More stories

  • in

    Coastal reclamation alters soil microbial communities following different land use patterns in the Eastern coastal zone of China

    1.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565(7738), 222 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Bu, N. S. et al. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecol. Eng. 81, 335–339 (2015).Article 

    Google Scholar 
    3.Cui, B. S., He, Q., Gu, B. H., Bai, J. H. & Liu, X. H. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36(Suppl 1), S1–S9 (2016).Article 

    Google Scholar 
    4.Cao, Z. Q. et al. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. Mar. Pollut. Bull. 158, 111427 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Yin, A. J. et al. Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China. Environ. Earth Sci. 75, 1281 (2016).Article 
    CAS 

    Google Scholar 
    6.Wang, W., Liu, H., Li, Y. Q. & Su, J. L. Development and management of land reclamation in China. Ocean Coast. Manage. 102, 415–425 (2014).Article 

    Google Scholar 
    7.Laffoley, D. & Grimsditch, G. The Management of Natural Coastal Carbon Sinks (IUCN, 2009).
    Google Scholar 
    8.Cheong, S. et al. Coastal adaptation with ecological engineering. Nat. Clim. Change 3, 787–791 (2013).ADS 
    Article 

    Google Scholar 
    9.Yang, W. et al. Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China. Appl. Soil Ecol. 110, 1–11 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Ding, L. J., Su, J. Q., Li, H., Zhu, Y. G. & Cao, Z. H. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biol. Biochem. 104, 59–67 (2017).CAS 
    Article 

    Google Scholar 
    11.Zhang, H. et al. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 352, 150–159 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Han, G. X. et al. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agr. Ecosyst. Environ. 196, 187–198 (2014).Article 

    Google Scholar 
    13.Hargreaves, S. K. & Hofmockel, K. S. Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. Biogeochemistry 117, 67–79 (2014).CAS 
    Article 

    Google Scholar 
    14.Ramirez, K. S., Lauber, C. L., Knight, R., Bradford, M. A. & Fierer, N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91, 3463–3470 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42, 516–520 (2010).CAS 
    Article 

    Google Scholar 
    16.Kamble, P. N., Gaikwad, V. B., Kuchekar, S. R. & Bååth, E. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur. J. Soil Biol. 65, 87–95 (2014).CAS 
    Article 

    Google Scholar 
    17.Gao, Y. C. et al. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl. Soil Ecol. 86, 165–173 (2015).Article 

    Google Scholar 
    18.Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall – induced carbon oxide pulses results from sequential resuscitation of phylogenetically cluster microbial groups. Proc. Natl. Acad. Sci. 109, 10931–10936 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Yuan, Y. et al. Responses of microbial community structure to land-use conversion and fertilization in southern China. Eur. J. Soil Biol. 70, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    20.Iost, S., Landgraf, D. & Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R. China. Geoderma 142, 245–250 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Yang, W. et al. Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci. Rep. 9, 5921 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153, 89–99 (2017).CAS 
    Article 

    Google Scholar 
    23.Chen, G. X., Gao, D. Z., Wang, Z. P. & Zeng, C. S. Contents of carbon, nitrogen and phosphorus in sediments in aquaculture ponds for different reclamation years in Shanyutan wetlands and its pollution risk assessment. Wetland Sci. 15, 309–314 (2017).
    Google Scholar 
    24.Whitting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B. 53, 521–528 (2001).ADS 

    Google Scholar 
    25.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage. Res. 126, 60–71 (2013).Article 

    Google Scholar 
    26.Xing, W. L., Cheng, X. R., Xiong, J., Yuan, H. J. & Yu, M. K. Variations in soil biological properties in poplar plantations along coastal reclamation stages. Appl. Soil Ecol. 154, 103649 (2020).Article 

    Google Scholar 
    27.Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pedrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Krishnamoorthy, R., Kim, K., Kim, C. & Sa, T. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol. Biochem. 72, 1–10 (2014).CAS 
    Article 

    Google Scholar 
    29.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 64, 7–14 (2013).Article 

    Google Scholar 
    30.Peay, K. G., Baraloto, C. & Fine, P. V. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 7, 1852–1861 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).Article 

    Google Scholar 
    32.Yang, W. et al. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408, 443–456 (2016).CAS 
    Article 

    Google Scholar 
    33.Anderson, C. R. et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54, 309–320 (2011).CAS 
    Article 

    Google Scholar 
    34.Mavi, M. S. & Marschner, P. Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Res. 51, 68–75 (2013).CAS 
    Article 

    Google Scholar 
    35.Xie, X. F. et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925 (2021).CAS 
    Article 

    Google Scholar 
    36.Mohammad, M. J., Malkawi, H. I. & Shibli, R. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J. Plant Nutr. 26, 125–137 (2003).CAS 
    Article 

    Google Scholar 
    37.Cui, X. C., Hu, J. L., Wang, J. J., Yang, J. S. & Lin, X. G. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl. Soil Ecol. 98, 140–149 (2016).Article 

    Google Scholar 
    38.Guo, X. & Gong, J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24, 79–94 (2014).PubMed 
    Article 

    Google Scholar 
    39.Yamato, M., Yagame, T., Yoshimura, Y. & Iwase, K. Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza 22, 622–630 (2012).Article 

    Google Scholar 
    40.Strickland, M. S. & Rousk, J. Considering fungal :bacterial dominance in soils: Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 
    Article 

    Google Scholar 
    41.Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Yang, W. et al. Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China. Plant Soil 442, 215–232 (2019).CAS 
    Article 

    Google Scholar 
    43.Yang, W. et al. Exotic Spartina alterniflora Loisel. invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 449, 97–115 (2020).CAS 
    Article 

    Google Scholar 
    44.Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).CAS 
    Article 

    Google Scholar 
    45.Högberg, M. N., Baath, E., Nordgren, A., Arnebrant, K. & Högberg, P. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs: A hypothesis based on field observations in boreal forests. New Phytol. 160, 225–238 (2003).Article 
    CAS 

    Google Scholar 
    46.Joergensen, R. G. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).CAS 
    Article 

    Google Scholar 
    47.Xu, S. Q. et al. Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands 37, 99–108 (2017).CAS 
    Article 

    Google Scholar 
    48.Vangestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting-the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    49.Farrell, M. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465, 288–297 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Luo, S. S. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 329, 108–117 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Tripathi, B. M. et al. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64, 474–484 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Huang, Y. M., Liu, D. & An, S. S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena 125, 135–145 (2015).CAS 
    Article 

    Google Scholar 
    54.Bossio, D. A., Fleck, J. A., Scow, K. M. & Fujii, R. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol. Biochem. 38, 1223–1233 (2006).CAS 
    Article 

    Google Scholar 
    55.Chang, E. H., Chen, C. P., Tian, G. L. & Chiu, C. Y. Replacement of natural hardwood forest with planted bamboo and cedar in a humid subtropical mountain affects soil microbial community. Appl. Soil Ecol. 124, 146–154 (2018).ADS 
    Article 

    Google Scholar 
    56.Cao, Y. S. et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. Eur. J. Soil Biol. 46, 128–135 (2010).CAS 
    Article 

    Google Scholar 
    57.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    58.Bossio, D. A. & Scow, K. M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial. Ecol. 35, 265–278 (1998).CAS 
    Article 

    Google Scholar 
    59.Bååth, E. & Anderson, T. H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).Article 
    CAS 

    Google Scholar 
    60.Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar  More

  • in

    A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression

    1.Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x.Article 
    PubMed 

    Google Scholar 
    2.Rodriguez R, White J Jr, Arnold A, Redman R. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182:314–30.Article 

    Google Scholar 
    3.Wilson D. Endophyte: the evolution of a term, and clarification of its use and definition Oikos. 1995;73:274–6.4.Harrison JG, Griffin EA. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: How far have we come and where do we go from here?. Environ Microbiol. 2020;22:2107–23. https://doi.org/10.1111/1462-2920.14968.Article 
    PubMed 

    Google Scholar 
    5.Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160:S99–S127. https://doi.org/10.1086/342161.Article 
    PubMed 

    Google Scholar 
    6.Rudgers JA, Afkhami ME, Rúa MA, Davitt AJ, Hammer S, Huguet VM. A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology. 2009;90:1531–9. https://doi.org/10.1890/08-0116.1.Article 
    PubMed 

    Google Scholar 
    7.Clay K, Holah J. Fungal endophyte symbiosis and plant diversity in successional fields. Science. 1999;285:1742–4. https://doi.org/10.1126/science.285.5434.1742.Article 
    PubMed 

    Google Scholar 
    8.Afkhami ME, Strauss SY. Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology. 2016;97:1159–69. https://doi.org/10.1890/15-1166.1.Article 
    PubMed 

    Google Scholar 
    9.Rudgers JA, Clay K. An invasive plant–fungal mutualism reduces arthropod diversity. Ecol Lett. 2008;11:831–40. https://doi.org/10.1111/j.1461-0248.2008.01201.x.Article 
    PubMed 

    Google Scholar 
    10.Gorischek AM, Afkhami ME, Seifert EK, Rudgers JA. Fungal symbionts as manipulators of plant reproductive biology. Am Nat. 2013;181:562–70. https://doi.org/10.1086/669606.Article 
    PubMed 

    Google Scholar 
    11.Malloch D, Blackwell M. Dispersal of fungal diaspores. The fungal community: Its organization and role in the ecosystem. 2nd ed. New York, NY: Marcel Dekker, Inc; 1992. p. 147–71.
    Google Scholar 
    12.Devarajan P, Suryanarayanan T. Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers. 2006;23:111–9.
    Google Scholar 
    13.Lodge DJ, Fisher P, Sutton B. Endophytic fungi of Manilkara bidentata leaves in Puerto Rico. Mycologia. 1996;88:733–8.14.Paine RT. A note on trophic complexity and community stability. Am Nat. 1969;103:91–93. https://doi.org/10.1086/282586.Article 

    Google Scholar 
    15.Jenkins SH, Busher PE. Castor canadensis, Mammalian Species. 1979. https://doi.org/10.2307/3503787.16.Hajishengallis G, Darveau RP, Curtis MA. The keystone-pathogen hypothesis. Nat Rev Microbiol. 2012;10:717–25. https://doi.org/10.1038/nrmicro2873.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: How the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62. https://doi.org/10.1038/ismej.2016.174.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58. https://doi.org/10.1186/s40168-018-0445-0.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rockman MV. The QTN program and the alleles that matter for evolution: all that’s gold does not glitter. Evolution. 2012;66:1–17. https://doi.org/10.1111/j.1558-5646.2011.01486.x.Article 
    PubMed 

    Google Scholar 
    20.Beckers GJ, Conrath U. Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol. 2007;10:425–31. https://doi.org/10.1016/j.pbi.2007.06.002.Article 
    PubMed 

    Google Scholar 
    21.Hartmann A, Rothballer M, Hense BA, Schröder P. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front Plant Sci. 2014;5. https://doi.org/10.3389/fpls.2014.00131.22.Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E. Microbially mediated plant functional traits. Annu Rev Ecol Evol Syst. 2011;42:23–46. https://doi.org/10.1146/annurev-ecolsys-102710-145039.Article 

    Google Scholar 
    23.Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320. https://doi.org/10.1128/MMBR.00050-14.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Doty SL. Growth-promoting endophytic fungi of forest trees. In: Pirttilä AM, Frank AC, editors. Endophytes of forest trees: biology and applications. Dordrecht: Springer Netherlands; 2011;151–6.
    Google Scholar 
    25.Arnold AE, Herre EA. Canopy cover and leaf age affect colonization by tropical fungal endophytes: Ecological pattern and process in Theobroma cacao (Malvaceae). Mycologia. 2003;95:388–98. http://www.mycologia.org.unr.idm.oclc.org/content/95/3/388. Accessed 12 Dec 2016.Article 

    Google Scholar 
    26.Busby PE, Peay KG, Newcombe G. Common foliar fungi of Populus trichocarpa modify melampsora rust disease severity. New Phytol. 2016;209:1681–92. https://doi.org/10.1111/nph.13742.Article 
    PubMed 

