More stories

  • in

    A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation

    Combined culture-dependent and culture-independent approach identifies the prevalent and viable bacterial community members of the human lung post-transplantTo characterize the bacterial community composition of the lung microbiota post-transplant, we performed 16S rRNA gene amplicon sequencing of 234 longitudinal BALF samples from 64 lung transplant recipients collected over a 49-month period (Fig. 1a, Supplementary Table 1). A total of 7164 operational taxonomic units (OTUs) were identified, excluding OTUs contributing to reads in 11 negative control samples32 (see “Methods”, Supplementary Fig. 1a, Supplementary Data 1 and 2). In accordance with previous studies on BALF samples from healthy non-transplant individuals4,5,6,26, we found that Bacteroidetes and Firmicutes followed by Proteobacteria and Actinobacteria are the most abundant phyla in the post-transplant lung (Fig. 1b). Prevalence analysis across all BALF samples showed that the community composition is highly variable with only 22 OTUs shared by ≥50% of the samples (Supplementary Fig. 1b, Supplementary Data 3). However, these 22 OTUs constituted 42% of the total number of rarefied reads, indicating that they are predominant members of the post-transplant lung microbiota (Fig. 1c, Supplementary Fig. 1c, Supplementary Table 2, Supplementary Data 3). They belonged to the genera Prevotella 7, Streptococcus, Veillonella, Neisseria, Alloprevotella, Pseudomonas, Gemella, Granulicatella, Campylobacter, Porphyromonas and Rothia, the majority of which are also prevailing community members in the healthy human lung3,5,7,26, suggesting a considerable overlap in the overall composition of the lung microbiota between the healthy and the transplanted lung.Fig. 1: Combining BALF amplicon sequencing and bacterial culturing to deduce the microbial ecology of deep lung microbiota.a Schematic of the sampling of Bronchoalveolar lavage fluid (BALF) from lung transplant recipients over time (months post-transplant). b Relative abundances (%) of most abundant phyla across BALF samples. Box plots show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). c Prevalence (% samples) vs contribution to total reads across samples for most abundant phyla. Dot color shows different genera and size show total rarefied reads. Gray dashed horizontal line shows prevalence ≥50%. d Scatter plot shows correlation between number of observed OTUs and bacterial counts per BALF sample obtained by quantifying 16S rRNA gene copies with qPCR. Linear regression is shown by the blue line with gray shaded area showing 95% confidence interval (n = 234, two-sided, F(1, 232) = 91.04, P = 2.2 × 10−16), Coefficient of correlation; R2 = 0.28. e Bar chart shows lung taxa (genera; OTU IDs) that contributed ≥75% of total bacterial biomass across samples (n = 234). Venn diagram inset shows overlap (yellow) between the most prevalent (≥50% incidence, light blue) and the most abundant (≥75% total count, red) taxa in the transplanted lung. Bar colors also show the same.Full size imageDifferences in bacterial loads between samples can skew community analyses when based on relative abundance profiling alone. Therefore, we used qPCR to determine the total copies of the 16S rRNA gene as an estimate for bacterial counts, and normalized the abundances of each OTU across the 234 samples (absolute abundance). We found that the bacterial counts vastly differed between samples, ranging between 101 and 106 gene copies per ml of BALF (Supplementary Fig. 1d). The number of observed OTUs increased with decreasing counts (Fig. 1d) suggesting that a large fraction of the OTUs were detected in samples of low bacterial biomass and hence represent either transient or extremely low-abundant community members, or sequencing artefacts and contaminations. In turn, 19 of the 7164 OTUs constituted >75% of the total bacterial biomass detected across the 234 BALF samples (Fig. 1e). This included 11 of the 22 most prevalent OTUs (see above) plus eight OTUs that were detected in only a few samples but at very high abundance (Staphylococcus; OTU_2, Corynebacterium 1; OTU_16 and OTU_24, Anaerococcus; OTU_49 and OTU_234, Haemophilus; OTU_78, Streptococcus; OTU_6768, Peptoniphilus; OTU_63, Supplementary Table 2). It is important to differentiate these opportunistic colonizers from other community members with low incidence, as they reached very high bacterial counts in some samples with potential implications for lung health.To demonstrate the viability of prevalent lung microbiota members and to establish a reference catalogue of bacterial isolates from the human lung for experimental studies, we complemented the amplicon sequencing with a bacterial culturing approach (Supplementary Fig. 2). We cultivated 21 random BALF samples from 18 individuals, on 15 different semi-solid media (both general and selective) in combination with 3 oxygen concentrations; aerobic, 5% CO2, and anaerobic (See “Methods” and Supplementary Table 3), representing 26 different conditions. We cultured fresh BALF immediately upon extraction (within 2 h), as we observed loss in bacterial diversity upon cultivating frozen samples. This resulted in a total of 300 bacterial isolates, representing 5 phyla, 7 classes, 13 orders, and 17 families from which we built an open-access biobank called the Lung Microbiota culture Collection (LuMiCol, Supplementary Data 4, https://github.com/sudu87/Microbial-ecology-of-the-transplanted-human-lung).To examine the extent of overlap between bacteria in LuMiCol and the diversity obtained by amplicon sequencing, we included 16S rRNA gene sequences from 215 isolates that passed our quality filter into the community analysis, which allowed for the retrieval of OTU-isolate matching pairs32 (Methods). We found that 213 isolates matched to 47 OTUs (Fig. 2a, c, Supplementary Data 5), including 17 of the most prevalent and abundant bacteria (Fig. 1e, Supplementary Table 2). As expected, bacteria with high abundance in the amplicon sequencing-based community analysis were isolated more frequently, with Firmicutes revealing the highest isolate diversity (Fig. 2a–c, Supplementary Data 4, 5) and being recovered under the most diverse culturing conditions.Fig. 2: A lung microbiota culture collection (LuMiCol) reveals extended diversity and phenotypic characteristics of the lower airway bacterial community.a Phylogenetic tree of the 47 OTU-isolate matching pairs inferred with FastTree. Branch bootstrap support values (size of dark gray circles) ≥80% are displayed. b Growth characteristics of each OTU-isolate matching pair in three different oxygen conditions (Anaerobic – light brown, 5% CO2-yellow, aerobic-light blue, n = 3). Column with pie charts shows growth on semi-solid agar. Heatmap shows median change in Optical Density (OD) at 600 nm growth in three different liquid media (THY, RPMI, RPMI without glucose) over 3 days. c Cumulative counts of each OTU-isolate matching pair across all BALF samples (gray). d Number of isolates in Lumicol (black) per OTU-isolate matching pair. Taxa are labeled as genus; OTU ID, with an indication of whether they are prevalent (gray rectangle) or opportunistic (magenta rectangle) in the lower airway community. The names of the closest hit in databases: eHOMD and SILVA are used as species descriptor.Full size imageIn summary, our results from the combined culture-dependent and culture-independent approach show that the lung microbiota post-transplant is highly variable in terms of both bacterial load and community composition with many transient and low-abundant bacterial taxa. However, a few community members display relatively high prevalence and/or abundance suggesting that they represent important colonizers of the human lung.LuMiCol informs on the diversity and metabolic preferences of culturable human lung bacteriaWe characterized the culturable community members of the lower respiratory tract contained in LuMiCol by testing a wide range of growth conditions and phenotypic properties (see “Methods”). The majority of the cultured isolates could taxonomically be assigned at the species level based on genotyping of the 16S rRNA gene V1-V5 region. However, the limited taxonomic resolution offered by this method does not allow to discriminate between closely related strains, which can include both pathogenic and non-pathogenic bacteria. Hence for Streptococcus, we additionally tested for type of hemolysis (alpha, beta, or gamma) and resistance to optochin, which differentiates the pathogenic pneumococcus and the non-pathogenic viridans groups (Fig. 2a, Supplementary Fig. 2b, c). This demonstrated that the 16 Streptococcus OTU-isolate pairs belong to the viridans group of streptococci (VS)33. Interestingly, these isolates exhibited the highest genotypic and phenotypic diversity throughout our collection and belonged to five OTUs among the 22 most prevalent community members, with Streptococcus mitis (OTU_11) present in 93.6% of all samples.BALF from healthy individuals contains amino acids, citrate, urate, fatty acids, and antioxidants such as glutathione but no detectable glucose34, which is associated with increased bacterial load and infection35,36,37. To get insights into basic bacterial metabolism, we assessed the growth of all 47 isolates matching an OTU under different oxygen concentrations. We used undefined rich media (Todd-Hewitt Yeast extract) and defined low-complexity liquid media (RPMI 1640), including a glucose-free version to mimic the deep lung environment (see “Methods”). Despite the presence of oxygen in the human lung, the majority of the isolates were either obligate or facultative anaerobes (Fig. 2a), including some of the most prevalent members (Prevotella melaninogenica (OTU_3), Streptococcus mitis (OTU_11), Veillonella atypica (OTU_6) and Granulicatella adiacens (OTU_17). A similar trend was also observed in liquid media under anaerobic conditions, with the exception of the genera Prevotella, Veillonella and Granulicatella. Most streptococci from the human lung grew best in complex liquid media containing glucose under anaerobic conditions, including the most prevalent species in our cohort, S. mitis (OTU_11) (Fig. 2b). However, noticeable exceptions were S. vestibularis (OTU_34), S. oralis (OTU_3427 and OTU_1567), and S. gordonii (OTU_10031), which grew equally well in the presence of oxygen and in low-complexity liquid medium (Fig. 2b). Most Actinobacteria grew best on rich medium in the presence of 5% CO2, with an exception of Actinomyces odontolyticus (OTU_39), which required anaerobic conditions. Some Actinobacteria grew equally well in anaerobic conditions as in the presence of 5% CO2, i.e., Corynebacterium durum (OTU_501), Actinobacteria sp. oral taxon (OTU_328 and OTU_228).The two most predominant opportunistic pathogens in our lung cohort, P. aeruginosa (OTU_1) and S. aureus (OTU_2), grew best in rich liquid medium in the presence of oxygen (Fig. 2c), although these also grew to lower degree under anaerobic conditions. These results indicate that changes in the physicochemical conditions in the lung may favor the growth of these two opportunistic pathogens. In summary, our observations from the bacterial culture collection provide first insights into the phenotypic properties of human lung bacteria and will serve as a basis for future experimental work.Identification of four compositionally distinct pneumotypes post-transplant using machine learning based on ecological metricsTo detect and characterize differences in bacterial community composition between BALF samples from transplant patients, we clustered the samples using an unsupervised machine learning algorithm based on pairwise Bray–Curtis dissimilarity32 (beta diversity, See “Methods”, Supplementary Data 6). This segregated the samples into four partitions around medoids (PAMs) at both phylum and OTU level (Fig. 3a, b, Supplementary Fig. 3a, b). We refer to these clusters as “pneumotypes” PAM1, PAM2, PAM3, and PAM4 (Supplementary Table 4). PAM1 formed the largest cluster consisting of the majority of samples (n = 115) followed by PAM3 (n = 76), PAM2 (n = 19), and PAM4 (n = 24) (Supplementary Data 7). Examination of various diversity measures (Species occurrence, OTU diversity, OTU richness, Fig. 3c–e), distribution of the dominant community members (Fig. 3f), and bacterial counts (16S rRNA gene copies, Fig. 3g) revealed distinctive characteristics between the four pneumotypes.Fig. 3: Bacterial communities of the lung post-transplant fall into four ‘pneumotypes’ with distinct community characteristics.a, b Principal component analysis shows Partition around medoids (PAMs) at phylum and OTU level respectively generated by k-medoid-based unsupervised machine learning using Bray–Curtis dissimilarity (occurrence and abundance). Pneumotypes are color coded: Balanced (red, n = 115), Staphylococcus (green, n = 19), Microbiota-depleted (MD, blue, n = 76), and Pseudomonas (orange, n = 24). c–g Violin plots show distributions of pairwise species occurrence (Sorenson’s index, PERMANOVA, two-sided, F(3, 229) = 8.49, P = 9.9 × 10−5), OTU diversity (Kruskal–Wallis test, χ2 = 89.2, df = 3, two-sided, P = 2.2 × 10−16), OTU richness (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), proportion of most dominant OTUs (Kruskal–Wallis test, χ2 = 94.45, df = 3, two-sided, P = 2.2 × 10−16), and total bacterial counts (ANOVA, F(3, 229) = 43.9, two-sided, P = 2.2 × 10−16), respectively, across the four pneumotypes. h, i Enrichment analysis of prevalence (green dotted line ≥50%) and absolute abundance across all samples of the 30 most dominant taxa (i.e., OTUs) in PneumotypeBalanced and PneumotypeMD respectively, when each was compared to the other three combined pneumotypes (gray boxes). Differential abundances after enrichment analysis was calculated between each PAM and the other three PAMs combined, using ART-ANOVA. j Heatmap shows relative percentage of taxa (right colored panel) cultured from paired samples of Bronchial aspiration (BA) and Bronchoalveolar lavage fluid (BALF) from each pneumotype (left colored panel). Oropharyngeal flora mainly corresponds to PneumotypeBalanced (i.e., Streptococcus, Prevotella, Veillonella). All box plots including insets show median (middle line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as outliers (single points). Multiple comparison of beta diversity indices was done by pairwise PERMANOVA (adonis) with False Discovery rate (FDR). Post hoc analyses (95% Confidence Interval) were done by using Tukey’s test (ANOVA) or Dunn’s test (Kruskal test) with False Discovery Rate (FDR) or least-squares means (ART-ANOVA) with False Discovery Rate (FDR). * P  More

