1.Smith, C. E. G. The history of dengue in tropical asia and its probable relationship to the mosquito aedes aegypti. J. Trop. Med. Hyg. 59, 243–51 (1956).CAS
PubMed
Google Scholar
2.Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosquito Control Assoc. 14, 83–94 (1998).CAS
Google Scholar
3.Lounibos, L. P. Invasions by insect vectors of human disease. Ann. Rev. Entomol. 47, 233–266. https://doi.org/10.1146/annurev.ento.47.091201.145206 (2002).CAS
Article
Google Scholar
4.Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295. https://doi.org/10.1111/mec.12925 (2015).Article
PubMed
Google Scholar
5.Sota, T. & Mogi, M. Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomologia Experimentalis et Applicata 63, 155–161. https://doi.org/10.1111/j.1570-7458.1992.tb01570.x (1992).Article
Google Scholar
6.Poelchau, M. F., Reynolds, J. A., Denlinger, D. L., Elsik, C. G. & Armbruster, P. A. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genom. 12, 619. https://doi.org/10.1186/1471-2164-12-619 (2011).CAS
Article
Google Scholar
7.Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468. https://doi.org/10.1016/j.pt.2013.07.003 (2013).Article
PubMed
PubMed Central
Google Scholar
8.Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 11, 1177–1185. https://doi.org/10.1016/j.micinf.2009.05.005 (2009).CAS
Article
PubMed
Google Scholar
9.Wu, J.-Y., Lun, Z.-R., James, A. A. & Chen, X.-G. Dengue fever in Mainland China. Am. J. Trop. Med. Hyg. 83, 664–671. https://doi.org/10.4269/ajtmh.2010.09-0755 (2010).Article
PubMed
PubMed Central
Google Scholar
10.Gasperi, G. et al. A new threat looming over the mediterranean basin: emergence of viral diseases transmitted by aedes albopictus mosquitoes. PLOS Negl. Trop. Dis. 6, e1836. https://doi.org/10.1371/journal.pntd.0001836 (2012).Article
PubMed
PubMed Central
Google Scholar
11.Rezza, G. Aedes albopictus and the reemergence of Dengue. BMC Publ. Health 12, 72. https://doi.org/10.1186/1471-2458-12-72 (2012).Article
Google Scholar
12.Higgs, S. The 2005–2006 chikungunya epidemic in the Indian Ocean. Vector-Borne Zoo. Dis. 6, 115–116. https://doi.org/10.1089/vbz.2006.6.115 (2006).Article
Google Scholar
13.Ratsitorahina, M. et al. Outbreak of Dengue and Chikungunya Fevers, Toamasina, Madagascar, 2006. Emerg. Infect. Dis. 14, 1135–1137. https://doi.org/10.3201/eid1407.071521 (2008).Article
PubMed
PubMed Central
Google Scholar
14.Grard, G. et al. Zika virus in gabon (Central Africa): 2007—A new threat from aedes albopictus?. PLOS Negl. Trop. Dis. 8, e2681. https://doi.org/10.1371/journal.pntd.0002681 (2014).Article
PubMed
PubMed Central
Google Scholar
15.Vincent, M. et al. From the threat to the large outbreak: dengue on Reunion Island, 2015 to 2018. Eurosurveillhttps://doi.org/10.2807/1560-7917.ES.2019.24.47.1900346 (2019).Article
Google Scholar
16.Rezza, G. et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846. https://doi.org/10.1016/S0140-6736(07)61779-6 (2007).CAS
Article
PubMed
Google Scholar
17.Lindh, E. et al. The Italian 2017 outbreak chikungunya virus belongs to an emerging aedes albopictus-adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect. Dis.https://doi.org/10.1093/ofid/ofy321 (2018).Article
PubMed
PubMed Central
Google Scholar
18.Ruche, G. L. et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance 15, 19676. https://doi.org/10.2807/ese.15.39.19676-en (2010).Article
PubMed
Google Scholar
19.Gjenero-Margan, I. et al. Autochthonous dengue fever in Croatia, August–September 2010. Eurosurveillance 16, 19805. https://doi.org/10.2807/ese.16.09.19805-en (2011).Article
PubMed
Google Scholar
20.Rovida, F. et al. Viremic Dengue virus infections in travellers: potential for local outbreak in Northern Italy. J. Clin. Virol. 50, 76–79. https://doi.org/10.1016/j.jcv.2010.09.015 (2011).Article
PubMed
Google Scholar
21.WHO. Dengue vaccine: WHO position paper—September 2018. Weekly epidemiological record 457–476 (2018).22.World Health Organization and others. Dengue and severe dengue. Tech. Rep., World Health Organization. Regional Office for the Eastern Mediterranean (2019).23.Organization, W. H. Dengue : Guidelines for Diagnosis, Treatment, Prevention and Control (WHO, 2009). Google-Books-ID: dlc0YSIyGYwC.24.Connelly, C., Florida, C. & Control, M. The State of the Mission as Defined by Mosquito Controllers, Regulators, and Environmental Managers 2009 2009 (University of Florida, Vero Beach, 2009).
