1.Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl. Acad. Sci. USA. 114, 5775–5777 (2017).CAS
PubMed
Article
Google Scholar
2.Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. Biol. Sci. 268, 25–29 (2001).Article
Google Scholar
3.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article
Google Scholar
4.Partecke, J. & Gwinner, E. Increased sedentariness in European Blackbirds following urbanization: A consequence of local adaptation?. Ecol. Soc. Am. 88, 882–890 (2010).
Google Scholar
5.Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article
Google Scholar
6.Alberti, M., Marzluff, J. & Hunt, V. M. Urban driven phenotypic changes: Empirical observations and theoretical implications for eco-evolutionary feedback. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160029 (2017).Article
Google Scholar
7.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed
Article
Google Scholar
8.Plaza, P. I. & Lambertucci, S. A. How are garbage dumps impacting vertebrate demography, heath, and conservation?. Glob. Ecol. Conserv. 12, 9–20 (2017).Article
Google Scholar
9.Djerdali, S., Guerrero-Casado, J. & Tortosa, F. S. The effects of colony size interacting with extra food supply on the breeding success of the White Stork (Ciconia ciconia). J. Ornithol. 157, 941–947 (2016).Article
Google Scholar
10.Frixione, M. G., Casaux, R., Villanueva, C. & Alarcón, P. A. E. A recently established Kelp Gull colony in a freshwater environment supported by an inland refuse dump in Patagonia. Emu 112, 174–178 (2012).Article
Google Scholar
11.Parfitt, J., Barthel, M. & MacNaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 365, 3065–3081 (2010).12.Rumbold, D. G., Morrison, M. & Bruner, M. C. Assessing the ecological risk of a municipal solid waste landfill to surrounding wildlife: A case study in florida. Environ. Bioindic. 4, 246–279 (2009).Article
Google Scholar
13.Tortosa, F. S., Caballero, M. J. & Reyes-López, J.-L. Effect of rubbish dumps on breeding success in the White Stork in Southern Spain. Waterbirds 25, 39–43 (2002).Article
Google Scholar
14.Henry, P. Y., Wey, G. & Balança, G. Rubber band ingestion by a Rubbish Dump Dweller, the white stork (Ciconia ciconia). Waterbirds 34, 504–508 (2011).
Article
Google Scholar
15.Matejczyk, M., Płaza, G. A., Nałcz-Jawecki, G., Ulfig, K. & Markowska-Szczupak, A. Estimation of the environmental risk posed by landfills using chemical, microbiological and ecotoxicological testing of leachates. Chemosphere 82, 1017–1023 (2011).CAS
PubMed
Article
ADS
Google Scholar
16.Pineda-Pampliega, J. et al. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. Sci. Total Environ. 145197, https://doi.org/10.1016/j.scitotenv.2021.145197 (2021).17.de la Casa-Resino, I., Hernández-Moreno, D., Castellano, A., Pérez-López, M. & Soler, F. Breeding near a landfill may influence blood metals (Cd, Pb, Hg, Fe, Zn) and metalloids (Se, As) in white stork (Ciconia ciconia) nestlings. Ecotoxicology 23, 1377–1386 (2014).PubMed
Article
CAS
Google Scholar
18.de la Casa-Resino, I., Hernández-Moreno, D., Castellano, A., Pérez-López, M. & Soler, F. Chlorinated pollutants in blood of White stork nestlings (Ciconia ciconia) in different colonies in Spain. Chemosphere 118, 367–372 (2015).PubMed
Article
ADS
CAS
Google Scholar
19.Profus, P. Population changes and breeding ecology of the White Stork Ciconia ciconia L. in Poland against a background of the European population. Synth. Stud. Nat. 50, 1–155 (2006).20.Reif, J., Böhning-Gaese, K., Flade, M., Schwarz, J. & Schwager, M. Population trends of birds across the iron curtain: Brain matters. Biol. Conserv. 144, 2524–2533 (2011).Article
Google Scholar
21.Van den Bossche, W. et al. Eastern European White Stork populations: Migration studies and elaboration of conservation measures. Skripten 22 (2002).22.Bairlein, F. Population studies of White Storks Ciconia ciconia in Europe, with reference to the western population. in Bird Population Studies: Relevance to Conservation and Management (eds. Perrins, C., Lebreton, J. D. & Hirons, R.) 207–229 (Oxford University Press, 1991).23.Kanyamibwa, S., Bairlein, F. & Schierer, A. Comparison of survival rates between populations of the White Stork Ciconia ciconia in Central Europe. Ornis Scand. 24, 297 (2007).Article
Google Scholar
24.Tortosa, F. S., Manez, M. & Barcell, M. Wintering white storks (Ciconia ciconia) in south west Spain in the years 1991 and 1992. Vogelwarte 38, 41–45 (1995).
