More stories

  • in

    Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin

    Hibbing, M. E., Fuqua, C., Parsek, M. R. & Peterson, S. B. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol 8, 15–25 (2010).CAS 

    Google Scholar 
    Cragg, G. M. & Newman, D. J. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta 1830, 3670–3695 (2013).CAS 

    Google Scholar 
    Blin, K., Kim, H. U., Medema, M. H. & Weber, T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief. Bioinform. 20, 1103–1113 (2019).CAS 

    Google Scholar 
    Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).CAS 

    Google Scholar 
    Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).CAS 

    Google Scholar 
    Gilly, W. F., Beman, J. M., Litvin, S. Y. & Robison, B. H. Oceanographic and biological effects of shoaling of the oxygen minimum zone. Ann. Rev. Mar. Sci. 5, 393–420 (2013).
    Google Scholar 
    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).ADS 
    CAS 

    Google Scholar 
    Naqvi, S. W. A. et al. Marine hypoxia/anoxia as a source of CH 4 and N 2 O. Biogeosciences 7, 2159–2190 (2010).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I., Sayles, F. L., Bacon, M. P. & Brewer, P. G. Temporal changes in the hydrography and chemistry of the Cariaco Trench. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 34, 945–963 (1987).ADS 
    CAS 

    Google Scholar 
    Taylor, G. T. et al. Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant midwater source of organic carbon production. Limnol. Oceanogr. 46, 148–163 (2001).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I., Astor, Y., Bohrer, R., Ho, T.-Y. & Muller-Karger, F. Controls on temporal variability of the geochemistry of the deep Cariaco Basin. Deep-Sea Res. I Oceanogr. Res. Pap. 48, 1605–1625 (2001).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I. et al. Interannual and subdecadal variability in the nutrient geochemistry of the Cariaco Basin. Oceanography 27, 148–159 (2014).
    Google Scholar 
    Dalsgaard, T., Thamdrup, B., Farías, L. & Revsbech, N. P. Anammox and denitrification in the oxygen minimum zone of the eastern South Pacific. Limnol. Oceanogr. 57, 1331–1346 (2012).ADS 
    CAS 

    Google Scholar 
    Canfield, D. E. et al. A cryptic sulfur cycle in oxygen-minimum–zone waters off the Chilean coast. Science 330, 1375–1378 (2010).ADS 
    CAS 

    Google Scholar 
    Schlosser, C. et al. H 2 S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved Fe concentrations. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    Rapp, I. et al. Controls on redox-sensitive trace metals in the Mauritanian oxygen minimum zone. Biogeosciences 16, 4157–4182 (2019).ADS 
    CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 
    Blin, K. et al. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).Edgcomb, V. P. et al. Comparison of Niskin vs. in situ approaches for analysis of gene expression in deep Mediterranean Sea water samples. Deep-Sea Res. II: Top. Stud. Oceanogr. 129, 213–222 (2016).ADS 
    CAS 

    Google Scholar 
    Cabello-Yeves, P. J. et al. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. Environ. Microbiome 16, 1–15 (2021).
    Google Scholar 
    Suter, E. A., Pachiadaki, M., Taylor, G. T., Astor, Y. & Edgcomb, V. P. Free‐living chemoautotrophic and particle‐attached heterotrophic prokaryotes dominate microbial assemblages along a pelagic redox gradient. Environ. Microbiol. 20, 693–712 (2018).CAS 

    Google Scholar 
    Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 

    Google Scholar 
    Li, J. et al. Characterization of particle-associated and free-living bacterial and archaeal communities along the water columns of the South China Sea. Biogeosciences 18, 113–133 (2021).ADS 
    CAS 

    Google Scholar 
    Mestre, M., Borrull, E., Sala, M. M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11, 999–1010 (2017).
    Google Scholar 
    Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8, 2269 (2017).
    Google Scholar 
    Duret, M. T., Lampitt, R. S. & Lam, P. Prokaryotic niche partitioning between suspended and sinking marine particles. Environ. Microbiol. Rep. 11, 386–400 (2019).CAS 

    Google Scholar 
    Sinninghe Damsté, J. S., Rijpstra, W. I. C., Geenevasen, J. A. J., Strous, M. & Jetten, M. S. M. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS J. 272, 4270–4283 (2005).
    Google Scholar 
    Fuchsman, C. A., Staley, J. T., Oakley, B. B., Kirkpatrick, J. B. & Murray, J. W. Free-living and aggregate-associated Planctomycetes in the Black Sea. FEMS Microbiol. Ecol. 80, 402–416 (2012).CAS 

    Google Scholar 
    Scherlach, K. & Hertweck, C. Mining and unearthing hidden biosynthetic potential. Nat. Commun. 12, 1–12 (2021).
    Google Scholar 
    Letzel, A.-C., Pidot, S. J. & Hertweck, C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat. Prod. Rep. 30, 392–428 (2013).CAS 

    Google Scholar 
    Navarro-Muñoz, J. C. et al. A computational framework to explore large-scale biosynthetic diversity. Nat. Chem. Biol. 16, 60–68 (2020).
    Google Scholar 
    Mungan, M. D. et al. ARTS 2.0: feature updates and expansion of the antibiotic resistant target seeker for comparative genome mining. Nucleic Acids Res. 48, W546–W552 (2020).CAS 

    Google Scholar 
    Alanjary, M. et al. The antibiotic resistant target seeker (ARTS), an exploration engine for antibiotic cluster prioritization and novel drug target discovery. Nucleic Acids Res. 45, W42–W48 (2017).CAS 

    Google Scholar 
    Waters, A. L., Hill, R. T., Place, A. R. & Hamann, M. T. The expanding role of marine microbes in pharmaceutical development. Curr. Opin. Biotechnol. 21, 780–786 (2010).CAS 

    Google Scholar 
    Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).ADS 
    CAS 

    Google Scholar 
    Graça, A. P., Calisto, R. & Lage, O. M. Planctomycetes as novel source of bioactive molecules. Front. Microbiol. 7, 1241 (2016).
    Google Scholar 
    Murphy, C. L. et al. Genomes of novel Myxococcota reveal severely curtailed machineries for predation and cellular differentiation. Appl. Environ. Microbiol. 87, e01706–e01721 (2021).CAS 

    Google Scholar 
    Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635 (2019).CAS 

    Google Scholar 
    Charlesworth, J. C. & Burns, B. P. Untapped resources: biotechnological potential of peptides and secondary metabolites in archaea. Archaea 2015, 282035 (2015).Wang, S. & Lu, Z. in Biocommunication of Archaea (ed. Witzany, G.) 67–101 (Springer, 2017).Castelle, C. J. et al. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25, 690–701 (2015).CAS 

    Google Scholar 
    McInnes, L., Healy, J. & Melville, J. Umap: uniform manifold approximation and projection for dimension reduction. Journal of Open Source Software 3, 861 (2018).Rattray, J. E. et al. A comparative genomics study of genetic products potentially encoding ladderane lipid biosynthesis. Biol. Direct 4, 1–16 (2009).
    Google Scholar 
    Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 1–19 (2021).
    Google Scholar 
    Choudoir, M. J., Pepe-Ranney, C. & Buckley, D. H. Diversification of secondary metabolite biosynthetic gene clusters coincides with lineage divergence in Streptomyces. Antibiotics 7, 12 (2018).
    Google Scholar 
    Li, Y. & Rebuffat, S. The manifold roles of microbial ribosomal peptide–based natural products in physiology and ecology. J. Biol. Chem. 295, 34–54 (2020).CAS 

    Google Scholar 
    Ma, L. & Payne, S. M. AhpC is required for optimal production of enterobactin by Escherichia coli. J. Bacteriol. 194, 6748–6757 (2012).CAS 

    Google Scholar 
    Davis, C. et al. The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. Chem. Biol. 18, 542–552 (2011).CAS 

    Google Scholar 
    Kautsar, S. A. et al. MIBiG 2.0: a repository for biosynthetic gene clusters of known function. Nucleic Acids Res. 48, D454–D458 (2020).
    Google Scholar 
    Wang, Y. et al. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193, 3606–3617 (2011).CAS 

    Google Scholar 
    Laursen, J. B. & Nielsen, J. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663–1686 (2004).CAS 

    Google Scholar 
    McParland, E. et al. Cycling of suspended particulate phosphorus in the redoxcline of the Cariaco Basin. Mar. Chem. 176, 64–74 (2015).CAS 

    Google Scholar 
    McRose, D. L. & Newman, D. K. Redox-active antibiotics enhance phosphorus bioavailability. Science 371, 1033–1037 (2021).ADS 
    CAS 

    Google Scholar 
    Cundliffe, E. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207–233 (1989).ADS 
    CAS 

    Google Scholar 
    Webber, M. A. & Piddock, L. J. V. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51, 9–11 (2003).CAS 

    Google Scholar 
    Vetting, M. W. et al. Pentapeptide repeat proteins. Biochemistry 45, 1–10 (2006).CAS 

    Google Scholar 
    Kauppinen, S., Siggaard-Andersen, M. & von Wettstein-Knowles, P. β-ketoacyl-ACP synthase I of Escherichia coli: nucleotide sequence of thefabB gene and identification of the cerulenin binding residue. Carlsberg Res. Commun. 53, 357–370 (1988).CAS 

    Google Scholar 
    Kloosterman, A. M., Shelton, K. E., van Wezel, G. P., Medema, M. H. & Mitchell, D. A. RRE-Finder: a genome-mining tool for class-independent RiPP discovery. mSystems 5, e00267–20 (2020).CAS 

    Google Scholar 
    Barry, S. M. & Challis, G. L. Mechanism and catalytic diversity of Rieske non-heme iron-dependent oxygenases. ACS Catal. 3, 2362–2370 (2013).CAS 

    Google Scholar 
    Benjdia, A., Balty, C. & Berteau, O. Radical SAM enzymes in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Front. Chem. 5, 87 (2017).
    Google Scholar 
    Pandey, R. P., Parajuli, P. & Sohng, J. K. Metabolic engineering of glycosylated polyketide biosynthesis. Emerg. Top. Life Sci. 2, 389–403 (2018).CAS 

    Google Scholar 
    Argueta, E. A., Amoh, A. N., Kafle, P. & Schneider, T. L. Unusual non-enzymatic flavin catalysis enhances understanding of flavoenzymes. FEBS Lett. 589, 880–884 (2015).CAS 

    Google Scholar 
    Jarrett, J. T. Surprise! A hidden B12 cofactor catalyzes a radical methylation. J. Biol. Chem. 294, 11726–11727 (2019).CAS 

    Google Scholar 
    Byers, D. M. & Gong, H. Acyl carrier protein: structure–function relationships in a conserved multifunctional protein family. Biochem. Cell Biol. 85, 649–662 (2007).CAS 

    Google Scholar 
    D’Andrea, L. D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).
    Google Scholar 
    Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).CAS 

    Google Scholar 
    Ganesh, S., Parris, D. J., DeLong, E. F. & Stewart, F. J. Metagenomic analysis of size-fractionated picoplankton in a marine oxygen minimum zone. ISME J. 8, 187–211 (2014).CAS 

    Google Scholar 
    Fuchsman, C. A., Kirkpatrick, J. B., Brazelton, W. J., Murray, J. W. & Staley, J. T. Metabolic strategies of free-living and aggregate-associated bacterial communities inferred from biologic and chemical profiles in the Black Sea suboxic zone. FEMS Microbiol. Ecol. 78, 586–603 (2011).CAS 

    Google Scholar 
    Alldredge, A. L. & Cohen, Y. Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets. Science 235, 689–691 (1987).ADS 
    CAS 

    Google Scholar 
    Scranton, M. I. et al. Temporal variability in the nutrient chemistry of the Cariaco Basin. in Past and Present Water Column Anoxia. Nato Science Series: IV: Earth and Environmental Sciences, Vol. 64. (ed. Neretin, L.) 139–160 (Springer Dordrecht, 2006).Firn, R. D. & Jones, C. G. The evolution of secondary metabolism–a unifying model. Mol. Microbiol. 37, 989–994 (2000).CAS 

    Google Scholar 
    Junkins, E. N., McWhirter, J. B., McCall, L.-I. & Stevenson, B. S. Environmental structure impacts microbial composition and secondary metabolism. ISME Commun. 2, 1–10 (2022).
    Google Scholar 
    Penn, K. et al. Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME J. 3, 1193–1203 (2009).CAS 

    Google Scholar 
    Thaker, M. N. et al. Identifying producers of antibacterial compounds by screening for antibiotic resistance. Nat. Biotechnol. 31, 922–927 (2013).CAS 

    Google Scholar 
    Taylor, C. D. & Doherty, K. W. Submersible Incubation Device (SID), autonomous instrumentation for the in situ measurement of primary production and other microbial rate processes. Deep-Sea Res. Part A. Oceanogr. Res. Pap. 37, 343–358 (1990).ADS 
    CAS 

    Google Scholar 
    Pachiadaki, M. G., Rédou, V., Beaudoin, D. J., Burgaud, G. & Edgcomb, V. P. Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7, 846 (2016).
    Google Scholar 
    Frias-Lopez, J. et al. Microbial community gene expression in ocean surface waters. Proc. Natl Acad. Sci. USA 105, 3805–3810 (2008).ADS 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 