  • in

    Reply to: “Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands”

    1.Schaub, S. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 1–11 (2020).Article 

    Google Scholar 
    2.Tonn, B., Komainda, M. & Isselstein, J. Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands. Nat. Commun. https://doi.org/10.1038/s41467-021-22309-7 (2021).3.Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).Article 

    Google Scholar 
    4.Jochum, M. et al. The results of biodiversity–ecosystem functioning experiments are realistic. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    5.Roscher, C., Schumacher, J., Weisser, W. W., Schmid, B. & Schulze, E. D. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia 154, 535–549 (2007).ADS 
    Article 

    Google Scholar 
    6.Deak, A., Hall, M., Sanderson, M. & Archibald, D. Production and nutritive value of grazed simple and complex forage mixtures. Agron. J. 99, 814–821 (2007).Article 

    Google Scholar 
    7.Sturludóttir, E. et al. Benefits of mixing grasses and legumes for herbage yield and nutritive value in Northern Europe and Canada. Grass Forage Sci. 69, 229–240 (2014).Article 

    Google Scholar 
    8.Oelmann, Y., Vogel, A., Wegener, F., Weigelt, A. & Scherer-Lorenzen, M. Management intensity modifies plant diversity effects on N yield and mineral N in soil. Soil Sci. Soc. Am. J. 79, 559–568 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Schaub, S., Buchmann, N., Lüscher, A. & Finger, R. Economic benefits from plant species diversity in intensively managed grasslands. Ecol. Econ. 168, 106488 (2020b).Article 

    Google Scholar 
    10.Trenbath, B. R. Biomass productivity of mixtures. Adv. Agron. 26, 177–210 (1974).Article 

    Google Scholar 
    11.Binder, S., Isbell, F., Polasky, S., Catford, J. A. & Tilman, D. Grassland biodiversity can pay. Proc. Natl Acad. Sci. USA 115, 3876–3881 (2018).CAS 
    Article 

    Google Scholar 
    12.Weigelt, A., Weisser, W., Buchmann, N. & Scherer‐Lorenzen, M. Biodiversity for multifunctional grasslands: equal productivity in high‐diversity low‐input and low‐diversity high‐input systems. Biogeosciences 6, 1695–1706 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Vogel, A., Scherer-Lorenzen, M. & Weigelt, A. Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE 7, e36992 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Finn, J. A. et al. Ecosystem function enhanced by combining four functional types of plant species in intensively managed grassland mixtures: a 3‐year continental‐scale field experiment. J. Appl. Ecol. 50, 365–375 (2013).Article 

    Google Scholar 
    15.Jans, F., Kessler, J., Münger, A. & Schlegel, P. in Fütterungsempfehlungen für Wiederkäuer (Grünes Buch) Ch. 7 (Agroscope, 2015).16.FAO (Food and Agriculture Organization of the United Nations), IDF (International Dairy Federation), and IFCN (IFCN Dairy Research Network). World Mapping of Animal Feeding Systems in the Dairy Sector. (FAO, 2014).17.Delaby, L., Peyraud, J. L., Foucher, N. & Michel, G. The effect of two contrasting grazing managements and level of concentrate supplementation on the performance of grazing dairy cows. Anim. Res. 52, 437–460 (2003).Article 

    Google Scholar 
    18.Leiber, F., Wettstein, H. R. & Kreuzer, M. Is the intrinsic potassium content of forages an important factor in intake regulation of dairy cows? J. Anim. Physiol. Anim. Nutr. 93, 391–399 (2009).CAS 
    Article 

    Google Scholar 
    19.Schaub, S. et al. Data: forage quality and biomass yield of the Management Experiment set up within the Jena Experiment. ETH Zur. Res. Collect. https://doi.org/10.3929/ethz-b-000374100 (2019). More

  • in

    Understanding drivers of wild oyster population persistence

    1.Bayne, B. et al. The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: a dissenting view. J. Shellfish Res. 36, 545–547 (2017).Article 

    Google Scholar 
    2.Mann, R. Some biochemical and physiological aspects of growth and gametogenesis in Crassostrea gigas and Ostrea edulis grown at sustained elevated temperatures. J. Mar. Biol. Assoc. UK 59, 95–110 (1979).CAS 
    Article 

    Google Scholar 
    3.Humphreys, J., Herbert, R. J., Roberts, C. & Fletcher, S. A reappraisal of the history and economics of the Pacific oyster in Britain. Aquaculture 428, 117–124 (2014).Article 

    Google Scholar 
    4.Ellis, T., Gardiner, R., Gubbins, M., Reese, A. & Smith, D. Aquaculture statistics for the UK, with a focus on England and Wales 2012. Centre for Environment Fisheries & Aquaculture Science (Cefas) Weymouth (2015).5.Herbert, R. J. et al. Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe. Biodivers. Conserv. 25, 2835–2865 (2016).Article 

    Google Scholar 
    6.Reise, K., Buschbaum, C., Büttger, H., Rick, J. & Wegner, K. M. Invasion trajectory of Pacific oysters in the northern Wadden Sea. Mar. Biol. 164, 68 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Geburzi, J. C. & McCarthy, M. L. How do they do it? Understanding the success of marine invasive species. In YOUMARES 8—Oceans Across Boundaries: Learning from each other, 109–124 (Springer, 2018).8.Herbert, R., Roberts, C., Humphreys, J. & Fletcher, S. The Pacific oyster (Crassostrea gigas) in the UK: Economic, legal and environmental issues associated with its cultivation, wild establishment and exploitation. Report for the Shellfish Association of Great Britain (2012).9.Fabioux, C., Huvet, A., Le Souchu, P., Le Pennec, M. & Pouvreau, S. Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture 250, 458–470 (2005).Article 

    Google Scholar 
    10.Diederich, S., Nehls, G., Van Beusekom, J. E. & Reise, K. Introduced Pacific oysters (Crassostrea gigas) in the northern Wadden Sea: Invasion accelerated by warm summers?. Helgol. Mar. Res. 59, 97 (2005).ADS 
    Article 

    Google Scholar 
    11.Mills, S.R.A. Population structure and ecology of wild Crassostrea gigas (Thunberg, 1793) on the south coast of England. Ph.D. thesis, University of Southampton (2016).12.Dutertre, M., Beninger, P. G., Barillé, L., Papin, M. & Haure, J. Rising water temperatures, reproduction and recruitment of an invasive oyster, Crassostrea gigas, on the French Atlantic coast. Mar. Environ. Res. 69, 1–9 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Chávez-Villalba, J. et al. Broodstock conditioning of the oyster Crassostrea gigas: Origin and temperature effect. Aquaculture 214, 115–130 (2002).Article 

    Google Scholar 
    14.Rico-Villa, B., Pouvreau, S. & Robert, R. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture 287, 395–401 (2009).Article 

    Google Scholar 
    15.Li, G. & Hedgecock, D. Genetic heterogeneity, detected by PCR-SSCP, among samples of larval Pacific oysters (Crassostrea gigas) supports the hypothesis of large variance in reproductive success. Can. J. Fish. Aquat. Sci. 55, 1025–1033 (1998).CAS 
    Article 

    Google Scholar 
    16.Hedge, L. H. & Johnston, E. L. Colonisation of the non-indigenous Pacific oyster Crassostrea gigas determined by predation, size and initial settlement densities. PLoS ONE9 (2014).17.Maurer, D. et al. Reproduction de l’huître creuse dans le Bassin d’Arcachon. Année 2015. Ifremer Report (2016).18.Quayle, D.B. Pacific oyster culture in British Columbia (Department of Fisheries and Oceans, 1988).19.Rico-Villa, B. et al. A flow-through rearing system for ecophysiological studies of Pacific oyster Crassostrea gigas larvae. Aquaculture 282, 54–60 (2008).Article 

