More stories

  • in

    The first record of exceptionally-preserved spiral coprolites from the Tsagan-Tsab formation (lower cretaceous), Tatal, western Mongolia

    SizesAs from the measurements, all collected coprolites vary in sizes (Table 1). The smallest and complete specimen is IVPP V 27,545 (Fig. 2D–G), and while IVPP V 27,550 (2 V-Z) is multiple time larger. The maximum length for specimen IVPP V 27,544, IVPP V 27,546, IVPP V 27,547 and IVPP V 27,549 have not been determined due to their incompleteness.Table 1 Biometrical and morphological features of spiral coprolites from Tsagan-Tsab Formation (Lower Cretaceous), Tatal, western Mongolia. Paul Rummy, Kazim Halaclar & He Chen.Full size tableSurface adhesion and marksAll specimens contained some degree of bone fragments and rhomboidal-shaped ganoid scales adhered to the coprolite surfaces (Fig. 3). Additionally, all specimens have smooth surfaces with little abrasion. The inner coil lines of specimen IVPP V 27,549 adhered with a matrix of red clay with silt (Fig. 2S–U). Only specimen IVPP V 27,550 has been seen with concentric cracks (Fig. 2V–Z). Bite marks have also been found on specimen IVPP V 27,545, in which these traces were short, parallel, shallow and isolated. They have been formed from 3 furrows of roughly 3.8 mm long and 0.3 mm deep (Fig. 4).InclusionsThrough CT scans and surface observation, we noticed that all specimens contained bone fragments and scales of varying degrees (Fig. 5). We were unable to identify the bones in detail for specimen IVPP V 27,544, IVPP V 27,546, IVPP V 27,547, IVPP V 27,548, IVPP V 27,549 and IVPP V 27,550, as they were excessive in amount and extremely fragmentary. On the contrary, for specimen IVPP V 27,545, we noticed a rather complete bone structure, such as the ribs and a segment of an infraorbital (Fig. 5H–N). SEM photograph from one random point of specimen IVPP V 27,545 yielded results of the existents of pollen grain (Fig. 6C).BoringsSurface borings of invertebrate burrowing can be seen in 2 spiral coprolites, namely IVPP V 27,547 (Fig. 2D–G) and IVPP V 27,550 (Fig. 2V–Z). CT scans revealed that the borings of specimen IVPP V 27,550 did not intrude internally, and it was the same for some of IVPP V 27,547 as well (Fig. 7). Specimens IVPP V 27,546, IVPP V 27,547, IVPP V 27,548 and IVPP V 27,549 are shown to have traces of internal borings (Fig. 5C–F).EDS analysesIn this work, in regards to Tatal’s coprolites, the mineral elements were examined by using EDS and the photos were taken with SEM. Analyses was conducted on 2 specimens (IVPP V 27,546 and IVPP V 27,545) with two sample points for each. All 4 samples showed high peaks of calcium and phosphorus. EDS results of specimen IVPP V 27,546 (Fig. 6A–B) and specimen IVPP V 27,545 (Fig. 6C–D) gave similar atomic compositions. They were mainly composed of Ca, P and O and small peaks that belong to Nb, Si, C, K, Fe and Al. We have also described a potential pollen structure under SEM image (Fig. 6C). This possible pollen structure in specimen IVPP V 27,545 (Fig. 6C) showed different atomic elements from the other EDS results, where it contained high peaks of Na and Cl.Taphonomy inferencesNo signs of abrasion were found on all of the coprolites. Coloration of the coprolites varied, thus, indicating they were buried in different sedimentary conditions. Through the shape of the coprolites, we can deduce that they have indeed spent different amounts of time or phases in water bodies before burial (see above description/discussion). Meanwhile, specimen IVPP V 27,550 showed shallow coil deepness, therefore, this indicates that it was buried rapidly after excretion.Discussion and interpretationThere are several pivotal evidences that corroborate to fecal origins of the Tsagan-Tsab Formation material: (1) basic morphology; (2) general shape and size (3) inclusions of the fecal matter; (4) high calcium and phosphorus content; (5) bioerosional scars; (6) borings and cavities; (7) concentric cracks.The fundamental puzzle in the studies of coprolite is the difficulty in identifying the potential producer, which can be due to their nature and preservation. Also, that includes the methods used to deduce them with their producer, which were done by inferring with various forms of relationship based on stratigraphy and geographical relationships, as well as on neoichnology studies7,23,54,55. Such problems similarly arose in our context as well, and the materials were collected from a stratum that were interpreted as lake deposit margins, thus, suggesting an amphibious or aquatic producer. The paleoenvironment correlates with the findings of pterosaur fossils such as the Noripterus44 or argued as ‘Phobetor’56, and the diets of these pterosaurs were dependable on the lake environment57,58,59,60. Above all, and more importantly, that the shape of the coprolite has to be intact in order to represent the shape of the internal intestine of the producer, whereby, anatomically it can lead to a certain biological aspect and digestive system of the organism. Despite these, there are on-going controversies on the origin of the spiral shaped bromalites in regards to whether or not they signify fossilized feces, or they are the cololite that was formed within the colon6,21,23,61,62.Spiral coprolites are producer of an animal with spiral intestine valves to increase the surface area of absorption, to slow down food movement in the bowel to maximise nutrient absorption, which has a significant strategy in surviving uncertain and harsh environment conditions28,63,64. Referring to past literature, it is generally agreed upon that the spiral shape is the only distinctively coprolite morphology, whereby it has been regarded as a true coprolite and can be correctly associated to the source animal, such as a range of fishes in particular6,22,52. Many primitive bony fishes (except those of teleosts), fresh water sharks (elasmobranches), coelacanths, Saurichthys, sturgeons and lungfishes are known to have the spiral valve intestine51,64,65,66. Also, Price67 suggested that the amphipolar form could have been derived from palaeoniscoids. Additionally, Romer & Parsons68 noted that the spiral valves are secondarily lost in teleost and tetrapods, while Chin69 noted a few teleosteans still possessing them.The spiral coprolites collected for this study are mainly amphipolar in shape and one in scroll. As we know, generally heteropolar spiral coprolite are produced by sharks, which have complex spiral valves62. Therefore, we can exclude those in the family of elasmobranches as the potential producers and this can also be supported by the non-marine geological settings of Tsagan-Tsab Formation. But it is also noteworthy to mention that in previous studies, some workers have conducted observations on sharks that were kept in tanks, and were not been able to find any spiral fecal pellets. The reasons given were that the sharks’ eating habits could have changed due to the tank environment, which would have differed from the natural marine environment. Also, modern day sharks are totally unrelated to the ancient Permian pleuracanth sharks6. Despite these, evidence of spiral fecal pellet can still be observed in some of the present-day fishes, such as the African lungfish Protopterus annectans, the Australian lungfish Neoceratodus forsteri, the long-nosed gar Lepisosteus osseus and the spotted gar Lepisosteus oculatus6,70,71,72. As for scroll coprolites, it is generally known to be produced by animal with longitudinal valves (valvular voluta), whereby the valves naturally rolls in upon itself , in a way that it maximises nutrient absorption8,9,17,18. Gilmore17 in his work mentioned that this type of valve must be primitive than the transverse valve (valvular spiralis), which could be a modification of the previous ones. This form is especially known to sharks of carcharhiniforms73, and it is evident that it could have been associated with sarcopterygian53, as well as anaspid and thelodont agnathans17.In this study, we recognised four new ichnotaxa for all the seven coprolite specimens. Assigning four new ichnotaxa does not conclude that the coprofauna are of four different types of animals. Considering there are two distinct morphologies, which are the amphipolar spiral and scroll, we can deduce that at least two animals can produce these coprolites. But we have to carefully consider that diverse diets at different times for the same animal can often be variable, and soft fecal materials can range disparately after defecation, as well as taphonomy influence74,75. Specimen IVPP V 27,550 is remarkably huge and its producer should be a massive animal since large animals could produce small excrement, but small animals would not be able to produce big excrement52,54. Moreover, since there are no relevant fossils fauna found in the locality, we were unable to exactly identify the specific producer, rather, we deduced with relevant sources. However, we do know that both amphipolar spiral and scroll coprolites can be attributed to certain types of fishes. As of these, we can conclude that the coprolites were produced by fishes in different sizes. Specimen IVPP V 27,545 differs from the rest by its shape and size, which makes prediction even harder, because it could be produced by either large or smaller animals.CT scans revealed that bony inclusions are evident in all of the coprolites (Fig. 5). However, except in specimen IVPP V 27,545, the bones in the rest of the coprolites are fragmentary. Specifically, bones in specimen IVPP V 27,545 are rather unaffected by the acidity of the digestive enzyme and these were evident by the presence of clusters of entire bones in the coprolite (Fig. 3A–C), as contrast to the fragmentary bones in the rests of the coprolites. Furthermore, we identified an infraorbital bone of a fish. CT scans revealed that the infraorbital bone has a sensory canal where it branches off at both ends (Fig. 5M–N). With these, we can indicate that the producer of specimen IVPP V 27,545 poorly masticated the prey and also had a rather low gut digestion for food28,55,76,77,78. Through these results, we can infer the digestive strategies of the producers were in correlation with food intake and digestion process, as discussed in Barrios-de Pedro & Buscalioni77. Specimen IVPP V 27,545 might belong to the first type of digestive strategy, whereby the producer has limited food processing in the mouth and the food stays in the digestive system for a short period of time. This strategy is regarded to be efficient in conditions where food sources are abundant and the nourishment levels are sufficient79. The rest of the coprolites possibly belong to the second digestive strategy, as the bone content is fragmentary. This suggest the producer might have limited mastication with improved digestive assimilation and longer gut time to favour better absorptions of nutrients55,80,81,82,83. The third type of digestive strategy does not imply in our study. It is also noteworthy to mention that the quantity of the inclusions is not correlated to the size of the coprolite, rather, it is dependable on the above-mentioned biological variables28,84.Carnivorous coprolites are normally composed of calcium phosphate and other organic matter, but it is important to be aware that the initial compositions are usually altered during fossilization processes33. Meanwhile, the excretion of herbivores is generally lacking in phosphates and their fossilization are mostly dependable of the mineral enrichment85. Through the morphological shape, the density of bone and scale inclusions on the surface from the CT scans, we can directly assume that these coprolites are inevitably produced by carnivorous organisms. Despite that, we still conducted SEM–EDS tests on two specimens, IVPP V 27,546 and specimen IVPP V 27,545 (Fig. 6), in order to determine its mineral content, and to prove them as a valid coprolite material because we were not able to compare these materials to any attached locality matrix at the time the study. The reason for that was because the specimens were collected almost two decades ago and they were very well-kept in the archives throughout these years. As predicted, all 4 samples gave higher content of Ca and P, thus, there is no doubt that they are indeed fossilized fecal materials. Also, in regards to the SEM–EDS on specimen IVPP V 27,545 (Fig. 6C–D), when randomly pointed to a particular structure, it yielded unusual results from the rest, in which the EDS peaks are composed of Na and Cl. At the same time, the SEM image potentially showed a pollen grain like structure. Hollocher and Hollocher86 documented a pollen image by using SEM, which brings our potential pollen image (Fig. 6C) dimensionally compatible with their sample. Although specimen IVPP V 27,545 is produced by an unidentified carnivorous vertebrate, it is common for carnivore coprolites to have plant remains within them. Also, it is known that spores and pollens are exceptionally well preserved within the encasement of calcium phosphate, which inhibits sporopollenin degradation87. Various reasons can be inferred for the presence of the pollen in specimen IVPP V 27,545, to which it could either be by accident or by preying on an herbivorous animal. Furthermore, it could also be through the adhesion on the excrement when the fecal is still fresh88. Pollens are in fact valuable information provider for paleoenvironment reconstruction, as well as for understanding the vegetation state of a particular era87,89,90,91,92. Hence, further palynology analyses are needed for future work.EDS mineral composition and coprolite coloration can be correlated to a certain degree, in which it could also explain depositional origin27. Most of the Tatal’s coprolites are pink-whitish in color, which is highly associated with the presence of calcium through its carnivorous diets93,94,95,96. The dark colors can also be due to the presence of iron or it could also be due to complete phosphatisation23,27. However, a large part of the colorations was influenced by diagenesis27,28.Traces of burrows are evident on the surface of specimen IVPP V 27,547 and IVPP V 27,550, but CT scans revealed internal traces burrowing did occur in specimen IVPP V 27,546, IVPP V 27,547, IVPP V 27,548 and IVPP V 27,549 (Fig. 5). Since not all possible burrows were dug-in, we gave the term ‘pseudo-burrow’ on those burrows that were abandoned in the early stages. For example, on all of the burrow traces in specimen IVPP V 27,547, only one traces showed burrowing holes, while the rest did not form a hole. While those specimens with internals, but without any traces on the outer surface, this can be explained by taphonomy processes, whereby the outer surface is covered with sedimentary and non-differentiable. It was reported in Tapanila et al.97, that marine bivalves are potential makers of the burrows in coprolites by expanding the diameter of the hole as they dig in, although Milàn, Rasmussen & Bonde98, reported a contradictory example, where the holes were indeed constant in diameter. In our study, we couldn’t determine if the holes were constantly in diameter or not. Numerous tiny holes were visible on all of the coprolites surface, as well as within it, and these were most probably caused by gases within the fecal matters. These holes can be called as microvoids or ‘degassing holes’, which contain gases trapped during digestion74,99,100. Microvoids are quickly filled with water when fecal matter is excreted from the animal body, thus making the fecal becoming heavy and sinking to the lake floor74.A series of three parallel furrows or bioerosional scars were evident on the surface of specimen IVPP V 27,545 (Fig. 3). Those lines only occurred once without any repetition on the rest of the surface. The information from these furrows were insufficient to deduce any potential biters, as widely discussed in the work of Godfrey & Palmer101, Godfrey & Smith102, Dentzien-Dias et al.103, and Collareta et al.104. On the other hand, deducing from the dented surface on the bitten marks, we predicted that the marks were most probably made by the biting pressures from the fish mandibles, which may indicate coprophagous behavior. The biting could have happened on the lake floor just before sedimentary deposition. Since the bitten marks are on the surface, this probably suggests unintentional scavenging and was eventually aborted during food search.In general, coprolites can be transported from the original place through various modes25 and this can be evident by the traces of abrasion51,65. However, in Tatal’s coprolites, there were little or almost no marks of abrasion. Yet again, this supports our hypothesis that these coprolites were excrements in shallow waters, such as in the lake banks with little turbulence and current, where the fecal matter was dropped in-situ after excrement. As stated in previous literature105,106, radial and concentric cracks are also evident on the surface of specimen IVPP V 27,550, therefore, these indicate that the coprolite was excreted on a very shallow environment where the water body was vastly evaporated and left for subaerial exposure before embedment. This phenomenon caused the coprolite to dehydrate through the cracking, and shrinking occurred in a low magnitude process while retaining its overall shape27,54,107. Previous authors have also discussed that the cracks could possibly be due to synaeresis under certain conditions27,54,108.It has been frequently reported in records that almost all spiral coprolite fossilization from various Phenerozoic ages have occurred in low-energy shallow marine environments54. Feces that are being excreted in this humid environment have a higher chance of preservation due to the rapid burial, as well as on the acidity level of the water bodies5,7,109,110,111. There are also several crucial factors that are involved in fecal fossilization. Among them, one of the most important criteria includes the content and composition of the fecal matter, and those of carnivorous diets tend to form coprolites than those who consumed an herbivorous diet75. As mentioned in Dentzien-Dias et al.111, there are three main stages involved in a coprolite taphonomy history, which include stages before final burial, after the final burial and after exposure. In accordance to this, we introduced the usage of phases to discuss the spiral coprolites morphologies in this study (see material and methods). The phase concept of spiral coprolites disentanglement has been widely discussed in early days by various workers6,22,70. Coprolite specimen IVPP V 27,544 and IVPP V 27,547 are considered as Phase 1, as the coils are not deep, and this can be explained as during excrement, there’s a mucosal membrane covering the surface of the fecal matter and embedment occurring rapidly, thus retaining most of its surface structure. Although there are signs of disentanglement, we predict that the uncoiling on the surface was not by natural processes, but has been caused by a breakage after on. Both of these two coprolites could have been large in actual size. Similar explanations can be given to specimens IVPP V 27,548 and IVPP V 27,550, whereby the coils are shallow, thus, classifying them as to had occurred in Phase 1. We classify specimen IVPP V 27,546 and IVPP V 27,549 as Phase 2, in which the spaces between the coils of IVPP V 27,546 were slightly separated and in IVPP V 27,549, they were strongly separated. Both of these specimens could have spent more time in water bodies before burial. Specimen IVPP V 27,545 does not provide any external information in regards of phases approach because of its non-spiral morphology. While it is also worthwhile to mention that none of them have spent sufficient time in the water bodies in order to possess the Phase 3 structure. Through these, we can also conclude that smaller coprolites are much complete while bigger coprolites tend to easily break-off. However, having mentioned that, the preservation of specimen IVPP V 27,550 is indeed valuable.Through the above morphological points, we predict that the amphipolar spiral coprolites could have belonged to groups of either prehistoric lungfishes or Acipenseriformes (sturgeon and paddlefish). Another aim of this work is to portray the existence of possible prey-predation relationships from the collected coprolites. In order to narrow down the identity of the potential producer and possibly the prey, we looked into some related fauna list from past literature. Geological settings have indicated that the Lower Cretaceous Tsagan-Tsab formation is not only recorded in the area of Tatal, but also in other regions of Mongolia as well36. There are two possibilities on the deduced prey and predator, they are either of Asipenceriformes—Lycopteriformes relationship or Asipenceriformes—Pholidophoriformes relationship. We suggest Pholidophoriformes as a much potential prey than the Lycopteriformes in the Tsagan-Tsab Formation, and the reasons will be explained thoroughly. As for the producer, we knew that Asipenceriformes are largely known from the Lycoptera-Peipiaosteus (Asipenceriformes) Fauna or the “Jehol Fauna”, as these assemblages of fishes were not only abundant in the Lower Cretaceous Yixian Formation of northeastern China, but also widely distributed over the region of eastern Siberia, Mongolia, northern China and northern Korea112. It is also noteworthy to mention that the Tsagan-Tsab formations and the Yixian formation were similar in geological age. In the same context, Jakolev35 described Stichopterus popovi (Asipenceriformes) and recorded amphipolar spiral coprolites from the Aptian lacustrine of Gurvan-Eren Formation of Mongolia , a locality that is close to Tatal. Although there are differences in the geological period of Tsagan-Tsab and Gurvan-Eren Formation, it is highly possible that Asipenceriformes existed in these areas. Furthermore, Asipenceriformes are shown to have spiral valves113, and this can be further proven with the work of Capasso64 on Peipiaosteus pani, thus, contributing to the morphology of the spiral coprolites. With these, we strongly suggest that the amphipolar spiral coprolites of Tsagan-Tsab Formation and for Gurvan-Eren Formation to belong to Asipenceriformes. As for prey, we know from existing literature that there is a close relationship between Asipenceriformes and Lycoptera, as evident in the name Lycoptera-Peipiaosteus Fauna. Yondon et al.36 reported Lycoptera middendorfii, a form of small freshwater Teleost fish from the Eastern Gobi—Tsagan-Tsab formation. But, it was clearly mentioned that Bon-Tsagan/Bon-Chagan (Fig. 1) is the westernmost locality of Lycoptera in Mongolia114. Another fact that was taken into account for the possible prey is the shape of the scales found in the inclusions, whereby Lycoptera are known for their cycloid shaped scales, while the ones in our specimens are more towards rhomboidal-shaped ganoid scales. These facts crucially eliminate the possibilities of Lycoptera for the Tsagan-Tsab fauna. With this, we further examined Jakolev35′s works and discovered the species that he described, Gurvanichthys mongoliensis (Pholidophoriformes) from the Gurvan-Eren Formation has rhomboidal-shaped ganoid scales. The size, shape of the scale and the nature of this fish fits well as a prey for the Stichopterus popovi (Asipenceriformes). Through these interpretations, we can possibly infer that the spiral coprolites in our study might have belonged to Asipenceriformes and Pholidophoriformes as the prey, which could further affirm the occurrence of prey-predator inter-relationship in the Lower Cretaceous of Tsagan-Tsab Formation.As for the sole scroll coprolite in this study, we do not intend to further deduce any detailed possibilities. Based on other works, chondricthyans origins or a sarcopterygian for scroll coprolites were suggested18,53,but such deduction is difficult to be purported in our studies as there is a lack of such fossil materials in the locality and surrounding localities. The chances of the underived producer to be a sarcopterygian is much higher than to be a chondricthyan, mainly due to its geological settings. The discovery of the single scroll coprolite can be a window opening to many paleontological questions for Tsagan-Tsab Formation. More