Google Scholar
25.Achee, N. L. et al. Alternative strategies for mosquito-borne arbovirus control. PLOS Negl. Trop. Dis. 13, e0006822. https://doi.org/10.1371/journal.pntd.0006822 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
26.Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: effective larval and adult control measures against the asian tiger mosquito, aedes albopictus (diptera: culicidae). North Am. J. Med. Entomol. 53, 1029–1047. https://doi.org/10.1093/jme/tjw096 (2016).Article
Google Scholar
27.Mackay, A. J., Amador, M. & Barrera, R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasites & Vectors 6, 225. https://doi.org/10.1186/1756-3305-6-225 (2013).CAS
Article
Google Scholar
28.Barrera, R. et al. Impact of autocidal gravid ovitraps on chikungunya virus incidence in aedes aegypti (diptera: culicidae) in areas with and without traps. J. Med. Entomol. 54, 387–395. https://doi.org/10.1093/jme/tjw187 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
29.Barrera, R., Amador, M., Munoz, J. & Acevedo, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasites & Vectors 11, 88. https://doi.org/10.1186/s13071-017-2596-4 (2018).Article
Google Scholar
30.Jawara, M. et al. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in the gambia. PLOS ONE 4, e8167. https://doi.org/10.1371/journal.pone.0008167 (2009).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
31.Englbrecht, C., Gordon, S., Venturelli, C., Rose, A. & Geier, M. Evaluation of BG-sentinel trap as a management tool to reduce aedes albopictus nuisance in an urban environment in Italy. Moco 31, 16–25. https://doi.org/10.2987/14-6444.1 (2015).Article
Google Scholar
32.Lacroix, R., Delatte, H., Hue, T., Dehecq, J. S. & Reiter, P. Adaptation of the BG-Sentinel trap to capture male and female Aedes albopictus mosquitoes. Med. Vet. Entomol. 23, 160–162. https://doi.org/10.1111/j.1365-2915.2009.00806.x (2009).CAS
Article
PubMed
Google Scholar
33.Suman, D. S. et al. Point-source and area-wide field studies of pyriproxyfen autodissemination against urban container-inhabiting mosquitoes. Acta Trop. 135, 96–103. https://doi.org/10.1016/j.actatropica.2014.03.026 (2014).CAS
Article
PubMed
Google Scholar
34.Devine, G. Auto-dissemination of pyriproxyfen for the control of container-inhabiting mosquitoes: a progress review. Outlooks Pest Manag. 27, 164–167 (2016).ADS
Article
Google Scholar
35.Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats., Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. USA 106, 11530–11534. https://doi.org/10.1073/pnas.0901369106 (2009).ADS
Article
PubMed
Google Scholar
36.Caputo, B. et al. The auto-dissemination approach: a novel concept to fight aedes albopictus in urban areas. PLOS Negl. Trop. Dis. 6, e1793. https://doi.org/10.1371/journal.pntd.0001793 (2012).Article
PubMed
PubMed Central
Google Scholar
37.Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45. https://doi.org/10.1111/j.1365-2915.2011.00970.x (2012).CAS
Article
PubMed
Google Scholar
38.El-Sayed, A. M., Suckling, D. M., Wearing, C. H. & Byers, J. A. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 99, 1550–1564. https://doi.org/10.1093/jee/99.5.1550 (2006).CAS
Article
PubMed
Google Scholar
39.Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT): an introduction. Entomol. Exp. Appl. 164, 151–154. https://doi.org/10.1111/eea.12619 (2017).Article
Google Scholar
40.Flores, H. A. & O’Neill, S. L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol.https://doi.org/10.1038/s41579-018-0025-0 (2018).Article
PubMed
Google Scholar
41.Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).CAS
Article