    Google Scholar 
    20.Kheder, R. B., Moal, J. & Robert, R. Impact of temperature on larval development and evolution of physiological indices in Crassostrea gigas. Aquaculture 309, 286–289 (2010).Article 

    Google Scholar 
    21.Kennedy, V. S. & Breisch, L. L. Maryland’s Oysters: Research and Management Vol. 81 (University of Maryland College Park, Maryland, 1981).
    Google Scholar 
    22.Helm, M. Cultured aquatic species information programme—Crassostrea gigas. Cultured aquatic species fact sheets. FAO Inland Water Resources and Aquaculture Service (2007).23.Child, A. & Laing, I. Comparative low temperature tolerance of small juvenile European, Ostrea edulis L., and Pacific oysters, Crassostrea gigas Thunberg. Aquacul. Res. 29, 103–113 (1998).Article 

    Google Scholar 
    24.Strand, A., Waenerlund, A. & Lindegarth, S. High tolerance of the Pacific oyster (Crassostrea gigas, Thunberg) to low temperatures. J. Shellfish Res. 30, 733–735 (2011).Article 

    Google Scholar 
    25.Rinde, E. et al. Increased spreading potential of the invasive Pacific oyster (Crassostrea gigas) at its northern distribution limit in Europe due to warmer climate. Mar. Freshw. Res. 68, 252–262 (2017).ADS 
    Article 

    Google Scholar 
    26.Wrange, A.-L. et al. Massive settlements of the Pacific oyster, Crassostrea giga, in Scandinavia. Biol. Invasions 12, 1145–1152 (2010).Article 

    Google Scholar 
    27.Spencer, B., Edwards, D., Kaiser, M. & Richardson, C. Spatfalls of the non-native Pacific oyster, Crassostrea gigas, in British waters. Aquat. Conserv. Mar. Freshw. Ecosyst. 4, 203–217 (1994).Article 

    Google Scholar 
    28.England, N. Pacific oyster survey of the North East Kent European marine sites. Natural England Commissioned Report NECR016 (2009).29.Smith, I. P., Guy, C. & Donnan, D. Pacific oysters, Crassostrea gigas, established in Scotland. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 733–742 (2015).Article 

    Google Scholar 
    30.Cook, E. J. et al. Impacts of climate change on non-native species. Mar. Clim. Change Impact Partnersh. Sci. Rev. 155–166 (2013).31.Cook, E., Beveridge, C., Lamont, P., O’Higgins, T. & Wilding, T. Survey of wild Pacific oyster Crassostrea gigas in Scotland. In Scottish Aquaculture Research Forum Report SARF099 (2014).32.Kochmann, J. Into the wild: documenting and predicting the spread of Pacific oysters (Crassostrea gigas) in Ireland. Ph.D. thesis, University College Dublin (2012).33.Syvret, M., Fitzgerald, A. & Hoare, P. Development of a Pacific oyster aquaculture protocol for the UK: Technical report. Sea Fish Industry Authority, FIFG Project No. 7 (2008).34.d’Auriac, M. B. A. et al. Rapid expansion of the invasive oyster Crassostrea gigas at its northern distribution limit in Europe: Naturally dispersed or introduced? PLoS ONE, 12 (2017).35.Dame, R. F. & Prins, T. C. Bivalve carrying capacity in coastal ecosystems. Aquat. Ecol. 31, 409–421 (1997).Article 

    Google Scholar 
    36.Leguerrier, D., Niquil, N., Petiau, A. & Bodoy, A. Modeling the impact of oyster culture on a mudflat food web in Marennes-Oléron Bay (France). Mar. Ecol. Prog. Ser. 273, 147–162 (2004).ADS 
    Article 

    Google Scholar 
    37.Forrest, B. M., Keeley, N. B., Hopkins, G. A., Webb, S. C. & Clement, D. M. Bivalve aquaculture in estuaries: Review and synthesis of oyster cultivation effects. Aquaculture 298, 1–15 (2009).Article 

    Google Scholar 
    38.Ferreira, J. G. et al. Ecological carrying capacity for shellfish aquaculture: Sustainability of naturally occurring filter-feeders and cultivated bivalves. J. Shellfish Res. 37, 709–726 (2018).Article 

    Google Scholar 
    39.Jordan-Cooley, W. C., Lipcius, R. N., Shaw, L. B., Shen, J. & Shi, J. Bistability in a differential equation model of oyster reef height and sediment accumulation. J. Theor. Biol. 289, 1–11 (2011).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    40.Lipcius, R. N. et al. Modeling quantitative value of habitats for marine and estuarine populations. Front. Mar. Sci. 6, 280 (2019).Article 

    Google Scholar 
    41.Enríquez-Díaz, M., Pouvreau, S., Chávez-Villalba, J. & Le Pennec, M. Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: Evidence of an environment-dependent strategy. Aquacult. Int. 17, 491–506 (2009).Article 

    Google Scholar 
    42.Wood, L. E. et al. Unaided dispersal risk of Magallana gigas into and around the UK: Combining particle tracking modelling and environmental suitability scoring. Biological Invasions, 1–20 (2021).43.Hily, C. Prolifération de l’huître creuse du Pacifique Crassotrea gigas sur les côtes manche-atlantique françaises: bilan, dynamique, conséquences écologiques, économiques et ethnologiques, expériences et scénarios de gestion. Rapport LITEAU, 20 (2009).44.McKnight, W. & Chudleigh, I. J. Pacific oyster Crassostrea gigas control within the inter-tidal zone of the North East Kent Marine Protected Areas, UK. Conserv. Evid. 12, 28–32 (2015).
    Google Scholar 
    45.Brown, J. & Hartwick, E. A habitat suitability index model for suspended tray culture of the Pacific oyster, Crassostrea gigas Thunberg.. Aquacult. Res. 19, 109–126 (1988).Article 

    Google Scholar 
    46.Diederich, S. High survival and growth rates of introduced Pacific oysters may cause restrictions on habitat use by native mussels in the Wadden Sea. J. Exp. Mar. Biol. Ecol. 328, 211–227 (2006).Article 

    Google Scholar 
    47.Moran, A. & Manahan, D. Physiological recovery from prolonged ‘starvation’ in larvae of the Pacific oyster Crassostrea gigas. J. Exp. Mar. Biol. Ecol. 306, 17–36 (2004).CAS 
    Article 

    Google Scholar 
    48.Calvo, G. W., Luckenbach, M. W. & Burreson, E. M. A comparative field study of Crassostrea gigas and Crassostrea virginica in relation to salinity in Virginia. Special Report in Applied Marine Science and Ocean Engineering, 349 (1999).49.Petton, B., Boudry, P., Alunno-Bruscia, M. & Pernet, F. Factors influencing disease-induced mortality of Pacific oysters, Crassostrea gigas. Aquacul. Environ. Interact. 6, 205–222 (2015).Article 

    Google Scholar 
    50.Li, L. et al. Divergence and plasticity shape adaptive potential of the Pacific oyster. Nat. Ecol. Evol. 2, 1751–1760 (2018).PubMed 
    Article 

    Google Scholar 
    51.Ferreira, J., Duarte, P. & Ball, B. Trophic capacity of Carlingford Lough for oyster culture-analysis by ecological modelling. Aquat. Ecol. 31, 361–378 (1997).Article 

    Google Scholar 
    52.Cognie, B., Haure, J. & Barillé, L. Spatial distribution in a temperate coastal ecosystem of the wild stock of the farmed oyster Crassostrea gigas (Thunberg). Aquaculture 259, 249–259 (2006).Article 

    Google Scholar 
    53.Enríquez-Díaz, M., Pouvreau, S., Chávez-Villalba, J. & Le Pennec, M. Gametogenesis, reproductive investment, and spawning behavior of the Pacific giant oyster Crassostrea gigas: evidence of an environment-dependent strategy. Aquacult. Int. 17, 491 (2009).Article 

    Google Scholar 
    54.Ben-Horin, T. et al. Intensive oyster aquaculture can reduce disease impacts on sympatric wild oysters. Aquacul. Environ. Interact. 10, 557–567 (2018).Article 

    Google Scholar 
    55.Mailleret, L. & Lemesle, V. A note on semi-discrete modelling in the life sciences. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 4779–4799 (2009).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    56.Powell, E., Klinck, J., Hofmann, E. & Ray, S. Modeling oyster populations. IV: Rates of mortality, population crashes and management. Fish. Bull. 92, 347–373 (1994).
    Google Scholar 
    57.Wilson, R. A stage-structured oyster population model for reef restoration. Undergraduate Honors Theses Paper, 1403 (2019).58.Guo, X., Hedgecock, D., Hershberger, W. K., Cooper, K. & Jr, S. K. A. Genetic determinants of protandric sex in the Pacific oyster, Crassostrea gigas Thunberg. Evolution 52, 394–402 (1998).59.Morris, D. et al. Cefas coastal temperature network (2016).60.Pouvreau, S. et al. Velyger database: The oyster larvae monitoring French project. SEANOE 10, 41888 (2016).
    Google Scholar 
    61.Dhoop, T. & Thompson, C. Directional waverider metadata, supplement for QC data download from Realtime Data page. Channel Coastal Observatory (2019).62.Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. In Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1029–1136 (Cambridge University Press, 2013).63.Pastor, D. Reproductive biology of Crassostrea gigas. Ph.D. thesis, University of Southampton (2010).64.Benton, T. G. & Grant, A. Elasticity analysis as an important tool in evolutionary and population ecology. Trends Ecol. Evol. 14, 467–471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Grant, A. & Benton, T. G. Elasticity analysis for density-dependent populations in stochastic environments. Ecology 81, 680–693 (2000).Article 

    Google Scholar 
    66.Caswell, H. & Gassen, N. S. The sensitivity analysis of population projections. Demogr. Res. 33, 801–840 (2015).Article 

    Google Scholar 
    67.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2019).68.Soetaert, K., Petzoldt, T. & Setzer, R. W. Solving differential equations in R: Package deSolve. J. Stat. Softw. 33, 1–25 (2010).
    Google Scholar 
    69.Inkscape Project. Inkscape. More

  • in

    Results from a biodiversity experiment fail to represent economic performance of semi-natural grasslands

