More stories

  • in

    Reply to: “Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands”

    1.Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 1–11 (2020).Article 

    Google Scholar 
    2.Tonn, B., Komainda, M. & Isselstein, J. Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands. Nat. Commun. https://doi.org/10.1038/s41467-021-22309-7 (2021).3.Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).Article 

    Google Scholar 
    4.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    5.Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549 (2007).ADS 
    Article 

    Google Scholar 
    6.Deak, A., Hall, M., Sanderson, M. & Archibald, D. Production and nutritive value of grazed simple and complex forage mixtures. Agron. J. 99, 814–821 (2007).Article 

    Google Scholar 
    7.Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240 (2014).Article 

    Google Scholar 
    8.Oelmann, Y., Vogel, A., Wegener, F., Weigelt, A. & Scherer-Lorenzen, M. Management intensity modifies plant diversity effects on N yield and mineral N in soil. Soil Sci. Soc. Am. J. 79, 559–568 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Schaub, S., Buchmann, N., Lüscher, A. & Finger, R. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 168, 106488 (2020b).Article 

    Google Scholar 
    10.Trenbath, B. R. Biomass productivity of mixtures. Adv. Agron. 26, 177–210 (1974).Article 

    Google Scholar 
    11.Binder, S., Isbell, F., Polasky, S., Catford, J. A. & Tilman, D. Grassland biodiversity can pay. Proc. Natl Acad. Sci. USA 115, 3876–3881 (2018).CAS 
    Article 

    Google Scholar 
    12.Weigelt, A., Weisser, W., Buchmann, N. & Scherer‐Lorenzen, M. Biodiversity for multifunctional grasslands: equal productivity in high‐diversity low‐input and low‐diversity high‐input systems. Biogeosciences 6, 1695–1706 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Vogel, A., Scherer-Lorenzen, M. & Weigelt, A. Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE 7, e36992 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3‐year continental‐scale field experiment. J. Appl. Ecol. 50, 365–375 (2013).Article 

    Google Scholar 
    15.Jans, F., Kessler, J., Münger, A. & Schlegel, P. in Fütterungsempfehlungen für Wiederkäuer (Grünes Buch) Ch. 7 (Agroscope, 2015).16.FAO (Food and Agriculture Organization of the United Nations), IDF (International Dairy Federation), and IFCN (IFCN Dairy Research Network). World Mapping of Animal Feeding Systems in the Dairy Sector. (FAO, 2014).17.Delaby, L., Peyraud, J. L., Foucher, N. & Michel, G. The effect of two contrasting grazing managements and level of concentrate supplementation on the performance of grazing dairy cows. Anim. Res. 52, 437–460 (2003).Article 

    Google Scholar 
    18.Leiber, F., Wettstein, H. R. & Kreuzer, M. Is the intrinsic potassium content of forages an important factor in intake regulation of dairy cows? J. Anim. Physiol. Anim. Nutr. 93, 391–399 (2009).CAS 
    Article 

    Google Scholar 
    19.Schaub, S. et al. Data: forage quality and biomass yield of the Management Experiment set up within the Jena Experiment. ETH Zur. Res. Collect. https://doi.org/10.3929/ethz-b-000374100 (2019). More

  • in

    Understanding drivers of wild oyster population persistence

    1.Bayne, B. et al. The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: a dissenting view. J. Shellfish Res. 36, 545–547 (2017).Article 

    Google Scholar 
    2.Mann, R. Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures. J. Mar. Biol. Assoc. UK 59, 95–110 (1979).CAS 
    Article 

    Google Scholar 
    3.Humphreys, J., Herbert, R. J., Roberts, C. & Fletcher, S. A reappraisal of the history and economics of the Pacific oyster in Britain. Aquaculture 428, 117–124 (2014).Article 

    Google Scholar 
    4.Ellis, T., Gardiner, R., Gubbins, M., Reese, A. & Smith, D. Aquaculture statistics for the UK, with a focus on England and Wales 2012. Centre for Environment Fisheries & Aquaculture Science (Cefas) Weymouth (2015).5.Herbert, R. J. et al. Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe. Biodivers. Conserv. 25, 2835–2865 (2016).Article 

    Google Scholar 
    6.Reise, K., Buschbaum, C., Büttger, H., Rick, J. & Wegner, K. M. Invasion trajectory of Pacific oysters in the northern Wadden Sea. Mar. Biol. 164, 68 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Geburzi, J. C. & McCarthy, M. L. How do they do it? Understanding the success of marine invasive species. In YOUMARES 8—Oceans Across Boundaries: Learning from each other, 109–124 (Springer, 2018).8.Herbert, R., Roberts, C., Humphreys, J. & Fletcher, S. The Pacific oyster (Crassostrea gigas) in the UK: Economic, legal and environmental issues associated with its cultivation, wild establishment and exploitation. Report for the Shellfish Association of Great Britain (2012).9.Fabioux, C., Huvet, A., Le Souchu, P., Le Pennec, M. & Pouvreau, S. Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250, 458–470 (2005).Article 

    Google Scholar 
    10.Diederich, S., Nehls, G., Van Beusekom, J. E. & Reise, K. Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: Invasion accelerated by warm summers?. Helgol. Mar. Res. 59, 97 (2005).ADS 
    Article 

    Google Scholar 
    11.Mills, S.R.A. Population structure and ecology of wild Crassostrea gigas (Thunberg, 1793) on the south coast of England. Ph.D. thesis, University of Southampton (2016).12.Dutertre, M., Beninger, P. G., Barillé, L., Papin, M. & Haure, J. Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Mar. Environ. Res. 69, 1–9 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Chávez-Villalba, J. et al. Broodstock conditioning of the oyster Crassostrea gigas: Origin and temperature effect. Aquaculture 214, 115–130 (2002).Article 

    Google Scholar 
    14.Rico-Villa, B., Pouvreau, S. & Robert, R. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 287, 395–401 (2009).Article 

    Google Scholar 
    15.Li, G. & Hedgecock, D. Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55, 1025–1033 (1998).CAS 
    Article 

    Google Scholar 
    16.Hedge, L. H. & Johnston, E. L. Colonisation of the non-indigenous Pacific oyster Crassostrea gigas determined by predation, size and initial settlement densities. PLoS ONE9 (2014).17.Maurer, D. et al. Reproduction de l’huître creuse dans le Bassin d’Arcachon. Année 2015. Ifremer Report (2016).18.Quayle, D.B. Pacific oyster culture in British Columbia (Department of Fisheries and Oceans, 1988).19.Rico-Villa, B. et al. A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquaculture 282, 54–60 (2008).Article 

    Google Scholar 
    20.Kheder, R. B., Moal, J. & Robert, R. Impact of temperature on larval development and evolution of physiological indices in Crassostrea gigas. Aquaculture 309, 286–289 (2010).Article 

    Google Scholar 
    21.Kennedy, V. S. & Breisch, L. L. Maryland’s Oysters: Research and Management Vol. 81 (University of Maryland College Park, Maryland, 1981).
    Google Scholar 
    22.Helm, M. Cultured aquatic species information programme—Crassostrea gigas. Cultured aquatic species fact sheets. FAO Inland Water Resources and Aquaculture Service (2007).23.Child, A. & Laing, I. Comparative low temperature tolerance of small juvenile European, Ostrea edulis L., and Pacific oysters, Crassostrea gigas Thunberg. Aquacul. Res. 29, 103–113 (1998).Article 

    Google Scholar 
    24.Strand, A., Waenerlund, A. & Lindegarth, S. High tolerance of the Pacific oyster (Crassostrea gigas, Thunberg) to low temperatures. J. Shellfish Res. 30, 733–735 (2011).Article 

    Google Scholar 
    25.Rinde, E. et al. Increased spreading potential of the invasive Pacific oyster (Crassostrea gigas) at its northern distribution limit in Europe due to warmer climate. Mar. Freshw. Res. 68, 252–262 (2017).ADS 
    Article 

    Google Scholar 
    26.Wrange, A.-L. et al. Massive settlements of the Pacific oyster, Crassostrea giga, in Scandinavia. Biol. Invasions 12, 1145–1152 (2010).Article 

    Google Scholar 
    27.Spencer, B., Edwards, D., Kaiser, M. & Richardson, C. Spatfalls of the non-native Pacific oyster, Crassostrea gigas, in British waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 203–217 (1994).Article 

    Google Scholar 
    28.England, N. Pacific oyster survey of the North East Kent European marine sites. Natural England Commissioned Report NECR016 (2009).29.Smith, I. P., Guy, C. & Donnan, D. Pacific oysters, Crassostrea gigas, established in Scotland. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 733–742 (2015).Article 

    Google Scholar 
    30.Cook, E. J. et al. Impacts of climate change on non-native species. Mar. Clim. Change Impact Partnersh. Sci. Rev. 155–166 (2013).31.Cook, E., Beveridge, C., Lamont, P., O’Higgins, T. & Wilding, T. Survey of wild Pacific oyster Crassostrea gigas in Scotland. In Scottish Aquaculture Research Forum Report SARF099 (2014).32.Kochmann, J. Into the wild: documenting and predicting the spread of Pacific oysters (Crassostrea gigas) in Ireland. Ph.D. thesis, University College Dublin (2012).33.Syvret, M., Fitzgerald, A. & Hoare, P. Development of a Pacific oyster aquaculture protocol for the UK: Technical report. Sea Fish Industry Authority, FIFG Project No. 7 (2008).34.d’Auriac, M. B. A. et al. Rapid expansion of the invasive oyster Crassostrea gigas at its northern distribution limit in Europe: Naturally dispersed or introduced? PLoS ONE, 12 (2017).35.Dame, R. F. & Prins, T. C. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol. 31, 409–421 (1997).Article 

    Google Scholar 
    36.Leguerrier, D., Niquil, N., Petiau, A. & Bodoy, A. Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France). Mar. Ecol. Prog. Ser. 273, 147–162 (2004).ADS 
    Article 

    Google Scholar 
    37.Forrest, B. M., Keeley, N. B., Hopkins, G. A., Webb, S. C. & Clement, D. M. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture 298, 1–15 (2009).Article 

    Google Scholar 
    38.Ferreira, J. G. et al. Ecological carrying capacity for shellfish aquaculture: Sustainability of naturally occurring filter-feeders and cultivated bivalves. J. Shellfish Res. 37, 709–726 (2018).Article 

    Google Scholar 
    39.Jordan-Cooley, W. C., Lipcius, R. N., Shaw, L. B., Shen, J. & Shi, J. Bistability in a differential equation model of oyster reef height and sediment accumulation. J. Theor. Biol. 289, 1–11 (2011).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    40.Lipcius, R. N. et al. Modeling quantitative value of habitats for marine and estuarine populations. Front. Mar. Sci. 6, 280 (2019).Article 

    Google Scholar 
    41.Enríquez-Díaz, M., Pouvreau, S., Chávez-Villalba, J. & Le Pennec, M. Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: Evidence of an environment-dependent strategy. Aquacult. Int. 17, 491–506 (2009).Article 