Google Scholar
42.Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61. https://doi.org/10.1038/s41586-019-1407-9 (2019).CAS
Article
PubMed
Google Scholar
43.Bouyer, J. & Vreysen, M. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends in Parasitology (2020) (in press).44.Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoo. Dis. 10, 295–311. https://doi.org/10.1089/vbz.2009.0014 (2010).Article
Google Scholar
45.Baldacchino, F. C. et al. Pest management science: wiley online library. Pest Manag. Sci.https://doi.org/10.1002/ps.4044 (2015).46.Lees, R., Gilles, J., Hendrichs, J., Vreysen, M. & Bourtzis, K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 10, 156–162. https://doi.org/10.1016/j.cois.2015.05.011 (2015).Article
PubMed
Google Scholar
47.Pleydell, D. R. J. & Bouyer, J. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Commun. Biol. 2, 201. https://doi.org/10.1038/s42003-019-0451-1 (2019).Article
PubMed
PubMed Central
Google Scholar
48.Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273. https://doi.org/10.1016/j.pt.2014.04.002 (2014).Article
PubMed
Google Scholar
49.Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed. Lancet Glob. Health 4, e364. https://doi.org/10.1016/S2214-109X(16)00082-6 (2016).Article
PubMed
Google Scholar
50.Invest, J. & Lucas, J. Pyriproxyfen as a mosquito larvicide. Proceedings of the Sixth International Conference on Urban Pests 239–245, (2008).51.Maoz, D. et al. Community effectiveness of pyriproxyfen as a dengue vector control method: a systematic review. PLOS Negl. Trop. Dis. 11, e0005651. https://doi.org/10.1371/journal.pntd.0005651 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
52.White, M. T. et al. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4, 153. https://doi.org/10.1186/1756-3305-4-153 (2011).Article
PubMed
PubMed Central
Google Scholar
53.Cailly, P. et al. Climate-driven abundance model to assess mosquito control strategies. Ecol. Model. ECOL MODEL 227, 7–17. https://doi.org/10.1016/j.ecolmodel.2011.10.027 (2012).ADS
Article
Google Scholar
54.Arifin, S. N., Madey, G. R. & Collins, F. H. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malar J. 12, 290. https://doi.org/10.1186/1475-2875-12-290 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
55.Lee, S. S., Baker, R. E., Gaffney, E. A. & White, S. M. Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques. Theor. Ecol. 6, 427–442. https://doi.org/10.1007/s12080-013-0178-4 (2013).Article
Google Scholar
56.Yakob, L. & Yan, G. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLOS ONE 4, e6921. https://doi.org/10.1371/journal.pone.0006921 (2009).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
57.Almeida, L., Duprez, M., Privat, Y. & Vauchelet, N. Control strategies on mosquitos population for the fight against arboviruses. arXiv:1901.05688 [math] (2019).58.North, A. R., Burt, A. & Godfray, H. C. J. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 17, 26. https://doi.org/10.1186/s12915-019-0645-5 (2019).Article
PubMed
PubMed Central
Google Scholar
59.Strugarek, M., Bossin, H. & Dumont, Y. On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl. Math. Model. 68, 443–470. https://doi.org/10.1016/j.apm.2018.11.026 (2019).MathSciNet
Article
MATH
Google Scholar
60.Maiti, A., Patra, B. & Samanta, G. P. Sterile insect release method as a control measure of insect pests: a mathematical model. J. Appl. Math. Comput. 22, 71–86. https://doi.org/10.1007/BF02832038 (2006).MathSciNet
Article
MATH
Google Scholar
61.White, S. M., Rohani, P. & Sait, S. M. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J. Appl. Ecol. 47, 1329–1339. https://doi.org/10.1111/j.1365-2664.2010.01880.x (2010) (WOS:000283983200020).Article