    The experiment underlying the study provides a diversity gradient of 1–60 plant species, established in assemblages randomly chosen from a pool of species typical of Arrhenatheretum grasslands. Recently sown on fertile arable soil and maintained by weeding, this experiment is a highly artificial system that fails to meet the definition of semi-natural grasslands7. Four years after establishment, a management intensity gradient of one to four annual cuts and three fertilization levels was established in subplots randomly assigned to the 1–60-species plots. Data presented in this study were collected in the following year.Intensive management was thus imposed on plant species typical of Arrhenaterethum meadows, a plant community characterized by two annual cuts8. The potential effect size of increased management intensity is thus underestimated by applying the management to a plant community not adapted to it. More importantly, it is unlikely that the species-richness of high-diversity plots could be maintained under increased management intensity over longer periods. In fact, 22% of these subplots managed at very high intensity had to be excluded for missing or insufficient yield after only two years, indicating that their species did not persist under high defoliation frequency and fertilizer levels, even when competitors were excluded by weeding.While the discussion hardly addresses this crucial trade-off between management intensity and plant diversity, Schaub et al.6 do indicate that repeated resowing is likely to be necessary to maintain high diversity under increased management intensities. In contrast to permanent grasslands, whose species composition is shaped by site conditions and management, species selection in (re-)sown grasslands is a conscious choice. To be advantageous, mixtures have to show larger yields than the most productive monoculture, so-called transgressive overyielding. Transgressive overyielding is one of the reasons why mixtures, especially grass-clover mixtures, are frequently used in sown grasslands. A European-scale experiment demonstrated that four-species mixtures showed transgressive overyielding at a wide range of sites under intensive agricultural management9,10. Although Schaub et al.6 generally quantify the diversity effects in comparison to monocultures, they argue that grasslands with the high-diversity characteristic of semi-natural grasslands have benefits not only over monocultures but over low-diversity grasslands, such as the 1–8 species standard mixtures shown in Fig. 6 of their paper. However, their results fail to demonstrate that their high-diversity plots show any transgressive overyielding even over monocultures, not to speak of low-diversity mixtures. As species assemblages of the experiment are randomly drawn from the species pool, monocultures and low-diversity mixtures cannot be expected to include the most productive species or species combinations and thus cannot be used to assess transgressive overyielding. When transgressive overyielding was quantified for one- to eight-species plots of the same experiment under extensive management in 2003, it decreased with species number. While two-species mixtures showed a mean transgressive overyielding of 5%, eight-species mixtures were only 70% as productive as the corresponding best monoculture, on average11.Accordingly, the experimental design fails to capture the real trade-offs faced by grassland managers, either in permanent or in sown grassland. It cannot answer if high levels of diversity and the associated biodiversity benefits can be maintained under intensive management for a longer period than just a few years. Neither can it show a productivity benefit of high-diversity grassland assemblages compared to species-poor mixtures, or even monocultures, when in practice the sown species are deliberately chosen rather than randomly drawn from a species pool. While the underlying biodiversity experiment has made valuable contributions to our fundamental understanding of plant diversity effects on ecosystem functioning, it thus cannot be used to derive direct management recommendations for managed grassland. More

  • in

    Mature Andean forests as globally important carbon sinks and future carbon refuges

    Study areaThis study was conducted using tree census data collected from 119 forest inventory plots (73 tropical, 46 subtropical) situated across a latitudinal range of 7.1°N (Colombia) to 27.8°S (Argentina), a longitudinal range of 79.5° to −63.8° W, and an elevation range of 500–3511 m asl (Fig. 1). The mean annual temperature (MAT) of plots ranged from 7.3 to 23.8 °C (mean = 16.7 ± 4.1 °C; mean ± SD) and mean annual precipitation (MAP) of the plots ranged from 608 to 4313 mm y−1 (mean = 1405.0 ± 623.9 mm y−1) (External Databases 1). The number of plots sampled in each country was: Argentina = 46, Bolivia = 26, Peru = 16, Ecuador = 21, and Colombia = 10 (Fig. 1). The 119 forest plots ranged in size from 0.32 to 1.28 ha and represent a cumulative sample area of 104.4 ha (horizontal areas corrected for slope) that containe more than 63,000 trees with a diameter at breast height (DBH, 1.3 m) ≥10 cm (External Database 1). Ninety-four of the plots (79.0%) were ≥1 ha in size. Neither secondary forests nor plantations were included. However, only seven of the plots (five in Argentina and two in Bolivia) were located in forests >100 km2 in extent41, which suggests that at least the edges and borders of some plots could have experienced some degree of disturbance or degradation. All plots were censused at least twice between 1991 and 2017 (census intervals ranged between 2 and 9 years).In each plot, we tagged, mapped, measured, and collected vouchers of all trees and palms (DBH ≥ 10 cm). DBH was measured 50 cm above buttresses or aerial roots when present (where the stem was cylindrical). During the second or subsequent set of censuses, DBH growth, recruitment, and mortality were recorded. In cases where the recorded DBH growth of the second census was less than −0.1 cm y−1 or greater than 7.5 cm y−1, the DBH of the second census was augmented/reduced in order to match these minimum/maximum values42. To homogenize and validate species names of palms and trees recorded in each country and plot, we submitted the combined list from all plots to the Taxonomic Name Resolution Service (TNRS; http://tnrs.iplantcollaborative.org/) version 3.0. Any species with an unassigned TNRS accepted name or with a taxonomic status of ‘no opinion’, ‘illegitimate’, or ‘invalid’ was manually reviewed. Families and genera were changed in accordance with the new species names. If a full species name was not provided or could not be found, the genus and/or family name from the original file was retained.Aboveground carbon stocksThe aboveground biomass (AGB) of each tree was estimated using the allometric equation proposed by Chave et al43., defined as: AGB = 0.0673 × (WD × DBH2 × H)0.976 where AGB (kg) is the estimated aboveground biomass, DBH (cm) is the diameter of the tree at breast height, H (m) is the estimated total height, and WD (g cm−3) is the stem wood density. To estimate WD, we assigned the WD values available in the literature44 to each species found in each plot. In cases where we could not assign a WD value at the species level, we used the average value at the genus- or family level. For unidentified individuals, we used the average WD value of all other species in the plot. Tree height (H) was estimated (see below) based on the heights measured on a subset of the individual stems in each plot using digital hypsometers or clinometers. The estimated AGB of each tree was then converted to units of aboveground carbon (AGC) by applying a conversion factor of 1 kg AGB = 0.456 kg C45. The AGC per ha was then determined by converting kg to Mg, summing the values for all trees in a plot, and extrapolating or interpolating to a sample area of 1 ha.Estimates of AGB and AGC are highly dependent on tree height. Unfortunately, tree height was difficult or impossible to measure on all stems due to physical and logistical constraints. Therefore, we estimated the height of each stem based on allometric relationships between DBH and tree height that we developed for each plot based on height and DBH measurements taken on a subset of individuals. Although the AGB/AGC estimates are only for trees with DBH ≥ 10, we used trees with DBH ≥ 5 cm to construct the H:DBH models when possible in order to be as comparable as possible with the existing pantropical H:DBH models46. In total, 44,442 trees had their heights measured in the field and were employed to construct the H:DBH models. The percentage of trees with direct field measurements of H (DBH ≥ 5 cm) in each country was: Argentina = 19%, Bolivia = 98%, Peru = 96%, Ecuador = 97%, and Colombia = 46%. In Argentina, 32 of 46 plots did not have any field measurements of H, while all plots in all other countries had field measurements of H for at least a subset of trees.We tested and compared the expected effects of using H:DBH models constructed using the local (plot), country, or pantropical (regional) level data. To select the best model to estimate H from DBH at the plot and country level, we used the function modelHD available in the BIOMASS package for R47. We chose the best allometric model from four candidate models (two log-log polynomial models, the three-parameter Weibull model, and a two-parameter Michaelis-Menten model (Supplementary Table 7)) by selecting the model with the lowest RSE and bias (Supplementary Table 8). At the regional level, we used a pantropical model46. The use of country and pantropical H:DBH allometries underestimates tree heights in the lowlands and overestimates tree heights in highlands, thereby homogenizing AGB estimates along elevational gradients10,48 (Supplementary Figs. 11, 12, 13). Using plot level allometries eliminates this problem. However, in the 32 plots in Argentina where we had no information about tree height, we used the country-level H:DBH model developed with the data available in the remaining 14 plots to estimate the height of each tree, which could have homogenized the AGC estimates along the Argentinian elevational gradient (Supplementary Figs. 11, 12, 13).Aboveground carbon dynamicsThe AGC dynamics of each plot was estimated from the annualized values of AGC mortality, AGC productivity (AGC change due to recruitment + growth), and AGC net change3. The calculations of the separate AGC dynamic components was performed as follows: (i) AGC mortality (Mg ha−1 y−1) = the sum of the AGC of all individuals that died between censuses divided by the time between measurements. (ii) AGC recruitment (Mg C ha−1 y−1) = the sum of the AGC of individuals that recruited into DBH ≥ 10 cm between censuses divided by the time between measurements. However, for each tree recruited (DBH ≥ 10 cm), we subtracted the corresponding AGC associated with a tree of 9.99 cm (i.e. just below the detection limit) in order to avoid overestimations of the overall increase in AGC due to recruitment49. (iii) AGC growth (Mg ha−1 y−1) = the sum of the increase in AGC of all individuals with DBH ≥ 10 cm that survived between censuses divided by the time between censuses. (iv) AGC net change (Mg ha−1 y−1) = the difference between AGC stock in the last census (AGCfinal) and AGC stock in the first census (AGC1) divided by the elapsed time (t; in years) between measurements [(AGC net change = AGCfinal − AGC1)/t]. We recognize that these methods exclude C stored in soils or in belowground tissues9,48; however, quantifying just aboveground C stocks and fluxes provides valuable information about the overall status of these forests as net C sinks or sources.ClimateClimate variables at each plot location were extracted from the CHELSA28 bioclimatic rasters at a resolution of 30-arcsec (~1 km2 at the equator). The climate variables extracted were: Mean Annual Temperature (MAT), Mean Diurnal Range (MDR), Isothermality (Isoth), Temperature Seasonality (TS), Maximum Temperature of Warmest Month (MaxTWarmM), Minimum Temperature of Coldest Month (MinTCM), Temperature Annual Range (TAR), Mean Temperature of Wettest Quarter (MeanTWarmQ), Mean Temperature of Driest Quarter (MeanTDQ), Mean Temperature of Warmest Quarter (MeanTWetQ), Mean Temperature of Coldest Quarter (MeanTCQ), Mean Annual Precipitation (MAP), Precipitation of Wettest Month (PWetM), Precipitation of Driest Month (PDM), Precipitation Seasonality (PS), Precipitation of Wettest Quarter (PWetQ), Precipitation of Driest Quarter (PDQ), Precipitation of Warmest Quarter (PWarmQ), Precipitation of Coldest Quarter (PCQ). We separated all variables associated with temperature (°C) from those associated with precipitation (mm y−1) and applied a Principal Component Analysis (PCA) to the 11 variables associated with temperature (PCAtemp) and a separate PCA to the eight variables associated with precipitation (PCAprec). The first two principal components of both PCAtemp and PCAprec (four PCA axes in total) were selected for use in subsequent analyses. Plot elevations were estimated based on their coordinates and the SRTM 1 ArcSec Global V3 (https://lta.cr.usgs.gov) 30 m resolution digital elevation model (DEM).PCAtemp1 (Supplementary Fig. 1a) explained 53.0% of the total variance of the temperature variables and had high loading from Isothermality and Maximum Temperature of Warmest Month, which was primarily associated with changes in elevation (r = −0.97, p  More

