Ecology
Subterms
More stories
75 Shares159 Views
in EcologyAmazon tree dominance across forest strata
Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USAFrederick C. Draper & Christopher BaralotoSchool of Geography, University of Leeds, Leeds, UKFrederick C. Draper, Oliver L. Phillips, Timothy R. Baker, Roel J. W. Brienen & David R. GalbraithCenter for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USAFrederick C. Draper, Gregory P. Asner, Jason Vleminckx & Oscar J. Valverde BarrantesInstituto Nacional de Pesquisas da Amazônia (INPA), Manaus, BrazilFlavia R. C. Costa, Juliana Schietti, Fernanda Coelho de Souza, William E. Magnusson, Karina Melgaço, André B. Junqueira, Ana C. Andrade, José Luís Camargo, Flávia D. Santana, Ricardo O. Perdiz, Jessica Soares Cravo, Alberto Vicentini, Henrique Nascimento, Niro Higuchi & Thaiane Rodrigues de SousaEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAGabriel Arellano & Paul E. BerryDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Medellín, ColombiaAlvaro Duque & Mauricio Sánchez SáenzDepartamento de Biología, Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaNaturalis Biodiversity Center, Leiden, The NetherlandsHans ter Steege & Tinde Van AndelSystems Ecology, Vrije Universiteit, Amsterdam, The NetherlandsHans ter SteegeLancaster Environment Centre, Lancaster University, Lancaster, UKErika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, UKErika Berenguer & Yadvinder MalhiFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, NorwayJacob B. SocolarSchool of Geosciences, University of Edinburgh, Edinburgh, UKKyle G. DexterMissouri Botanical Garden, St Louis, MO, USAPeter M. Jørgensen & J. Sebastian TelloBrazilian Agricultural Research Corporation (Embrapa), Roraima, BrazilCarolina V. CastilhoUniversidad Nacional de San Antonio Abad del Cusco, Cusco, PeruAbel Monteagudo-Mendoza, Victor Chama Moscoso, Darcy Galiano Cabrera & Percy Núñez VargasDepartment of Intergrative Biology, University of California Berkeley, Berkeley, CA, USAPaul V. A. Fine & Italo MesonesDepartment of Biology, University of Turku, Turku, FinlandKalle RuokolainenInstituto de Investigaciones de la Amazonía Peruana, Iquitos, PeruEuridice N. Honorio Coronado, Nállarett Dávila, Marcos A. Rios Paredes, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Ricardo Zarate Gomez, José Reyna Huaymacari, Julio M. Grandez Rios & Cesar J. Cordova OrocheUNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, VenezuelaGerardo AymardCompensation International Progress S. A.—Ciprogress Greenlife, Bogotá, ColombiaGerardo AymardAMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceJulien Engel, Claire Fortunel, Jean-François Molino, Daniel Sabatier & Maxime Réjou-MéchainEnvironmental and Rural Science, University of New England, Armidale, New South Wales, AustraliaC. E. Timothy PaineINRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane, Kourou, French GuianaJean-Yves Goret & Elodie AllieCIRAD, UMR EcoFoG, Kourou, French GuianaAurelie Dourdain & Pascal PetronelliBIOMAS, Universidad de Las Américas, Quito, EcuadorJuan E. Guevara AndinoInstituto de Ecología, Herbario Nacional de Bolivia, La Paz, BoliviaLeslie Cayola Pérez, Narel Y. Paniagua Zambrana & Alfredo F. FuentesDepartamento de Biologia, Universidade Federal de Rondônia, Porto Velho, BrazilÂngelo G. ManzattoLaboratoire Evolution et Diversité Biologique (EDB) CNRS/UPS, Toulouse, FranceJerôme ChaveSchool of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UKSophie FausetDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USARoosevelt Garcia VillacortaDepartment of Geography, University of Exeter, Exeter, UKTed R. FeldpauschFacultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquito, PeruElvis Valderamma Sandoval, Gilberto E. Navarro Aguilar, Jim Vega Arenas & Manuel FloresEstación Biológica del Jardín Botánico de Missouri, Oxapampa, PeruRodolfo Vasquez Martinez, Victor Chama Moscoso & Luis