    Google Scholar 
    27.Christian N, Herre EA, Mejia LC, Clay K. Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage. Proc R Soc B. 2017;284:20170641. https://doi.org/10.1098/rspb.2017.0641.Article 
    PubMed 

    Google Scholar 
    28.Cheplick GP, Cho R. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytol. 2003;158:183–91. https://doi.org/10.1046/j.1469-8137.2003.00723.x.Article 

    Google Scholar 
    29.Zahn G, Amend AS. Foliar fungi alter reproductive timing and allocation in arabidopsis under normal and water-stressed conditions. 2019. https://www.biorxiv.org/content/10.1101/519678v1.30.Christian N, Herre EA, Clay K. Foliar endophytic fungi alter patterns of nitrogen uptake and distribution in Theobroma cacao. New Phytol. 2019;222:1573–83. https://doi.org/10.1111/nph.15693.Article 
    PubMed 

    Google Scholar 
    31.Rosado BHP, Almeida LC, Alves LF, Lambais MR, Oliveira RS. The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto. New Phytol. 2018;219:1145–9. https://doi.org/10.1111/nph.15235.Article 
    PubMed 

    Google Scholar 
    32.Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, et al. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 2014;5:479.33.Dupont PY, Eaton CJ, Wargent JJ, Fechtner S, Solomon P, Schmid J, et al. Fungal endophyte infection of ryegrass reprograms host metabolism and alters development. New Phytol. 2015;208:1227–40. https://doi.org/10.1111/nph.13614.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Dinkins RD, Nagabhyru P, Graham MA, Boykin D, Schardl CL. Transcriptome response of Lolium arundinaceum to its fungal endophyte Epichloë coenophiala. New Phytol. 2017;213:324–37. https://doi.org/10.1111/nph.14103.Article 
    PubMed 

    Google Scholar 
    35.Welsh S, North American species of astragalus Linnaeus (Leguminosae): a taxonomic revision. Provo, Utah: Brigham Young University; 2007.36.Knaus BJ. Morphometric architecture of the most taxon-rich species in the U.S. Flora: Astragalus lentiginosus (Fabaceae). Am J Bot. 2010;97;1816–26. https://doi.org/10.3732/ajb.0900145.37.Baucom DL, Romero M, Belfon R, Creamer R. Two new species of undifilum, fungal endophytes of astragalus (locoweeds) in the United States. Botany. 2012;90:866–75. https://doi.org/10.1139/b2012-056.Article 

    Google Scholar 
    38.Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. Alternaria redefined. Stud Mycol. 2013;75:171–212. https://doi.org/10.3114/sim0015.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cook D, Gardner DR, Martinez A, Robles CA, Pfister JA. Screening for swainsonine among South American astragalus species. Toxicon. 2017;139:54–7. https://doi.org/10.1016/j.toxicon.2017.09.014.Article 
    PubMed 

    Google Scholar 
    40.Molyneux RJ, James LF. Loco intoxication: indolizidine alkaloids of spotted locoweed (Astragalus lentiginosus). Science. 1982;216:190–1. https://doi.org/10.1126/science.6801763.Article 
    PubMed 

    Google Scholar 
    41.Cook D, Gardner DR, Ralphs MH, Pfister JA, Welch KD, Green BT. Swainsoninine concentrations and endophyte amounts of Undifilum oxytropis in different plant parts of Oxytropis sericea. J Chem Ecol. 2009;35:1272–8. https://doi.org/10.1007/s10886-009-9710-9.Article 
    PubMed 

    Google Scholar 
    42.Harrison JG, Parchman TL, Cook D, Gardner DR, Forister ML. A heritable symbiont and host-associated factors shape fungal endophyte communities across spatial scales. J Ecol. 2018;106:2274–86. https://doi.org/10.1111/1365-2745.12967.Article 

    Google Scholar 
    43.Grum DS, Cook D, Baucom D, Mott IW, Gardner DR, Creamer R, et al. Production of the alkaloid swainsonine by a fungal endophyte in the host Swainsona canescens. J Nat Prod. 2013;76:1984–8. https://doi.org/10.1021/np400274n.44.Cook D, Gardner DR, Pfister JA. Swainsonine-containing plants and their relationship to endophytic fungi. J Agric Food Chem. 2014;62:7326–34. https://doi.org/10.1021/jf501674r.Article 
    PubMed 

    Google Scholar 
    45.Panaccione DG, Beaulieu WT, Cook D. Bioactive alkaloids in vertically transmitted fungal endophytes. Funct Ecol. 2014;28:299–314. https://doi.org/10.1111/1365-2435.12076.Article 

    Google Scholar 
    46.Thompson DC, Knight JL, Sterling TM, Murray LW. Preference for specific varieties of woolly locoweed by a specialist weevil, Cleonidius trivittatus (Say). Southwest Entomol. 1995;20:325–325.
    Google Scholar 
    47.Parker JE. Effects of insect herbivory by the four-lined locoweed weevil, Cleonidius trivittatus (say) (Coleoptera: Curculionidae), on the alkaloid swainsonine in locoweeds Astragalus mollissimus and Oxytropis sericea. Ph.D. thesis. Las Cruces, New Mexico: New Mexico State University; 2008.48.Creamer R, Baucom D. Fungal endophytes of locoweeds: a commensal relationship? J Plant Physiol Pathol. 2013;1. https://doi.org/10.4172/2329-955X.1000104.49.Lu H, Quan H, Zhou Q, Ren Z, Xue R, Zhao B, et al. Endogenous fungi isolated from three locoweed species from rangeland in western China. Afr J Microbiol Res. 2017;11:155–70. https://doi.org/10.5897/AJMR2016.8392.Article 

    Google Scholar 
    50.Schulthess FM, Faeth SH. Distribution, abundances, and associations of the endophytic fungal community of Arizona fescue (Festuca arizonica). Mycologia. 1998;90:569–78. https://doi.org/10.1080/00275514.1998.12026945.Article 

    Google Scholar 
    51.Cook D, Gardner DR, Pfister JA, Stonecipher CA, Robins JG, Morgan JA. Effects of elevated CO2 on the swainsonine chemotypes of Astragalus lentiginosus and Astragalus mollissimus. J Chem Ecol. 2017;43:307–16. https://doi.org/10.1007/s10886-017-0820-5.Article 
    PubMed 

    Google Scholar 
    52.Oldrup E, McLain-Romero J, Padilla A, Moya A, Gardner D, Creamer R. Localization of endophytic undifilum fungi in locoweed seed and influence of environmental parameters on a locoweed in vitro culture system. Botany. 2010;88:512–21. https://doi.org/10.1139/B10-026.Article 

    Google Scholar 
    53.Gardner DR, Molyneux RJ, Ralphs MH. Analysis of swainsonine: extraction methods, detection, and measurement in populations of locoweeds (oxytropis spp.). J Agric Food Chem. 2001;49:4573–80.Article 

    Google Scholar 
    54.Högberg P. 15N natural abundance in soil–plant systems. New Phytol. 1997;137:179–203. https://www.cambridge.org/core/journals/new-phytologist/article/tansley-review-no-95-15n-natural-abundance-in-soilplant-systems/304069FD5C8283EDB78D0AA594465E71. Accessed 2 Jul 2017.Article 

    Google Scholar 
    55.Wang Y, Qian P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE. 2009;4:e7401. https://doi.org/10.1371/journal.pone.0007401.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis MA, Glefand DH, Sninsky JJ, White TJ, editors, PCR protocols: a guide to methods and applications. London: Academic Press; 1990.57.Harrison JG, Calder WJ, Shuman B, Buerkle CA, The quest for absolute abundance: the use of internal standards for DNA-based community ecology. Mol Ecol Resour. 2020, https://doi.org/10.1111/1755-0998.13247.58.Tourlousse DM, Yoshiike S, Ohashi A, Matsukura S, Noda N, Sekiguchi Y. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 2017;45:e23–e23. https://doi.org/10.1093/nar/gkw984.Article 
    PubMed 

    Google Scholar 
    59.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.Article 

    Google Scholar 
    60.Rognes T, Flouri T, Nichols B, Quince C, Mahé F, “VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016. https://doi.org/10.7717/peerj.2584.61.Edgar RC, UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. 2016. https://www.biorxiv.org/content/10.1101/081257v1.full.62.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017:2639. https://doi.org/10.1038/ismej.2017.119.63.Edgar R, “SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. https://www.biorxiv.org/content/10.1101/074161v1.64.Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018, https://doi.org/10.1093/nar/gky1022.65.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal database project: data and tools for high throughput rRNA analysis Nucleic Acids Res. 2014. 42, https://doi.org/10.1093/nar/gkt1244.66.Machida RJ, Leray M, Ho S-L, Knowlton N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci Data. 2017;4:17007 https://doi.org/10.1038/sdata.2017.27.Article 

    Google Scholar 
    67.Fordyce JA, Gompert Z, Forister ML, Nice CC. A hierarchical Bayesian approach to ecological count data: A flexible tool for ecologists. PLoS ONE. 2011;6;e26785. https://doi.org/10.1371/journal.pone.0026785.68.Harrison JG, Calder WJ, Shastry V, Buerkle CA. Dirichlet-multinomial modelling outperforms alternatives for analysis of microbiome and other ecological count data. Mol Ecol Resour. 2020;20:481–97. https://doi.org/10.1111/1755-0998.13128.Article 
    PubMed 

    Google Scholar 
    69.R Core Team, R: a language and environment for statistical computing. Vienna: R Core Team; 2019.70.Harrison J, Shastry V, Calder WJ, Buerkle CA, “CNVRG: Dirichlet-multinomial modelling of relative abundance data.” Sep. 2020. https://CRAN.R-project.org/package=CNVRG. Accessed 28 Oct 2020.71.S. D. Team, Stan modeling language users guide and reference manual. 2020. https://mc-stan.org/users/documentation/72.S. D. Team, “RStan: The R interface to Stan. R package.” 2020. http://mc-stan.org/.73.Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences. Stat Sci. 1992;7:457–72. http://www.jstor.org/stable/2246093. Accessed 16 Jun 2018.
    Google Scholar 
    74.Gloor GB, Macklaim JM, Vu M, Fernandes AD. Compositional uncertainty should not be ignored in high-throughput sequencing data analysis. Austrian J Stat. 2016;45:73–87. http://ajs.data-analysis.at/index.php/ajs/article/view/vol45-4-5. Accessed 4 Dec 2017.Article 

    Google Scholar 
    75.Jost L. Entropy and diversity. Oikos. 2006;113:363–75.Article 

    Google Scholar 
    76.Marion ZH, Fordyce JA, Fitzpatrick BM. A hierarchical Bayesian model to incorporate uncertainty into methods for diversity partitioning. Ecology. 2018;99:947–56. https://doi.org/10.1002/ecy.2174.Article 
    PubMed 

    Google Scholar 
    77.Harrison JG, Gompert Z, Fordyce JA, Buerkle CA, Grinstead R, Jahner JP. et al. The many dimensions of diet breadth: phytochemical, genetic, behavioral, and physiological perspectives on the interaction between a native herbivore and an exotic host. PLoS ONE. 2016;11:e0147971. https://doi.org/10.1371/journal.pone.0147971.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Plummer M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling,”. Proc 3rd Int workshop Distrib Stat Comput. 2003;124:1–8. 10.2003.
    Google Scholar 
    79.Plummer M. Rjags: Bayesian graphical models using MCMC. R package version 3-15. 2015. Https://CRAN.R-project.org/package=rjags.80.Breiman L. Random forests. Mach Learn. 2001;45:5–32. https://doi.org/10.1023/A:1010933404324.Article 

    Google Scholar 
    81.Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
    Google Scholar 
    82.Grum DS, Cook D, Gardner DR, Roper JM, Pfister JA, Ralphs MH. Influence of seed endophyte amounts on swainsonine concentrations in astragalus and oxytropis locoweeds. J Agric Food Chem. 2012;60:8083–9. https://doi.org/10.1021/jf3024062.Article 
    PubMed 