  • in

    Reproductive performance in houbara bustard is affected by the combined effects of age, inbreeding and number of generations in captivity

    1.Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Ballou, J. D. et al. Demographic and genetic management of captive populations. in Wild Mammals in Captivity: Principles and Techniques for Zoo Management (eds. Kleiman, D. G., Thompson, K. V. & Kirk Baer, C.) 219–252 (The University of Chicago Press, 2010).3.Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. in Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Elsevier Academic Press, 2013). https://doi.org/10.1016/B978-0-12-384719-5.00268-9.4.IUCN. Guidelines on the Use of Ex Situ Management for Species Conservation (2nd ed.). www.iucn.org/about/work/programmes/species/publications/iucn_guidelines_and__policy__statements/ (2014).5.Lacy, R. C. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).Article 

    Google Scholar 
    6.Lockyear, K. M., MacDonald, S. E., Waddell, W. T. & Goodrowe, K. L. Investigation of captive red wolf ejaculate characteristics in relation to age and inbreeding. Theriogenology 86, 1369–1375 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    9.Robert, A., Couvet, D. & Sarrazin, F. Integration of demography and genetics in population restorations. Écoscience 14, 463–471 (2007).Article 

    Google Scholar 
    10.Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).Article 

    Google Scholar 
    11.McPhee, M. E. & McPhee, N. F. Relaxed selection and environmental change decrease reintroduction success in simulated populations: altered selection in captive populations. Anim. Conserv. 15, 274–282 (2012).Article 

    Google Scholar 
    12.Ford, M. J. Selection in captivity during supportive breeding may reduce fitness in the wild. Conserv. Biol. 16, 815–825 (2002).Article 

    Google Scholar 
    13.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    14.Robert, A. Captive breeding genetics and reintroduction success. Biol. Conserv. 142, 2915–2922 (2009).Article 

    Google Scholar 
    15.Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. 109, 238–242 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    18.Gordon, S. P., Hendry, A. P. & Reznick, D. N. Predator-induced contemporary evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. Copeia 105, 514–522 (2017).Article 

    Google Scholar 
    19.Forslund, P. & Pärt, T. Age and reproduction in birds—hypotheses and tests. Trends Ecol. Evol. 10, 374–378 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Smith, J. M. Review lectures on senescence—I. The causes of ageing. Proc. R. Soc. Lond. B Biol. Sci. 157, 115–127 (1962).ADS 
    Article 

    Google Scholar 
    21.Partridge, L. & Barton, N. H. Optimally, mutation and the evolution of ageing. Nature 362, 305–311 (1993).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Langen, K., Bakker, T. C. M., Baldauf, S. A., Shrestha, J. & Thünken, T. Effects of ageing and inbreeding on the reproductive traits in a cichlid fish I: the male perspective. Biol. J. Linn. Soc. 120, 752–761 (2017).Article 

    Google Scholar 
    24.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301 (1977).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Benton, C. H. et al. Inbreeding intensifies sex- and age-dependent disease in a wild mammal. J. Anim. Ecol. 87, 1500–1511 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.de Boer, R. A., Eens, M. & Müller, W. Sex-specific effects of inbreeding on reproductive senescence. Proc. R. Soc. B Biol. Sci. 285, 20180231 (2018).Article 

    Google Scholar 
    27.Promislow, D. E. L. & Tatar, M. Mutation and senescence: where genetics and demography meet. Genetica 102, 299–314 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Charlesworth, B. & Hughes, K. A. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl. Acad. Sci. 93, 6140–6145 (1996).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Snoke, M. S. & Promislow, D. E. L. Quantitative genetic tests of recent senescence theory: age-specific mortality and male fertility in Drosophila melanogaster. Heredity 91, 546–556 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Robert, A., Toupance, B., Tremblay, M. & Heyer, E. Impact of inbreeding on fertility in a pre-industrial population. Eur. J. Hum. Genet. 17, 673–681 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Lesobre, L. et al. Conservation genetics of Houbara Bustard (Chlamydotis undulata undulata): population structure and its implications for the reinforcement of wild populations. Conserv. Genet. 11, 1489–1497 (2010).Article 

    Google Scholar 
    32.Rabier, R., Robert, A., Lacroix, F. & Lesobre, L. Genetic assessment of a conservation breeding program of the houbara bustard (Chlamydotis undulata undulata) in Morocco, based on pedigree and molecular analyses. Zoo Biol. 39, 365–447 (2020).Article 

    Google Scholar 
    33.Hardouin, L. A., Legagneux, P., Hingrat, Y. & Robert, A. Sex-specific dispersal responses to inbreeding and kinship. Anim. Behav. https://doi.org/10.1016/j.anbehav.2015.04.002 (2015).Article 

    Google Scholar 
    34.Cornec, C., Robert, A., Rybak, F. & Hingrat, Y. Male vocalizations convey information on kinship and inbreeding in a lekking bird. Ecol. Evol. 9, 4421–4430 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Vuarin, P. et al. No evidence for prezygotic postcopulatory avoidance of kin despite high inbreeding depression. Mol. Ecol. 27, 5252–5262 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Bacon, L., Hingrat, Y. & Robert, A. Evidence of reproductive senescence of released individuals in a reinforced bird population. Biol. Conserv. 215, 288–295 (2017).Article 

    Google Scholar 
    37.Chantepie, S. et al. Quantitative genetics of the aging of reproductive traits in the houbara bustard. PLoS ONE 10, e0133140 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. Sexually extravagant males age more rapidly. Ecol. Lett. 14, 1017–1024 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Preston, B. T., Saint Jalme, M., Hingrat, Y., Lacroix, F. & Sorci, G. The sperm of aging male bustards retards their offspring’s development. Nat. Commun. 6, 1–9 (2015).Article 
    CAS 

    Google Scholar 
    40.Vuarin, P. et al. Post-copulatory sexual selection allows females to alleviate the fitness costs incurred when mating with senescing males. Proc. R. Soc. B Biol. Sci. 286, 20191675 (2019).Article 

    Google Scholar 
    41.Chargé, R. et al. Quantitative genetics of sexual display, ejaculate quality and size in a lekking species. J. Anim. Ecol. 82, 399–407 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Chargé, R. et al. Does recognized genetic management in supportive breeding prevent genetic changes in life-history traits?. Evol. Appl. 7, 521–532 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Gaucher, P. et al. Taxonomy of the Houbara Bustard Chlamydotis undulata subspecies considered on the basis of sexual display and genetic divergence. Ibis 138, 273–282 (1996).Article 

    Google Scholar 
    44.Hingrat, Y., Saint Jalme, M., Chalah, T., Orhant, N. & Lacroix, F. Environmental and social constraints on breeding site selection. Does the exploded-lek and hotspot model apply to the Houbara bustard Chlamydotis undulata undulata?. J. Avian Biol. 39, 393–404 (2008).Article 

    Google Scholar 
    45.Duursma, D. E., Gallagher, R. V., Price, J. J. & Griffith, S. C. Variation in avian egg shape and nest structure is explained by climatic conditions. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    46.Cucco, M., Grenna, M. & Malacarne, G. Female condition, egg shape and hatchability: a study on the grey partridge. J. Zool. 287, 186–194 (2012).Article 

    Google Scholar 
    47.Adamou, A.-E. et al. Egg size and shape variation in Rufous Bush Chats Cercotrichas galactotes breeding in date palm plantations: hatching success increases with egg elongation. Avian Biol. Res. 11, 100–107 (2018).Article 

    Google Scholar 
    48.Goriup, P. D. The world status of the Houbara Bustard Chlamydotis undulata. Bird Conserv. Int. 7, 373–397 (1997).Article 

    Google Scholar 
    49.BirdLife International. Chlamydotis undulata. The IUCN Red List of Threatened Species 2016: e.T22728245A90341807. (2016) https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22728245A90341807.en.50.Lacroix, F., Seabury, J., Al Bowardi, M. & Renaud, J. The Emirates Center for Wildlife Propagation: developing a comprehensive strategy to secure a self-sustaining population of houbara bustard (Chlamydotis undulata undulata) in Eastern Morocco. Houbara News 5, (2003).
    51.Conway, W. Wild and zoo animal interactive management and habitat conservation. Biodivers. Conserv. 4, 573–594 (1995).Article 

    Google Scholar 
    52.Saint Jalme, M., Gaucher, P. & Paillat, P. Artificial insemination in Houbara bustards (Chlamydotis undulata): influence of the number of spermatozoa and insemination frequency on fertility and ability to hatch. Reproduction 100, 93–103 (1994).CAS 
    Article 

    Google Scholar 
    53.Allendorf, F. W. Delay of adaptation to captive breeding by equalizing family size. Conserv. Biol. 7, 416–419 (1993).Article 

    Google Scholar 
    54.Percie du Sert, N. et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLOS Biol. 18, e3000410 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Vuarin, P. et al. Sperm competition accentuates selection on ejaculate attributes. Biol. Lett. 15, 20180889 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Chalah, T., Seigneurin, F., Blesbois, E. & Brillard, J. P. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 39, 185–191 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hoyt, D. F. Practical methods of estimating volume and fresh weight of bird eggs. Auk 96, 73–77 (1979).
    Google Scholar 
    58.Wellmann, R. optiSel: Optimum Contribution Selection and Population Genetics. R package version 2.0.2. https://CRAN.R-project.org/package=optiSel (2018).59.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org (2019).60.Princée, F. P. G. Exploring Studbooks for Wildlife Management and Conservation (Springer, Berlin, 2016).
    Google Scholar 
    61.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal. 9, 378–400 (2017).Article 