  • in

    Evaluating sediment and water sampling methods for the estimation of deep-sea biodiversity using environmental DNA

    High-throughput sequencing resultsA total of 26 million COI reads, 19 million raw 18S V1-V2 reads,, 14 million 18S V4 reads, and 17 million 16S V4–V5 reads were obtained from three Illumina HiSeq runs of amplicon libraries built from pooled triplicate PCRs of 22 environmental samples, 2 extraction blanks, and 4–6 PCR blanks (Supplementary Table S4 online). The in situ pump yielded less raw reads for COI and 16S (Supplementary Fig. S1 online, F = 4.02–14.4, p = 0.0003–0.03), while more raw reads were recovered from both water sampling methods with 18S V4 (F = 6.5, p = 0.007). Water samples generally yielded fewer raw clusters (F = 5.1–35.1, p = 3.2 × 10−6–0.02), except for 18S V4 where numbers were comparable across sample types (Supplementary Fig. S1 online).Bioinformatic processing (quality filtering, error correction, chimera removal, and clustering for metazoans) reduced read numbers to 20 million for COI, 12 million for 18S V1–V2, 11 million for 18S V4, and 10 million for 16S V4–V5, resulting in 10,351 and 17,608 raw OTUs for COI and 18S V1–V2 respectively; 35,538 raw 18S V4 ASVs, and 62,646 raw 16S ASVs (Supplementary Table S4 online). For eukaryote markers, 17–55% of the raw reads remained in PCR blanks after bioinformatic processing, while 50–75% remained in extraction blanks and 52–87% in true samples. In contrast, with 16S, these values were at 87% for PCR blanks, 67% for extraction blanks, and 29–73% for true samples. Thus, negative control samples accounted for 7–13% of bioinformatically processed reads with eukaryotes, compared to 27% with prokaryotes. The vast majority of 16S reads generated by negative controls belonged to a common contaminant of Phusion polymerase kits, which is well amplified in low concentration samples such as negative controls. These reads however accounted for  20 µm size class, and the sampling box targeting both the 2–20 µm and the 0.2–2 µm size classes, detected different community assemblages. For protists, the in situ pump detected higher proportions of ASVs for Bacillariophyta, Ciliophora, Labyrinthulea, or Phaeodarea, while the sampling box detected more cryptophytes, haptophytes, MAST, and telonemians (Fig. 3 18S V4). For prokaryotes, the sampling box detected more diversity in the Alphaproteobacteria, Chloroflexi, or Marinimicrobia (Fig. 3 16S V4–V5). More