Valenzuela GamarraInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré B. JunqueiraSchool of Geography & Sustainable Development, University of St Andrews, St Andrews, UKKatherine H. RoucouxDepartment of Environment and Development, Federal University of Amapá, Macapa, BrazilJosé J. de Toledo & Renato R. HilárioCentre for Tropical Environmental and Sustainability Science (TESS) and College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, AustraliaWilliam F. Laurance & Susan G. LauranceDepartment of Environmental Science and Policy, George Mason University, Fairfax, VA, USAThomas E. LovejoyInventory and Monitoring Program, National Park Service, Fredericksburg, VA, USAJames A. ComiskeySmithsonian Institution, Washington DC, USAJames A. ComiskeyDepartment of Plant Sciences, University of Cambridge, Cambridge, UKMichelle KalamandeenLiving with Lakes Centre, Laurentian University, Greater Sudbury, Ontario, CanadaMichelle KalamandeenDRGB, Instituto Nacional de Innovación Agraria (INIA), Lima, PeruCarlos A. Amasifuen GuerraHerbarium Amazonense (AMAZ), Universidad Nacional de la Amazonia Peruana, Loreto, PerúLuis A. Torres MontenegroDepartment of Ecology, Universidade de São Paulo, São Paulo, BrazilMarcelo P. PansonatoInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsJoost F. DuivenvoordenCentro de Estudos da Biodiversidade, Universidade Federal de Roraima, Boa Vista, BrazilSidney Araújo de Sousa & Marcos Salgado VitalMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz, BoliviaLuzmila Arroyo, Alejandro Araujo-Murakami & Germaine A. Parada GutierrezFaculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidad do Estado de Mato Grosso, Nova Xavantina, BrazilBeatriz S. Marimon, Ben Hur Marimon Junior, Ricardo Keichi Umetsu & Nayane C. C. S. PrestesCentro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, BrazilFernanda Antunes CarvalhoDepartment of Ecology, Evolution and Behaviour, University of Minnesota, Minneapolis, MN, USAGabriel DamascoDepartment of Geography, University College London, London, UKMathias DisneyDepartamento de Ciencias Biológicas, Universidad de Los Andes (Colombia), Bogotá, ColombiaPablo R. Stevenson Diaz & Ana M. AldanaCentro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, BrazilSabina Cerruto Ribeiro, Richarlly da Costa Silva & Wenderson CastroNicholas School of the Environment, Duke University, Durham, NC, USAJohn W. TerborghIwokrama International Centre for Rainforest Conservation and Development, Georgetown, GuyanaRaquel S. ThomasSmithsonian’s National Zoo & Conservation Biology Institute, Washington DC, USAFrancisco DallmeierInstituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, ColombiaAdriana PrietoUniversidade Federal Rural da Amazônia—UFRA/CAPES, Belém, BrazilRafael P. SalomãoMuseu Paraense Emílio Goeldi, Belém, BrasilRafael P. Salomão, Ima C. Guimarães Vieira & Antonio S. LimaLaboratorio de Ecología de Bosques Tropicales y Primatología, Fundación Natura Colombia, Universidad de Los Andes, Bogotá, ColombiaLuisa F. CasasFacultad de Forestales, Universidad Nacional de la Amazonía Peruana, Iquito, PeruFredy Ramirez ArevaloInstitute of Research for Forestry Development, Universidad de los Andes, Merida, VenezuelaHirma Ramírez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaSchool of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USAEmilio Vilanova TorreUniversidad Regional Amazónica Ikiam, Tena, EcuadorMaria C. PeñuelaAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenUniversidad Autónoma del Beni, Riberalta, BoliviaGuido Pardo & Vincent VosInstituto Amazónico de Investigaciones (IMANI), Universidad Nacional de Colombia, Sede Amazonia, BrazilEliana Jimenez-RojasBroward County Parks and Recreation, Miami, FL, USAJohn PipolyBiological Sciences, Florida Atlantic University-Davie, Miami, FL, USAJohn PipolyMuseu Universitário, Universidade Federal do Acre, Rio Branco, BrazilMarcos SilveraFacultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, EcuadorDavid