based community analysis were isolated more frequently, with Firmicutes revealing the highest isolate diversity (Fig. 2a–c, Supplementary Data 4, 5) and being recovered under the most diverse culturing conditions.Fig. 2: A lung microbiota culture collection (LuMiCol) reveals extended diversity and phenotypic characteristics of the lower airway bacterial community.a Phylogenetic tree of the 47 OTU-isolate matching pairs inferred with FastTree. Branch bootstrap support values (size of dark gray circles) ≥80% are displayed. b Growth characteristics of each OTU-isolate matching pair in three different oxygen conditions (Anaerobic – light brown, 5% CO2-yellow, aerobic-light blue, n = 3). Column with pie charts shows growth on semi-solid agar. Heatmap shows median change in Optical Density (OD) at 600 nm growth in three different liquid media (THY, RPMI, RPMI without glucose) over 3 days. c Cumulative counts of each OTU-isolate matching pair across all BALF samples (gray). d Number of isolates in Lumicol (black) per OTU-isolate matching pair. Taxa are labeled as genus; OTU ID, with an indication of whether they are prevalent (gray rectangle) or opportunistic (magenta rectangle) in the lower airway community. The names of the closest hit in databases: eHOMD and SILVA are used as species descriptor.Full size imageIn summary, our results from the combined culture-dependent and culture-independent approach show that the lung microbiota post-transplant is highly variable in terms of both bacterial load and community composition with many transient and low-abundant bacterial taxa. However, a few community members display relatively high prevalence and/or abundance suggesting that they represent important colonizers of the human lung.LuMiCol informs on the diversity and metabolic preferences of culturable human lung bacteriaWe characterized the culturable community members of the lower respiratory tract contained in LuMiCol by testing a wide range of growth conditions and phenotypic properties (see “Methods”). The majority of the cultured isolates could taxonomically be assigned at the species level based on genotyping of the 16S rRNA gene V1-V5 region. However, the limited taxonomic resolution offered by this method does not allow to discriminate between closely related strains, which can include both pathogenic and non-pathogenic bacteria. Hence for Streptococcus, we additionally tested for type of hemolysis (alpha, beta, or gamma) and resistance to optochin, which differentiates the pathogenic pneumococcus and the non-pathogenic viridans groups (Fig. 2a, Supplementary Fig. 2b, c). This demonstrated that the 16 Streptococcus OTU-isolate pairs belong to the viridans group of streptococci (VS)33. Interestingly, these isolates exhibited the highest genotypic and phenotypic diversity throughout our collection and belonged to five OTUs among the 22 most prevalent community members, with Streptococcus mitis (OTU_11) present in 93.6% of all samples.BALF from healthy individuals contains amino acids, citrate, urate, fatty acids, and antioxidants such as glutathione but no detectable glucose34, which is associated with increased bacterial load and infection35,36,37. To get insights into basic bacterial metabolism, we assessed the growth of all 47 isolates matching an OTU under different oxygen concentrations. We used undefined rich media (Todd-Hewitt Yeast extract) and defined low-complexity liquid media (RPMI 1640), including a glucose-free version to mimic the deep lung environment (see “Methods”). Despite the presence of oxygen in the human lung, the majority of the isolates were either obligate or facultative anaerobes (Fig. 2a), including some of the most prevalent members (Prevotella melaninogenica (OTU_3), Streptococcus mitis (OTU_11), Veillonella atypica (OTU_6) and Granulicatella adiacens (OTU_17). A similar trend was also observed in liquid media under anaerobic conditions, with the exception of the genera Prevotella, Veillonella and Granulicatella. Most streptococci from the human lung grew best in complex liquid media containing glucose under anaerobic conditions, including the most prevalent species in our cohort, S. mitis (OTU_11) (Fig. 2b). However, noticeable exceptions were S. vestibularis (OTU_34), S. oralis (OTU_3427 and OTU_1567), and S. gordonii (OTU_10031), which grew equally well in the presence of oxygen and in low-complexity liquid medium (Fig. 2b). Most Actinobacteria grew best on rich medium in the presence of 5% CO2, with an exception of Actinomyces odontolyticus (OTU_39), which required anaerobic conditions. Some Actinobacteria grew equally well in anaerobic conditions as in the presence of 5% CO2, i.e., Corynebacterium durum (OTU_501), Actinobacteria sp. oral taxon (OTU_328 and OTU_228).The two most predominant opportunistic pathogens in our lung cohort, P. aeruginosa (OTU_1) and S. aureus (OTU_2), grew best in rich liquid medium in the presence of oxygen (Fig. 2c), although these also grew to lower degree under anaerobic conditions. These results indicate that changes in the physicochemical conditions in the lung may favor the growth of these two opportunistic pathogens. In summary, our observations from the bacterial culture collection provide first insights into the phenotypic properties of human lung bacteria and will serve as a basis for future experimental work.Identification of four compositionally distinct pneumotypes post-transplant using machine learning based on ecological metricsTo detect and characterize differences in bacterial community composition between BALF samples from transplant patients, we clustered the samples using an unsupervised machine learning algorithm based on pairwise Bray–Curtis dissimilarity32 (beta diversity, See “Methods”, Supplementary Data 6). This segregated the samples into four partitions around medoids (PAMs) at both phylum and OTU level (Fig. 3a, b, Supplementary Fig. 3a, b). We refer to these clusters as “pneumotypes” PAM1, PAM2, PAM3, and PAM4 (Supplementary Table 4). PAM1 formed the largest cluster consisting of the majority of samples (n = 115) followed by PAM3 (n = 76), PAM2 (n = 19), and PAM4 (n = 24) (Supplementary Data 7). Examination of various diversity measures (Species occurrence, OTU diversity, OTU richness, Fig. 3c–e), distribution of the dominant community members (Fig. 3f), and bacterial counts (16S rRNA gene copies, Fig. 3g) revealed distinctive characteristics between the four pneumotypes.Fig. 3: Bacterial communities of the lung post-transplant fall into four ‘pneumotypes’ with distinct community characteristics.a, b Principal component analysis shows Partition around medoids (PAMs) at phylum and OTU level respectively generated by k-medoid-based unsupervised machine learning using Bray–Curtis dissimilarity (occurrence and abundance). Pneumotypes are color coded: Balanced (red, n = 115), Staphylococcus (green, n = 19), Microbiota-depleted (MD, blue, n = 76), and Pseudomonas (orange, n = 24). c–g Violin plots show distributions of pairwise species occurrence (Sorenson’s index, PERMANOVA, two-sided, F(3, 229) = 8.49, P = 9.9 × 10−5), OTU diversity (Kruskal–Wallis test, χ2 = 89.2, df = 3, two-sided, P = 2.2 × 10−16), OTU richness (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), proportion of most dominant OTUs (Kruskal–Wallis test, χ2 = 94.45, df = 3, two-sided, P = 2.2 × 10−16), and total bacterial counts (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), respectively, across the four pneumotypes. h, i Enrichment analysis of prevalence (green dotted line ≥50%) and absolute abundance across all samples of the 30 most dominant taxa (i.e., OTUs) in PneumotypeBalanced and PneumotypeMD respectively, when each was compared to the other three combined pneumotypes (gray boxes). Differential abundances after enrichment analysis was calculated between each PAM and the other three PAMs combined, using ART-ANOVA. j Heatmap shows relative percentage of taxa (right colored panel) cultured from paired samples of Bronchial aspiration (BA) and Bronchoalveolar lavage fluid (BALF) from each pneumotype (left colored panel). Oropharyngeal flora mainly corresponds to PneumotypeBalanced (i.e., Streptococcus, Prevotella, Veillonella). All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). Multiple comparison of beta diversity indices was done by pairwise PERMANOVA (adonis) with False Discovery rate (FDR). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR) or least-squares means (ART-ANOVA) with False Discovery Rate (FDR). * P  More

