1.Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).Article
Google Scholar
2.Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035020 (2013).3.Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage. 5, 81–91 (2014).CAS
Article
Google Scholar
4.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS
Article
Google Scholar
5.Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013).Article
Google Scholar
6.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).CAS
Article
Google Scholar
7.Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS
Article
Google Scholar
8.McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).Article
Google Scholar
9.Strauss, J. et al. Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).CAS
Article
Google Scholar
10.Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).CAS
Article
Google Scholar
11.Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).Article
CAS
Google Scholar
12.McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).Article
CAS
Google Scholar
13.Mekonnen, Z. A., Riley, W. J. & Grant, R. F. 21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/aabf28 (2018).14.Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).Article
CAS
Google Scholar
15.Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31 (2011).CAS
Article
Google Scholar
16.Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601 (2015).CAS
Article
Google Scholar
17.Hu, F. S. et al. Arctic tundra fires: natural variability and responses to climate change. Front. Ecol. Environ. 13, 369–377 (2015).Article
Google Scholar
18.Rogers, B. M., Balch, J. K., Goetz, S. J., Lehmann, C. E. R. & Turetsky, M. Focus on changing fire regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab6d3a (2020).19.Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).CAS
Article
Google Scholar
20.Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, 489–492 (2011).CAS
Article
Google Scholar
21.Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).Article
Google Scholar
22.Rocha, A. V. et al. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environ. Res. Lett. 7, 044039 (2012).Article
Google Scholar
23.Chambers, S. D., Beringer, J., Randerson, J. T. & Chapin, F. S. III Fire effects on net radiation and energy partitioning: contrasting responses of tundra and boreal forest ecosystems. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004jd005299 (2005).24.Genet, H. et al. Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska. Environ. Res. Lett. 8, 045016 (2013).Article
CAS
Google Scholar
25.Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F. & Rogers, B. M. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants 5, 952–958 (2019).Article
Google Scholar
26.Johnstone, J. F., Hollingworth, T. N., Chapin, F. S. III & Mack, M. C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 1281–1295 (2010).Article
Google Scholar
27.Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res. Atmos. https://doi.org/10.1029/2002jd002347 (2003).28.Cecil, D. J., Buechler, D. E. & Blakeslee, R. J. Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos. Res. 135, 404–414 (2014).Article
Google Scholar
29.Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).Article
Google Scholar
30.Krause, A., Kloster, S., Wilkenskjeld, S. & Paeth, H. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. J. Geophys. Res. Biogeosci. 119, 312–322 (2014).Article
Google Scholar
31.Price, C. Lightning applications in weather and climate research. Surv. Geophys. 34, 755–767 (2013).Article
Google Scholar
32.Williams, E. R. Lightning and climate: a review. Atmos. Res. 76, 272–287 (2005).Article
Google Scholar
33.Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J. & Christian, H. J. Where are the lightning hotspots on Earth? Bull. Am. Meteorol. Soc. 97, 2051–2068 (2016).Article
Google Scholar
34.Price, C. & Rind, D. Possible implications of global climate change on global lightning distributions and frequencies. J. Geophys. Res. Atmos. 99, 10823–10831 (1994).Article
Google Scholar
35.Jayaratne, E. R. & Kuleshov, Y. The relationship between lightning activity and surface wet bulb temperature and its variation with latitude in Australia. Meteorol. Atmos. Phys. 91, 17–24 (2006).Article
Google Scholar
36.Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).CAS
Article
Google Scholar
37.Romps, D. M. Evaluating the future of lightning in cloud-resolving models. Geophys. Res. Lett. 46, 14863–14871 (2019).Article
Google Scholar
38.Finney, D. L. et al. A projected decrease in lightning under climate change. Nat. Clim. Change 8, 210–213 (2018).Article
Google Scholar
39.Bieniek, P. A. et al. Lightning variability in dynamically downscaled simulations of Alaska’s present and future summer climate. J. Appl. Meteorol. Climatol. 59, 1139–1152 (2020).Article
Google Scholar
40.Price, C. & Rind, D. A simple lightning parameterization for calculating global lightning distributions. J. Geophys. Res. Atmos. 97, 9919–9933 (1992).Article
Google Scholar
41.Reeve, N. & Toumi, R. Lightning activity as an indicator of climate change. Q. J. R. Meteorol. Soc. 125, 893–903 (1999).Article
Google Scholar
42.Petersen, W. A. & Rutledge, S. A. On the relationship between cloud-to-ground lightning and convective rainfall. J. Geophys. Res. Atmos. 103, 14025–14040 (1998).Article
Google Scholar
43.Allen, D. J. & Pickering, K. E. Evaluation of lightning flash rate parameterizations for use in a global chemical transport model. J. Geophys. Res. Atmos. 107, ACH 15-1–ACH 15-21 (2002).Article
CAS
Google Scholar
44.IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).45.Price, C. Global surface temperatures and the atmospheric electrical circuit. Geophys. Res. Lett. 20, 1363–1366 (1993).Article
Google Scholar
46.Michalon, N., Nassif, A., Saouri, T., Royer, J. F. & Pontikis, C. A. Contribution to the climatological study of lightning. Geophys. Res. Lett. 26, 3097–3100 (1999).Article