  • in

    Angiosperm pollinivory in a Cretaceous beetle

    1.Power, A. G. Ecosystem services and agriculture: tradeoffs and synergies. Phil. Trans. R. Soc. B 365, 2959–2971 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Huang, D.-Y. et al. New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Sci. Rep. 6, 23004 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2, 408 (2019).4.Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl Acad. Sci. USA 116, 24707–24711 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Peris, D. et al. Generalist pollen-feeding beetles during the mid-Cretaceous. iScience 23, 100913 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ahrens, D., Schwarzer, J. & Vogler, A. P. The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proc. R. Soc. B 281, 20141470 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Farrell, B. D. ‘Inordinate fondness’ explained: why are there so many beetles? Science 281, 555–559 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology (Pergamon, 1979).9.Poinar, G., Lambert, J. B. & Wu, Y. Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. J. Bot. Res. Inst. Tex. 1, 449–455 (2007).
    Google Scholar 
    10.Davies, E. H. Palynological Analysis and Age Assignments of Two Burmese Amber Sample Sets (Branta Biostratigraphy for Leeward Capital, 2001).11.Barrón, E. et al. Palynology of Aptian and upper Albian (lower Cretaceous) amber-bearing outcrops of the southern margin of the Basque-Cantabrian basin (northern Spain). Cretac. Res. 52, 292–312 (2015).Article 

    Google Scholar 
    12.Azar, D., Dejax, J. & Masure, E. Palynological analysis of amber-bearing clay from the lower Cretaceous of central Lebanon. Acta Geol. Sin. Engl. Ed. 85, 942–949 (2011).Article 

    Google Scholar 
    13.Barrón, E., Comas-Rengifo, M. J. & Elorza, L. Contribuciones al estudio palinológico del Cretácico Inferior de la Cuenca Vasco-Cantábrica: los afloramientos ambarigenos de Peñacerrada (España). Coloq. Paleontol. 52, 135–156 (2001).
    Google Scholar 
    14.Cai, C. et al. Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proc. R. Soc. B 286, 20182175 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Mao, Y. Y. et al. Various amberground marine animals on Burmese amber with discussions on its age. Palaeoentomology 1, 91–103 (2018).Article 

    Google Scholar 
    16.Shi, G. et al. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).Article 

    Google Scholar 
    17.Yu, T. et al. An ammonite trapped in Burmese amber. Proc. Natl Acad. Sci. USA 116, 11345–11350 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Jelínek, J. & Cline, A. R. in Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles Morphology and Systematics (eds Leschen, R. A. B. et al.) Vol. 2 386–390 (Walter De Gruyter, 2010).19.Hisamatsu, S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomol. Musei Natl Pragae 36, 551–585 (2011).
    Google Scholar 
    20.Peris, D. & Jelínek, J. Atypical short elytra in Cretaceous short-winged flower beetles (Coleoptera: Kateretidae). Palaeoentomology 2, 505–514 (2019).Article 

    Google Scholar 
    21.Peris, D. & Jelínek, J. Syninclusions of two new species of short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Kachin amber (Myanmar). Cretac. Res. 106, 104264 (2020).Article 

    Google Scholar 
    22.Poinar, G. & Brown, A. E. Furcalabratum burmanicum gen. et sp. nov., a short-winged flower beetle (Coleoptera: Kateretidae) in mid-Cretaceous Myanmar amber. Cretac. Res. 84, 240–244 (2018).Article 

    Google Scholar 
    23.Kirejtshuk, A. G. New species of nitidulid beetles (Coleoptera, Nitidulidae) of the Australian region. Entomol. Obozr. 65, 559–573 (1986).
    Google Scholar 
    24.Timerman, D., Greene, D. F., Ackerman, J. D., Kevan, P. G. & Nardone, E. Pollen aggregation in relation to pollination vector. Int. J. Plant Sci. 175, 681–687 (2014).Article 

    Google Scholar 
    25.Thomson, P. W. & Pflug, H. D. Pollen und sporen des mitteleuropäischen Tertiärs. Palaeontogr. Abt. B 94, 1–138 (1953).
    Google Scholar 
    26.Tekleva, M. V. & Maslova, N. P. A diverse pollen assemblage found on Friisicarpus infructescences (Platanaceae) from the Cenomanian–Turonian of Kazakhstan. Cretac. Res. 57, 131–141 (2016).Article 

    Google Scholar 
    27.Takahashi, K. Upper Cretaceous and lower Paleogene microfloras of Japan. Rev. Palaeobot. Palynol. 5, 227–234 (1967).Article 

    Google Scholar 
    28.Nadel, H., Peña, J. E. & Peña, J. E. Identity, behavior, and efficacy of nitidulid beetles (Coleoptera: Nitidulidae) pollinating commercial Annona species in Florida. Environ. Entomol. 23, 878–886 (1994).Article 

    Google Scholar 
    29.Sakai, S. A review of brood-site pollination mutualism: plants providing breeding sites for their pollinators. J. Plant Res. 115, 0161–0168 (2002).Article 

    Google Scholar 
    30.Williams, G. & Adam, P. A review of rainforest pollination and plant–pollinator interactions with particular reference to Australian subtropical rainforests. Aust. Zool. 29, 177–212 (1994).Article 

    Google Scholar 
    31.Klavins, S. D., Kellogg, D. W., Krings, M., Taylor, E. L. & Taylor, T. N. Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol. Ecol. Res. 7, 479–488 (2005).
    Google Scholar 
    32.Chadwick, C. E., Stevenson, D. W. & Norstog, K. J. The roles of Tranes lyterioides and T. sparsus Boh. (Col., Curculiodidae) in the pollination of Macrozamia communis (Zamiaceae). In The Biology, Structure, and Systematics of the Cycadales: Proc. CYCAD 90, the 2nd International Conference on Cycad Biology (eds. Stevenson, D. W. & Norstog, K. J.) 77–88 (Palm & Cycad Societies of Australia, 1993).33.Post, D. C., Page, R. E. & Erickson, E. H. Honeybee (Apis mellifera L.) queen feces: source of a pheromone that repels worker bees. J. Chem. Ecol. 13, 583–591 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Weiss, H. B. & Boyd, W. M. Insect feculæ. J. N. Y. Entomol. Soc. 58, 154–168 (1950).
    Google Scholar 
    35.Lancucka-Srodoniowa, M. Tertiary coprolites imitating fruits of the Araliaceae. Acta Soc. Bot. Pol. 33, 469–473 (1964).Article 

    Google Scholar 
    36.Scott, A. C. Trace fossils of plant–arthropod interactions. Short Courses Paleontol. 5, 197–223 (1992).Article 

    Google Scholar 
    37.Weiss, H. B. & Boyd, W. M. Insect feculæ, II. J. N. Y. Entomol. Soc. 60, 25–30 (1952).
    Google Scholar 
    38.Parker, F. D., Tepedino, V. J. & Bohart, G. E. Notes on the biology of a common sunflower bee, Melissodes (Eumelissodes) agilis Cresson. J. N. Y. Entomol. Soc. 89, 43–52 (1981).
    Google Scholar 
    39.Sarzetti, L. C., Labandeira, C. C. & Genise, J. F. Reply to: Melittosphex (Hymenoptera: Melittosphecidae), a primitive bee and not a wasp. Palaeontology 52, 484 (2008).
    Google Scholar 
    40.Ohl, M. & Engel, M. S. Die Fossilgeschichte der Bienen und ihrer nächsten Verwandten (Hymenoptera: Apoidea). Denisia 20, 687–700 (2007).
    Google Scholar 
    41.Pant, D. D. & Singh, R. Preliminary observations on insect–plant relationships in Allahabad plants of Cycas. Palms Cycads 32, 10–14 (1990).
    Google Scholar 
    42.Labandeira, C. C. The paleobiology of pollination and its precursors. Paleontol. Soc. Pap. 6, 233–270 (2000).Article 

    Google Scholar 
    43.Procheş, Ş. & Johnson, S. D. Beetle pollination of the fruit-scented cones of the South African cycad Stangeria eriopus. Am. J. Bot. 96, 1722–1730 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Tarno, H. et al. Types of frass produced by the ambrosia beetle Platypus quercivorus during gallery construction, and host suitability of five tree species for the beetle. J. For. Res. 16, 68–75 (2011).Article 

    Google Scholar 
    45.Friis, E. M., Pedersen, K. R. & Crane, P. R. Fossil floral structures of a basal angiosperm with monocolpate, reticulate-acolumellate pollen from the Early Cretaceous of Portugal. Grana 39, 226–239 (2000).Article 

    Google Scholar 
    46.Nambudiri, E. M. V. & Binda, P. L. Dicotyledonous fruits associated with coprolites from the upper Cretaceous (Maastrichtian) Whitemud Formation, southern Saskatchewan, Canada. Rev. Palaeobot. Palynol. 59, 57–66 (1989).Article 

    Google Scholar 
    47.Lupia, R., Herendeen, P. S. & Keller, J. A. A new fossil flower and associated coprolites: evidence for angiosperm–insect interactions in the Santonian (Late Cretaceous) of Georgia, U.S.A. Int. J. Plant Sci. 163, 675–686 (2002).Article 

    Google Scholar 
    48.Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Coiro, M., Doyle, J. A. & Hilton, J. How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol. 223, 83–99 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Liu, Z.-J., Huang, D., Cai, C. & Wang, X. The core eudicot boom registered in Myanmar amber. Sci. Rep. 8, 16765 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Friis, E. M. & Pedersen, K. R. in Palynology: Principles and Applications (ed. Jansonius, J.) 409–426 (American Association of Stratigraphic Palynologists Foundation, 1996).52.Schönenberger, J. & Friis, E. M. Fossil flowers of ericalean affinity from the Late Cretaceous of southern Sweden. Am. J. Bot. 88, 467–480 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.The Angiosperm Phylogeny Group et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).54.Peris, D. et al. False blister beetles and the expansion of gymnosperm–insect pollination modes before angiosperm dominance. Curr. Biol. 27, 897–904 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cai, C. et al. Beetle pollination of cycads in the Mesozoic. Curr. Biol. 28, 2806–2812 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Global climate and nutrient controls of photosynthetic capacity

    1.De Kauwe, M. G. et al. Do land surface models need to include differential plant species responses to drought? Examining model predictions across a mesic-xeric gradient in Europe. Biogeosciences 12, 7503–7518 (2015).Article 

    Google Scholar 
    2.Smith, N. G. & Keenan, T. F. Mechanisms underlying leaf photosynthetic acclimation to warming and elevated CO2 as inferred from least‐cost optimality theory. Global Change Biol. 26, 5202–5216 (2020).Article 

    Google Scholar 
    3.Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Wullschleger, S. D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/Ci curves from 109 Species. J. Exp. Bot. 44, 907–920 (1993).CAS 
    Article 

    Google Scholar 
    5.Lloyd, J., Bloomfield, K., Domingues, T. F. & Farquhar, G. D. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol. 199, 311–321 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Ferreira Domingues, T. et al. Biome-specific effects of nitrogen and phosphorus on the photosynthetic characteristics of trees at a forest-savanna boundary in Cameroon. Oecologia 178, 659–672 (2015).PubMed Central 
    Article 

    Google Scholar 
    8.Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant, Cell Environ. 33, 959–980 (2010).CAS 
    Article 

    Google Scholar 
    9.Walker, A. P. et al. The relationship of leaf photosynthetic traits -VcmaxandJmax- to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. Ecol. Evol. 4, 3218–3235 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Smith, N. G. et al. Global photosynthetic capacity is optimized to the environment. Ecol. Lett. 22, 506–517 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Prentice, I. C., Dong, N., Gleason, S. M., Maire, V. & Wright, I. J. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecol. Lett. 17, 82–91 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Givnish, T. J. On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Vol. 6 (Cambridge University Press, 1986).14.Maire, V. et al. Global effects of soil and climate on leaf photosynthetic traits and rates. Glob. Ecol. Biogeogr. 24, 706–717 (2015).Article 