    Google Scholar 
    42.Wood, L. E. et al. Unaided dispersal risk of Magallana gigas into and around the UK: Combining particle tracking modelling and environmental suitability scoring. Biological Invasions, 1–20 (2021).43.Hily, C. Prolifération de l’huître creuse du Pacifique Crassotrea gigas sur les côtes manche-atlantique françaises: bilan, dynamique, conséquences écologiques, économiques et ethnologiques, expériences et scénarios de gestion. Rapport LITEAU, 20 (2009).44.McKnight, W. & Chudleigh, I. J. Pacific oyster Crassostrea gigas control within the inter-tidal zone of the North East Kent Marine Protected Areas, UK. Conserv. Evid. 12, 28–32 (2015).
    Google Scholar 
    45.Brown, J. & Hartwick, E. A habitat suitability index model for suspended tray culture of the Pacific oyster, Crassostrea gigas Thunberg.. Aquacult. Res. 19, 109–126 (1988).Article 

    Google Scholar 
    46.Diederich, S. High survival and growth rates of introduced Pacific oysters may cause restrictions on habitat use by native mussels in the Wadden Sea. J. Exp. Mar. Biol. Ecol. 328, 211–227 (2006).Article 

    Google Scholar 
    47.Moran, A. & Manahan, D. Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 306, 17–36 (2004).CAS 
    Article 

    Google Scholar 
    48.Calvo, G. W., Luckenbach, M. W. & Burreson, E. M. A comparative field study of Crassostrea gigas and Crassostrea virginica in relation to salinity in Virginia. Special Report in Applied Marine Science and Ocean Engineering, 349 (1999).49.Petton, B., Boudry, P., Alunno-Bruscia, M. & Pernet, F. Factors influencing disease-induced mortality of Pacific oysters, Crassostrea gigas. Aquacul. Environ. Interact. 6, 205–222 (2015).Article 

    Google Scholar 
    50.Li, L. et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat. Ecol. Evol. 2, 1751–1760 (2018).PubMed 
    Article 

    Google Scholar 
    51.Ferreira, J., Duarte, P. & Ball, B. Trophic capacity of Carlingford Lough for oyster culture-analysis by ecological modelling. Aquat. Ecol. 31, 361–378 (1997).Article 

    Google Scholar 
    52.Cognie, B., Haure, J. & Barillé, L. Spatial distribution in a temperate coastal ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg). Aquaculture 259, 249–259 (2006).Article 

    Google Scholar 
    53.Enríquez-Díaz, M., Pouvreau, S., Chávez-Villalba, J. & Le Pennec, M. Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult. Int. 17, 491 (2009).Article 

    Google Scholar 
    54.Ben-Horin, T. et al. Intensive oyster aquaculture can reduce disease impacts on sympatric wild oysters. Aquacul. Environ. Interact. 10, 557–567 (2018).Article 

    Google Scholar 
    55.Mailleret, L. & Lemesle, V. A note on semi-discrete modelling in the life sciences. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 4779–4799 (2009).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    56.Powell, E., Klinck, J., Hofmann, E. & Ray, S. Modeling oyster populations. IV: Rates of mortality, population crashes and management. Fish. Bull. 92, 347–373 (1994).
    Google Scholar 
    57.Wilson, R. A stage-structured oyster population model for reef restoration. Undergraduate Honors Theses Paper, 1403 (2019).58.Guo, X., Hedgecock, D., Hershberger, W. K., Cooper, K. & Jr, S. K. A. Genetic determinants of protandric sex in the Pacific oyster, Crassostrea gigas Thunberg. Evolution 52, 394–402 (1998).59.Morris, D. et al. Cefas coastal temperature network (2016).60.Pouvreau, S. et al. Velyger database: The oyster larvae monitoring French project. SEANOE 10, 41888 (2016).
    Google Scholar 
    61.Dhoop, T. & Thompson, C. Directional waverider metadata, supplement for QC data download from Realtime Data page. Channel Coastal Observatory (2019).62.Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1029–1136 (Cambridge University Press, 2013).63.Pastor, D. Reproductive biology of Crassostrea gigas. Ph.D. thesis, University of Southampton (2010).64.Benton, T. G. & Grant, A. Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol. Evol. 14, 467–471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Grant, A. & Benton, T. G. Elasticity analysis for density-dependent populations in stochastic environments. Ecology 81, 680–693 (2000).Article 

    Google Scholar 
    66.Caswell, H. & Gassen, N. S. The sensitivity analysis of population projections. Demogr. Res. 33, 801–840 (2015).Article 

    Google Scholar 
    67.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019).68.Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: Package deSolve. J. Stat. Softw. 33, 1–25 (2010).
    Google Scholar 
    69.Inkscape Project. Inkscape. More

  • in

    Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands

    The experiment underlying the study provides a diversity gradient of 1–60 plant species, established in assemblages randomly chosen from a pool of species typical of Arrhenatheretum grasslands. Recently sown on fertile arable soil and maintained by weeding, this experiment is a highly artificial system that fails to meet the definition of semi-natural grasslands7. Four years after establishment, a management intensity gradient of one to four annual cuts and three fertilization levels was established in subplots randomly assigned to the 1–60-species plots. Data presented in this study were collected in the following year.Intensive management was thus imposed on plant species typical of Arrhenaterethum meadows, a plant community characterized by two annual cuts8. The potential effect size of increased management intensity is thus underestimated by applying the management to a plant community not adapted to it. More importantly, it is unlikely that the species-richness of high-diversity plots could be maintained under increased management intensity over longer periods. In fact, 22% of these subplots managed at very high intensity had to be excluded for missing or insufficient yield after only two years, indicating that their species did not persist under high defoliation frequency and fertilizer levels, even when competitors were excluded by weeding.While the discussion hardly addresses this crucial trade-off between management intensity and plant diversity, Schaub et al.6 do indicate that repeated resowing is likely to be necessary to maintain high diversity under increased management intensities. In contrast to permanent grasslands, whose species composition is shaped by site conditions and management, species selection in (re-)sown grasslands is a conscious choice. To be advantageous, mixtures have to show larger yields than the most productive monoculture, so-called transgressive overyielding. Transgressive overyielding is one of the reasons why mixtures, especially grass-clover mixtures, are frequently used in sown grasslands. A European-scale experiment demonstrated that four-species mixtures showed transgressive overyielding at a wide range of sites under intensive agricultural management9,10. Although Schaub et al.6 generally quantify the diversity effects in comparison to monocultures, they argue that grasslands with the high-diversity characteristic of semi-natural grasslands have benefits not only over monocultures but over low-diversity grasslands, such as the 1–8 species standard mixtures shown in Fig. 6 of their paper. However, their results fail to demonstrate that their high-diversity plots show any transgressive overyielding even over monocultures, not to speak of low-diversity mixtures. As species assemblages of the experiment are randomly drawn from the species pool, monocultures and low-diversity mixtures cannot be expected to include the most productive species or species combinations and thus cannot be used to assess transgressive overyielding. When transgressive overyielding was quantified for one- to eight-species plots of the same experiment under extensive management in 2003, it decreased with species number. While two-species mixtures showed a mean transgressive overyielding of 5%, eight-species mixtures were only 70% as productive as the corresponding best monoculture, on average11.Accordingly, the experimental design fails to capture the real trade-offs faced by grassland managers, either in permanent or in sown grassland. It cannot answer if high levels of diversity and the associated biodiversity benefits can be maintained under intensive management for a longer period than just a few years. Neither can it show a productivity benefit of high-diversity grassland assemblages compared to species-poor mixtures, or even monocultures, when in practice the sown species are deliberately chosen rather than randomly drawn from a species pool. While the underlying biodiversity experiment has made valuable contributions to our fundamental understanding of plant diversity effects on ecosystem functioning, it thus cannot be used to derive direct management recommendations for managed grassland. More

  • in

    North American boreal forests are a large carbon source due to wildfires from 1986 to 2016

    1.Kasischke, E. S. & Stocks, B. J. Fire, Climate Change, and Carbon Cycling in the Boreal Forest (Springer-Verlag, 2000).
    Google Scholar 
    2.Kurz, W. A. & Apps, M. J. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9, 526–547. https://doi.org/10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 (1999).Article 

    Google Scholar 
    3.Amiro, B. D. et al. Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada. Agric. For. Meteorol. 136, 237–251. https://doi.org/10.1016/j.agrformet.2004.11.012 (2006).ADS 
    Article 

    Google Scholar 
    4.Li, F., Lawrence, D. M. & Bond-Lamberty, B. Impact of fire on global land surface air temperature and energy budget for the 20th century due to changes within ecosystems. Environ. Res. Lett. 12, 044014. https://doi.org/10.1088/1748-9326/aa6685 (2017).ADS 
    Article 

    Google Scholar 
    5.Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Flannigan, M. D. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020876 (2004).Article 

    Google Scholar 
    6.Kasischke, E. S. & Turetsky, M. R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. https://doi.org/10.1029/2006GL025677 (2006).Article 

    Google Scholar 
    7.de Groot, W. J., Flannigan, M. D. & Cantin, A. S. Climate change impacts on future boreal fire regimes. For. Ecol. Manage. 294, 35–44. https://doi.org/10.1016/j.foreco.2012.09.027 (2013).Article 

    Google Scholar 
    8.Rogers, B. M., Soja, A. J., Goulden, M. L. & Randerson, J. T. Influence of tree species on continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228. https://doi.org/10.1038/ngeo2352 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Montes-Helu, M. C. et al. Persistent effects of fire-induced vegetation change on energy partitioning and evapotranspiration in ponderosa pine forests. Agric. For. Meteorol. 149, 491–500. https://doi.org/10.1016/j.agrformet.2008.09.011 (2009).ADS 
    Article 

    Google Scholar 
    10.Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21. https://doi.org/10.1007/bf00346960 (1980).ADS 
    Article 
    PubMed 

    Google Scholar 
    11.Bond-Lamberty, B., Peckham, S. D., Ahl, D. E. & Gower, S. T. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89. https://doi.org/10.1038/nature06272 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Gewehr, S., Drobyshev, I., Berninger, F. & Bergeron, Y. Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can. J. For. Res. 44, 487–498. https://doi.org/10.1139/cjfr-2013-0481 (2014).Article 

    Google Scholar 
    13.Sullivan, B. W. et al. Wildfire reduces carbon dioxide efflux and increases methane uptake in ponderosa pine forest soils of the southwestern USA. Biogeochemistry 104, 251–265. https://doi.org/10.1007/s10533-010-9499-1 (2011).CAS 
    Article 

    Google Scholar 
    14.Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Soil carbon pools and world life zones. Nature 298, 156–159. https://doi.org/10.1038/298156a0 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2008gb003327 (2009).Article 

    Google Scholar 
    16.Walker, X. J. et al. Cross-scale controls on carbon emissions from boreal forest megafires. Glob. Change Biol. 24, 4251–4265. https://doi.org/10.1111/gcb.14287 (2018).ADS 
    Article 

    Google Scholar 
    17.Kulmala, L. et al. Changes in biogeochemistry and carbon fluxes in a boreal forest after the clear-cutting and partial burning of slash. Agric. For. Meteorol. 188, 33–44. https://doi.org/10.1016/j.agrformet.2013.12.003 (2014).ADS 
    Article 

    Google Scholar 
    18.Yoshikawa, K., Bolton, W. R., Romanovsky, V. E., Fukuda, M. & Hinzman, L. D. Impacts of wildfire on the permafrost in the boreal forests of Interior Alaska. J. Geophys. Res. Atmos. 107, 4–14. https://doi.org/10.1029/2001jd000438 (2002).Article 