Google Scholar
47.Peterson, D., Wang, J., Ichoku, C. & Remer, L. A. Effects of lightning and other meteorological factors on fire activity in the North American boreal forest: implications for fire weather forecasting. Atmos. Chem. Phys. 10, 6873–6888 (2010).CAS
Article
Google Scholar
48.Kasischke, E. S., Williams, D. & Barry, D. Analysis of the patterns of large fires in the boreal forest region of Alaska. Int. J. Wildland Fire 11, 131–144 (2002).Article
Google Scholar
49.Stocks, B. J. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. https://doi.org/10.1029/2001jd000484 (2002).50.Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234 (2015).CAS
Article
Google Scholar
51.McGuire, A. D., Chapin, F. S., Walsh, J. E. & Wirth, C. Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu. Rev. Environ. Resour. 31, 61–91 (2006).Article
Google Scholar
52.Euskirchen, E. S., McGuire, A. D., Chapin, F. S. III, Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).CAS
Article
Google Scholar
53.Higuera, P. E. et al. Frequent fires in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS ONE 3, e0001744 (2008).Article
CAS
Google Scholar
54.Trugman, A. et al. Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone. J. Adv. Model. Earth Syst. 8, 1180–1209 (2016).Article
Google Scholar
55.Bret-Harte, M. S. et al. The response of Arctic vegetation and soils following an unusually severe tundra fire. Phil. Trans. R. Soc. B https://doi.org/10.1098/rstb.2012.0490 (2013).56.Turner, M. G. Disturbance and landscape dynamics in a changing world. Ecology 91, 2833–2849 (2010).Article
Google Scholar
57.Dissing, D. & Verbyla, D. L. Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation. Can. J. For. Res. 33, 770–782 (2003).Article
Google Scholar
58.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755 (2014).Article
Google Scholar
59.Yi, S. H., Woo, M. K. & Arain, M. A. Impacts of peat and vegetation on permafrost degradation under climate warming. Geophys. Res. Lett. 34, L16504 (2007).Article
Google Scholar
60.Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. https://doi.org/10.1038/srep15865 (2015).61.Brown, D. R. N. et al. Landscape effects of wildfire on permafrost distribution in interior Alaska derived from remote sensing. Remote Sens. https://doi.org/10.3390/rs8080654 (2016).62.Walker, G. A world melting from the top down. Nature 446, 718–721 (2007).CAS
Article
Google Scholar
63.Bonfils, C. J. W. et al. On the influence of shrub height and expansion on northern high latitude climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015503 (2012).64.McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).CAS
Article
Google Scholar
65.Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 1295–1300 (2010).CAS
Article
Google Scholar
66.Keuper, F. et al. Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming. Nat. Geosci. 13, 560–565 (2020).CAS
Article
Google Scholar
67.Bonan, G. B. & Doney, S. C. Climate, ecosystems, and planetary futures: the challenge to predict life in Earth system models. Science https://doi.org/10.1126/science.aam8328 (2018).68.Magi, B. I. Global lightning parameterization from CMIP5 climate model output. J. Atmos. Ocean. Technol. 32, 434–452 (2015).Article
Google Scholar
69.Kloster, S. & Lasslop, G. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models. Glob. Planet. Change 150, 58–69 (2017).Article
Google Scholar
70.Orville, R. E., Huffines, G. R., Burrows, W. R. & Cummins, K. L. The North American Lightning Detection Network (NALDN)—analysis of flash data: 2001–09. Mon. Weather Rev. 139, 1305–1322 (2011).Article
Google Scholar
71.Virts, K. S., Wallace, J. M., Hutchins, M. L. & Holzworth, R. H. Highlights of a new ground-based, hourly global lightning climatology. Bull. Am. Meteorol. Soc. 94, 1381–1391 (2013).Article
Google Scholar
72.Pohjola, H. & Makela, A. The comparison of GLD360 and EUCLID lightning location systems in Europe. Atmos. Res. 123, 117–128 (2013).Article
Google Scholar
73.Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (IPCC, Cambridge Univ. Press, 2013).74.Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).CAS
Article
Google Scholar
75.Chapin, F. S. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).CAS
Article
Google Scholar
76.Foley, J. A. Tipping points in the tundra. Science 310, 627–628 (2005).CAS
Article
Google Scholar
77.Friedl, M. A. et al. MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article
Google Scholar
78.Mach, D. M. et al. Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor. J. Geophys. Res. 112, D09210 (2007).
Google Scholar
79.Mackerras, D., Darveniza, M., Orville, R. E., Williams, E. R. & Goodman, S. J. Global lightning: total, cloud and ground flash estimates. J. Geophys. Res. Atmos. 103, 19791–19809 (1998).Article
Google Scholar
80.Farukh, M. A. & Hayasaka, H. Active forest fire occurrences in severe lightning years in Alaska. J. Nat. Disaster Sci. 33, 71–84 (2012).Article
Google Scholar
81.Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article
Google Scholar
82.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).Article
Google Scholar
83.Seeley, J. T. & Romps, D. M. The effect of global warming on severe thunderstorms in the United States. J. Clim. 28, 2443–2458 (2015).Article
Google Scholar
84.van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).Article
Google Scholar
85.Chronis, T. G. et al. Global lightning activity from the ENSO perspective. Geophys. Res. Lett. 35, L19804 (2008).Article
Google Scholar
86.Satori, G., Williams, E. & Lemperger, I. Variability of global lightning activity on the ENSO time scale. Atmos. Res. 91, 500–507 (2009).Article
Google Scholar
87.Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 117, G04012 (2012).Article
CAS
Google Scholar
88.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).Article
Google Scholar
89.Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article
Google Scholar More