NeillDepartment of Biology, Washington University in St Louis, St Louis, MO, USADilys M. VelaNational Institute for Space Research (INPE), São José dos Campos, BrazilLuiz E. O. C. AragãoGeoinformática & Sistemas (GeoIS), Quito, EcuadorRodrigo SierraSchool of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USAOphelia WangDepartment of Geography and the Environment, University of Texas at Austin, Austin, TX, USAKenneth R. YoungInstituto de Ciência e Tecnologia, São Paulo State University (UNESP), São José dos Campos, BrazilKlécia G. MassiSchool of Anthropology and Conservation, University of Kent, Canterbury, UKMiguel N. AlexiadesUniversidade Federal do Amazonas, Manaus, BrazilFabrício BaccaroHerbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito, EcuadorCarlos CéronSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UKAdriane Esquivel MuelbertDepartment of Life Sciences, Imperial College London, London, UKJonathan L. LloydScience and Education, The Field Museum, Chicago, IL, USANigel C. A. PitmanUniversidad Tecnica del Norte, Herbario Nacional del Ecuador, Quito, EcuadorWalter PalaciosResearch Institute Alexander von Humboldt, Bogotá, ColombiaSandra PatiñoF.C.D. and C.B. conceived the study. F.C.D., G.P.A. and C.B. designed the study with input from F.R.C.C., G. Arellano, O.L.P. and H.t.S. F.C.D. and J.B.S. performed the analysis with input from C.B., G.P.A., G. Arellano, O.L.P., A. Duque, F.C.d.S. and K.D. F.C.D. wrote the manuscript with input from C.B., F.R.C.C., G. Arellano, O.L.P., A. Duque, M.J.M., G.P.A. and H.t.S. All other coauthors contributed data and had the opportunity to comment on the manuscript. More
250 Shares179 Views
in EcologyMethane mitigation is associated with reduced abundance of methanogenic and methanotrophic communities in paddy soils continuously sub-irrigated with treated wastewater
Experimental design and crop establishmentA microcosm experiment was conducted at Yamagata University, Tsuruoka City, Japan, from May to October 2019, with six growth containers (36 cm in height, 30 cm in width, 60 cm in length) to simulate paddy fields of 0.18 m2 in area (see Supplementary Fig. S1). The experiment was laid out in a completely randomized design with three replications of two treatments: (1) rice cropping under CSI and (2) conventional rice cultivation fertilized with mineral fertilisers and irrigated with tap water (Control).Each container was filled with 32 kg of a paddy soil collected from an experimental field in the university farm and transplanted with four hills of 30-day-old seedlings (Oryza sativa L., cv. Bekoaoba) on 27th May 2019. The experiment was performed in accordance with relevant guidelines and regulations for research involving plants. The experimental soil was classified as loamy soil (air-dried, 20% moisture) with the following basic properties: pH (H2O) of 5.78, electrical conductivity (EC) of 0.09 dS m−1, SOM of 4.9%, and a total N, P, and K of 1.46, 0.88, and 3.17 g kg−1, respectively. The TWW used in the CSI system was collected from a local WWTP and monitored weekly for its basic properties (Table 2) following our previous studies6,7. In brief, pH, EC, and DO of water samples were measured on-site using pH/conductivity and DO portable meters (D-54 and OM-51, HORIBA, Ltd., Kyoto, Japan), whereas TOC and total N were analyzed using a TOC analyzer (TOC-VCSV, Shimadzu Corp., Kyoto, Japan) attached to a total N measuring unit (TNM-1, Shimadzu Corp., Kyoto, Japan). After a standard acid-digestion of water samples6, the concentration of P was measured using a portable colorimeter (DR/890, HATCH, USA), and the concentration of K was measured using an inductively coupled plasma mass spectrometry (ICP-MS ELAN DRCII, PerkinElmer Japan Co., Ltd.). The tap water used in this study was also tested on a regular basis and found to be stable throughout the crop season, with the following properties: pH of 7.8, EC of 0.095 dS m−1, DO, TOC, N, and P of 6.85, 0.49, 0.06, and 0.07 mg L−1, respectively, with K being below the ICP-MS detection limit ( More