    Google Scholar 
    19.Tsuyuzaki, S., Kushida, K. & Kodama, Y. Recovery of surface albedo and plant cover after wildfire in a Picea mariana forest in interior Alaska. Clim. Change 93, 517. https://doi.org/10.1007/s10584-008-9505-y (2008).ADS 
    Article 

    Google Scholar 
    20.Hamman, S. T., Burke, I. C. & Stromberger, M. E. Relationships between microbial community structure and soil environmental conditions in a recently burned system. Soil Biol. Biochem. 39, 1703–1711. https://doi.org/10.1016/j.soilbio.2007.01.018 (2007).CAS 
    Article 

    Google Scholar 
    21.Atchley, A. L., Kinoshita, A. M., Lopez, S. R., Trader, L. & Middleton, R. Simulating surface and subsurface water balance changes due to burn severity. Vadose Zone J. https://doi.org/10.2136/vzj2018.05.0099 (2018).Article 

    Google Scholar 
    22.Taş, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J. 8, 1904–1919. https://doi.org/10.1038/ismej.2014.36 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Ribeiro-Kumara, C., Köster, E., Aaltonen, H. & Köster, K. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ. Res. 184, 109328. https://doi.org/10.1016/j.envres.2020.109328 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82. https://doi.org/10.1016/j.geoderma.2014.07.001 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Conard, S. G. & Ivanova, G. A. Wildfire in Russian boreal forests—Potential impacts of fire regime characteristics on emissions and global carbon balance estimates. Environ. Pollut. 98, 305–313. https://doi.org/10.1016/S0269-7491(97)00140-1 (1997).CAS 
    Article 

    Google Scholar 
    26.Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000380 (2007).Article 

    Google Scholar 
    27.French, N. H. F., Kasischke, E. S. & Williams, D. G. Variability in the emission of carbon-based trace gases from wildfire in the Alaskan boreal forest. J. Geophys. Res. Atmos. 107, 7–11. https://doi.org/10.1029/2001JD000480 (2002).CAS 
    Article 

    Google Scholar 
    28.Kajii, Y. et al. Boreal forest fires in Siberia in 1998: Estimation of area burned and emissions of pollutants by advanced very high resolution radiometer satellite data. J. Geophys. Res. Atmos. 107, 4–8. https://doi.org/10.1029/2001JD001078 (2002).CAS 
    Article 

    Google Scholar 
    29.Amiro, B. D. et al. Direct carbon emissions from Canadian forest fires, 1959–1999. Can. J. For. Res. 31, 512–525. https://doi.org/10.1139/x00-197 (2001).CAS 
    Article 

    Google Scholar 
    30.Kasischke, E. S. et al. Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2004GB002300 (2005).Article 

    Google Scholar 
    31.Seiler, W. & Crutzen, P. J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim. Change 2, 207–247. https://doi.org/10.1007/BF00137988 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Mouillot, F., Narasimha, A., Balkanski, Y., Lamarque, J.-F. & Field, C. B. Global carbon emissions from biomass burning in the 20th century. Geophys. Res. Lett. https://doi.org/10.1029/2005GL024707 (2006).Article 

    Google Scholar 
    33.Cansler, C. A. & McKenzie, D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol. Appl. 24, 1037–1056 (2014).Article 

    Google Scholar 
    34.Zhuang, Q. et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. Atmos. 107, 3–26. https://doi.org/10.1029/2001jd001244 (2002).Article 

    Google Scholar 
    35.Zackrisson, O. Influence of forest fires on the north Swedish boreal forest. Oikos 29, 22–32. https://doi.org/10.2307/3543289 (1977).Article 

    Google Scholar 
    36.Allen, J. L. & Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildl. Fire. https://doi.org/10.1071/WF08034 (2008).Article 

    Google Scholar 
    37.French, N. H. F. et al. Using landsat data to assess fire and burn severity in the North American boreal forest region: An overview and summary of results. Int. J. Wildl. Fire 17, 443–462. https://doi.org/10.1071/WF08007 (2008).Article 

    Google Scholar 
    38.Hoy, E., French, N., Turetsky, M., Trigg, S. & Kasischke, E. Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity in Alaskan black spruce forests. Int. J. Wildl. Fire 17, 500–514. https://doi.org/10.1071/WF08107 (2008).Article 

    Google Scholar 
    39.Soverel, N. O., Perrakis, D. D. B. & Coops, N. C. Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada. Remote Sens. Environ. 114, 1896–1909. https://doi.org/10.1016/j.rse.2010.03.013 (2010).ADS 
    Article 

    Google Scholar 
    40.Boby, L. A., Schuur, E. A. G., Mack, M. C., Verbyla, D. & Johnstone, J. F. Quantifying fire severity, carbon, and nitrogen emissions in Alaska’s boreal forest. Ecol. Appl. 20, 1633–1647. https://doi.org/10.1890/08-2295.1 (2010).Article 
    PubMed 

    Google Scholar 
    41.Rogers, B. M. et al. Quantifying fire-wide carbon emissions in interior Alaska using field measurements and Landsat imagery. J. Geophys. Res. Biogeosci. 119, 1608–1629. https://doi.org/10.1002/2014jg002657 (2014).CAS 
    Article 

    Google Scholar 
    42.Kasischke, E. S. & Hoy, E. E. Controls on carbon consumption during Alaskan wildland fires. Glob. Change Biol. 18, 685–699. https://doi.org/10.1111/j.1365-2486.2011.02573.x (2012).ADS 
    Article 

    Google Scholar 
    43.Tan, Z., Tieszen, L. L., Zhu, Z., Liu, S. & Howard, S. M. An estimate of carbon emissions from 2004 wildfires across Alaskan Yukon River Basin. Carbon Balance Manage. 2, 12. https://doi.org/10.1186/1750-0680-2-12 (2007).CAS 
    Article 

    Google Scholar 
    44.Sedano, F. & Randerson, J. T. Multi-scale influence of vapor pressure deficit on fire ignition and spread in boreal forest ecosystems. Biogeosciences 11, 3739–3755. https://doi.org/10.5194/bg-11-3739-2014 (2014).ADS 
    Article 

    Google Scholar 
    45.Veraverbeke, S., Rogers, B. M. & Randerson, J. T. Daily burned area and carbon emissions from boreal fires in Alaska. Biogeosciences 12, 3579–3601. https://doi.org/10.5194/bg-12-3579-2015 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Boucher, J., Beaudoin, A., Hébert, C., Guindon, L. & Bauce, É. Assessing the potential of the differenced Normalized Burn Ratio (dNBR) for estimating burn severity in eastern Canadian boreal forests. Int. J. Wildl. Fire 26, 32–45. https://doi.org/10.1071/WF15122 (2017).Article 

    Google Scholar 
    47.Moody, J. A. et al. Relations between soil hydraulic properties and burn severity. Int. J. Wildl. Fire 25, 279–293. https://doi.org/10.1071/WF14062 (2016).Article 

    Google Scholar 
    48.Ebel, B. A., Romero, O. C. & Martin, D. A. Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity 4 years after the 2011 Las Conchas Fire, New Mexico, USA. Hydrol. Process. 32, 2263–2278. https://doi.org/10.1002/hyp.13167 (2018).ADS 
    Article 

    Google Scholar 
    49.Stinson, G. et al. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob. Change Biol. 17, 2227–2244. https://doi.org/10.1111/j.1365-2486.2010.02369.x (2011).ADS 
    Article 

    Google Scholar 
    50.Goodale, C. L. et al. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 12, 891–899. https://doi.org/10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2 (2002).Article 

    Google Scholar 
    51.Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2003GB002199 (2005).Article 

    Google Scholar 
    52.Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310. https://doi.org/10.1111/geb.12125 (2014).Article 

    Google Scholar 
    53.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988. https://doi.org/10.1126/science.1201609 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    54.Dieleman, C. M. et al. Wildfire combustion and carbon stocks in the southern Canadian boreal forest: Implications for a warming world. Glob. Change Biol. 26, 6062–6079. https://doi.org/10.1111/gcb.15158 (2020).ADS 
    Article 

    Google Scholar 
    55.French, N. H. F., Goovaerts, P. & Kasischke, E. S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003JD003635 (2004).Article 

    Google Scholar 
    56.Chen, G., Hayes, D. J. & David McGuire, A. Contributions of wildland fire to terrestrial ecosystem carbon dynamics in North America from 1990 to 2012. Glob. Biogeochem. Cycles 31, 878. https://doi.org/10.1002/2016gb005548 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Goetz, S. J. et al. Observations and assessment of forest carbon dynamics following disturbance in North America. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2011JG001733 (2012).Article 

    Google Scholar 
    58.Wiedinmyer, C. & Neff, J. C. Estimates of CO2 from fires in the United States: Implications for carbon management. Carbon Balance Manage. 2, 10–10. https://doi.org/10.1186/1750-0680-2-10 (2007).CAS 
    Article 

    Google Scholar 
    59.Kurz, W. A. et al. Carbon in Canada’s boreal forest—A synthesis. Environ. Rev. 21, 260 (2013).CAS 
    Article 

    Google Scholar 
    60.van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735. https://doi.org/10.5194/acp-10-11707-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    61.van der Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. https://doi.org/10.5194/essd-9-697-2017 (2017).ADS 
    Article 

    Google Scholar 
    62.Hicke, J. A. et al. Postfire response of North American boreal forest net primary productivity analyzed with satellite observations. Glob. Change Biol. 9, 1145–1157. https://doi.org/10.1046/j.1365-2486.2003.00658.x (2003).ADS 
    Article 

    Google Scholar 
    63.Sparks, A. M. et al. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity. Biogeosciences 15, 1173–1183. https://doi.org/10.5194/bg-15-1173-2018 (2018).ADS 
    Article 

    Google Scholar 
    64.Amiro, B. D., Chen, J. M. & Liu, J. Net primary productivity following forest fire for Canadian ecoregions. Can. J. For. Res. 30, 939–947. https://doi.org/10.1139/x00-025 (2000).Article 

    Google Scholar 
    65.Turner, M. G., Smithwick, E. A. H., Metzger, K. L., Tinker, D. B. & Romme, W. H. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proc. Natl. Acad. Sci. 104, 4782. https://doi.org/10.1073/pnas.0700180104 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Gower, S. T., McMurtrie, R. E. & Murty, D. Aboveground net primary production decline with stand age: Potential causes. Trends Ecol. Evol. 11, 378–382. https://doi.org/10.1016/0169-5347(96)10042-2 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Pare, D. & Bergeron, Y. Above-ground biomass accumulation along a 230-year chronosequence in the southern portion of the Canadian boreal forest. J. Ecol. 83, 1001–1007. https://doi.org/10.2307/2261181 (1995).Article 

    Google Scholar 
    68.Ice, G., Neary, D. & Adams, P. Effects of wildfire on soils and watershed processes. J. For. 102, 16–20 (2004).
    Google Scholar 
    69.Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644. https://doi.org/10.1016/j.jenvman.2019.02.130 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    70.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: A meta-analysis of field studies. Biogeochemistry 109, 49–61. https://doi.org/10.1007/s10533-011-9633-8 (2012).Article 

    Google Scholar 
    71.Köster, E. et al. Carbon dioxide, methane and nitrous oxide fluxes from a fire chronosequence in subarctic boreal forests of Canada. Sci. Total Environ. 601–602, 895–905. https://doi.org/10.1016/j.scitotenv.2017.05.246 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    72.Auclair, A. N. D. & Carter, T. B. Forest wildfires as a recent source of CO2 at northern latitudes. Can. J. For. Res. 23, 1528–1536. https://doi.org/10.1139/x93-193 (1993).CAS 
    Article 