    Google Scholar 
    83.Marion ZH, Fordyce JA, Fitzpatrick BM. Extending the concept of diversity partitioning to characterize phenotypic complexity. Am Nat. 2015;186:348–61.Article 

    Google Scholar 
    84.Arnold AE, Lutzoni F. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots?”. Ecology. 2007;88:541–49. https://doi.org/10.1890/05-1459.Article 
    PubMed 

    Google Scholar 
    85.Strong DR, Lawton JH, Southwood SR. Insects on plants. Community patterns and mechanisms. Oxford, UK: Blackwell Scientific Publicatons; 1984.
    Google Scholar 
    86.Carmona D, Lajeunesse MJ, Johnson MTJ. Plant traits that predict resistance to herbivores. Funct Ecol. 2011;25:358–67. https://doi.org/10.1111/j.1365-2435.2010.01794.x.Article 

    Google Scholar 
    87.Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5. https://doi.org/10.3389/fmicb.2014.00219.88.Trosvik P, de Muinck EJ. Ecology of bacteria in the human gastrointestinal tract—identification of keystone and foundation taxa. Microbiome. 2015;3:44 https://doi.org/10.1186/s40168-015-0107-4.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Banerjee S, Schlaeppi K, van der Heijden MGA, Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567. https://doi.org/10.1038/s41579-018-0024-1.90.Braun K, Romero J, Liddell C, Creamer R. Production of swainsonine by fungal endophytes of locoweed. Mycological Res. 2003;107:980–8. https://doi.org/10.1017/S095375620300813X.Article 

    Google Scholar 
    91.Noor AI, Nava A, Cooke P, Cook D, Creamer R. Evidence for nonpathogenic relationships of alternaria section undifilum endophytes within three host locoweed plant species. Botany. 2018;96:187–200. https://doi.org/10.1139/cjb-2017-0117.Article 

    Google Scholar 
    92.Kulpa SM, Leger EA. Strong natural selection during plant restoration favors an unexpected suite of plant traits. Evolut Appl. 2013;6:510–23. https://doi.org/10.1111/eva.12038.Article 

    Google Scholar 
    93.Leger EA, Baughman OW. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Nat Areas J. 2015;35:54–68. https://doi.org/10.3375/043.035.0108.Article 

    Google Scholar 
    94.Klypina N, Pinch M, Schutte BJ, Maruthavanan J, Sterling TM, Water-deficit stress tolerance differs between two locoweed genera (astragalus and oxytropis) with fungal endophytes. Weed Sci. 2017:1–13. https://doi.org/10.1017/wsc.2017.21.95.Stamp N. Out of the quagmire of plant defense hypotheses. Q Rev Biol. 2003;78:23–55. https://doi.org/10.1086/367580.Article 
    PubMed 

    Google Scholar 
    96.Eades CJ, Hintz WE. Characterization of the α-mannosidase gene family in filamentous fungi: N-glycan remodelling for the development of eukaryotic expression systems. Biotechnol Bioprocess Eng. 2000;5:227. https://doi.org/10.1007/BF02942178.Article 

    Google Scholar 
    97.Schmid J, Day R, Zhang N, Dupont PY, Cox MP, Schardl CL, et al. Host tissue environment directs activities of an epichloë endophyte, while it induces systemic hormone and defense responses in its native perennial ryegrass host. Mol Plant Microbe Interact. 2016;30:138–49. https://doi.org/10.1094/MPMI-10-16-0215-R.98.Zamioudis C, Pieterse CMJ. Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact. 2011;25:139–50. https://doi.org/10.1094/MPMI-06-11-0179.Article 

    Google Scholar 
    99.Kannadan S, Rudgers JA. Endophyte symbiosis benefits a rare grass under low water availability. Funct Ecol. 2008;22:706–13. https://doi.org/10.1111/j.1365-2435.2008.01395.x.Article 

    Google Scholar 
    100.Barillas JRV, Paschke MW, Ralphs MH, Child RD. White locoweed toxicity is facilitated by a fungal endophyte and nitrogen-fixing bacteria. Ecology. 2007;88:1850–6. https://doi.org/10.1890/06-0728.1.Article 

    Google Scholar 
    101.Isbell F, Calcagno V, Hector A, Connolly J, Harpole WS, Reich PB, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202. https://doi.org/10.1038/nature10282. More

  • in

    Unveiling the unknown phylogenetic position of the scallop Austrochlamys natans and its implications for marine stewardship in the Magallanes Province

    This is the first comparative study of commercial scallop species in the Pacific coast of the MP combining morphological and molecular characters. Our phylogenetic analyses highlight the association between A. natans and Ad. colbecki; two members of monospecific tribes and last extant representatives of their Southern Ocean-restricted genera.These results confirm the presence of both Magallanes scallops in the MP, as well as the so-far unsuspected presence of mixed “banks” where both species occur in sympatry. The BND/VH ratio helps discriminate between two distinct entities that belong to the genetic lineage of Z. patagonica and to a different lineage, highly divergent from the former, which corresponds to A. natans. A. natans is the only species of a whole lineage with a particular phylogenetic value, therefore having developed and tested an accurate identification criterion for both scallops will allow efficient fishery management in the future.Here we discuss the phylogenetic position and the taxonomic status of both Magallanes scallops, as well as the implications of these results for the future management and conservation of Z. patagonica and A. natans in the Magallanes Region. Despite the numerous classifications built on morphological, ecological or molecular data, the relationships among pectinids are still under constant modification depending on the number of taxa, loci, length of the sequence and the selected outgroups1,4. The work of Alejandrino et al.7 is the most inclusive so far in terms of taxon sampling, with 81 species. Although Scherrat et al.25 included 143 species, the node supports of the phylogenetic trees are not provided, making it difficult to assess the robustness of this large phylogeny. In order to define the phylogenetic position of Zygochlamys patagonica and Austrochlamys natans, we included 93 pectinid taxa (43 genera) representative of tribes Chlamydini, Crassadomini, Fortipectini, Palliolini, Aequipectinini, Pectinini and Amussini. Comparing to Waller’s5 and Dijkstra’s15 classifications, only the subfamily Camptonectinae and the tribe Mesoplepini are missing. We used three ribosomal regions (one nuclear and two mitochondrial). Compared to Alejandrino et al.7, histone H3 is missing here, however this locus is among the least informative4. The family Pectinidae appears to be monophyletic with high support values (Fig. 5, S2), as previously demonstrated4,7,26,27,28. According to Dijkstra15 there are currently five subfamilies of Pectinidae, two of which are absent from our analysis: Camptonectinae and Pedinae. This topology supports the classifications of Waller5 and Dijkstra15, except for the position of the tribe Austrochlamydini.Our Magallanes scallops separated into two very divergent clades: Z. patagonica is associated with its conspecifics and congenerics in a single lineage (Fig. 5), which also contains species of Veprichlamys and Talochlamys. This lineage already appeared well supported as the sister clade to Palliolinae and Pectininae in Alejandrino7. For the first time, Talochlamys dichroa and T. gemmulata are nested with high support values into the Zygochlamys clade, making this latter genus paraphyletic (Fig. 5). These taxa are all restricted to high latitudes of the Southern Ocean. Due to phylogenetic and geographic affinities, we suggest that these three genera may constitute a tribe separate from Chlamydini. Since Dijkstra15 moved the two Atlantic ‘Crassadoma’ into the genus Talochlamys, the affinities among Talochlamys spp. had not been explored until now. Talochlamys species rather associate according to geographic affinities, splitting the genus into two highly divergent entities corresponding to European and New Zealand Talochlamys. A systematic revision of these four species would be useful.Austrochlamys natans associated with the Palliolinae, which was elevated to a subfamily rank by Waller5. Of the three extant tribes that compose this group, Mesopleplini are missing from our phylogenetic analyses. We included 4 genera (8 species) of the remaining two tribes: Adamussium (Adamussini) and Palliolum, Pseudamussium, Placopecten (Palliolini). The present sampling of Palliolini is the most inclusive to date and led to the monophyly and full support of the tribe Palliolini. Our phylogenetic results do not support any of the previous classifications of the tribe Austrochlamydini1,5,9,13,15, and introduce this monospecific tribe as a new member of the subfamily Palliolinae. Indeed, Austrochlamys natans clusters together with Adamussium colbecki, both in a sister clade to Palliolini. The first molecular characterization of Ad. colbecki did not lead to a clear classification due to the low polymorphism of the 18S26. Later, Ad. colbecki appears either as sister species to Chlamydinae or to Palliolini, depending on tribe sampling and the choice of outgroup and loci4,10,11. However, in the most recent and inclusive studies of taxon sampling7 (present study) or genomic cover29, Ad. colbecki is the sister group of the tribe Palliolini, as in the present phylogeny.The subfamily Palliolinae originated from a Chlamydinine ancestor in the Cretaceous and subsequently underwent diversification in the Northern Hemisphere1 and in the Southern Hemisphere, where the extinct genus Lentipecten spread in the Paleocene–Eocene Thermal Maximum30. The genus Adamussium derived from Lentipecten and appeared in the early Oligocene; it comprises 5 endemic Antarctic species; Ad. colbecki is the only one extant13,31,32. The genus Austrochlamys also appeared in the Oligocene and was first restricted to King George Island (South Shetlands), then spread around the north of the Antarctic Peninsula and achieved a circum-Antarctic distribution until the Pliocene13,33,34. Austrochlamys persisted during the progressive cooling of the Antarctic Continent from the Paleocene to the Pliocene, dominating the coastal areas, while Adamussium occupied the deep seas and continental platform33. The opening and deepening of the Drake Passage and the intensification of the Antarctic Circumpolar Current during the Pliocene provoked a drastic cooling and the extension of sea ice over the coastal habitat, which caused the northward movement of Austrochlamys and its subsequent disappearance from Antarctica, along with the circumpolar expansion of Ad. colbecki in Antarctic shallow waters33. The colonization of the coastal habitat has been related to the sea ice extent that provided a more stable environment and low-energy fine-grained sediment with which Adamussium was associated in the deep waters. Austrochlamys fossils appear in the Subantarctic Heard Island in late Pliocene layers (3.62–2.5 Ma35). Today Ad. colbecki is a circum-Antarctic and eurybathic species that reaches high local density in protected locations13,36, while all Austrochlamys became extinct except for A. natans, which is restricted to southern South America33. The phylogenetic affinity highlighted here between A. natans and Ad. colbecki has its origins in the Southern Ocean; the deep divergence between the lineages of these monospecific tribes attests to the long time since their common origin in the Paleogene. These results point out both species as relevant biogeographic models to address longstanding questions regarding the origin of marine biota from Southern Ocean.The nomenclature, taxonomy and ecology of both A. natans and Z. patagonica have been problematic for almost 200 years. Since its original description37, Z. patagonica, a.k.a. the “Ostión Patagónico” has been named with more than 10 synonyms, probably due to the great intra-specific morphological variability throughout its distribution19,38 (see the nomenclatural history in Supplementary Table S1). In contrast, there are very few records in the scientific literature and no genetic data on A. natans, a.k.a. the “Ostión del Sur”13,14,17,19, and some problems of nomenclature and establishing diagnostic characters persist since its description13,39. Many of the current junior synonyms of both species were described from small and juvenile specimens (under 52 mm VH39,40,41). Indeed, all deposited type material of A. natans ranges from 23.5 to 52 mm VH; the latter is half of the maximum size39. The criteria most commonly used for the identification of both scallops were number of radial primary ribs, maximum size, shell colour and presence of laminated concentric lines (Supplementary Table S1). Specimens with marked primary and secondary radial ribs alternated regularly and more whitish colouring of the right shell were attributed to Z. patagonica, while those with weaker and less markedly coloured radial ribs and the maximum size were considered as A. natans42. However, the number of radial ribs overlaps between Z. patagonica (26–4212,43) and A. natans (22–5017,19). These characters also have high variability across different environments and during ontogeny13,17. Thus the use of a taxonomy based on environment-sensitive and allometric characters has led to confusion in the morphological identification of these species13,38. The criterion used in the present study, the BND/VH ratio established by Jonkers13, discriminates the species efficiently. As attested by the narrow dispersal cluster in Fig. 3, this character has low intra-population variability13. In some cases a level of intraspecific variation can be detected, and this is mainly due to the environments where the scallop populations inhabit19 (e.g. exposed, protected, substrate type, fjord, oceanic). However, although there may be some intraspecific variability between populations, this variability does not generate problems for the identification of the two species. Individuals of A. natans generally presented a significantly greater BND/VH ratio than those of Z. patagonica. However, it is important to consider that, given that this character varies during ontogeny, it is more accurate in individuals over 25 mm VH13. Only the molecular identification was able to discriminate juvenile scallops of both species accurately.According to the literature, A. natans is restricted to interior waters of channels and is associated with kelp forests of M. pyrifera (Supplementary Table S1). Z. patagonica inhabits a wider range of environments such as bottoms of shells, sand, mud and gravel in protected and exposed areas, between 2 and 300 m depth (Supplementary Table S1), but is also associated with kelp forests in fjords with different degrees of glacial retreat12,16,44. The juveniles of both scallops recruit in kelp forests44,45. According to the local artisanal fishermen, adults of “Ostión del Sur” (A. natans) occur in fjords with glaciers (orange circles in Fig. 123). We included two sampling locations near glaciers (in Pia and Montañas fjords), where large individuals (between 46 and 86 mm) of A. natans and Z. patagonica occur in sympatry. This sympatry was previously reported in Silva Palma Fjord between 5 and 25 m depth16. In conclusion, scallop banks are not monospecific but rather mixed and Z. patagonica occurs in the interior waters of the channels and fjords. Consequently, these two species have overlapping ecology (recruiting zone and glacial affinity) in the channels and fjords, overturning a long-held view that these scallops have marked habitat segregation.The fishery for both species was established in the 1990s in the political-administrative Region of Magallanes16, despite the complexity of the morphological recognition of scallops. The distinction between species was based on shell colour and radial ribs42, two characters that, given the results of this study, do not have this diagnostic capacity. Consequently, the scallop fisheries in the Magallanes Region are currently based on inaccurately discriminative characters. Scallop banks in MP have always been considered as monospecific16,47. A great part of scallop landing has always been attributed to A. natans47, about which the scientific literature is scarce (Supplementary Table S1). Conversely, Z. patagonica, which was erroneously considered as the commercial species of southern Chile, has more scientific research (Supplementary Table S1).The difficulty to discriminate A. natans and Z. patagonica morphologically may lead to incorrect fishery statistics and uncertain conservation status of A. natans. Incorrect fishery statistics could overestimate the abundance of banks of A. natans compared to Z. patagonica. If the minimum catch size is reduced23 in the context of the fishing overuse of the last decade, A. natans may suffer a reduction of its maximum size48. Therefore, an identification criterion between species is a need to improve fishery management. We showcased a quantified criterion that is useful to identify both species. In the short-term, this method can be used, but it is difficult to enforce in practical ways. We suggest to train fishing inspectors, following three guidelines. First, the identification should consider only the right valve (RV) for species identification, since the left valve is not taxonomically informative. Second, for visual classification, check the outline of the BN, mainly because the individuals of Z. patagonica have a more arcute BN. Third, a reliable identification has to measure the depth of the byssal notch (BND) and shell height (VH) ratio. Lastly, future research and fishery monitoring should follow these criteria to carry out a correct identification and subsequently better landings statistics.Molecular tools allowed evaluating the phylogenetic relationships of scallops globally or regionally and incorporating parameters that can be used for the management and conservation of species of commercial interest49. For example, in the last few decades metrics have been developed to address conservation problems that give us a measure of the current state of particular taxa. These conservation priorities are often seen as measures for threatened species categorized by the IUCN Red List (World Conservation Union, 1980), one of the most widely and recognized systems. Although this prioritization metric incorporates phylogenetic distinctiveness (PD), this factor has been updated due to the importance of quantifying the loss of evolutionary diversity that would be implied by the extinction of a species50. The magnitude of the PD loss from any species will depend (but not exclusively) on the fate of its close relatives51. The “Ostión del Sur”, Austrochlamys natans is the last representative of its tribe (Austrochlamydini) in the Southern Ocean. Its phylogenetic position and the long branch length (i.e. the length of the branch from the tip to where it joins the tree), which represents an important amount of evolutionary change, highlights the degree of isolation of A. natans and calls attention to the possible loss of a unique genetic lineage. There is currently no conservation value for this relict species; we sought to alert the current fishery management that the “Ostión del Sur” is a distinct taxon and provide integrative evidence for further conservation studies.Finally, regarding the overlapping niche of these scallops and the conservation importance of the clade of A. natans, we propose three key recommendations for the future scallop fishery policies in the sub-Antarctic channels. First, it is necessary to assess the proportion of both species per bank and landing to generate a distribution map through the sub-Antarctic channels. For this assessment, the byssal notch depth is the most appropriate morphological character. Second, we recommend reassessments of biological and ecological parameters (e.g. size at first maturity) for A. natans across the glacial fjords, which are the most relevant fishing sites. As a final point, today there is a complete lack of knowledge of the genetic connectivity along the Subantarctic Channels. Thus we should generate more research about spatial population genetics at different temporal scales. The integration of genomic approaches (e.g. SNPs) with macro- and micro-environmental modelling approaches provide enormous opportunity to establish a new regional zoning for fishery management and conservation scallop strategy. More