    Google Scholar 
    15.Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Ali, A. A. et al. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). Geosci. Model Dev. 9, 587–606 (2016).Article 

    Google Scholar 
    17.Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Caldararu, S., Thum, T., Yu, L. & Zaehle, S. Whole-plant optimality predicts changes in leaf nitrogen under variable CO 2 and nutrient availability. New Phytol. 225, 2331–2346 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Wang, H. et al. The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants. Ecology 99, 500–500 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Wang, H. et al. Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytol. 213, 976–982 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Lavergne, A. et al. Historical changes in the stomatal limitation of photosynthesis: empirical support for an optimality principle. New Phytol. 225, 2484–2497 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Maire, V. et al. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE 7, e38345 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fürstenau Togashi, H. et al. Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences 15, 3461–3474 (2018).Article 
    CAS 

    Google Scholar 
    25.Kumarathunge, D. P. et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol. 222, 768–784 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).Article 

    Google Scholar 
    27.Rogers, A. The use and misuse of V c,max in earth system models. Photosynth. Res. 119, 15–29 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    28.Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).CAS 
    Article 

    Google Scholar 
    29.Reich, P. B. & Schoettle, A. W. Role of phosphorus and nitrogen in photosynthetic and whole plant carbon gain and nutrient use efficiency in eastern white pine. Oecologia 77, 25–33 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Raaimakers, D., Boot, R. G. A., Dijkstra, P. & Pot, S. Photosynthetic rates in relation to leaf phosphorus content in pioneer versus climax tropical rainforest trees. Oecologia 102, 120–125 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 

    Google Scholar 
    32.Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis–nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Evans, J. R. Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78, 9–19 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Reich, P. B., Walters, M. B., Ellsworth, D. S. & Uhl, C. Photosynthesis-nitrogen relations in Amazonian tree species. Oecologia 97, 62–72 (1994).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Global Change Biol. 15, 976–991 (2009).Article 

    Google Scholar 
    36.Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15 (2018).Article 
    CAS 

    Google Scholar 
    37.Marschner, H. in Mineral Nutrition of Higher Plants, 405–435 (Elsevier, 1995).38.Niinemets, Ü., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Malhi, Y. et al. The variation of productivity and its allocation along a tropical elevation gradient: a whole carbon budget perspective. New Phytol. 214, 1019–1032 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    40.Wang, H. et al. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biol. 26, 2573–2583 (2020).Article 

    Google Scholar 
    41.Peng, Y., Bloomfield, K. J. & Prentice, I. C. A theory of plant function helps to explain leaf-trait and productivity responses to elevation. New Phytol. 226, 1274–1284, (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Terrer, C. et al. Nitrogen and phosphorus constrain the CO 2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).CAS 
    Article 

    Google Scholar 
    44.Meir, P. et al. in Advances in Photosynthesis and Respiration, 89–105 (Springer International Publishing, 2017).45.Luo, X. & Keenan, T. F. Global evidence for the acclimation of ecosystem photosynthesis to light. Nat. Ecol. Evol. 4, 1351–1357 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Stocker, B. D. et al. P-model v1.0: an optimality-based light use efficiency model for simulating ecosystem gross primary production. Geosci. Model Dev. 13, 1545–1581 (2020).Article 

    Google Scholar 
    47.Lavergne, A., Sandoval, D., Hare, V. J., Graven, H. & Prentice, I. C. Impacts of soil water stress on the acclimated stomatal limitation of photosynthesis: insights from stable carbon isotope data. Global Change Biol. 26, 7158–7172 (2020).48.Zhou, S., Duursma, R. A., Medlyn, B. E., Kelly, J. W. G. & Prentice, I. C. How should we model plant responses to drought? An analysis of stomatal and non-stomatal responses to water stress. Agric. For. Meteorol. 182-183, 204–214 (2013).Article 

    Google Scholar 
    49.Zhou, S. et al. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates. Tree Physiol. 34, 1035–1046 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Katul, G., Manzoni, S., Palmroth, S. & Oren, R. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann. Bot. 105, 431–442 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Manzoni, S. et al. Optimizing stomatal conductance for maximum carbon gain under water stress: a meta-analysis across plant functional types and climates. Funct. Ecol. 25, 456–467 (2011).Article 

    Google Scholar 
    52.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol. 17, 2134–2144 (2011).Article 

    Google Scholar 
    53.Crous, K. Y. et al. Photosynthesis of temperate Eucalyptus globulus trees outside their native range has limited adjustment to elevated CO2 and climate warming. Global Change Biol. 19, 3790–3807 (2013).Article 

    Google Scholar 
    54.Zhou, S.-X., Medlyn, B. E. & Prentice, I. C. Long-term water stress leads to acclimation of drought sensitivity of photosynthetic capacity in xeric but not riparian Eucalyptus species. Ann. Bot. 117, 133–144 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Smith, N. G. & Dukes, J. S. Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biol. 23, 4840–4853 (2017).Article 

    Google Scholar 
    56.Katul, G., Leuning, R. & Oren, R. Relationship between plant hydraulic and biochemical properties derived from a steady‐state coupled water and carbon transport model. Plant, Cell Environ. 26, 339–350 (2003).CAS 
    Article 

    Google Scholar 
    57.Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytol. 218, 1430–1449 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kattge, J. & Knorr, W. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell Environ. 30, 1176–1190 (2007).CAS 
    Article 

    Google Scholar 
    59.van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Quesada, M. et al. Succession and management of tropical dry forests in the Americas: review and new perspectives. For. Ecol. Manag. 258, 1014–1024 (2009).Article 

    Google Scholar 
    61.Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    63.Conroy, J. P., Smillie, R. M., Küppers, M., Bevege, D. I. & Barlow, E. W. Chlorophyll a fluorescence and photosynthetic and growth responses of pinus radiata to phosphorus deficiency, drought stress, and high CO2. Plant Physiol. 81, 423–429 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Loustau, D., Brahim, M. B., Gaudillere, J. P. & Dreyer, E. Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol. 19, 707–715 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Warren, C. R. & Adams, M. A. Phosphorus affects growth and partitioning of nitrogen to Rubisco in Pinus pinaster. Tree Physiol. 22, 11–19 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bloomfield, K. J., Farquhar, G. D. & Lloyd, J. Photosynthesis–nitrogen relationships in tropical forest tree species as affected by soil phosphorus availability: a controlled environment study. Funct. Plant Biol. 41, 820–832 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Crous, K. Y., Ósvaldsson, A. & Ellsworth, D. S. Is phosphorus limiting in a mature Eucalyptus woodland? Phosphorus fertilisation stimulates stem growth. Plant Soil 391, 293–305 (2015).CAS 
    Article 

    Google Scholar 
    68.Sivak, M. N. & Walker, D. A. Photosynthesis in vivo can be limited by phosphate supplY. New Phytol. 102, 499–512 (1986).CAS 
    Article 

    Google Scholar 
    69.Kiirats, O., Cruz, J. A., Edwards, G. E. & Kramer, D. M. Feedback limitation of photosynthesis at high CO2 acts by modulating the activity of the chloroplast ATP synthase. Funct. Plant Biol. 36, 893–901 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ellsworth, D. S., Crous, K. Y., Lambers, H. & Cooke, J. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant, Cell Environ. 38, 1142–1156 (2015).CAS 
    Article 

    Google Scholar 
    71.Zhang, S. & Dang, Q. L. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings. Tree Physiol. 26, 1457–1467 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Lambers, H. et al. Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol. 196, 1098–1108 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007).Article 

    Google Scholar 
    74.Kull, O. Acclimation of photosynthesis in canopies: models and limitations. Oecologia 133, 267–279 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Field, C. & Mooney, H. in On the Economy of Plant Form and Function: Proceedings of the Sixth Maria Moors Cabot Symposium, Evolutionary Constraints on Primary Productivity, Adaptive Patterns of Energy Capture in Plants, Harvard Forest, August 1983 (Cambridge University Press, 1986).76.Niinemets, Ü. Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants. New Phytol. 144, 35–47 (1999).Article 

    Google Scholar 
    77.Lloyd, J. et al. Optimisation of photosynthetic carbon gain and within-canopy gradients of associated foliar traits for Amazon forest trees. Biogeosciences 7, 1833–1859 (2010).CAS 
    Article 

    Google Scholar 
    78.Anten, N. P. R. Optimal photosynthetic characteristics of individual plants in vegetation stands and implications for species coexistence. Ann. Bot. 95, 495–506 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Alton, P. B. & North, P. Interpreting shallow, vertical nitrogen profiles in tree crowns: a three-dimensional, radiative-transfer simulation accounting for diffuse sunlight. Agric. For. Meteorol. 145, 110–124 (2007).Article 

    Google Scholar 
    80.Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. New Phytol. 213, 22–42 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Tosens, T. & Laanisto, L. Mesophyll conductance and accurate photosynthetic carbon gain calculations. J. Exp. Bot. 69, 5315–5318 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J. Exp. Bot. 60, 2271–2282 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Farquhar, G. D., O’Leary, M. H. & Berry, J. A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct. Plant Biol. 9, 121–137 (1982).CAS 
    Article 

    Google Scholar 
    84.Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. Jr & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell Environ. 24, 253–259 (2001).CAS 
    Article 

    Google Scholar 
    85.Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell Environ. 26, 1419–1430 (2003).CAS 
    Article 

    Google Scholar 
    86.Scafaro, A. P. et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. Global Change Biol. 23, 2783–2800 (2017).Article 

    Google Scholar 
    87.Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. 81, 259–291 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Team, R. C. R.: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).89.Atkin, O. K. et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol. 206, 614–636 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Bahar, N. H. A. et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol. 214, 1002–1018 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    91.Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    92.Cernusak, L. A., Hutley, L. B., Beringer, J., Holtum, J. A. M. & Turner, B. L. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. Agric. For. Meteorol. 151, 1462–1470 (2011).Article 

    Google Scholar 
    93.Xu, H. Y., et al. Predictability of leaf traits with climate and elevation: a case study in Gongga Mountain, China. Tree Physiol. https://doi.org/10.1093/treephys/tpab003 (2021).94.Walker, A. P., et al. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area (Oak Ridge National Laboratory Distributed Active Archive Center, 2014). https://doi.org/10.3334/ORNLDAAC/1224.95.Kattge, J. et al. TRY–a global database of plant traits. Global Change Biol. 17, 2905–2935 (2011).Article 

    Google Scholar 
    96.Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519 (1992).Article 

    Google Scholar 
    97.Rogers, A., Serbin, S. P., Ely, K. S., Sloan, V. L. & Wullschleger, S. D. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic. New Phytol. 216, 1090–1103 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Burnett, A. C., Davidson, K. J., Serbin, S. P. & Rogers, A. The “one‐point method” for estimating maximum carboxylation capacity of photosynthesis: a cautionary tale. Plant, Cell Environ. 42, 2472–2481 (2019).CAS 
    Article 

    Google Scholar 
    99.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2013).Article 

    Google Scholar 
    100.Jones, H. G. Plants and Microclimate (Cambridge University Press, 2009).101.Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    102.Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    103.Berberan-Santos, M. N., Bodunov, E. N. & Pogliani, L. On the barometric formula. Am. J. Phys. 65, 404–412 (1997).Article 

    Google Scholar 
    104.Peng, Y., et al. Dataset of Global Climate and Nutrient Controls of Photosynthetic Capacity (Zenodo, 2021). https://doi.org/10.5281/zenodo.4568148. More

  • in

    A theoretical analysis of tumour containment

    1.Norton, L. & Simon, R. Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat. Rep. 61, 1307–1317 (1977).CAS 
    PubMed 

