More stories

  • in

    Assessing the potential for deep learning and computer vision to identify bumble bee species from images

    1.Alexandra-Maria, K. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    2.Winfree, R., Williams, N. M., Gaines, H., Ascher, J. S. & Kremen, C. Wild bee pollinators provide the majority of crop visitation across land-use gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol. 45, 793–802 (2008).Article 

    Google Scholar 
    3.Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. 110, 13044–13048 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    4.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    5.Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. 108, 662–667 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl. Acad. Sci. 113, 140–145 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Cameron, S. A. & Sadd, B. M. Global trends in bumble bee health. Annu. Rev. Entomol. 65, 209–232 (2020).CAS 
    Article 

    Google Scholar 
    8.Murray, T. E., Kuhlmann, M. & Potts, S. G. Conservation ecology of bees: populations, species and communities. Apidologie 40, 211–236 (2009).Article 

    Google Scholar 
    9.Michener, C. D. The Bees of the World (Johns Hopkins University Press, Baltimore, 2007).
    Google Scholar 
    10.Milam, J. et al. Validating morphometrics with DNA barcoding to reliably separate three cryptic species of bombus cresson (Hymenoptera: Apidae). Insects 11, 669 (2020).Article 

    Google Scholar 
    11.Williams, P. H. et al. Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus). Eur. J. Taxon. 719, 1–120 (2020).
    Google Scholar 
    12.Drew, L. W. Are we losing the science of taxonomy? As need grows, numbers and training are failing to keep up. Bioscience 61, 942–946 (2011).Article 

    Google Scholar 
    13.Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 113, 337–342 (2020).Article 

    Google Scholar 
    14.Valan, M., Makonyi, K., Maki, A., Vondráček, D. & Ronquist, F. Automated taxonomic identification of insects with expert-level accuracy using effective feature transfer from convolutional networks. Syst. Biol. 68, 876–895 (2019).Article 

    Google Scholar 
    15.Gratton, C. & Zuckerberg, B. Citizen science data for mapping bumble bee populations, in Novel Quantitative Methods in Pollinator Ecology and Management (2019).16.MacPhail, V. J., Gibson, S. D., Hatfield, R. & Colla, S. R. Using Bumble Bee Watch to investigate the accuracy and perception of bumble bee (Bombus spp.) identification by community scientists. PeerJ 8, e9412 (2020).Article 

    Google Scholar 
    17.Weeks, P. J. D., Gauld, I. D., Gaston, K. J. & O’Neill, M. A. Automating the identification of insects: a new solution to an old problem. Bull. Entomol. Res. 87, 203–211 (1997).Article 

    Google Scholar 
    18.Schröder, S. et al. The new key to bees: Automated identification by image analysis of wings. in The Conservation Link Between Agriculture and Nature (eds. Kevan, P. & Imperatriz-Fonseca, V.) 209–216 (Ministry of Environment, 2002).19.MacLeod, N., Benfield, M. & Culverhouse, P. Time to automate identification. Nature 467, 154–155 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    20.Fuentes, A., Yoon, S., Kim, S. C. & Park, D. S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 17, 2022 (2017).Article 

    Google Scholar 
    21.Motta, D. et al. Application of convolutional neural networks for classification of adult mosquitoes in the field. PLoS ONE 14, e0210829 (2019).CAS 
    Article 

    Google Scholar 
    22.Bojarski, M. et al. End to end learning for self-driving cars. arXxiv:1604.07316 (2016).23.Anthimopoulos, M., Christodoulidis, S., Ebner, L., Christe, A. & Mougiakakou, S. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans. Med. Imaging 35, 1207–1216 (2016).Article 

    Google Scholar 
    24.Liu, Z., Gao, J., Yang, G., Zhang, H. & He, Y. Localization and classification of paddy field pests using a saliency map and deep convolutional neural network. Sci. Rep. 6, 20410 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    25.Martineau, M., Raveaux, R., Chatelain, C., Conte, D. & Venturini, G. Effective training of convolutional neural networks for insect image recognition. In Advanced Concepts for Intelligent Vision Systems, pp 426–437 (eds Blanc-Talon, J. et al.) (Springer International Publishing, Cham, 2018).
    Google Scholar 
    26.Marques, A. C. R. et al. Ant genera identification using an ensemble of convolutional neural networks. PLoS ONE 13, e0192011 (2018).Article 

    Google Scholar 
    27.Williams, P. H., Thorp, R. W., Richardson, L. L. & Colla, S. R. Bumble Bees of North America: An Identification Guide (Princeton University Press, Princeton, 2014).
    Google Scholar 
    28.He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. 2016 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR 770–778 (2015).29.Zagoruyko, S. & Komodakis, N. Wide residual networks. arXxiv:1605.07146 (2017).30.Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. arXxiv:1512.00567 (2015).31.Tan, M. et al. MnasNet: Platform-aware neural architecture search for mobile. arXxiv:1807.11626 (2019).32.Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition 248–255 (2009).33.Hernández-García, A. & König, P. Further advantages of data augmentation on convolutional neural networks. arXxiv:1906.11052 11139, 95–103 (2018).34.Fard, F. S., Hollensen, P., Mcilory, S. & Trappenberg, T. Impact of biased mislabeling on learning with deep networks. in 2017 International Joint Conference on Neural Networks (IJCNN) 2652–2657 (2017).35.Clare, J. D. J., Townsend, P. A. & Zuckerberg, B. Generalized model-based solutions to false positive error in species detection/non-detection data. Ecology 102, e03241 (2021).Article 

    Google Scholar 
    36.Clare, J. D. J. et al. Making inference with messy (citizen science) data: when are data accurate enough and how can they be improved?. Ecol. Appl. 29, e01849 (2019).Article 

    Google Scholar 
    37.Tian, Z. et al. Discriminative CNN via metric learning for hyperspectral classification. in IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium 580–583 (2019).38.Nazki, H., Yoon, S., Fuentes, A. & Park, D. S. Unsupervised image translation using adversarial networks for improved plant disease recognition. Comput. Electron. Agric. 168, 105117 (2020).Article 

    Google Scholar 
    39.Wäldchen, J. & Mäder, P. Machine learning for image based species identification. Methods Ecol. Evol. 9, 2216–2225 (2018).Article 

    Google Scholar 
    40.Woodard, S. H. et al. Towards a U.S. national program for monitoring native bees. Biol. Conserv. 252, 108821 (2020).Article 

    Google Scholar 
    41.Wagner, D. L. Insect declines in the anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    Article 

    Google Scholar 
    42.Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).Article 

    Google Scholar 
    43.Høye, T. T., Mann, H. M. R. & Bjerge, K. Camera-based monitoring of insects on green roofs. DCE – Natl. Cent. Environ. Energy 18 (2020).44.Ärje, J. et al. Automatic image-based identification and biomass estimation of invertebrates. Methods Ecol. Evol. 11, 922–931 (2020).Article 

    Google Scholar 
    45.Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018).CAS 
    Article 

