Biogeography of ammonia oxidizers in New England and Gulf of Mexico salt marshes and the potential importance of comammox
1.Prosser, J. I. & Nicol, G. W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10, 2931–2941 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Bernhard, A. E. & Bollmann, A. Estuarine nitrifiers: new players, patterns and processes. Estuar. Coast. Shelf Sci. 88, 1–11 (2010).CAS
Article
Google Scholar
3.Martiny, J. B. H., Eisen, J., Penn, K., Allison, S. D. & Horner-Devine, M. C. Drivers of bacterial beta-diversity depend on spatial scale. Proc. Natl Acad. Sci. USA 108, 7850–7854 (2011).4.Nelson, M. B., Martiny, A. C. & Martiny, J. B. H. Global biogeography of microbial nitrogen-cycling traits in soil. Proc. Natl Acad. Sci. USA 113, 8033–8040 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
5.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Marton, J. M., Roberts, B. J., Bernhard, A. E. & Giblin, A. E. Spatial and temporal variability of nitrification potential and ammonia-oxidizer abundances in Louisiana salt marshes. Estuaries Coast. 38, 1824–1837 (2015).CAS
Article
Google Scholar
7.Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R. & Stahl, D. A. Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461, 976–981 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Dimitri Kits, K. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
9.Hink, L., Nicol, G. W. & Prosser, J. I. Archaea produce lower yields of N2O than bacteria during aerobic ammonia oxidation in soil. Environ. Microbiol. 19, 4829–4837 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
10.Bernhard, A. E., Donn, T., Giblin, A. E. & Stahl, D. A. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environ. Microbiol. 7, 1289–1297 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Moin, N. S., Nelson, K. A., Bush, A. & Bernhard, A. E. Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Appl. Environ. Microbiol. 75, 7461–7468 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Bernhard, A. E. et al. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Appl. Environ. Microbiol. 76, 1285–1289 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Francis, C. A., O’Mullan, G. D. & Ward, B. B. Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1, 129–140 (2003).CAS
Article
Google Scholar
14.Ward, B. B. et al. Ammonia-oxidizing bacterial community composition in estuarine and oceanic environments assessed using a functional gene microarray. Environ. Microbiol. 9, 2522–2538 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Mills, H. J. et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico. Appl. Environ. Microbiol. 74, 4440–4453 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Newell, S. E. et al. A shift in the archaeal nitrifier community in response to natural and anthropogenic disturbances in the northern Gulf of Mexico. Environ. Microbiol. Rep. 6, 106–112 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Bernhard, A. E., Sheffer, R., Giblin, A. E., Marton, J. M. & Roberts, B. J. Population dynamics and community composition of ammonia oxidizers in salt marshes after the Deepwater Horizon oil spill. Front. Microbiol. 7, 854 (2016).PubMed
PubMed Central
Google Scholar
18.Bernhard, A. E., Chelsky, A., Giblin, A. E. & Roberts, B. J. Influence of local and regional drivers on spatial and temporal variation of ammonia-oxidizing communities in Gulf of Mexico salt marshes. Environ. Microbiol. Rep. 11, 825–834 (2019).CAS
PubMed
PubMed Central
Google Scholar
19.Nelson, K. A., Moin, N. S. & Bernhard, A. E. Archaeal diversity and the prevalence of Crenarchaeota in salt marsh sediments. Appl. Environ. Microbiol. 75, 4211–4215 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Peng, X. et al. Differential responses of ammonia-oxidizing archaea and bacteria to long-term fertilization in a New England salt marsh. Front. Microbiol. 3, 445 (2012).PubMed
PubMed Central
Google Scholar
21.Bernhard, A. E., Marshall, D. & Yiannos, L. Increased variability of microbial communities in restored salt marshes nearly 30 years after tidal flow restoration. Estuaries Coast. 35, 1049–1059 (2012).CAS
Article
Google Scholar
22.Marton, J. M. & Roberts, B. J. Spatial variability of phosphorus sorption dynamics in Louisiana salt marshes. J. Geophys. Res. Biogeosci. 119, 451–465 (2014).CAS
Article
Google Scholar
23.Hill, T. D. & Roberts, B. J. Effects of seasonality and environmental gradients on Spartina alterniflora allometry and primary production. Ecol. Evol. 7, 9676–9688 (2017).PubMed
PubMed Central
Article
Google Scholar