  • in

    Urban storm water infiltration systems are not reliable sinks for biocides: evidence from column experiments

    Soil propertiesStone contentThe stone content ranged from (15,pm ,8%) (w/w) at V.18 to (44,pm ,13%) (w/w) at F.3 (Fig. 1a, Table 1). These differences between sites may partly be due to different sources of the raw material used to create the SIS. Further, the stone content increased with depth within the first 15 cm (V.18) and 10 cm (W.10), but remained approximately constant over depth at F.3. Hence, the stone content in the upper layers of the older SIS (W.10 and V.18) was lower than in the lower layers. These depth-related differences at each site may be related to time-dependent developments within the SIS. In the uppermost layers of V.18 and W.10, stone content was comparatively low probably due to input of fine mineral and organic particles by storm water. For the oldest SIS (V.18), this assumption is supported by the field observation of soil material lying on a bricked stone border near the inflow within the SIS.Figure 1Depth-dependent soil properties: (a) stone content [% (w/w)], (b) bulk density ((hbox {g},hbox {cm}^{-3})), (c) pH (0.01 M (hbox {CaCl}_{2})) and (d) organic carbon content (OC) [% (w/w)] of the three sites F3, W.10, V18. The error bars are the standard deviation ((hbox {n}=4)).Full size imageTable 1 Soil properties of SIS.Full size tableBulk densityThe bulk density in the upper layers of the different SIS increased in the following order: V.18 < W.10 < F.3 (Fig. 1b, Table 1). At V.18, we observed the strongest change with depth from (1.0,pm ,0.1,hbox {g},hbox {cm}^{-3}) (0–5 cm) to (1.5,pm ,0.1,hbox {g},hbox {cm}^{-3}) (15–20 cm). In contrast, we observed almost no depth-dependent change of bulk density at the youngest site of F.3 ((1.6,pm ,0.2,hbox {g},hbox {cm}^{-3})).In samples of the older sites of V.18 and W.10, low bulk densities in the uppermost layers compared to deeper layers were probably caused by the activity of macrofauna, an intensive rooting, a higher organic carbon (OC) content and the input of strongly sorted fine material. The older the SIS, the stronger the effect of these factors.At F.3 the bulk density was relatively high. Here, we supposed an uniform compaction of the soil layer under the topsoil during construction. This assumption was supported by the observation of redox characteristics (iron-red stains next to grey iron-depleted areas) in the soil at approximately 25 cm depth caused by the lack of oxygen due to accumulating water45 in compacted soil.TextureThe mean texture of fine soil at all SIS was very similar: 57–80% (w/w) sand, 16–34% (w/w) silt and 5–9% (w/w) clay, since similar textured materials were used for construction to guarantee solute retention and sufficient hydraulic conductivity31. Average clay contents of all SIS were within acceptable ranges of Best Management Practice (BMP) claimed by ATV-DVWK A-138 (( More

  • in

    Impact of land cover and landfills on the breeding effect and nest occupancy of the white stork in Poland

    1.Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA. 114, 5775–5777 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Biol. Sci. 268, 25–29 (2001).Article 

    Google Scholar 
    3.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    4.Partecke, J. & Gwinner, E. Increased sedentariness in European Blackbirds following urbanization: A consequence of local adaptation?. Ecol. Soc. Am. 88, 882–890 (2010).
    Google Scholar 
    5.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar 
    6.Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).Article 

    Google Scholar 
    7.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed 
    Article 

    Google Scholar 
    8.Plaza, P. I. & Lambertucci, S. A. How are garbage dumps impacting vertebrate demography, heath, and conservation?. Glob. Ecol. Conserv. 12, 9–20 (2017).Article 

    Google Scholar 
    9.Djerdali, S., Guerrero-Casado, J. & Tortosa, F. S. The effects of colony size interacting with extra food supply on the breeding success of the White Stork (Ciconia ciconia). J. Ornithol. 157, 941–947 (2016).Article 

    Google Scholar 
    10.Frixione, M. G., Casaux, R., Villanueva, C. & Alarcón, P. A. E. A recently established Kelp Gull colony in a freshwater environment supported by an inland refuse dump in Patagonia. Emu 112, 174–178 (2012).Article 

    Google Scholar 
    11.Parfitt, J., Barthel, M. & MacNaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365, 3065–3081 (2010).12.Rumbold, D. G., Morrison, M. & Bruner, M. C. Assessing the ecological risk of a municipal solid waste landfill to surrounding wildlife: A case study in florida. Environ. Bioindic. 4, 246–279 (2009).Article 

    Google Scholar 
    13.Tortosa, F. S., Caballero, M. J. & Reyes-López, J.-L. Effect of rubbish dumps on breeding success in the White Stork in Southern Spain. Waterbirds 25, 39–43 (2002).Article 

    Google Scholar 
    14.Henry, P. Y., Wey, G. & Balança, G. Rubber band ingestion by a Rubbish Dump Dweller, the white stork (Ciconia ciconia). Waterbirds 34, 504–508 (2011).
    Article 

    Google Scholar 
    15.Matejczyk, M., Płaza, G. A., Nałcz-Jawecki, G., Ulfig, K. & Markowska-Szczupak, A. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82, 1017–1023 (2011).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    16.Pineda-Pampliega, J. et al. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. Sci. Total Environ. 145197, https://doi.org/10.1016/j.scitotenv.2021.145197 (2021).17.de la Casa-Resino, I., Hernández-Moreno, D., Castellano, A., Pérez-López, M. & Soler, F. Breeding near a landfill may influence blood metals (Cd, Pb, Hg, Fe, Zn) and metalloids (Se, As) in white stork (Ciconia ciconia) nestlings. Ecotoxicology 23, 1377–1386 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    18.de la Casa-Resino, I., Hernández-Moreno, D., Castellano, A., Pérez-López, M. & Soler, F. Chlorinated pollutants in blood of White stork nestlings (Ciconia ciconia) in different colonies in Spain. Chemosphere 118, 367–372 (2015).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    19.Profus, P. Population changes and breeding ecology of the White Stork Ciconia ciconia L. in Poland against a background of the European population. Synth. Stud. Nat. 50, 1–155 (2006).20.Reif, J., Böhning-Gaese, K., Flade, M., Schwarz, J. & Schwager, M. Population trends of birds across the iron curtain: Brain matters. Biol. Conserv. 144, 2524–2533 (2011).Article 

    Google Scholar 
    21.Van den Bossche, W. et al. Eastern European White Stork populations: Migration studies and elaboration of conservation measures. Skripten 22 (2002).22.Bairlein, F. Population studies of White Storks Ciconia ciconia in Europe, with reference to the western population. in Bird Population Studies: Relevance to Conservation and Management (eds. Perrins, C., Lebreton, J. D. & Hirons, R.) 207–229 (Oxford University Press, 1991).23.Kanyamibwa, S., Bairlein, F. & Schierer, A. Comparison of survival rates between populations of the White Stork Ciconia ciconia in Central Europe. Ornis Scand. 24, 297 (2007).Article 