    Google Scholar 
    Stewart, F. J., Ulloa, O. & DeLong, E. F. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Environ. Microbiol. 14, 23–40 (2012).CAS 

    Google Scholar 
    Conroy, J. L. et al. Unprecedented recent warming of surface temperatures in the eastern tropical Pacific Ocean. Nat. Geosci. 2, 46–50 (2009).ADS 
    CAS 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 

    Google Scholar 
    Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).
    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 

    Google Scholar 
    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2020).Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).ADS 
    CAS 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).
    Google Scholar 
    Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
    Google Scholar 
    Team, R. C. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).
    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997v2 (2013).Ben Woodcroft. CoverM. https://github.com/wwood/CoverM (2022).Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 1–11 (2010).
    Google Scholar 
    Jones, P. et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).CAS 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 

    Google Scholar 
    Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).CAS 

    Google Scholar 
    Konopka, T. umap. Uniform manifold approximation and projection (2018).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create elegant data visualisations using the grammar of graphics. Version 2, 1–189 (2016).
    Google Scholar 
    Hahsler, M., Piekenbrock, M. & Doran, D. dbscan: fast density-based clustering with R. J. Stat. Softw. 91, 1–30 (2019).
    Google Scholar 
    Geller-McGrath, D. et al. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. https://github.com/d-mcgrath/cariaco_basin (2023). More

  • in

    Net loss of biomass predicted for tropical biomes in a changing climate

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. 108, 9899–9904 (2011).Article 
    CAS 

    Google Scholar 
    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article 
    CAS 

    Google Scholar 
    Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, eabe9829 (2021).Article 
    CAS 

    Google Scholar 
    Betts, R. A. et al. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming. Theor. Appl. Climatol. 78, 157–175 (2004).Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).Article 
    CAS 

    Google Scholar 
    Rammig, A. et al. Estimating the risk of Amazonian forest dieback. N. Phytol. 187, 694–706 (2010).Article 
    CAS 

    Google Scholar 
    Huntingford, C. et al. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Philos. Trans. R. Soc. B Biol. Sci. 363, 1857–1864 (2008).Article 

    Google Scholar 
    Galbraith, D. et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change. N. Phytol. 187, 647–665 (2010).Article 

    Google Scholar 
    Kumar, D., Pfeiffer, M., Gaillard, C., Langan, L. & Scheiter, S. Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia. Biogeosciences 18, 2957–2979 (2021).Article 
    CAS 

    Google Scholar 
    Huntingford, C. et al. Simulated resilience of tropical rainforests to CO2-induced climate change. Nat. Geosci. 6, 268–273 (2013).Article 
    CAS 

    Google Scholar 
    Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat. Commun. 11, 4241 (2020).Article 
    CAS 

    Google Scholar 
    Koch, A., Hubau, W. & Lewis, S. L. Earth system models are not capturing present-day tropical forest carbon dynamics. Earths Future 9, e2020EF001874 (2021).Article 
    CAS 

    Google Scholar 
    Negrón-Juárez, R. I., Koven, C. D., Riley, W. J., Knox, R. G. & Chambers, J. Q. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environ. Res. Lett. 10, 064017 (2015).Article 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization dependent on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).Article 
    CAS 

    Google Scholar 
    Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Change 9, 684–689 (2019).Article 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. 106, 20610–20615 (2009).Article 
    CAS 

    Google Scholar 
    Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369, 137–160 (2011).
    Google Scholar 
    Huang, L. et al. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci. Rep. 6, 24639 (2016).Article 
    CAS 

    Google Scholar 
    Castanho, A. D. A. et al. Potential shifts in the aboveground biomass and physiognomy of a seasonally dry tropical forest in a changing climate. Environ. Res. Lett. 15, 034053 (2020).Article 

    Google Scholar 
    Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): global datasets of forest above-ground biomass for the years 2010, 2017 and 2018, v3. NERC EDS Centre for Environmental Data Analysis https://doi.org/10.5285/5f331c418e9f4935b8eb1b836f8a91b8 (2021).Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).Article 
    CAS 

    Google Scholar 
    Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 
    CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).Article 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the amazon rainforest. Science 323, 1344–1347 (2009).Article 
    CAS 

    Google Scholar 
    Ross, C. W. et al. Woody-biomass projections and drivers of change in sub-Saharan Africa. Nat. Clim. Change 11, 449–455 (2021).Article 

    Google Scholar 
    Larjavaara, M., Lu, X., Chen, X. & Vastaranta, M. Impact of rising temperatures on the biomass of humid old-growth forests of the world. Carbon Balance Manag. 16, 31 (2021).Article 

    Google Scholar 
    Romps, D. M., Seeley, J. T., Vollaro, D. & Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 346, 851–854 (2014).Article 
    CAS 

    Google Scholar 
    Gora, E. M., Bitzer, P. M., Burchfield, J. C., Gutierrez, C. & Yanoviak, S. P. The contributions of lightning to biomass turnover, gap formation and plant mortality in a tropical forest. Ecology 102, e03541 (2021).Article 

    Google Scholar 
    Magnabosco Marra, D. et al. Windthrows control biomass patterns and functional composition of Amazon forests. Glob. Change Biol. 24, 5867–5881 (2018).Article 

    Google Scholar 
    Negrón-Juárez, R. I. et al. Windthrow variability in central amazonia. Atmosphere 8, 28 (2017).Article 

    Google Scholar 
    Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, 40 (2020).Article 

    Google Scholar 
    Yin, Y. et al. Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat. Commun. 11, 1900 (2020).Article 
    CAS 

    Google Scholar 
    Koch, A. & Kaplan, J. O. Tropical forest restoration under future climate change. Nat. Clim. Change 12, 279–283 (2022).Article 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 
    CAS 

    Google Scholar 
    Case, M. F. & Staver, A. C. Fire prevents woody encroachment only at higher-than-historical frequencies in a South African savanna. J. Appl. Ecol. 54, 955–962 (2017).Article 
    CAS 

    Google Scholar 
    Mau, A. C., Reed, S. C., Wood, T. E. & Cavaleri, M. A. Temperate and tropical forest canopies are already functioning beyond their thermal thresholds for photosynthesis. Forests 9, 47 (2018).Article 

    Google Scholar 
    Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).Article 
    CAS 

    Google Scholar 
    Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).Article 
    CAS 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold?. J. Geophys. Res. Biogeosciences 113, G00B07 (2008).Article 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J. Geophys. Res. Biogeosciences 113, G00B06 (2008).Article 

    Google Scholar 
    Langenbrunner, B., Pritchard, M. S., Kooperman, G. J. & Randerson, J. T. Why does amazon precipitation decrease when tropical forests respond to increasing CO2? Earths Future 7, 450–468 (2019).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Maurer, E. P., Brekke, L., Pruitt, T. & Duffy, P. B. Fine-resolution climate projections enhance regional climate change impact studies. EOS Trans. Am. Geophys. Union 88, 504–504 (2007).Article 

    Google Scholar 
    Reclamation. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with preceding Information, and Summary of User Needs. https://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf (2014).Silva de Miranda, P. L. et al. Using tree species inventories to map biomes and assess their climatic overlaps in lowland tropical South America. Glob. Ecol. Biogeogr. 27, 899–912 (2018).Article 

    Google Scholar 
    Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Wright, M. N. & Ziegler, A. ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Article 

    Google Scholar 
    Middleton, N., Thomas, D. & UNEP. World Atlas of Desertification (Arnold, 1997).Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of Savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 
    CAS 

    Google Scholar 
    ESRI Data & Maps. World Continents Version 10.3. (2015).Uribe, M. R. et al. Net loss of biomass predicted for tropical biomes in a changing climate. Dryad https://doi.org/10.7280/D1D124 (2023). More