163 Shares199 Views
in EcologyThe photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network
1.Collatz, G. J., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441–454 (1998).ADS
PubMed
Article
PubMed CentralGoogle Scholar
2.von Fischer, J. C., Tieszen, L. L. & Schimel, D. S. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Glob. Chang. Biol. 14, 1141–1155 (2008).ADS
ArticleGoogle Scholar
3.Sage, R. F., Wedin, D. A. & Li, M. The biogeography of C4 photosynthesis: patterns and controlling factors. in C4 plant biology (eds Rowan F. Sage & Russel K. Monson) 313–373 (Academic Press, 1999).4.Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
5.Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J Exp. Bot. 68, 11–28 (2016).
Google Scholar
6.Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Ann. Rev. Plant. Biol. 63, 19–47 (2012).CAS
ArticleGoogle Scholar
7.Sayed, O. H. Crassulacean Acid Metabolism 1975–2000, a Check List. Photosynthetica 39, 339–352 (2001).CAS
ArticleGoogle Scholar
8.Andrews, J. T. & Lorimer, G. H. Rubisco: structure, mechanisms, and prospects for improvement. in The Biochemistry of Plants: A Comprehensive Treatise Vol. 10 (eds MD Haleh & NK Boardman) 132–207 (Academic Press, 1987).9.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant. Physiol. 35, 415–442 (1984).CAS
ArticleGoogle Scholar
10.Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant. Biol. 67, 107–129 (2016).CAS
PubMed
ArticleGoogle Scholar
11.Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).CAS
PubMed
ArticleGoogle Scholar
12.Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp. Bot. 70, 6495–6508 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
13.Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276 (2008).PubMed
Article
PubMed CentralGoogle Scholar
14.Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. 106, 1483–1494 (2018).CAS
ArticleGoogle Scholar
15.Wittmer, M. H. O. M., Auerswald, K., Bai, Y., Schaufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Chang. Biol. 16, 605–616 (2010).ADS
ArticleGoogle Scholar
16.Winslow, J. C., Hunt, E. R. Jr & Piper, S. C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecol. Model. 163, 153–173 (2003).CAS
ArticleGoogle Scholar
17.Haveles, A. W., Fox, D. L. & Fox-Dobbs, K. Carbon isoscapes of rodent diets in the Great Plains USA deviate from regional gradients in C4 grass abundance due to a preference for C3 plant resources. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527, 53–66 (2019).ArticleGoogle Scholar
18.Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).PubMed
Article
PubMed CentralGoogle Scholar
19.Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher‐trophic‐level consumers. Ecology 91, 1628–1638 (2010).PubMed
Article
PubMed CentralGoogle Scholar
20.Griffith, D. M. et al. Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Glob. Ecol. Biogeogr. 24, 304–313 (2015).ArticleGoogle Scholar
21.Still, C. J., Cotton, J. M. & Griffith, D. M. Assessing earth system model predictions of C4 grass cover in North America: From the glacial era to the end of this century. Glob. Ecol. Biogeogr. 28, 145–157 (2019).ArticleGoogle Scholar
22.Griffith, D. M., Cotton, J. M., Powell, R. L., Sheldon, N. D. & Still, C. J. Multi-century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution. J Biogeogr. 44, 2564–2574 (2017).ArticleGoogle Scholar
23.Hattersley, P. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57, 113–128 (1983).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
24.Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS
PubMed
Article
PubMed CentralGoogle Scholar
25.Sage, R. F., Sage, T. L., Pearcy, R. W. & Borsch, T. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94, 1992–2003 (2007).PubMed
ArticleGoogle Scholar