    Google Scholar 
    73.Hayes, D. J. et al. Is the northern high-latitude land-based CO2 sink weakening?. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003813 (2011).Article 

    Google Scholar 
    74.Zhuang, Q. et al. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. https://doi.org/10.1029/2006GL026972 (2006).Article 

    Google Scholar 
    75.Osterkamp, T. E. et al. Observations of Thermokarst and Its Impact on Boreal Forests in Alaska, USA. Arctic Antarct. Alpine Res. 32, 303–315. https://doi.org/10.1080/15230430.2000.12003368 (2000).Article 

    Google Scholar 
    76.Jorgenson, M. T. et al. Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/8/3/035017 (2013).Article 

    Google Scholar 
    77.Beck, P. S. A. et al. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob. Change Biol. 17, 2853–2866. https://doi.org/10.1111/j.1365-2486.2011.02412.x (2011).ADS 
    Article 

    Google Scholar 
    78.Terrier, A., Girardin, M., Perie, C., Legendre, P. & Bergeron, Y. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Ecol. Appl. 23, 21–35. https://doi.org/10.2307/23440814 (2013).Article 
    PubMed 

    Google Scholar 
    79.Miller, J. D. & Thode, A. E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 109, 66–80. https://doi.org/10.1016/j.rse.2006.12.006 (2007).ADS 
    Article 

    Google Scholar 
    80.Key, C. H. & Benson, N. C. Landscape Assessment (LA). U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. p. LA 1–55 (2006).81.Epting, J., Verbyla, D. & Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 96, 328–339. https://doi.org/10.1016/j.rse.2005.03.002 (2005).ADS 
    Article 

    Google Scholar 
    82.Mitchell, T., Carter, T., Jones, P. & Hulme, M. A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: The observed record (1901–2000) and 16 scenarios (2001–2100). Tyndall Centre Work. Pap. 55, 25 (2004).
    Google Scholar 
    83.FAO-Unesco. Soil Map of the World Vol. 1 (Food and Agriculture Organization of the United Nations and the United Nations Educational, Scientific and Cultural Organization, 1974).
    Google Scholar 
    84.Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240. https://doi.org/10.1038/363234a0 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    85.Genet, H. et al. The role of driving factors in historical and projected carbon dynamics of upland ecosystems in Alaska. Ecol. Appl. 28, 5–27. https://doi.org/10.1002/eap.1641 (2018).Article 
    PubMed 

    Google Scholar 
    86.Turetsky, M. R. et al. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 4, 27–31. https://doi.org/10.1038/ngeo1027 (2011).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Effects of both climate change and human water demand on a highly threatened damselfly

    1.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Lionello, P. et al. In Mediterranean Climate Variability Vol. 4 (eds Lionello, P. et al.) 1–26 (Elsevier, 2006).3.Molina, M., Sánchez, E. & Gutiérrez, C. Future heat waves over the Mediterranean from an euro-coRDeX regional climate model ensemble. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    4.Bucchignani, E., Mercogliano, P., Panitz, H.-J. & Montesarchio, M. Climate change projections for the Middle East-North Africa domain with COSMO-CLM at different spatial resolutions. Adv. Clim. Change 9, 66–80 (2018).Article 

    Google Scholar 
    5.García, N., Cuttelod, A. & Malak, D. A. The Status and Distribution of Freshwater Biodiversity in Northern Africa (IUCN, 2010).6.Di Castri, F. & Mooney, H. A. Mediterranean Type Ecosystems: Origin and Structure Vol. 7 (Springer Science & Business Media, 2012).7.Stoks, R., Geerts, A. N. & De Meester, L. Evolutionary and plastic responses of freshwater invertebrates to climate change: Realized patterns and future potential. Evol. Appl. 7, 42–55 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).Article 

    Google Scholar 
    9.Arribas, P. et al. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: Hydrophilidae). J. Biogeogr. 39, 984–994 (2012).Article 

    Google Scholar 
    10.Hof, C., Brändle, M. & Brandl, R. Lentic odonates have larger and more northern ranges than lotic species. J. Biogeogr. 33, 63–70 (2006).Article 

    Google Scholar 
    11.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    12.Ibàñez, C., Prat, N. & Canicio, A. Changes in the hydrology and sediment transport produced by large dams on the lower Ebro river and its estuary. Regul. Rivers Res. Manag. 12, 51–62 (1996).Article 

    Google Scholar 
    13.Kondolf, G., Rubin, Z. & Minear, J. Dams on the Mekong: Cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).ADS 
    Article 

    Google Scholar 
    14.Pringle, C. M., Freeman, M. C. & Freeman, B. J. Regional effects of hydrologic alterations on riverine macrobiota in the new world: Tropical-temperate comparisons. Bioscience 50, 807–823 (2000).Article 

    Google Scholar 
    15.Liu, X. et al. Effects of dams and their environmental impacts on the genetic diversity and connectivity of freshwater mussel populations in Poyang Lake Basin, China. Freshw. Biol. 65, 264–277 (2020).Article 

    Google Scholar 
    16.Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. U.S.A. 117, 3648–3655 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.López-Moreno, J. I. et al. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 45, W02405 (2009).ADS 
    Article 

    Google Scholar 
    18.McMahon, T. & Finlayson, B. Droughts and anti-droughts: The low flow hydrology of Australian rivers. Freshw. Biol. 48, 1147–1160 (2003).Article 

    Google Scholar 
    19.Aguiar, F. C. & Ferreira, M. T. Human-disturbed landscapes: effects on composition and integrity of riparian woody vegetation in the Tagus River basin, Portugal. Environ. Conserv. 32, 30–41 (2005).Article 

    Google Scholar 
    20.Costa, M. J., Vasconcelos, R., Costa, J. & Cabral, H. River flow influence on the fish community of the Tagus estuary (Portugal). Hydrobiologia 587, 113–123 (2007).Article 

    Google Scholar 
    21.Dallas, H. F. The influence of biotope availability on macroinvertebrate assemblages in South African rivers: Implications for aquatic bioassessment. Freshw. Biol. 52, 370–380 (2007).Article 

    Google Scholar 
    22.Demars, B. O., Kemp, J. L., Friberg, N., Usseglio-Polatera, P. & Harper, D. M. Linking biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. Ecol. Indic. 23, 301–311 (2012).Article 

    Google Scholar 
    23.Wallace, J. B. Recovery of lotic macroinvertebrate communities from disturbance. Environ. Manag. 14, 605–620 (1990).ADS 
    Article 

    Google Scholar 
    24.Boulton, A. J. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw. Biol. 48, 1173–1185 (2003).Article 

    Google Scholar 
    25.Desrosiers, M. et al. Assessing anthropogenic pressure in the St. Lawrence River using traits of benthic macroinvertebrates. Sci. Total Environ. 649, 233–246 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Durance, I. & Ormerod, S. J. Climate change effects on upland stream macroinvertebrates over a 25-year period. Glob. Change Biol. 13, 942–957 (2007).ADS 
    Article 

    Google Scholar 
    27.Santos, R. et al. Impacts of climate change and land-use scenarios on Margaritifera margaritifera, an environmental indicator and endangered species. Sci. Total Environ. 511, 477–488 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Junior, R. F. V. et al. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 43, 48–62 (2015).Article 

    Google Scholar 
    29.Fonseca, A., Fernandes, L. S., Fontainhas-Fernandes, A., Monteiro, S. & Pacheco, F. The impact of freshwater metal concentrations on the severity of histopathological changes in fish gills: A statistical perspective. Sci. Total Environ. 599, 217–226 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Ferreira, A., Fernandes, L. S., Cortes, R. & Pacheco, F. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 583, 466–477 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Fernandes, L. S., Fernandes, A., Ferreira, A., Cortes, R. & Pacheco, F. A partial least squares—Path modeling analysis for the understanding of biodiversity loss in rural and urban watersheds in Portugal. Sci. Total Environ. 626, 1069–1085 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    32.Intergovernmental Panel on Climate Change. Climate Change 2014–Impacts, Adaptation and Vulnerability: Regional Aspects (Cambridge University Press, 2014).33.Khelifa, R. Flight period, apparent sex ratio and habitat preferences of the Maghribian endemic Calopteryx exul Selys, 1853 (Odonata: Zygoptera). Revue d’Ecologie (La Terre et La Vie) 68, 37–45 (2013).
    Google Scholar 
    34.Khelifa, R. & Mellal, M. K. Host-plant-based restoration as a potential tool to improve conservation status of odonate specialists. Insect Conserv. Divers. 10(2), 151–160. https://doi.org/10.1111/icad.12212 (2017).Article 

    Google Scholar 
    35.Khelifa, R. et al. A hotspot for threatened Mediterranean odonates in the Seybouse River (Northeast Algeria): Are IUCN population sizes drastically underestimated?. Int. J. Odonatol. 19, 1–11. https://doi.org/10.1080/13887890.2015.1133331 (2016).Article 

    Google Scholar 
    36.Boudot, J.-P. Calopteryx exul. The IUCN Red List of Threatened Species 2018 e.T60287A72725790. https://doi.org/10.2305/IUCN.UK.2018-2301.RLTS.T60287A72725790.en. Downloaded on 72725729 January 72722021. (2018).37.Martin, R. Contribution à l’étude des Neuroptères de l’Afrique. II. Les odonates du département de Constantine. Ann. Soc. Entomol. Fr. 79, 95–104 (1910).
    Google Scholar 
    38.Chelli, A., Zebsa, R. & Khelifa, R. Discovery of a new population of the endangered Calopteryx exul in central North Algeria (Odonata: Calopterygidae). Not. Odonatol. 9, 150–154 (2019).
    Google Scholar 
    39.Feyen, L. & Dankers, R. Impact of global warming on streamflow drought in Europe. J. Geophys. Res. Atmos. 114, D17116 (2009).ADS 
    Article 

    Google Scholar 
    40.Schneider, C., Laizé, C., Acreman, M. & Florke, M. How will climate change modify river flow regimes in Europe?. Hydrol. Earth Syst. Sci. 17, 325–339 (2013).ADS 
    Article 

    Google Scholar 
    41.Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. North Am. Benthol. Soc. 29, 344–358 (2010).Article 

    Google Scholar 
    43.Van Vliet, M. & Zwolsman, J. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 353, 1–17 (2008).ADS 
    Article 

    Google Scholar 
    44.Caruso, B. Temporal and spatial patterns of extreme low flows and effects on stream ecosystems in Otago, New Zealand. J. Hydrol. 257, 115–133 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Stanley, E. H., Fisher, S. G. & Grimm, N. B. Ecosystem expansion and contraction in streams. Bioscience 47, 427–435 (1997).Article 

    Google Scholar 
    46.Truchy, A. et al. Habitat patchiness, ecological connectivity and the uneven recovery of boreal stream ecosystems from an experimental drought. Glob. Change Biol. 26, 3455–3472 (2020).ADS 
    Article 