  • in

    Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends

    Plant growth model without environmental forcingThe model without environmental forcing closely follows the original description of the Thornley transport resistance (TTR) model29. A summary of the model parameters is provided in Supplementary Table 2. The shoot and root mass pools (MS and MR, in kg structural dry matter) change as a function of growth and loss (equations (1) and (2)). The litter (kL) and maintenance respiration (r) loss rates (in kg kg−1 d−1) are treated as constants. In the original model description29 r = 0. The parameter KM (units kg) describes how loss varies with mass (MS or MR). Growth (Gs and Gr, in kg d−1) varies as a function of the carbon and nitrogen concentrations (equations (3) and (4)). CS, CR, NS and NR are the amounts (kg) of carbon and nitrogen in the roots and shoots. These assumptions yield the following equations for shoot and root dry matter,$${mathrm{MS}}[t+1]={mathrm{MS}}[t]+{G}_{{mathrm{S}}}[t]-frac{({k}_{{mathrm{L}}}+r){mathrm{MS}}[t]}{1+frac{{K}_{{{M}}}}{{mathrm{MS}}[t]}},$$
    (1)
    $${mathrm{MR}}[t+1]={mathrm{MR}}[t]+{G}_{{mathrm{R}}}[t]-frac{({k}_{{mathrm{L}}}+r){mathrm{MR}}[t]}{1+frac{{K}_{{{M}}}}{{mathrm{MR}}[t]}},$$
    (2)
    where GS and GR are$${G}_{{mathrm{S}}}=gfrac{{mathrm{CS}}times {mathrm{NS}}}{{mathrm{MS}}},$$
    (3)
    $${G}_{{mathrm{R}}}=gfrac{{mathrm{CR}}times {mathrm{NR}}}{{mathrm{MR}}},$$
    (4)
    and g is the growth coefficient (in kg kg−1 d−1).Carbon uptake UC is determined by the net photosynthetic rate (a, in kg kg−1 d−1) and the shoot mass (equation (5)). Similarly, nitrogen uptake (UN) is determined by the nitrogen uptake rate (b, in kg kg−1 d−1) and the root mass. The parameter KA (units kg) forces both photosynthesis and nitrogen uptake to be asymptotic with mass. The second terms in the denominators of equations (5) and (6) model product inhibitions of carbon and nitrogen uptake, respectively; that is, the parameters JC and JN (in kg kg−1) mimic the inhibition of source activity when substrate concentrations are high,$${U}_{{mathrm{C}}}=frac{a{mathrm{MS}}}{left(1+frac{{mathrm{MS}}}{{K}_{{mathrm{A}}}}right)left(1+frac{{mathrm{CS}}}{{mathrm{MS}}times {J}_{{mathrm{C}}}}right)},$$
    (5)
    $${U}_{{mathrm{N}}}=frac{b{mathrm{MR}}}{left(1+frac{{mathrm{MR}}}{{K}_{{mathrm{A}}}}right)left(1+frac{{mathrm{NR}}}{{mathrm{MR}}times {J}_{{mathrm{N}}}}right)}.$$
    (6)
    The substrate transport fluxes of C and N (τC and τN, in kg d−1) between roots and shoots are determined by the concentration gradients between root and shoot and by the resistances. In the original model description29, these resistances are defined flexibly, but we simplify and assume that they scale linearly with plant mass,$${tau }_{{mathrm{C}}}=frac{{mathrm{MS}}times {mathrm{MR}}}{{mathrm{MS}}+{mathrm{MR}}}left(frac{{mathrm{CS}}}{{mathrm{MS}}}-frac{{mathrm{CR}}}{{mathrm{MR}}}right)$$
    (7)
    $${tau }_{{mathrm{N}}}=frac{{mathrm{MS}}times {mathrm{MR}}}{{mathrm{MS}}+{mathrm{MR}}}left(frac{{mathrm{NR}}}{{mathrm{MR}}}-frac{{mathrm{NS}}}{{mathrm{MS}}}right)$$
    (8)
    The changes in mass of carbon and nitrogen in the roots and shoots are then$${mathrm{CS}}[t+1]={mathrm{CS}}[t]+{U}_{{mathrm{C}}}[t]-{f}_{{mathrm{C}}}{G}_{{mathrm{s}}}[t]-{tau }_{{mathrm{C}}}[t]$$
    (9)
    $${mathrm{CR}}[t+1]={mathrm{CR}}[t]+{tau }_{{mathrm{C}}}[t]-{f}_{{mathrm{C}}}{G}_{{mathrm{r}}}[t]$$
    (10)
    $${mathrm{NS}}[t+1]={mathrm{NS}}[t]+{tau }_{{mathrm{N}}}[t]-{f}_{{mathrm{N}}}{G}_{{mathrm{s}}}[t]$$
    (11)
    $${mathrm{NR}}[t+1]={mathrm{NR}}[t]+{U}_{{mathrm{N}}}[t]-{f}_{{mathrm{N}}}{G}_{{mathrm{r}}}[t]-{tau }_{{mathrm{N}}}[t]$$
    (12)
    where fC and fN (in kg kg−1) are the fractions of structural carbon and nitrogen in dry matter.Adding environmental forcing to the plant growth modelIn this section, we describe how the net photosynthetic rate (a), the nitrogen uptake rate (b), the growth rate (g) and the respiration rate (r) are influenced by environmental-forcing factors. These environmental-forcing effects are described in equations (13)–(17) and summarized graphically in Extended Data Fig. 1. All other model parameters are treated as constants. Previous work that implemented the TTR model as a species distribution model30 is used as a starting point for adding environmental forcing. As in this previous work30, we assume that parameters a, b and g are co-limited by environmental factors in a manner analogous to Liebig’s law of the minimum, which is a crude but pragmatic abstraction. The implementation here differs in some details.Unlike previous work30, we use the Farquhar model of photosynthesis47,48 to represent how solar radiation, atmospheric CO2 concentration and air temperature co-limit photosynthesis35. We assume that the Farquhar model parameters are universal and that all vegetation in our study uses the C3 photosynthetic pathway. The Farquhar model photosynthetic rates are rescaled to [0,amax] to yield afqr. The effects of soil moisture (Msoil) on photosynthesis are represented as an increasing step function ({{{{S}}}}(M_{mathrm{soil}},{beta }_{1},{beta }_{2})=max left{min left(frac{M_{mathrm{soil}}-{beta }_{1}}{{beta }_{2}-{beta }_{1}},1right),0right}). This allows us to redefine a as,$$a={a}_{{mathrm{fqr}}} {{{{S}}}}(M_{mathrm{soil}},{beta }_{1},{beta }_{2})$$
    (13)
    The processes influencing nitrogen availability are complex, and global data products on plant available nitrogen are uncertain. We therefore assume that nitrogen uptake will vary with soil temperature and soil moisture. That is, the nitrogen uptake rate b is assumed to have a maximum rate (bmax) that is co-limited by soil temperature Tsoil and soil moisture Msoil,$$b={b}_{{mathrm{max}}} {{{{S}}}}({T}_{soil},{beta }_{3},{beta }_{4}) {{{{Z}}}}(M_{mathrm{soil}},{beta }_{5},{beta }_{6},{beta }_{7},{beta }_{8}).$$
    (14)
    In equation (14), we have assumed that the nitrogen uptake rate is a simple increasing and saturating function of temperature. We have also assumed that the nitrogen uptake rate is a trapezoidal function of soil moisture with low uptake rates in dry soils, higher uptake rates at intermediate moisture levels and lower rates once soils are so moist as to be waterlogged. The trapezoidal function is ({{{{Z}}}}(M_{mathrm{soil}},{beta }_{5},{beta }_{6},{beta }_{7},{beta }_{8})=max left{min left(frac{M_{mathrm{soil}}-{{{{{beta }}}}}_{5}}{{{{{{beta }}}}}_{6}-{{{{{beta }}}}}_{5}},1,frac{{{{{{beta }}}}}_{8}-M_{mathrm{soil}}}{{beta }_{8}-{beta }_{7}}right),0right}).The previous sections describe how the assimilation of carbon and nitrogen by a plant are influenced by environmental factors. The TTR model describes how these assimilate concentrations influence growth (equations (3) and (4)). In our implementation, we additionally allow the growth rate to be co-limited by temperature (soil temperature, Tsoil) and soil moisture (Msoil),$$g={g}_{{mathrm{max}}} {{{{Z}}}}({T}_{{mathrm{soil}}},{beta }_{9},{beta }_{10},{beta }_{11},{beta }_{12}) {{{{S}}}}(M_{mathrm{soil}},{beta }_{13},{beta }_{14}).$$
    (15)
    We use Tsoil since we assume that growth is more closely linked to soil temperature, which varies slower than air temperature. The respiration rate (r, equations (1) and (2)) increases as a function of air temperature (Tair) to a maximum rmax,$$r={r}_{{mathrm{max}}}{{{{S}}}}({T}_{{mathrm{air}}},{beta }_{15},{beta }_{16}).$$
    (16)
    The parameter r is best interpreted as a maintenance respiration. Growth respiration is not explicitly considered; it is implicitly incorporated in the growth rate parameter (g, equation (15)), and any temperature dependence in growth respiration is therefore assumed to be accommodated by equation (15).Fire can reduce the structural shoot mass MS as follows,$${mathrm{MS}}[t+1]={mathrm{MS}}[t](1-{{{{S}}}}(F,{beta }_{17},{beta }_{18})).$$
    (17)
    where F is an indicator of fire severity at a point in time (for example, burnt area) and the function S(F, β17, β18) allows MS to decrease when the fire severity indicator F is high. If F = 0, this process plays no role. This fire impact equation was used in preliminary analyses, but the data on fire activity did not provide sufficient information to estimate β17 and β18; we therefore excluded this process from the final analyses.We further estimate two additional β parameters (βa and βb) so that each site can have unique maximum carbon and nitrogen uptake rates. Specifically, we redefine a as ({a}^{{prime} }={beta }_{a} a) and b as ({b}^{{prime} }={beta }_{b} b).Data sources and preparationTo describe vegetation activity, we use the GIMMS 3g v.1 NDVI data26,27 and the MODIS EVI28 data. The GIMMS data product has been derived from the AVHRR satellite programme and controls for atmospheric contamination, calibration loss, orbital drift and volcanic eruptions26,27. The data provide 24 NDVI raster grids for each year, starting in July 1981 and ending in December 2015. The spatial resolution is 1/12° (~9 × 9 km). The EVI data used are from the MODIS programme’s Terra satellite; it is a 1 km data product provided at a 16-day interval. We use data from the start of the record (February 2000) to December 2019. The MODIS data product (MOD13A2) uses a temporal compositing algorithm to produce an estimate every 16 days that filters out atmospheric contamination. The EVI is designed to reduce the effects of atmospheric, bare-ground and surface water on the vegetation index28.For environmental forcing, we use the ERA5-Land data31,32 (European Centre for Medium-Range Weather Forecasts Reanalysis v. 5; hereafter, ERA5). The ERA5 products are global reanalysis products based on hourly estimates of atmospheric variables and extend from present back to 1979. The data products are supplied at a variety of spatial and temporal resolutions. We used the monthly averages from 1981 to 2019 at a 0.1° spatial resolution (~11 km). The ERA5 data provide air temperature (2 m surface air temperature), soil temperature (0–7 cm soil depth), surface solar radiation and volumetric soil water (0–7 cm soil depth). Fire data were taken from the European Space Agency Fire Disturbance Climate Change Initiative’s AVHRR Long-Term Data Record Grid v.1.0 product49. This product provides gridded (0.25° resolution) data of monthly global (from 1982 to 2017) burned area derived from the AVHRR satellite programme. As mentioned, the fire data did not enrich our analysis, and the analyses we present here therefore exclude further consideration of the fire data.All data were resampled to the GIMMS grid. The mean pixel EVI was then calculated for each GIMMS cell for each time point in the MODIS EVI data. We used linear interpolation on the NDVI, EVI and ERA5 environmental-forcing data to estimate each variable on a weekly time step. This served to set the time step of the TTR difference equations to one week and to synchronize the different time series.Site selectionThe GIMMS grid cells define the spatial resolution of our sample points. GIMMS grid cells are large (1/12°, ~9 km), meaning that most grid cells contain multiple land-cover types. We focused on wilderness landscapes, and our aim was to find multiple grid cells for the major ecosystems of the world. We used the following classification of ecosystem types to guide the stratification of our grid-cell selection: tropical evergreen forest (RF), boreal forest (BF), temperate evergreen and temperate deciduous forest (TF), savannah (SA), shrubland (SH), grassland (GR), tundra (TU) and Mediterranean-type ecosystems (MT).We used the following criteria to select grid cells. (1) Selected grid cells should contain relatively homogeneous vegetation. Small-scale heterogeneity was allowed (for example, catenas, drainage lines, peatlands) as long as many of these elements are repeated in the scene (for example, rolling hills were accepted, but elevation gradients were rejected). (2) Sites should have no signs of transformative human activity (for example, tree harvesting, crop cultivation, paved surfaces). We used the Time Tool in Google Earth Pro, which provides annual satellite imagery of the Earth from 1984 onwards, to ensure that no such activity occurred during the observation period (note that the GIMMS record starts in July 1981; however, it is likely that evidence of transformative activity between July 1981 and 1984 would be visible in 1984). Grid cells with extensive livestock holding on non-improved pasture were included. In some cases, a small agricultural field or pasture was present, and such grid cells were used as long as the field or pasture was small and remained constant in size. (3) Grid cells should not include large water bodies, but small drainage lines or ponds were accepted as long as they did not violate the first criterion. (4) Grid cells should be independent (neighbouring grid cells were not selected) and cover the major ecosystems of the world. Using these criteria, we were able to include 100 sites in the study (Extended Data Figs. 2 and 3 and Supplementary Table 4).State-space modelWe used a Bayesian state-space approach. Conceptually, the analysis takes the form,$$M[t]=f(M[t-1],{boldsymbol{beta}},{boldsymbol{theta}}_{t-1},{epsilon }_{t-1})$$
    (18)
    $${mathrm{VI}}[t]=m M[t]+eta .$$
    (19)
    Here M[t] is the plant growth model’s prediction of biomass (M = MS + MR) at time t, and ϵt−1 is the process error associated with the state variables. In the model, each underlying state variable (MS, MR, CS, CR, NS and NR) has an associated process error term. The function f(M[t − 1], β, θt−1, ϵt−1) summarizes that the development of M is influenced by the state variables MS, MR, CS, CR, NS and NR, the environmental-forcing data θt−1 and the β parameters. The observation equation (equation (19)) uses the parameter m to link the VI (vegetation index, either NDVI or EVI) observations to the modelled state M. The parameter η is the observation error. Equation (19) assumes that there is a linear relationship between modelled biomass (M) and VI, which is a simplification of reality50,51,52. The observation error η is structured by our simplification of the data products quality scores (coded Q = 0, 1, 2, with 0 being good and 2 being poor; Supplementary Table 3) to allow the error to increase with each level of the quality score. Specifically, we define η = e0 + e1 × Q.The model was formulated using the R package LaplacesDemon53. All β parameters are given vague uniform priors. The parameter m is given a vague normal prior (truncated to be >0). The process error terms are modelled using normal distributions, and the variances of the error terms are given vague half-Cauchy priors. The ex parameters are given vague normal priors. The model also requires the parameterization of M[0], the initial vegetation biomass; M[0] is given a vague uniform prior. We used the twalk Markov chain Monte Carlo (MCMC) algorithm as implemented in LaplacesDemon53 and its default control parameters to estimate the posterior distributions of the model parameters. We further fitted the model using DEoptim54,55, which is a robust genetic algorithm that is known to perform stably on high-dimensional and multi-modal problems56, to verify that the MCMC algorithm had not missed important regions of the parameter space. The models estimated with MCMC had significantly lower log root-mean-square error than models estimated with DEoptim (paired t-test NDVI analysis: t = –2.9806, degrees of freedom (d.f.) = 99, P = 0.00362; EVI analysis: t = –4.6229, d.f. = 99, P = 1.144 × 10–5), suggesting that the MCMC algorithm performed well compared with the genetic algorithm.Anomaly extraction and trend estimationWe use the ‘seasonal and trend decomposition using Loess’ (STL57) as implemented in the R58 base function stl. STL extracts the seasonal component s of a time series using Loess smoothing. What remains after seasonal extraction (the anomaly or remainder, r) is the sum of any long-term trend and stochastic variation. We estimate the trend in two ways. First, we estimate the trend by fitting a quadratic polynomial (r = a + bx + cx2) to the remainder (r is the remainder, x is time and a, b and c are regression coefficients). The use of polynomials allows the data to specify whether a trend exists, whether the trend is linear, cup or hat shaped and whether the overall trend is increasing or decreasing. As a second method, we estimate the trend by fitting a bent-cable regression to the remainder. Bent-cable regression is a type of piecewise linear regression for estimating the point of transition between two linear phases in a time series59,60. The model takes the form r = b0 + b1x + b2 q(x, τ, γ)60. Here r is the remainder, x is time, b0 is the initial intercept, b1 is the slope in phase 1, the slope in phase 2 is b2 − b1 and q is a function that defines the change point: (q(x,tau ,gamma )=frac{{(x-tau +gamma )}^{2}}{4gamma }I(tau -gamma < tau +gamma )+(x-tau )I(x > tau +gamma )); τ represents the location of the change point and γ the span of the bent cable that joins the two linear phases; I(A) is an indicator function that returns 1 if A is true and 0 if A is false. The bent-cable model allows the data to specify whether a trend exists and whether there has been a switch in the trend, thereby allowing the identification of whether the trend is linear, cup or hat shaped and whether the overall trend is increasing or decreasing. Both the polynomial and bent-cable models were estimated using LaplacesDemon’s53 Adaptive Metropolis MCMC algorithm and vague priors, although for the bent-cable model we constrained τ to be in the middle 70% of the time series and γ to be at most two years.The STL extraction of the seasonal components in the air temperature, soil temperature, soil moisture and solar radiation data (there is no stochasticity or seasonal trend in the CO2 data we used) allows us to simulate detrended time series d of these forcing variables as (d=bar{y}+s+{{{{N}}}}(mu ,sigma )) where N(μ, σ) is a normally distributed random variable with mean and standard deviation estimated from the remainder r (we verified that r was well described by the normal distribution), (bar{y}) is the mean of the data over the time series and s is the seasonal component extracted by STL. For CO2, the detrended time series is simply the average CO2 over the time series. More

  • in

    Enhancing the ecological value of oil palm agriculture through set-asides

    Phalan, B. et al. Crop expansion and conservation priorities in tropical countries. PLoS ONE 8, e51759 (2013).Article 
    CAS 

    Google Scholar 
    Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).Article 
    CAS 

    Google Scholar 
    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).Article 
    CAS 

    Google Scholar 
    Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).Edwards, D. P. et al. Conservation of tropical forests in the Anthropocene. Curr. Biol. 29, R1008–R1020 (2019).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).Article 
    CAS 