Google Scholar
25.Kosicki, J. Z., Profus, P., Dolata, P. T. & Tobółka, M. Food composition and energy demand of the White Stork Ciconia ciconia breeding population. Literature survey and preliminary results from Poland. in Bogucki Wydawnictwo Naukowe, (eds. Tryjanowski, P., Sparks, T. & Jerzak, L.) 169–183 (Bogucki Wydawnictwo Naukowe, 2006).26.Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1–13 (2015).
Google Scholar
27.Djerdali, S., Guerrero-Casado, J. & Tortosa, F. S. Food from dumps increases the reproductive value of last laid eggs in the White Stork Ciconia ciconia. Bird Study 63, 107–114 (2016).Article
Google Scholar
28.Ciach, M. & Kruszyk, R. Foraging of White Storks Ciconia ciconia on rubbish dumps on non-breeding grounds. Waterbirds 33, 101–104 (2010).Article
Google Scholar
29.Kruszyk, R. & Ciach, M. White Storks, Ciconia ciconia, forage on rubbish dumps in Poland-a novel behaviour in population. Eur. J. Wildl. Res. 56, 83–87 (2010).Article
Google Scholar
30.Bialas, J. T., Dylewski, Ł & Tobolka, M. Determination of nest occupation and breeding effect of the white stork by human-mediated landscape in Western Poland. Environ. Sci. Pollut. Res. 27, 4148–4158 (2020).CAS
Article
Google Scholar
31.Tobolka, M., Sparks, T. H. & Tryjanowski, P. Does the White Stork Ciconia ciconia reflect farmland bird diversity?. Ornis Fenn. 89, 222–228 (2012).
Google Scholar
32.Belant, J. L., Seamans, T. W., Gabrey, S. W. & Dolbeer, R. A. Abundance of gulls and other birds at landfills in Northern Ohio. Am. Midl. Nat. 134, 30 (1995).33.Zorrozua, N. et al. Evaluating the effect of distance to different food subsidies on the trophic ecology of an opportunistic seabird species. J. Zool. https://doi.org/10.1111/jzo.12759 (2020).Article
Google Scholar
34.Obukhova, N. Y. Nesting dynamics of corvids (Corvidae) in the city of Moscow and Moscow Oblast. Biol. Bull. 45, 1096–1105 (2018).Article
Google Scholar
35.Steigerwald, E. C., Igual, J. M., Payo-Payo, A. & Tavecchia, G. Effects of decreased anthropogenic food availability on an opportunistic gull: Evidence for a size-mediated response in breeding females. Ibis (Lond. 1859). 157, 439–448 (2015).36.Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).Article
Google Scholar
37.Kaługa, I., Bochenski, M. & Jerzak, L. Factors influencing fledgling success of the White Stork Ciconia ciconia in Eastern Poland. in The White Stork: Studies in Biology, Ecology and Conservation (eds. Jerzak, L., Shephard, J., Aquirre, J. I., Shamoun-Baranes, J. & Tryjanowski, P.) 137–161 (Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, 2016).38.Tobolka, M., Dylewski, L., Wozna, J. T. & Zolnierowicz, K. M. How weather conditions in non-breeding and breeding grounds affect the phenology and breeding abilities of white storks. Sci. Total Environ. 636, 512–518 (2018).CAS
PubMed
Article
ADS
Google Scholar
39.Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).PubMed
Article
ADS
CAS
Google Scholar
40.Tobolka, M., Zolnierowicz, K. M. & Reeve, N. F. The effect of extreme weather events on breeding parameters of the White Stork Ciconia ciconia. Bird Study 62, 377–385 (2015).Article
Google Scholar
41.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 1–12 (2018).Article
Google Scholar
42.Nowakowski, J. J. Habitat structure and breeding parameters of the White Stork Ciconia ciconia in the Kolno Upland (NE Poland). Acta Ornithol. 38, 39–46 (2003).Article
Google Scholar
43.Janiszewski, T., Minias, P. & Wojciechowski, Z. Occupancy reliably reflects territory quality in a long-lived migratory bird, the white stork. J. Zool. 291, 178–184 (2013).Article
Google Scholar
44.Radović, A., Kati, V., Perčec Tadić, M., Denac, D. & Kotrošan, D. Modelling the spatial distribution of white stork Ciconia ciconia breeding populations in Southeast Europe. Bird Study 62, 106–114 (2015).45.Dyderski, M. K. & Jagodziński, A. M. Seedling survival of Prunus serotina Ehrh., Quercus rubra L. and Robinia pseudoacacia L. in temperate forests of Western Poland. For. Ecol. Manag. 450, 117498 (2019).46.Biecek, P. Dalex: Explainers for complex predictive models in R. J. Mach. Learn. Res. 19, 1–14 (2018).MATH
Google Scholar
47.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article
Google Scholar
48.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Google Scholar
49.Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. R Package Vers. 1, 55 (2007).