  • in

    Reply to: “Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands”

    1.Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 1–11 (2020).Article 

    Google Scholar 
    2.Tonn, B., Komainda, M. & Isselstein, J. Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands. Nat. Commun. https://doi.org/10.1038/s41467-021-22309-7 (2021).3.Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).Article 

    Google Scholar 
    4.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    5.Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549 (2007).ADS 
    Article 

    Google Scholar 
    6.Deak, A., Hall, M., Sanderson, M. & Archibald, D. Production and nutritive value of grazed simple and complex forage mixtures. Agron. J. 99, 814–821 (2007).Article 

    Google Scholar 
    7.Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240 (2014).Article 

    Google Scholar 
    8.Oelmann, Y., Vogel, A., Wegener, F., Weigelt, A. & Scherer-Lorenzen, M. Management intensity modifies plant diversity effects on N yield and mineral N in soil. Soil Sci. Soc. Am. J. 79, 559–568 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Schaub, S., Buchmann, N., Lüscher, A. & Finger, R. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 168, 106488 (2020b).Article 

    Google Scholar 
    10.Trenbath, B. R. Biomass productivity of mixtures. Adv. Agron. 26, 177–210 (1974).Article 

    Google Scholar 
    11.Binder, S., Isbell, F., Polasky, S., Catford, J. A. & Tilman, D. Grassland biodiversity can pay. Proc. Natl Acad. Sci. USA 115, 3876–3881 (2018).CAS 
    Article 

    Google Scholar 
    12.Weigelt, A., Weisser, W., Buchmann, N. & Scherer‐Lorenzen, M. Biodiversity for multifunctional grasslands: equal productivity in high‐diversity low‐input and low‐diversity high‐input systems. Biogeosciences 6, 1695–1706 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Vogel, A., Scherer-Lorenzen, M. & Weigelt, A. Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE 7, e36992 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3‐year continental‐scale field experiment. J. Appl. Ecol. 50, 365–375 (2013).Article 

    Google Scholar 
    15.Jans, F., Kessler, J., Münger, A. & Schlegel, P. in Fütterungsempfehlungen für Wiederkäuer (Grünes Buch) Ch. 7 (Agroscope, 2015).16.FAO (Food and Agriculture Organization of the United Nations), IDF (International Dairy Federation), and IFCN (IFCN Dairy Research Network). World Mapping of Animal Feeding Systems in the Dairy Sector. (FAO, 2014).17.Delaby, L., Peyraud, J. L., Foucher, N. & Michel, G. The effect of two contrasting grazing managements and level of concentrate supplementation on the performance of grazing dairy cows. Anim. Res. 52, 437–460 (2003).Article 

    Google Scholar 
    18.Leiber, F., Wettstein, H. R. & Kreuzer, M. Is the intrinsic potassium content of forages an important factor in intake regulation of dairy cows? J. Anim. Physiol. Anim. Nutr. 93, 391–399 (2009).CAS 
    Article 

    Google Scholar 
    19.Schaub, S. et al. Data: forage quality and biomass yield of the Management Experiment set up within the Jena Experiment. ETH Zur. Res. Collect. https://doi.org/10.3929/ethz-b-000374100 (2019). More

  • in

    Understanding drivers of wild oyster population persistence

    1.Bayne, B. et al. The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: a dissenting view. J. Shellfish Res. 36, 545–547 (2017).Article 

    Google Scholar 
    2.Mann, R. Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures. J. Mar. Biol. Assoc. UK 59, 95–110 (1979).CAS 
    Article 

    Google Scholar 
    3.Humphreys, J., Herbert, R. J., Roberts, C. & Fletcher, S. A reappraisal of the history and economics of the Pacific oyster in Britain. Aquaculture 428, 117–124 (2014).Article 

    Google Scholar 
    4.Ellis, T., Gardiner, R., Gubbins, M., Reese, A. & Smith, D. Aquaculture statistics for the UK, with a focus on England and Wales 2012. Centre for Environment Fisheries & Aquaculture Science (Cefas) Weymouth (2015).5.Herbert, R. J. et al. Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe. Biodivers. Conserv. 25, 2835–2865 (2016).Article 

    Google Scholar 
    6.Reise, K., Buschbaum, C., Büttger, H., Rick, J. & Wegner, K. M. Invasion trajectory of Pacific oysters in the northern Wadden Sea. Mar. Biol. 164, 68 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Geburzi, J. C. & McCarthy, M. L. How do they do it? Understanding the success of marine invasive species. In YOUMARES 8—Oceans Across Boundaries: Learning from each other, 109–124 (Springer, 2018).8.Herbert, R., Roberts, C., Humphreys, J. & Fletcher, S. The Pacific oyster (Crassostrea gigas) in the UK: Economic, legal and environmental issues associated with its cultivation, wild establishment and exploitation. Report for the Shellfish Association of Great Britain (2012).9.Fabioux, C., Huvet, A., Le Souchu, P., Le Pennec, M. & Pouvreau, S. Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250, 458–470 (2005).Article 

    Google Scholar 
    10.Diederich, S., Nehls, G., Van Beusekom, J. E. & Reise, K. Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: Invasion accelerated by warm summers?. Helgol. Mar. Res. 59, 97 (2005).ADS 
    Article 

    Google Scholar 
    11.Mills, S.R.A. Population structure and ecology of wild Crassostrea gigas (Thunberg, 1793) on the south coast of England. Ph.D. thesis, University of Southampton (2016).12.Dutertre, M., Beninger, P. G., Barillé, L., Papin, M. & Haure, J. Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Mar. Environ. Res. 69, 1–9 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Chávez-Villalba, J. et al. Broodstock conditioning of the oyster Crassostrea gigas: Origin and temperature effect. Aquaculture 214, 115–130 (2002).Article 