    Google Scholar 
    46.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).Article 

    Google Scholar 
    47.Ghisbain, G. et al. Substantial genetic divergence and lack of recent gene flow support cryptic speciation in a colour polymorphic bumble bee (Bombus bifarius) species complex. Syst. Ecol. 45, 635–652 (2020).
    Google Scholar  More

  • in

    Cyanobacterial eagle killer

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Testing of how and why the Terpios hoshinota sponge kills stony corals

    Experiment 1: Sponge fragmentsEvidence of bleaching first occurred 3 days after the treatment and was only evident in the group with fragments of T. hoshinota. No bleaching was detected in the other 2 groups with the black cloth (to block light) and white cloth (control) (Table 1). Chi-square tests confirmed that the occurrence of bleaching depended on the treatments (p  More

  • in

    Phylogeography and morphological evolution of Pseudechiniscus (Heterotardigrada: Echiniscidae)

    1.Gross, V. et al. Miniaturization of tardigrades (water bears): Morphological and genomic perspectives. Arthr. Struct. Dev. 48, 12–19 (2019).Article 

    Google Scholar 
    2.Møbjerg, N. et al. Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol. 202, 409–420 (2011).Article 
    CAS 

    Google Scholar 
    3.Giribet, G. & Edgecombe, G. D. Current understanding of Ecdysozoa and its internal phylogenetic relationships. Integr. Comp. Biol. 57, 455–466 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Campbell, L. I. et al. MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc. Natl Acad. Sci. USA 108, 15920–15924 (2011).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    5.Jørgensen, A., Møbjerg, N. & Kristensen, R. M. Phylogeny and evolution of the Echiniscidae (Echiniscoidea, Tardigrada) – an investigation of the congruence between molecules and morphology. J. Zool. Syst. Evol. Res. 49(Suppl. 1), 6–16 (2011).Article 

    Google Scholar 
    6.Bertolani, R. et al. Phylogeny of Eutardigrada: new molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phyl. Evol. 76, 110–126 (2014).Article 

    Google Scholar 
    7.Fujimoto, S., Jørgensen, A. & Hansen, J. G. A. molecular approach to arthrotardigrade phylogeny (Heterotardigrada, Tardigrada). Zool. Scr. 46, 496–505 (2017).Article 

    Google Scholar 
    8.Gąsiorek, P., Stec, D., Morek, W. & Michalczyk, Ł. Deceptive conservatism of claws: distinct phyletic lineages concealed within Isohypsibioidea (Eutardigrada) revealed by molecular and morphological evidence. Contrib. Zool. 88, 78–132 (2019).Article 

    Google Scholar 
    9.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Ann. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    10.Bartels, P. J., Apodaca, J. J., Mora, C. & Nelson, D. R. A global biodiversity estimate of a poorly known taxon: phylum Tardigrada. Zool. J. Linn. Soc. 178, 730–736 (2016).Article 

    Google Scholar 
    11.McInnes, S. J. Zoogeographic distribution of terrestrial/freshwater tardigrades from current literature. J. Nat. Hist. 28, 257–352 (1994).Article 

    Google Scholar 
    12.Morek, W., Stec, D., Gąsiorek, P., Surmacz, B. & Michalczyk, Ł. Milnesium tardigradum Doyère, 1840: The first integrative study of interpopulation variability in a tardigrade species. J. Zool. Syst. Evol. Res. 57, 1–23 (2019).Article 

    Google Scholar 
    13.Gąsiorek, P., Blagden, B. & Michalczyk, Ł. Towards a better understanding of echiniscid intraspecific variability: A redescription of Nebularmis reticulatus (Murray, 1905) (Heterotardigrada: Echiniscoidea). Zool. Anz. 283, 242–255 (2019).Article 

    Google Scholar 
    14.Gąsiorek, P. et al. Echiniscus virginicus complex: the first case of pseudocryptic allopatry and pantropical distribution in tardigrades. Biol. J. Linn. Soc. 128, 789–805 (2019).
    Google Scholar 
    15.Cesari, M., McInnes, S. J., Bertolani, R., Rebecchi, L. & Guidetti, R. Genetic diversity and biogeography of the south polar water bear Acutuncus antarcticus (Eutardigrada : Hypsibiidae) – evidence that it is a truly pan-Antarctic species. Invertebr. Syst. 30, 635–649 (2016).Article 

    Google Scholar 
    16.Guidetti, R., McInnes, S. J., Cesari, M., Rebecchi, L. & Rota-Stabelli, O. Evolutionary scenarios for the origin of an Antarctic tardigrade species based on molecular clock analyses and biogeographic data. Contrib. Zool. 86, 97–110 (2017).Article 

    Google Scholar 
    17.Stec, D., Krzywański, Ł, Zawierucha, K. & Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 188, 694–716 (2020).Article 

    Google Scholar 
    18.Thulin, G. Beiträge zur Kenntnis der Tardigradenfauna Schwedens. Ark. Zool. 7, 1–60 (1911).
    Google Scholar 
    19.Kristensen, R. M. Generic revision of the Echiniscidae (Heterotardigrada), with a discussion of the origin of the family. In Biology of Tardigrada (ed. Bertolani, R.) 261–335 (U.Z.I. Modena, 1987).
    Google Scholar 
    20.Vecchi, M. et al. Integrative systematic studies on tardigrades from Antarctica identify new genera and new species within Macrobiotoidea and Echiniscoidea. Invertebr. Syst. 30, 303–322 (2016).Article 

    Google Scholar 
    21.Cesari, M. et al. An integrated study of the biodiversity within the Pseudechiniscus suillus–facettalis group (Heterotardigrada: Echiniscidae). Zool. J. Linn. Soc. 188, 717–732 (2020).
    Google Scholar 
    22.Tumanov, D. V. Analysis of non-morphometric morphological characters used in the taxonomy of the genus Pseudechiniscus (Tardigrada: Echiniscidae). Zool. J. Linn. Soc. 188, 753–775 (2020).
    Google Scholar 
    23.Grobys, D. et al. High diversity in the Pseudechiniscus suillus–facettalis complex (Heterotardigrada: Echiniscidae) with remarks on the morphology of the genus Pseudechiniscus. Zool. J. Linn. Soc. 188, 733–752 (2020).Article 

    Google Scholar 
    24.Roszkowska, M. et al. Integrative description of five Pseudechiniscus species (Heterotardigrada: Echiniscidae: the suillus-facettalis complex). Zootaxa 4763, 451–484 (2020).Article 

    Google Scholar 
    25.Gąsiorek, P. et al. New Asian and Nearctic Hypechiniscus species (Heterotardigrada: Echiniscidae) signalise a pseudocryptic horn of plenty. Zool. J. Linn. Soc. (in press).26.Fontoura, P. & Morais, P. Assessment of traditional and geometric morphometrics for discriminating cryptic species of the Pseudechiniscus suillus complex (Tardigrada, Echiniscidae). J. Zool. Syst. Evol. Res. 49(Suppl. 1), 26–33 (2011).Article 