    Google Scholar 
    47.Boulton, A. J. & Lake, P. S. Effects of drought on stream insects and its ecological consequences. Aquatic insects: Challenges to populations 81–102 (CABI, 2008).48.Andersen, C. B., Lewis, G. P. & Sargent, K. A. Influence of wastewater-treatment effluent on concentrations and fluxes of solutes in the Bush River, South Carolina, during extreme drought conditions. Environ. Geosci. 11, 28–41 (2004).Article 

    Google Scholar 
    49.Wada, Y., Van Beek, L. P., Wanders, N. & Bierkens, M. F. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett 8, 034036 (2013).ADS 
    Article 

    Google Scholar 
    50.Aldous, A., Fitzsimons, J., Richter, B. & Bach, L. Droughts, floods and freshwater ecosystems: Evaluating climate change impacts and developing adaptation strategies. Mar. Freshw. Res. 62, 223–231 (2011).CAS 
    Article 

    Google Scholar 
    51.Conley, D. J. et al. Controlling eutrophication: Nitrogen and phosphorus. Science 123, 1014–1015 (2009).Article 

    Google Scholar 
    52.Park, T.-J. et al. Development of water quality criteria of ammonia for protecting aquatic life in freshwater using species sensitivity distribution method. Sci. Total Environ. 634, 934–940 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Reggam, A., Bouchelaghem, E.-H., Hanane, S. & Houhamdi, M. Effects of anthropogenic activities on the quality of surface water of Seybouse River (northeast of the Algeria). Arab. J. Geosci. 10, 219 (2017).Article 
    CAS 

    Google Scholar 
    54.Khelifa, R. et al. Long-range movements of an endangered endemic damselfly Calopteryx exul Selys, 1853 (Calopterygidae: Odonata). Afr. J. Ecol. 52, 375–377 (2014).
    Google Scholar 
    55.Khelifa, R. Partial bivoltinism and emergence patterns in the North African endemic damselfly Calopteryx exul: Conservation implications. Afr. J. Ecol. 55, 145–151 (2017).Article 

    Google Scholar 
    56.Adams, H. D. et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-chang-type drought. Proc. Natl. Acad. Sci. U.S.A. 106, 7063–7066 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Scrimgeour, G. J. & Winterbourn, M. J. Effects of floods on epilithon and benthic macroinvertebrate populations in an unstable New Zealand river. Hydrobiologia 171, 33–44 (1989).Article 

    Google Scholar 
    58.Giller, P., Sangpradub, N. & Twomey, H. Catastrophic flooding and macroinvertebrate community structure. Verh. Int. Ver. Theor. Angew. Limnol. 24, 1724–1729 (1991).
    Google Scholar 
    59.Siva-Jothy, M. T., Gibbons, D. W. & Pain, D. Female oviposition-site preference and egg hatching success in the damselfly Calopteryx splendens xanthostoma. Behav. Ecol. Sociobiol. 37, 39–44 (1995).Article 

    Google Scholar 
    60.Stettmer, C. Colonisation and dispersal patterns of banded (Calopteryxsplendens) and beautiful demoiselles (C. virgo) (Odonata: Calopterygidae) in south-east German streams. Eur. J. Entomol. 93, 579–593 (1996).
    Google Scholar 
    61.Chaput-Bardy, A., Grégoire, A., Baguette, M., Pagano, A. & Secondi, J. Condition and phenotype-dependent dispersal in a damselfly, Calopteryx splendens. PLoS ONE 5, e10694 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Ward, L. & Mill, P. Long range movements by individuals as a vehicle for range expansion in Calopteryx splendens (Odonata: Zygoptera). Eur. J. Entomol. 104, 195 (2007).Article 

    Google Scholar 
    63.Mellal, M. K., Bensouilah, M., Houhamd, M. & Khelifa, R. Reproductive habitat provisioning promotes survival and reproduction of the endangered endemic damselfly Calopteryx exul. J. Insect Conserv. 22, 563–570 (2018).Article 

    Google Scholar 
    64.Cordero-Rivera, A. & Stoks, R. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 7–20 (Oxford University Press, 2008).65.Iglesias, A., Garrote, L., Flores, F. & Moneo, M. Challenges to manage the risk of water scarcity and climate change in the Mediterranean. Water Resour. Manag. 21, 775–788 (2007).Article 

    Google Scholar 
    66.Barnett, T. P. et al. Human-induced changes in the hydrology of the western United States. Science 319, 1080–1083 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Samways, M. J. et al. Value of artificial ponds for aquatic insects in drought-prone southern Africa: A review. Biodivers. Conserv. 29, 3131–3150 (2020).Article 

    Google Scholar 
    68.Deacon, C., Samways, M. J. & Pryke, J. S. Aquatic insects decline in abundance and occupy low-quality artificial habitats to survive hydrological droughts. Freshw. Biol. 64, 1643–1654 (2019).Article 

    Google Scholar 
    69.Briggs, A. J., Pryke, J. S., Samways, M. J. & Conlong, D. E. Complementarity among dragonflies across a pondscape in a rural landscape mosaic. Insect Conserv. Divers. 12, 241–250 (2019).Article 

    Google Scholar 
    70.Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 11, 1507–1516 (2011).Article 

    Google Scholar 
    71.Brooks, A. J., Chessman, B. C. & Haeusler, T. Macroinvertebrate traits distinguish unregulated rivers subject to water abstraction. J. North Am. Benthol. Soc. 30, 419–435 (2011).Article 

    Google Scholar 
    72.Garibaldi, L. A. et al. Working landscapes need at least 20% native habitat. Conserv. Lett. https://doi.org/10.1111/conl.12773 (2020).Article 

    Google Scholar 
    73.Vincent, A. & Fleury, P. Development of organic farming for the protection of water quality: Local projects in France and their policy implications. Land Use Policy 43, 197–206 (2015).Article 

    Google Scholar 
    74.Bengtsson, J., Ahnström, J. & Weibull, A. C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis. J. Appl. Ecol. 42, 261–269 (2005).Article 

    Google Scholar 
    75.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).ADS 
    Article 

    Google Scholar 
    76.ABHCSM. A.G.I.R.E (Agence nationale de la gestion intégrée des ressources en eau) (2016). Rapport sur l’analyse de l’année hydrologique (2015–2016) du barrage Hammam Debagh. Agence de bassin hydrographique Constantinois-Seybouse-Mellegue (2016).77.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    78.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    79.Wildlife Conservation Society—WCS and Center for International Earth Science Information Network—CIESIN—Columbia University (NASA Socioeconomic Data and Applications Center (SEDAC), 2005).80.Vicente-Serrano, S. M. & Staff. The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI). Retreived from https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei (2015).81.D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).ADS 
    Article 

    Google Scholar 
    82.Khelifa, R. Females ‘assist’ sneaker males to dupe dominant males in a rare endemic damselfly: Sexual conflict at its finest. Ecology 100, e02811 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).84.Laake, J. RMark: An R Interface for Analysis of Capture–Recapture Data with MARK, AFSC Processed Rep 2013-01 (Alaska Fish. Sci. Cent., NOAA, National Marine Fisheries Service, 2013).85.Burnham, K. P. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture Vol. 5 (America Fisheries Society Monograph, 1987).86.Amstrup, S. C., McDonald, T. L. & Manly, B. F. Handbook of Capture–Recapture Analysis (Princeton University Press, 2010). More

  • in

    Population structure and genetic diversity of invasive Fall Armyworm after 2 years of introduction in India

    1.Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. PLoS ONE 11, e0165632 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    2.Nagoshi, R. N. et al. Comparative molecular analyses of invasive fall armyworm in Togo reveal strong similarities to populations from the eastern United States and the Greater Antilles. PLoS ONE 12, e0181982 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Nagoshi, R. N., Goergen, G., Plessis, H. D., van den Berg, J. & Meagher, R. Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci. Rep. 9, 1–11 (2019).CAS 
    Article 

    Google Scholar 
    4.Ganiger, P. C. et al. Occurrence of the new invasive pest, fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in the maize fields of Karnataka, India. Curr. Sci. 115, 621 (2018).CAS 
    Article 

    Google Scholar 
    5.Deshmukh, S. et al. First report of the fall armyworm, Spodoptera frugiperda (J E Smith) (Lepidoptera: Noctuidae), an alien invasive pest on maize in India. Pest Manag. Hortic. Ecosyst. 24, 23–29 (2018).
    Google Scholar 
    6.Shylesha, A. N. et al. Studies on new invasive pest Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and its natural enemies. J. Biol. Control 32, 145–151 (2018).Article 

    Google Scholar 
    7.Swamy, H. M. M. et al. Prevalence of “R” strain and molecular diversity of fall army worm Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) in India. Indian J. Entomol. 80, 544 (2018).Article 

    Google Scholar 
    8.Chormule, A. et al. First report of the fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera, Noctuidae) on sugarcane and other crops from Maharashtra, India. J. Entomol. Zool. Stud. 7, 114–117 (2019).
    Google Scholar 
    9.Visalakshi, M. et al. Report of the invasive fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) and its natural enemies on maize and other crops from Andhra Pradesh, India. J. Entomol. Zool. Stud. 7, 1348–1352 (2019).MathSciNet 

    Google Scholar 
    10.Srikanth, J. et al. First report of occurrence of fall armyworm Spodoptera frugiperda in sugarcane from Tamil Nadu, India. J. Sugarcane Res. 8, 195–202 (2019).
    Google Scholar 
    11.Babu, S. R. et al. Report of an exotic invasive pest the fall armyworm, Spodoptera frugiperda (J.E. Smith) on maize in Southern Rajasthan. J. Entomol. Zool. Stud. 7, 1296–1300 (2019).
    Google Scholar 
    12.Pashley, D. P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): a sibling species complex?. Ann. Entomol. Soc. Am. 79, 898–904 (1986).Article 

    Google Scholar 
    13.Pashley, D. P., Sparks, T. C., Quisenberry, S. S., Jamjanya, T. & Dowd, P. F. Two fall armyworm strains feed on corn, rice and Bermuda-grass. La. Agric. 30, 8–9 (1987).
    Google Scholar 
    14.Pashley, D. P. & Martin, J. A. Reproductive incompatibility between host strains of the fall armyworm (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 80, 731–733 (1987).Article 

    Google Scholar 
    15.Lima, E. R. & McNeil, J. N. Female sex pheromones in the host races and hybrids of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemoecology 19, 29–36 (2009).CAS 
    Article 

    Google Scholar 
    16.Levy, H. C., Garcia-Maruniak, A. & Maruniak, J. E. Strain identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) insects and cell line: PCR-RFLP of cytochrome oxidase C subunit-I gene. Fla. Entomol. 85, 186–190 (2002).CAS 
    Article 

    Google Scholar 
    17.Nagoshi, R. N. The fall armyworm triose phosphate isomerase (Tpi) gene as a marker of strain identity and interstrain mating. Ann. Entomol. Soc. Am. 103, 283–292 (2010).CAS 
    Article 

    Google Scholar 
    18.Nagoshi, R. N. et al. Genetic characterization of fall armyworm infesting South Africa and India indicate recent introduction from a common source population. PLoS ONE 14, e0217755 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    20.Zhang, L. et al. High-depth resequencing reveals hybrid population and insecticide resistance characteristics of fall armyworm (Spodoptera frugiperda) invading China; https://doi.org/10.1101/813154 (2019).21.Yainna, S. et al. Genomic balancing selection is key to the invasive success of the fall armyworm; https://doi.org/10.22541/au.160363803.32074105/v1 (2020).22.Tay, W. T. et al. Global FAW population genomic signature supports complex introduction events across the Old World. bioRxiv; https://doi.org/10.1101/2020.06.12.147660 (2020).23.South, A. rworldmap: a new R package for mapping global data. R J. 3(1), 35–43 (2011).MathSciNet 
    Article 