Google Scholar
62.Dufourd, C. & Dumont, Y. Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Comput. Math. Appl. 66, 1695–1715. https://doi.org/10.1016/j.camwa.2013.03.024 (2013).MathSciNet
Article
MATH
Google Scholar
63.Fister, K. R., McCarthy, M. L., Oppenheimer, S. F. & Collins, C. Optimal control of insects through sterile insect release and habitat modification. Math. Biosci. 244, 201–212. https://doi.org/10.1016/j.mbs.2013.05.008 (2013) (WOS:000322805400014).MathSciNet
Article
MATH
Google Scholar
64.Cai, L., Ai, S. & Li, J. Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J. Appl. Math. 74, 1786–1809. https://doi.org/10.1137/13094102X (2014) (WOS:000346845900004).MathSciNet
Article
MATH
Google Scholar
65.Evans, T. P. & Bishop, S. R. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Math. Biosci. 254, 6–27. https://doi.org/10.1016/j.mbs.2014.06.001 (2014).MathSciNet
Article
MATH
Google Scholar
66.Li, J. & Yuan, Z. Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. 9, 1–14. https://doi.org/10.1080/17513758.2014.977971 (2015).MathSciNet
Article
PubMed
MATH
Google Scholar
67.Hendron, R.-W.S. & Bonsall, M. B. The interplay of vaccination and vector control on small dengue networks. J. Theor. Biol. 407, 349–361. https://doi.org/10.1016/j.jtbi.2016.07.034 (2016).MathSciNet
Article
PubMed
PubMed Central
MATH
Google Scholar
68.Huang, M., Song, X. & Li, J. Modelling and analysis of impulsive releases of sterile mosquitoes. J. Biol. Dyn. 11, 147–171. https://doi.org/10.1080/17513758.2016.1254286 (2017) (WOS:000389042600004).MathSciNet
Article
PubMed
MATH
Google Scholar
69.Mishra, A., Ambrosio, B., Gakkhar, S. & Aziz-Alaoui, M. A. A network model for control of dengue epidemic using sterile insect technique. Math. Biosci. Eng. 15, 441–460. https://doi.org/10.3934/mbe.2018020 (2018) (WOS:000412001800006).MathSciNet
Article
PubMed
MATH
Google Scholar
70.Multerer, L., Smith, T. & Chitnis, N. Modeling the impact of sterile males on an Aedes aegypti population with optimal control. Math. Biosci. 311, 91–102. https://doi.org/10.1016/j.mbs.2019.03.003 (2019).MathSciNet
Article
PubMed
MATH
Google Scholar
71.Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002. https://doi.org/10.1016/j.ecolmodel.2020.109002 (2020).Article
Google Scholar
72.ANSES. Portail de signalement du moustique tigre.73.Delisle, E. et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance 20, 21108. https://doi.org/10.2807/1560-7917.ES2015.20.17.21108 (2015) (Publisher: European Centre for Disease Prevention and Control).Article
PubMed
Google Scholar
74.Tran, A. et al. A rainfall- and temperature-driven abundance model for aedes albopictus populations. Int. J. Environ. Res. Publ. Health 10, 1698–1719. https://doi.org/10.3390/ijerph10051698 (2013).Article
Google Scholar
75.WHO & others. WHO position statement on integrated vector management. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire83, 177–181 (2008).76.Johnson, B. J., Ritchie, S. A. & Fonseca, D. M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8, 5. https://doi.org/10.3390/insects8010005 (2017).Article
PubMed Central
Google Scholar
77.Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion?: biologie et contrôle. Parasite 15, 3–13. https://doi.org/10.1051/parasite/2008151003 (2008).CAS
Article
PubMed
Google Scholar
78.Dufourd, C. & Dumont, Y. Modeling and simulations of mosquito dispersal: the case of aedes albopictus. BIOMATH 1, 1209262. https://doi.org/10.11145/j.biomath.2012.09.262 (2012).MathSciNet
Article
MATH
Google Scholar