    Google Scholar 
    27.Yu, Y., Harris, A. J. & He, X. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol. Phyl. Evol. 56, 848–850 (2010).Article 

    Google Scholar 
    28.Matzke, N. J. Probabilistic historical biogeography: new models for founder- event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242–248 (2013).Article 

    Google Scholar 
    29.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    31.Rocha, A., Doma, I., Gonzalez-Reyes, A. & Lisi, O. Two new tardigrade species (Echiniscidae, Doryphoribiidae) from Salta province (Argentina). Zootaxa 4878, 267–286 (2020).Article 

    Google Scholar 
    32.Ehrenberg, C. G. Diagnoses novarum formarum. Verhandl. König. Preuss. Akad. Wiss Berlin 8, 526–533 (1853).
    Google Scholar 
    33.Mihelčič, F. Zwei neue Tardigradenarten aus Spanien. Zool. Anz. 155, 309–311 (1955).
    Google Scholar 
    34.Mihelčič, F. Beitrag zur Systematik de Tardigraden . Arch. Zool. Ital. 36, 57–103 (1951).
    Google Scholar 
    35.Iharos, A. Zwei neue Tardigraden-Arten. Zool. Anz. 115, 218–220 (1936).
    Google Scholar 
    36.Murray, J. Some South African Tardigrada. J. R. Microsc. Soc. 12, 515–524 (1907).Article 

    Google Scholar 
    37.Yang, T. Three new species and one new record of the Tardigrada from China. Acta Hydrobiol. Sin. 26, 504–507 (2002).
    Google Scholar 
    38.Mihelčič, F. Beiträge zur Kenntnis der Tardigrada Jugoslawiens. Zool. Anz. 121, 95–96 (1938).
    Google Scholar 
    39.Bartoš, E. Eine neue Tardigradenart aus der Tschechoslowakei. Zool. Anz. 106, 175–176 (1934).
    Google Scholar 
    40.Richters, F. Beitrag zur Kenntnis der Moosfauna Australiens und der Inseln des Pazifischen Ozeans. Zool. Jahrb. Abt. Syst. Ökol. Geogr. Tiere 26, 196–213 (1908).
    Google Scholar 
    41.Vončina, K., Kristensen, R. M. & Gąsiorek, P. Pseudechiniscus in Japan: re-description of Pseudechiniscus asper Abe et al., 1998 and description of Pseudechiniscus shintai sp. nov. Zoosyst. Evol. 96, 527–536 (2020).Article 

    Google Scholar 
    42.Wang, L. Tardigrades from the Yunnan-Guizhou Plateau (China) with description of two new species in the genera Mixibius (Eutardigrada: Hypsibiidae) and Pseudechiniscus (Heterotardigrada: Echiniscidae). J. Nat. Hist. 43, 2553–2570 (2009).Article 

    Google Scholar 
    43.Hulings, N. C. & Gray, J. S. A manual for the study of meiofauna. Smithson. Contrib. Zool. 78, 1–84 (1971).
    Google Scholar 
    44.Gąsiorek, P. & Michalczyk, Ł. Revised Cornechiniscus (Heterotardigrada) and new phylogenetic analyses negate echiniscid subfamilies and tribes. R. Soc. Open Sci. 7, 200581 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    45.Dastych, H. Notes on the revision of the genus Mopsechiniscus (Tardigrada). Zool. Anz. 240, 299–308 (2001).Article 

    Google Scholar 
    46.Rebecchi, L., Altiero, T., Eibye-Jacobsen, J., Bertolani, R. & Kristensen, R. M. A new discovery of Novechiniscus armadilloides (Schuster, 1975) (Tardigrada, Echiniscidae) from Utah, USA with considerations on non-marine Heterotardigrada phylogeny and biogeography. Org. Divers. Evol. 8, 58–65 (2008).Article 

    Google Scholar 
    47.Binda, M. G. & Kristensen, R. M. Notes on the genus Oreella (Oreellidae) and the systematic position of Carphania fluviatilis Binda, 1978 (Carphaniidae fam. nov., Heterotardigrada). Animalia 13, 9–20 (1986).
    Google Scholar 
    48.Binda, M. G. Risistemazione di alcuni Tardigradi con l’instituzione di un nuovo genere di Oreellidae e della nuova famiglia Archechiniscidae. Animalia 5, 307–314 (1978).
    Google Scholar 
    49.Kristensen, R. M. & Hallas, T. E. The tidal genus Echiniscoides and its variability, with erection of Echiniscoididae fam. n. (Tardigrada). Zool. Scr. 9, 113–127 (1980).Article 

    Google Scholar 
    50.Møbjerg, N., Kristensen, R. M. & Jørgensen, A. Data from new taxa infer Isoechiniscoides gen. nov. and increase the phylogenetic and evolutionary understanding of echiniscoidid tardigrades (Echiniscoidea: Tardigrada). Zool. J. Linn. Soc. 178, 804–818 (2016).Article 

    Google Scholar 
    51.Møbjerg, N., Jørgensen, A. & Kristensen, R. M. Ongoing revision of Echiniscoididae (Heterotardigrada: Echiniscoidea), with the description of a new interstitial species and genus with unique anal structures. Zool. J. Linn. Soc. 188, 663–680 (2020).Article 

    Google Scholar 
    52.Gąsiorek, P., Suzuki, A. C., Kristensen, R. M., Lachowska-Cierlik, D. & Michalczyk, Ł. Untangling the Echiniscus Gordian knot: Stellariscus gen. nov. (Heterotardigrada: Echiniscidae) from Far East Asia. Invertebr. Syst. 32, 1234–1247 (2018).Article 

    Google Scholar 
    53.Dastych, H. Echiniscus rackae sp. n., a new species of Tardigrada from the Himalayas. Entomol. Mitt. Zool. Mus. Hamburg 8, 246–250 (1986).
    Google Scholar 
    54.McInnes, S. J. Tardigrades from Signy Island, South Orkney Islands, with particular reference to freshwater species. J. Nat. Hist. 29, 1419–1445 (1995).Article 

    Google Scholar 
    55.Dastych, H. Two new species of Tardigrada from the Canadian Subarctic with some notes on sexual dimorphism in the family Echiniscidae. Entomol. Mitt. Zool. Mus. Hamburg 8, 319–334 (1987).
    Google Scholar 
    56.Pilato, G., Binda, M. G. & Lisi, O. Remarks on some Echiniscidae (Heterotardigrada) from New Zealand with the description of two new species. Zootaxa 1027, 27–45 (2005).Article 

    Google Scholar 
    57.Pilato, G., Binda, M. G., Napolitano, A. & Moncada, E. Notes on South American tardigrades with the description of two new species: Pseudechiniscus spinerectus and Macrobiotus danielae. Trop. Zool. 14, 223–231 (2001).Article 