26.Murphy, B. P. & Bowman, D. M. Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Glob. Ecol. Biogeogr. 16, 160–169 (2007).ArticleGoogle Scholar
27.White, A. et al. AUSPLOTS rangelands survey protocols manual. (The University of Adelaide Press, 2012).28.Sparrow, B. D. et al. A vegetation and soil survey method for surveillance monitoring of rangeland environments. Front. Ecol. Evol. 8 (2020).29.Orians, G. H. & Milewski, A. V. Ecology of Australia: the effects of nutrient‐poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).PubMed
ArticleGoogle Scholar
30.Sparrow, B. et al. Our capacity to tell an Australian ecological story. in Biodiversity and Environmental Change: Monitoring, Challenges and Direction 51–84 (CSIRO Publishing Collingwood, Victoria, 2014).31.Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. (Australian Nature Conservation Agency, Canberra, 1995).32.Tokmakoff, A., Sparrow, B., Turner, D. & Lowe, A. AusPlots Rangelands field data collection and publication: Infrastructure for ecological monitoring. Future Gener. Comp. Sy. 56, 537–549 (2016).ArticleGoogle Scholar
33.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).34.Guerin, G. et al. ausplotsR: TERN AusPlots analysis package. https://cran.r-project.org/web/packages/ausplotsR/index.html (2020).35.Munroe, S. et al. ausplotsR: An R package for rapid extraction and analysis of vegetation and soil data collected by Australia’s Terrestrial Ecosystem Research Network. Preprint at https://ecoevorxiv.org/25phx/ (2020).36.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).CAS
PubMed
Article
PubMed CentralGoogle Scholar
37.Watson, L., & Dallwitz, M. J. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://www1.biologie.uni-hamburg.de/b-online/delta/angio/index.htm (1992).38.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).ADS
CAS
PubMed
ArticleGoogle Scholar
39.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).ArticleGoogle Scholar
40.Winter, K., Holtum, J. A. M. & Smith, J. A. C. Crassulacean acid metabolism: a continuous or discrete trait? New Phytol. 208, 73–78 (2015).CAS
PubMed
Article
PubMed CentralGoogle Scholar
41.Winter, K. & Holtum, J. A. How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol. 129, 1843–1851 (2002).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
42.Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).CAS
PubMed
Article
PubMed CentralGoogle Scholar
43.Winter, K. & Holtum, J. A. M. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp. Bot. 65, 3425–3441 (2014).PubMed
Article
PubMed CentralGoogle Scholar
44.Bloom, A. J. & Troughton, J. H. High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38, 35–43 (1979).ADS
PubMed
Article
PubMed CentralGoogle Scholar
45.Hancock, L. P., Holtum, J. A. M. & Edwards, E. J. The evolution of CAM photosynthesis in Australian Calandrinia reveals lability in C3+ CAM phenotypes and a possible constraint to the evolution of strong CAM. Integr. Comp. Biol. 59, 517–534 (2019).PubMed
Article
CAS
PubMed CentralGoogle Scholar
46.Guralnick, L. J., Cline, A., Smith, M. & Sage, R. F. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. J Exp. Bot. 59, 1735–1742 (2008).CAS
PubMed
Article
PubMed CentralGoogle Scholar
47.Munroe, S. et al. The Photosynthetic Pathways of Plant Species surveyed in TERN Ecosystem Surveillance Plots. Terrestrial Ecosystem Research Network (TERN) https://doi.org/10.25901/k61f-yz90 (2020).48.Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).CAS
ArticleGoogle Scholar
49.Keeley, J. E. & Rundel, P. W. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J Plant Sci. 164, S55–S77 (2003).CAS
ArticleGoogle Scholar
50.Wang, R. & Ma, L. Climate-driven C4 plant distributions in China: divergence in C4 taxa. Sci. Rep. 6, 27977 (2016).ADS
PubMed
PubMed Central
ArticleGoogle Scholar
51.Stowe, L. G. & Teeri, J. A. The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am. Nat. 112, 609–623 (1978).ArticleGoogle Scholar