    Google Scholar 
    24.Tortosa, F. S., Manez, M. & Barcell, M. Wintering white storks (Ciconia ciconia) in south west Spain in the years 1991 and 1992. Vogelwarte 38, 41–45 (1995).
    Google Scholar 
    25.Kosicki, J. Z., Profus, P., Dolata, P. T. & Tobółka, M. Food composition and energy demand of the White Stork Ciconia ciconia breeding population. Literature survey and preliminary results from Poland. in Bogucki Wydawnictwo Naukowe, (eds. Tryjanowski, P., Sparks, T. & Jerzak, L.) 169–183 (Bogucki Wydawnictwo Naukowe, 2006).26.Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1–13 (2015).
    Google Scholar 
    27.Djerdali, S., Guerrero-Casado, J. & Tortosa, F. S. Food from dumps increases the reproductive value of last laid eggs in the White Stork Ciconia ciconia. Bird Study 63, 107–114 (2016).Article 

    Google Scholar 
    28.Ciach, M. & Kruszyk, R. Foraging of White Storks Ciconia ciconia on rubbish dumps on non-breeding grounds. Waterbirds 33, 101–104 (2010).Article 

    Google Scholar 
    29.Kruszyk, R. & Ciach, M. White Storks, Ciconia ciconia, forage on rubbish dumps in Poland-a novel behaviour in population. Eur. J. Wildl. Res. 56, 83–87 (2010).Article 

    Google Scholar 
    30.Bialas, J. T., Dylewski, Ł & Tobolka, M. Determination of nest occupation and breeding effect of the white stork by human-mediated landscape in Western Poland. Environ. Sci. Pollut. Res. 27, 4148–4158 (2020).CAS 
    Article 

    Google Scholar 
    31.Tobolka, M., Sparks, T. H. & Tryjanowski, P. Does the White Stork Ciconia ciconia reflect farmland bird diversity?. Ornis Fenn. 89, 222–228 (2012).
    Google Scholar 
    32.Belant, J. L., Seamans, T. W., Gabrey, S. W. & Dolbeer, R. A. Abundance of gulls and other birds at landfills in Northern Ohio. Am. Midl. Nat. 134, 30 (1995).33.Zorrozua, N. et al. Evaluating the effect of distance to different food subsidies on the trophic ecology of an opportunistic seabird species. J. Zool. https://doi.org/10.1111/jzo.12759 (2020).Article 

    Google Scholar 
    34.Obukhova, N. Y. Nesting dynamics of corvids (Corvidae) in the city of Moscow and Moscow Oblast. Biol. Bull. 45, 1096–1105 (2018).Article 

    Google Scholar 
    35.Steigerwald, E. C., Igual, J. M., Payo-Payo, A. & Tavecchia, G. Effects of decreased anthropogenic food availability on an opportunistic gull: Evidence for a size-mediated response in breeding females. Ibis (Lond. 1859). 157, 439–448 (2015).36.Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).Article 

    Google Scholar 
    37.Kaługa, I., Bochenski, M. & Jerzak, L. Factors influencing fledgling success of the White Stork Ciconia ciconia in Eastern Poland. in The White Stork: Studies in Biology, Ecology and Conservation (eds. Jerzak, L., Shephard, J., Aquirre, J. I., Shamoun-Baranes, J. & Tryjanowski, P.) 137–161 (Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2016).38.Tobolka, M., Dylewski, L., Wozna, J. T. & Zolnierowicz, K. M. How weather conditions in non-breeding and breeding grounds affect the phenology and breeding abilities of white storks. Sci. Total Environ. 636, 512–518 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    39.Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    40.Tobolka, M., Zolnierowicz, K. M. & Reeve, N. F. The effect of extreme weather events on breeding parameters of the White Stork Ciconia ciconia. Bird Study 62, 377–385 (2015).Article 

    Google Scholar 
    41.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    42.Nowakowski, J. J. Habitat structure and breeding parameters of the White Stork Ciconia ciconia in the Kolno Upland (NE Poland). Acta Ornithol. 38, 39–46 (2003).Article 

    Google Scholar 
    43.Janiszewski, T., Minias, P. & Wojciechowski, Z. Occupancy reliably reflects territory quality in a long-lived migratory bird, the white stork. J. Zool. 291, 178–184 (2013).Article 

    Google Scholar 
    44.Radović, A., Kati, V., Perčec Tadić, M., Denac, D. & Kotrošan, D. Modelling the spatial distribution of white stork Ciconia ciconia breeding populations in Southeast Europe. Bird Study 62, 106–114 (2015).45.Dyderski, M. K. & Jagodziński, A. M. Seedling survival of Prunus serotina Ehrh., Quercus rubra L. and Robinia pseudoacacia L. in temperate forests of Western Poland. For. Ecol. Manag. 450, 117498 (2019).46.Biecek, P. Dalex: Explainers for complex predictive models in R. J. Mach. Learn. Res. 19, 1–14 (2018).MATH 

    Google Scholar 
    47.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    49.Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. R Package Vers. 1, 55 (2007).
    Google Scholar 
    50.Dimitriadou, A. E., Hornik, K., Leisch, F., Meyer, D. & Weingessel, A. Misc functions of the Department of Statistics (e1071), TU Wien. R Package 1, 5–24 (2008).
    Google Scholar 
    51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. 67 (2015).52.Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.42.1., 2018).53.Wood, S. & Scheipl, F. Package ‘gamm4’. in Generalized Additive Mixed Model Using mgcv lme4 (2015).54.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).55.Blanco, G. Population dynamics and communal roosting of White Storks foraging at a Spanish refuse dump. Colon. Waterbirds 19, 273–276 (1996).Article 

    Google Scholar 
    56.Massemin-Challet, S. et al. The effect of migration strategy and food availability on White Stork Ciconia ciconia breeding success. Ibis (Lond. 1859). 148, 503–508 (2006).57.Tortosa, F. S., Pérez, L. & Hillström, L. Effect of food abundance on laying date and clutch size in the white stork Ciconia ciconia. Bird Study 50, 112–115 (2003).Article 

    Google Scholar 
    58.Djerdali, S., Tortosa, F. S., Hillstrom, L. & Doumandji, S. Food supply and external cues limit the clutch size and hatchability in the White Stork Ciconia ciconia. Acta Ornithol. 43, 145–150 (2008).Article 

    Google Scholar 
    59.Höfle, U. et al. Foraging at solid urban waste disposal sites as risk factor for cephalosporin and colistin resistant Escherichia coli carriage in White Storks (Ciconia ciconia). Front. Microbiol. 11, 1–13 (2020).Article 

    Google Scholar 
    60.Hmamouchi, M. J., Agharroud, K., Dahmani, J. & Hanane, S. Seeking the least urbanized landscape: white stork nest abundance variation in a Mediterranean capital city. Eur. J. Wildl. Res. 66 (2020).61.Hmamouchi, M. J., Agharroud, K., Dahmani, J. & Hanane, S. Landscape and coloniality are robust predictors of White Stork nest habitat selection in a coastal urban environment. Estuar. Coast. Shelf Sci. 242, 106835 (2020).Article 

    Google Scholar 
    62.Chenchouni, H. Variation in White Stork (Ciconia ciconia) diet along a climatic gradient and across rural-to-urban landscapes in North Africa. Int. J. Biometeorol. 61, 549–564 (2016).PubMed 
    Article 

    Google Scholar 
    63.Martín-Maldonado, B. et al. Urban birds: An important source of antimicrobial resistant Salmonella strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 72, 101519 (2020).PubMed 
    Article 

    Google Scholar 
    64.Rey Benayas, J. M. et al. Short-term dynamics and spatial pattern of nocturnal birds inhabiting a mediterranean agricultural mosaic. Ardeola 57, 303–320 (2010).65.Zhao, Q. et al. Land-use change increases climatic vulnerability of migratory birds: Insights from integrated population modelling. J. Anim. Ecol. 88, 1625–1637 (2019).PubMed 
    Article 

    Google Scholar 
    66.López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: Implications for farmland bird conservation. Bird Conserv. Int. 21, 328–341 (2011).Article 

    Google Scholar 
    67.Brambilla, M., Gustin, M., Cento, M., Ilahiane, L. & Celada, C. Habitat, climate, topography and management differently affect occurrence in declining avian species: Implications for conservation in changing environments. Sci. Total Environ. 742, 140663 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    68.Brambilla, M., Rubolini, D. & Guidali, F. Between land abandonment and agricultural intensification: habitat preferences of Red-backed Shrikes Lanius collurio in low-intensity farming conditions. Bird Study 54, 160–167 (2007).Article 

    Google Scholar 
    69.Harmange, C., Bretagnolle, V., Sarasa, M. & Pays, O. Changes in habitat selection patterns of the gray partridge Perdix perdix in relation to agricultural landscape dynamics over the past two decades. Ecol. Evol. 9, 5236–5247 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    71.Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).Article 

    Google Scholar 
    72.Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article 

    Google Scholar 
    73.Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).Article 

    Google Scholar 
    74.Sunde, P., Thorup, K., Jacobsen, L. B. & Rahbek, C. Weather conditions drive dynamic habitat selection in a generalist predator. PLoS ONE 9, 1–12 (2014).Article 
    CAS 

    Google Scholar 
    75.Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. & Real, J. Landfills determine the distribution of an expanding breeding population of the endangered Egyptian vulture neophron percnopterus. Ibis (Lond. 1859). 159, 757–768 (2017).76.Olea, P. P. & Baglione, V. Population trends of Rooks Corvus frugilegus in Spain and the importance of refuse tips. Ibis (Lond. 1859). 150, 98–109 (2008).77.Rachel, M. Foraging sites of breeding White Storks Ciconia ciconia in the South Wielkopolska region. in The White Stork in Poland: Studies in Biology, Ecology and Conservation (eds. Tryjanowski, P., Sparks, T. H. & Jerzak, L.) 161–167 (Bogucki Wydawnictwo Naukowe, 2006).78.Kamiński, P. et al. Do agricultural environments increase the reproductive success of White Stork Ciconia ciconia populations in South-Western Poland?. Sci. Total Environ. 702, 134503 (2020).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    79.Denac, D. Resource-dependent weather effect in the reproduction of the White Stork Ciconia ciconia. Ardea 94, 233–240 (2006).
    Google Scholar 
    80.Jovani, R. & Tella, J. L. Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography (Cop.) 27, 611–618 (2004).Article 

    Google Scholar 
    81.Tobolka, M., Kuźniak, S., Zolnierowicz, K. M., Sparks, T. H. & Tryjanowski, P. New is not always better: Low breeding success and different occupancy patterns in newly built nests of a long-lived species, the white stork Ciconia ciconia. Bird Study 60, 399–403 (2013).Article 

    Google Scholar 
    82.Tryjanowski, P., Kosicki, J. Z., Kuźniak, S. & Sparks, T. H. Long-term changes and breeding success in relation to nesting structures used by the white stork, Ciconia ciconia. Ann. Zool. Fennici 46, 34–38 (2009).Article 

    Google Scholar 
    83.Pinowski, J., Pinowska, B., de Graaf, R., Visser, J. & Dziurdzik, B. Influence of feeding habitat on prey capture rate and diet composition of White Stork Ciconia ciconia (L.). Stud. Nat. A 37, 59–85 (1991).84.Si Bachir, A. et al. Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the white stork (Ciconia ciconia). J. Ornithol. 154, 481–489 (2013).85.Moritzi, M. et al. Time budget, habitat use and breeding success of white storks Ciconia ciconia under variable foraging conditions during the breeding season in Switzerland. Ardea 89, 457–470 (2001).
    Google Scholar 
    86.Heinrich, B. Neophilia and exploration in juvenile common ravens, Corvus corax. Anim. Behav. 50, 695–704 (1995).Article 