    Google Scholar 
    58.Fontoura, P., Pilato, G. & Lisi, O. First record of Tardigrada from São Tomé (Gulf of Guinea, Western Equatorial Africa) and description of Pseudechiniscus santomensis sp. nov. (Heterotardigrada: Echiniscidae). Zootaxa 2564, 31–42 (2010).Article 

    Google Scholar 
    59.Bartoš, E. Die Tardigraden der Chinesischen und Javanischen Moosproben. Acta Soc. Zool. Bohem. 27, 108–114 (1963).
    Google Scholar 
    60.Beijerinck, M.W. De infusies en de ontdekking der backteriën. Jaarboek van de Koninklijke Akademie v. Wetenschappen. Amsterdam: Müller (1913).61.Baas-Becking, L. G. M. Geobiologie of inleiding tot de milieukunde (W.P. Van Stockum & Zoon, 1934).
    Google Scholar 
    62.Wallace, A. R. The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the Earth’s surface (Macmillan and Company, 1876).
    Google Scholar 
    63.Niedbała, W. The ptyctimous mites fauna of the Oriental and Australian regions and their centres of origin (Acari: Oribatida). Genus Suppl. 10, 1–493 (2000).
    Google Scholar 
    64.Niedbała, W. Ptyctimous mites (Acari: Oribatida) of South Africa. Ann. Zool. 56(Suppl. 1), 1–97 (2006).
    Google Scholar 
    65.Janion-Scheepers, C., Deharveng, L., Bedos, A. & Chown, S. Updated list of Collembola species currently recorded from South Africa. ZooKeys 503, 55–88 (2015).Article 

    Google Scholar 
    66.Kisielewski, J. Inland-water Gastrotricha from Brazil. Ann. Zool. 43(Suppl. 2), 1–168 (1991).
    Google Scholar 
    67.Tuxen, S. L. Ecology and zoogeography of the Brazilian Protura (Insecta). Stud. Neotrop. Fauna Environ. 12, 225–247 (1977).Article 

    Google Scholar 
    68.Greenslade, P. Why are there so many exotic springtails in Australia? A review. Soil Org. 90, 141–156 (2018).
    Google Scholar 
    69.Smit, H. Australian water mites of the subfamily Notoaturinae Besch (Acari: Hydrachnidia: Aturidae), with the description of 24 new species. Int. J. Acarol. 36, 101–146 (2010).Article 

    Google Scholar 
    70.Moir, M. L., Brennan, K. E. C. & Harvey, M. S. Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. J. Biogeogr. 36, 1958–1971 (2009).Article 

    Google Scholar 
    71.Harvey, M. S., Abrams, K. M., Beavis, A. S., Hillyer, M. J. & Huey, J. A. Pseudoscorpions of the family Feaellidae (Pseudoscorpiones: Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism. Invertebr. Syst. 30, 491–508 (2016).Article 

    Google Scholar 
    72.Claxton, S.K. The taxonomy and distribution of Australian terrestrial tardigrades. PhD thesis, Macquarie University: Sydney (2004).73.Simpson, G. G. Tempo and mode in evolution (Columbia University Press, 1944).
    Google Scholar 
    74.Dastych, H. The Tardigrada of Poland. Monogr. Faun. Pol. 16, 1–255 (1988).
    Google Scholar 
    75.Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    76.Petersen, B. The tardigrade fauna of Greenland. Medd. Grønl. 150, 1–94 (1951).
    Google Scholar 
    77.de Bruyn, M. et al. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity. Syst. Biol. 63, 879–901 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Ugland, K. I., Gray, J. S. & Ellingsen, K. E. The species–accumulation curve and estimation of species richness. J. Anim. Ecol. 72, 888–897 (2003).Article 

    Google Scholar 
    79.Casquet, J. T., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12, 136–141 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Stec, D., Kristensen, R.M. & Michalczyk, Ł. An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). Zool. Anz. 286, 117–134 (2020).81.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    82.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Meth. 14, 587–589 (2017).CAS 
    Article 

    Google Scholar 
    85.Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).Article 

    Google Scholar 
    90.Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Suchard, M.A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 Virus Evol. 4, vey016 (2018).93.Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. Tracer v1.6 (2014). Available from http://beast.bio.ed.ac.uk/Tracer.94.Drummond, A. J. & Suchard, M. A. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 8, 114 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Ferreira, M. A. R. & Suchard, M. A. (2008) Bayesian analysis of elapsed times in continuous-time Markov chains. Can. J. Stat. 36, 355–368 (2008).MATH 
    Article 

    Google Scholar 
    96.Münkemüller, T. et al. How to measure and test phylogenetic signal. Meth. Ecol. Evol. 3, 743–756 (2012).Article 

    Google Scholar 
    97.Yu, Y., Harris, A. J., Blair, C. & He, X. J. RASP (Reconstruct Ancestral State in Phylogenies): a tool for historical biogeography. Mol. Phyl. Evol. 87, 46–49 (2015).Article 

    Google Scholar 
    98.Yu, Y., Blair, C. & He, X. J. RASP 4: ancestral state reconstruction tool for multiple genes and characters. Mol. Biol. Evol. 37, 604–606 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Jombart, T., Balloux, F. & Dray, S. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics 26, 1907–1909 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216–2218 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).Article 

    Google Scholar 
    103.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    104.Cobos, M. E., Peterson, A. T., Barve, N. & Osorio-Olvera, L. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7, e6281 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).106.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    107.Escobar, L. E., Lira-Noriega, A., Medina-Vogel, G. & Peterson, A. T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospat. Health 9, 221–229 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    108.Peterson, A. T., Papeş, M. & Soberón, J. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Model. 213, 63–72 (2008).Article 

    Google Scholar 
    109.Anderson, R. P., Lew, D. & Peterson, A. T. Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Model. 162, 211–232 (2003).Article 

    Google Scholar 
    110.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project (2020). More

  • in

    Metabolic capabilities mute positive response to direct and indirect impacts of warming throughout the soil profile

    1.Conant, R. T. et al. Temperature and soil organic matter decomposition rates—synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).ADS 
    Article 

    Google Scholar 
    2.Yost, J. L. & Hartemink, A. E. How deep is the soil studied—an analysis of four soil science journals. Plant Soil 452, 5–18 (2020).CAS 
    Article 

    Google Scholar 
    3.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).Article 

    Google Scholar 
    4.Dove, N. C. et al. Continental-scale patterns of extracellular enzyme activity in the subsoil: an overlooked reservoir of microbial activity. Environ. Res. Lett. 15, 1040a1 (2020).CAS 
    Article 

    Google Scholar 
    5.Hicks Pries, C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Brewer, T. E. et al. Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBio 10, e01318–e01319 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018).CAS 
    Article 

    Google Scholar 
    9.Romero-Olivares, A. L., Allison, S. D. & Treseder, K. K. Soil microbes and their response to experimental warming over time: a meta-analysis of field studies. Soil Biol. Biochem. 107, 32–40 (2017).CAS 
    Article 