Google Scholar
50.Dimitriadou, A. E., Hornik, K., Leisch, F., Meyer, D. & Weingessel, A. Misc functions of the Department of Statistics (e1071), TU Wien. R Package 1, 5–24 (2008).
Google Scholar
51.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. 67 (2015).52.Bartoń, K. MuMIn: Multi-Model Inference. (R Package Version 1.42.1., 2018).53.Wood, S. & Scheipl, F. Package ‘gamm4’. in Generalized Additive Mixed Model Using mgcv lme4 (2015).54.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2016).55.Blanco, G. Population dynamics and communal roosting of White Storks foraging at a Spanish refuse dump. Colon. Waterbirds 19, 273–276 (1996).Article
Google Scholar
56.Massemin-Challet, S. et al. The effect of migration strategy and food availability on White Stork Ciconia ciconia breeding success. Ibis (Lond. 1859). 148, 503–508 (2006).57.Tortosa, F. S., Pérez, L. & Hillström, L. Effect of food abundance on laying date and clutch size in the white stork Ciconia ciconia. Bird Study 50, 112–115 (2003).Article
Google Scholar
58.Djerdali, S., Tortosa, F. S., Hillstrom, L. & Doumandji, S. Food supply and external cues limit the clutch size and hatchability in the White Stork Ciconia ciconia. Acta Ornithol. 43, 145–150 (2008).Article
Google Scholar
59.Höfle, U. et al. Foraging at solid urban waste disposal sites as risk factor for cephalosporin and colistin resistant Escherichia coli carriage in White Storks (Ciconia ciconia). Front. Microbiol. 11, 1–13 (2020).Article
Google Scholar
60.Hmamouchi, M. J., Agharroud, K., Dahmani, J. & Hanane, S. Seeking the least urbanized landscape: white stork nest abundance variation in a Mediterranean capital city. Eur. J. Wildl. Res. 66 (2020).61.Hmamouchi, M. J., Agharroud, K., Dahmani, J. & Hanane, S. Landscape and coloniality are robust predictors of White Stork nest habitat selection in a coastal urban environment. Estuar. Coast. Shelf Sci. 242, 106835 (2020).Article
Google Scholar
62.Chenchouni, H. Variation in White Stork (Ciconia ciconia) diet along a climatic gradient and across rural-to-urban landscapes in North Africa. Int. J. Biometeorol. 61, 549–564 (2016).PubMed
Article
Google Scholar
63.Martín-Maldonado, B. et al. Urban birds: An important source of antimicrobial resistant Salmonella strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 72, 101519 (2020).PubMed
Article
Google Scholar
64.Rey Benayas, J. M. et al. Short-term dynamics and spatial pattern of nocturnal birds inhabiting a mediterranean agricultural mosaic. Ardeola 57, 303–320 (2010).65.Zhao, Q. et al. Land-use change increases climatic vulnerability of migratory birds: Insights from integrated population modelling. J. Anim. Ecol. 88, 1625–1637 (2019).PubMed
Article
Google Scholar
66.López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: Implications for farmland bird conservation. Bird Conserv. Int. 21, 328–341 (2011).Article
Google Scholar
67.Brambilla, M., Gustin, M., Cento, M., Ilahiane, L. & Celada, C. Habitat, climate, topography and management differently affect occurrence in declining avian species: Implications for conservation in changing environments. Sci. Total Environ. 742, 140663 (2020).CAS
PubMed
Article
ADS
Google Scholar
68.Brambilla, M., Rubolini, D. & Guidali, F. Between land abandonment and agricultural intensification: habitat preferences of Red-backed Shrikes Lanius collurio in low-intensity farming conditions. Bird Study 54, 160–167 (2007).Article
Google Scholar
69.Harmange, C., Bretagnolle, V., Sarasa, M. & Pays, O. Changes in habitat selection patterns of the gray partridge Perdix perdix in relation to agricultural landscape dynamics over the past two decades. Ecol. Evol. 9, 5236–5247 (2019).PubMed
PubMed Central
Article
Google Scholar
70.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key?. Trends Ecol. Evol. 18, 182–188 (2003).Article
Google Scholar
71.Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).Article
Google Scholar
72.Robinson, R. A. & Sutherland, W. J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 39, 157–176 (2002).Article
Google Scholar
73.Donald, P. F., Sanderson, F. J., Burfield, I. J. & van Bommel, F. P. J. Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric. Ecosyst. Environ. 116, 189–196 (2006).Article
Google Scholar
74.Sunde, P., Thorup, K., Jacobsen, L. B. & Rahbek, C. Weather conditions drive dynamic habitat selection in a generalist predator. PLoS ONE 9, 1–12 (2014).Article
CAS
Google Scholar
75.Tauler-Ametller, H., Hernández-Matías, A., Pretus, J. L. L. & Real, J. Landfills determine the distribution of an expanding breeding population of the endangered Egyptian vulture neophron percnopterus. Ibis (Lond. 1859). 159, 757–768 (2017).76.Olea, P. P. & Baglione, V. Population trends of Rooks Corvus frugilegus in Spain and the importance of refuse tips. Ibis (Lond. 1859). 150, 98–109 (2008).77.Rachel, M. Foraging sites of breeding White Storks Ciconia ciconia in the South Wielkopolska region. in The White Stork in Poland: Studies in Biology, Ecology and Conservation (eds. Tryjanowski, P., Sparks, T. H. & Jerzak, L.) 161–167 (Bogucki Wydawnictwo Naukowe, 2006).78.Kamiński, P. et al. Do agricultural environments increase the reproductive success of White Stork Ciconia ciconia populations in South-Western Poland?. Sci. Total Environ. 702, 134503 (2020).PubMed
Article
ADS
CAS
Google Scholar
79.Denac, D. Resource-dependent weather effect in the reproduction of the White Stork Ciconia ciconia. Ardea 94, 233–240 (2006).