    Google Scholar 
    14.Rico-Villa, B., Pouvreau, S. & Robert, R. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 287, 395–401 (2009).Article 

    Google Scholar 
    15.Li, G. & Hedgecock, D. Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55, 1025–1033 (1998).CAS 
    Article 

    Google Scholar 
    16.Hedge, L. H. & Johnston, E. L. Colonisation of the non-indigenous Pacific oyster Crassostrea gigas determined by predation, size and initial settlement densities. PLoS ONE9 (2014).17.Maurer, D. et al. Reproduction de l’huître creuse dans le Bassin d’Arcachon. Année 2015. Ifremer Report (2016).18.Quayle, D.B. Pacific oyster culture in British Columbia (Department of Fisheries and Oceans, 1988).19.Rico-Villa, B. et al. A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquaculture 282, 54–60 (2008).Article 

    Google Scholar 
    20.Kheder, R. B., Moal, J. & Robert, R. Impact of temperature on larval development and evolution of physiological indices in Crassostrea gigas. Aquaculture 309, 286–289 (2010).Article 

    Google Scholar 
    21.Kennedy, V. S. & Breisch, L. L. Maryland’s Oysters: Research and Management Vol. 81 (University of Maryland College Park, Maryland, 1981).
    Google Scholar 
    22.Helm, M. Cultured aquatic species information programme—Crassostrea gigas. Cultured aquatic species fact sheets. FAO Inland Water Resources and Aquaculture Service (2007).23.Child, A. & Laing, I. Comparative low temperature tolerance of small juvenile European, Ostrea edulis L., and Pacific oysters, Crassostrea gigas Thunberg. Aquacul. Res. 29, 103–113 (1998).Article 

    Google Scholar 
    24.Strand, A., Waenerlund, A. & Lindegarth, S. High tolerance of the Pacific oyster (Crassostrea gigas, Thunberg) to low temperatures. J. Shellfish Res. 30, 733–735 (2011).Article 

    Google Scholar 
    25.Rinde, E. et al. Increased spreading potential of the invasive Pacific oyster (Crassostrea gigas) at its northern distribution limit in Europe due to warmer climate. Mar. Freshw. Res. 68, 252–262 (2017).ADS 
    Article 

    Google Scholar 
    26.Wrange, A.-L. et al. Massive settlements of the Pacific oyster, Crassostrea giga, in Scandinavia. Biol. Invasions 12, 1145–1152 (2010).Article 

    Google Scholar 
    27.Spencer, B., Edwards, D., Kaiser, M. & Richardson, C. Spatfalls of the non-native Pacific oyster, Crassostrea gigas, in British waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 203–217 (1994).Article 

    Google Scholar 
    28.England, N. Pacific oyster survey of the North East Kent European marine sites. Natural England Commissioned Report NECR016 (2009).29.Smith, I. P., Guy, C. & Donnan, D. Pacific oysters, Crassostrea gigas, established in Scotland. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 733–742 (2015).Article 

    Google Scholar 
    30.Cook, E. J. et al. Impacts of climate change on non-native species. Mar. Clim. Change Impact Partnersh. Sci. Rev. 155–166 (2013).31.Cook, E., Beveridge, C., Lamont, P., O’Higgins, T. & Wilding, T. Survey of wild Pacific oyster Crassostrea gigas in Scotland. In Scottish Aquaculture Research Forum Report SARF099 (2014).32.Kochmann, J. Into the wild: documenting and predicting the spread of Pacific oysters (Crassostrea gigas) in Ireland. Ph.D. thesis, University College Dublin (2012).33.Syvret, M., Fitzgerald, A. & Hoare, P. Development of a Pacific oyster aquaculture protocol for the UK: Technical report. Sea Fish Industry Authority, FIFG Project No. 7 (2008).34.d’Auriac, M. B. A. et al. Rapid expansion of the invasive oyster Crassostrea gigas at its northern distribution limit in Europe: Naturally dispersed or introduced? PLoS ONE, 12 (2017).35.Dame, R. F. & Prins, T. C. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol. 31, 409–421 (1997).Article 

    Google Scholar 
    36.Leguerrier, D., Niquil, N., Petiau, A. & Bodoy, A. Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France). Mar. Ecol. Prog. Ser. 273, 147–162 (2004).ADS 
    Article 

    Google Scholar 
    37.Forrest, B. M., Keeley, N. B., Hopkins, G. A., Webb, S. C. & Clement, D. M. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture 298, 1–15 (2009).Article 

    Google Scholar 
    38.Ferreira, J. G. et al. Ecological carrying capacity for shellfish aquaculture: Sustainability of naturally occurring filter-feeders and cultivated bivalves. J. Shellfish Res. 37, 709–726 (2018).Article 

    Google Scholar 
    39.Jordan-Cooley, W. C., Lipcius, R. N., Shaw, L. B., Shen, J. & Shi, J. Bistability in a differential equation model of oyster reef height and sediment accumulation. J. Theor. Biol. 289, 1–11 (2011).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    40.Lipcius, R. N. et al. Modeling quantitative value of habitats for marine and estuarine populations. Front. Mar. Sci. 6, 280 (2019).Article 

    Google Scholar 
    41.Enríquez-Díaz, M., Pouvreau, S., Chávez-Villalba, J. & Le Pennec, M. Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: Evidence of an environment-dependent strategy. Aquacult. Int. 17, 491–506 (2009).Article 

    Google Scholar 
    42.Wood, L. E. et al. Unaided dispersal risk of Magallana gigas into and around the UK: Combining particle tracking modelling and environmental suitability scoring. Biological Invasions, 1–20 (2021).43.Hily, C. Prolifération de l’huître creuse du Pacifique Crassotrea gigas sur les côtes manche-atlantique françaises: bilan, dynamique, conséquences écologiques, économiques et ethnologiques, expériences et scénarios de gestion. Rapport LITEAU, 20 (2009).44.McKnight, W. & Chudleigh, I. J. Pacific oyster Crassostrea gigas control within the inter-tidal zone of the North East Kent Marine Protected Areas, UK. Conserv. Evid. 12, 28–32 (2015).
    Google Scholar 
    45.Brown, J. & Hartwick, E. A habitat suitability index model for suspended tray culture of the Pacific oyster, Crassostrea gigas Thunberg.. Aquacult. Res. 19, 109–126 (1988).Article 

