More stories

  • in

    Six caveats to valuing ecosystem services

    We agree that economic valuations of the ecosystem services provided by natural environments can be a powerful tool to aid conservation (see Nature 591, 178; 2021), but we suggest that they are subject to six caveats.First, they are automatically weighted towards countries with strong currencies and high gross domestic products, undervaluing ecosystems and people in low-income nations. Second, current protocols (see P. Dasgupta The Economics of Biodiversity: the Dasgupta Review; HM Treasury, 2021) are incomplete and should take into account mental health, which has cash consequences for employers, insurers, governments and societies (R. Buckley et al. Nature Commun. 10, 5005; 2019). Third, they apply at different scales, physically and politically: global or cross-border for some, but local for most. Fourth, they are most powerful for ecosystem services that are scarce, in demand, rival (one user prevents others from using it) and excludable (it is possible to stop someone from using it). Fifth, their political power depends on the focus and distribution of costs and benefits: health outweighs conservation, for instance. Finally, they depend on human institutions, such as carbon prices.Protocols to account for ecosystem services should therefore be scalable, to match political decisions, and modular, allowing for future adjustments. It would be premature to solidify standards now. More

  • in

    Lightning threatens permafrost

    1.Veraverbeke, S. et al. Nat. Clim. Change 7, 529–534 (2017).Article 

    Google Scholar 
    2.Murray, L. T. Nat. Clim. Change 8, 191–192 (2018).Article 

    Google Scholar 
    3.Chen, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01011-y (2021).Article 

    Google Scholar 
    4.Witze, A. Nature 585, 336–337 (2020).CAS 
    Article 

    Google Scholar 
    5.Holzworth, R. H. et al. Geophys. Res. Lett. (in the press).6.Finney, D. L. et al. Geophys. Res. Lett. 47, e2020GL088163 (2020).Article 

    Google Scholar 
    7.Thornhill, G. et al. Atmos. Chem. Phys. 21, 1105–1126 (2021).CAS 
    Article 

    Google Scholar 
    8.Bonan, G. B. & Doney, S. C. Science 359, eaam8328 (2018).Article 

    Google Scholar  More

  • in

    Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts

    S. LaDeau, S. Earl, S. Barrott, E. Borer and S. Pennings aided in identifying errors in Crossley et al.’s online data. K. Roeder provided comments on an early draft of this manuscript. J. Taylor aided in identifying changes in Konza watershed names. We thank all LTER information managers and principal investigators who help keep online metadata updated. We thank P. Montz, J. Haarstad, A. Kuhl, M. Ayres, R. Holmes and the numerous others who did the hard work to generate these long-term datasets. NSF DEB-1556280 to M.K. and Konza Prairie LTER NSF DEB-1440484 supported this work. More

  • in

    Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends

    1.Li, X. et al. Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nat. Ecol. Evol. 4, 1075–1083 (2020).Article 

    Google Scholar 
    2.Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).CAS 
    Article 

    Google Scholar 
    3.Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’? Trends Ecol. Evol. 30, 503–506 (2015).Article 

    Google Scholar 
    4.Lloret, F., Keeling, E. G. & Sala, A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120, 1909–1920 (2011).Article 

    Google Scholar 
    5.Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).Article 

    Google Scholar 
    6.Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    Article 

    Google Scholar 
    7.Ingrisch, J. & Bahn, M. Towards a comparable quantification of resilience. Trends Ecol. Evol. 33, 251–259 (2018).Article 

    Google Scholar 
    8.Van der Maaten-Theunissen, M., van der Maaten, E. & Bouriaud, O. pointRes: an R package to analyze pointer years and components of resilience. Dendrochronologia 35, 34–38 (2015).Article 

    Google Scholar 
    9.Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).Article 

    Google Scholar 
    10.Serra-Maluquer, X., Mencuccini, M. & Martínez-Vilalta, J. Changes in tree resistance, recovery and resilience across three successive extreme droughts in the northeast Iberian Peninsula. Oecologia 187, 343–354 (2018).CAS 
    Article 

    Google Scholar 
    11.DeSoto, L. et al. Low growth resilience to drought is related to future mortality risk in trees. Nat. Commun. 11, 545 (2020).CAS 
    Article 

    Google Scholar 
    12.Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought‐induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Change Biol. 25, 3793–3802 (2019).Article 

    Google Scholar 
    13.Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl Acad. Sci. USA 116, 25734–25744 (2019).CAS 
    Article 

    Google Scholar 
    14.Peterson, R. A. & Cavanaugh, J. E. Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. J. Appl. Stat. 47, 2312–2327 (2020).Article 

    Google Scholar  More

  • in

    M. S. Crossley et al. reply

    Peer review information Nature Ecology & Evolution thanks Nick Isaac, Manu Saunders and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. More

  • in

    Future increases in Arctic lightning and fire risk for permafrost carbon

    1.Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).Article 

    Google Scholar 
    2.Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035020 (2013).3.Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).CAS 
    Article 