    Google Scholar 
    2.Goldie, J. H. & Coldman, A. J. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat. Rep. 63, 1727–1733 (1979).CAS 
    PubMed 

    Google Scholar 
    3.Gatenby, R. A. A change of strategy in the war on cancer. Nature 459, 508–509 (2009).CAS 
    Article 

    Google Scholar 
    4.Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).Article 

    Google Scholar 
    5.Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Optimal control of tumor size used to maximize survival time when cells are resistant to chemotherapy. Math. Biosci. 110, 201–219 (1992).CAS 
    Article 

    Google Scholar 
    6.Gatenby, R. A., Silva, A. S., Gillies, R. J. & Frieden, B. R. Adaptive therapy. Cancer Res. 69, 4894–4903 (2009).CAS 
    Article 

    Google Scholar 
    7.Gatenby, R. & Brown, J. The evolution and ecology of resistance in cancer therapy. Cold Spring Harb. Perspect. Med. 10, a040972 (2020).CAS 
    Article 

    Google Scholar 
    8.Bourguet, D. et al. Heterogeneity of selection and the evolution of resistance. Trends Ecol. Evol. 28, 110–118 (2013).Article 

    Google Scholar 
    9.Tabashnik, B. E., Brévault, T. & Carrière, Y. Insect resistance to Bt crops: lessons from the first billion acres. Nat. Biotechnol. 31, 510–521 (2013).CAS 
    Article 

    Google Scholar 
    10.Cunningham, J. J. A call for integrated metastatic management. Nat. Ecol. Evol. 3, 996–998 (2019).Article 

    Google Scholar 
    11.Bacevic, K. Spatial competition constrains resistance to targeted cancer therapy. Nat. Commun. 8, 1995 (2017).Article 

    Google Scholar 
    12.Silva, A. S. et al. Evolutionary approaches to prolong progression-free survival in breast cancer. Cancer Res. 72, 6362–6370 (2012).CAS 
    Article 

    Google Scholar 
    13.Enriquez-Navas, P. M. et al. Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci. Transl. Med. 8, 327ra24 (2016).Article 

    Google Scholar 
    14.Monro, H. C. & Gaffney, E. A. Modelling chemotherapy resistance in palliation and failed cure. J. Theor. Biol. 257, 292–302 (2009).CAS 
    Article 

    Google Scholar 
    15.Carrère, C. Optimization of an in vitro chemotherapy to avoid resistant tumours. J. Theor. Biol. 413, 24–33 (2017).Article 

    Google Scholar 
    16.Gallaher, J. A., Enriquez-Navas, P. M., Luddy, K. A., Gatenby, R. A. & Anderson, A. R. A. Spatial heterogeneity and evolutionary dynamics modulate time to recurrence in continuous and adaptive cancer therapies. Cancer Res. 78, 2127–2139 (2018).CAS 
    Article 

    Google Scholar 
    17.Hansen, E., Woods, R. J. & Read, A. F. How to use a chemotherapeutic agent when resistance to it threatens the patient. PLoS Biol. 15, e2001110 (2017).Article 

    Google Scholar 
    18.Cunningham, J. J., Brown, J. S., Gatenby, R. A. & Staňková, K. Optimal control to develop therapeutic strategies for metastatic castrate resistant prostate cancer. J. Theor. Biol. 459, 67–78 (2018).CAS 
    Article 

    Google Scholar 
    19.West, J., Ma, Y. & Newton, P. K. Capitalizing on competition: an evolutionary model of competitive release in metastatic castration resistant prostate cancer treatment. J. Theor. Biol. 455, 249–260 (2018).Article 

    Google Scholar 
    20.Pouchol, C., Clairambault, J., Lorz, A. & Trélat, E. Asymptotic analysis and optimal control of an integro-differential system modelling healthy and cancer cells exposed to chemotherapy. J. Math. Pures Appl. 116, 268–308 (2018).Article 

    Google Scholar 
    21.Carrère, C. & Zidani, H. Stability and reachability analysis for a controlled heterogeneous population of cells. Optim. Control Appl. Methods 41, 1678–1704 (2020).Article 

    Google Scholar 
    22.Greene, J. M., Sanchez-Tapia, C. & Sontag, E. D. Mathematical details on a cancer resistance model. Front. Bioeng. Biotechnol. 8, 501 (2020).Article 

    Google Scholar 
    23.Martin, R. B., Fisher, M. E., Minchin, R. F. & Teo, K. L. Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells. Math. Biosci. 110, 221–252 (1992).CAS 
    Article 

    Google Scholar 
    24.Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).CAS 
    Article 

    Google Scholar 
    25.Noble, R., Burri, D., Kather, J. N. & Beerenwinkel, N. Spatial structure governs the mode of tumour evolution. Preprint at bioRxiv https://doi.org/10.1101/586735 (2019).26.Hansen, E. & Read, A. F. Cancer therapy: attempt cure or manage drug resistance? Evol. Appl. 13, 1660–1672 (2020).Article 

    Google Scholar 
    27.Enriquez-Navas, P. M., Wojtkowiak, J. W. & Gatenby, R. A. Application of evolutionary principles to cancer therapy. Cancer Res. 75, 4675–4680 (2015).CAS 
    Article 

    Google Scholar 
    28.Gatenby, R. A. & Brown, J. S. Integrating evolutionary dynamics into cancer therapy. Nat. Rev. Clin. Oncol. 17, 675–686 (2020).Article 

    Google Scholar 
    29.Strobl, M. A. R. et al. Turnover modulates the need for a cost of resistance in adaptive therapy. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-20-0806 (2020).Article 
    PubMed 

    Google Scholar 
    30.Bozic, I. et al. Evolutionary dynamics of cancer in response to targeted combination therapy. eLife 2, e00747 (2013).Article 

    Google Scholar 
    31.Pérez-García, V. M. et al. Universal scaling laws rule explosive growth in human cancers. Nat. Phys. 16, 1232–1237 (2020).Article 

    Google Scholar 
    32.Greene, J. M., Gevertz, J. L. & Sontag, E. S. Mathematical approach to differentiate spontaneous and induced evolution to drug resistance during cancer treatment. JCO Clin. Cancer Inform. 3, CCI.18.00087 (2019).PubMed Central 

    Google Scholar 
    33.Kuosmanen, T. et al. Drug-induced resistance evolution necessitates less aggressive treatment. Preprint at bioRxiv https://doi.org/10.1101/2020.10.07.330134 (2020).34.Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).CAS 
    Article 

    Google Scholar 
    35.Mistry, H. B. Evolutionary based adaptive dosing algorithms: beware the cost of cumulative risk. Preprint at bioRxiv https://doi.org/10.1101/2020.06.23.167056 (2020).36.Benzekry, S. et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput. Biol. 10, e1003800 (2014).Article 

    Google Scholar 
    37.Vaghi, C. et al. Population modeling of tumor growth curves and the reduced Gompertz model improve prediction of the age of experimental tumors. PLoS Comput. Biol. 16, e1007178 (2020).CAS 
    Article 

    Google Scholar 
    38.Hansen, E., Karslake, J., Woods, R. J., Read, A. F. & Wood, K. B. Antibiotics can be used to contain drug-resistant bacteria by maintaining sufficiently large sensitive populations. PLoS Biol. 18, e3000713 (2020).CAS 
    Article 

    Google Scholar 
    39.Soetaert, K. E. R., Petzoldt, T. & Setzer, R. W. Solving differential equations in R : package deSolve. J. Stat. Softw. 33, 9 (2010). More

  • in

    Corrosion and transformation of solution combustion synthesized Co, Ni and CoNi nanoparticles in synthetic freshwater with and without natural organic matter

    1.Inshakova, E. & Inshakova, A. Nanomaterials and nanotechnology: prospects for technological re-equipment in the power engineering industry. IOP Conference Series: Materials Science and Engineering 709, 033020. https://doi.org/10.1088/1757-899x/709/3/033020 (2020).CAS 
    Article 

    Google Scholar 
    2.Grassian, V. H. When size reallymatters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303–18313. https://doi.org/10.1021/jp806073t (2008).CAS 
    Article 

    Google Scholar 
    3.Jayathilaka, W. et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31, e1805921. https://doi.org/10.1002/adma.201805921 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Pokhrel, S. & Mädler, L. Flame made particles for sensors, catalysis and energy storage applications. Energy Fuels https://doi.org/10.1021/acs.energyfuels.0c02220 (2020).Article 
    PubMed 

    Google Scholar 
    5.Anthony, L. S., Perumal, V., Mohamed, N. M., Saheed, M. S. M. & Gopinath, S. C. B. in Nanomaterials for Healthcare, Energy and Environment Advanced Structured Materials Ch. Chapter 3, 51–69 (2019).
    Google Scholar 
    6.Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D. P. & Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403. https://doi.org/10.1039/c5ra06778b (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    7.Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306. https://doi.org/10.1021/acscatal.0c03617 (2020).CAS 
    Article 

    Google Scholar 
    8.Wu, W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 9, 7342–7372. https://doi.org/10.1039/c7nr01604b (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Abdalla, A. M. et al. Nanomaterials for solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 82, 353–368. https://doi.org/10.1016/j.rser.2017.09.046 (2018).CAS 
    Article 

    Google Scholar 
    10.Choudhary, N. et al. Asymmetric supercapacitor electrodes and devices. Adv. Mater. https://doi.org/10.1002/adma.201605336 (2017).Article 
    PubMed 

    Google Scholar 
    11.Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730. https://doi.org/10.1039/c4ee03229b (2015).CAS 
    Article 

    Google Scholar 
    12.Das, S., Sen, B. & Debnath, N. Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. Res. Int. 22, 18333–18344. https://doi.org/10.1007/s11356-015-5491-6 (2015).Article 
    PubMed 

    Google Scholar 
    13.Santhosh, C. et al. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053 (2016).CAS 
    Article 

    Google Scholar 
    14.Riley, M. K. & Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomater. (Basel) https://doi.org/10.3390/nano7050094 (2017).Article 

    Google Scholar 
    15.Dasari Shareena, T. P., McShan, D., Dasmahapatra, A. K. & Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. https://doi.org/10.1007/s40820-018-0206-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H. & Kim, J. H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomater. (Basel) https://doi.org/10.3390/nano9121719 (2019).Article 

    Google Scholar 
    17.Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H. R., Ramakrishna, S. & Berto, F. Graphene family nanomaterial reinforced magnesium-based matrix composites for biomedical application: a comprehensive review. Metals https://doi.org/10.3390/met10081002 (2020).Article 

    Google Scholar 
    18.Siddique, S. & Chow, J. C. L. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomater. (Basel) https://doi.org/10.3390/nano10091700 (2020).Article 

    Google Scholar 
    19.Mayakrishnan, G., Elayappan, V., Kim, I. S. & Chung, I. M. Sea-island-like morphology of cuni bimetallic nanoparticles uniformly anchored on single layer graphene oxide as a highly efficient and noble-metal-free catalyst for cyanation of aryl halides. Sci. Rep. 10, 677. https://doi.org/10.1038/s41598-020-57483-z (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Sheikh-Mohseni, M. A., Hassanzadeh, V. & Habibi, B. Reduced graphene oxide supported bimetallic Ni–Co nanoparticles composite as an electrocatalyst for oxidation of methanol. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2019.106022 (2019).Article 

    Google Scholar 
    21.Khort, A., Romanovski, V., Leybo, D. & Moskovskikh, D. CO oxidation and organic dyes degradation over graphene–Cu and graphene–CuNi catalysts obtained by solution combustion synthesis. Sci. Rep. https://doi.org/10.1038/s41598-020-72872-0 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Wang, D. et al. Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor. Appl. Surf. Sci. 483, 593–600. https://doi.org/10.1016/j.apsusc.2019.03.345 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    23.Khort, A. et al. Graphene@metal nanocomposites by solution combustion synthesis. Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00673 (2020).Article 
    PubMed 