    Google Scholar 
    62.Ludecke, D., Makowski, D. & Waggoner, P. performance: Assessment of Regression Models Performance. R package version 0.3.0. https://CRAN.R-project.org/package=performance (2019).63.Ludecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772. https://doi.org/10.21105/joss.00772 (2018).ADS 
    Article 

    Google Scholar 
    64.Wickham, H. ggplot2: elegant graphics for data analysis (Springer, Berlin, 2009).
    Google Scholar 
    65.Newton, I. & Rothery, P. Senescence and reproductive value in sparrowhawks. Ecology 78, 1000–1008 (1997).Article 

    Google Scholar 
    66.Bouwhuis, S., Sheldon, B. C., Verhulst, S. & Charmantier, A. Great tits growing old: selective disappearance and the partitioning of senescence to stages within the breeding cycle. Proc. R. Soc. B Biol. Sci. 276, 2769–2777 (2009).CAS 
    Article 

    Google Scholar 
    67.Angelier, F., Shaffer, S. A., Weimerskirch, H. & Chastel, O. Effect of age, breeding experience and senescence on corticosterone and prolactin levels in a long-lived seabird: the wandering albatross. Gen. Comp. Endocrinol. 149, 1–9 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Angelier, F., Weimerskirch, H., Dano, S. & Chastel, O. Age, experience and reproductive performance in a long-lived bird: a hormonal perspective. Behav. Ecol. Sociobiol. 61, 611–621 (2007).Article 

    Google Scholar 
    69.Ottinger, M. A. et al. The Japanese quail: a model for studying reproductive aging of hypothalamic systems. Exp. Gerontol. 39, 1679–1693 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lecomte, V. J. et al. Patterns of aging in the long-lived wandering albatross. Proc. Natl. Acad. Sci. 107, 6370–6375 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Opatová, P. et al. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 6, 295–304 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Croquet, C. et al. Linear and curvilinear effects of inbreeding on production traits for Walloon Holstein cows. J. Dairy Sci. 90, 465–471 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Leroy, G. Inbreeding depression in livestock species: review and meta-analysis. Anim. Genet. 45, 618–628 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations: genetic management. Conserv. Lett. 11, e12412 (2018).Article 

    Google Scholar 
    75.Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. 113, 3585–3590 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Frankham, R. & Ralls, K. Inbreeding leads to extinction. Nature 392, 441–442 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Armbruster, P. & Reed, D. H. Inbreeding depression in benign and stressful environments. Heredity 95, 235–242 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Robert, A. Negative environmental perturbations may improve species persistence. Proc. R. Soc. B Biol. Sci. 273, 2501–2506 (2006).Article 

    Google Scholar 
    79.Crnokrak, P. & Roff, D. A. Inbreeding depression in the wild. Heredity 83, 260–270 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Lynch, M. & O’Hely, M. Captive breeding and genetic fitness of natural populations. Conserv. Genet. 2, 363–378 (2001).Article 

    Google Scholar 
    82.Robert, A., Sarrazin, F., Couvet, D. & Legendre, S. Releasing adults versus young in reintroductions: interactions between demography and genetics. Conserv. Biol. 18, 1078–1087 (2004).Article 

    Google Scholar 
    83.Roche, E. A., Cuthbert, F. J. & Arnold, T. W. Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population?. Biol. Conserv. 141, 3079–3088 (2008).Article 

    Google Scholar 
    84.Ford, N. B. & Seigel, R. A. Phenotypic plasticity in reproductive traits: evidence from a viviparous snake. Ecology 70, 1768–1774 (1989).Article 

    Google Scholar 
    85.Bacon, L. Etude des paramètres de reproduction et de la dynamique d’une population renforcée d’outardes Houbara nord-africaines (Chlamydotis undulata undulata) au Maroc. (Museum National d’Histoire Naturelle, 2017).86.Robert, A. et al. Defining reintroduction success using IUCN criteria for threatened species: a demographic assessment. Anim. Conserv. 18, 397–406 (2015).Article 

    Google Scholar 
    87.Bacon, L., Robert, A. & Hingrat, Y. Long lasting breeding performance differences between wild-born and released females in a reinforced North African Houbara bustard (Chlamydotis undulata undulata) population: a matter of release strategy. Biodivers. Conserv. 28, 553–570 (2019).Article 

    Google Scholar 
    88.Vuarin, P. et al. Paternal age negatively affects sperm production of the progeny. Ecol. Lett. https://doi.org/10.1111/ele.13696 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    89.Keller, L. F., Reid, J. M. & Arcese, P. Testing evolutionary models of senescence in a natural population: age and inbreeding effects on fitness components in song sparrows. Proc. R. Soc. B Biol. Sci. 275, 597–604 (2008).CAS 
    Article 

    Google Scholar 
    90.Reynolds, R. M. et al. Age specificity of inbreeding load in Drosophila melanogaster and implications for the evolution of late-life mortality plateaus. Genetics 177, 587–595 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Tan, C. K. W., Pizzari, T. & Wigby, S. Parental age, gametic age, and inbreeding interact to modulate offspring viability in Drosophila melanogaster. Evolution 67, 3043–3051 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    92.Deubel, W., Bassukas, I. D., Schlereth, W., Lorenz, R. & Hempel, K. Age dependent selection against HPRT deficient T lymphocytes in the HPRT± heterozygous mouse. Mutat. Res. Mol. Mech. Mutagen. 351, 67–77 (1996).CAS 
    Article 

    Google Scholar 
    93.Réale, D. & Festa-Bianchet, M. Predator-induced natural selection on temperament in bighorn ewes. Anim. Behav. 65, 463–470 (2003).Article 

    Google Scholar 
    94.Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against Inbred Soay Sheep in a free-living, island population. Evolution 53, 1259 (1999).PubMed 
    PubMed Central 

    Google Scholar 
    95.Wang, J., Hill, W. G., Charlesworth, D. & Charlesworth, B. Dynamics of inbreeding depression due to deleterious mutations in small populations: mutation parameters and inbreeding rate. Genet. Res. 74, 165–178 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    A metric for spatially explicit contributions to science-based species targets

