Cooperation among unrelated ant queens provides persistent growth and survival benefits during colony ontogeny
1.Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, Oxford, 2002).
Google Scholar
2.Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, Berlin, 2016).
Google Scholar
3.Costa, J. T. & Ross, K. G. Fitness effects of group merging in a social insect. Proc. R. Soc. B 270, 1697–1702 (2003).PubMed
Article
PubMed Central
Google Scholar
4.Nicieza, A. G. Interacting effects of predation risk and food availability on larval anuran behaviour and development. Oecologia 123, 497–505 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
5.Dugatkin, L. A. Animal cooperation among unrelated individuals. Naturwissenschaften 89, 533–541 (2002).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
6.Clutton-Brock, T. Breeding together: Kin selection and mutualism in cooperative vertebrates. Science 69, 69–72 (2002).ADS
Article
Google Scholar
7.Haney, B. R. & Fewell, J. H. Ecological drivers and reproductive consequences of non-kin cooperation by ant queens. Oecologia 187, 643–655 (2018).ADS
PubMed
Article
PubMed Central
Google Scholar
8.Tschinkel, W. R. Brood raiding and the population dynamics of founding and incipient colonies of the fire ant, Solenopsis invicta. Ecol. Entomol. 17, 179–188 (1992).Article
Google Scholar
9.Clark, R. M. & Fewell, J. H. Transitioning from unstable to stable colony growth in the desert leafcutter ant Acromyrmex versicolor. Behav. Ecol. Sociobiol. https://doi.org/10.1007/s00265-013-1632-4 (2013).Article
Google Scholar
10.Cole, B. The ecological setting of social evolution: the demography of ant populations. In Organization of Insect Societies: From Genome to Sociocomplexity (eds Gadau, J. & Fewell, J.) 74–104 (Harvard University Press, Cambridge, 2009).
Google Scholar
11.Kang, Y., Clark, R., Makiyama, M. & Fewell, J. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden. J. Theor. Biol. 289, 116–127 (2011).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
12.Karsai, I. & Wenzel, J. Productivity, individual-level and colony-level flexibility, and organization of work as consequences of colony size. J. Theor. Biol. 289, 116–127 (1998).
Google Scholar
13.Tibbetts, E. A. & Reeve, H. K. Benefits of foundress associations in the paper wasp Polistes dominulus : increased productivity and survival, but no assurance of fitness returns. Behav. Ecol. 14, 510–514 (2003).Article
Google Scholar
14.Cahan, S. & Julian, G. E. Fitness consequences of cooperative colony founding in the desert leaf-cutter ant Acromyrmex versicolor. Behav. Ecol. 10, 585–591 (1999).Article
Google Scholar
15.Tschinkel, W. R. Colony growth and the ontogeny of worker polymorphism in the fire ant, Solenopsis invicta. Behav. Ecol. Sociobiol. 22, 103–115 (1988).Article
Google Scholar
16.Choe, J. & Perlman, D. Social conflict and cooperation among founding queens in ants (Hymenoptera: Formicidae). In Social Behavior in Insects and Arachnids 392–406 (Cambridge University Press, Cambridge, 1997).
Google Scholar
17.Bernasconi, G. & Strassmann, J. E. Cooperation among unrelated individuals: The ant foundress case. Trends Ecol. Evol. 14, 477–482 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Hartke, T. R. & Rosengaus, R. B. Costs of pleometrosis in a polygamous termite. Proc. R. Soc. B 280, 20122563 (2013).PubMed
Article
PubMed Central
Google Scholar
19.Gamboa, G. J. Intraspecific defense: Advantage of social cooperation among paper wasp foundresses. Science 199, 1463–1466 (1978).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Kolmer, K. & Heinze, J. Rank orders and division of labour among unrelated cofounding ant queens. Proc. R. Soc. B 267, 1729–1734 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Clark, R. M. & Fewell, J. H. Social dynamics drive selection in cooperative associations of ant queens. Behav. Ecol. 25, 117–123 (2014).Article
Google Scholar
22.Johnson, R. A. Colony founding by pleometrosis in the semiclaustral seed-harvester ant Pogonomyrmex californicus (Hymenoptera: Formicidae ). Anim. Behav. 68, 1189–1200 (2004).Article
Google Scholar
23.Tschinkel, W. R. & Howard, D. F. Colony founding by pleometrosis in the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 12, 103–113 (1983).Article
Google Scholar
24.Rissing, S. W. & Pollock, G. B. Queen aggression, pleometrotic advantage and brood raiding in the ant Veromessor pergandei (Hymenoptera: Formicidae). Anim. Behav. 35, 975–981 (1987).Article
Google Scholar
25.Deslippe, R. J. & Savolainen, R. Colony Foundation and Polygyny in the Ant Formica podzolic. Behav. Ecol. Sociobiol. 37, 1–6 (1995).Article
Google Scholar
26.Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, Princeton, 1995).