    Google Scholar 
    24.Xu, L. et al. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small https://doi.org/10.1002/smll.202003691 (2020).Article 
    PubMed 

    Google Scholar 
    25.Wang, X., Odnevall Wallinder, I. & Hedberg, Y. Bioaccessibility of nickel and cobalt released from occupationally relevant alloy and metal powders at simulated human exposure scenarios. Ann. Work Expo. Health https://doi.org/10.1093/annweh/wxaa042 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Atapour, M., Wang, X., Färnlund, K., Odnevall Wallinder, I. & Hedberg, Y. Corrosion and metal release investigations of selective laser melted 316L stainless steel in a synthetic physiological fluid containing proteins and in diluted hydrochloric acid. Electrochim. Acta 354, 136748. https://doi.org/10.1016/j.electacta.2020.136748 (2020).CAS 
    Article 

    Google Scholar 
    27.Mei, N., Hedberg, J., Odnevall Wallinder, I. & Blomberg, E. Influence of biocorona formation on the transformation and dissolution of cobalt nanoparticles under physiological conditions. ACS Omega 4, 21778–21791. https://doi.org/10.1021/acsomega.9b02641 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Ekvall, M. T., Hedberg, J., Odnevall Wallinder, I., Hansson, L. A. & Cedervall, T. Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology 12, 79–89. https://doi.org/10.1080/17435390.2017.1421274 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Hedberg, J., Ekvall, M. T., Hansson, L.-A., Cedervall, T. & Odnevall Wallinder, I. Tungsten carbide nanoparticles in simulated surface water with natural organic matter: dissolution, agglomeration, sedimentation and interaction with Daphnia magna. Environ. Sci. Nano 4, 886–894. https://doi.org/10.1039/c6en00645k (2017).CAS 
    Article 

    Google Scholar 
    30.Hedberg, J., Blomberg, E. & Odnevall Wallinder, I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ. Sci. Technol. 53, 4030–4044. https://doi.org/10.1021/acs.est.8b05012 (2019).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    31.Cappellini, F. et al. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 12, 602–620. https://doi.org/10.1080/17435390.2018.1470694 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution combustion synthesis of nanoscale materials. Chem Rev 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Khort, A., Podbolotov, K., Serrano-García, R. & Gunko, Y. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: the fuel effect. J. Solid State Chem. https://doi.org/10.1016/j.jssc.2017.05.043 (2017).Article 

    Google Scholar 
    34.Podbolotov, K. B. et al. Solution combustion synthesis of copper nanopowders: the fuel effect. Combust. Sci. Technol. 189, 1878–1890. https://doi.org/10.1080/00102202.2017.1334646 (2017).CAS 
    Article 

    Google Scholar 
    35.Khort, A., Podbolotov, K., Serrano-Garcia, R. & Gun’ko, Y. One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg. Chem. 57, 1464–1473. https://doi.org/10.1021/acs.inorgchem.7b02848 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Yermekova, Z., Roslyakov, S. I., Kovalev, D. Y., Danghyan, V. & Mukasyan, A. S. One-step synthesis of pure γ-FeNi alloy by reactive sol–gel combustion route: mechanism and properties. J. Sol-Gel Sci. Technol. https://doi.org/10.1007/s10971-020-05252-9 (2020).Article 

    Google Scholar 
    37.Khort, A. A. & Podbolotov, K. B. Preparation of BaTiO3 nanopowders by the solution combustion method. Ceram. Int. 42, 15343–15348. https://doi.org/10.1016/j.ceramint.2016.06.178 (2016).CAS 
    Article 

    Google Scholar 
    38.Xiang, H.-Z., Xie, H.-X., Mao, A., Jia, Y.-G. & Si, T.-Z. Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int. J. Mater. Res. https://doi.org/10.3139/146.111874 (2020).Article 

    Google Scholar 
    39.Mukasyan, A. S., Rogachev, A. S. & Aruna, S. T. Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol. 26, 954–976. https://doi.org/10.1016/j.apt.2015.03.013 (2015).CAS 
    Article 

    Google Scholar 
    40.Pradhan, S. et al. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles—a tentative exposure scenario. PLoS ONE 13, e0192553. https://doi.org/10.1371/journal.pone.0192553 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18, 285. https://doi.org/10.1007/s11051-016-3597-5 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Malloy, A. & Carr, B. NanoParticle tracking analysis—the haloTM system. Part. Part. Syst. Charact. 23, 197–204. https://doi.org/10.1002/ppsc.200601031 (2006).Article 

    Google Scholar 
    43.Patil, K. C., Hegde, M. S., Rattan, T. & Aruna, S. T. Chemistry of Nanocrystalline Oxide Materials. Combustion Synthesis, Properties and Applications (World Scientific Publishing Co. Pte. Ltd., 2008).44.Sdobnyakov, N. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 184, 109936. https://doi.org/10.1016/j.commatsci.2020.109936 (2020).CAS 
    Article 

    Google Scholar 
    45.Niu, B. et al. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 7, 3421. https://doi.org/10.1038/s41598-017-03644-6 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    46.Cheng, M. et al. Core@shell CoO@Co 3 O 4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem. Eng. J. 327, 100–108. https://doi.org/10.1016/j.cej.2017.06.042 (2017).CAS 
    Article 

    Google Scholar 
    47.Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    48.Dubey, P., Kaurav, N., Devan, R. S., Okram, G. S. & Kuo, Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 8, 5882–5890. https://doi.org/10.1039/c8ra00157j (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    49.Preda, I. et al. Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surf. Sci. 606, 1426–1430. https://doi.org/10.1016/j.susc.2012.05.005 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    50.Lynch, I., Dawson, K. A., Lead, J. R. & Valsami-Jones, E. In Nanoscience and the Environment Vol. 7 (eds Jamie R. Lead & Eugenia Valsami-Jones) Ch. 4, 127–156 (Elsiver, 2014).51.Lefevre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci. 107, 109–123. https://doi.org/10.1016/j.cis.2003.11.002 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Hay, M. B. & Myneni, S. C. B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 71, 3518–3532. https://doi.org/10.1016/j.gca.2007.03.038 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    53.Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano 2, 429–439. https://doi.org/10.1039/c4en00215f (2015).CAS 
    Article 

    Google Scholar 
    54.Li, H. et al. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 215, 389–400. https://doi.org/10.1016/j.combustflame.2020.02.004 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Xu, C. et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon 142, 51–59. https://doi.org/10.1016/j.carbon.2018.10.016 (2019).CAS 
    Article 

    Google Scholar 
    56.Trusov, G. V. et al. Spray solution combustion synthesis of metallic hollow microspheres. J. Phys. Chem. C 120, 7165–7171. https://doi.org/10.1021/acs.jpcc.6b00788 (2016).CAS 
    Article 

    Google Scholar 
    57.Hedberg, Y. S. & Odnevall Wallinder, I. Metal release from stainless steel in biological environments: a review. Biointerphases 11, 018901. https://doi.org/10.1116/1.4934628 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Dale, A. L., Lowry, G. V. & Casman, E. A. Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. Environ. Sci. Nano 4, 89–104. https://doi.org/10.1039/c6en00330c (2017).CAS 
    Article 

    Google Scholar 
    59.He, D., Bligh, M. W. & Waite, T. D. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ. Sci. Technol. 47, 9148–9156. https://doi.org/10.1021/es400391a (2013).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    60.Korshin, G. V., Perry, S. A. L. & Ferguson, J. F. Influence of NOM on copper corrosion. J. Am. Water Works Assoc. 88, 36–47. https://doi.org/10.1002/j.1551-8833.1996.tb06583.x (1996).CAS 
    Article 

    Google Scholar 
    61.Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980. https://doi.org/10.1038/s41467-018-07160-7 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    62.Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput. Mater. https://doi.org/10.1038/s41524-020-0308-7 (2020).Article 

    Google Scholar 
    63.Balasubramanian, K., Khare, S. V. & Gall, D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater. 152, 175–185. https://doi.org/10.1016/j.actamat.2018.04.033 (2018).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Moskovskikh, D. et al. Extremely hard and tough high entropy nitride ceramics. Sci. Rep. 10, 19874. https://doi.org/10.1038/s41598-020-76945-y (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    65.Sangiovanni, D. G., Hultman, L. & Chirita, V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater. 59, 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013 (2011).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Trees outside forests are an underestimated resource in a country with low forest cover

    1.Turner, W. R., Nakamura, T. & Dinetti, M. Global urbanization and the separation of humans from nature. Bioscience 54, 585–590 (2004).Article 

    Google Scholar 
    2.Schnell, S., Kleinn, C. & Ståhl, G. Monitoring trees outside forests: a review. Environ. Monitor. Assess. 187, 600 (2015).Article 

    Google Scholar 
    3.Ahmed, P. Trees outside forests (TOF): a case study of wood production and consumption in Haryana. Int. For. Rev. 10, 165–172 (2008).
    Google Scholar 
    4.Krishnankutty, C. N., Thampi, K. B. & Chundamannil, M. Trees outside forests (TOF): a case study of the wood productionconsumption situation in Kerala. Int. For. Rev. 10, 156–164 (2008).
    Google Scholar 
    5.Smeets, E. M. W. & Faaij, A. P. C. Bioenergy potentials from forestry in 2050: an assessment of the drivers that determine the potentials. Clim. Change 81, 353–390 (2007).CAS 
    Article 
    ADS 

    Google Scholar 
    6.Schnell, S., Altrell, D., Ståhl, G. & Kleinn, C. The contribution of trees outside forests to national tree biomass and carbon stocks-a comparative study across three continents. Environ. Monitor. Assess. 187, 4197 (2015).Article 

    Google Scholar 
    7.Zomer, R. J. et al. Trees on farms: an update and reanalysis of agroforestry’s global extent and socio-ecological characteristics. World Agroforestry Center Working Paper 179 (2014).8.Ghosh, M. & Sinha, B. Policy analysis for realizing the potential of timber production from trees outside forests (TOF) in India. Int. For. Rev. 20, 89–103 (2018).
    Google Scholar 
    9.Pain-Orcet, M. & Bellefontaine, R. Trees outside the forest: a new perspective on the management of forest resources in the tropics. Beyond tropical deforestation: from tropical deforestation to forest cover dynamics and forest development, 423–430 (2004)10.Bellefontaine, R., Petit, S., Pain Orcet, M., Deleporte, P. & Bertault, J.G. Trees outside forests: towards better awareness. Food and Agriculture Organization, 216 (Rome, 2002)11.Kleinn, C. On large-area inventory and assessment of trees outside forests. UNASYLVA-FAO- 3–10 (2000).12.FAO. Global forest resources assessment 2005: Progress towards sustainable forest management. Food and Agriculture Organization of the United Nations (2006).13.Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. 2006 IPCC guidelines for national greenhouse gas inventories Vol. 5 (Institute for Global Environmental Strategies Hayama, Japan, 2006).14.FAO. World Urbanization Prospects the Revision 2012 (Technical Report, 2011).15.Tewari, V. P., Sukumar, R., Kumar, R. & Gadow, K. Forest observational studies in India: past developments and considerations for the future. For. Ecol. Manag. 316, 32–46 (2014).Article 

    Google Scholar 
    16.Nath, T. K. & Inoue, M. Impacts of participatory forestry on livelihoods of ethnic people: experience from Bangladesh. Soc. Nat. Resour. 23, 1093–1107 (2010).Article 