    Google Scholar 
    87.Greenberg, R. The role of neophobia and neophilia in the development of innovative behaviour of birds. in Animal Innovation (eds. Reader, S. & Laland, K.) 175–196 https://doi.org/10.1093/acprof:oso/9780198526223.003.0008 (Oxford University Press, 2003).88.Biondi, M. L., Bó, M. S. & Vassallo, A. I. Inter-individual and age diferences in exploration, neophobia and problem-solving ability in a Neotropical raptor (Milvago chimango). Anim. Cogn. 13, 701–710 (2010).PubMed 
    Article 

    Google Scholar 
    89.Arizaga, J. et al. Importance of artificial stopover sites through avian migration flyways: a landfill-based assessment with the White Stork Ciconia ciconia. Ibis (Lond. 1859). 160, 542–553 (2018).90.Antczak, M. & Dolata, P. T. Night roosts, flocking behaviour and habitat use of the non-breeding fraction and migrating White Storks Ciconia ciconia in the Wielkopolska region (SW Poland. in The White Stork in Poland: Studies in Biology, Ecology and Conservation (eds. Tryjanowski, P., Sparks, T. & Jerzak, L.) 209–224 (Bogucki Wydawnictwo Naukowe, 2006).91.Blanco, G. Role of refuse as food for migrant, floater and breeding Black Kites (Milvus migrans). J. Raptor Res. 31, 71–76 (1997).
    Google Scholar 
    92.Migura-Garcia, L. et al. mcr-Colistin resistance genes mobilized by Inc X4, IncHI2, and IncI2 plasmids in Escherichia coli of pigs and White Stork in Spain. Front. Microbiol. 10, 1–11 (2020).Article 

    Google Scholar 
    93.Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88, 87–98 (2000).Article 

    Google Scholar  More

  • in

    Identifying unknown Indian wolves by their distinctive howls: its potential as a non-invasive survey method

    1.Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. Introductory concepts. In Distance Sampling. Estimating Abundance of Biological Populations 446 (1993). https://doi.org/10.1002/9780470752784.part1.2.Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    3.Garland, L., Crosby, A., Hedley, R., Boutin, S. & Bayne, E. Acoustic vs. Photographic monitoring of gray wolves (Canis lupus): a methodological comparison of two passive monitoring techniques. Can. J. Zool. 98, 219–228 (2020).Article 

    Google Scholar 
    4.Crunchant, A. S., Borchers, D., Kühl, H. & Piel, A. Listening and watching: do camera traps or acoustic sensors more efficiently detect wild chimpanzees in an open habitat?. Methods Ecol. Evol. 11, 542–552 (2020).Article 

    Google Scholar 
    5.Wood, C. M. et al. Using the ecological significance of animal vocalizations to improve inference in acoustic monitoring programs. Conserv. Biol. https://doi.org/10.1111/cobi.13516 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Rhinehart, T. A., Chronister, L. M., Devlin, T. & Kitzes, J. Acoustic localization of terrestrial wildlife: current practices and future opportunities. Ecol. Evol. 10, 6794–6818 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Kidney, D. et al. An efficient acoustic density estimation method with human detectors applied to gibbons in Cambodia. PLoS ONE 11, 1–16 (2016).Article 
    CAS 

    Google Scholar 
    8.Thompson, M. E., Schwager, S. J., Payne, K. B. & Turkalo, A. K. Acoustic estimation of wildlife abundance: methodology for vocal mammals in forested habitats. Afr. J. Ecol. 48, 654–661 (2010).Article 

    Google Scholar 
    9.Parra, J. M. Passive acoustic aquatic animal finder apparatus and method. US patent 5,099,455 (1992).10.Riede, K. Acoustic monitoring of Orthoptera and its potential for conservation. J. Insect Conserv. 2, 217–223 (1998).Article 

    Google Scholar 
    11.Petrusková, T., Pišvejcová, I., Kinštová, A., Brinke, T. & Petrusek, A. Repertoire-based individual acoustic monitoring of a migratory passerine bird with complex song as an efficient tool for tracking territorial dynamics and annual return rates. Methods Ecol. Evol. 7, 274–284 (2016).Article 

    Google Scholar 
    12.Sanders, C. E. & Mennill, D. J. Acoustic monitoring of nocturnally migrating birds accurately assesses the timing and magnitude of migration through the Great Lakes. Condor 116, 371–383 (2014).Article 

    Google Scholar 
    13.Acevedo, M. A. & Villanueva-Rivera, L. J. From the field: Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildl. Soc. Bull. 34, 211–214 (2006).Article 

    Google Scholar 
    14.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).Article 

    Google Scholar 
    15.Pérez-Granados, C. et al. Vocal activity rate index: a useful method to infer terrestrial bird abundance with acoustic monitoring. Ibis (Lond. 1859) 161, 901–907 (2019).Article 

    Google Scholar 
    16.Kimura, S. et al. Comparison of stationary acoustic monitoring and visual observation of finless porpoises. J. Acoust. Soc. Am. 125, 547–553 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13101 (2018).Article 

    Google Scholar 
    18.Papin, M., Aznar, M., Germain, E., Guérold, F. & Pichenot, J. Using acoustic indices to estimate wolf pack size. Ecol. Indic. 103, 202–211 (2019).Article 

    Google Scholar 
    19.Depraetere, M. et al. Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecol. Indic. 13, 46–54 (2012).Article 

    Google Scholar 
    20.Wheeldon, A., Mossman, H. L., Mathenge, J. & De Kort, S. R. Comparison of acoustic and traditional point count methods to assess bird diversity and composition in the Aberdare National. Afr. J. Ecol. https://doi.org/10.1111/aje.12596 (2019).Article 

    Google Scholar 
    21.Wilson, S. J. & Bayne, E. M. Use of an acoustic location system to understand how presence of conspecifics and canopy cover influence Ovenbird (Seiurus aurocapilla) space use near reclaimed wellsites in the boreal forest of Alberta. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01248-130204 (2018).Article 

    Google Scholar 
    22.Gable, T. D., Windels, S. K. & Bump, J. K. Finding wolf homesites: improving the efficacy of howl surveys to study wolves. PeerJ 6, e5629 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.O’Gara, J. R. et al. Efficacy of acoustic triangulation for gray wolves. Wildl. Soc. Bull. https://doi.org/10.1002/wsb.1089 (2020).Article 

    Google Scholar 
    24.Dawson, D. K. & Efford, M. G. Bird population density estimated from acoustic signals. J. Appl. Ecol. 46, 1201–1209 (2009).Article 

    Google Scholar 
    25.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48 (2015).Article 

    Google Scholar 
    26.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture (Academic Press, 2013).
    Google Scholar 
    27.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Adi, K., Johnson, M. T. & Osiejuk, T. S. Acoustic censusing using automatic vocalization classification and identity recognition. J. Acoust. Soc. Am. 127, 874–883 (2010).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Lettink, M. & Armstrong, D. P. An introduction to using mark-recapture analysis for monitoring threatened species. Dep. Conserv. Tech. Ser. 28A, 5–32 (2003).
    Google Scholar 
    30.Clink, D. J. & Klinck, H. Unsupervised acoustic classification of individual gibbon females and the implications for passive acoustic monitoring. Methods Ecol. Evol. 1, 1–2 (2020).
    Google Scholar 
    31.Theberge, J. B. & Falls, J. B. Howling as a means of communication in timber wolves. Am. Zool. 7, 331–338 (1967).Article 

    Google Scholar 
    32.Kershenbaum, A. et al. Disentangling canid howls across multiple species and subspecies: structure in a complex communication channel. Behav. Process. 124, 149–157 (2016).Article 

    Google Scholar 
    33.Harrington, F. H. & Mech, D. L. Wolf howling and its role in territory maintenance. Behaviour 68, 207–249 (1978).Article 

    Google Scholar 
    34.Joslin, P. Summer Activities of Two Timber Wolf (Canis lupus) Packs in Algonquin Park (University of Toronto, 1966).35.Suter, S. M., Giordano, M., Nietlispach, S., Apollonio, M. & Passilongo, D. Non-invasive acoustic detection of wolves. Bioacoustics 4622, 1–12 (2016).
    Google Scholar 
    36.Harrington, F. H. & Mech, D. L. Wolf vocalization. In Wolf and man, 109–132 (Elsevier, 1978). https://doi.org/10.1016/B978-0-12-319250-9.50014-1.37.Blanco, J. C. & Cortés, Y. Surveying wolves without snow: a critical review of the methods used in Spain. Hystrix 23, 35–48 (2012).
    Google Scholar 
    38.Tooze, Z. J., Harrington, F. H. & Fentress, J. C. Individually distinct vocalizations in timber wolves, Canis lupus. Anim. Behav. 40, 723–730 (1990).Article 

    Google Scholar 
    39.Root-Gutteridge, H. et al. Improving individual identification in captive Eastern grey wolves (Canis lupus lycaon) using the time course of howl amplitudes. Bioacoust. Int. J. Anim. Sound Rec. 23, 39–53 (2014).
    Google Scholar 
    40.Hull, C., McCombe, C. & Dassow, A. Acoustic identification of wild gray wolves, Canis lupus, using low quality recordings. Am. J. Undergrad. Res. 16, 41–49 (2020).Article 

    Google Scholar 
    41.Wasser, S. K., Smith, H., Madden, L., Marks, N. & Vynne, C. Scent-matching dogs determine number of unique individuals from scat. J. Wildl. Manag. 73, 1233–1240 (2009).Article 

    Google Scholar 
    42.Brennan, A., Cross, P. C., Ausband, D. E., Barbknecht, A. & Creel, S. Testing automated howling devices in a wintertime wolf survey. Wildl. Soc. Bull. 37, 389–393 (2013).Article 

    Google Scholar 
    43.Ausband, D. E., Skrivseth, J. & Mitchell, M. S. An automated device for provoking and capturing wildlife calls. Wildl. Soc. Bull. 35, 498–503 (2011).Article 

    Google Scholar 
    44.Papin, M., Pichenot, J., Guérold, F. & Germain, E. Acoustic localization at large scales: a promising method for grey wolf monitoring. Front. Zool. 15, 1–10 (2018).Article 

    Google Scholar 
    45.Root-Gutteridge, H. et al. Identifying individual wild Eastern grey wolves (Canis lupus lycaon) using fundamental frequency and amplitude of howls. Bioacoust. Int. J. Anim. Sound Rec. 23, 55–66 (2014).
    Google Scholar 
    46.Singh, M. & Kumara, H. N. Distribution, status and conservation of Indian gray wolf (Canis lupus pallipes) in Karnataka, India. J. Zool. 270, 164–169 (2006).
    Google Scholar 
    47.Jhala, Y. V. & Giles, R. H. The status and conservation of the wolf in Gujarat and Rajasthan, India. Conserv. Biol. 5, 476–483 (1991).Article 

    Google Scholar 
    48.Habib, B. Ecology of Indian wolf [Canis lupus pallipes sykes. 1831), and modeling its potential habitat in the great Indian bustard sanctuary, Maharashtra, India (Aligarh Muslim University, Aligarh, India, 2007).49.Dey, S., Sagar, V., Dey, S. & Choudhary, S. K. 2 Sight record of the Indian wolf Canis lupus pallipes in the river Gandak floodplains. J. Bombay Nat. Hist. Soc. 107, 51 (2010).
    Google Scholar 
    50.Jethva, B. D. & Jhala, Y. V. Foraging ecology, economics and conservation of Indian wolves in the Bhal region of Gujarat, Western India. Biol. Conserv. 116, 351–357 (2004).Article 

    Google Scholar 
    51.Jethva, B. D. & Jhala, Y. V. Computing biomass consumption from prey occurrences in Indian wolf scats. Zoo Biol. 23, 513–520 (2004).Article 

    Google Scholar 
    52.Jhala YV. Human conflict in India. In “Beyond: Realties of Global Wolf Restoration” Symposium February, 23–26 (2020).53.Habib, B. & Kumar, S. D. shifting by wolves in semi-wild landscapes in the Deccan Plateau, Maharashtra, India. J. Zool. 272, 259–265 (2007).Article 