    Google Scholar 
    46.Diederich, S. High survival and growth rates of introduced Pacific oysters may cause restrictions on habitat use by native mussels in the Wadden Sea. J. Exp. Mar. Biol. Ecol. 328, 211–227 (2006).Article 

    Google Scholar 
    47.Moran, A. & Manahan, D. Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 306, 17–36 (2004).CAS 
    Article 

    Google Scholar 
    48.Calvo, G. W., Luckenbach, M. W. & Burreson, E. M. A comparative field study of Crassostrea gigas and Crassostrea virginica in relation to salinity in Virginia. Special Report in Applied Marine Science and Ocean Engineering, 349 (1999).49.Petton, B., Boudry, P., Alunno-Bruscia, M. & Pernet, F. Factors influencing disease-induced mortality of Pacific oysters, Crassostrea gigas. Aquacul. Environ. Interact. 6, 205–222 (2015).Article 

    Google Scholar 
    50.Li, L. et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat. Ecol. Evol. 2, 1751–1760 (2018).PubMed 
    Article 

    Google Scholar 
    51.Ferreira, J., Duarte, P. & Ball, B. Trophic capacity of Carlingford Lough for oyster culture-analysis by ecological modelling. Aquat. Ecol. 31, 361–378 (1997).Article 

    Google Scholar 
    52.Cognie, B., Haure, J. & Barillé, L. Spatial distribution in a temperate coastal ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg). Aquaculture 259, 249–259 (2006).Article 

    Google Scholar 
    53.Enríquez-Díaz, M., Pouvreau, S., Chávez-Villalba, J. & Le Pennec, M. Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult. Int. 17, 491 (2009).Article 

    Google Scholar 
    54.Ben-Horin, T. et al. Intensive oyster aquaculture can reduce disease impacts on sympatric wild oysters. Aquacul. Environ. Interact. 10, 557–567 (2018).Article 

    Google Scholar 
    55.Mailleret, L. & Lemesle, V. A note on semi-discrete modelling in the life sciences. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 4779–4799 (2009).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    56.Powell, E., Klinck, J., Hofmann, E. & Ray, S. Modeling oyster populations. IV: Rates of mortality, population crashes and management. Fish. Bull. 92, 347–373 (1994).
    Google Scholar 
    57.Wilson, R. A stage-structured oyster population model for reef restoration. Undergraduate Honors Theses Paper, 1403 (2019).58.Guo, X., Hedgecock, D., Hershberger, W. K., Cooper, K. & Jr, S. K. A. Genetic determinants of protandric sex in the Pacific oyster, Crassostrea gigas Thunberg. Evolution 52, 394–402 (1998).59.Morris, D. et al. Cefas coastal temperature network (2016).60.Pouvreau, S. et al. Velyger database: The oyster larvae monitoring French project. SEANOE 10, 41888 (2016).
    Google Scholar 
    61.Dhoop, T. & Thompson, C. Directional waverider metadata, supplement for QC data download from Realtime Data page. Channel Coastal Observatory (2019).62.Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1029–1136 (Cambridge University Press, 2013).63.Pastor, D. Reproductive biology of Crassostrea gigas. Ph.D. thesis, University of Southampton (2010).64.Benton, T. G. & Grant, A. Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol. Evol. 14, 467–471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Grant, A. & Benton, T. G. Elasticity analysis for density-dependent populations in stochastic environments. Ecology 81, 680–693 (2000).Article 

    Google Scholar 
    66.Caswell, H. & Gassen, N. S. The sensitivity analysis of population projections. Demogr. Res. 33, 801–840 (2015).Article 

    Google Scholar 
    67.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019).68.Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: Package deSolve. J. Stat. Softw. 33, 1–25 (2010).
    Google Scholar 
    69.Inkscape Project. Inkscape. More

  • in

    Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands

    The experiment underlying the study provides a diversity gradient of 1–60 plant species, established in assemblages randomly chosen from a pool of species typical of Arrhenatheretum grasslands. Recently sown on fertile arable soil and maintained by weeding, this experiment is a highly artificial system that fails to meet the definition of semi-natural grasslands7. Four years after establishment, a management intensity gradient of one to four annual cuts and three fertilization levels was established in subplots randomly assigned to the 1–60-species plots. Data presented in this study were collected in the following year.Intensive management was thus imposed on plant species typical of Arrhenaterethum meadows, a plant community characterized by two annual cuts8. The potential effect size of increased management intensity is thus underestimated by applying the management to a plant community not adapted to it. More importantly, it is unlikely that the species-richness of high-diversity plots could be maintained under increased management intensity over longer periods. In fact, 22% of these subplots managed at very high intensity had to be excluded for missing or insufficient yield after only two years, indicating that their species did not persist under high defoliation frequency and fertilizer levels, even when competitors were excluded by weeding.While the discussion hardly addresses this crucial trade-off between management intensity and plant diversity, Schaub et al.6 do indicate that repeated resowing is likely to be necessary to maintain high diversity under increased management intensities. In contrast to permanent grasslands, whose species composition is shaped by site conditions and management, species selection in (re-)sown grasslands is a conscious choice. To be advantageous, mixtures have to show larger yields than the most productive monoculture, so-called transgressive overyielding. Transgressive overyielding is one of the reasons why mixtures, especially grass-clover mixtures, are frequently used in sown grasslands. A European-scale experiment demonstrated that four-species mixtures showed transgressive overyielding at a wide range of sites under intensive agricultural management9,10. Although Schaub et al.6 generally quantify the diversity effects in comparison to monocultures, they argue that grasslands with the high-diversity characteristic of semi-natural grasslands have benefits not only over monocultures but over low-diversity grasslands, such as the 1–8 species standard mixtures shown in Fig. 6 of their paper. However, their results fail to demonstrate that their high-diversity plots show any transgressive overyielding even over monocultures, not to speak of low-diversity mixtures. As species assemblages of the experiment are randomly drawn from the species pool, monocultures and low-diversity mixtures cannot be expected to include the most productive species or species combinations and thus cannot be used to assess transgressive overyielding. When transgressive overyielding was quantified for one- to eight-species plots of the same experiment under extensive management in 2003, it decreased with species number. While two-species mixtures showed a mean transgressive overyielding of 5%, eight-species mixtures were only 70% as productive as the corresponding best monoculture, on average11.Accordingly, the experimental design fails to capture the real trade-offs faced by grassland managers, either in permanent or in sown grassland. It cannot answer if high levels of diversity and the associated biodiversity benefits can be maintained under intensive management for a longer period than just a few years. Neither can it show a productivity benefit of high-diversity grassland assemblages compared to species-poor mixtures, or even monocultures, when in practice the sown species are deliberately chosen rather than randomly drawn from a species pool. While the underlying biodiversity experiment has made valuable contributions to our fundamental understanding of plant diversity effects on ecosystem functioning, it thus cannot be used to derive direct management recommendations for managed grassland. More