    Google Scholar 
    24.Wickham, et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686 (2019).ADS 
    Article 

    Google Scholar 
    25.Nagoshi, R. N. et al. Using haplotypes to monitor the migration of fall armyworm (Lepidoptera: Noctuidae) corn-strain populations from Texas and Florida. J. Econ. Entomol. 101, 742–749 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pedersen, T. L. patchwork: the composer of plots; https://CRAN.R-project.org/package=patchwork (2020).27.Yan, L. ggvenn: draw Venn diagram by ‘ggplot2’; https://CRAN.R-project.org/package=ggvenn (2020).28.Marchese, C. Biodiversity hotspots: a shortcut for a more complicated concept. Glob. Ecol. Conserv. 3, 297–309 (2015).Article 

    Google Scholar 
    29.Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Behere, G. T., Tay, W. T., Russell, D. A., Kranthi, K. R. & Batterham, P. Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers. PLoS ONE 8, e53448 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Chowda-Reddy, R. et al. Bemisia tabaci phylogenetic groups in India and the relative transmission efficacy of tomato leaf curl Bangalore virus by an indigenous and an exotic population. J. Integr. Agric. 11, 235–248 (2012).Article 

    Google Scholar 
    32.Naik, V. C. B. et al. Evidence for population expansion of cotton pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) in India. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    33.Ciborowski, K. L. et al. Rare and fleeting: an example of interspecific recombination in animal mitochondrial DNA. Biol. Lett. 3, 554–557 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Andolfatto, P., Scriber, J. M. & Charlesworth, B. No association between mitochondrial DNA haplotypes and a female-limited mimicry phenotype in Papilio glaucus. Evolution 57, 305 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Gantenbein, B., Fet, V., Gantenbein-Ritter, I. A. & Balloux, F. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae). Proc. R. Soc. B Biol. Sci. 272, 697–704 (2005).CAS 
    Article 

    Google Scholar 
    36.Hebert, P. D. N., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).CAS 
    Article 

    Google Scholar 
    37.Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 34, 3299–3302 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    40.Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Templeton, A. R., Crandall, K. A. & Sing, C. F. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132, 619–633 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dray, S. & Dufour, A.-B. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    45.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinform. Oxf. Engl. 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Using mounting, orientation, and design to improve bat box thermodynamics in a northern temperate environment

    1.Priddel, D. & Carlile, N. J. An artificial nest box for burrow-nesting seabirds. Emu-Austral Ornithol. 95, 290–294 (1995).Article 

    Google Scholar 
    2.Burton, N. H., Evans, P. R. & Robinson, M. A. Effects on shorebird numbers of disturbance, the loss of a roost site and its replacement by an artificial island at Hartlepool, Cleveland. Biol. Conserv. 77, 193–201 (1996).Article 

    Google Scholar 
    3.Chambers, C. L., Alm, V., Siders, M. S. & Rabe, M. J. Use of artificial roosts by forest-dwelling bats in northern Arizona. Wildl. Soc. B 30, 1085–1091 (2002).
    Google Scholar 
    4.Lausen, C. L. & Barclay, R. M. Benefits of living in a building: Big brown bats (Eptesicus fuscus) in rocks versus buildings. J. Mammal. 87, 362–370 (2006).Article 

    Google Scholar 
    5.Kelm, D. H., Wiesner, K. R. & Helversen, O. V. Effects of artificial roosts for frugivorous bats on seed dispersal in a Neotropical forest pasture mosaic. Biol. Conserv. 22, 733–741 (2008).Article 

    Google Scholar 
    6.Agnelli, P., Maltagliati, G., Ducci, L. & Cannicci, S. J. H. Artificial roosts for bats: education and research. The” Be a bat’s friend” project of the Natural History Museum of the University of Florence. Ital. J. Mammal. 22, 733–741 (2010).
    Google Scholar 
    7.Rueegger, N. Bat boxes: A review of their use and application, past, present and future. Acta Chiropterol. 18, 279–299 (2016).Article 

    Google Scholar 
    8.Brittingham, M. C. & Williams, L. M. Bat boxes as alternative roosts for displaced bat maternity colonies. Wildl. Soc. B 28, 197–207 (2000).
    Google Scholar 
    9.Lambrechts, M. M. et al. Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: A review. J. Ornithol. 153, 23–34 (2012).Article 

    Google Scholar 
    10.Easterling, D. R. et al. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 81, 417–426 (2000).ADS 
    Article 

    Google Scholar 
    11.Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275, 419–425 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Adams, R. A. Bat reproduction declines when conditions mimic climate change projections for western North America. Ecology 91, 2437–2445 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ratti, J. T. & Reese, K. P. J. T. Preliminary test of the ecological trap hypothesis. J. Wildl. Manage 52, 484–491 (1988).Article 

    Google Scholar 
    14.Flaquer, C. et al. Could overheating turn bat boxes into death traps. Barb 7, 46–53 (2014).
    Google Scholar 
    15.Bideguren, G. M. et al. Bat boxes and climate change: Testing the risk of over-heating in the Mediterranean region. Biodivers. Conserv. 28, 21–35 (2019).Article 

    Google Scholar 
    16.Griffiths, S. R. et al. Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife. PLoS ONE 12, e0176951 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Rowland, J. A., Briscoe, N. J. & Handasyde, K. A. Comparing the thermal suitability of nest-boxes and tree-hollows for the conservation-management of arboreal marsupials. Biol. Conserv. 209, 341–348 (2017).Article 

    Google Scholar 
    18.Zahn, A. Reproductive success, colony size and roost temperature in attic-dwelling bat Myotis myotis. J. Zool. 247, 275–280 (1999).Article 

    Google Scholar 
    19.Ruczyński, I. Influence of temperature on maternity roost selection by noctule bats (Nyctalus noctula) and Leisler’s bats (N. leisleri) in Białowieża Primeval Forest Poland. Can. J. Zool. 84, 900–907 (2006).Article 

    Google Scholar 
    20.Wilcox, A. & Willis, C. K. Energetic benefits of enhanced summer roosting habitat for little brown bats (Myotis lucifugus) recovering from white-nose syndrome. Conserv. Physiol. 4, 070 (2016).Article 

    Google Scholar 
    21.Thiollay, J.-M. Comparative foraging success of insectivorous birds in tropical and temperate forests: Ecological implications. Oikos 53, 17–30 (1988).Article 

    Google Scholar 
    22.Ransome, R. Population changes of greater horseshoe bats studied near Bristol over the past twenty-six years. Biol. J. Linn. Soc. 38, 71–82 (1989).Article 

    Google Scholar 
    23.O’Shea, T. J. et al. Recruitment in a Colorado population of big brown bats: Breeding probabilities, litter size, and first-year survival. J. Mammal. 91, 418–428 (2010).Article 

    Google Scholar 
    24.Nurul-Ain, E., Rosli, H. & Kingston, T. Resource availability and roosting ecology shape reproductive phenology of rain forest insectivorous bats. Biotropica 49, 382–394 (2017).Article 

    Google Scholar 
    25.Racey, P. Environmental factors affecting the length of gestation in heterothermic bats. J. Reprod. Fertil. 19, 175–189 (1973).CAS 

    Google Scholar 
    26.Racey, P. & Swift, S. M. Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year. J. Reprod. Fertil. 61, 123–129 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Wilde, C. J., Knight, C. H. & Racey, P. A. Influence of torpor on milk protein composition and secretion in lactating bats. J. Exp. Zool. A 284, 35–41 (1999).CAS 
    Article 

    Google Scholar 
    28.Beer, J. R. & Richards, A. G. Hibernation of the big brown bat. J. Mammal. 37, 31–41 (1956).Article 

    Google Scholar 
    29.Pagels, J. F. Temperature regulation, body weight and changes in total body fat of the free-tailed bat, Tadarida brasiliensis cynocephala (Le Conte). Comp. Biochem. Phys. A 50, 237–246 (1975).CAS 
    Article 

    Google Scholar 
    30.Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).Article 

    Google Scholar 
    31.Studier, E. H. & O’Farrell, M. J. Biology of Myotis thysanodes and M. lucifugus (Chiroptera: Vespertilionidae)—III. Metabolism, heart rate, breathing rate, evaporative water loss and general energetics. Comp. Biochem. Phys. A 54, 423–432 (1976).CAS 
    Article 

    Google Scholar 
    32.Henry, M. Étude de l’écologie d’une population de petites chauves-souris brunes (Myotis Lucifugus) en vue d’un programme de conservation. Master’s thesis. Sherbrooke University. https://savoirs.usherbrooke.ca/handle/11143/4513 (2001).33.Flaquer, C., Torre, I. & Ruiz-Jarillo, R. The value of bat-boxes in the conservation of Pipistrellus pygmaeus in wetland rice paddies. Biol. Conserv. 128, 223–230 (2006).Article 

    Google Scholar 
    34.Mickleburgh, S. P., Hutson, A. M. & Racey, P. A. A review of the global conservation status of bats. Oryx 36, 18–34 (2002).Article 

    Google Scholar 
    35.Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Barclay, R. M., Harder, L. D., Kunz, T. & Fenton, M. Life histories of bats: life in the slow lane. In Bat Ecology (eds Kunz, T. & Fenton, M.) 209–253 (The University of Chicago Press, 2003).
    Google Scholar 
    37.Keen, R. & Hitchcock, H. B. Survival and longevity of the little brown bat (Myotis lucifugus) in southeastern Ontario. J. Mammal. 61, 1–7 (1980).Article 

    Google Scholar 
    38.Kunz, T. H. Censusing bats: challenges, solutions, and sampling biases in Monitoring Trends in Bat Populations of the United States and Territories: Problems and Prospects (Eds TJ O’Shea, and MA Bogan). 9–20 (US Geological Survey, Sciences Division, Biological Resources Discipline, Information and Technology Report USGS/BRD/ITR-2003–003, 2003).39.Campbell, L. A., Hallett, J. G. & O’Connell, M. A. Conservation of bats in managed forests: Use of roosts by Lasionycteris noctivagans. J. Mammal. 77, 976–984 (1996).Article 

    Google Scholar 
    40.Entwistle, A., Racey, P. & Speakman, J. R. Roost selection by the brown long-eared bat Plecotus auritus. J. Appl. Ecol. 34, 399–408 (1997).Article 

    Google Scholar 
    41.Kerth, G., Weissmann, K. & König, B. Day roost selection in female Bechstein’s bats (Myotis bechsteinii): A field experiment to determine the influence of roost temperature. Oecologia 126, 1–9 (2001).ADS 
    PubMed 
    Article 

    Google Scholar 
    42.Lourenço, S. I. & Palmeirim, J. M. Influence of temperature in roost selection by Pipistrellus pygmaeus (Chiroptera): Relevance for the design of bat boxes. Biol. Conserv. 2, 237–243 (2004).Article 

    Google Scholar 
    43.Webber, Q. M. & Willis, C. K. An experimental test of effects of ambient temperature and roost quality on aggregation by little brown bats (Myotis lucifugus). J. Therm. Biol. 74, 174–180 (2018).PubMed 
    Article 