    Google Scholar 
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B 281, 20141371 (2014).Article 

    Google Scholar 
    Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).Article 
    CAS 

    Google Scholar 
    Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).Article 
    CAS 

    Google Scholar 
    van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).Article 

    Google Scholar 
    Harvey, C. A. et al. Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 7, 77–90 (2014).Article 

    Google Scholar 
    Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).Article 
    CAS 

    Google Scholar 
    Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).Article 
    CAS 

    Google Scholar 
    Oil Palm and Biodiversity: a Situation Analysis by the IUCN Oil Palm Task Force (International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.11.enMeijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change 2, 22 (2019).The Future of Food and Agriculture – Alternative Pathways to 2050 (FAO, 2018).Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).Article 

    Google Scholar 
    Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).Terrenoire, E., Hauglustaine, D. A., Gasser, T. & Penanhoat, O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett. 14, 084019 (2019).Article 
    CAS 

    Google Scholar 
    Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. Nat. Sustain. 3, 412–418 (2020).Article 

    Google Scholar 
    Taheripour, F., Hertel, T. W. & Ramankutty, N. Market-mediated responses confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia. Proc. Natl Acad. Sci. USA 116, 19193–19199 (2019).Article 
    CAS 

    Google Scholar 
    Laurance, W. F. et al. Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv. Biol. 24, 377–381 (2010).Article 

    Google Scholar 
    Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).Article 
    CAS 

    Google Scholar 
    Driving Change With Sustainable Palm Oil (Roundtable on Sustainable Palm Oil, accessed August 2022). https://rspo.org/aboutGarrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the round table on responsible soybeans and the roundtable on sustainable palm oil. Environ. Res. Lett. 11, 045003 (2016).Article 

    Google Scholar 
    Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles, G. Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions (Conservation International, 1999).Gaveau, D. L. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).Article 
    CAS 

    Google Scholar 
    Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).Article 

    Google Scholar 
    Mitchell, S. L. et al. Riparian reserves help protect forest bird communities in oil palm dominated landscapes. J. Appl. Ecol. 55, 2744–2755 (2018).Article 

    Google Scholar 
    Scriven, S. A. et al. Testing the benefits of conservation set-asides for improved habitat connectivity in tropical agricultural landscapes. J. Appl. Ecol. 56, 2274–2285 (2019).Article 

    Google Scholar 
    Deere, N. J. et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 20, 459–466 (2021).Woodham, C. R. et al. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. Glob. Change 2, 29 (2019).Article 

    Google Scholar 
    Carlson, K. M. et al. Influence of watershed‐climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128 (2014).Article 

    Google Scholar 
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).Article 
    CAS 

    Google Scholar 
    Fleiss, S. et al. Conservation set-asides improve carbon storage and support associated plant diversity in certified sustainable oil palm plantations. Biol. Conserv. 248, 108631 (2020).Article 

    Google Scholar 
    Wunder, S., Angelsen, A. & Belcher, B. Forests, livelihoods, and conservation: broadening the empirical base. World Dev. 64, S1–S11 (2014).Struebig, M. J. et al. Quantifying the biodiversity value of repeatedly logged rainforests: gradient and comparative approaches from Borneo. Adv. Ecol. Res. 48, 183–224 (2013).Article 

    Google Scholar 
    Shevade, V. S. & Loboda, T. V. Oil palm plantations in Peninsular Malaysia: determinants and constraints on expansion. PLoS ONE 14, e0210628 (2019).Article 
    CAS 

    Google Scholar 
    Pirker, J., Mosnier, A., Kraxner, F., Havlík, P. & Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 40, 73–81 (2016).Article 

    Google Scholar 
    Launching the RSPO Jurisdictional Approach (JA) Piloting Framework (Roundtable on Sustainable Palm Oil, accessed August 2022).Abram, N. K. et al. Synergies for improving oil palm production and forest conservation in floodplain landscapes. PLoS ONE 9, e95388 (2014).Article 

    Google Scholar 
    Othman, N. et al. Shift of paradigm needed towards improving human–elephant coexistence in monoculture landscapes in Sabah. Int. Zoo Yearb. 53, 161–173 (2019).Article 

    Google Scholar 
    Horton, A. J. et al. Can riparian forest buffers increase yields from oil palm plantations? Earths Future 6, 1082–1096 (2018).Article 

    Google Scholar 
    Ewers, R. M. et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Phil. Trans. R. Soc. Lond. B 366, 3292–3302 (2011).Article 

    Google Scholar 
    Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007).Article 

    Google Scholar 
    Deere, N. J. et al. High carbon stock forests provide co-benefits for tropical biodiversity. J. Appl. Ecol. 55, 997–1008 (2018).Article 
    CAS 

    Google Scholar 
    Hemprich-Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).Article 

    Google Scholar 
    Williamson, J. et al. Riparian buffers act as microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).Article 

    Google Scholar 
    Slade, E. M., Mann, D. J. & Lewis, O. T. Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biol. Conserv. 144, 166–174 (2011).Article 

    Google Scholar 
    Gray, R. E. J. et al. Movement of forest-dependent dung beetles through riparian buffers in Bornean oil palm plantations. J. Appl. Ecol. 59, 238–250 (2022).Woodman, S. M. et al. esdm: a tool for creating and exploring ensembles of predictions from species distribution and abundance models. Methods Ecol. Evol. 10, 1923–1933 (2019).Article 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).Article 

    Google Scholar 
    Piccini, I. et al. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PloS ONE 12, e0178077 (2017).Article 

    Google Scholar 
    Raine, E. H. & Slade, E. M. Dung beetle–mammal associations: methods, research trends and future directions. Proc. R. Soc. B 286, 20182002 (2019).Article 

    Google Scholar 
    Nichols, E., Gardner, T., Peres, C., Spector, S. & Network, S. R. Co‐declining mammals and dung beetles: an impending ecological cascade. Oikos 118, 481–487 (2009).Article 

    Google Scholar 
    Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).Article 

    Google Scholar 
    Jucker, T. et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences 15, 3811–3830 (2018).Article 

    Google Scholar 
    Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).Article 
    CAS 

    Google Scholar 
    Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015–16 El Niño. Nat. Commun. 12, 1526 (2021).Article 
    CAS 

    Google Scholar 
    Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).Article 

    Google Scholar  More

  • in

    Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal

    Anae, J. et al. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives. Sci. Total Environ. 767, 144351. https://doi.org/10.1016/j.scitotenv.2020.144351 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Kiran, B. R. & Prasad, M. N. V. Biochar and rice husk ash assisted phytoremediation potentials of Ricinus communis L. for lead-spiked soils. Ecotoxicol Environ Saf 183, 109574. https://doi.org/10.1016/j.ecoenv.2019.109574 (2019).Article 
    CAS 

    Google Scholar 
    Bolan, N. et al. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize?. J. Hazard. Mater. 266, 141–166. https://doi.org/10.1016/j.jhazmat.2013.12.018 (2014).Article 
    CAS 

    Google Scholar 
    Burachevskaya, M. et al. The effect of granular activated carbon and biochar on the availability of Cu and Zn to Hordeum sativum distichum in contaminated soil. Plants https://doi.org/10.3390/plants10050841 (2021).Article 

    Google Scholar 
    Cao, P. et al. Mercapto propyltrimethoxysilane- and ferrous sulfate-modified nano-silica for immobilization of lead and cadmium as well as arsenic in heavy metal-contaminated soil. Environ. Pollut. 266, 115152. https://doi.org/10.1016/j.envpol.2020.115152 (2020).Article 
    CAS 

    Google Scholar 
    Ok, Y. S. et al. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environ. Geochem. Health 33(Suppl 1), 23–30. https://doi.org/10.1007/s10653-010-9364-0 (2011).Article 
    CAS 

    Google Scholar 
    Qin, Y. et al. Dual-wastes derived biochar with tailored surface features for highly efficient p-nitrophenol adsorption. J. Clean. Prod. 353, 131571. https://doi.org/10.1016/j.jclepro.2022.131571 (2022).Article 
    CAS 

    Google Scholar 
    Rajput, V. D. et al. Nano-biochar: A novel solution for sustainable agriculture and environmental remediation. Environ. Res. 210, 112891. https://doi.org/10.1016/j.envres.2022.112891 (2022).Article 
    CAS 

    Google Scholar 
    Ding, Y. et al. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 36, 36. https://doi.org/10.1007/s13593-016-0372-z (2016).Article 
    CAS 

    Google Scholar 
    Oni, B. A., Oziegbe, O. & Olawole, O. O. Significance of biochar application to the environment and economy. Ann. Agric. Sci. 64, 222–236. https://doi.org/10.1016/j.aoas.2019.12.006 (2019).Article 

    Google Scholar 
    He, E. et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars. Sci. Total Environ. 673, 245–253. https://doi.org/10.1016/j.scitotenv.2019.04.037 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Netherway, P. et al. Phosphorus-rich biochars can transform lead in an urban contaminated soil. J. Environ. Qual. 48, 1091–1099. https://doi.org/10.2134/jeq2018.09.0324 (2019).Article 
    CAS 

    Google Scholar 
    O’Connor, D. et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Sci. Total Environ. 619–620, 815–826. https://doi.org/10.1016/j.scitotenv.2017.11.132 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xu, X. et al. Effect of physicochemical properties of biochar from different feedstock on remediation of heavy metal contaminated soil in mining area. Surf. Interfaces 32, 102058. https://doi.org/10.1016/j.surfin.2022.102058 (2022).Article 
    CAS 

    Google Scholar 
    Melo, L. C. A. et al. Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. J. Soils Sediments 16, 226–234. https://doi.org/10.1007/s11368-015-1199-y (2016).Article 

    Google Scholar 
    Uchimiya, M., Chang, S. & Klasson, K. T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 190, 432–441. https://doi.org/10.1016/j.jhazmat.2011.03.063 (2011).Article 
    CAS 

    Google Scholar 
    Jatav, H. S. et al. Sustainable approach and safe use of biochar and its possible consequences. Sustainability https://doi.org/10.3390/su131810362 (2021).Article 

    Google Scholar 
    Varalta, F. & Sorvari, J. In Organic Waste Composting through Nexus Thinking: Practices, Policies, and Trends (eds Hettiarachchi, H. et al.) 213–232 (Springer International Publishing, 2020).Chapter 

    Google Scholar 
    Pinotti, L. et al. Recycling food leftovers in feed as opportunity to increase the sustainability of livestock production. J. Clean. Prod. 294, 126290. https://doi.org/10.1016/j.jclepro.2021.126290 (2021).Article 

    Google Scholar 
    Jafri, N., Wong, W. Y., Doshi, V., Yoon, L. W. & Cheah, K. H. A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 118, 152–166. https://doi.org/10.1016/j.psep.2018.06.036 (2018).Article 
    CAS 

    Google Scholar 
    Jin, Y. et al. Characterization of biochars derived from various spent mushroom substrates and evaluation of their adsorption performance of Cu(II) ions from aqueous solution. Environ. Res. 196, 110323. https://doi.org/10.1016/j.envres.2020.110323 (2021).Article 
    CAS 

    Google Scholar 
    Tomczyk, A., Sokołowska, Z. & Boguta, P. Biomass type effect on biochar surface characteristic and adsorption capacity relative to silver and copper. Fuel 278, 118168. https://doi.org/10.1016/j.fuel.2020.118168 (2020).Article 
    CAS 

    Google Scholar 
    FAO. Food Outlook – Biannual Report on Global Food Markets: November 2020. Rome. Phytoremediation of copper-contaminated soil by Artemisia absinthium: comparative effect of chelating agents. Environmental Geochemistry and Health. (2020). https://doi.org/10.4060/cb1993enRussian-Statistical-Year-Book. Statistical handbook. P76 M., 2020 – 700 p. ISBN 978-5-89476-497-9 (2020).Cheng, C.-H., Lehmann, J., Thies, J. E. & Burton, S. D. Stability of black carbon in soils across a climatic gradient. J. Geophys. Res. Biogeosci. 113, 55. https://doi.org/10.1029/2007JG000642 (2008).Article 
    CAS 

    Google Scholar 
    Singh, B. P., Cowie, A. L. & Smernik, R. J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 46, 11770–11778. https://doi.org/10.1021/es302545b (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: A meta-analysis. GCB Bioenergy 9, 743–755. https://doi.org/10.1111/gcbb.12376 (2017).Article 
    CAS 

    Google Scholar 
    Janu, R. et al. Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resour. Convers. 4, 36–46. https://doi.org/10.1016/j.crcon.2021.01.003 (2021).Article 
    CAS 

    Google Scholar 
    Tan, X. et al. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Ni, B.-J. et al. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219, 351–357. https://doi.org/10.1016/j.chemosphere.2018.12.053 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Park, J.-H. et al. Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142, 77–83. https://doi.org/10.1016/j.chemosphere.2015.05.093 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Methodological-Guidelines. Methodological guidelines for the determination of heavy metals in the soils of agricultural land and crop production – M., TSINAO, 61 (1992)Zhang, A., Li, X., Xing, J. & Xu, G. Adsorption of potentially toxic elements in water by modified biochar: A review. J. Environ. Chem. Eng. 8, 104196. https://doi.org/10.1016/j.jece.2020.104196 (2020).Article 
    CAS 