  • in

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Study areaThis study was conducted using tree census data collected from 119 forest inventory plots (73 tropical, 46 subtropical) situated across a latitudinal range of 7.1°N (Colombia) to 27.8°S (Argentina), a longitudinal range of 79.5° to −63.8° W, and an elevation range of 500–3511 m asl (Fig. 1). The mean annual temperature (MAT) of plots ranged from 7.3 to 23.8 °C (mean = 16.7 ± 4.1 °C; mean ± SD) and mean annual precipitation (MAP) of the plots ranged from 608 to 4313 mm y−1 (mean = 1405.0 ± 623.9 mm y−1) (External Databases 1). The number of plots sampled in each country was: Argentina = 46, Bolivia = 26, Peru = 16, Ecuador = 21, and Colombia = 10 (Fig. 1). The 119 forest plots ranged in size from 0.32 to 1.28 ha and represent a cumulative sample area of 104.4 ha (horizontal areas corrected for slope) that containe more than 63,000 trees with a diameter at breast height (DBH, 1.3 m) ≥10 cm (External Database 1). Ninety-four of the plots (79.0%) were ≥1 ha in size. Neither secondary forests nor plantations were included. However, only seven of the plots (five in Argentina and two in Bolivia) were located in forests >100 km2 in extent41, which suggests that at least the edges and borders of some plots could have experienced some degree of disturbance or degradation. All plots were censused at least twice between 1991 and 2017 (census intervals ranged between 2 and 9 years).In each plot, we tagged, mapped, measured, and collected vouchers of all trees and palms (DBH ≥ 10 cm). DBH was measured 50 cm above buttresses or aerial roots when present (where the stem was cylindrical). During the second or subsequent set of censuses, DBH growth, recruitment, and mortality were recorded. In cases where the recorded DBH growth of the second census was less than −0.1 cm y−1 or greater than 7.5 cm y−1, the DBH of the second census was augmented/reduced in order to match these minimum/maximum values42. To homogenize and validate species names of palms and trees recorded in each country and plot, we submitted the combined list from all plots to the Taxonomic Name Resolution Service (TNRS; http://tnrs.iplantcollaborative.org/) version 3.0. Any species with an unassigned TNRS accepted name or with a taxonomic status of ‘no opinion’, ‘illegitimate’, or ‘invalid’ was manually reviewed. Families and genera were changed in accordance with the new species names. If a full species name was not provided or could not be found, the genus and/or family name from the original file was retained.Aboveground carbon stocksThe aboveground biomass (AGB) of each tree was estimated using the allometric equation proposed by Chave et al43., defined as: AGB = 0.0673 × (WD × DBH2 × H)0.976 where AGB (kg) is the estimated aboveground biomass, DBH (cm) is the diameter of the tree at breast height, H (m) is the estimated total height, and WD (g cm−3) is the stem wood density. To estimate WD, we assigned the WD values available in the literature44 to each species found in each plot. In cases where we could not assign a WD value at the species level, we used the average value at the genus- or family level. For unidentified individuals, we used the average WD value of all other species in the plot. Tree height (H) was estimated (see below) based on the heights measured on a subset of the individual stems in each plot using digital hypsometers or clinometers. The estimated AGB of each tree was then converted to units of aboveground carbon (AGC) by applying a conversion factor of 1 kg AGB = 0.456 kg C45. The AGC per ha was then determined by converting kg to Mg, summing the values for all trees in a plot, and extrapolating or interpolating to a sample area of 1 ha.Estimates of AGB and AGC are highly dependent on tree height. Unfortunately, tree height was difficult or impossible to measure on all stems due to physical and logistical constraints. Therefore, we estimated the height of each stem based on allometric relationships between DBH and tree height that we developed for each plot based on height and DBH measurements taken on a subset of individuals. Although the AGB/AGC estimates are only for trees with DBH ≥ 10, we used trees with DBH ≥ 5 cm to construct the H:DBH models when possible in order to be as comparable as possible with the existing pantropical H:DBH models46. In total, 44,442 trees had their heights measured in the field and were employed to construct the H:DBH models. The percentage of trees with direct field measurements of H (DBH ≥ 5 cm) in each country was: Argentina = 19%, Bolivia = 98%, Peru = 96%, Ecuador = 97%, and Colombia = 46%. In Argentina, 32 of 46 plots did not have any field measurements of H, while all plots in all other countries had field measurements of H for at least a subset of trees.We tested and compared the expected effects of using H:DBH models constructed using the local (plot), country, or pantropical (regional) level data. To select the best model to estimate H from DBH at the plot and country level, we used the function modelHD available in the BIOMASS package for R47. We chose the best allometric model from four candidate models (two log-log polynomial models, the three-parameter Weibull model, and a two-parameter Michaelis-Menten model (Supplementary Table 7)) by selecting the model with the lowest RSE and bias (Supplementary Table 8). At the regional level, we used a pantropical model46. The use of country and pantropical H:DBH allometries underestimates tree heights in the lowlands and overestimates tree heights in highlands, thereby homogenizing AGB estimates along elevational gradients10,48 (Supplementary Figs. 11, 12, 13). Using plot level allometries eliminates this problem. However, in the 32 plots in Argentina where we had no information about tree height, we used the country-level H:DBH model developed with the data available in the remaining 14 plots to estimate the height of each tree, which could have homogenized the AGC estimates along the Argentinian elevational gradient (Supplementary Figs. 11, 12, 13).Aboveground carbon dynamicsThe AGC dynamics of each plot was estimated from the annualized values of AGC mortality, AGC productivity (AGC change due to recruitment + growth), and AGC net change3. The calculations of the separate AGC dynamic components was performed as follows: (i) AGC mortality (Mg ha−1 y−1) = the sum of the AGC of all individuals that died between censuses divided by the time between measurements. (ii) AGC recruitment (Mg C ha−1 y−1) = the sum of the AGC of individuals that recruited into DBH ≥ 10 cm between censuses divided by the time between measurements. However, for each tree recruited (DBH ≥ 10 cm), we subtracted the corresponding AGC associated with a tree of 9.99 cm (i.e. just below the detection limit) in order to avoid overestimations of the overall increase in AGC due to recruitment49. (iii) AGC growth (Mg ha−1 y−1) = the sum of the increase in AGC of all individuals with DBH ≥ 10 cm that survived between censuses divided by the time between censuses. (iv) AGC net change (Mg ha−1 y−1) = the difference between AGC stock in the last census (AGCfinal) and AGC stock in the first census (AGC1) divided by the elapsed time (t; in years) between measurements [(AGC net change = AGCfinal − AGC1)/t]. We recognize that these methods exclude C stored in soils or in belowground tissues9,48; however, quantifying just aboveground C stocks and fluxes provides valuable information about the overall status of these forests as net C sinks or sources.ClimateClimate variables at each plot location were extracted from the CHELSA28 bioclimatic rasters at a resolution of 30-arcsec (~1 km2 at the equator). The climate variables extracted were: Mean Annual Temperature (MAT), Mean Diurnal Range (MDR), Isothermality (Isoth), Temperature Seasonality (TS), Maximum Temperature of Warmest Month (MaxTWarmM), Minimum Temperature of Coldest Month (MinTCM), Temperature Annual Range (TAR), Mean Temperature of Wettest Quarter (MeanTWarmQ), Mean Temperature of Driest Quarter (MeanTDQ), Mean Temperature of Warmest Quarter (MeanTWetQ), Mean Temperature of Coldest Quarter (MeanTCQ), Mean Annual Precipitation (MAP), Precipitation of Wettest Month (PWetM), Precipitation of Driest Month (PDM), Precipitation Seasonality (PS), Precipitation of Wettest Quarter (PWetQ), Precipitation of Driest Quarter (PDQ), Precipitation of Warmest Quarter (PWarmQ), Precipitation of Coldest Quarter (PCQ). We separated all variables associated with temperature (°C) from those associated with precipitation (mm y−1) and applied a Principal Component Analysis (PCA) to the 11 variables associated with temperature (PCAtemp) and a separate PCA to the eight variables associated with precipitation (PCAprec). The first two principal components of both PCAtemp and PCAprec (four PCA axes in total) were selected for use in subsequent analyses. Plot elevations were estimated based on their coordinates and the SRTM 1 ArcSec Global V3 (https://lta.cr.usgs.gov) 30 m resolution digital elevation model (DEM).PCAtemp1 (Supplementary Fig. 1a) explained 53.0% of the total variance of the temperature variables and had high loading from Isothermality and Maximum Temperature of Warmest Month, which was primarily associated with changes in elevation (r = −0.97, p  More