    Google Scholar 
    54.Meek, P. D. et al. Camera traps can be heard and seen by animals. PLoS ONE 9, e110832 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Sadhukhan, S., Hennelly, L. & Habib, B. Characterising the harmonic vocal repertoire of the Indian wolf (Canis lupus pallipes). PLoS ONE 14, e0216186 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Rodgers, W. A. & Panwar, S. H. Biogeographical classification of India. New For. Dehra Dun, India (1988).57.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    58.Majgaonkar, I. et al. Land-sharing potential of large carnivores in human-modified landscapes of western India. Conserv. Sci. Pract. 1, e34 (2019).Article 

    Google Scholar 
    59.Morin, D. J., Kelly, M. J. & Waits, L. P. Monitoring coyote population dynamics with fecal DNA and spatial capture-recapture. J. Wildl. Manag. 80, 824–836 (2016).Article 

    Google Scholar 
    60.Harrington, F. H. & Mech, D. L. An analysis of howling response parameters useful for wolf pack censusing. J. Wildl. Manag. 46, 686–693 (1982).Article 

    Google Scholar 
    61.Bioacoustics Research Program. Raven Pro: interactive sound analysis software. The Cornell Lab of Ornithology (2014).62.Rader, C. M. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1968).Article 

    Google Scholar 
    63.Rohatgi, A. WebPlotDigitizer. (2017).64.Kuhn, M. et al. Applied Predictive Modeling Vol. 26 (Springer, 2013).
    Google Scholar 
    65.Kaufman, L. & Rousseeuw, P. J. Agglomerative nesting (Program AGNES). In Finding Groups in Data 199–252 (Wiley, 2009).66.Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics https://doi.org/10.1093/bioinformatics/btv428 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Galaverni, M. et al. Monitoring wolves (Canis lupus) by non-invasive genetics and camera trapping: a small-scale pilot study. Eur. J. Wildl. Res. 58, 47–58 (2012).Article 

    Google Scholar 
    68.Jhala, Y. V, Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018: summary report. (2019).69.López-Bao, J. V. et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    70.Laake, J. L. & Borchers, D. L. Methods for incomplete detection at distance zero. Advance in Distance Sampling (eds Buckland, S. T., Andersen, D. R., Burn, K. P., Laake, J. L. & Thomas, L.) 108–189 (2004).71.Palacios, V., Font, E. & Márquez, R. Iberian wolf howls: acoustic structure, individual variation, and a comparison with North American populations. J. Mammal. 88, 606–613 (2007).Article 

    Google Scholar 
    72.Passilongo, D., Mattioli, L., Bassi, E., Szabó, L. & Apollonio, M. Visualizing sound: counting wolves by using a spectral view of the chorus howling. Front. Zool. 12, 12–22 (2015).Article 

    Google Scholar 
    73.Fernández-Juricic, E., del Nevo, A. J. & Poston, R. Identification of individual and population-level variation in vocalizations of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus). Auk 126, 89–99 (2009).Article 

    Google Scholar  More

  • in

    Molecular sexing of degraded DNA from elephants and mammoths: a genotyping assay relevant both to conservation biology and to paleogenetics

    Design of the novel Zinc-Finger TaqMan assayIn order to establish the level of sequence conservation of the Zinc-Finger gene within the elephantine taxa, we aligned the known ZFX/Y regions for both alleles and each genus using Geneious R9. For the Asian elephants (Elephas maximus), we used the previously published Sanger sequences24 (Supplementary Table S1). For the woolly mammoths (Mammuthus primigenius) and the African elephants (Loxodonta africana and Loxodonta cyclotis), due to the lack of actual Zinc-Finger sequences deposited in sequence databanks, we recovered the corresponding sequences via the mapping of published whole-genome NGS reads from known male specimens20,29 (Supplementary Table S2). This alignment shows the complete conservation of the signatures discriminating the ZFX and ZFY alleles in Asian elephants at the scale of the elephantine subfamily. Low coverage data of this region (4X) are also available for the American mastodon (Mammut americanum; Supplementary Table S2), an extinct proboscidean species, which is a quite distant relative to the elephantine taxa: their most recent common ancestor dates back to 25–30 Mya (clade Elephantimorpha30). The comparison with the elephantine sequences strongly suggests the antiquity of these allelic signatures within the proboscideans (Supplementary Fig. S1). Conversely, when added to our comparison, the overlapping ZFX/Y sequences of modern humans show several fixed divergent positions from the elephantids (Fig. 1).Figure 1Alignment of the Zinc-Finger amplicon of interest for the ZFX and ZFY alleles from humans and elephantine taxa: Loxodonta (African elephants), Elephas (Asian elephants) and Mammuthus (mammoths). The top sequence represents the elephant ZFX allele; identities are indicated by dots. Primers and MGB probes are displayed in annealing position.Full size imageWe designed one pair of primers: ZF_Forward (5′-ACAAAATGGTGCATAAGGAAAAG-3′; Tm = 58.9 °C) and ZF_Reverse (5′-CTCAGCTGTCTCGTATTCACA-3′; Tm = 60.3 °C), which promote the amplification of a 74 bp long amplicon surrounding two sex-specific polymorphic sites. We chose priming sites exhibiting fixed divergent positions with human ZFX/Y sequences—specifically the final 3′ position of the forward primer—to reduce the risk of amplification of human contaminants. Based on the melting temperatures of the chosen primers, we designed two sex-specific Minor Groove Binding (MGB) fluorescent probes diverging from each other by two of their 13 nucleotides (Fig. 1): ZFX 5′-VIC/AGCCAACAAAATG/NFQ/MGB-3′ (Tm = 69.0 °C) and ZFY 5′-FAM/ATCCAGCAAAATG/NFQ/MGB-3′ (Tm = 68.8 °C), labelled with the two fluorescent dyes used by default in bi-allelic discrimination31, and manufactured by Applied Biosystems (Foster City, CA).In vitro sensitivity experimentsTo address the sensitivity of our assay, we first generated sex-specific quantitative standards: we diluted a male mammoth DNA extract (Lyakhov mammoth; Supplementary Table S4) until the point when real-time PCR reactions using this dilution as a template would only yield the amplification of one or the other sex-specific allele (or no product at all). We pooled three reactions for which only the X allele was detected in one microtube, and three other Y-positive reactions in another microtube. Each pool was purified using the minelute PCR purification kit (Qiagen, Venlo, NL) and concentrated separately in 10 µl of EBT buffer (Qiagen EB buffer supplemented with 0.05% Tween-20). We quantitated each sex-specific standard using the Qubit High Sensitivity assay kit (Invitrogen, Waltham, MA) and prepared a tenfold dilution series ranging from 1010 copies down to 10−1 copy per µl. Standard series were stored in frozen aliquots and thawed only before use.We analyzed the sensitivity of the assay in two dimensions: (I) the sensitivity of the PCR amplification in absolute copy numbers and (II) the relative sensitivity of both X- and Y-specific allele diagnostics. We first tested the general sensitivity of the assay using a SYBR Green I approach, with 1X Sso-Advanced Supermix (Bio-Rad, Ipswich, MA) and a standard series of each allele (105 down to 10−1 each), using 6 replicates of the standards at the low end (2 × 100 and 2 × 10−1). We then evaluated the reciprocal sensitivity of each MGB probe via a TaqMan reaction using a standard series ranging from 105 down to 100 each, with three replicates for the latest. For probe-based PCR reactions, we used the dedicated TaqMan Fast Advanced Master Mix (Applied Biosystems, Foster City, CA) which contains dUTP and Uracyl-N-glycosylase (UNG) pre-treatment steps to avoid PCR contamination from carryover PCR products.Quantitative PCR optimization and genotype analysesWe compared the behaviour of TaqMan reactions with various combinations of primer concentrations between 400 and 900 nM, final probe concentrations ranging between 200 and 600 nM, and an annealing/extension temperature gradient (55–65 °C). The best sensitivity was obtained around 60.5 °C regardless of the reagent concentrations: the Cq of the standards were retarded by up to 0.8 or 1.2 cycles when lower or higher temperatures were picked, respectively. Balanced MGB probe concentrations systematically yielded a higher response of the FAM probe over the VIC one (up to 150%), and sometimes caused a shallow crosstalk-signal artifact within the VIC detection range. Implementing uneven probe concentrations—increasing VIC by one-third and lowering FAM by as much—addressed both issues. We thus adopted the following conditions for all subsequent experiments: final reaction volumes of 15 µl with 1X of TaqMan Supermix, 800 nM of each primer, 375 nM of Y-FAM probe, 525 nM of X-VIC probe, and 1–2 µl of DNA extract.We performed all PCR reactions on a CFX-96 real-time thermocycler (Bio-Rad, Ipswich, MA) using the following 2-step conditions: after a first denaturation of 2′ at 95 °C, we performed 40 cycles of 95.0 °C 10 s and 60.5 °C 35 s. We conducted the allelic discrimination from the qPCR output with the CFX-Manager software v3.1 (Bio-Rad, Ipswich, MA) using the following set of parameters: baseline subtracted curve fit, quantification cycle (Cq) determined via a single threshold set to 10% of average plateau fluorescence (measured in Rescaled Fluorescence Units, RFU), call of alleles on the last PCR cycle.Specificity analysesWe investigated the level of specificity of our assay against human contaminants via straight qPCR attempts with various concentrations of control human genomic DNA (Thermofisher, cat. number 4312660): 1, 5, and 25 ng per reaction. We complemented this analysis with an in silico assessment of our assay: we used BLASTn32 to analyze the ‘nr’ collection database in GenBank, and identify which taxa shared sequence identity with at least one of our primers. Among those hits, we focused on the putative sympatric taxa of elephantids (modern and extinct) for which we aligned the available ZFX/Y fragments.Although the risk of non-specific detection is extremely low with an MGB-TaqMan methodology31, we chose to monitor the specificity of PCR design in our case study experiments. We prepared two pools—one per case study—from all positive PCR reactions from actual specimens across an entire replicate series. We transformed these pools in double-indexed Illumina libraries33 and performed a shallow sequencing of each (in paired-end 2 * 75 bp).Case study on elephant fecal extractsWe conducted the fecal sampling of wild elephants from November 2016 to January 2019 in Sebitoli area in the vicinity of Kibale National Park (south-western Uganda). The wildlife of this forest area, located at the north of the protected area, is studied by the Sebitoli Chimpanzee Project/Great Apes Conservation Project and the Muséum national d’Histoire naturelle (MNHN, Paris, France). Commercially logged in the 1970s, the Sebitoli forest is now composed of 70% of regenerating forests and only 14% of old-growth forest34. In areas adjacent to Kibale, human population density is high35 (circa 300 inhabitants/km2). They grow monocultures such as tea fields, eucalyptus, and banana plantations as well as crops like maize, which attract elephants and primates out of the forest. This survey is part of a project aiming at mitigating the human-wildlife conflict at the edge of the protected area in the framework of the Memorandum of Understanding SJ 445-12 between MNHN, Uganda Wildlife Authority, and Makerere University in Uganda and the MoU between UWA and GACP.To avoid the repeated sampling of the same individuals, we collected only once when we encountered several dung boli of similar size on the same day and location. Since female elephants live in close family groups36,37—while the adult males are mostly solitary—this strategy made the sampling of male dung more likely than female ones. A quantity of 10 to 15 g of feces was stored in 70% ethanol for 24 h. After removing the supernatant, feces were placed in gauze on silica gel beads and stored at ambient temperature until processed in the laboratory. After removing the largest vegetal compounds, between 150 and 200 mg of dried feces were extracted with the Power fecal DNA Isolation Kit (MoBio, Carlsbad, CA). The DNA extraction was performed in France, at the modern lab of the ‘Plateau de Paléogénomique et Génétique Moléculaire’ (P2GM platform) from the MNHN. Total DNA yields from the extracts, as measured with a NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA), ranged from 2.9 to 186.7 ng/μl (Supplementary Table S3).To validate the assay, we used a set of 12 elephant extracts for which sex was known a priori: six male and six female specimens. We then implemented our assay in a case study that involved 91 specimens of unknown sex. Two PCR replicates per individual extract were performed, in parallel with a total of 7 PCR negative controls (NTC for ‘No Template Control’ reactions).Case study on mammoth ancient DNAOver the last 20 years, we have gathered several dozens of woolly mammoth samples that have been used in various paleogenetic analyses38,39. They are part of a broad comparative genomics project of diachronic specimens from Beringia which objective is to address the diversity and gene flow throughout the Late Pleistocene populations of woolly mammoths. Here we attempted to derive the genetic sex for a subset of 29 specimens using the novel assay. These samples all come from the Late Pleistocene in Siberia, and the radiocarbon-dated specimens range from 4420 up to beyond 50 ky BP (Supplementary Table S4).DNA extractions and PCR setup of mammoth samples took place in the dedicated ‘ancient DNA cleanroom’ at the P2GM platform, which is physically isolated from the modern lab. We used a protocol previously published for DNA extraction from bone39 and extracted the specimens in 5 different series—each along with one extraction blank. We first tested six specimens of known sex (thanks to a morphological diagnosis): Lyakhov, Jarkov and Oymiakon (all males), 2001/174, Lyuba and Khroma (all females). We then implemented the assay on 23 extracts of unknown sex together with each extraction blank, several NTCs, and one absolute standard series to establish the number of template molecules for each X and Y allele available from our mammoth extracts.Our sexing assay relies on the identification of one homozygous genotype (female) and one heterozygous genotype (male) via a bi-allelic target. In such a design, the risk of false assignation of a male to the female genotype due to allelic dropout of the Y allele is a limitation, particularly when working with templates of low DNA content40,41. We carried out all mammoth PCR reactions in triplicates, to comply with the multi-tube strategy developed to control for that risk. The implementation of a quantitative PCR framework in our sexing assay provided us with the ability to refine the estimate of the accuracy of the genotypes. Taberlet et al.41 showed that (i) the allele amplification of a bi-allelic marker behaves stochastically for very dilute samples, and (ii) for a known amount (U) of diploid genome copies in a reaction, the probability of allelic dropout can be precisely modeled (Supplementary Fig. S4). We posited that the sum of ZFX and ZFY allele copy numbers per reaction inferred via qPCR is a relevant proxy of this amount among our samples—a reasonable assumption when one considers that Zinc-Finger is a single copy nuclear gene. We derived the absolute copy number (CN) based on the Cq calculations for both Y-FAM and X-VIC between the positive specimens and the corresponding standard series. We then used this metric to estimate the probability PXX of allele dropout per reaction for a true heterozygote, based on Taberlet et al.’s model. For each specimen, the theoretical risk of wrongly being deemed a female due to allelic dropout thus translates as (PXX)n from the binomial distribution of parameters n and PXX, where n refers to the number of PCR attempts that yielded a genotype (Supplementary Table S6). More