    Google Scholar 
    Avramiotis, E., Frontistis, Z., Manariotis, I. D., Vakros, J. & Mantzavinos, D. On the performance of a sustainable rice husk biochar for the activation of persulfate and the degradation of antibiotics. Catalysts 11, 1303 (2021).Article 
    CAS 

    Google Scholar 
    Maiti, S., Dey, S., Purakayastha, S. & Ghosh, B. Physical and thermochemical characterization of rice husk char as a potential biomass energy source. Biores. Technol. 97, 2065–2070. https://doi.org/10.1016/j.biortech.2005.10.005 (2006).Article 
    CAS 

    Google Scholar 
    Herrera, K., Morales, L. F., Tarazona, N. A., Aguado, R. & Saldarriaga, J. F. Use of biochar from rice husk pyrolysis: Part A: Recovery as an adsorbent in the removal of emerging compounds. ACS Omega 7, 7625–7637. https://doi.org/10.1021/acsomega.1c06147 (2022).Article 
    CAS 

    Google Scholar 
    Szewczuk-Karpisz, K., Tomczyk, A., Grygorczuk-Płaneta, K. & Naveed, S. Rhizobium leguminosarum bv. trifolii exopolysaccharide and sunflower husk biochar as factors affecting immobilization of both tetracycline and Cd2+ ions on soil solid phase. J. Soils Sediments 22, 2620–2639. https://doi.org/10.1007/s11368-022-03255-3 (2022).Article 
    CAS 

    Google Scholar 
    Hubetska, T. S., Kobylinska, N. G. & García, J. R. Sunflower biomass power plant by-products: Properties and its potential for water purification of organic pollutants. J. Anal. Appl. Pyrolysis 157, 105237. https://doi.org/10.1016/j.jaap.2021.105237 (2021).Article 
    CAS 

    Google Scholar 
    Braghiroli, F. L. et al. The influence of pilot-scale pyro-gasification and activation conditions on porosity development in activated biochars. Biomass Bioenerg. 118, 105–114. https://doi.org/10.1016/j.biombioe.2018.08.016 (2018).Article 
    CAS 

    Google Scholar 
    Braghiroli, F. L. et al. The conversion of wood residues, using pilot-scale technologies, into porous activated biochars for supercapacitors. J. Porous Mater. 27, 537–548. https://doi.org/10.1007/s10934-019-00823-w (2020).Article 
    CAS 

    Google Scholar 
    Boraah, N., Chakma, S. & Kaushal, P. Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: A critical review and bibliometric analysis. J. Environ. Chem. Eng. 10, 107825. https://doi.org/10.1016/j.jece.2022.107825 (2022).Article 
    CAS 

    Google Scholar 
    Phillips, C. L. et al. Towards predicting biochar impacts on plant-available soil nitrogen content. Biochar 4, 9. https://doi.org/10.1007/s42773-022-00137-2 (2022).Article 
    CAS 

    Google Scholar 
    Sun, L. & Gong, K. Silicon-based materials from rice husks and their applications. Ind. Eng. Chem. Res. 40, 5861–5877. https://doi.org/10.1021/ie010284b (2001).Article 
    CAS 

    Google Scholar 
    Islam, T. et al. Synthesis of rice husk-derived magnetic biochar through liquefaction to adsorb anionic and cationic dyes from aqueous solutions. Arab. J. Sci. Eng. 46, 233–246. https://doi.org/10.1007/s13369-020-04537-z (2021).Article 
    CAS 

    Google Scholar 
    Mohan, D. et al. Biochar production and applications in soil fertility and carbon sequestration – a sustainable solution to crop-residue burning in India. RSC Adv. 8, 508–520. https://doi.org/10.1039/C7RA10353K (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, F. et al. Preparation and characterization of biochars from Eichornia crassipes for cadmium removal in aqueous solutions. PLoS ONE 11, e0148132. https://doi.org/10.1371/journal.pone.0148132 (2016).Article 
    CAS 

    Google Scholar 
    Song, H. et al. Potential of novel biochars produced from invasive aquatic species outside food chain in removing ammonium nitrogen: Comparison with conventional biochars and clinoptilolite. Sustainability https://doi.org/10.3390/su11247136 (2019).Article 

    Google Scholar 
    Yang, G. et al. Effects of pyrolysis temperature on the physicochemical properties of biochar derived from vermicompost and its potential use as an environmental amendment. RSC Adv. 5, 40117–40125. https://doi.org/10.1039/C5RA02836A (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Enders, A., Hanley, K., Whitman, T., Joseph, S. & Lehmann, J. Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653. https://doi.org/10.1016/j.biortech.2012.03.022 (2012).Article 
    CAS 

    Google Scholar 
    Zhang, Y., Wang, J. & Feng, Y. The effects of biochar addition on soil physicochemical properties: A review. CATENA 202, 105284. https://doi.org/10.1016/j.catena.2021.105284 (2021).Article 
    CAS 

    Google Scholar 
    Özçimen, D. & Ersoy-Meriçboyu, A. Characterization of biochar and bio-oil samples obtained from carbonization of various biomass materials. Renew. Energy 35, 1319–1324. https://doi.org/10.1016/j.renene.2009.11.042 (2010).Article 
    CAS 

    Google Scholar 
    Lin, Q. et al. Effects of biochar-based materials on the bioavailability of soil organic pollutants and their biological impacts. Sci. Total Environ. 826, 153956. https://doi.org/10.1016/j.scitotenv.2022.153956 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, H. et al. Thermogravimetric analysis−fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels 18, 1814–1821. https://doi.org/10.1021/ef030193m (2004).Article 
    CAS 

    Google Scholar 
    Pasangulapati, V. et al. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Biores. Technol. 114, 663–669. https://doi.org/10.1016/j.biortech.2012.03.036 (2012).Article 
    CAS 

    Google Scholar 
    Kim, P. et al. Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels 25, 4693–4703. https://doi.org/10.1021/ef200915s (2011).Article 
    CAS 

    Google Scholar 
    Keiluweit, M., Nico, P. S., Johnson, M. G. & Kleber, M. dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253. https://doi.org/10.1021/es9031419 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Wijeyawardana, P. et al. Removal of Cu, Pb and Zn from stormwater using an industrially manufactured sawdust and paddy husk derived biochar. Environ. Technol. Innov. 28, 102640. https://doi.org/10.1016/j.eti.2022.102640 (2022).Article 
    CAS 

    Google Scholar 
    Kołodyńska, D., Krukowska, J. & Thomas, P. Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon. Chem. Eng. J. 307, 353–363. https://doi.org/10.1016/j.cej.2016.08.088 (2017).Article 
    CAS 

    Google Scholar 
    Uchimiya, M. et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil. J. Agric. Food Chem. 58, 5538–5544. https://doi.org/10.1021/jf9044217 (2010).Article 
    CAS 

    Google Scholar 
    Misono, M., Ochiai, E. I., Saito, Y. & Yoneda, Y. A new dual parameter scale for the strength of lewis acids and bases with the evaluation of their softness. J. Inorg. Nucl. Chem. 29, 2685–2691. https://doi.org/10.1016/0022-1902(67)80006-X (1967).Article 
    CAS 

    Google Scholar 
    McBride, M. B. Environmental Chemistry of Soils (Oxford University Press, 1994).
    Google Scholar 
    Basta, N. T. & Tabatabai, M. A. Effect of cropping systems on adsorption of metals by soils: III. Competitive adsorption1. Soil Sci. 153, 331–337 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Sposito, G. The Chemistry of Soils (Oxford University Press, 2016).Bauer, T. V. et al. Application of XAFS and XRD methods for describing the copper and zinc adsorption characteristics in hydromorphic soils. Environ. Geochem. Health 44, 335–347. https://doi.org/10.1007/s10653-020-00773-2 (2022).Article 
    CAS 

    Google Scholar 
    Abd-Elfattah, A. L. Y. & Wada, K. Adsorption of lead, copper, zinc, cobalt, and cadmium by soils that differ in cation-exchange materials. J. Soil Sci. 32, 271–283. https://doi.org/10.1111/j.1365-2389.1981.tb01706.x (1981).Article 
    CAS 

    Google Scholar 
    Etesami, H., Fatemi, H. & Rizwan, M. Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicol. Environ. Saf. 225, 112769. https://doi.org/10.1016/j.ecoenv.2021.112769 (2021).Article 
    CAS 

    Google Scholar 
    Soria, R. I., Rolfe, S. A., Betancourth, M. P. & Thornton, S. F. The relationship between properties of plant-based biochars and sorption of Cd(II), Pb(II) and Zn(II) in soil model systems. Heliyon 6, e05388. https://doi.org/10.1016/j.heliyon.2020.e05388 (2020).Article 

    Google Scholar 
    Alfarra, A., Frackowiak, E. & Béguin, F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl. Surf. Sci. 228, 84–92. https://doi.org/10.1016/j.apsusc.2003.12.033 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Hu, J., Zhou, X., Shi, Y., Wang, X. & Li, H. Enhancing biochar sorption properties through self-templating strategy and ultrasonic fore-modified pre-treatment: Characteristic, kinetic and mechanism studies. Sci. Total Environ. 769, 144574. https://doi.org/10.1016/j.scitotenv.2020.144574 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Ward, J., Rasul, M. G. & Bhuiya, M. M. K. Energy recovery from biomass by fast pyrolysis. Proced. Eng. 90, 669–674. https://doi.org/10.1016/j.proeng.2014.11.791 (2014).Article 
    CAS 

    Google Scholar 
    Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M. & Usman, A. R. A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Biores. Technol. 131, 374–379. https://doi.org/10.1016/j.biortech.2012.12.165 (2013).Article 
    CAS 

    Google Scholar 
    Calvelo Pereira, R. et al. Contribution to characterisation of biochar to estimate the labile fraction of carbon. Org. Geochem. 42, 1331–1342. https://doi.org/10.1016/j.orggeochem.2011.09.002 (2011).Article 
    CAS 

    Google Scholar 
    Vorob’eva, L. A. Theory and Practice Chemical Analysis of Soils (GEOS Press, Moscow, 2006).
    Google Scholar 
    Pinskii, D. L. et al. Copper adsorption by chernozem soils and parent rocks in Southern Russia. Geochem. Int. 56, 266–275. https://doi.org/10.1134/S0016702918030072 (2018).Article 
    CAS 

    Google Scholar 
    Wang, Q., Wang, B., Lee, X., Lehmann, J. & Gao, B. Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Sci. Total Environ. 634, 188–194. https://doi.org/10.1016/j.scitotenv.2018.03.189 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Pourret, O. & Houben, D. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint. Heliyon 4, e00543. https://doi.org/10.1016/j.heliyon.2018.e00543 (2018).Article 

    Google Scholar 
    Huang, L. et al. High-resolution insight into the competitive adsorption of heavy metals on natural sediment by site energy distribution. Chemosphere 197, 411–419. https://doi.org/10.1016/j.chemosphere.2018.01.056 (2018).Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 
    Ming, H. et al. Competitive sorption of cadmium and zinc in contrasting soils. Geoderma 268, 60–68. https://doi.org/10.1016/j.geoderma.2016.01.021 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Musso, T. B., Parolo, M. E., Pettinari, G. & Francisca, F. M. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. J. Environ. Manag. 146, 50–58. https://doi.org/10.1016/j.jenvman.2014.07.026 (2014).Article 
    CAS 

    Google Scholar 
    Cui, H. et al. Immobilization of Cu and Cd in a contaminated soil: One- and four-year field effects. J. Soils Sediments 14, 1397–1406. https://doi.org/10.1007/s11368-014-0882-8 (2014).Article 
    CAS 

    Google Scholar 
    Elbana, T. A. et al. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics. Geoderma 324, 80–88. https://doi.org/10.1016/j.geoderma.2018.03.019 (2018).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Genomics discovery of giant fungal viruses from subsurface oceanic crustal fluids

    Orcutt B, D’Angelo T, Jungbluth SP, Huber JA, Sylvan JB. Microbial life in oceanic crust. OSF Preprints, 2020; https://doi.org/10.31219/osf.io/2wxe6.Koonin EV. On the origin of cells and viruses: primordial virus world scenario. Ann NY Acad Sci. 2009;1178:47–64.Nigro OD, Jungbluth SP, Lin HT, Hsieh CC, Miranda JA, Schvarcz CR, et al. Viruses in the oceanic basement. MBio. 2017;8:1–15.
    Google Scholar 
    Wheat CG, Jannasch HW, Kastner M, Hulme S, Cowen J, Edwards KJ, et al. Fluid sampling from oceanic borehole observatories: design and methods for CORK activities (1990–2010). 2011. In Fisher AT, Tsuji T, Petronotis K, and the Expedition 327 Scientists, Proc. IODP, 327: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). https://doi.org/10.2204/iodp.proc.327.109.2011.Koonin EV, Yutin N Evolution of the large nucleocytoplasmic DNA viruses of eukaryotes and convergent origins of viral gigantism. Advances in Virus Research. 2019. Elsevier, pp 167–202.Koonin EV, Senkevich TG, Dolja VV. The ancient Virus World and evolution of cells. Biol Direct. 2006;1:29.
    Google Scholar 
    Shinn GL, Bullard BL. Ultrastructure of Meelsvirus: A nuclear virus of arrow worms (phylum Chaetognatha) producing giant “tailed” virions. PLoS One. 2018;13:e0203282.
    Google Scholar 
    Wilhelm SW, Bird JT, Bonifer KS, Calfee BC, Chen T, Coy SR, et al. A student’s guide to giant viruses infecting small eukaryotes: From Acanthamoeba to Zooxanthellae. Viruses. 2017;9:46–63.Schulz F, Roux S, Paez-Espino D, Jungbluth S, Walsh DA, Denef VJ, et al. Giant virus diversity and host interactions through global metagenomics. Nature. 2020;578:432–6.CAS 