    Google Scholar 
    17.Islam, S.S. Stratified Two-Stage Sampling (Self-Weighted) for assessment of village forest resources. J. Trop. For. Sci., 9–16 (2004)18.Zashimuddin, M. Community forestry for poverty reduction in Bangladesh. For. Poverty Reduct. Commun. For. Make Money, 81–94 (2004).19.FAO. Global Forest Resources Assessment 2015. Technical Report, Rome (2015).20.Muhammed, N., Koike, M. & Haque, F. Forest policy and sustainable forest management in Bangladesh: an analysis from national and international perspectives. New For. 36, 201–216 (2008).Article 

    Google Scholar 
    21.Manning, A. D., Fischer, J. & Lindenmayer, D. B. Scattered trees are keystone structures-implications for conservation. Biol. Conserv. 132, 311–321 (2006).Article 

    Google Scholar 
    22.Potapov, P. et al. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000–2014. Environ. Res. Lett. 12, 104015 (2017).Article 
    ADS 

    Google Scholar 
    23.Schumacher, J. & Nord-Larsen, T. Wall-to-wall tree type classification using airborne lidar data and CIR images. Int. J. Remote Sens. 35, 3057–3073 (2014).Article 
    ADS 

    Google Scholar 
    24.Ouma, Y. O. & Tateishi, R. Urban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification. ISPRS J. Photogramm. Remote Sens. 63, 333–351 (2008).Article 
    ADS 

    Google Scholar 
    25.Levin, N. et al. Mapping forest patches and scattered trees from SPOT images and testing their ecological importance for woodland birds in a fragmented agricultural landscape. Int. J. Remote Sens. 30, 3147–3169 (2009).Article 
    ADS 

    Google Scholar 
    26.Sandberg, G., Ulander, L. M. H., Wallerman, J. & Fransson, J. E. S. Measurements of forest biomass change using P-band synthetic aperture radar backscatter. IEEE Trans. Geosci. Remote Sens. 52, 6047–6061 (2014).Article 
    ADS 

    Google Scholar 
    27.Mitchard, E. T. A. et al. Mapping tropical forest biomass with radar and spaceborne LiDAR in Lopé National Park, Gabon: overcoming problems of high biomass and persistent cloud. Biogeosciences 9, 179–191 (2012).Article 
    ADS 

    Google Scholar 
    28.Minh, D. H. T. et al. Relating P-band synthetic aperture radar tomography to tropical forest biomass. IEEE Trans. Geosci. Remote Sens. 52, 967–979 (2013).Article 

    Google Scholar 
    29.Stovall, A. E. L., Shugart, H. & Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 10, 1–6 (2019).Article 

    Google Scholar 
    30.Swatantran, A., Tang, H., Barrett, T., DeCola, P. & Dubayah, R. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. Sci. Rep. 6, 28277 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    31.Stovall, A. E. L. & Shugart, H. H. Improved biomass calibration and validation with terrestrial LiDAR: implications for future LiDAR and SAR missions. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11, 3527–3537 (2018).Article 
    ADS 

    Google Scholar 
    32.Hansen, M.C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    33.Martone, M. et al. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 205, 352–373 (2018).Article 
    ADS 

    Google Scholar 
    34.Lang, N., Schindler, K. & Wegner, J. D. Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233, 111347 (2019).Article 
    ADS 

    Google Scholar 
    35.UNFAO. The State of World fisheries and Aquaculture 2014, vol. 24 (2014).36.Reddy, C. S., Pasha, S. V., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Development of national database on long-term deforestation (1930–2014) in Bangladesh. Glob. Planet. Change 139, 173–182 (2016).Article 
    ADS 

    Google Scholar 
    37.Long, A. J. & Nair, P. K. R. Trees outside forests: agro-, community, and urban forestry. In Planted Forests: Contributions to the Quest for Sustainable Societies, 145–174 (Springer, 1999).38.Muhammed, N., Masum, M. F. H., Hossain, M. M., Chakma, S. & Oesten, G. Economic dependence of rural people on homestead forestry in Mymensingh, Bangladesh. J. For. Res. 24, 591–597 (2013).Article 

    Google Scholar 
    39.Motiur, R. M., Furukawa, Y., Kawata, I., Rahman, M. M. & Alam, M. Role of homestead forests in household economy and factors affecting forest production: a case study in southwest Bangladesh. J. For. Res. 11, 89–97 (2006).Article 

    Google Scholar 
    40.Salam, M. A., Noguchi, T. & Koike, M. Understanding why farmers plant trees in the homestead agroforestry in Bangladesh. Agrofor. Syst. 50, 77–93 (2000).Article 

    Google Scholar 
    41.Rossi, J.-P. & Rousselet, J. The spatial distribution of trees outside forests in a large open-field region and its potential impact on habitat connectivity for forest insects. Türkiye Ormancılık Dergisi 17, 62–64 (2016).Article 

    Google Scholar 
    42.Kabir, M. E. & Webb, E. L. Can homegardens conserve biodiversity in Bangladesh?. Biotropica 40, 95–103 (2008).
    Google Scholar 
    43.Gibbons, P. et al. The future of scattered trees in agricultural landscapes. Conserv. Biol. 22, 1309–1319 (2008).CAS 
    Article 

    Google Scholar 
    44.World Bank. No Title (2018).45.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on eartha new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    46.Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31. https://doi.org/10.1016/j.rse.2014.04.014 (2014).Article 
    ADS 

    Google Scholar 
    47.GDAL/OGR contributors (2019). GDAL/OGR Geospatial Data Abstraction software Library. Open Source Geospatial Foundation. https://gdal.org.48.Montesano, P. M., Sun, G., Dubayah, R. & Ranson, K. J. The uncertainty of plot-scale forest height estimates from complementary spaceborne observations in the taiga-tundra ecotone. Remote Sens. 6, 10070–10088 (2014).Article 
    ADS 

    Google Scholar 
    49.Montesano, P. M., Sun, G., Dubayah, R. O. & Ranson, K. J. Spaceborne potential for examining taiga-tundra ecotone form and vulnerability. Biogeosciences 13, 3847–3861 (2016).Article 
    ADS 

    Google Scholar 
    50.Montesano, P. M. et al. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sens. Environ. 196, 76–88 (2017).Article 
    ADS 

    Google Scholar 
    51.Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 
    ADS 

    Google Scholar  More

  • in

    On species delimitation, hybridization and population structure of cassava whitefly in Africa

    1.Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H. & Hallwachs, W. T. species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. U.S.A. 101, 14812–14817. https://doi.org/10.1073/pnas.0406166101 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    2.Saez, A. G. & Lozano, E. Body doubles. Nature 433, 111. https://doi.org/10.1038/433111a (2005).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    3.Vyskočilová, S., Tay, W. T., van Brunschot, S., Seal, S. & Colvin, J. An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex. Sci. Rep. 8, 10886. https://doi.org/10.1038/s41598-018-29305-w (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    4.Liu, S. S. et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly. Science 318, 1769–1772. https://doi.org/10.1126/science.1149887 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    5.Vyskocilova, S., Seal, S. & Colvin, J. Relative polyphagy of “Mediterranean” cryptic Bemisia tabaci whitefly species and global pest status implications. J. Pest Sci. 92, 1071–1088. https://doi.org/10.1007/s10340-019-01113-9 (2019).Article 

    Google Scholar 
    6.Behere, G. T., Tay, W. T., Russell, D. A. & Batterham, P. Molecular markers to discriminate among four pest species of Helicoverpa (Lepidoptera: Noctuidae). Bull. Entomol. Res. 98, 599–603. https://doi.org/10.1017/S0007485308005956 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Elfekih, S., Tay, W. T., Gordon, K., Court, L. N. & De Barro, P. J. Standardized molecular diagnostic tool for the identification of cryptic species within the Bemisia tabaci complex. Pest Manag. Sci. 74, 170–173. https://doi.org/10.1002/ps.4676 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Walsh, T. K. et al. Mitochondrial DNA genomes of five major Helicoverpa pest species from the Old and New Worlds (Lepidoptera: Noctuidae). Ecol. Evol. 9, 2933–2944. https://doi.org/10.1002/ece3.4971 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Anderson, C. J., Tay, W. T., McGaughran, A., Gordon, K. & Walsh, T. K. Population structure and gene flow in the global pest, Helicoverpa armigera. Mol. Ecol. 25, 5296–5311. https://doi.org/10.1111/mec.13841 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Elfekih, S. et al. Genome-wide analyses of the Bemisia tabaci species complex reveal contrasting patterns of admixture and complex demographic histories. PLoS ONE 13, e0190555. https://doi.org/10.1371/journal.pone.0190555 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Anderson, C. J. et al. Hybridization and gene flow in the mega-pest lineage of moth, Helicoverpa. Proc. Natl. Acad. Sci. U.S.A. 115, 5034–5039. https://doi.org/10.1073/pnas.1718831115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.FAOSTAT. http://www.fao.org/faostat/en/#data/QC/visualize (2017).13.Legg, J. P. et al. Spatio-temporal patterns of genetic change amongst populations of cassava Bemisia tabaci whiteflies driving virus pandemics in East and Central Africa. Virus Res. 186, 61–75. https://doi.org/10.1016/j.virusres.2013.11.018 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: Actual knowledge and perspectives. Mol. Plant Pathol. 10, 685–701. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Macfadyen, S. et al. Cassava whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in East African farming landscapes: A review of the factors determining abundance. Bull. Entomol. Res. 108, 565–582. https://doi.org/10.1017/S0007485318000032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Minato, N. et al. Surveillance for Sri Lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS ONE 14, e0212780. https://doi.org/10.1371/journal.pone.0212780 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Wang, H. L. et al. First Report of Sri Lankan cassava mosaic virus Infecting Cassava in Cambodia. Plant Dis. 100, 1029–1029. https://doi.org/10.1094/Pdis-10-15-1228-Pdn (2016).Article 

    Google Scholar 
    18.De Barro, P. J., Liu, S. S., Boykin, L. M. & Dinsdale, A. B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 56, 1–19. https://doi.org/10.1146/annurev-ento-112408-085504 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Hopkinson, J. et al. Insecticide resistance status of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) in Australian cotton production valleys. Austral Entomol. 59, 202–214 (2020).Article 

    Google Scholar 
    20.Hadjistylli, M., Roderick, G. K. & Gauthier, N. First report of the Sub-Saharan Africa 2 species of the Bemisia tabaci complex in the Southern France. Phytoparasitica 43, 679–687. https://doi.org/10.1007/s12600-015-0480-3 (2015).Article 

    Google Scholar 
    21.Lee, W., Park, J., Lee, G. S., Lee, S. & Akimoto, S. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species. PLoS ONE 8, e63817. https://doi.org/10.1371/journal.pone.0063817 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    22.Mugerwa, H. et al. African ancestry of New World, Bemisia tabaci-whitefly species. Sci. Rep. 8, 2734. https://doi.org/10.1038/s41598-018-20956-3 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    23.Martin, J. H. An identification guide to common whitefly pest species of the world (Homopt Aleyrodidae). Int. J. Pest Manag. 334, 298–322. https://doi.org/10.1080/09670878709371174 (1987).Article 

    Google Scholar 
    24.Martin, J. H. & Mound, L. A. An annotated check list of the world’s whiteflies (Insecta: Hemiptera: Aleyrodidae). Zootaxa 1492, 1–84 (2007).Article 

    Google Scholar 
    25.Mound, L. A. Host-correlated variation in Bemisia tabaci (Gennadius). Proc. R. Entomol. Soc. Lond. A38, 171–180 (1963).ADS 

    Google Scholar 
    26.Tay, W. T. et al. Novel molecular approach to define pest species status and tritrophic interactions from historical Bemisia specimens. Sci. Rep. https://doi.org/10.1038/s41598-017-00528-7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Tay, W. T., Evans, G. A., Boykin, L. M. & De Barro, P. J. Will the real Bemisia tabaciplease stand up?. PLoS ONE https://doi.org/10.1371/journal.pone.0050550 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M. & De Barro, P. Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Ann. Entomol. Soc. Am. 103, 196–208. https://doi.org/10.1603/An09061 (2010).Article 