    Google Scholar 
    4.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    Article 

    Google Scholar 
    5.Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).Article 

    Google Scholar 
    6.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS 
    Article 

    Google Scholar 
    7.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
    Article 

    Google Scholar 
    8.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).Article 

    Google Scholar 
    9.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).CAS 
    Article 

    Google Scholar 
    10.Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).CAS 
    Article 

    Google Scholar 
    11.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).Article 
    CAS 

    Google Scholar 
    12.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).Article 
    CAS 

    Google Scholar 
    13.Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabf28 (2018).14.Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).Article 
    CAS 

    Google Scholar 
    15.Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).CAS 
    Article 

    Google Scholar 
    16.Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).CAS 
    Article 

    Google Scholar 
    17.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).Article 

    Google Scholar 
    18.Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab6d3a (2020).19.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).CAS 
    Article 

    Google Scholar 
    20.Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).CAS 
    Article 

    Google Scholar 
    21.Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).Article 

    Google Scholar 
    22.Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).Article 

    Google Scholar 
    23.Chambers, S. D., Beringer, J., Randerson, J. T. & Chapin, F. S. III Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005299 (2005).24.Genet, H. et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 8, 045016 (2013).Article 
    CAS 

    Google Scholar 
    25.Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).Article 

    Google Scholar 
    26.Johnstone, J. F., Hollingworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).Article 

    Google Scholar 
    27.Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002347 (2003).28.Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135, 404–414 (2014).Article 

    Google Scholar 
    29.Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).Article 

    Google Scholar 
    30.Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).Article 

    Google Scholar 
    31.Price, C. Lightning applications in weather and climate research. Surv. Geophys. 34, 755–767 (2013).Article 

    Google Scholar 
    32.Williams, E. R. Lightning and climate: a review. Atmos. Res. 76, 272–287 (2005).Article 

    Google Scholar 
    33.Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. & Christian, H. J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 97, 2051–2068 (2016).Article 

    Google Scholar 
    34.Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. Atmos. 99, 10823–10831 (1994).Article 

    Google Scholar 
    35.Jayaratne, E. R. & Kuleshov, Y. The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteorol. Atmos. Phys. 91, 17–24 (2006).Article 

    Google Scholar 
    36.Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).CAS 
    Article 

    Google Scholar 
    37.Romps, D. M. Evaluating the future of lightning in cloud-resolving models. Geophys. Res. Lett. 46, 14863–14871 (2019).Article 

    Google Scholar 
    38.Finney, D. L. et al. A projected decrease in lightning under climate change. Nat. Clim. Change 8, 210–213 (2018).Article 

    Google Scholar 
    39.Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).Article 

    Google Scholar 
    40.Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992).Article 

    Google Scholar 
    41.Reeve, N. & Toumi, R. Lightning activity as an indicator of climate change. Q. J. R. Meteorol. Soc. 125, 893–903 (1999).Article 

    Google Scholar 
    42.Petersen, W. A. & Rutledge, S. A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 103, 14025–14040 (1998).Article 

    Google Scholar 
    43.Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, ACH 15-1–ACH 15-21 (2002).Article 
    CAS 

    Google Scholar 
    44.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).45.Price, C. Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett. 20, 1363–1366 (1993).Article 

    Google Scholar 
    46.Michalon, N., Nassif, A., Saouri, T., Royer, J. F. & Pontikis, C. A. Contribution to the climatological study of lightning. Geophys. Res. Lett. 26, 3097–3100 (1999).Article 

    Google Scholar 
    47.Peterson, D., Wang, J., Ichoku, C. & Remer, L. A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos. Chem. Phys. 10, 6873–6888 (2010).CAS 
    Article 

    Google Scholar 
    48.Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).Article 

    Google Scholar 
    49.Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000484 (2002).50.Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).CAS 
    Article 

    Google Scholar 
    51.McGuire, A. D., Chapin, F. S., Walsh, J. E. & Wirth, C. Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31, 61–91 (2006).Article 

    Google Scholar 
    52.Euskirchen, E. S., McGuire, A. D., Chapin, F. S. III, Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).CAS 
    Article 

    Google Scholar 
    53.Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE 3, e0001744 (2008).Article 
    CAS 

    Google Scholar 
    54.Trugman, A. et al. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J. Adv. Model. Earth Syst. 8, 1180–1209 (2016).Article 

    Google Scholar 
    55.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0490 (2013).56.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).Article 

    Google Scholar 
    57.Dissing, D. & Verbyla, D. L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33, 770–782 (2003).Article 

    Google Scholar 
    58.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).Article 

    Google Scholar 
    59.Yi, S. H., Woo, M. K. & Arain, M. A. Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys. Res. Lett. 34, L16504 (2007).Article 

    Google Scholar 
    60.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. https://doi.org/10.1038/srep15865 (2015).61.Brown, D. R. N. et al. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sens. https://doi.org/10.3390/rs8080654 (2016).62.Walker, G. A world melting from the top down. Nature 446, 718–721 (2007).CAS 
    Article 