  • in

    Effects of both climate change and human water demand on a highly threatened damselfly

    1.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Lionello, P. et al. In Mediterranean Climate Variability Vol. 4 (eds Lionello, P. et al.) 1–26 (Elsevier, 2006).3.Molina, M., Sánchez, E. & Gutiérrez, C. Future heat waves over the Mediterranean from an euro-coRDeX regional climate model ensemble. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    4.Bucchignani, E., Mercogliano, P., Panitz, H.-J. & Montesarchio, M. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change 9, 66–80 (2018).Article 

    Google Scholar 
    5.García, N., Cuttelod, A. & Malak, D. A. The Status and Distribution of Freshwater Biodiversity in Northern Africa (IUCN, 2010).6.Di Castri, F. & Mooney, H. A. Mediterranean Type Ecosystems: Origin and Structure Vol. 7 (Springer Science & Business Media, 2012).7.Stoks, R., Geerts, A. N. & De Meester, L. Evolutionary and plastic responses of freshwater invertebrates to climate change: Realized patterns and future potential. Evol. Appl. 7, 42–55 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).Article 

    Google Scholar 
    9.Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).Article 

    Google Scholar 
    10.Hof, C., Brändle, M. & Brandl, R. Lentic odonates have larger and more northern ranges than lotic species. J. Biogeogr. 33, 63–70 (2006).Article 

    Google Scholar 
    11.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    12.Ibàñez, C., Prat, N. & Canicio, A. Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary. Regul. Rivers Res. Manag. 12, 51–62 (1996).Article 

    Google Scholar 
    13.Kondolf, G., Rubin, Z. & Minear, J. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).ADS 
    Article 

    Google Scholar 
    14.Pringle, C. M., Freeman, M. C. & Freeman, B. J. Regional effects of hydrologic alterations on riverine macrobiota in the new world: Tropical-temperate comparisons. Bioscience 50, 807–823 (2000).Article 

    Google Scholar 
    15.Liu, X. et al. Effects of dams and their environmental impacts on the genetic diversity and connectivity of freshwater mussel populations in Poyang Lake Basin, China. Freshw. Biol. 65, 264–277 (2020).Article 

    Google Scholar 
    16.Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. U.S.A. 117, 3648–3655 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.López-Moreno, J. I. et al. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 45, W02405 (2009).ADS 
    Article 

    Google Scholar 
    18.McMahon, T. & Finlayson, B. Droughts and anti-droughts: The low flow hydrology of Australian rivers. Freshw. Biol. 48, 1147–1160 (2003).Article 

    Google Scholar 
    19.Aguiar, F. C. & Ferreira, M. T. Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environ. Conserv. 32, 30–41 (2005).Article 

    Google Scholar 
    20.Costa, M. J., Vasconcelos, R., Costa, J. & Cabral, H. River flow influence on the fish community of the Tagus estuary (Portugal). Hydrobiologia 587, 113–123 (2007).Article 

    Google Scholar 
    21.Dallas, H. F. The influence of biotope availability on macroinvertebrate assemblages in South African rivers: Implications for aquatic bioassessment. Freshw. Biol. 52, 370–380 (2007).Article 

    Google Scholar 
    22.Demars, B. O., Kemp, J. L., Friberg, N., Usseglio-Polatera, P. & Harper, D. M. Linking biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. Ecol. Indic. 23, 301–311 (2012).Article 

    Google Scholar 
    23.Wallace, J. B. Recovery of lotic macroinvertebrate communities from disturbance. Environ. Manag. 14, 605–620 (1990).ADS 
    Article 

    Google Scholar 
    24.Boulton, A. J. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw. Biol. 48, 1173–1185 (2003).Article 

    Google Scholar 
    25.Desrosiers, M. et al. Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Sci. Total Environ. 649, 233–246 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Change Biol. 13, 942–957 (2007).ADS 
    Article 

    Google Scholar 
    27.Santos, R. et al. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total Environ. 511, 477–488 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Junior, R. F. V. et al. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 43, 48–62 (2015).Article 

    Google Scholar 
    29.Fonseca, A., Fernandes, L. S., Fontainhas-Fernandes, A., Monteiro, S. & Pacheco, F. The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: A statistical perspective. Sci. Total Environ. 599, 217–226 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Ferreira, A., Fernandes, L. S., Cortes, R. & Pacheco, F. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 583, 466–477 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Fernandes, L. S., Fernandes, A., Ferreira, A., Cortes, R. & Pacheco, F. A partial least squares—Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci. Total Environ. 626, 1069–1085 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    32.Intergovernmental Panel on Climate Change. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects (Cambridge University Press, 2014).33.Khelifa, R. Flight period, apparent sex ratio and habitat preferences of the Maghribian endemic Calopteryx exul Selys, 1853 (Odonata: Zygoptera). Revue d’Ecologie (La Terre et La Vie) 68, 37–45 (2013).
    Google Scholar 
    34.Khelifa, R. & Mellal, M. K. Host-plant-based restoration as a potential tool to improve conservation status of odonate specialists. Insect Conserv. Divers. 10(2), 151–160. https://doi.org/10.1111/icad.12212 (2017).Article 