Google Scholar
27.Hölldobler, B. & Wilson, E. The Ants (Harvard University Press, Cambridge, 1990).
Google Scholar
28.Mintzer, A. Primary polygyny in the ant Atta texana: number and weight of females nad colony foundation success in the laboratory. Insect Soc 34, 108–117 (1987).Article
Google Scholar
29.Heinze, J. & Hölldobler, B. Ants in the cold. Memorab. Zool. 48, 99–108 (1994).
Google Scholar
30.Helms Cahan, S. Cooperation and conflict in ant foundress associations: Insights from geographical variation. Anim. Behav. 61, 819–825 (2001).Article
Google Scholar
31.Heinze, J. & Rüppel, O. The frequency of multi-queen colonies increases in a Nearctic ant. Ecol Entomol 39, 527–529 (2014).Article
Google Scholar
32.Brown, M. Semi-claustral founding and worker behaviour in gynes of Messor andrei. Insect Soc. 46, 194–195 (1999).Article
Google Scholar
33.Oster, G. & Wilson, E. Caste and Ecology in the Social Insects (Princeton University Press, Princeton, 1978).
Google Scholar
34.Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W.W. Norton & Company, New York, 2009).
Google Scholar
35.Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insectes Soc. 60, 191–201 (2013).Article
Google Scholar
36.Thomas, M. L. & Elgar, M. A. Colony size affects division of labour in the ponerine ant Rhytidoponera metallica. Naturwissenschaften 90, 88–92 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
37.Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).Article
Google Scholar
38.Holbrook, C. T., Barden, P. M. & Fewell, J. H. Division of labor increases with colony size in the harvester ant Pogonomyrmex californicus. Behav. Ecol. 22, 960–966 (2011).Article
Google Scholar
39.Dornhaus, A., Powell, S. & Bengston, S. Group size and its effects on collective organization. Ann. Rev. Entomol. 57, 123–141 (2012).CAS
Article
Google Scholar
40.Wilson, E. Colony ontogeny of Atta cephalotes. Behav. Ecol. Sociobiol. 7, 143–156 (1983).Article
Google Scholar
41.Jeanne, R. Social complexity in the Hymenoptera, with special attention to the wasps. In Genes, Behaviors, and Evolution of Social Insects (eds Kikuchi, T. et al.) 81–130 (Hokkaido University Press, Sapporo, 2003).
Google Scholar
42.Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).ADS
CAS
Article
Google Scholar
43.Mailleux, A., Deneubourg, J. & Detrain, C. How does colony growth influence communication in ants?. Insectes Soc. 50, 24–31 (2003).Article
Google Scholar
44.Overson, R., Fewell, J. & Gadau, J. Distribution and origin of intraspecific social variation in the California harvester ant Pogonomyrmex californicus. Insectes Soc. 63, 531–541 (2016).Article
Google Scholar
45.Haney, B. R. et al. Ecological Drivers and Reproductive Consequences of Queen Cooperation in the California Harvester Ant Pogonomyrmex Californicus (Arizona State University, Tempe, 2017).
Google Scholar
46.Bhatkar, A. & Whitcomb, W. H. Artificial diet for rearing various species of ants. Fla. Entomol. 53, 229–232 (1970).Article
Google Scholar
47.Cahan, S. H. & Fewell, J. H. Division of labor and the evolution of task sharing in queen associations of the harvester ant Pogonomyrmex californicus. Behav. Ecol. Sociobiol. 56, 9–17 (2004).Article
Google Scholar
48.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
Google Scholar
49.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article
Google Scholar
50.Therneau, T. A Package for Survival Analysis in R. R Package Version 3.2-7. (2020).51.Therneau, T. coxme: Mixed Effects Cox Models. R Package Version 2.2-16.52.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
53.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. (2020).54.Riehl, C. & Riehl, C. Evolutionary routes to non-kin cooperative breeding in birds. Proc. R. Soc. B 278, 20132242 (2013).