79.Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336. https://doi.org/10.1016/j.pt.2020.01.004 (2020).Article
PubMed
Google Scholar
80.McIntire, K. M. & Juliano, S. A. How can mortality increase population size? A test of two mechanistic hypotheses. Ecology 99, 1660–1670. https://doi.org/10.1002/ecy.2375 (2018).Article
PubMed
PubMed Central
Google Scholar
81.Neale, J. T. & Juliano, S. A. Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?. Ecosphere 10, e02855. https://doi.org/10.1002/ecs2.2855 (2019).Article
PubMed
PubMed Central
Google Scholar
82.Seixas, G. et al. An evaluation of efficacy of the auto-dissemination technique as a tool for Aedes aegypti control in Madeira, Portugal. Parasites Vectors 12, 202. https://doi.org/10.1186/s13071-019-3454-3 (2019).Article
PubMed
PubMed Central
Google Scholar
83.Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLOS Negl. Trop. Dis. 9, e0003406. https://doi.org/10.1371/journal.pntd.0003406 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
84.Ritchie, S. A., Long, S., Hart, A., Webb, C. E. & Russell, R. C. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J. Am. Mosq. Control Assoc. 19, 235–242 (2003).PubMed
Google Scholar
85.Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and Survival of Male and Female Aedes albopictus (Diptera: Culicidae) on Réunion Island. Ment 46, 1117–1124. https://doi.org/10.1603/033.046.0519 (2009).CAS
Article
Google Scholar
86.Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Torre, A. D. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. Med. Vet. Entomol. 24, 361–368. https://doi.org/10.1111/j.1365-2915.2010.00898.x (2010).CAS
Article
PubMed
Google Scholar
87.Garziera, L. et al. Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil. Entomol. Exp. Appl. 164, 327–339. https://doi.org/10.1111/eea.12618 (2017) (WOS:000413403700015).Article
Google Scholar
88.Tran, A. et al. Complementarity of empirical and process-based approaches to modelling mosquito population dynamics with Aedes albopictus as an example-Application to the development of an operational mapping tool of vector populations. PLOS ONE 15, e0227407. https://doi.org/10.1371/journal.pone.0227407 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
89.Baldacchino, F. et al. An integrated pest control strategy against the Asian tiger mosquito in northern Italy: a case study. Pest Manag. Sci. 73, 87–93. https://doi.org/10.1002/ps.4417 (2017).CAS
Article
PubMed
Google Scholar
90.Gentile, J. E., Rund, S. S. C. & Madey, G. R. Modelling sterile insect technique to control the population of Anopheles gambiae. Malar. J. 14, 92. https://doi.org/10.1186/s12936-015-0587-5 (2015) (WOS:000350605300001).CAS
Article
PubMed
PubMed Central
Google Scholar
91.Perrin, A. et al. Mosquito densoviruses: the revival of a biological control agent against urban Aedes vectors of arboviruses. bioRxiv 2020.04.23.055830, https://doi.org/10.1101/2020.04.23.055830 (2020). Publisher: Cold Spring Harbor Laboratory Section: New Results.92.Burattini, M. N. et al. Modelling the control strategies against dengue in Singapore. Epidemiol. Infect. 136, 309–319. https://doi.org/10.1017/S0950268807008667 (2008).CAS
Article
PubMed
Google Scholar
93.Yang, H. M. & Ferreira, C. P. Assessing the effects of vector control on dengue transmission. Appl. Math. Comput. 198, 401–413. https://doi.org/10.1016/j.amc.2007.08.046 (2008).MathSciNet
Article
MATH
Google Scholar
94.Dumont, Y. & Chiroleu, F. Vector control for the Chikungunya disease. Math. Biosci. Eng. 7, 313–345 (2010).MathSciNet
Article
Google Scholar