    Google Scholar 
    35.Khelifa, R. et al. A hotspot for threatened Mediterranean odonates in the Seybouse River (Northeast Algeria): Are IUCN population sizes drastically underestimated?. Int. J. Odonatol. 19, 1–11. https://doi.org/10.1080/13887890.2015.1133331 (2016).Article 

    Google Scholar 
    36.Boudot, J.-P. Calopteryx exul. The IUCN Red List of Threatened Species 2018 e.T60287A72725790. https://doi.org/10.2305/IUCN.UK.2018-2301.RLTS.T60287A72725790.en. Downloaded on 72725729 January 72722021. (2018).37.Martin, R. Contribution à l’étude des Neuroptères de l’Afrique. II. Les odonates du département de Constantine. Ann. Soc. Entomol. Fr. 79, 95–104 (1910).
    Google Scholar 
    38.Chelli, A., Zebsa, R. & Khelifa, R. Discovery of a new population of the endangered Calopteryx exul in central North Algeria (Odonata: Calopterygidae). Not. Odonatol. 9, 150–154 (2019).
    Google Scholar 
    39.Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).ADS 
    Article 

    Google Scholar 
    40.Schneider, C., Laizé, C., Acreman, M. & Florke, M. How will climate change modify river flow regimes in Europe?. Hydrol. Earth Syst. Sci. 17, 325–339 (2013).ADS 
    Article 

    Google Scholar 
    41.Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010).Article 

    Google Scholar 
    43.Van Vliet, M. & Zwolsman, J. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 353, 1–17 (2008).ADS 
    Article 

    Google Scholar 
    44.Caruso, B. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J. Hydrol. 257, 115–133 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Stanley, E. H., Fisher, S. G. & Grimm, N. B. Ecosystem expansion and contraction in streams. Bioscience 47, 427–435 (1997).Article 

    Google Scholar 
    46.Truchy, A. et al. Habitat patchiness, ecological connectivity and the uneven recovery of boreal stream ecosystems from an experimental drought. Glob. Change Biol. 26, 3455–3472 (2020).ADS 
    Article 

    Google Scholar 
    47.Boulton, A. J. & Lake, P. S. Effects of drought on stream insects and its ecological consequences. Aquatic insects: Challenges to populations 81–102 (CABI, 2008).48.Andersen, C. B., Lewis, G. P. & Sargent, K. A. Influence of wastewater-treatment effluent on concentrations and fluxes of solutes in the Bush River, South Carolina, during extreme drought conditions. Environ. Geosci. 11, 28–41 (2004).Article 

    Google Scholar 
    49.Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett 8, 034036 (2013).ADS 
    Article 

    Google Scholar 
    50.Aldous, A., Fitzsimons, J., Richter, B. & Bach, L. Droughts, floods and freshwater ecosystems: Evaluating climate change impacts and developing adaptation strategies. Mar. Freshw. Res. 62, 223–231 (2011).CAS 
    Article 

    Google Scholar 
    51.Conley, D. J. et al. Controlling eutrophication: Nitrogen and phosphorus. Science 123, 1014–1015 (2009).Article 

    Google Scholar 
    52.Park, T.-J. et al. Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Sci. Total Environ. 634, 934–940 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Reggam, A., Bouchelaghem, E.-H., Hanane, S. & Houhamdi, M. Effects of anthropogenic activities on the quality of surface water of Seybouse River (northeast of the Algeria). Arab. J. Geosci. 10, 219 (2017).Article 
    CAS 

    Google Scholar 
    54.Khelifa, R. et al. Long-range movements of an endangered endemic damselfly Calopteryx exul Selys, 1853 (Calopterygidae: Odonata). Afr. J. Ecol. 52, 375–377 (2014).
    Google Scholar 
    55.Khelifa, R. Partial bivoltinism and emergence patterns in the North African endemic damselfly Calopteryx exul: Conservation implications. Afr. J. Ecol. 55, 145–151 (2017).Article 

    Google Scholar 
    56.Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-chang-type drought. Proc. Natl. Acad. Sci. U.S.A. 106, 7063–7066 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Scrimgeour, G. J. & Winterbourn, M. J. Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river. Hydrobiologia 171, 33–44 (1989).Article 

    Google Scholar 
    58.Giller, P., Sangpradub, N. & Twomey, H. Catastrophic flooding and macroinvertebrate community structure. Verh. Int. Ver. Theor. Angew. Limnol. 24, 1724–1729 (1991).
    Google Scholar 
    59.Siva-Jothy, M. T., Gibbons, D. W. & Pain, D. Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. Behav. Ecol. Sociobiol. 37, 39–44 (1995).Article 

    Google Scholar 
    60.Stettmer, C. Colonisation and dispersal patterns of banded (Calopteryxsplendens) and beautiful demoiselles (C. virgo) (Odonata: Calopterygidae) in south-east German streams. Eur. J. Entomol. 93, 579–593 (1996).
    Google Scholar 
    61.Chaput-Bardy, A., Grégoire, A., Baguette, M., Pagano, A. & Secondi, J. Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens. PLoS ONE 5, e10694 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Ward, L. & Mill, P. Long range movements by individuals as a vehicle for range expansion in Calopteryx splendens (Odonata: Zygoptera). Eur. J. Entomol. 104, 195 (2007).Article 

    Google Scholar 
    63.Mellal, M. K., Bensouilah, M., Houhamd, M. & Khelifa, R. Reproductive habitat provisioning promotes survival and reproduction of the endangered endemic damselfly Calopteryx exul. J. Insect Conserv. 22, 563–570 (2018).Article 

    Google Scholar 
    64.Cordero-Rivera, A. & Stoks, R. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 7–20 (Oxford University Press, 2008).65.Iglesias, A., Garrote, L., Flores, F. & Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 21, 775–788 (2007).Article 

    Google Scholar 
    66.Barnett, T. P. et al. Human-induced changes in the hydrology of the western United States. Science 319, 1080–1083 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Samways, M. J. et al. Value of artificial ponds for aquatic insects in drought-prone southern Africa: A review. Biodivers. Conserv. 29, 3131–3150 (2020).Article 