Google Scholar
55.Clutton-Brock, T. Cooperation between non-kin in animal societies. Nature 461, 51–57 (2009).ADS
Article
CAS
Google Scholar
56.Emlen, S. T. The evolution of helping. I. An Ecological Constraints Model. Am. Nat. 119, 29–39 (1982).Article
Google Scholar
57.Heg, D., Bachar, Z., Brouwer, L. & Taborsky, M. Predation risk is an ecological constraint for helper dispersal in a cooperatively breeding cichlid. Proc. R. Soc. B 271, 2367–2374 (2004).PubMed
Article
PubMed Central
Google Scholar
58.Kennedy, P., Higginson, A. D., Radford, A. N. & Sumner, S. Altruism in a volatile world. Nature 555, 359–362 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
59.Gasperin, O. D., Blacher, P., Grasso, G. & Chapuisat, M. Winter is coming: Harsh environments limit independent reproduction of cooperative-breeding queens in a socially polymorphic ant. Biol. Lett. 16, 20190730 (2020).PubMed
PubMed Central
Article
Google Scholar
60.Lukas, D. & Clutton-Brock, T. Climate and the distribution of cooperative breeding in mammals. R. Soc. Open Sci. 4, 160897 (2017).ADS
PubMed
PubMed Central
Article
Google Scholar
61.Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Cornwallis, C. K. et al. Cooperation facilitates the colonization of harsh environments. Nat. Ecol. Evol. 1, 1–10 (2017).Article
Google Scholar
63.Heinze, J. Queen-queen interactions in polygynous ants. In Queen Number and Sociality in Insects (ed. Keller, L.) 262–293 (Oxford University Press, Oxford, 1993).
Google Scholar
64.Schmid-Hempel, P. & Crozier, R. H. Polyandry versus polygyny versus parasites. Phil. Trans. R. Soc. B 354, 507–515 (1999).Article
Google Scholar
65.Hughes, W. O. H. & Boomsma, J. J. Genetic diversity and disease resistance in leaf-cutting ant societies. Evolution 58, 1251–1260 (2004).PubMed
Article
PubMed Central
Google Scholar
66.Mattila, H. R. & Seeley, T. D. Genetic diversity in honey productivity and fitness. Science 317, 362–365 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
67.Seeley, T. D. & Tarpy, D. R. Queen promiscuity lowers disease within honeybee colonies. Proc. R. Soc. B 274, 67–72 (2007).PubMed
Article
PubMed Central
Google Scholar
68.Whitehorn, P. R., Tinsley, M. C., Brown, M. J. F., Darvill, B. & Goulson, D. Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proc. R. Soc. B 278, 1195–1202. https://doi.org/10.1098/rspb.2010.1550 (2011).Article
PubMed
PubMed Central
Google Scholar
69.Johnson, R. A. Water loss in desert ants: Caste variation and the effect of cuticle abrasion. Physiol. Entomol. 25, 48–53 (2000).Article
Google Scholar
70.Reber, A., Purcell, J., Buechel, S. D., Buri, P. & Chapuisat, M. The expression and impact of antifungal grooming in ants. J. Evol. Biol. 24, 954–964 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
71.Wilson, S. N. et al. How emergent social patterns in allogrooming combat parasitic infections. Front. Ecol. Evol. 8, 54 (2020).Article
Google Scholar
72.Hutchins, M. & Barash, D. Grooming in primates: Implications for its utilitarian function. Primates 17, 145–150 (1976).Article
Google Scholar
73.Lobo, J., Bettencourt, L. M. A., Strumsky, D. & West, G. B. Urban scaling and the production function for cities. PLoS ONE 8, e58407–e58407 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
74.Bettencourt, L., Lobo, J., Helbing, D., Kuhnert, C. & West, G. Growth, innovation, scaling and the pace of life in cities. PNAS 104, 7301–7306 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
75.Bondi, A. Characteristics of scalability and their impact on performance. 195–203 (2000).76.Duboc, L., Rosenblum, D. & Wicks, T. A framework for characterization and analysis of software system scalability. Proceedings of the European Software Engineering Conference 375–384 (2007).77.Johnson, R. A. Semi-claustral colony founding in the seed-harvester ant Pogonomyrmex californicus: A comparative analysis of colony founding strategies. Oecologia 132, 60–67 (2002).ADS
PubMed
Article
PubMed Central
Google Scholar
78.Wilson, E. The Insect Societies (Harvard University Press, Cambridge, 1971).
Google Scholar
79.Seid, M. A. & Traniello, J. F. A. Age-related repertoire expansion and division of labor in Pheidole dentata (Hymenoptera: Formicidae): A new perspective on temporal polyethism and behavioral plasticity in ants. Behav. Ecol. Sociobiol. 60, 631–644 (2006).Article
Google Scholar
80.Seeley, T. Adaptive significance of the age polyethism schedule in honey bee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).Article
Google Scholar More