95.Hladish, T. J. et al. Designing effective control of dengue with combined interventions. Proc. Natl. Acad. Sci. 117, 3319–3325 (2020).CAS
Article
Google Scholar
96.Tang, B. et al. The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China. Int. J. Infect. Dis. 95, 288–293. https://doi.org/10.1016/j.ijid.2020.03.018 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
97.Jr, R. C. R. et al. Estimating the impact of city-wide Aedes aegypti population control: an observational study in Iquitos, Peru. PLOS Negl. Trop. Dis. 13, e0007255. https://doi.org/10.1371/journal.pntd.0007255 (2019).98.Wahid, I. et al. Integrated vector management with additional pre-transmission season thermal fogging is associated with a reduction in dengue incidence in Makassar, Indonesia: Results of an 8-year observational study. PLOS Negl. Trop. Dis. 13, e0007606. https://doi.org/10.1371/journal.pntd.0007606 (2019).Article
PubMed
PubMed Central
Google Scholar
99.Castro, M. et al. A community empowerment strategy embedded in a routine dengue vector control programme: a cluster randomised controlled trial. Trans. R. Soc. Trop. Med. Hyg. 106, 315–321. https://doi.org/10.1016/j.trstmh.2012.01.013 (2012).Article
PubMed
Google Scholar
100.Andersson, N. et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 351, h3267. https://doi.org/10.1136/bmj.h3267 (2015).Article
PubMed
PubMed Central
Google Scholar
101.Gubler, D. J. & Clark, G. G. Community involvement in the control of Aedes aegypti. Acta Trop. 61, 169–179. https://doi.org/10.1016/0001-706X(95)00103-L (1996).CAS
Article
PubMed
Google Scholar
102.Baly, A. et al. Cost effectiveness of Aedes aegypti control programmes: participatory versus vertical. Trans. R. Soc. Trop. Med. Hyg. 101, 578–586. https://doi.org/10.1016/j.trstmh.2007.01.002 (2007).CAS
Article
PubMed
Google Scholar
103.Alphey, N., Alphey, L. & Bonsall, M. B. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One 6, e25384. https://doi.org/10.1371/journal.pone.0025384 (2011) (WOS:000295966900023).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
104.Fontenille, D. et al.La lutte antivectorielle en France. IRD Éditions (2009).105.Oliva, C. F. et al. The sterile insect technique for controlling populations of aedes albopictus (diptera: culicidae) on reunion island: mating vigour of sterilized males. PLOS ONE 7, e49414. https://doi.org/10.1371/journal.pone.0049414 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
106.Madakacherry, O., Lees, R. S. & Gilles, J. R. L. Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop. 132(Suppl), S124-129. https://doi.org/10.1016/j.actatropica.2013.11.020 (2014).Article
PubMed
Google Scholar
107.Abad-Franch, F., Zamora-Perea, E., Ferraz, G., Padilla-Torres, S. D. & Luz, S. L. B. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale. PLoS Negl. Trop. Dis.https://doi.org/10.1371/journal.pntd.0003702 (2015).Article
PubMed
PubMed Central
Google Scholar
108.Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature asian tiger mosquito (diptera: culicidae) populations. J. Med. Entomol.https://doi.org/10.1093/jme/tjaa011 (2020).Article
PubMed
Google Scholar
109.Degener, C. M. et al. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance. Memórias do Instituto Oswaldo Cruz 110, 517–527. https://doi.org/10.1590/0074-02760140374 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
110.Boubidi, S. C. Surveillance et contrôle du moustique tigre, Aedes albopictus (Skuse, 1894) à Nice, sud de la France (2016).111.Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. Moco 22, 229–238. https://doi.org/10.2987/8756-971X(2006)22[229:NTFSOA]2.0.CO;2 (2006).Article
Google Scholar More