    Google Scholar 
    68.Deacon, C., Samways, M. J. & Pryke, J. S. Aquatic insects decline in abundance and occupy low-quality artificial habitats to survive hydrological droughts. Freshw. Biol. 64, 1643–1654 (2019).Article 

    Google Scholar 
    69.Briggs, A. J., Pryke, J. S., Samways, M. J. & Conlong, D. E. Complementarity among dragonflies across a pondscape in a rural landscape mosaic. Insect Conserv. Divers. 12, 241–250 (2019).Article 

    Google Scholar 
    70.Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 11, 1507–1516 (2011).Article 

    Google Scholar 
    71.Brooks, A. J., Chessman, B. C. & Haeusler, T. Macroinvertebrate traits distinguish unregulated rivers subject to water abstraction. J. North Am. Benthol. Soc. 30, 419–435 (2011).Article 

    Google Scholar 
    72.Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. https://doi.org/10.1111/conl.12773 (2020).Article 

    Google Scholar 
    73.Vincent, A. & Fleury, P. Development of organic farming for the protection of water quality: Local projects in France and their policy implications. Land Use Policy 43, 197–206 (2015).Article 

    Google Scholar 
    74.Bengtsson, J., Ahnström, J. & Weibull, A. C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 42, 261–269 (2005).Article 

    Google Scholar 
    75.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).ADS 
    Article 

    Google Scholar 
    76.ABHCSM. A.G.I.R.E (Agence nationale de la gestion intégrée des ressources en eau) (2016). Rapport sur l’analyse de l’année hydrologique (2015–2016) du barrage Hammam Debagh. Agence de bassin hydrographique Constantinois-Seybouse-Mellegue (2016).77.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    78.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    79.Wildlife Conservation Society—WCS and Center for International Earth Science Information Network—CIESIN—Columbia University (NASA Socioeconomic Data and Applications Center (SEDAC), 2005).80.Vicente-Serrano, S. M. & Staff. The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI). Retreived from https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei (2015).81.D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).ADS 
    Article 

    Google Scholar 
    82.Khelifa, R. Females ‘assist’ sneaker males to dupe dominant males in a rare endemic damselfly: Sexual conflict at its finest. Ecology 100, e02811 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).84.Laake, J. RMark: An R Interface for Analysis of Capture–Recapture Data with MARK, AFSC Processed Rep 2013-01 (Alaska Fish. Sci. Cent., NOAA, National Marine Fisheries Service, 2013).85.Burnham, K. P. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture Vol. 5 (America Fisheries Society Monograph, 1987).86.Amstrup, S. C., McDonald, T. L. & Manly, B. F. Handbook of Capture–Recapture Analysis (Princeton University Press, 2010). More

  • in

    Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India

    1.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    4.Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. 115, 621 (2018).CAS 
    Article 

    Google Scholar 
    5.Deshmukh, S. et al. First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 24, 23–29 (2018).
    Google Scholar 
    6.Shylesha, A. N. et al. Studies on new invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 32, 145–151 (2018).Article 

    Google Scholar 
    7.Swamy, H. M. M. et al. Prevalence of “R” strain and molecular diversity of fall army worm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Indian J. Entomol. 80, 544 (2018).Article 

    Google Scholar 
    8.Chormule, A. et al. First report of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J. Entomol. Zool. Stud. 7, 114–117 (2019).
    Google Scholar 
    9.Visalakshi, M. et al. Report of the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and its natural enemies on maize and other crops from Andhra Pradesh, India. J. Entomol. Zool. Stud. 7, 1348–1352 (2019).MathSciNet 

    Google Scholar 
    10.Srikanth, J. et al. First report of occurrence of fall armyworm Spodoptera frugiperda in sugarcane from Tamil Nadu, India. J. Sugarcane Res. 8, 195–202 (2019).
    Google Scholar 
    11.Babu, S. R. et al. Report of an exotic invasive pest the fall armyworm, Spodoptera frugiperda (J.E. Smith) on maize in Southern Rajasthan. J. Entomol. Zool. Stud. 7, 1296–1300 (2019).
    Google Scholar 
    12.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex?. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    13.Pashley, D. P., Sparks, T. C., Quisenberry, S. S., Jamjanya, T. & Dowd, P. F. Two fall armyworm strains feed on corn, rice and Bermuda-grass. La. Agric. 30, 8–9 (1987).
    Google Scholar 
    14.Pashley, D. P. & Martin, J. A. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80, 731–733 (1987).Article 

    Google Scholar 
    15.Lima, E. R. & McNeil, J. N. Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology 19, 29–36 (2009).CAS 
    Article 

    Google Scholar 
    16.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit-I gene. Fla. Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    17.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    20.Zhang, L. et al. High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China; https://doi.org/10.1101/813154 (2019).21.Yainna, S. et al. Genomic balancing selection is key to the invasive success of the fall armyworm; https://doi.org/10.22541/au.160363803.32074105/v1 (2020).22.Tay, W. T. et al. Global FAW population genomic signature supports complex introduction events across the Old World. bioRxiv; https://doi.org/10.1101/2020.06.12.147660 (2020).23.South, A. rworldmap: a new R package for mapping global data. R J. 3(1), 35–43 (2011).MathSciNet 
    Article 

    Google Scholar 
    24.Wickham, et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686 (2019).ADS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. et al. Using haplotypes to monitor the migration of fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Texas and Florida. J. Econ. Entomol. 101, 742–749 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pedersen, T. L. patchwork: the composer of plots; https://CRAN.R-project.org/package=patchwork (2020).27.Yan, L. ggvenn: draw Venn diagram by ‘ggplot2’; https://CRAN.R-project.org/package=ggvenn (2020).28.Marchese, C. Biodiversity hotspots: a shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297–309 (2015).Article 

    Google Scholar 
    29.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Behere, G. T., Tay, W. T., Russell, D. A., Kranthi, K. R. & Batterham, P. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers. PLoS ONE 8, e53448 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Chowda-Reddy, R. et al. Bemisia tabaci phylogenetic groups in India and the relative transmission efficacy of tomato leaf curl Bangalore virus by an indigenous and an exotic population. J. Integr. Agric. 11, 235–248 (2012).Article 

    Google Scholar 
    32.Naik, V. C. B. et al. Evidence for population expansion of cotton pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) in India. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    33.Ciborowski, K. L. et al. Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biol. Lett. 3, 554–557 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Andolfatto, P., Scriber, J. M. & Charlesworth, B. No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution 57, 305 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Gantenbein, B., Fet, V., Gantenbein-Ritter, I. A. & Balloux, F. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc. R. Soc. B Biol. Sci. 272, 697–704 (2005).CAS 
    Article 

    Google Scholar 
    36.Hebert, P. D. N., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    37.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    40.Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    45.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinform. Oxf. Engl. 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar  More