Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin
Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol 8, 15–25 (2010).CAS
Google Scholar
Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).CAS
Google Scholar
Blin, K., Kim, H. U., Medema, M. H. & Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 20, 1103–1113 (2019).CAS
Google Scholar
Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).CAS
Google Scholar
Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).CAS
Google Scholar
Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
Google Scholar
Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).ADS
CAS
Google Scholar
Naqvi, S. W. A. et al. Marine hypoxia/anoxia as a source of CH 4 and N 2 O. Biogeosciences 7, 2159–2190 (2010).ADS
CAS
Google Scholar
Scranton, M. I., Sayles, F. L., Bacon, M. P. & Brewer, P. G. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 34, 945–963 (1987).ADS
CAS
Google Scholar
Taylor, G. T. et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46, 148–163 (2001).ADS
CAS
Google Scholar
Scranton, M. I., Astor, Y., Bohrer, R., Ho, T.-Y. & Muller-Karger, F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. I Oceanogr. Res. Pap. 48, 1605–1625 (2001).ADS
CAS
Google Scholar
Scranton, M. I. et al. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27, 148–159 (2014).
Google Scholar
Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).ADS
CAS
Google Scholar
Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean coast. Science 330, 1375–1378 (2010).ADS
CAS
Google Scholar
Schlosser, C. et al. H 2 S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations. Sci. Rep. 8, 1–8 (2018).
Google Scholar
Rapp, I. et al. Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone. Biogeosciences 16, 4157–4182 (2019).ADS
CAS
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar
Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).Edgcomb, V. P. et al. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res. II: Top. Stud. Oceanogr. 129, 213–222 (2016).ADS
CAS
Google Scholar
Cabello-Yeves, P. J. et al. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. Environ. Microbiome 16, 1–15 (2021).
Google Scholar
Suter, E. A., Pachiadaki, M., Taylor, G. T., Astor, Y. & Edgcomb, V. P. Free‐living chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ. Microbiol. 20, 693–712 (2018).CAS
Google Scholar
Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS
Google Scholar
Li, J. et al. Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea. Biogeosciences 18, 113–133 (2021).ADS
CAS
Google Scholar
Mestre, M., Borrull, E., Sala, M. M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).
Google Scholar
Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8, 2269 (2017).
Google Scholar
Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).CAS
Google Scholar
Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M. & Jetten, M. S. M. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272, 4270–4283 (2005).
Google Scholar
Fuchsman, C. A., Staley, J. T., Oakley, B. B., Kirkpatrick, J. B. & Murray, J. W. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol. Ecol. 80, 402–416 (2012).CAS
Google Scholar
Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 1–12 (2021).
Google Scholar
Letzel, A.-C., Pidot, S. J. & Hertweck, C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat. Prod. Rep. 30, 392–428 (2013).CAS
Google Scholar
Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).
Google Scholar
Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).CAS
Google Scholar
Alanjary, M. et al. The antibiotic resistant target seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).CAS
Google Scholar
Waters, A. L., Hill, R. T., Place, A. R. & Hamann, M. T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 21, 780–786 (2010).CAS
Google Scholar
Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).ADS
CAS
Google Scholar
Graça, A. P., Calisto, R. & Lage, O. M. Planctomycetes as novel source of bioactive molecules. Front. Microbiol. 7, 1241 (2016).
Google Scholar
Murphy, C. L. et al. Genomes of novel Myxococcota reveal severely curtailed machineries for predation and cellular differentiation. Appl. Environ. Microbiol. 87, e01706–e01721 (2021).CAS
Google Scholar
Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS
Google Scholar
Charlesworth, J. C. & Burns, B. P. Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 2015, 282035 (2015).Wang, S. & Lu, Z. in Biocommunication of Archaea (ed. Witzany, G.) 67–101 (Springer, 2017).Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS
Google Scholar
McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Journal of Open Source Software 3, 861 (2018).Rattray, J. E. et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis. Biol. Direct 4, 1–16 (2009).
Google Scholar
Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 1–19 (2021).
Google Scholar
Choudoir, M. J., Pepe-Ranney, C. & Buckley, D. H. Diversification of secondary metabolite biosynthetic gene clusters coincides with lineage divergence in Streptomyces. Antibiotics 7, 12 (2018).
Google Scholar
Li, Y. & Rebuffat, S. The manifold roles of microbial ribosomal peptide–based natural products in physiology and ecology. J. Biol. Chem. 295, 34–54 (2020).CAS
Google Scholar
Ma, L. & Payne, S. M. AhpC is required for optimal production of enterobactin by Escherichia coli. J. Bacteriol. 194, 6748–6757 (2012).CAS
Google Scholar
Davis, C. et al. The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chem. Biol. 18, 542–552 (2011).CAS
Google Scholar
Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).