    Google Scholar 
    29.Kunz, D., Tay, W. T., Elfekih, S., Gordon, K. H. J. & De Barro, P. J. Take out the rubbish – Removing NUMTs and pseudogenes from the Bemisia tabacicryptic species mtCOI database. bioRxiv. https://doi.org/10.1101/724765 (2019).Article 

    Google Scholar 
    30.Wongnikong, W., van Brunschot, S. L., Hereward, J. P., De Barro, P. J. & Walter, G. H. Testing mate recognition through reciprocal crosses of two native populations of the whitefly Bemisia tabaci (Gennadius) in Australia. Bull. Entomol. Res. 110, 328–339. https://doi.org/10.1017/S0007485319000683 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Mugerwa, H., Wang, H.-L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).Article 
    PubMed 

    Google Scholar 
    32.Delatte, H. et al. A new silverleaf-inducing biotype Ms of Bemisia tabaci (Hemiptera: Aleyrodidae) indigenous to the islands of the south-west Indian Ocean. Bull. Entomol. Res. 95, 29–35. https://doi.org/10.1079/Ber2004337 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Boykin, L. M., Savill, A. & De Barro, P. Updated mtCOI reference dataset for the Bemisia tabaci species complex. F1000Research 6, 1835. https://doi.org/10.12688/f1000research.12858.1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Liu, S. S., Colvin, J. & De Barro, P. J. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there?. J Integr Agr 11, 176–186. https://doi.org/10.1016/S2095-3119(12)60002-1 (2012).Article 

    Google Scholar 
    35.Tay, W. T. et al. The trouble with MEAM2: Implications of pseudogenes on species delimitation in the globally invasive Bemisia tabaci (Hemiptera: Aleyrodidae) cryptic species complex. Genome Biol. Evol. 9, 2732–2738. https://doi.org/10.1093/gbe/evx173 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Kunz, D. et al. Draft mitochondrial DNA genome of a 1920 Barbados cryptic Bemisia tabaci “New World” species (Hemiptera: Aleyrodidae). Mitochondrial DNA B 4, 1183–1184. https://doi.org/10.1080/23802359.2019.1591197 (2019).Article 

    Google Scholar 
    37.Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. U.S.A. 113, 7575–7579. https://doi.org/10.1073/pnas.1602205113 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Wosula, E. N., Chen, W. B., Fei, Z. J. & Legg, J. P. Unravelling the genetic diversity among cassava Bemisia tabaci whiteflies using NextRAD sequencing. Genome Biol. Evol. 9, 2958–2973. https://doi.org/10.1093/gbe/evx219 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Thresh, J. M., Fargette, D. & Otim-Nape, G. W. Effects of African cassava mosaic geminivirus on the yield of cassava. Trop. Sci. 34, 26–42 (1994).
    Google Scholar 
    40.Legg, J. et al. A global alliance declaring war on cassava viruses in Africa. Food Secur. 6, 231–248. https://doi.org/10.1007/s12571-014-0340-x (2014).Article 

    Google Scholar 
    41.Legg, J. P. et al. Biology and management of Bemisia whitefly vectors of cassava virus pandemics in Africa. Pest Manag. Sci. 70, 1446–1453. https://doi.org/10.1002/ps.3793 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Berry, S. D. et al. Molecular evidence for five distinct Bemisia tabaci (Homoptera: Aleyrodidae) geographic haplotypes associated with cassava plants in sub-Saharan Africa. Ann. Entomol. Soc. Am. 97, 852–859. https://doi.org/10.1603/0013-8746(2004)097[0852:Meffdb]2.0.Co;2 (2004).CAS 
    Article 

    Google Scholar 
    43.Mugerwa, H., Rey, M. E. C., Tairo, F., Ndunguru, J. & Sseruwagi, P. Two sub-Saharan Africa 1 populations of Bemisia tabaci exhibit distinct biological differences in fecundity and survivorship on cassava. Crop Prot. 117, 7–14. https://doi.org/10.1016/j.cropro.2018.11.011 (2019).Article 

    Google Scholar 
    44.Ghosh, S., Bouvaine, S. & Maruthi, M. N. Prevalence and genetic diversity of endosymbiotic bacteria infecting cassava whiteflies in Africa. BMC Microbiol. https://doi.org/10.1186/s12866-015-0425-5 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population-structure. Evolution 38, 1358–1370. https://doi.org/10.2307/2408641 (1984).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Ghosh, S., Bouvaine, S., Richardson, S. C. W., Ghanim, M. & Maruthi, M. N. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. J. Pest Sci. 91, 17–28. https://doi.org/10.1007/s10340-017-0910-8 (2018).Article 

    Google Scholar 
    47.Elfekih, S. et al. Evolutionary genomics of Bemisia tabaci and characterization of its endosymbiont metacommunities using nextRAD sequencing. International Plant and Animal Genome Asia, Singapore 23–25 July 2015 (2015).48.Elfekih, S. et al. Genome-wide SNPs Decipher Global Incursion pathways in the Bemisia tabaci species complex. International Plant and Animal Genome Conferences San Diego, 9–13 January 2016 (2016).49.Elfekih, S. et al. Genome-wide scans unravel fine-scale invasion routes in the Bemisia tabaci species complex. 2nd International Whitefly Symposium, Arusha, Tanzania. p38, 14–19 February 2016 (2016).50.Boykin, L. M., Bell, C. D., Evans, G., Small, I. & De Barro, P. J. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)? Dating, diversification and biogeographic evidence revealed. BMC Evol. Biol. 13, 228. https://doi.org/10.1186/1471-2148-13-228 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Boykin, L. M. et al. Review and guide to a future naming system of African Bemisia tabaci species. Syst. Entomol. 43, 427–433. https://doi.org/10.1111/syen.12294 (2018).Article 

    Google Scholar 
    52.Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    53.Hanemaaijer, M. J. et al. Mitochondrial genomes of Anophelesarabiensis, An. gambiae and An. coluzzii show no clear species division [version 2; peer review: 2 approved]. F1000Research 7, 347. https://doi.org/10.12688/f1000research.13807.2 (2019).Article 
    PubMed Central 

    Google Scholar 
    54.Tabachnick, W. J. Culicoides variipennis and bluetongue-virus epidemiology in the United States. Annu. Rev. Entomol. 41, 23–43. https://doi.org/10.1146/annurev.en.41.010196.000323 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Legg, J. P., French, R., Rogan, D., Okao-Okuja, G. & Brown, J. K. A distinct Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae) genotype cluster is associated with the epidemic of severe cassava mosaic virus disease in Uganda. Mol. Ecol. 11, 1219–1229. https://doi.org/10.1046/j.1365-294X.2002.01514.x (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Colvin, J., Omongo, C. A., Maruthi, M. N., Otim-Nape, G. W. & Thresh, J. M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathol. 53, 577–584. https://doi.org/10.1111/j.1365-3059.2004.01062.x (2004).Article 

    Google Scholar 
    57.Polston, J. E., De Barro, P. & Boykin, L. M. Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Manag. Sci. 70, 1547–1552. https://doi.org/10.1002/ps.3738 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Ally, H. M. et al. What has changed in the outbreaking populations of the severe crop pest whitefly species in cassava in two decades?. Sci. Rep. https://doi.org/10.1038/s41598-019-50259-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Kalyebi, A. et al. Within-season changes in land use impact pest abundance in smallholder African cassava production systems. Insects (2021) (Revised Submitted).60.Kalyebi, A. et al. African cassava whitefly, Bemisia tabaci, cassava colonization preferences and control implications. PLoS ONE 13, e0204862. https://doi.org/10.1371/journal.pone.0204862 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Macfadyen, S. et al. Landscape factors and how they influence whitefly pests in cassava fields across East Africa. Landsc. Ecol. 36, 45–67. https://doi.org/10.1007/s10980-020-01099-1 (2021).Article 

    Google Scholar 
    62.Tay, W. T. et al. A high-throughput amplicon sequencing approach for population-wide species diversity and composition survey. bioRxiv https://doi.org/10.1101/2020.10.12.336545 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Manani, D. M., Ateka, E. M., Nyanjom, S. R. G. & Boykin, L. M. Phylogenetic relationships among whiteflies in the Bemisia tabaci(Gennadius) species complex from major cassava growing areas in Kenya. Insects https://doi.org/10.3390/insects8010025 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Gottelli, D., Marino, J., Sillero-Zubiri, C. & Funk, S. M. The effect of the last glacial age on speciation and population genetic structure of the endangered Ethiopian wolf (Canis simensis). Mol. Ecol. 13, 2275–2286. https://doi.org/10.1111/j.1365-294X.2004.02226.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Sezonlin, M. et al. Phylogeography and population genetics of the maize stalk borer Busseola fusca (Lepidoptera, Noctuidae) in sub-Saharan Africa. Mol. Ecol. 15, 407–420. https://doi.org/10.1111/j.1365-294X.2005.02761.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Lehmann, T. et al. The rift valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J. Hered. 90, 613–621. https://doi.org/10.1093/jhered/90.6.613 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Schmidt, H. et al. Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events. Commun. Biol. 2, 473. https://doi.org/10.1038/s42003-019-0717-7 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Mairal, M. et al. Geographic barriers and Pleistocene climate change shaped patterns of genetic variation in the Eastern Afromontane biodiversity hotspot. Sci. Rep. 7, 45749. https://doi.org/10.1038/srep45749 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    69.Freilich, X. et al. Comparative Phylogeography of Ethiopian anurans: Impact of the Great Rift Valley and Pleistocene climate change. BMC Evol. Biol. 16, 206. https://doi.org/10.1186/s12862-016-0774-1 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Huhndorf, M. H., Peterhans, J. C. K. & Loew, S. S. Comparative phylogeography of three endemic rodents from the Albertine Rift, east central Africa. Mol. Ecol. 16, 663–674. https://doi.org/10.1111/j.1365-294X.2007.03153.x (2007).Article 
    PubMed 

    Google Scholar 
    71.Matsubayashi, K. W., Ohshima, I. & Nosil, P. Ecological speciation in phytophagous insects. Entomol. Exp. Appl. 134, 1–27. https://doi.org/10.1111/j.1570-7458.2009.00916.x (2010).Article 

    Google Scholar 
    72.Malka, O. et al. Species-complex diversification and host-plant associations in Bemisia tabaci: A plant-defence, detoxification perspective revealed by RNA-Seq analyses. Mol. Ecol. 27, 4241–4256. https://doi.org/10.1111/mec.14865 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Chen, W. B. et al. The draft genome of whitefly Bemisia tabaciMEAM1, a global crop pest, provides novel insights into virus transmission, host adaptation, and insecticide resistance. BMC Biol. https://doi.org/10.1186/s12915-016-0321-y (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Xie, W. et al. The invasive MED/Q Bemisia tabaci genome: A tale of gene loss and gene gain. BMC Genomics 19, 68. https://doi.org/10.1186/s12864-018-4448-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595. https://doi.org/10.1093/bioinformatics/btp698 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Eaton, D. A. R. PyRAD: Assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30, 1844–1849. https://doi.org/10.1093/bioinformatics/btu121 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Zheng, X. W. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. https://doi.org/10.1101/gr.094052.109 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    83.Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. https://doi.org/10.1371/journal.pgen.1002967 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Decker, J. E. et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 10, e1004254. https://doi.org/10.1371/journal.pgen.1004254 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Gompert, Z. et al. Admixture and the organization of genetic diversity in a butterfly species complex revealed through common and rare genetic variants. Mol. Ecol. 23, 4555–4573. https://doi.org/10.1111/mec.12811 (2014).Article 
    PubMed 

    Google Scholar  More