  • in

    Assessing multiple threats to seabird populations using flesh-footed shearwaters Ardenna carneipes on Lord Howe Island, Australia as case study

    1.Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Cons. 237, 525–537 (2019).Article 

    Google Scholar 
    2.Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).PubMed 
    Article 

    Google Scholar 
    3.Michael, P. E. et al. Illegal fishing bycatch overshadows climate as a driver of albatross population decline. Mar. Ecol. Prog. Ser. 579, 185–199 (2017).ADS 
    Article 

    Google Scholar 
    4.Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).Article 

    Google Scholar 
    5.Rayner, M. J. et al. Predictive habitat modelling for the population census of a burrowing seabird: A study of the endangered Cook’s petrel. Biol. Cons. 138, 235–247 (2007).Article 

    Google Scholar 
    6.Habeeb, R. L., Trebilco, J., Wotherspoon, S. & Johnson, C. R. Determining natural scales of ecological systems. Ecol. Monogr. 75, 467–487 (2005).Article 

    Google Scholar 
    7.Li, G. D., Sun, S. A. & Fang, C. L. The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape Urban Plan. 174, 63–77 (2018).Article 

    Google Scholar 
    8.Ranjeva, S. L. et al. Untangling the dynamics of persistence and colonization in microbial communities. ISME J. 13, 2998–3010 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Thurman, L. L., Barner, A. K., Garcia, T. S. & Chestnut, T. Testing the link between species interactions and species co-occurrence in a trophic network. Ecography 42, 1658–1670 (2019).Article 

    Google Scholar 
    10.Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Jonzen, N., Wilcox, C. & Possingham, H. P. Habitat selection and population regulation in temporally fluctuating environments. Am. Nat. 164, 103–114 (2004).Article 

    Google Scholar 
    12.Coulson, J. C. Difference in the quality of birds nesting in the centre and on the edges of a colony. Nature 217, 478–479 (1968).ADS 
    Article 

    Google Scholar 
    13.Reid, T., Hindell, M., Lavers, J. L. & Wilcox, C. Re-examining mortality sources and population trends in a declining seabird: using Bayesian methods to incorporate existing information and new data. PLoS ONE 8(4), e58230 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lavers, J. L., Hutton, I. & Bond, A. L. Changes in technology and imperfect detection of nest contents impedes reliable estimates of population trends in burrowing seabirds. Global Ecol. Conserv. 17, e00579 (2019).Article 

    Google Scholar 
    15.Priddel, D., Carlile, N., Fullagar, P., Hutton, I. & O’Neill, L. Decline in the distribution and abundance of flesh-footed shearwaters (Puffinus carneipes) on Lord Howe Island, Australia. Biol. Cons. 128, 412–424 (2006).Article 

    Google Scholar 
    16.Baker, G. B. & Wise, G. S. The impact of pelagic longline fishing on the flesh-footed shearwater Puffinus carneipes in Eastern Australia. Biol. Cons. 126, 306–136 (2005).Article 

    Google Scholar 
    17.Tuck, G. N. & Wilcox, C. Assessing the potential impacts of fishing on the Lord Howe Island population of flesh-footed shearwaters 86 (Australian Fisheries Management Authority and CSIRO Marine and Atmospheric Research, 2010).
    Google Scholar 
    18.Carlile, N., Priddel, D., Reid, T. & Fullager, P. Flesh-footed shearwater decline on Lord Howe Island: rebuttal to Lavers et al 2019. Global Ecol. Conserv. 20, 1–3 (2019).
    Google Scholar 
    19.Lavers, J. L. Population status and threats to flesh-footed shearwater (Puffinus carneipes) in Western and South Australia. ICES J. Mar. Sci. 72, 316–327 (2014).Article 

    Google Scholar 
    20.Carey, M. J. The effects of investigator disturbance on procellariiform seabirds: a review. N. Z. J. Zool. 36, 367–377 (2009).Article 

    Google Scholar 
    21.Carey, M. J. Investigator disturbance reduces reproductive success in Short-tailed Shearwaters Puffinus tenuirostris. Ibis 153, 363–372 (2011).Article 

    Google Scholar 
    22.Orr, J. A. et al. Towards a unified study of multiple stressors: divisions and common goals across research disciplines. Proc. R. Soc. B Biol. Sci. 287, 20200421. https://doi.org/10.1098/rspb.2020.0421 (2020).Article 

    Google Scholar 
    23.Piggott, J. J., Townsend, C. R. & Matthael, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5(7), 1538–1547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Ormerod, S. J., Dobson, M., Hildrew, A. G. & Townsend, C. R. Multiple stressors in freshwater ecosystems. Freshw. Biol. 55(Suppl. 1), 1–4. https://doi.org/10.1111/j.1365-2427.2009.02395.x (2010).Article 

    Google Scholar 
    25.Powell, C. D. L. Foraging movements and the migration trajectory of Flesh-footed Shearwaters Puffinus carneipes from the south coast of Western Australia. Mar. Ornithol. 37, 115–120 (2009).
    Google Scholar 
    26.Rexer-Huber, K., Parker, G. C., Ryan, P. G. & Cuthbert, R. J. Burrow occupancy and population size in the Atlantic Petrel Pterodroma incerta: a comparison of methods. Mar. Ornithol. 42, 137–141 (2014).
    Google Scholar 
    27.Rebstock, G. A., Boersma, P. D. & Garcia-Barbaroglu, P. Changes in habitat use and nesting density in a declining seabird Colony. Popul. Ecol. 58, 105–119 (2016).Article 

    Google Scholar 
    28.Ponchon, A. et al. When things go wrong: intra-season dynamics of breeding failure in a seabird. Ecosphere 5(1), 4. https://doi.org/10.1890/ES13-00233.1 (2014).Article 

    Google Scholar 
    29.Jackson, A. L., Bearhop, S. & Thompson, D. R. Shape can influence the rate of colony fragmentation in ground nesting seabirds. Oikos 111, 473–478 (2005).Article 

    Google Scholar 
    30.Martinez-Abrain, A. Why do ecologists aim to get positive results? Once again, negative results are necessary for better knowledge accumulation. Anim. Biodivers. Conserv. 36, 33–36 (2013).Article 

    Google Scholar 
    31.Gales, R., Brothers, N. & Reid, T. Seabird mortality in the Japanese longline tuna fishery around Australia, 1988–1995. Biol. Cons. 86, 37–56 (1997).Article 

    Google Scholar 
    32.Trebilco, R. et al. Characterizing seabird bycatch in the eastern Australian tuna and billfish pelagic longline fishery in relation to temporal, spatial and biological influences. Aquat. Conserv. Mar. Freshwat. Ecosyst. 20, 531–542 (2010).Article 

    Google Scholar 
    33.Chan, K. M. A. Value and advocacy in conservation biology: crisis discipline or discipline in crisis. Conserv. Biol. 22, 1–3 (2008).PubMed 
    Article 

    Google Scholar 
    34.Hindwood, K. A. The birds of Lord Howe Island. Emu 40, 1–86 (1940).Article 

    Google Scholar 
    35.McDougall, I., Embleton, B. J. J. & Stone, D. B. Origin and evolution of Lord Howe Island, Southwest Pacific Ocean. J. Geol. Soc. Aust. 28, 155–176 (1981).CAS 
    Article 

    Google Scholar 
    36.Pickard, J. Vegetation of Lord Howe Island. Cunninghamia 1, 133–265 (1983).
    Google Scholar 
    37.Marchant, S. & Higgins, P. J. (eds) Handbook of Australian, New Zealand and Antarctic Birds. Ratites to Ducks Vol. 1 (Oxford University Press, 1990).
    Google Scholar 
    38.Serventy, D. L. & Whittell, H. M. A Handbook of the Birds of Western Australia 2nd edn. (Paterson Brokensha Pty., Ltd, 1951).
    Google Scholar 
    39.Powell, C. D. L., Wooller, R. D. & Bradley, J. S. Breeding biology of the flesh-footed shearwater (Puffinus carneipes) on Woody Island, Western Australia. Emu 107, 275–283 (2007).Article 

    Google Scholar 
    40.Reid, T. A. et al. Nonbreeding distribution of flesh-footed shearwaters and the potential for overlap with north Pacific fisheries. Biol. Cons. 166, 3–10 (2013).Article 

    Google Scholar 
    41.Lombal, A. J. et al. Genetic divergence between colonies of flesh-footed shearwaters Ardenna carneipes exhibiting different foraging strategies. Conserv. Genet. 9, 27–41 (2018).Article 

    Google Scholar 
    42.Carlile, N. & Priddel, D. Seabird islands No. 261: Mutton Bird Island, Lord Howe Group, New South Wales. Corella 37(4), 94–96 (2013).
    Google Scholar 
    43.Carlile, N., Priddel, D. & Bower, H. Seabird islands No. 256: Roach Island, Lord Howe Group, New South Wales. Corella 37(4), 82–85 (2013).
    Google Scholar 
    44.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/. (2015)45.Wood, S. N. Generalised Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).
    Google Scholar 
    46.Burnham, K. R. & Anderson, D. R. Model Selection and Multimodal Inference: A Practical Information Theoretic Approach (Springer, 2002).
    Google Scholar 
    47.Barton, K. MuMIn: Multi-Model Inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn (2015).48.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/.(2005).49.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied Spatial Data Analysis with R 2nd edn. (Springer, 2013).
    Google Scholar  More