    Species threat abatement and restoration (STAR) metricWe developed and analysed a STAR metric that evaluates the potential benefit for threatened species of actions to reduce threats and restore habitat. Like the Red List Index7,8, STAR is derived from existing data in the IUCN Red List and is intended to help address an urgent need. STAR is spatially explicit, enabling identification of specific threat abatement and habitat restoration opportunities in particular places, which, if implemented, could reduce species extinction risk to levels that would exist without ongoing human impact. Abatement of threats to species encompasses reduction in threat intensity and/or action to mitigate the impacts of threats. Positive population and/or distribution changes, along with the resulting reduction of species extinction risk, have been documented in response to threat abatement13. STAR assumes that, for the great majority of species (see Supplementary Discussion), complete alleviation of threats would reduce extinction risk through halting the decline and/or permitting sufficient recovery in population and distribution, such that the species could be downlisted to the IUCN Red List category of Least Concern. We recognize that complete threat reduction is difficult, incremental conservation gains will need to be tracked at the species level14 and species recovery will vary across a species’ range14.For each species, a global STAR threat abatement (START) score is defined. This varies from zero for species of Least Concern to 100 for Near Threatened, 200 for Vulnerable, 300 for Endangered and 400 for Critically Endangered species (using established weighting ratios7,8). The sum of START values across all species represents the global threat abatement effort needed for all species to become Least Concern. START scores can be disaggregated spatially, based on the area of habitat (AOH) currently available for each species in a particular location (as a proxy for population proportion). This shows the potential contribution of conservation actions in that location to reducing the extinction risk for all species globally. The local START score can be further disaggregated by threat, based on the known contribution of each threat to the species’ risk of extinction (see Methods). This quantifies how actions that abate a specific threat at a particular location contribute to the global abatement of extinction risk for all species.The STAR metric also includes a complementary habitat restoration component to reflect the potential benefits to species of restoring lost habitat. During the United Nations Decade on Ecosystem Restoration (2021–2030), restoration efforts are likely to expand. The STAR restoration component applies a similar logic to the STAR threat abatement component, but for habitat that has been lost and is potentially restorable (that is, restorable AOH). The STAR restoration component does not make assumptions about the extent of habitat restoration required for individual species, but instead quantifies the potential contribution that habitat restoration activities could make to reducing species’ extinction risk. For a particular species at a particular location, the STAR restoration (STARR) score reflects the proportion that restorable habitat at the location represents of the global area of remaining habitat for that species. Importantly, a multiplier is applied to STARR scores to reflect the slower and lower success rate in delivering benefits to species from restored habitat compared with conserved existing habitat15. Again, STARR scores can be disaggregated by threat and summed across species within the location.STAR is intended to provide a metric to underpin the establishment of science-based targets as explicit contributions from individual actors towards the post-2020 biodiversity framework, by allowing assessment of actions and locations according to their potential ability to deliver towards international conservation targets. Individual spatially based START and STARR scores, for all species present in a particular location or country, represent a proportion of the global opportunity to reduce species’ extinction risk through threat abatement and restoration, respectively. For each species, the total START score could be achieved by the complete abatement of all threats in remaining habitat, or an equivalent value of the STAR metric can be achieved by a combination of threat abatement in the remaining habitat and restoration of lost habitat (with concomitant threat abatement therein). The metric can support establishment of science-based targets by a range of actors across spatial scales. By enabling governments and non-state actors to quantify their potential contributions, STAR, along with other tools, could facilitate achievement of global policy goals, notably the species component of the Sustainable Development Goals and the expected post-2020 Global Biodiversity Framework.STAR uses existing publicly available datasets: species’ extinction risk categories and threats available from the IUCN Red List6 (or, for country endemics not yet assessed globally, from national red lists); and species’ AOH estimated using species’ ranges, habitat associations, and elevation limits, along with digital elevation models and current and historical land cover maps (here, we used backcast land cover maps of the distribution of habitat pre-human impact, as in ref. 16). To demonstrate the utility of STAR, we calculated global STAR scores for the groups of terrestrial vertebrate species that are comprehensively assessed on the IUCN Red List (that is, threatened and Near Threatened species of amphibians, birds and mammals globally; n = 5,359).Potential to reduce species extinction riskGlobally, the greatest contribution that could be made to reduce the extinction risk of these groups is tackling threats from annual and perennial non-timber crop production, which account for 24.5% of the global START score (Fig. 1). A further 16.4% is contributed by logging and wood harvesting. There are likely to be specific targets for reducing agriculture and forestry threats in the post-2020 framework3, and applying STAR quantifies the large potential contribution that mitigating these threats could make to the goal for species conservation. Appropriate activities to deliver on such targets range along a continuum from land sharing through to land sparing17.Fig. 1: Contribution to the global START score of different threats and the potential contribution of habitat restoration.The total global START score represents the global threat abatement effort needed for all Near Threatened and threatened (Vulnerable, Endangered and Critically Endangered, according to the IUCN Red List) amphibian, bird and mammal species to be reclassified as Least Concern. This score can be disaggregated by threat type, based on the known contribution of each threat to species’ risk of extinction. The STARR score quantifies the potential contribution that habitat restoration activities could make to reducing overall species’ extinction risk. The total START score could thus be achieved by the complete abatement of all threats in existing natural habitat, or through a combination of threat abatement in existing habitat and restoration of lost habitat (with concomitant threat abatement therein).Full size imageSTAR can be used in combination with existing policy and planning tools to quantify the potential contribution of action targets towards species conservation outcomes. The proposed post-2020 framework includes an action target for the protection of sites of particular importance to biodiversity3. Key Biodiversity Areas11, which include Important Bird and Biodiversity Areas18 and Alliance for Zero Extinction sites19, correspond to such sites. Key Biodiversity Areas so far cover 8.8% of the terrestrial surface (www.keybiodiversityareas.org; identification is ongoing), but already capture 47% of the global START score for the vertebrate groups analysed. They represent large proportions of some national START scores: >70% in Mexico and Venezuela and >50% in Madagascar, Ecuador, the Philippines and Tanzania.START scores can also support target setting at national and sub-national scales to help meet international policy goals. The control and eradication of invasive species forms one of the CBD’s proposed post-2020 action targets3. New Zealand has already set a Predator Free 2050 goal that aims to eradicate three invasive mammal species by 2050. New Zealand contributes 0.8% to the global START score for the three vertebrate groups included in this study. Achieving the Predator Free 2050 goal would contribute 30% of the total START score for New Zealand, amounting to 0.2% of the global START score.All countries contribute towards the global START score, but scores are highly skewed, with a few countries having high START scores and most having low scores for the vertebrate groups analysed (Fig. 2a and Extended Data Fig. 1). The highest-scoring countries are located in biodiverse regions with many threatened endemic species20: Indonesia contributes 7.1% of the global START score, Colombia 7.0%, Mexico 6.1%, Madagascar 6.0% and Brazil 5.2%. These top five countries contribute 31.3% of the global START score. In contrast, the lowest-scoring 88 countries together contribute only 1% of the global START score. This does not imply that these low-scoring countries have negligible species conservation responsibilities; the global decline in even common species indicates that all countries must act to reverse the degradation of nature and restore the diversity and abundance of species and integrity of ecosystems21, as well as preventing extinctions at a national scale. Moreover, most countries have a Red List Index22, or an equivalent, quantifying their progress or failure in reducing the global extinction risk of assessed species relative to their national responsibility for global species conservation. STAR provides a means to guide the reduction of extinction risk and so assist all countries in meeting national species conservation targets.Fig. 2: Global distribution of START and STARR scores.a,b, Global STAR scores for amphibians, birds and mammals at a 50-km grid cell resolution for START scores (a) and STARR scores (b). Each species has a global START score, weighted relative to their extinction risk. This global START score can be disaggregated spatially, based on the AOH currently available for each species in a particular location. The total START score per grid cell (a) is thus the sum of the individual species’ START scores per grid cell across all Near Threatened and threatened species of amphibians, birds and mammals included in this study. The global STARR score per species reflects the potential contribution that habitat restoration activities could make to reducing species’ extinction risk, and is spatially disaggregated based on the availability of restorable habitat. Thus, the total STARR score per grid cell (b) is the sum of the individual species’ STARR scores per grid cell across all species included in this study. For the legends in a and b, each range excludes the lower bound and includes the upper bound.Full size imageAt the global level, we estimated that an equivalent to 55.9% of the global START score for vertebrates could, theoretically, be achieved by restoring lost habitat within the current range (Fig. 1). Ecosystem restoration objectives have been identified in many national biodiversity strategies for the CBD, as well as in many countries’ commitments under the Bonn Challenge, and as part of Nationally Determined Contributions under the United Nations Framework Convention on Climate Change. The STAR metric has the potential to support restoration initiatives alongside species conservation targets by quantifying the potential benefit to particular species of restoring habitat in specific places23 (Fig. 2b). Restoration may be particularly important for some species, including those assessed under Red List sub-criteria D/D1 (with a very small population) or Bac (with a small range with severe fragmentation, plus extreme fluctuations). For species uniquely assessed under these criteria (2.8% of those included in this study), threat abatement alone is unlikely to eliminate extinction risk, so this might need to be complemented by restoration in order to achieve Least Concern status (see Supplementary Discussion). Moreover, depending on habitat loss and threat type, restoration of habitat may be beneficial for a larger proportion of threatened species.Application of STAR at the landscape scaleWe tested the landscape-scale application of the STAR metric in the southern part of Bukit Tigapuluh landscape, in central Sumatra, Indonesia (Fig. 3a). The Bukit Tigapuluh Sustainable Landscape and Livelihoods Project is a sustainable commercial rubber initiative. The study area (approximately 88,000 ha) includes a 5-km buffer (which is set aside to support local livelihoods, wildlife conservation areas and forest protection and restoration) and two ecosystem restoration areas (which form a conservation management zone that protects the Bukit Tigapuluh National Park from encroachment).Fig. 3: STAR results for the Bukit Tigapuluh Sustainable Landscape and Livelihoods Project.The Bukit Tigapuluh Sustainable Landscape and Livelihoods Project is a sustainable commercial rubber initiative. The study area (approximately 88,000 ha) includes a 5-km buffer, which is set aside to support local livelihoods, wildlife conservation areas and forest protection and restoration, and two ecosystem restoration areas, which form a conservation management zone that protects the Bukit Tigapuluh National Park from encroachment. a, Mapped START scores in areas with remaining forest (green) and STARR scores in areas where forest has been lost (purple) at the 30-m grid cell resolution. b, START scores per threat for the top five highest-scoring threats across the study area (the concession, 5-km buffer and ecosystem restoration areas combined).Full size imageThe total START score for the study area represents 0.2% of the START score for Sumatra, 0.04% of the START score for Indonesia and 0.003% of the global START. The major threats are from annual and perennial non-timber crops, logging and wood harvesting, and the collection of terrestrial animals (Fig. 3b). The proximate causes of these pressures in the project area are rubber cultivation, oil palm cultivation, industrial logging, subsistence wood cutting and hunting. STAR analysis shows that areas with the greatest potential to contribute to species conservation through threat mitigation are in remaining natural habitat close to the national park, with a small area of high potential also to the west, where the relatively small distribution of the orbiculus leaf-nosed bat (Hipposideros orbiculus) overlaps the site (Fig. 3a). Additionally, due to recent forest loss, 47% of the START score for the study area could be achieved through habitat restoration (that is, STARR). Investment in these management actions has the potential to deliver these quantified contributions to national and global biodiversity targets.Operationalization and future developmentThe STAR metric makes use of the best available data, producing results that are relevant to policy and practice. However, there is scope for future refinement as the underlying data improve. Here, the STAR metric covers amphibians, birds and mammals globally, constituting a well-studied but small proportion of taxonomic diversity (see Extended Data Figs. 2 and 3 for variation among taxa). STAR can be expanded to other taxonomic groups, including freshwater and marine species, as data become available (reptiles, cacti, cycads, conifers, freshwater fish and reef-building corals are among the groups imminently available for incorporation). Global application of STAR will require comprehensive assessment of taxonomic groups, testing of the transferability of the STAR metric assumptions among taxa as Red List coverage expands, and further development of methods to calculate AOH. AOH calculation does not currently capture spatial variation in species’ population density, which will be important for many species14; such data have not been gathered on a global scale yet and could be incorporated as available.The completeness of threat data in the IUCN Red List is uneven but is continually improving. The STAR metric does not currently reflect spatial variation in threat magnitude within species’ ranges; more broadly, there is a lack of information on the spatial distribution of threats24. Most species included in this study have relatively small ranges; the total current AOH is More

  • in

    Horizontally acquired cysteine synthase genes undergo functional divergence in lepidopteran herbivores

    Acuna R, Padilla BE, Florez-Ramos CP, Rubio JD, Herrera JC, Benavides P et al. (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci USA 109(11):4197–4202CAS 
    PubMed 
    Article 

    Google Scholar 
    Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharm Sci 108(3):227–238CAS 
    Article 

    Google Scholar 
    Arias M, Meichanetzoglou A, Elias M, Rosser N, de-Silva DL, Nay B et al. (2016) Variation in cyanogenic compounds concentration within a Heliconius butterfly community: does mimicry explain everything? BMC Evol Biol 16(1):272PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Baloch MN, Fan JY, Haseeb M, Zhang RZ (2020) Mapping potential distribution of Spodoptera frugiperda (Lepidoptera: Noctuidae) in central Asia. Insects 11(3):172PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Barbehenn RV, Kochmanski J, Menachem B, Poirier LM (2013a) Allocation of cysteine for glutathione production in caterpillars with different antioxidant defense strategies: a comparison of Lymantria dispar and Malacosoma disstria. Arch Insect Biochem 84(2):90–103CAS 

    Google Scholar 
    Barbehenn RV, Niewiadomski J, Kochmanski J (2013b) Importance of protein quality versus quantity in alternative host plants for a leaf-feeding insect. Oecologia 173(1):1–12PubMed 
    Article 

    Google Scholar 
    Bogicevic B, Berthoud H, Portmann R, Meile L, Irmler S (2012) CysK from Lactobacillus casei encodes a protein with O-acetylserine sulfhydrylase and cysteine desulfurization activity. Appl Microbiol Biot 94(5):1209–1220CAS 
    Article 

    Google Scholar 
    Bonner ER, Cahoon RE, Knapke SM, Jez JM (2005) Molecular basis of cysteine biosynthesis in plants: structural and functional analysis of O-acetylserine sulfhydrylase from Arabidopsis thaliana. J Biol Chem 280(46):38803–38813CAS 
    PubMed 
    Article 

    Google Scholar 
    Boto L (2014) Horizontal gene transfer in the acquisition of novel traits by metazoans. Proc Biol Sci 281(1777):20131834
    Google Scholar 
    Brown ES, Dewhurst CF (2009) The genus Spodoptera (Lepidoptera, Noctuidae) in Africa and the Near East. Bull Entomological Res 65(2):221–262Article 