    Google Scholar 
    Moniruzzaman M, Martinez-Gutierrez CA, Weinheimer AR, Aylward FO. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat Commun. 2020;11:1–11.
    Google Scholar 
    Martínez Martínez J, Swan BK, Wilson WH. Marine viruses, a genetic reservoir revealed by targeted viromics. ISME J. 2014;8:1079–88.
    Google Scholar 
    Khalil JYB, Robert S, Reteno DG, Andreani J, Raoult D, La Scola B. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining. Front Microbiol. 2016;7:1–9.
    Google Scholar 
    Wilson WH, Gilg IC, Moniruzzaman M, Field EK, Koren S, Lecleir GR, et al. Genomic exploration of individual giant ocean viruses. ISME J. 2017;11:1736–45.
    Google Scholar 
    Roux S, Chan LK, Egan R, Malmstrom RR, McMahon KD, Sullivan MB. Ecogenomics of virophages and their giant virus hosts assessed through time series metagenomics. Nat Commun. 2017;8:1–12.Schulz F, Alteio L, Goudeau D, Blanchard J, Woyke T, Ryan EM, et al. Hidden diversity of soil giant viruses. Nat Commun. 2018;9:1–9.Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K, et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio. 2019;10:e02497-18.Martínez JM, Martinez-Hernandez F, Martinez-Garcia M. Single-virus genomics and beyond. Nat Rev Microbiol. 2020;18:705–16.Schulz F, Yutin N, Ivanova NN, Ortega DR, Lee TK, Vierheilig J, et al. Giant viruses with an expanded complement of translation system components. Science (80-). 2017;356:82 LP–85.
    Google Scholar 
    Fisher A, Wheat CG, Becker K, Cowen J, Orcutt BN, Hulme SM, et al. Design, deployment, and status of borehole observatory systems used for single-hole and cross-hole experiments, IODP Expedition 327, eastern flank of Juan de Fuca Ridge. Proc Integr Ocean Drill Program; Juan Fuca Ridge flank Hydrogeol Exped 327 riserless Drill Platf from to Victoria, Br Columbia (Canada); Sites U1362, U1301, 1027, U1363; 5 July-5 Sept 2010. 2011;327:38.Jungbluth SP, Grote J, Lin HT, Cowen JP, Rappé MS. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME J. 2013;7:161–72.CAS 

    Google Scholar 
    Jungbluth SP, Bowers RM, Lin HT, Cowen JP, Rappé MS. Novel microbial assemblages inhabiting crustal fluids within mid-ocean ridge flank subsurface basalt. ISME J. 2016;10:2033–47.CAS 

    Google Scholar 
    Jungbluth SP, Amend JP, Rappé MS. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids. Sci data. 2017;4:1–11.
    Google Scholar 
    Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 

    Google Scholar 
    Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci. 2002;99:5261–6.CAS 

    Google Scholar 
    Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.
    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 

    Google Scholar 
    Bushnell B, Rood J. BBTools. Dep Energy Jt Genome Institute, Walnut Creek, CA 2014.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 

    Google Scholar 
    Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20:714–37.CAS 

    Google Scholar 
    Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 2001;29:2607–18.CAS 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 

    Google Scholar 
    Goodacre N, Aljanahi A, Nandakumar S, Mikailov M, Khan AS, Delwart E, et al. A reference viral database (RVDB) to enhance bioinformatics analysis of high-throughput sequencing for novel virus detection. mSphere. 2018;3:e00069–18.
    Google Scholar 
    McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:W20–W25.CAS 

    Google Scholar 
    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.CAS 

    Google Scholar 
    Johnson LS, Eddy SR, Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010;11:431.
    Google Scholar 
    Colson P, De Lamballerie X, Yutin N, Asgari S, Bigot Y, Bideshi DK, et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch Virol. 2013;158:2517–21.
    Google Scholar 
    Yutin N, Wolf YI, Raoult D, Koonin EV. Eukaryotic large nucleo-cytoplasmic DNA viruses: Clusters of orthologous genes and reconstruction of viral genome evolution. Virol J. 2009;6:1–13.
    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
    Google Scholar 
    Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32:268–74.
    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.CAS 

    Google Scholar 
    Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.CAS 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.
    Google Scholar 
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.CAS 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16:157.
    Google Scholar 
    Barrett P, Hunter J, Miller JT, Hsu J-C, Greenfield P matplotlib–A Portable Python Plotting Package. Astron. data Anal. Softw. Syst. XIV. 2005. p 91.Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. UpSet: visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.
    Google Scholar 
    Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955.CAS 

    Google Scholar 
    Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004;32:11–16.CAS 

    Google Scholar 
    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547.CAS 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 

    Google Scholar 
    Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–D516.CAS 

    Google Scholar 
    Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 2012;40:D115–D122.CAS 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.
    Google Scholar 
    Yutin N, Wolf YI, Koonin EV. Origin of giant viruses from smaller DNA viruses not from a fourth domain of cellular life. Virology. 2014;466–467:38–52.
    Google Scholar 
    Mihara T, Koyano H, Hingamp P, Grimsley N, Goto S, Ogata H Taxon richness of “Megaviridae” exceeds those of bacteria and archaea in the ocean. Microbes Environ. 2018; ME17203.Gallot-Lavallée L, Blanc G. A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. Viruses. 2017;9:17.
    Google Scholar 
    Aylward FO, Moniruzzaman M, Ha AD, Koonin EV. A phylogenomic framework for charting the diversity and evolution of giant viruses. PLOS Biol. 2021;19:e3001430.CAS 

    Google Scholar 
    Andreani J, Verneau J, Raoult D, Levasseur A, La, Scola B. Deciphering viral presences: two novel partial giant viruses detected in marine metagenome and in a mine drainage metagenome. Virol J. 2018;15:66.
    Google Scholar 
    Koonin EV, Yutin N. Multiple evolutionary origins of giant viruses. F1000Research. 2018;7:1840.Abrahao JS, Araujo R, Colson P, La, Scola B. The analysis of translation-related gene set boosts debates around origin and evolution of mimiviruses. PLoS Genet. 2017;13:e1006532.
    Google Scholar 
    Filée J, Chandler M. Gene exchange and the origin of giant viruses. Intervirology. 2010;53:354–61.
    Google Scholar 
    Koonin EV, Yutin N. Nucleo‐cytoplasmic large DNA viruses (NCLDV) of eukaryotes. eLS. 2012. https://doi.org/10.1002/9780470015902.a0023268.Abergel C, Rudinger-Thirion J, Giegé R, Claverie J-M. Virus-encoded aminoacyl-tRNA synthetases: structural and functional characterization of mimivirus TyrRS and MetRS. J Virol. 2007;81:12406–17.CAS 

    Google Scholar 
    Yoshihisa T. Handling tRNA introns, archaeal way and eukaryotic way. Front Genet. 2014;5:213.
    Google Scholar 
    Ivarsson M, Schnürer A, Bengtson S, Neubeck A. Anaerobic fungi: a potential source of biological H2 in the oceanic crust. Front Microbiol. 2016;7:1–8.Ivarsson M, Bengtson S, Neubeck A. The igneous oceanic crust e Earth’ s largest fungal habitat? Fungal Ecol. 2016;20:249–55.
    Google Scholar 
    Quemener M, Mara P, Schubotz F, Beaudoin D, Li W, Pachiadaki M, et al. Meta‐omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ Microbiol. 2020;22:3950–67.CAS 

    Google Scholar 
    Drake H, Ivarsson M. The role of anaerobic fungi in fundamental biogeochemical cycles in the deep biosphere. Fungal Biol Rev. 2017;32:20–25.
    Google Scholar 
    Bengtson S, Rasmussen B, Ivarsson M, Muhling J, Broman C, Marone F, et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Publ Gr. 2017;1:1–6.
    Google Scholar 
    Suzuki N. An introduction to fungal viruses. In Encyclopedia of Virology. Bamford DH, Zuckerman M. editors. 431–42. Oxford: Academic Press; 2021.Ivarsson M, Broman C, Holmström SJM, Ahlbom M, Lindblom S, Holm NG. Putative fossilized fungi from the lithified volcaniclastic apron of Gran Canaria, Spain. Astrobiology. 2011;11:633–50.CAS 

    Google Scholar 
    Bengtson S, Ivarsson M, Astolfo A, Belivanova V, Broman C, Marone F, et al. Deep‐biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts. Geobiology. 2014;12:489–96.CAS 

    Google Scholar 
    Hirayama H, Abe M, Miyazaki J, Sakai S, Nagano Y, Takai K Data report: cultivation of microorganisms from basaltic rock and sediment cores from the North Pond on the western flank of the Mid-Atlantic Ridge, IODP Expedition 336 1. 2015; 336.Ivarsson M, Bengtson S, Skogby H, Lazor P, Broman C A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust. 2015.Khan HA, Telengech P, Kondo H, Bhatti MF, Suzuki N. Mycovirus Hunting Revealed the Presence of Diverse Viruses in a Single Isolate of the Phytopathogenic Fungus Diplodia seriata From Pakistan. Front Cell Infect Microbiol. 2022;12:913619.García-Pedrajas MD, Cañizares MC, Sarmiento-Villamil JL, Jacquat AG, Dambolena JS. Mycoviruses in biological control: From basic research to field implementation. Phytopathology. 2019;109:1828–39.
    Google Scholar 
    Ghabrial SA, Castón JR, Jiang D, Nibert ML, Suzuki N. 50-plus years of fungal viruses. Virology. 2015;479:356–68.
    Google Scholar 
    Okada R, Ichinose S, Takeshita K, Urayama S, Fukuhara T, Komatsu K, et al. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity. Virology. 2018;519:23–32.CAS 

    Google Scholar 
    Shah UA, Kotta-Loizou I, Fitt BDL, Coutts RHA. Mycovirus-induced hypervirulence of Leptosphaeria biglobosa enhances systemic acquired resistance to Leptosphaeria maculans in Brassica napus. Mol Plant-Microbe Interact. 2020;33:98–107.CAS 

    Google Scholar 
    Hillman BI, Annisa A, Suzuki N. Viruses of plant-interacting fungi. Adv Virus Res. 2018;100:99–116.CAS 

    Google Scholar  More

  • in

    Disease state associated with chronic toe lesions in hellbenders may alter anti-chytrid skin defenses

    IUCN. The IUCN red list of threatened species. Version 2022-1. https://www.iucnredlist.org. Accessed on 17 September 2022. (2022).O’Hanlon, S., Rieux, A., Farrer, R. A. & Rosa, G. M. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).ADS 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).ADS 
    CAS 

    Google Scholar 
    La Marca, E. et al. Catastrophic population declines and extinctions in neotropical Harlequin frogs (Bufonidae: Atelopus). Biotropica 37, 190–201 (2005).
    Google Scholar 
    Rovito, S. M., Parra-Olea, G., Vasquez-Almazan, C. R., Papenfuss, T. J. & Wake, D. B. Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proc. Natl. Acad. Sci. U.S.A. 106, 3231–3236 (2009).ADS 
    CAS 

    Google Scholar 
    Stegen, G. et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 544, 353–356 (2017).ADS 
    CAS 

    Google Scholar 
    Martel, A. et al. Recent introduction of a chytrid fungus endangers western palearctic salamanders. Science 346, 630–631 (2014).ADS 
    CAS 

    Google Scholar 
    Green, D. E., Converse, K. A. & Schrader, A. K. Epizootiology of sixty-four amphibian morbidity and mortality events in the USA, 1996–2001. Annu. NY Acad. Sci. 969, 323–339 (2002).ADS 