    Google Scholar 
    10.Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Melillo, J. M. et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Feng, X., Simpson, A. J., Wilson, K. P., Dudley Williams, D. & Simpson, M. J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 1, 836–839 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Dove, N. C., Stark, J. M., Newman, G. S. & Hart, S. C. Carbon control on terrestrial ecosystem function across contrasting site productivities: the carbon connection revisited. Ecology 100, e02695 (2019).PubMed 
    Article 

    Google Scholar 
    15.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Change 3, nclimate1796 (2013).Article 
    CAS 

    Google Scholar 
    16.Olander, L. P. & Vitousek, P. M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49, 175–190 (2000).CAS 
    Article 

    Google Scholar 
    17.DeAngelis, K. M. et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 6, 104–115 (2015).18.Cheng, L. et al. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825–1835 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Billings, S. A. & Ballantyne, F. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).ADS 
    Article 

    Google Scholar 
    20.Rasmussen, C., Torn, M. S. & Southard, R. J. Mineral assemblage and aggregates control carbon dynamics in a California conifer forest. Soil Sci. Soc. Am. J. 69, 1711–1721 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Jones, D. L. et al. Microbial competition for nitrogen and carbon is as intense in the subsoil as in the topsoil. Soil Biol. Biochem. 117, 72–82 (2018).CAS 
    Article 

    Google Scholar 
    22.Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293–19 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Geyer, K. M., Dijkstra, P., Sinsabaugh, R. & Frey, S. D. Clarifying the interpretation of carbon use efficiency in soil through methods comparison. Soil Biol. Biochem. 128, 79–88 (2018).24.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    26.Sullivan, B. W. et al. Assessing nutrient limitation in complex forested ecosystems: alternatives to large‐scale fertilization experiments. Ecology 95, 668–681 (2014).PubMed 
    Article 

    Google Scholar 
    27.Hart, S. C., Firestone, M. K. & Paul, E. A. Decomposition and nutrient dynamics of ponderosa pine needles in a Mediterranean-type climate. Can. J. Forest Res. 22, 306–314 (1992).CAS 
    Article 

    Google Scholar 
    28.Dijkstra, P. et al. Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biol. Biochem. 43, 2023–2031 (2011).CAS 
    Article 

    Google Scholar 
    29.Don, A., Rödenbeck, C. & Gleixner, G. Unexpected control of soil carbon turnover by soil carbon concentration. Environ. Chem. Lett. 11, 407–413 (2013).CAS 
    Article 

    Google Scholar 
    30.Rodriguez-R, L. M. & Konstantinidis, K. T. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics 30, 629–635 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Rodriguez-R, L. M. & Konstantinidis, K. T. Estimating coverage in metagenomic data sets and why it matters. ISME J. 8, 2349–2351 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).CAS 
    Article 

    Google Scholar 
    33.Levasseur, A., Drula, E., Lombard, V., Coutinho, P. M. & Henrissat, B. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Benoit, I. et al. Degradation of different pectins by fungi: correlations and contrasts between the pectinolytic enzyme sets identified in genomes and the growth on pectins of different origin. BMC Genomics 13, 321 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Tveit, A. T., Urich, T. & Svenning, M. M. Metatranscriptomic analysis of arctic peat soil microbiota. Appl. Environ. Microbiol. 80, 5761–5772 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Huergo, L. F. & Dixon, R. The emergence of 2-Oxoglutarate as a master regulator metabolite. Microbiol. Mol. Biol. Rev. 79, 419–435 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Bai, X. et al. Expression of a β-mannosidase from Paenibacillus polymyxa A-8 in Escherichia coli and characterization of the recombinant enzyme. PLoS ONE 9, e111622 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Sorensen, J. W., Dunivin, T. K., Tobin, T. C. & Shade, A. Ecological selection for small microbial genomes along a temperate-to-thermal soil gradient. Nat. Microbiol. 4, 55–61 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Pold, G., Grandy, A. S., Melillo, J. M. & DeAngelis, K. M. Changes in substrate availability drive carbon cycle response to chronic warming. Soil Biol. Biochem. 110, 68–78 (2017).CAS 
    Article 

    Google Scholar 
    40.Yue, H. et al. The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands. ISME J. 9, 2012–2020 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Xue, K. et al. Warming alters expressions of microbial functional genes important to ecosystem functioning. Front. Microbiol. 7, 668–681 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    42.Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Johnston, E. R. et al. Responses of tundra soil microbial communities to half a decade of experimental warming at two critical depths. Proc. Natl Acad. Sci. USA 116, 15096–15105 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Soong, J. L. et al. Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling. Glob. Change Biol. 26, 1953–1961 (2020).ADS 
    Article 

    Google Scholar 
    45.Chapin, F. S., Matson, P. A. & Vitousek, P. Principles of Terrestrial Ecosystem Ecology (Springer Science & Business Media, 2011).46.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Oliverio, A. M., Bradford, M. A. & Fierer, N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob. Change Biol. 23, 2117–2129 (2017).ADS 
    Article 

    Google Scholar 
    48.Pold, G. et al. Long-term warming alters carbohydrate degradation potential in temperate forest soils. Appl. Environ. Microbiol. 82, 6518–6530 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Morrison, E. W. et al. Warming alters fungal communities and litter chemistry with implications for soil carbon stocks. Soil Biol. Biochem. 132, 120–130 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Bai, W., Wang, G., Xi, J., Liu, Y. & Yin, P. Short-term responses of ecosystem respiration to warming and nitrogen addition in an alpine swamp meadow. Eur. J. Soil Biol. 92, 16–23 (2019).CAS 
    Article 

    Google Scholar 
    51.Tilman, D. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc. Natl Acad. Sci. USA 101, 10854–10861 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11, e00416–e00420 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Qi, J. et al. Drying-wetting cycles: effect on deep soil carbon. Soil Syst. 2, 3 (2018).CAS 
    Article 

    Google Scholar 
    54.Butcher, K. R., Nasto, M. K., Norton, J. M. & Stark, J. M. Physical mechanisms for soil moisture effects on microbial carbon-use efficiency in a sandy loam soil in the western United States. Soil Biol. Biochem. 150, 107969 (2020).CAS 
    Article 

    Google Scholar 
    55.Zhou, W. P., Shen, W. J., Li, Y. E. & Hui, D. F. Interactive effects of temperature and moisture on composition of the soil microbial community. Eur. J. Soil Biol. 68, 909–918 (2017).CAS 

    Google Scholar 
    56.Spohn, M., Klaus, K., Wanek, W. & Richter, A. Microbial carbon use efficiency and biomass turnover times depending on soil depth—Implications for carbon cycling. Soil Biol. Biochem. 96, 74–81 (2016).CAS 
    Article 

    Google Scholar 
    57.Saifuddin, M., Bhatnagar, J. M., Segrè, D. & Finzi, A. C. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat. Commun. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    58.Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).CAS 
    Article 

    Google Scholar 
    59.Dove, N. C., Safford, H. D., Bohlman, G. N., Estes, B. L. & Hart, S. C. High-severity wildfire leads to multi-decadal impacts on soil biogeochemistry in mixed-conifer forests. Ecol. Appl. 30, e02072 (2020).PubMed 
    Article 