Google Scholar
Wang, Y. et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193, 3606–3617 (2011).CAS
Google Scholar
Laursen, J. B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1686 (2004).CAS
Google Scholar
McParland, E. et al. Cycling of suspended particulate phosphorus in the redoxcline of the Cariaco Basin. Mar. Chem. 176, 64–74 (2015).CAS
Google Scholar
McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).ADS
CAS
Google Scholar
Cundliffe, E. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207–233 (1989).ADS
CAS
Google Scholar
Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).CAS
Google Scholar
Vetting, M. W. et al. Pentapeptide repeat proteins. Biochemistry 45, 1–10 (2006).CAS
Google Scholar
Kauppinen, S., Siggaard-Andersen, M. & von Wettstein-Knowles, P. β-ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of thefabB gene and identification of the cerulenin binding residue. Carlsberg Res. Commun. 53, 357–370 (1988).CAS
Google Scholar
Kloosterman, A. M., Shelton, K. E., van Wezel, G. P., Medema, M. H. & Mitchell, D. A. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. mSystems 5, e00267–20 (2020).CAS
Google Scholar
Barry, S. M. & Challis, G. L. Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catal. 3, 2362–2370 (2013).CAS
Google Scholar
Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front. Chem. 5, 87 (2017).
Google Scholar
Pandey, R. P., Parajuli, P. & Sohng, J. K. Metabolic engineering of glycosylated polyketide biosynthesis. Emerg. Top. Life Sci. 2, 389–403 (2018).CAS
Google Scholar
Argueta, E. A., Amoh, A. N., Kafle, P. & Schneider, T. L. Unusual non-enzymatic flavin catalysis enhances understanding of flavoenzymes. FEBS Lett. 589, 880–884 (2015).CAS
Google Scholar
Jarrett, J. T. Surprise! A hidden B12 cofactor catalyzes a radical methylation. J. Biol. Chem. 294, 11726–11727 (2019).CAS
Google Scholar
Byers, D. M. & Gong, H. Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649–662 (2007).CAS
Google Scholar
D’Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).
Google Scholar
Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).CAS
Google Scholar
Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 8, 187–211 (2014).CAS
Google Scholar
Fuchsman, C. A., Kirkpatrick, J. B., Brazelton, W. J., Murray, J. W. & Staley, J. T. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol. Ecol. 78, 586–603 (2011).CAS
Google Scholar
Alldredge, A. L. & Cohen, Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689–691 (1987).ADS
CAS
Google Scholar
Scranton, M. I. et al. Temporal variability in the nutrient chemistry of the Cariaco Basin. in Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, Vol. 64. (ed. Neretin, L.) 139–160 (Springer Dordrecht, 2006).Firn, R. D. & Jones, C. G. The evolution of secondary metabolism–a unifying model. Mol. Microbiol. 37, 989–994 (2000).CAS
Google Scholar
Junkins, E. N., McWhirter, J. B., McCall, L.-I. & Stevenson, B. S. Environmental structure impacts microbial composition and secondary metabolism. ISME Commun. 2, 1–10 (2022).
Google Scholar
Penn, K. et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 3, 1193–1203 (2009).CAS
Google Scholar
Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).CAS
Google Scholar
Taylor, C. D. & Doherty, K. W. Submersible Incubation Device (SID), autonomous instrumentation for the in situ measurement of primary production and other microbial rate processes. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 37, 343–358 (1990).ADS
CAS
Google Scholar
Pachiadaki, M. G., Rédou, V., Beaudoin, D. J., Burgaud, G. & Edgcomb, V. P. Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7, 846 (2016).
Google Scholar
Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).ADS
CAS
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
Google Scholar
Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol. 14, 23–40 (2012).CAS
Google Scholar
Conroy, J. L. et al. Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci. 2, 46–50 (2009).ADS
CAS
Google Scholar
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet
CAS
Google Scholar
Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS
Google Scholar
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).ADS
CAS
Google Scholar
Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
Google Scholar
Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS
Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
Google Scholar
Team, R. C. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).
Google Scholar
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997v2 (2013).Ben Woodcroft. CoverM. https://github.com/wwood/CoverM (2022).Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).
Google Scholar
Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS
Google Scholar
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS
Google Scholar
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS
Google Scholar
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS
Google Scholar
Konopka, T. umap. Uniform manifold approximation and projection (2018).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2, 1–189 (2016).
Google Scholar
Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).
Google Scholar
Geller-McGrath, D. et al. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. https://github.com/d-mcgrath/cariaco_basin (2023). More