Google Scholar
80.Jovani, R. & Tella, J. L. Age-related environmental sensitivity and weather mediated nestling mortality in white storks Ciconia ciconia. Ecography (Cop.) 27, 611–618 (2004).Article
Google Scholar
81.Tobolka, M., Kuźniak, S., Zolnierowicz, K. M., Sparks, T. H. & Tryjanowski, P. New is not always better: Low breeding success and different occupancy patterns in newly built nests of a long-lived species, the white stork Ciconia ciconia. Bird Study 60, 399–403 (2013).Article
Google Scholar
82.Tryjanowski, P., Kosicki, J. Z., Kuźniak, S. & Sparks, T. H. Long-term changes and breeding success in relation to nesting structures used by the white stork, Ciconia ciconia. Ann. Zool. Fennici 46, 34–38 (2009).Article
Google Scholar
83.Pinowski, J., Pinowska, B., de Graaf, R., Visser, J. & Dziurdzik, B. Influence of feeding habitat on prey capture rate and diet composition of White Stork Ciconia ciconia (L.). Stud. Nat. A 37, 59–85 (1991).84.Si Bachir, A. et al. Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the white stork (Ciconia ciconia). J. Ornithol. 154, 481–489 (2013).85.Moritzi, M. et al. Time budget, habitat use and breeding success of white storks Ciconia ciconia under variable foraging conditions during the breeding season in Switzerland. Ardea 89, 457–470 (2001).
Google Scholar
86.Heinrich, B. Neophilia and exploration in juvenile common ravens, Corvus corax. Anim. Behav. 50, 695–704 (1995).Article
Google Scholar
87.Greenberg, R. The role of neophobia and neophilia in the development of innovative behaviour of birds. in Animal Innovation (eds. Reader, S. & Laland, K.) 175–196 https://doi.org/10.1093/acprof:oso/9780198526223.003.0008 (Oxford University Press, 2003).88.Biondi, M. L., Bó, M. S. & Vassallo, A. I. Inter-individual and age diferences in exploration, neophobia and problem-solving ability in a Neotropical raptor (Milvago chimango). Anim. Cogn. 13, 701–710 (2010).PubMed
Article
Google Scholar
89.Arizaga, J. et al. Importance of artificial stopover sites through avian migration flyways: a landfill-based assessment with the White Stork Ciconia ciconia. Ibis (Lond. 1859). 160, 542–553 (2018).90.Antczak, M. & Dolata, P. T. Night roosts, flocking behaviour and habitat use of the non-breeding fraction and migrating White Storks Ciconia ciconia in the Wielkopolska region (SW Poland. in The White Stork in Poland: Studies in Biology, Ecology and Conservation (eds. Tryjanowski, P., Sparks, T. & Jerzak, L.) 209–224 (Bogucki Wydawnictwo Naukowe, 2006).91.Blanco, G. Role of refuse as food for migrant, floater and breeding Black Kites (Milvus migrans). J. Raptor Res. 31, 71–76 (1997).
Google Scholar
92.Migura-Garcia, L. et al. mcr-Colistin resistance genes mobilized by Inc X4, IncHI2, and IncI2 plasmids in Escherichia coli of pigs and White Stork in Spain. Front. Microbiol. 10, 1–11 (2020).Article
Google Scholar
93.Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88, 87–98 (2000).Article
Google Scholar More