    Google Scholar 
    60.Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).PubMed 
    Article 

    Google Scholar 
    61.Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1, e00009–e00015 (2016).PubMed 
    Article 

    Google Scholar 
    62.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7, 203–214 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    67.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Li, D. et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. No. LBNL-7065E (Ernest Orlando Lawrence Berkeley National Laboratory, 2014).74.Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Xue, Y., Jonassen, I., Øvreås, L. & Taş, N. Metagenome-assembled genome distribution and key functionality highlight importance of aerobic metabolism in Svalbard permafrost. FEMS Microbiol Ecol. 96, fiaa057 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    78.Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).
    Google Scholar 
    83.Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9, 1–15 (2008).Article 
    CAS 

    Google Scholar 
    84.Arkin, A. P. et al. KBase: The United States Department of Energy Systems Biology Knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Zhou, Z., Tran, P., Liu, Y., Kieft, K. & Anantharaman, K. METABOLIC: a scalable high-throughput metabolic and biogeochemical functional trait profiler based on microbial genomes. bioRxiv https://doi.org/10.1101/761643 (2019).86.Emiola, A. & Oh, J. High throughput in situ metagenomic measurement of bacterial replication at ultra-low sequencing coverage. Nat. Commun. 9, 1–8 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    87.Binkley, D. & Hart, S. C. in Advances in Soil Science (ed. Stewart, B. A.) 57–112 (Springer New York, 1989).88.Fox, J. & Weisberg, S. An R companion to applied regression Ch.4. (Sage, 2019).89.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    90.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Oksanen, J. et al. vegan: Community Ecology Package. https://cran.r-project.org/web/packages/vegan/index.html (2013).93.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Bruns, T. D., White, T. J. & Taylor, J. W. Fungal molecular systematics. Annu. Rev. Ecol. Evol. Syst. 22, 525–564 (1991).Article 

    Google Scholar  More

  • in

    Modeling biomass allocation strategy of young planted Zelkova serrata trees in Taiwan with component ratio method and seemingly unrelated regressions

    1.UNFCCC. Adoption of the Paris Agreement. 32 (2015).2.Fuss, S. et al. Negative emissions—Part 2: Costs, potentials and side effects. Environ. Res. Lett. 13, 063002. https://doi.org/10.1088/1748-9326/aabf9f (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    3.Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734. https://doi.org/10.1038/s41467-018-05938-3 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Matovic, D. Biochar as a viable carbon sequestration option: Global and Canadian perspective. Energy 36, 2011–2016. https://doi.org/10.1016/j.energy.2010.09.031 (2011).CAS 
    Article 

    Google Scholar 
    5.Osman, A. I., Hefny, M., Abdel Maksoud, M. I. A., Elgarahy, A. M. & Rooney, D. W. Recent advances in carbon capture storage and utilisation technologies: A review. Environ. Chem. Lett. https://doi.org/10.1007/s10311-020-01133-3 (2020).Article 

    Google Scholar 
    6.Clough, B. J. et al. Testing a new component ratio method for predicting total tree aboveground and component biomass for widespread pine and hardwood species of eastern US. Forestry 91, 575–588. https://doi.org/10.1093/forestry/cpy016 (2018).Article 

    Google Scholar 
    7.Lam, T. Y., Li, X., Kim, R. H., Lee, K. H. & Son, Y. M. Bayesian meta-analysis of regional biomass factors for Quercus mongolica forests in South Korea. J. For. Res. 26, 875–885. https://doi.org/10.1007/s11676-015-0089-x (2015).CAS 
    Article 

    Google Scholar 
    8.Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254. https://doi.org/10.1016/j.foreco.2014.06.026 (2014).Article 

    Google Scholar 
    9.Ver Planck, N. R. & MacFarlane, D. W. A vertically integrated whole-tree biomass model. Trees 29, 449–460, https://doi.org/10.1007/s00468-014-1123-x (2015).10.Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci. 49, 12–35. https://doi.org/10.1093/forestscience/49.1.12 (2003).Article 

    Google Scholar 
    11.Parresol, B. R. Additivity of nonlinear biomass equations. Can. J. For. Res. 31, 865–878. https://doi.org/10.1139/x00-202 (2001).Article 

    Google Scholar 
    12.Parresol, B. R. Assessing tree and stand biomass: A review with examples and critical comparisons. For. Sci. 45, 573–593, https://doi.org/10.1093/forestscience/45.4.573 (1999).13.Radtke, P. et al. Improved accuracy of aboveground biomass and carbon estimates for live trees in forests of the eastern United States. Forestry 90, 32–46. https://doi.org/10.1093/forestry/cpw047 (2017).Article 

    Google Scholar 
    14.Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. 30, https://doi.org/10.2737/NRS-GTR-88 (2011).15.Chiou, L.-W., Huang, C.-H., Wu, J.-C. & Hsieh, H.-R. Report of the 4th National Forest Resource Inventory in Taiwan. Taiwan For. J. 41, 3–13 (2015).
    Google Scholar 
    16.Yang, T.-R., Lam, T. Y. & Kershaw, J. A. Jr. Developing relative stand density index for structurally complex mixed species cypress and pine forests. For. Ecol. Manag. 409, 425–433. https://doi.org/10.1016/j.foreco.2017.11.043 (2018).Article 

    Google Scholar 
    17.Taiwan Forestry Bureau. The Fourth National Forest Resource Inventory. Vol. 78 (2017).18.Ko, S.-H. Study on the Biomass and Carbon Storage in the Zelkova serrata Plantation. MSc. Thesis, National Chung-Hsing University, https://doi.org/10.6845/NCHU.2006.00871 (2006).19.Lin, J.-C., Jeng, M.-R., Liu, S.-F. & Lee, K. J. Economic benefit evaluation of the potential CO2 sequestration by the National Reforestation Program. Taiwan J. For. Sci. 17, 311–321, https://doi.org/10.7075/TJFS.200209.0311 (2002).20.Lin, K.-C., Huang, C.-M. & Duh, C.-T. Study on estimate of carbon storages and sequestration of planted trees in Zelkova serrata plantations, Taiwan. J. Natl. Park 18, 45–58 (2008).CAS 

    Google Scholar 
    21.Liao, S.-H. & Wang, Y.-N. Study on carbon dioxide fixation efficiency of Cinnamomum camphora and Zelkova serrata in understory planting. Q. J. Chin. For. 35, 361–373 (2002).
    Google Scholar 
    22.Lambert, M. C., Ung, C. H. & Raulier, F. Canadian national tree aboveground biomass equations. Can. J. For. Res. 35, 1996–2018. https://doi.org/10.1139/x05-112 (2005).Article 