52.Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. 123, 15-31 (2000).53.Guralnick, L. J., Edwards, G., Ku, M. S., Hockema, B. & Franceschi, V. Photosynthetic and anatomical characteristics in the C4–crassulacean acid metabolism-cycling plant Portulaca grandiflora. Funct. Plant Biol. 29, 763–773 (2002).CAS
PubMed
ArticleGoogle Scholar
54.Winter, K., Sage, R. F., Edwards, E. J., Virgo, A. & Holtum, J. A. M. Facultative crassulacean acid metabolism in a C3–C4 intermediate. J Exp. Bot. 70, 6571–6579 (2019).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
55.Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).CAS
PubMed
ArticleGoogle Scholar
56.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS
PubMed
ArticleGoogle Scholar
57.Ke, L., Lin, Z. & Guoxing, Z. Study of normalization method of isotopic compositions to isotope reference scales. J Chem. Pharmaceut. Res 6, 1 (2014).
Google Scholar
58.Harwood, T. et al. 9s climatology for continental Australia 1976–2005: Summary variables with elevation and radiative adjustment, version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/5afa9f7d1a552 (2016).59.Viscarra Rossel, R. et al. Soil and Landscape Grid National Soil Attribute Maps – pH – CaCl2 (3” resolution), version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/546F17EC6AB6E (2014).60.Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).CAS
PubMed
Article
PubMed CentralGoogle Scholar
61.Bohley, K. et al. Phylogeny of Sesuvioideae (Aizoaceae)–Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspect. Plant Ecol. Evol. Syst. 17, 116–130 (2015).ArticleGoogle Scholar
62.Bruhl, J. J. & Wilson, K. L. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso 23, 99–148 (2007).ArticleGoogle Scholar
63.Caddy-Retalic, S. Quantifying responses of ecological communities to bioclimatic gradients PhD thesis, University of Adelaide, School of Biological Sciences (2017).64.Carolin, R., Jacobs, S. & Vesk, M. The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust. J. Bot. 30, 387–392 (1982).ArticleGoogle Scholar
65.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. World Grass Species: Synonymy. http://www.kew.org/data/grasses-syn.html (2002).66.D’andrea, R. M., Andreo, C. S. & Lara, M. V. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid‐like metabolism induction and reversal upon re‐watering. Physiol. Plant. 152, 414–430 (2014).PubMed
Article
CAS
PubMed CentralGoogle Scholar
67.Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24, 411–439 (1993).ArticleGoogle Scholar
68.Feodorova, T. A., Voznesenskaya, E. V., Edwards, G. E. & Roalson, E. H. Biogeographic patterns of diversification and the origins of C4 in Cleome (Cleomaceae). Syst. Bot. 35, 811–826 (2010).ArticleGoogle Scholar
69.Guillaume, K., Huard, M., Gignoux, J., Mariotti, A. & Abbadie, L. Does the timing of litter inputs determine natural abundance of 13C in soil organic matter? Insights from an African tiger bush ecosystem. Oecologia 127, 295–304 (2001).ADS
CAS
PubMed
ArticleGoogle Scholar
70.Herppich, W. B. & Herppich, M. Ecophysiological investigations on plants of the genus Plectranthus (Fam. Lamiaceae) native to Yemen and southern Africa. Flora 191, 401–408 (1996).ArticleGoogle Scholar
71.Holtum, J. A. et al. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Curr. Opin. Plant Biol. 31, 109–117 (2016).CAS
PubMed
Article
PubMed CentralGoogle Scholar
72.Holtum, J. A., Hancock, L. P., Edwards, E. J. & Winter, K. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Photosynth. Res. 134, 17–25 (2017).CAS
PubMed
Article
PubMed CentralGoogle Scholar
73.Horn, J. W. et al. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504 (2014).CAS
ArticleGoogle Scholar
74.Kadereit, G., Borsch, T., Weising, K. & Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164, 959–986 (2003).CAS
ArticleGoogle Scholar
75.Koch, K. E. & Kennedy, R. A. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L under natural environmental conditions. Plant. Physiol. 69, 757–761 (1982).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