    Google Scholar 
    Duffus, A. L. J. & Cunningham, A. A. Major disease threats to European amphibians. Herpetol. J. 20, 117–127 (2010).
    Google Scholar 
    Teacher, A. G. F., Cunningham, A. A. & Garner, T. W. J. Assessing the long-term impact of Ranavirus infection in wild common frog populations. Anim. Conserv. 13, 514–522 (2010).
    Google Scholar 
    Chinchar, V. G. & Waltzek, T. B. Ranaviruses: Not just for frogs. PLoS Pathog. 10, e1003850 (2014).
    Google Scholar 
    Nickerson, M. A. & Mays, C. E. The hellbenders: North American giant salamanders. Milwaukee Public Mus. Publ. Biol. Geol. 1, 1–106 (1973).
    Google Scholar 
    Wheeler, B. A., Prosen, E., Mathis, A. & Wilkinson, R. F. Population declines of a long- lived salamander: A 20+ year study of hellbenders, Cryptobranchus alleganiensis. Biol. Conserv. 109, 151–156 (2003).
    Google Scholar 
    Freake, M. J. & DePerno, C. S. Importance of demographic surveys and public lands for the conservation of eastern hellbenders Cryptobranchus alleganiensis alleganiensis in southeast USA. PLoS ONE 12, e0179153 (2017).
    Google Scholar 
    USFWS. Endangered and threatened wildlife and plants; Endangered status for the Ozark Hellbender salamander. 50 CFR Part 23. Fed. Reg. 76, 61956–61978 (2011).
    Google Scholar 
    USFWS. Species status assessment report for the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis). p 104 (2018).Pugh, M., Hutchins, M., Madritch, M., Siefferman, L. & Gangloff, M. M. Land-use and local physical and chemical habitat parameters predict site occupancy by hellbender salamanders. Hydrobiologia 770, 105–116 (2015).
    Google Scholar 
    Bodinof-Jachowski, C. M. & Hopkins, W. A. Loss of catchment-wide riparian forest cover is associated with reduced recruitment in a long-lived amphibian. Biol. Cons. 202, 215–227 (2018).
    Google Scholar 
    Bodinof, C. M., Briggler, J. T. & Duncan, M. C. Historic occurrence of the amphibian chytrid fungus Batrachochytrium dendrobatidis in hellbender Cryptobranchus alleganiensis populations from Missouri. Dis. Aquat. Org. 96, 1–7 (2011).
    Google Scholar 
    Hardman, R. H. et al. Geographic and individual determinants of important amphibian pathogens in hellbenders (Cryptobranchus alleganiensis) in Tennessee and Arkansas, USA. J. Wildl. Dis. 56, 803–814 (2020).CAS 

    Google Scholar 
    Bales, E. K. et al. Pathogenic chytrid fungus Batrachochytrium dendrobatidis, but not B. salamandrivorans, detected on eastern hellbenders. PLoS ONE 10, e0116405 (2015).
    Google Scholar 
    Souza, M. J., Gray, M. J., Colclough, P. & Miller, D. L. Prevalence of infection by Batrachochytrium dendrobatidis and ranavirus in eastern hellbenders (Cryptobranchus alleganiensis alleganiensis) in eastern Tennessee. J. Wildl. Dis. 48, 560–566 (2012).
    Google Scholar 
    Gonynor, J. L., Yabsley, M. J. & Jensen, J. B. A preliminary survey of Batrachochytrium dendrobatidis exposure in hellbenders from a stream in Georgia, USA. Herpetol. Rev. 42, 58–59 (2011).
    Google Scholar 
    Briggler, J. T., Larson, K. A. & Irwin, K. J. Presence of the amphibian chytrid fungus (Batrachochytrium dendrobatidis) on hellbenders (Cryptobranchus alleganiensis) in the Ozark highlands. Herpetol. Rev. 39, 443–444 (2008).
    Google Scholar 
    Dusick, A., Flatland, B., Craig, L. & Ferguson, S. What is your diagnosis? Skin scraping from a hellbender. Vet. Clin. Pathol. 46, 183–184 (2017).
    Google Scholar 
    Dean, N., Ossiboff, R., Bunting, E., Schuler, K., Rothrock, A., & Roblee, K. The eastern hellbender and Batrachochytrium dendrobatidis (Bd) in western New York. In Proceedings of the 65th International Conference of the Wildlife Disease Association p. 151 (2016).Cusaac, J. P. et al. Emerging pathogens and a current-use pesticide: potential impacts on eastern hellbenders. J. Aquat. Anim. Health 33, 24–32 (2021).CAS 

    Google Scholar 
    Geng, Y. et al. First report of a ranavirus associated with morbidity and mortality in farmed Chinese giant salamanders (Andrias davidianus). J. Comp. Pathol. 145, 96–102 (2011).
    Google Scholar 
    Hardman, R. H., Irwin, K. J., Sutton, W. B. & Miller, D. L. Evaluation of severity and factors contributing to foot lesions in endangered Ozark Hellbenders, Cryptobranchus alleganiensis bishopi. Front. Vet. Sci. 7, 1–10 (2020).
    Google Scholar 
    Hernández-Gómez, O., Kimble, S. J. A., Briggler, J. T. & Williams, R. T. Characterization of the cutaneous bacterial communities of two giant salamander subspecies. Microb. Ecol. 73, 445–454 (2017).
    Google Scholar 
    Miller, B. T. & Miller, J. L. Prevalence of physical abnormalities in eastern hellbender (Cryptobranchus alleganiensis alleganiensis) populations of middle Tennessee. Southeast. Nat. 4, 513–520 (2005).
    Google Scholar 
    Shoemaker, V. H. & Nagy, K. Osmoregulation in amphibians and reptiles. Annu. Rev. Physiol. 39, 449–471 (1977).CAS 

    Google Scholar 
    Guimond, R. W. & Hutchison, V. H. Aquatic respiration: An unusual strategy in the hellbender Cryptobranchus alleganiensis alleganiensis (Daudin). Science 182, 1263–1265 (1973).ADS 
    CAS 

    Google Scholar 
    Rollins-Smith, L. A. & Conlon, J. M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 29, 589–598 (2005).CAS 

    Google Scholar 
    Brogden, K. A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3, 238–250 (2005).CAS 

    Google Scholar 
    Xu, X. & Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev. 115, 1760–1846 (2015).CAS 

    Google Scholar 
    Woodhams, D. C. et al. Population trends associated with antimicrobial peptide defenses against chytridiomycosis in Australian frogs. Oecologica 146, 531–540 (2006).ADS 

    Google Scholar 
    Rollins-Smith, L. A. et al. Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev. Comp. Immunol. 30, 831–842 (2006).CAS 

    Google Scholar 
    Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 46, 137 (2015).
    Google Scholar 
    Demori, I. et al. Peptides for skin protection and healing in amphibians. Molecules 24, 347 (2019).
    Google Scholar 
    Wu, J. et al. A frog cathelicidin peptide effectively promotes cutaneous wound healing in mice. Biochem. J. 475, 2785–2799 (2018).CAS 

    Google Scholar 
    Tennessen, J. A. et al. Variations in the expressed antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev. Comp. Immunol. 33, 1247–1257 (2009).CAS 

    Google Scholar 
    Tatiersky, L. et al. Effect of glucocorticoids on expression of cutaneous antimicrobial peptides in northern leopard frogs (Lithobates pipiens). BMC Vet. Res. 11, 191 (2015).
    Google Scholar 
    Pereira, K. E. & Woodley, S. K. Skin defenses of North American salamanders against a deadly salamander fungus. Anim. Conserv. 24, 552–567 (2021).
    Google Scholar 
    Pereira, K. E. et al. Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens. J. Exp. Biol. 221, jeb183707 (2018).
    Google Scholar 
    Smith, H. K. et al. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS ONE 13, e0199295 (2018).
    Google Scholar 
    Meng, P. et al. The first salamander defensin antimicrobial peptide. PLoS ONE 8, e83044 (2013).ADS 

    Google Scholar 
    Sheafor, B., Davidson, E. W., Parr, L. & Rollins-Smith, L. A. Antimicrobial peptide defenses in the salamander, Ambystoma tigrinum, against emerging amphibian pathogens. J. Wildl. Dis. 44, 226–236 (2008).CAS 

    Google Scholar 
    Fredericks, L. P. & Dankert, J. R. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus. J. Exp. Zool. 287, 340–345 (2000).CAS 

    Google Scholar 
    Pei, J. & Jiang, L. Antimicrobial peptide from mucus of Andrias davidianus: Screening and purification by magnetic cell membrane separation technique. Int. J. Antimicrob. Agents 50, 41–46 (2017).CAS 

    Google Scholar 
    Woodhams, D. C. et al. Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian green-eyed treefrogs, Litoria genimaculata. Div. Distrib. 16, 703–712 (2010).
    Google Scholar 
    Hernández-Gómez, O., Briggler, J. T. & Williams, R. N. Influence of immunogenetics, sex and body condition on the cutaneous microbial communities of two giant salamanders. Mol. Ecol. 27, 1915–1929 (2018).
    Google Scholar 
    Niyonsaba, F., Kiatsurayanon, C., Chieosilapatham, P. & Ogawa, H. Friends or foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Exp. Dermatol. 26, 989–998 (2017).CAS 

    Google Scholar 
    Rollins-Smith, L. A., Ramsey, J. P., Pask, J. D., Reinert, L. K. & Woodhams, D. C. Amphibian immune defenses against chytridiomycosis: Impacts of changing environments. Integr. Comp. Biol. 51, 552–562 (2011).CAS 

    Google Scholar 
    Chinchar, V. G. et al. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323, 268–275 (2004).CAS 

    Google Scholar 
    Woodhams, D. C. et al. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS ONE 9, e96375 (2014).ADS 

    Google Scholar 
    Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).ADS 
    CAS 

    Google Scholar 
    Bell, S. C., Garland, S. & Alford, R. A. Increased numbers of culturable inhibitory bacterial taxa may mitigate the effects of Batrachochytrium dendrobatidis in Australian wet tropics frogs. Front. Microbiol. 9, 1604 (2018).
    Google Scholar 
    Zhang, L. & Gallo, R. L. Antimicrobial peptides. Curr. Biol. 26, R14–R19 (2016).CAS 

    Google Scholar 
    Rollins-Smith, L. A. et al. Antimicrobial peptide defenses of the Tarahumara frog, Rana tarahumarae. Biochem. Biophys. Res. Commun. 297, 361–367 (2002).CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ (2013).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Hime, P. M. et al. Genomic data reveal conserved female heterogamety in giant salamanders with gigantic nuclear genomes. G3 Genes Genomes Genet. 9, 3467–3476 (2019).CAS 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2–1. https://cran.r-project.org/package=AICcmodavg (2019).Burnham, K. P. & Anderson, D. R. Model Selection and Inference: A Practical Information-Theoretic Approach 2nd edn, 454 (Springer, 2002).MATH 

    Google Scholar 
    Holden, W. M., Reinert, L. K., Hanlon, S. M., Parris, M. J. & Rollins-Smith, L. A. Development of antimicrobial peptide defenses of southern leopard frogs, Rana sphenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Dev. Comp. Immunol. 48, 65–75 (2015).CAS 

    Google Scholar 
    De Caceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3 (2009).
    Google Scholar  More

  • in

    Laboratory protocol is important to improve the correlation between target copies and metabarcoding read numbers of seed DNA in ground beetle regurgitates

    de Sousa, L. L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ. DNA 1, 199–214. https://doi.org/10.1002/edn3.27 (2019).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x (2012).Article 
    CAS 

    Google Scholar 
    Liu, M. X., Clarke, L. J., Baker, S. C., Jordan, G. J. & Burridge, C. P. A practical guide to DNA metabarcoding for entomological ecologists. Ecol. Entomol. 45, 373–385. https://doi.org/10.1111/een.12831 (2020).Article 

    Google Scholar 
    Traugott, M., Thalinger, B., Wallinger, C. & Sint, D. Fish as predators and prey: DNA-based assessment of their role in food webs. J. Fish Biol. 98, 367–382. https://doi.org/10.1111/jfb.14400 (2021).Article 

    Google Scholar 
    Clare, E. L. Molecular detection of trophic interactions: Emerging trends, distinct advantages, significant considerations and conservation applications. Evol. Appl. 7, 1144–1157. https://doi.org/10.1111/eva.12225 (2014).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406. https://doi.org/10.1111/mec.14734 (2019).Article 

    Google Scholar 
    Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406. https://doi.org/10.1002/edn3.117 (2020).Article 

    Google Scholar 
    Masonick, P., Hernandez, M. & Weirauch, C. No guts, no glory: Gut content metabarcoding unveils the diet of a flower-associated coastal sage scrub predator. Ecosphere. https://doi.org/10.1002/ecs2.2712 (2019).Article 

    Google Scholar 
    Eitzinger, B. et al. Assessing changes in arthropod predator–prey interactions through DNA-based gut content analysis-variable environment, stable diet. Mol. Ecol. 28, 266–280. https://doi.org/10.1111/mec.14872 (2019).Article 
    CAS 

    Google Scholar 
    Kim, T. N. et al. Using high-throughput amplicon sequencing to determine diet of generalist lady beetles in agricultural landscapes. Biol. Control. https://doi.org/10.1016/j.biocontrol.2022.104920 (2022).Article 

    Google Scholar 
    Wallinger, C. et al. The effect of plant identity and the level of plant decay on molecular gut content analysis in a herbivorous soil insect. Mol. Ecol. Resour. 13, 75–83. https://doi.org/10.1111/1755-0998.12032 (2013).Article 
    CAS 

    Google Scholar 
    Seabra, S. G. et al. PCR-based detection of prey DNA in the gut contents of the tiger-fly, Coenosia attenuata (Diptera: Muscidae), a biological control agent in Mediterranean greenhouses. Eur. J. Entomol. 118, 335–343. https://doi.org/10.14411/eje.2021.035 (2021).Article 

    Google Scholar 
    Panni, S. & Pizzolotto, R. Fast molecular assay to detect the rate of decay of Bactrocera oleae (Diptera: Tephritidae) DNA in Pterostichus melas (Coleoptera: Carabidae) gut contents. Appl. Entomol. Zool. 53, 425–431. https://doi.org/10.1007/s13355-018-0564-x (2018).Article 
    CAS 

    Google Scholar 
    Greenstone, M. H., Payton, M. E., Weber, D. C. & Simmons, A. M. The detectability half-life in arthropod predator–prey research: What it is, why we need it, how to measure it, and how to use it. Mol. Ecol. 23, 3799–3813. https://doi.org/10.1111/mec.12552 (2014).Article 