    Google Scholar 
    23.Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 57, 348–368. https://doi.org/10.2307/2281644 (1962).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    24.Henningsen, A. & Hamann, J. D. systemfit: A package for estimating systems of simultaneous equations in R. J. Stat. Softw. 23, 1–40, https://doi.org/10.18637/jss.v023.i04 (2007).25.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).26.Nelson, A. S., Weiskittel, A. R., Wagner, R. G. & Saunders, M. R. Development and evaluation of aboveground small tree biomass models for naturally regenerated and planted species in eastern Maine, U.S.A. Biomass Bioenergy 68, 215–227, https://doi.org/10.1016/j.biombioe.2014.06.015 (2014).27.Poudel, K. P., Temesgen, H., Radtke, P. J. & Gray, A. N. Estimating individual-tree aboveground biomass of tree species in the western U.S.A. Can. J. For. Res. 49, 701–714, https://doi.org/10.1139/cjfr-2018-0361 (2019).28.Carvalho, J. P. & Parresol, B. R. Additivity in tree biomass components of Pyrenean oak (Quercus pyrenaica Willd.). For. Ecol. Manag. 179, 269–276, https://doi.org/10.1016/S0378-1127(02)00549-2 (2003).29.He, H. et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE 13, e0186226. https://doi.org/10.1371/journal.pone.0186226 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Cheng, C.-H., Huang, Y.-H., Menyailo, O. V. & Chen, C.-T. Stand development and aboveground biomass carbon accumulation with cropland afforestation in Taiwan. Taiwan J. For. Sci. 31, 105–118 (2016).
    Google Scholar 
    31.Lee, J.-H., Ko, Y. & McPherson, E. G. The feasibility of remotely sensed data to estimate urban tree dimensions and biomass. Urban For. Urban Green. 16, 208–220. https://doi.org/10.1016/j.ufug.2016.02.010 (2016).Article 

    Google Scholar 
    32.Park, J. H., Baek, S. G., Kwon, M. Y., Je, S. M. & Woo, S. Y. Volumetric equation development and carbon storage estimation of urban forest in Daejeon, Korea. For. Sci. Technol. 14, 97–104. https://doi.org/10.1080/21580103.2018.1452799 (2018).Article 

    Google Scholar 
    33.Yoon, T. K. et al. Allometric equations for estimating the aboveground volume of five common urban street tree species in Daegu, Korea. Urban For. Urban Green. 12, 344–349. https://doi.org/10.1016/j.ufug.2013.03.006 (2013).Article 

    Google Scholar 
    34.Chiu, C. M., Lo-Cho, C.-N. & Suen, M.-Y. Pruning method and knot wound analysis of Taiwan zelkova (Zelkova serrata Hay.) plantations. Taiwan J. For. Sci. 17, 503–513, https://doi.org/10.7075/TJFS.200212.0503 (2002).35.Lo-Cho, C.-N., Chung, H.-H. & Chiu, C.-M. Effects of pruning on the growth and the branch occlusion tendency of Taiwan Zelkova (Zelkova serrata Hay.) young plantations. Bull. Taiwan For. Res. Inst. 10, 315–323, https://doi.org/10.7075/BTFRI.199509.0315 (1995).36.Shepherd, K. R. Plantation Silviculture (Springer, 1986).
    Google Scholar 
    37.Chiou, C.-R., Lin, J.-C. & Liu, W.-Y. The carbon benefit of thinned wood for bioenergy in Taiwan. Forests 10, 255. https://doi.org/10.3390/f10030255 (2019).Article 

    Google Scholar 
    38.Liu, W.-Y., Lin, C.-C. & Su, K.-H. Modelling the spatial forest-thinning planning problem considering carbon sequestration and emissions. For. Policy Econ. 78, 51–66. https://doi.org/10.1016/j.forpol.2017.01.002 (2017).Article 

    Google Scholar 
    39.Rais, A., Poschenrieder, W., van de Kuilen, J.-W.G. & Pretzsch, H. Impact of spacing and pruning on quantity, quality and economics of Douglas-fir sawn timber: Scenario and sensitivity analysis. Eur. J. For. Res. 139, 747–758. https://doi.org/10.1007/s10342-020-01282-8 (2020).Article 

    Google Scholar 
    40.Kershaw, J. A., Ducey, M. J., Beers, T. W. & Husch, B. Forest Mensuration. (John Wiley & Sons Ltd, 2016). More

  • in

    Testing average wind speed using sampling plan for Weibull distribution under indeterminacy

    1.Ajayi, O. O., Fagbenle, R. O., Katende, J., Aasa, S. A. & Okeniyi, J. O. Wind profile characteristics and turbine performance analysis in Kano, north-western Nigeria. Int. J. Energy Environ. Eng. 4, 1–15 (2013).Article 

    Google Scholar 
    2.Yan, A., Liu, S. & Dong, X. Variables two stage sampling plans based on the coefficient of variation. J. Adv. Mech. Des. Syst. Manuf. 10, JAMDSM0002 (2016).Article 

    Google Scholar 
    3.Yen, C.-H., Lee, C.-C., Lo, K.-H., Shiue, Y.-R. & Li, S.-H. A rectifying acceptance sampling plan based on the process capability index. Mathematics 8, 141 (2020).Article 

    Google Scholar 
    4.Akpinar, E. K. & Akpinar, S. A statistical analysis of wind speed data used in installation of wind energy conversion systems. Energy Convers. Manag. 46, 515–532 (2005).Article 

    Google Scholar 
    5.Yilmaz, V. & Çelik, H. E. A statistical approach to estimate the wind speed distribution: the case of Gelibolu region. Doğuş Üniversitesi Dergisi 9, 122–132 (2011).
    Google Scholar 
    6.Ali, S., Lee, S.-M. & Jang, C.-M. Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island-Incheon, South Korea. Renew. Energy 123, 652–663 (2018).Article 

    Google Scholar 
    7.Arias-Rosales, A. & Osorio-Gómez, G. Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy. Appl. Energy 228, 980–998 (2018).Article 

    Google Scholar 
    8.Akgül, F. G. & Şenoğlu, B. Comparison of wind speed distributions: a case study for Aegean coast of Turkey. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–18 (2019).9.Ozay, C. & Celiktas, M. S. Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers. Manag. 121, 49–54 (2016).Article 

    Google Scholar 
    10.Qing, X. Statistical analysis of wind energy characteristics in Santiago island, Cape Verde. Renew. Energy 115, 448–461 (2018).Article 

    Google Scholar 
    11.Mahmood, F. H., Resen, A. K. & Khamees, A. B. Wind Characteristic Analysis Based on Weibull Distribution of Al-Salman site (Iraq, 2019).
    Google Scholar 
    12.Campisi-Pinto, S., Gianchandani, K. & Ashkenazy, Y. Statistical tests for the distribution of surface wind and current speeds across the globe. Renew. Energy 149, 861–876 (2020).Article 

    Google Scholar 
    13.ul Haq, M. A., Rao, G. S., Albassam, M. & Aslam, M. Marshall-Olkin Power Lomax distribution for modeling of wind speed data. Energy Rep. 6, 1118–1123 (2020).Article 