76.Madhusudana Rao, I., Swamy, P. M. & Das, V. S. R. Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions. Zeitschrift für Pflanzenphysiologie 94, 201–210 (1979).ArticleGoogle Scholar
77.Metcalfe, C. R. Anatomy of the monocotyledons. 1. Gramineae. (Clarendon Press, 1960).78.Pate, J. S., Unkovich, M. J., Erskine, P. D. & Stewart, G. R. Australian mulga ecosystems –13C and 15N natural abundances of biota components and their ecophysiological significance. Plant Cell Environ. 21, 1231–1242 (1998).CAS
ArticleGoogle Scholar
79.Schmidt, S. & Stewart, G. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
80.Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).CAS
PubMed
Article
PubMed CentralGoogle Scholar
81.Thiede, J. & Eggli, U. Crassulaceae. in Flowering Plants· Eudicots 83–118 (Springer, 2007).82.Ting, I. P. Photosynthesis of arid and subtropical succulent plants. Aliso 12, 387–406 (1989).ArticleGoogle Scholar
83.Watson, L., & Dallwitz, M. J. The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. https://www.delta-intkey.com/grass/intro.htm (1992).84.Winter, K., Garcia, M., Virgo, A. & Holtum, J. A. Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). J. Exp. Bot. 70, 6561–6570 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar More
75 Shares189 Views
in Ecology10 years of Nature Climate Change
Which individuals will survive?Observing and recording the devastating impacts of climate change on natural lifeforms has long been a keystone of the climate change ecology field. As a result of years of quality research, we now understand that climate change can reduce species numbers and fitness, cause local extinctions and generally alter where, when, how and with whom organisms live.From the point of view of biodiversity conservation, things look pretty bad. And modelling predictions suggest that they are likely to remain bad or worsen in the near future, even if we do manage to rapidly rein in our global emissions.For this reason — although there is still much more to understand about how the various aspects of climate change can impact different organisms and ecosystems — some of the most vital questions arising now relate to if, and how, natural species can persist.Biological persistence in a changing world relies on an ability to fit or adapt to new conditions, and/or an ability to move to ‘greener pastures’. I was pleased to see work from Andrew Gougherty and colleagues address both climate-change-induced maladaptation and the potential for migration to minimize this maladaptation, in work that focused on a wide-ranging North American tree species, balsam poplar (Populus balsamifera)9.Importantly, the authors did not assess the adaptive capacity of the species as a whole, but instead investigated vulnerability in the context of 81 balsam polar populations spanning North America, thus incorporating intraspecific (within species) variation that may play an important role in persistence potential. In the study, maladaptation was defined based on gene–environment associations, in this case centred on flowering-time genes, which are crucial in regulating plant seasonal growth, dormancy and reproduction. Understanding the genetic variations that underlie fitness under given environmental conditions may help understand and rapidly identify individuals with the best chances of survival under climate change.The Gougherty study uses modern methods to go beyond species-level modelling and, to understand population risks in the context of maladaptation and migration, under climate change. This, in turn, can be utilized to prioritize conservation efforts. Ultimately, we hope that climate change science cannot just observe and understand the human-caused alterations to our planet, but lead us to prevent, manage and save.Tegan Armarego-Marriott has been an editor at Nature Climate Change since 2019. More