    Google Scholar 
    44.Mering, E. D. & Chambers, C. L. Thinking outside the box: A review of artificial roosts for bats. Wildl. Soc. B 38, 741–751 (2014).Article 

    Google Scholar 
    45.Mackintosh, M. Bats and licensing: A report on the success of maternity roost compensation measures. Scottish Natural Heritage Commissioned Report No. 928. https://www.nature.scot/sites/default/files/Publication%202016%20-%20SNH%20Commissioned%20Report%20928%20-%20Bats%20and%20Licensing%20-%20A%20report%20on%20the%20success%20of%20maternity%20roost%20compensation%20measures.pdf (2016).46.López-Baucells, A. et al. Bat boxes in urban non-native forests: A popular practice that should be reconsidered. Urban Ecosyst. 20, 217–225 (2017).Article 

    Google Scholar 
    47.Neilson, A. L. & Fenton, M. B. Responses of little brown myotis to exclusion and to bat houses. Wildl. Soc. B 22, 8–14 (1994).
    Google Scholar 
    48.White, E. P. Factors affecting bat house occupancy in Colorado. Southwest Nat. 49, 344–349 (2004).Article 

    Google Scholar 
    49.Michaelsen, T. C., Jensen, K. H. & Högstedt, G. R. Roost site selection in pregnant and lactating soprano pipistrelles (Pipistrellus pygmaeus Leach, 1825) at the species northern extreme: The importance of warm and safe roosts. Acta Chiropterol. 16, 349–357 (2014).Article 

    Google Scholar 
    50.Bartonicka, T. & Řehák, Z. Influence of the microclimate of bat boxes on their occupation by the soprano pipistrelle Pipistrellus pygmaeus: Possible cause of roost switching. Acta Chiropterol. 9, 517–526 (2007).Article 

    Google Scholar 
    51.Ralegaonkar, R. V. & Gupta, R. Review of intelligent building construction: A passive solar architecture approach. Renew. Sust. Energy Rev. 14, 2238–2242 (2010).Article 

    Google Scholar 
    52.Morrissey, J., Moore, T. & Horne, R. E. Affordable passive solar design in a temperate climate: An experiment in residential building orientation. Renew. Energy 36, 568–577 (2011).Article 

    Google Scholar 
    53.Sodha, M. S., Bansal, N. K., Bansal, P. K., Kumar, A., and Malik, M. Solar passive building: Science and Design (ed. Ilustrated), (Pergamon Press, 1986).54.Griffiths, S. R. et al. Bat boxes are not a silver bullet conservation tool. Mammal. Rev. 47, 261–265 (2017).Article 

    Google Scholar 
    55.Arias, M., Gignoux-Wolfsohn, S., Kerwin, K. & Maslo, B. Use of artificial roost boxes installed as alternative habitat for bats evicted from buildings. Northeast Nat. 27, 201–214 (2020).Article 

    Google Scholar 
    56.Tuttle, M. D., Kiser, M. & Kiser, S. The Bat House Builder’s handbook (Eds Tuttle, M. D., Kiser, M. & Kiser, S.). (University of Texas Press, 2005).57.Kiser, M. & Kiser, S. A decade of bat house discovery. Bat House Res. 12, 1–12 (2004).
    Google Scholar 
    58.Long, R., Kiser, W. & Kiser, S. Well-placed bat houses can attract bats to Central Valley farms. Calif. Agric. 60, 91–94 (2006).Article 

    Google Scholar 
    59.Dillingham, C. P., Cross, S. P. & Dillingham, P. W. Two environmental factors that influence usage of bat houses in managed forests of southwest Oregon. Northwest Nat. 84, 20–23 (2003).Article 

    Google Scholar 
    60.Horncastle, V., Frary, V., Ingraldi, M. P. Progress report—forest-dwelling bat responses to forest restoration (Arizona Game and Fish Department, 2008).61.Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Nest box orientation affects internal temperature and nest site selection by Tree Swallows. J. Field. Ornithol. 77, 339–344 (2006).Article 

    Google Scholar 
    62.Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the Acorn Woodpecker. Auk 116, 45–54 (1999).Article 

    Google Scholar 
    63.Wiebe, K. L. Microclimate of tree cavity nests: Is it important for reproductive success in Northern Flickers?. Auk 118, 412–421 (2001).Article 

    Google Scholar 
    64.Godinho, L. N., Lumsden, L. F., Coulson, G. & Griffiths, S. R. Flexible roost selection by Gould’s wattled bats (Chalinolobus gouldii) using bat boxes in an urban landscape. Aust. J. Zool. 10, e1071 (2020).
    Google Scholar 
    65.Goldingay, R. L., Rueegger, N. N., Grimson, M. J. & Taylor, B. D. Specific nest box designs can improve habitat restoration for cavity-dependent arboreal mammals. Restor. Ecol. 23, 482–490 (2015).Article 

    Google Scholar 
    66.Summers, R. & Taylor, W. Use by tits of nest boxes of different designs in pinewoods. Bird Study 43, 138–141 (1996).Article 

    Google Scholar 
    67.Hoeh, J. P. S., Bakken, G. S., Mitchell, W. A. & O’Keefe, J. M. In artificial roost comparison, bats show preference for rocket box style. PLoS ONE 13, e0205701 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Rueegger, N., Goldingay, R., Law, B. & Gonsalves, L. Testing multichambered bat box designs in a habitat-offset area in eastern Australia: Influence of material, colour, size and box host. Pac. Conserv. Biol. 26, 13–21 (2020).Article 

    Google Scholar 
    69.Campbell, S., Coulson, G. & Lumsden, L. F. Divergent microclimates in artificial and natural roosts of the large-footed myotis (Myotis macropus). Acta Chiropterol. 12, 173–185 (2010).Article 

    Google Scholar 
    70.Bat Conservation International, Bat houses https://www.batcon.org/about-bats/bat-houses/ (2021).71.Geiser, F. & Drury, R. L. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor. J. Comp. Physiol. B 173, 55–60 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Turbill, C., Körtner, G. & Geiser, F. Natural use of heterothermy by a small, tree-roosting bat during summer. Physiol. Biochem. Zool. 76, 868–876 (2003).PubMed 
    Article 

    Google Scholar 
    73.Dzal, Y. A. & Brigham, R. M. The tradeoff between torpor use and reproduction in little brown bats (Myotis lucifugus). J. Comp. Physiol. B 183, 279–288 (2013).PubMed 
    Article 

    Google Scholar 
    74.Speakman, J. R., Thomas, D. W., Kunz, T. & Fenton, M. B. Physiological ecology and energetics of bats. in Bat Ecology (Eds Kunz, T. & Fenton, M. B.). 430–490 (The University of Chicago Press, 2003).75.Besler, N. K. & Broders, H. G. Combinations of reproductive, individual, and weather effects best explain torpor patterns among female little brown bats (Myotis lucifugus). Ecol. Evol. 9, 5158–5171 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Willis, C. K. & Brigham, R. M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 62, 97–108 (2007).Article 

    Google Scholar 
    77.Kurta, A., Bell, G. P., Nagy, K. A. & Kunz, T. H. Energetics of pregnancy and lactation in freeranging little brown bats (Myotis lucifugus). Physiol. Zool. 62, 804–818 (1989).Article 

    Google Scholar 
    78.Lewis, S. E. Roost fidelity of bats: A review. J. Mammal. 76, 481–496 (1995).Article 

    Google Scholar 
    79.Kerth, G. & Konig, B. Fission, fusion and nonrandom associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136, 1187–1202 (1999).Article 

    Google Scholar 
    80.Boye, P. & Dietz, M. Development of good practice guidelines for woodland management for bats. English Nature Report to The Bat Conservation Trust (2005).81.Fukui, D., Okazaki, K., Miyazaki, M. & Maeda, K. The effect of roost environment on roost selection by non-reproductive and dispersing Asian parti-coloured bats Vespertilio sinensis. Mammal. Stud. 35, 99–109 (2010).Article 

    Google Scholar 
    82.Fabianek, F., Simard, M. A., Racine, E. B. & Desrochers, A. Selection of roosting habitat by male Myotis bats in a boreal forest. Can. J. Zool. 93, 539–546 (2015).Article 

    Google Scholar 
    83.Hamilton, I. M. & Barclay, R. M. Patterns of daily torpor and day-roost selection by male and female big brown bats (Eptesicus fuscus). Can. J. Zool. 72, 744–749 (1994).Article 

    Google Scholar 
    84.Grinevitch, L., Holroyd, S. & Barclay, R. Sex differences in the use of daily torpor and foraging time by big brown bats (Eptesicus fuscus) during the reproductive season. J. Zool. 235, 301–309 (1995).Article 

    Google Scholar 
    85.Dietz, M. & Kalko, E. K. Seasonal changes in daily torpor patterns of free-ranging female and male Daubenton’s bats (Myotis daubentonii). J. Comp. Physiol. B 176, 223–231 (2006).PubMed 
    Article 

    Google Scholar 
    86.Barclay, R. M. Night roosting behavior of the little brown bat, Myotis lucifugus. J. Mammal. 63, 464–474 (1982).Article 

    Google Scholar 
    87.Jonasson, K. A. & Willis, C. K. R. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS ONE 6, e21061 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Willis, C. R., Turbill, C. & Geiser, F. Torpor and thermal energetics in a tiny Australian vespertilionid, the little forest bat (Vespadelus vulturnus). J. Comp. Physiol. B 175, 479–486 (2005).PubMed 
    Article 

    Google Scholar 
    89.Hock, R. J. The metabolic rates and body temperatures of bats. Biol. Bull. 101, 475–479 (1951).Article 

    Google Scholar 
    90.Humphries, M. M., Thomas, D. W. & Speakman, J. R. Climate-mediated energetic constraints on the distribution of hibernating mammals. Nature 418, 313–316 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Humphries, M.M., Speakman, J.R., & Thomas, D.W. Temperature, hibernation energetics, and the cave and continental distributions of little brown myotis. in Functional and Evolutionary Ecology of Bats (Zubaid, A., McCracken, G.F., Kunz, T.H.). 23–37 (Oxford University Press, 2005).92.Thomas, D. W., Dorais, M. & Bergeron, J. Winter energy budget and cost of arousals for hibernating little brown bats, Myotis lucifugus. J. Mammal. 71, 475–479 (1990).Article 

    Google Scholar 
    93.Stones, R. C. & Wiebers, J. E. A review of temperature regulation in bats (Chiroptera). Am. Midl. Nat. 74, 155–167 (1965).Article 

    Google Scholar 
    94.Campbell, K. L., McIntyre, I. W. & MacArthur, R. W. Postprandial heat increment does not substitute for active thermogenesis in cold challenged star-nosed moles (Condylura cristata). J. Exp. Biol. 203, 301–310 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A food web including parasites for kelp forests of the Santa Barbara Channel, California