    Google Scholar 
    Budde MW, Roth MB (2011) The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide. Genetics 189(2):521–532CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burkhard P, Rao GS, Hohenester E, Schnackerz KD, Cook PF, Jansonius JN (1998) Three-dimensional structure of O-acetylserine sulfhydrylase from Salmonella typhimurium. J Mol Biol 283(1):121–133CAS 
    PubMed 
    Article 

    Google Scholar 
    Dai X, Li R, Li X, Liang Y, Gao Y, Xu Y et al. (2019) Gene duplication and subsequent functional diversification of sucrose hydrolase in Papilio xuthus. Insect Mol Biol 28(6):862–872CAS 
    PubMed 
    Article 

    Google Scholar 
    Daimon T, Katsuma S, Iwanaga M, Kang WK, Shimada T (2005) The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. Insect Biochem Mol Biol 35(10):1112–1123CAS 
    PubMed 
    Article 

    Google Scholar 
    Daimon T, Taguchi T, Meng Y, Katsuma S, Mita K, Shimada T (2008) Beta-fructofuranosidase genes of the silkworm, Bombyx mori – Insights into enzymatic adaptation of B. mori to toxic alkaloids in mulberry latex. J Biol Chem 283(22):15271–15279CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danchin EG, Rosso MN, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B et al. (2010) Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci USA 107(41):17651–17656CAS 
    PubMed 
    Article 

    Google Scholar 
    Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27(8):1164–1165CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doxey AC, Yaish MWF, Moffatt BA, Griffith M, McConkey BJ (2007) Functional divergence in the Arabidopsis beta-1,3-glucanase gene family inferred by phylogenetic reconstruction of expression states. Mol Biol Evol 24(4):1045–1055CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7(10):e1002195CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. Bmc Bioinforma 5:1–19Article 
    CAS 

    Google Scholar 
    Fan X, Qiu H, Han W, Wang Y, Xu D, Zhang X et al. (2020) Phytoplankton pangenome reveals extensive prokaryotic horizontal gene transfer of diverse functions. Sci Adv 6(18):eaba0111CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farre D, Alba MM (2010) Heterogeneous patterns of gene-expression diversification in mammalian gene duplicates. Mol Biol Evol 27(2):325–335CAS 
    PubMed 
    Article 

    Google Scholar 
    Feldman-Salit A, Wirtz M, Hell R, Wade RC (2009) A mechanistic model of the cysteine synthase complex. J Mol Biol 386(1):37–59CAS 
    PubMed 
    Article 

    Google Scholar 
    Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151(4):1531–1545CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaitonde MK (1967) A spectrophotometric method for direct determination of cysteine in presence of other naturally occurring amino acids. Biochem J 104(2):627–633CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gan Q, Zhang XW, Zhang DB, Shi L, Zhou Y, Sun TT et al. (2018) BmSUC1 is essential for glycometabolism modulation in the silkworm, Bombyx mori. BBA-Gene Regul Mech 1861(6):543–553CAS 

    Google Scholar 
    Ganko EW, Meyers BC, Vision TJ (2007) Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol 24(10):2298–2309CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao Y, Liu YC, Jia SZ, Liang YT, Tang Y, Xu YS et al. (2020) Imaginal disc growth factor maintains cuticle structure and controls melanization in the spot pattern formation of Bombyx mori. PLoS Genet 16(9):e1008980CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu X, Zhang ZQ, Huang W (2005) Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proc Natl Acad Sci USA 102(3):707–712CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu ZL, Nicolae D, Lu HHS, Li WH (2002) Rapid divergence in expression between duplicate genes inferred from microarray data. Trends Genet 18(12):609–613CAS 
    PubMed 
    Article 

    Google Scholar 
    Helmkampf M, Cash E, Gadau J (2015) Evolution of the insect desaturase gene family with an emphasis on social Hymenoptera. Mol Biol Evol 32(2):456–471PubMed 
    Article 

    Google Scholar 
    Hendrickson HR, Conn EE (1969) Cyanide metabolism in higher plants. IV. Purification and properties of the beta-cyanolanine synthase of blue lupine. J Biol Chem 244(10):2632–2640CAS 
    PubMed 
    Article 

    Google Scholar 
    Herfurth AM, van Ohlen M, Wittstock U (2017) Beta-cyanoalanine synthases and their possible role in Pierid host plant adaptation. Insects 8(2):62PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Husnik F, McCutcheon JP (2018) Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol 16(2):67–79CAS 
    PubMed 
    Article 

    Google Scholar 
    Jeschke V, Gershenzon J, Vassao DG (2016) A mode of action of glucosinolate-derived isothiocyanates: detoxification depletes glutathione and cysteine levels with ramifications on protein metabolism in Spodoptera littoralis. Insect Biochem Molec 71:37–48CAS 
    Article 

    Google Scholar 
    Jiggins FM, Hurst GD (2011) Microbiology. Rapid insect evolution by symbiont transfer. Science 332(6026):185–186CAS 
    PubMed 
    Article 

    Google Scholar 
    Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CAS 
    Article 

    Google Scholar 
    Lai KW, Yau CP, Tse YC, Jiang LW, Yip WK (2009) Heterologous expression analyses of rice OsCAS in Arabidopsis and in yeast provide evidence for its roles in cyanide detoxification rather than in cysteine synthesis in vivo. J Exp Bot 60(3):993–1008CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee BS, Huang JS, Jayathilaka LP, Lee J, Gupta S (2016) Antibody production with synthetic peptides. Methods Mol Biol 1474:25–47CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee HL, Irish VF (2011) Gene duplication and loss in a MADS box gene transcription factor circuit. Mol Biol Evol 28(12):3367–3380CAS 
    PubMed 
    Article 

    Google Scholar 
    Leite DJ, Baudouin-Gonzalez L, Iwasaki-Yokozawa S, Lozano-Fernandez J, Turetzek N, Akiyama-Oda Y et al. (2018) Homeobox gene duplication and divergence in arachnids. Mol Biol Evol 35(9):2240–2253CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li ZW, Shen YH, Xiang ZH, Zhang Z (2011) Pathogen-origin horizontally transferred genes contribute to the evolution of lepidopteran insects. Bmc Evolut Biol 11(1):356CAS 
    Article 

    Google Scholar 
    Liu HJ, Tang ZX, Han XM, Yang ZL, Zhang FM, Yang HL et al. (2015) Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Mol Biol Evol 32(11):2844–2859CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lunn JE, Droux M, Martin J, Douce R (1990) Localization of atp sulfurylase and O-acetylserine(Thiol)lyase in spinach leaves. Plant Physiol 94(3):1345–1352CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154(1):459–473CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nikoh N, McCutcheon JP, Kudo T, Miyagishima S, Moran NA, Nakabachi A (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. Plos Genet 6(2):e1000827PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Novakova E, Moran NA (2012) Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus. Mol Biol Evol 29(1):313–323CAS 
    PubMed 
    Article 

    Google Scholar 
    Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304CAS 
    PubMed 
    Article 

    Google Scholar 
    Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449(7164):835–842CAS 
    PubMed 
    Article 

    Google Scholar 
    Polz MF, Alm EJ, Hanage WP (2013) Horizontal gene transfer and the evolution of bacterial and archaeal population structure. Trends Genet 29(3):170–175CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rane RV, Walsh TK, Pearce SL, Jermiin LS, Gordon KH, Richards S et al. (2016) Are feeding preferences and insecticide resistance associated with the size of detoxifying enzyme families in insect herbivores? Curr Opin Insect Sci 13:70–76PubMed 
    Article 

    Google Scholar 
    Schramm K, Vassao DG, Reichelt M, Gershenzon J, Wittstock U (2012) Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem Molec 42(3):174–182CAS 
    Article 

    Google Scholar 
    Stauber EJ, Kuczka P, van Ohlen M, Vogt B, Janowitz T, Piotrowski M et al. (2012) Turning the ‘mustard oil bomb’ into a ‘cyanide bomb’: aromatic glucosinolate metabolism in a specialist insect herbivore. Plos One 7(4):e35545CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun BF, Xiao JH, He SM, Liu L, Murphy RW, Huang DW (2013) Multiple ancient horizontal gene transfers and duplications in lepidopteran species. Insect Mol Biol 22(1):72–87CAS 
    PubMed 
    Article 

    Google Scholar 
    Suzuki K, Moriguchi K, Yamamoto S (2015) Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers. Res Microbiol 166(10):753–763CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Ohlen M, Herfurth AM, Kerbstadt H, Wittstock U (2016) Cyanide detoxification in an insect herbivore: molecular identification of beta-cyanoalanine synthases from Pieris rapae. Insect Biochem Molec 70:99–110CAS 
    Article 

    Google Scholar 
    Wada M, Awano N, Yamazawa H, Takagi H, Nakamori S (2004) Purification and characterization of O-acetylserine sulfhydrylase of Corynebacterium glutamicum. Biosci Biotech Bioch 68(7):1581–1583CAS 
    Article 

    Google Scholar 
    Wadleigh RW, Yu SJ (1988) Detoxification of isothiocyanate allelochemicals by glutathione transferase in three lepidopterous species. J Chem Ecol 14(4):1279–1288CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner A (2002) Asymmetric functional divergence of duplicate genes in yeast. Mol Biol Evol 19(10):1760–1768CAS 
    PubMed 
    Article 

    Google Scholar 
    Wybouw N, Dermauw W, Tirry L, Stevens C, Grbic M, Feyereisen R et al. (2014) A gene horizontally transferred from bacteria protects arthropods from host plant cyanide poisoning. Elife 3:e02365PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wybouw N, Pauchet Y, Heckel DG, Van Leeuwen T (2016) Horizontal gene transfer contributes to the evolution of arthropod herbivory. Genome Biol Evol 8(6):1785–1801CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three arabidopsis genes encoding proteins with differential activities for cysteine synthase and beta-cyanoalanine synthase. Plant Cell Physiol 41(4):465–476CAS 
    PubMed 
    Article 

    Google Scholar 
    Yi H, Juergens M, Jez JM (2012) Structure of soybean beta-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants. Plant Cell 24(6):2696–2706CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou YY, Li XT, Katsuma S, Xu YS, Shi LG, Shimada T et al. (2019) Duplication and diversification of trehalase confers evolutionary advantages on lepidopteran insects. Mol Ecol 28(24):5282–5298CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu B, Lou MM, Xie GL, Zhang GQ, Zhou XP, Li B et al. (2011) Horizontal gene transfer in silkworm, Bombyx mori. Bmc Genomics 12:248PubMed 
    PubMed Central 
    Article 

    Google Scholar  More