    Google Scholar 
    63.Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015503 (2012).64.McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).CAS 
    Article 

    Google Scholar 
    65.Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).CAS 
    Article 

    Google Scholar 
    66.Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).CAS 
    Article 

    Google Scholar 
    67.Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science https://doi.org/10.1126/science.aam8328 (2018).68.Magi, B. I. Global lightning parameterization from CMIP5 climate model output. J. Atmos. Ocean. Technol. 32, 434–452 (2015).Article 

    Google Scholar 
    69.Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).Article 

    Google Scholar 
    70.Orville, R. E., Huffines, G. R., Burrows, W. R. & Cummins, K. L. The North American Lightning Detection Network (NALDN)—analysis of flash data: 2001–09. Mon. Weather Rev. 139, 1305–1322 (2011).Article 

    Google Scholar 
    71.Virts, K. S., Wallace, J. M., Hutchins, M. L. & Holzworth, R. H. Highlights of a new ground-based, hourly global lightning climatology. Bull. Am. Meteorol. Soc. 94, 1381–1391 (2013).Article 

    Google Scholar 
    72.Pohjola, H. & Makela, A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res. 123, 117–128 (2013).Article 

    Google Scholar 
    73.Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).74.Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).CAS 
    Article 

    Google Scholar 
    75.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).CAS 
    Article 

    Google Scholar 
    76.Foley, J. A. Tipping points in the tundra. Science 310, 627–628 (2005).CAS 
    Article 

    Google Scholar 
    77.Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article 

    Google Scholar 
    78.Mach, D. M. et al. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 112, D09210 (2007).
    Google Scholar 
    79.Mackerras, D., Darveniza, M., Orville, R. E., Williams, E. R. & Goodman, S. J. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res. Atmos. 103, 19791–19809 (1998).Article 

    Google Scholar 
    80.Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).Article 

    Google Scholar 
    81.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    82.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article 

    Google Scholar 
    83.Seeley, J. T. & Romps, D. M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 28, 2443–2458 (2015).Article 

    Google Scholar 
    84.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article 

    Google Scholar 
    85.Chronis, T. G. et al. Global lightning activity from the ENSO perspective. Geophys. Res. Lett. 35, L19804 (2008).Article 

    Google Scholar 
    86.Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).Article 

    Google Scholar 
    87.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).Article 
    CAS 

    Google Scholar 
    88.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article 

    Google Scholar 
    89.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar  More

  • in

    Adequate statistical modelling and data selection are essential when analysing abundance and diversity trends

    1.Crossley, M. S. et al. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat. Ecol. Evol. 4, 1368–1376 (2020).Article 

    Google Scholar 
    2.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108426 (2020).3.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).Article 

    Google Scholar 
    4.Desquilbet, M. et al. Comment on “Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances”. Science 370, eabd8947 (2020).CAS 
    Article 

    Google Scholar 
    5.Jähnig, S. C. et al. Revisiting global trends in freshwater insect biodiversity. WIREs Water https://doi.org/10.1002/wat2.1506 (2020).6.O’Hara, R. B. & Kotze, D. J. Do not log-transform count data. Methods Ecol. Evol. 1, 118–122 (2010).Article 

    Google Scholar 
    7.St-Pierre, A. P., Shikon, V. & Schneider, D. C. Count data in biology-data transformation or model reformation? Ecol. Evol. 8, 3077–3085 (2018).Article 

    Google Scholar 
    8.Lambert, D. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34, 1–14 (1992).Article 

    Google Scholar 
    9.Crossley, M. et al. Data from: No net insect abundance and diversity declines across US Long Term Ecological Research sites. Dryad Digital Repository https://doi.org/10.5061/dryad.cc2fqz645 (2020).10.Royle, J. A., Nichols, J. D. & Kéry, M. Modelling occurrence and abundance of species when detection is imperfect. Oikos 110, 353–359 (2005).Article 

    Google Scholar 
    11.Lagos-Kutz, D. & Voegtlin, D. Midwest Suction Trap Network Iowa State Research Farm Progress Report No. 2203 (Iowa State Univ., 2015); http://lib.dr.iastate.edu/farms_reports/220312.Simon, J. C. & Peccoud, J. Rapid evolution of aphid pests in agricultural environments. Curr. Opin. Insect Sci. 26, 17–24 (2018).Article 

    Google Scholar 
    13.Zhao, Z. H., Hui, C., He, D. H. & Li, B. L. Effects of agricultural intensification on ability of natural enemies to control aphids. Sci. Rep. 5, 8024 (2015).CAS 
    Article 

    Google Scholar 
    14.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).CAS 
    Article 

    Google Scholar 
    15.Welti, E. A. R. et al. Studies of insect temporal trends must account for the complex sampling histories inherent to many long-term monitoring efforts. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01424-0 (2021). More