    Google Scholar 
    14.Bludszuweit, H., Domínguez-Navarro, J. A. & Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 23, 983–991 (2008).ADS 
    Article 

    Google Scholar 
    15.Brano, V. L., Orioli, A., Ciulla, G. & Culotta, S. Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew. Energy 36, 1026–1039 (2011).Article 

    Google Scholar 
    16.Katinas, V., Gecevicius, G. & Marciukaitis, M. An investigation of wind power density distribution at location with low and high wind speeds using statistical model. Appl. Energy 218, 442–451 (2018).Article 

    Google Scholar 
    17.Zaman, B., Lee, M. H. & Riaz, M. An improved process monitoring by mixed multivariate memory control charts: an application in wind turbine field. Comput. Ind. Eng. 142, 106343 (2020).Article 

    Google Scholar 
    18.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Important criteria of rectifying inspection for single sampling plan with fuzzy parameter. Int. J. Contemp. Math. Sci. 4, 1791–1801 (2009).MATH 

    Google Scholar 
    19.Jamkhaneh, E. B., Sadeghpour-Gildeh, B. & Yari, G. Inspection error and its effects on single sampling plans with fuzzy parameters. Struct. Multidiscip. Optim. 43, 555–560 (2011).MATH 
    Article 

    Google Scholar 
    20.Sadeghpour Gildeh, B., Baloui Jamkhaneh, E. & Yari, G. Acceptance single sampling plan with fuzzy parameter. Iran. J. Fuzzy Syst. 8, 47–55 (2011).MathSciNet 
    MATH 

    Google Scholar 
    21.Afshari, R. & Sadeghpour Gildeh, B. Designing a multiple deferred state attribute sampling plan in a fuzzy environment. Am. J. Math. Manag. Sci. 36, 328–345 (2017).MATH 

    Google Scholar 
    22.Tong, X. & Wang, Z. Fuzzy acceptance sampling plans for inspection of geospatial data with ambiguity in quality characteristics. Comput. Geosci. 48, 256–266 (2012).ADS 
    Article 

    Google Scholar 
    23.Uma, G. & Ramya, K. Impact of fuzzy logic on acceptance sampling plans–a review. Autom. Auton. Syst. 7, 181–185 (2015).
    Google Scholar 
    24.Smarandache, F. Neutrosophy. Neutrosophic probability, set, and logic, proquest information & learning. Ann Arbor, Michigan, USA 105, 118–123 (1998).25.Smarandache, F. & Khalid, H. E. Neutrosophic Precalculus and Neutrosophic Calculus. (Infinite Study, 2015).26.Peng, X. & Dai, J. Approaches to single-valued neutrosophic MADM based on MABAC, TOPSIS and new similarity measure with score function. Neural Comput. Appl. 29, 939–954 (2018).Article 

    Google Scholar 
    27.Abdel-Basset, M., Mohamed, M., Elhoseny, M., Chiclana, F. & Zaied, A.E.-N.H. Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases. Artif. Intell. Med. 101, 101735 (2019).PubMed 
    Article 

    Google Scholar 
    28.Nabeeh, N. A., Smarandache, F., Abdel-Basset, M., El-Ghareeb, H. A. & Aboelfetouh, A. An integrated neutrosophic-topsis approach and its application to personnel selection: a new trend in brain processing and analysis. IEEE Access 7, 29734–29744 (2019).Article 

    Google Scholar 
    29.Pratihar, J., Kumar, R., Dey, A. & Broumi, S. In Neutrosophic Graph Theory and Algorithms 180–212 (IGI Global, 2020).30.Pratihar, J., Kumar, R., Edalatpanah, S. & Dey, A. Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 7, 1–12 (2020).
    Google Scholar 
    31.Smarandache, F. Introduction to neutrosophic statistics. (Infinite Study, 2014).32.Chen, J., Ye, J. & Du, S. Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics. Symmetry 9, 208 (2017).Article 

    Google Scholar 
    33.Chen, J., Ye, J., Du, S. & Yong, R. Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers. Symmetry 9, 123 (2017).Article 

    Google Scholar 
    34.Aslam, M. Introducing Kolmogorov–Smirnov tests under uncertainty: an application to radioactive data. ACS Omega 5, 9914–9917 (2019).
    Google Scholar 
    35.Aslam, M. A new sampling plan using neutrosophic process loss consideration. Symmetry 10, 132 (2018).Article 

    Google Scholar 
    36.Aslam, M. Design of sampling plan for exponential distribution under neutrosophic statistical interval method. IEEE Access 6, 64153–64158 (2018).Article 

    Google Scholar 
    37.Aslam, M. A new attribute sampling plan using neutrosophic statistical interval method. Complex Intell. Syst. 11, 1–6 (2019).
    Google Scholar 
    38.Aslam, M., Jeyadurga, P., Balamurali, S. & Marshadi, A. H. Time-Truncated Group Plan under a Weibull Distribution based on Neutrosophic Statistics. Mathematics 7, 905 (2019).Article 

    Google Scholar 
    39.Alhasan, K. F. H. & Smarandache, F. Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution. (Infinite Study, 2019).40.Cheema, A. N., Aslam, M., Almanjahie, I. M. & Ahmad, I. Mixture modeling of exponentiated pareto distribution in bayesian framework with applications of wind-speed and tensile strength of carbon fiber. IEEE Access 8, 178514–178525 (2020).Article 

    Google Scholar 
    41.Deep, S., Sarkar, A., Ghawat, M. & Rajak, M. K. Estimation of the wind energy potential for coastal locations in India using the Weibull model. Renew. Energy 161, 319–339 (2020).Article 

    Google Scholar 
    42.Gugliani, G., Sarkar, A., Ley, C. & Mandal, S. New methods to assess wind resources in terms of wind speed, load, power and direction. Renew. Energy 129, 168–182 (2018).Article 

    Google Scholar  More

  • in

    Six caveats to valuing ecosystem services

    We agree that economic valuations of the ecosystem services provided by natural environments can be a powerful tool to aid conservation (see Nature 591, 178; 2021), but we suggest that they are subject to six caveats.First, they are automatically weighted towards countries with strong currencies and high gross domestic products, undervaluing ecosystems and people in low-income nations. Second, current protocols (see P. Dasgupta The Economics of Biodiversity: the Dasgupta Review; HM Treasury, 2021) are incomplete and should take into account mental health, which has cash consequences for employers, insurers, governments and societies (R. Buckley et al. Nature Commun. 10, 5005; 2019). Third, they apply at different scales, physically and politically: global or cross-border for some, but local for most. Fourth, they are most powerful for ecosystem services that are scarce, in demand, rival (one user prevents others from using it) and excludable (it is possible to stop someone from using it). Fifth, their political power depends on the focus and distribution of costs and benefits: health outweighs conservation, for instance. Finally, they depend on human institutions, such as carbon prices.Protocols to account for ecosystem services should therefore be scalable, to match political decisions, and modular, allowing for future adjustments. It would be premature to solidify standards now. More