    Google Scholar 
    Fülöp, D., Szita, E., Gerstenbrand, R., Tholt, G. & Samu, F. Consuming alternative prey does not influence the DNA detectability half-life of pest prey in spider gut contents. PeerJ https://doi.org/10.7717/peerj.7680 (2019).Article 

    Google Scholar 
    Zhang, G. F., Lu, Z. C., Wan, F. H. & Lovei, G. L. Real-time PCR quantification of Bemisia tabaci (Homoptera: Aleyrodidae) B-biotype remains in predator guts. Mol. Ecol. Notes 7, 947–954. https://doi.org/10.1111/j.1471-8286.2007.01819.x (2007).Article 
    CAS 

    Google Scholar 
    Weber, D. C. & Lundgren, J. G. Detection of predation using qPCR: Effect of prey quantity, elapsed time, chaser diet, and sample preservation on detectable quantity of prey DNA. J. Insect Sci. https://doi.org/10.1673/031.009.4101 (2009).Article 

    Google Scholar 
    Paula, D. P. et al. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics. Mol. Ecol. Resour. 15, 880–892. https://doi.org/10.1111/1755-0998.12364 (2015).Article 
    CAS 

    Google Scholar 
    Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610. https://doi.org/10.1021/ac202028g (2011).Article 
    CAS 

    Google Scholar 
    Wood, S. A. et al. A comparison of droplet digital polymerase chain reaction (PCR), quantitative PCR and metabarcoding for species-specific detection in environmental DNA. Mol. Ecol. Resour. 19, 1407–1419. https://doi.org/10.1111/1755-0998.13055 (2019).Article 
    CAS 

    Google Scholar 
    Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L. & Mahon, A. R. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806. https://doi.org/10.1021/es5034052 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kim, T. G., Jeong, S. Y. & Cho, K. S. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl. Microbiol. Biotechnol. 98, 6105–6113. https://doi.org/10.1007/s00253-014-5794-4 (2014).Article 
    CAS 

    Google Scholar 
    Thalinger, B., Pütz, Y. & Traugott, M. Endpoint PCR coupled with capillary electrophoresis (celPCR) provides sensitive and quantitative measures of environmental DNA in singleplex and multiplex reactions. PLoS ONE https://doi.org/10.1371/journal.pone.0254356 (2021).Article 

    Google Scholar 
    Mata, V. A. et al. How much is enough? Effects of technical and biological replication on metabarcoding dietary analysis. Mol. Ecol. 28, 165–175. https://doi.org/10.1111/mec.14779 (2019).Article 
    CAS 

    Google Scholar 
    Sint, D., Guenay, Y., Mayer, R., Traugott, M. & Wallinger, C. The effect of plant identity and mixed feeding on the detection of seed DNA in regurgitates of carabid beetles. Ecol. Evol. 8, 10834–10846. https://doi.org/10.1002/ece3.4536 (2018).Article 

    Google Scholar 
    Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291. https://doi.org/10.1111/2041-210x.12869 (2018).Article 

    Google Scholar 
    Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x (2012).Article 
    CAS 

    Google Scholar 
    Juen, A. & Traugott, M. Amplification facilitators and multiplex PCR: Tools to overcome PCR-inhibition in DNA-gut-content analysis of soil-living invertebrates. Soil Biol. Biochem. 38, 1872–1879. https://doi.org/10.1016/j.soilbio.2005.11.034 (2006).Article 
    CAS 

    Google Scholar 
    Wallinger, C. et al. Evaluation of an automated protocol for efficient and reliable DNA extraction of dietary samples. Ecol. Evol. 7, 6382–6389. https://doi.org/10.1002/ece3.3197 (2017).Article 

    Google Scholar 
    Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293. https://doi.org/10.2144/000114559 (2017).Article 
    CAS 

    Google Scholar 
    Dingle, T. C., Sedlak, R. H., Cook, L. & Jerome, K. R. Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin. Chem. 59, 1670–1672. https://doi.org/10.1373/clinchem.2013.211045 (2013).Article 
    CAS 

    Google Scholar 
    Racki, N., Dreo, T., Gutierrez-Aguirre, I., Blejec, A. & Ravnikar, M. Reverse transcriptase droplet digital PCR shows high resilience to PCR inhibitors from plant, soil and water samples. Plant Methods https://doi.org/10.1186/s13007-014-0042-6 (2014).Article 

    Google Scholar 
    Juen, A. & Traugott, M. Detecting predation and scavenging by DNA gut-content analysis: A case study using a soil insect predator-prey system. Oecologia 142, 344–352. https://doi.org/10.1007/s00442-004-1736-7 (2005).Article 
    ADS 

    Google Scholar 
    Lundgren, J. G. & Lehman, M. Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS ONE https://doi.org/10.1371/journal.pone.0010831 (2010).Article 

    Google Scholar 
    Waldner, T. & Traugott, M. DNA-based analysis of regurgitates: A noninvasive approach to examine the diet of invertebrate consumers. Mol. Ecol. Resour. 12, 669–675. https://doi.org/10.1111/j.1755-0998.2012.03135.x (2012).Article 

    Google Scholar 
    Kamenova, S. et al. Comparing three types of dietary samples for prey DNA decay in an insect generalist predator. Mol. Ecol. Resour. 18, 966–973. https://doi.org/10.1111/1755-0998.12775 (2018).Article 
    CAS 

    Google Scholar 
    Cheeseman, M. T. & Pritchard, G. Spatial organization of digestive processes in an adult carabid beetle, Scaphinotus marginatus (Coleoptera: Carabidae). Can. J. Zool. 62, 1200–1203. https://doi.org/10.1139/z84-173 (1984).Article 

    Google Scholar 
    Sunderland, K. D. Diet of some predatory arthropods in cereal crops. J. Appl. Ecol. 12, 507–515. https://doi.org/10.2307/2402171 (1975).Article 

    Google Scholar 
    Sunderland, K. D., Lovei, G. L. & Fenlon, J. Diets and reproductive phenologies of the introduced ground beetles Harpalus affinis and Clivina australasiae (Coleoptera: Carabidae) in New Zealand. Aust. J. Zool. 43, 39–50. https://doi.org/10.1071/zo9950039 (1995).Article 

    Google Scholar 
    Deagle, B. E. & Tollit, D. J. Quantitative analysis of prey DNA in pinniped faeces: Potential to estimate diet composition?. Conserv. Genet. 8, 743–747. https://doi.org/10.1007/s10592-006-9197-7 (2007).Article 
    CAS 

    Google Scholar 
    Snider, A. M., Bonisoli-Alquati, A., Perez-Umphrey, A. A., Stouffer, P. C. & Taylor, S. S. Metabarcoding of stomach contents and fecal samples provide similar insights about Seaside Sparrow diet. Ornithol. Appl. https://doi.org/10.1093/ornithapp/duab060 (2022).Article 

    Google Scholar 
    Paula, D. P., Timbo, R. V., Togawa, R. C., Vogler, A. P. & Andow, D. A. Quantitative prey species detection in predator guts across multiple trophic levels by mapping unassembled shotgun reads. Mol Ecol Resour 23, 64–80. https://doi.org/10.1111/1755-0998.13690 (2023).Article 
    CAS 

    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE https://doi.org/10.1371/journal.pone.0130324 (2015).Article 

    Google Scholar 
    Krehenwinkel, H. et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7, 17668. https://doi.org/10.1038/s41598-017-17333-x (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Piñol, J., San Andrés, V., Clare, E. L., Mir, G. & Symondson, W. O. C. A pragmatic approach to the analysis of diets of generalist predators: The use of next-generation sequencing with no blocking probes. Mol. Ecol. Resour. 14, 18–26. https://doi.org/10.1111/1755-0998.12156 (2014).Article 
    CAS 

    Google Scholar 
    Baksay, S. et al. Experimental quantification of pollen with DNA metabarcoding using ITS1 and trnL. Sci. Rep. https://doi.org/10.1038/s41598-020-61198-6 (2020).Article 

    Google Scholar 
    Valentini, A. et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: The trnL approach. Mol. Ecol. Resour. 9, 51–60. https://doi.org/10.1111/j.1755-0998.2008.02352.x (2009).Article 
    CAS 

    Google Scholar 
    Murray, D. C. et al. DNA-based faecal dietary analysis: A comparison of qPCR and high throughput sequencing approaches. PLoS ONE https://doi.org/10.1371/journal.pone.0025776 (2011).Article 

    Google Scholar 
    Hansen, B. K. et al. From DNA to biomass: Opportunities and challenges in species quantification of bulk fisheries products. ICES J. Mar. Sci. 77, 2557–2566. https://doi.org/10.1093/icesjms/fsaa115 (2020).Article 

    Google Scholar 
    Pawluczyk, M. et al. Quantitative evaluation of bias in PCR amplification and next-generation sequencing derived from metabarcoding samples. Anal. Bioanal. Chem. 407, 1841–1848. https://doi.org/10.1007/s00216-014-8435-y (2015).Article 
    CAS 

    Google Scholar 
    Piñol, J., Mir, G., Gomez-Polo, P. & Agusti, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830. https://doi.org/10.1111/1755-0998.12355 (2015).Article 
    CAS 

    Google Scholar 
    Czernik, M. et al. Fast and efficient DNA-based method for winter diet analysis from stools of three cervids: Moose, red deer, and roe deer. Acta Theriol. 58, 379–386. https://doi.org/10.1007/s13364-013-0146-9 (2013).Article 

    Google Scholar 
    Richardson, R. T. et al. Quantitative multi-locus metabarcoding and waggle dance interpretation reveal honey bee spring foraging patterns in Midwest agroecosystems. Mol. Ecol. 28, 686–697. https://doi.org/10.1111/mec.14975 (2019).Article 
    CAS 

    Google Scholar 
    Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. https://doi.org/10.1093/nar/gkl938 (2007).Article 

    Google Scholar 
    Briem, F. et al. Identifying plant DNA in the sponging-feeding insect pest Drosophila suzukii. J. Pest. Sci. 91, 985–994. https://doi.org/10.1007/s10340-018-0963-3 (2018).Article 

    Google Scholar 
    Frei, B., Guenay, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across Central Europe. J. Pest. Sci. https://doi.org/10.1007/s10340-019-01109-5 (2019).Article 

    Google Scholar 
    Luff, M. L. The biology of the ground beetle Harpalus rufipes in a strawberry field in Northumberland. Ann. Appl. Biol. 94, 153–164. https://doi.org/10.1111/j.1744-7348.1980.tb03907.x (1980).Article 

    Google Scholar 
    Illumina. Effects of index Misassignment on multiplexing and downstream analysis. https://www.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf?linkId=36607862 accessed 2022-11-10 (2018).Guenay-Greunke, Y., Bohan, D. A., Traugott, M. & Wallinger, C. Handling of targeted amplicon sequencing data focusing on index hopping and demultiplexing using a nested metabarcoding approach in ecology. Sci. Rep. https://doi.org/10.1038/s41598-021-98018-4 (2021).Article 

    Google Scholar 
    Staudacher, K., Wallinger, C., Schallhart, N. & Traugott, M. Detecting ingested plant DNA in soil-living insect larvae. Soil Biol. Biochem. 43, 346–350. https://doi.org/10.1016/j.soilbio.2010.10.022 (2011).Article 
    CAS 

    Google Scholar 
    Espunyes, J. et al. Comparing the accuracy of PCR-capillary electrophoresis and cuticle microhistological analysis for assessing diet composition in ungulates: A case study with Pyrenean chamois. PLoS ONE https://doi.org/10.1371/journal.pone.0216345 (2019).Article 

    Google Scholar 
    Wallinger, C. et al. Detection of seed DNA in regurgitates of granivorous carabid beetles. Bull. Entomol. Res. 105, 728–735. https://doi.org/10.1017/s000748531500067x (2015).Article 
    CAS 

    Google Scholar 
    Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105–1109. https://doi.org/10.1007/bf00037152 (1991).Article 
    CAS 

    Google Scholar 
    FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. (2010).Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience https://doi.org/10.1093/gigascience/giab008 (2021).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. Next Gener. Seq. Data Anal. https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).Article 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST plus: Architecture and applications. BMC Bioinform. https://doi.org/10.1186/1471-2105-10-421 (2009).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).Arnold, J. B. ggthemes: Extra Themes, Scales and Geoms for ‘ggplot2’. R package version 4.2.0 https://CRAN.R-project.org/package=ggthemes (2019).Hebbali, A. olsrr: Tools for Building OLS Regression Models. R package version 0.5.3. https://CRAN.R-project.org/package=olsrr (2020).Fox, J. & Weisberg, S. An {R} Companion to Applied Regression. 2nd ed. (Sage, 2011).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17. https://doi.org/10.18637/jss.v011.i10 (2004).Article 

    Google Scholar 
    Zeileis, A., Köll, S. & Graham, N. Various versatile variances: An object-oriented implementation of clustered covariances in {R}. J. Stat. Softw. 95, 1–36. https://doi.org/10.18637/jss.v095.i01 (2020).Article 

    Google Scholar 
    boot: Bootstrap R (S-Plus) Functions v. R package version 1.3-28 (2021).Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Applications. (Cambridge University Press, 1997). More