    Site descriptionWe define “kelp forest” as rocky-reef habitat within the 5–20 m depth range that supports dense stands of giant kelp, Macrocystis pyrifera. For this study, we considered the Santa Barbara Channel (SBC) to include the mainland region between Point Conception (−120.476° longitude, 34.455° latitude) and Point Mugu (−119.065° longitude, 34.079° latitude), as well the northern and southern sides of the four northern Channel Islands (Fig. 1). Although the SBC is a subset of the Southern California Bight, its strong west-east gradient in cold to warm temperature means the study system includes many of the kelp-forest species throughout California31. This means the SBC kelp-forest food web is a large “metaweb”, characterizing kelp forest meta-communities, rather than a site-specific web. In other words, the system includes cold water and warm water species that might not necessarily co-occur at a single site. However, there are site-specific food webs embedded in the metaweb at particular locations where a subset of species occur.Data sourcesOur goal was to assemble the food web using both published and novel empirical observations. To this end, we first used published data sets and species’ range boundaries to create free-living species lists. The initial list of fishes, algae, and free-living invertebrates was assembled from the Channel Islands National Park Kelp Forest Monitoring program (CINP KFM, annual reports available at https://irma.nps.gov/DataStore/SavedSearch/Profile/1508, accessed March 6, 2017, or visit https://www.nps.gov/im/medn/kelp-forest-communities.htm to contact David Kushner or Joshua Sprague) and the SBC Long Term Ecological Research program’s ongoing kelp-forest community timeseries (SBC LTER, https://sbclter.msi.ucsb.edu/data/catalog/, accessed March 12, 2017). We added to these lists using primary literature, technical reports (e.g., NOAA, USFW), direct observations, expert opinion, crowd-sourced observations (e.g., eBird.org), guidebooks, and grey literature. We sampled the local kelp forest zooplankton and the algae-associated small-invertebrate community, because these organisms were not well represented in surveys (see below).We created initial lists of parasite species using published literature and host-parasite databases. A systematic review was conducted to collect parasite records for each free-living species. We searched the Natural History Museum (NHM) of London host-parasite database (https://www.nhm.ac.uk/research-curation/scientific-resources/taxonomy-systematics/host-parasites/database/search.jsp), the FishPest database32, WoRMs (http://www.marinespecies.org/aphia.php?p = search), BIOSIS citation index (http://webofscience.com), and Google Scholar™(https://scholar.google.com/) (Genus + species + parasit*, expanded to Genus + parasit* if no records were found). For each host species, we recorded the number of records found in BIOSIS and NHM as an estimate of study effort. Although parasites are often reported at the host and parasite species level, we were often able to infer parasite and host life stages based on knowledge about life cycles. We added to these lists by sampling local fish and invertebrates, with a focus on hosts that were common in the system and not well-studied (see below). As for any food-web study, we were most interested in including common or important parasites, rather than rarities.Published diet observations (including in grey literature), direct observations, and inference were used to determine trophic links (see below).Free-living species sampling methodsCertain groups of free-living species were under-represented in published survey data, so we conducted sampling to assess species diversity in the following areas.Zooplankton towsWe conducted vertical zooplankton tows within kelp forests at two island locations (on the same date) and two mainland locations (repeated tows, four dates at one site, three of those dates at a second site, including one nighttime sampling date), for eight site by date samples30. While the vessel was at anchor within a kelp forest, a 30 cm diameter, 200 micron plankton net was dropped to the bottom and pulled to the surface at a rate of 0.33 m per second. Care was taken not to scrape the net against kelp plants. The collection jar attached to the net was kept vertical with a small lead weight to ensure that the net did not collect organisms on the way down to the bottom. The depth and time of collection were recorded30. We held collection jars on ice while in the field, then preserved specimens in 95% ethanol when we returned to the lab (within a few hours of collection). All organisms were counted and identified to species when possible, but some groups were identified to Order or Family, and then cross-checked with lists of known local species. If this was not possible, specimens were assigned to morphospecies, indicating they appeared to be a unique species based on morphology. Representative specimens from each species or morphospecies were photographed and measured.Giant kelp holdfastsGiant kelp holdfasts were sampled for free-living invertebrates. In the field, holdfast circumference and two slant height measures were taken, as well as basal stipe circumference. A subsample of approximately 25% of the holdfast was collected by SCUBA in a large plastic zip bag, and frozen until processing (n = 7). The samples were processed for organisms  > 500 microns, and holdfast tissue was weighed after organisms and debris were removed. Organisms were counted, identified to species or morphospecies when possible, and measured30. Some groups were identified to Family, and then matched to lists of known local species.Taxon-specific methods: gastropodsSmall gastropods are a diverse but overlooked group that lives in benthic turf algae. Algal clumps were collected haphazardly by either laying down a 7 × 7 cm quadrat and collecting all algae within the quadrat, or by collecting clumps of a particular alga and weighing at the lab. All gastropods were removed by hand under a stereomicroscope, counted, identified to species or morphospecies, measured, and photographed30.Parasitological collectionsWe collected fish and invertebrates and dissected them for parasites, with the goal of identifying the most common parasites in the food web. We targeted host groups that are known to transmit trophically-transmitted parasites in other systems. We collected most organisms from mainland sites, and sampled opportunistically at sites on Anacapa, Santa Cruz, and Santa Rosa islands30 (Fig. 2). A list of all species dissected and sample sizes is provided30.Fish collectionsWe prioritized collecting the most common and abundant fish species based on survey data from 2000–2014 (SBC LTER), as well as personal observation, expert opinion, and amount of parasite data in the literature. Other species (lower abundance or higher past study effort) were collected opportunistically. Fish were collected primarily by spear on SCUBA. Specific size classes were not targeted and the spear tips used were appropriate for the focal species. Small benthic fish were collected using dip nets. All fish were collected under UCSB IACUC protocol 549.2. Fish were either stored on ice and processed within 24 hours of collection or frozen until processing.Invertebrate collectionsInvertebrates are necessary intermediate hosts in many parasite life cycles, but relatively few parasite life cycles have been described in marine environments. We targeted invertebrate species that were abundant and potentially important as intermediate hosts for parasites. We did not collect sessile colonial taxa, such as hydroids, gorgonians, sponges, and tunicates, as they were not expected to be hosts for trophically transmitted parasites (but these hosts do merit further study). Most sampled invertebrates were gastropods and small crustaceans, as they host trophically-transmitted parasites in other food webs. Bivalves, large crustaceans, echinoderms, and polychaetes were also dissected. Large invertebrates were collected by hand or using a rock chisel and scraper when appropriate. Small invertebrates were sampled by collecting benthic substrates in plastic or fine mesh bags and removing organisms in the lab. Invertebrates were held live in flow-through seawater until the time of dissection or frozen until processing.Parasitological assessmentFor each host dissection, the exterior and all internal soft tissues were examined for parasite life stages. For larger species, entire host organs were usually searched by pressing soft tissues thin between two glass plates (“squashed”) and examining with a stereomicroscope. However, to increase sample size, bilaterally symmetric organs (e.g. gills) were examined from one randomly determined side, and large organs (e.g. muscle, liver) were subsampled in larger fishes. Small crustaceans and soft-bodied invertebrates were squashed whole. We identified gut contents where feasible to improve host diet data and inform parasite life cycles. We recorded host mass, length (or other species-appropriate measurement), collection method, and host condition at time of dissection (e.g. frozen, fresh). We counted and identified all parasites to the lowest possible taxonomic level and assigned a morphospecies code when species-level identification was not possible. Only a few putative parasites were excluded from additional analysis because they had no identifying features. Dissection data30 includes species not included in the full food web (see below for discussion of justifications for node inclusion).Node list assemblyNodes in the web included free-living species that used the water column and benthic zones within kelp forests as feeding habitat (including transient kelp-forest visitors but excluding rare and vagrant species) and parasites of those free-living species. Species was the preferred taxonomic unit, and life stages were included as separate nodes if that life stage was present in the system and had distinct trophic interactions from the adult stage. The fully-resolved free-living food web was constructed with life stage (e.g., larva, adult) nested within species (or morpho-species) (excepting benthic diatoms, planktonic diatoms, dinoflagellates, foraminifera, free-living nematodes, bacteria, free-living ciliates, copepod nauplii, filamentous algae, and invertebrate eggs, which were aggregate nodes). As various forms of detritus are important to energy flow in kelp forests, detritus was broken into four categories based on the typical feeding modes of detritivores and main sources of detritus: carrion, drift macroalgae, small mixed origin (such as would be consumed by a deposit or suspension feeder, with the recognition that this alone is a complex system deserving further resolution) and dissolved organic material. The “drift macroalgae” component was especially important to distinguish, as certain herbivores (sea urchins) are known to prefer drift algae as food but will turn to feeding on live algae when drift algae are sparse. This is a very distinct type of interaction from suspension feeders, which consume small particles of detritus that may be largely bacteria. “Parasites” are consumers which fit the seven types of parasitism defined by Lafferty and Kuris33. Commensal organisms were also recorded. We limited the parasite species list to metazoan species that use kelp-forest species as hosts for at least one stage in their life cycle. Bacterial, viral, fungal, and protozoan pathogens that are important in kelp-forest food webs merit inclusion in further work.We assigned each node a justification code (see below), confidence level, literature reference, and locality of the reference. Additional node metadata includes site on host (ecto-vs. endoparasite), taxonomic information, and life cycle information30 (see below). The node list contains columns with a species ID, and a species-by-stage ID. To work with the life-stage resolution, select the species-by-stage ID as the node identifier in analyses. To work with the species version, select the species ID as the node identifier in analyses. This will collapse all of the interactions to the species, so all of the trophic interactions are preserved and linked to the species node. Network analysis packages in R (such as Cheddar34) will automatically remove duplicate links if they are generated in this process.Life stages as nodesSpecies were partitioned into life-stage nodes (e.g., larva, juvenile, adult) if a species changed its trophic position from one stage to the other and multiple stages were present in the system. Whether or not a distinct life stage resided in the kelp forest was indicated by various data sources (e.g. dissections, published records), or inferred from species life history or trophic interactions. For example, amphipods brood offspring and have crawl-away juveniles. These juveniles remain in the kelp forest (rather than having a pelagic phase), and due to their small size are subject to different predators than adults (e.g. adults are eaten by fishes, while juveniles are eaten by hydroids). This was justification for juvenile amphipods being a distinct node from adult amphipods. On the other hand, many species have planktonic larvae that develop outside of the kelp forest, so only the adult stages were included at the species level. Larval stages of parasites were included if there was no feasible alternative for the focal host to become infected. We assumed that kelp-forest resident hosts became infected through life-cycle stages found within the kelp-forest food web, but that transient hosts could have acquired some parasites outside the kelp forest (e.g., if intermediate hosts were not known from the kelp forest). Likewise, presence of larval parasites in dissections was evidence for including adult stages. For some species, there was insufficient data on life history to infer additional stages. Metadata in the node list indicates whether parasites have additional life stages inside the kelp forest, outside, or unknown. When comparing this food web with others (which rarely separate species into life stages), using our data it is easy to collapse life-stage nodes into species nodes.Justifications for node inclusionWe used multiple lines of evidence to justify whether or not to include a node in the food web. Free-living species were included if they were known from the SBC (see site description above) and were indicated by the data sources described above (e.g. reports, surveys, published papers, guidebooks, expert opinion, etc.). Species lists from regional guidebooks included non-kelp-forest species, so these lists were compared with species lists from long-term monitoring surveys. Following the methods of Lafferty et al. 2006, we excluded most rare species (0.5, we assumed that an unobserved link actually occurred unless otherwise contradicted by species life history. We also then noted the probability of a false positive link (1 – ({widehat{F}}_{{rm{ij}}})). We further identified those few host and parasite species that generated substantial error in the network. To keep the overall error rate to More