24.Bernhard, A. E., Tucker, J., Giblin, A. E. & Stahl, D. A. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environ. Microbiol. 9, 1439–1447 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Schutte, C. A., Marton, J. M., Bernhard, A. E., Giblin, A. E. & Roberts, B. J. No evidence for long-term impacts of oil spill contamination on salt marsh soil nitrogen cycling processes. Estuaries Coast. 43, 865–879 (2020).Article
Google Scholar
26.Bernhard, A. E., Dwyer, C., Idrizi, A., Bender, G. & Zwick, R. Long-term impacts of disturbance on nitrogen-cycling bacteria in a New England salt marsh. Front. Microbiol. 6 https://doi.org/10.3389/fmicb.2015.00046 (2015).27.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8 https://doi.org/10.3389/fmicb.2017.01508 (2017).28.Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl Acad. Sci. USA 102, 14683–14688 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Park, S.-J., Park, B.-J. & Rhee, S.-K. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12, 605–615 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
33.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).34.Turner, R. E., Rabalais, N. N. & Justic, D. Predicting summer hypoxia in the northern Gulf of Mexico: riverine N, P, and Si loading. Mar. Pollut. Bull. 52, 139–148 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, 6475 (2020).Article
CAS
Google Scholar
36.Dang, H. et al. Diversity, abundance, and spatial distribution of sedimet ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl. Environ. Microbiol. 76, 4691–4702 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Sims, A., Zhang, Y., Gajaraj, S., Brown, P. B. & Hu, Z. Toward the development of microbial indicators for wetland assessment. Water Res. 47, 1711–1725 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Zhang, Q. -F. et al. Impacts of Spartina alterniflora invasion on abundance and composition of ammonia oxidizers in estuarine sediment. J. Soils Sediment. 11, 1020–1031 (2011).Article
Google Scholar
39.Jin, T. et al. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Appl. Microbiol. Biotechnol. 90, 1137–1145 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Meinhardt, K. A. et al. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria. Environ. Microbiol. Rep. 7, 354–363 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Marshall, A. et al. Primer selection influences abundance estimates of ammonia oxidizing archaea in coastal marine sediments. Mar. Environ. Res. 140, 90–95 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Koops, H. P. & Pommerening-Roser, A. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol. 37, 1–9 (2001).CAS
Article
Google Scholar
43.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed
Article
PubMed Central
Google Scholar
44.Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. 103, 626–631 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Hendershot, J. N., Read, Q. D., Henning, J. A., Sanders, N. J. & Classen, A. T. Consistently inconsistent drivers of microbial diversity and abundance at macroecological scales. Ecology 98, 1757–1763 (2017).PubMed
Article
PubMed Central
Google Scholar
47.Hitchcock, J. N., Mitrovic, S. M., Kobayashi, T. & Westhorpe, D. P. Responses of estuarine bacterioplankton, phytoplankton and zooplankton to dissolved organic carbon (DOC) and inorganic nutrient additions. Estuaries Coast. 33, 78–91 (2010).CAS
Article
Google Scholar
48.Guo, X. -P. et al. Bacterial community structure in response to environmental impacts in the intertidal sediments along the Yangtze Estuary, China. Mar. Pollut. Bull. 126, 141–149 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Howarth, R. W. Nutrient limitation of net primary production in marine ecosystems. Annu. Rev. Ecol. 19, 89–110 (1988).Article
Google Scholar
50.Murrell, M. C. et al. Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, Florida, USA. Bull. Mar. Sci. 70, 155–167 (2002).
Google Scholar
51.Johnson, M. W., Heck, K. L. Jr & Fourqurean, J. W. Nutrient content of seagrasses and epiphytes in the northern Gulf of Mexico: evidence of phosphorus and nitrogen limitation. Aquat. Bot. 85, 103–111 (2006).CAS
Article
Google Scholar
52.Rysgaard, S., Thastum, P., Dalsgaard, T., Christensen, P. B. & Sloth, N. P. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries 22, 21–30 (1999).CAS
Article
Google Scholar
53.Peng, X. et al. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. J. Geophys. Res. Biogeosci. 121, 2082–2095 (2016).CAS
Article
Google Scholar
54.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
55.Taylor, A. E., Giguere, A. T., Zoebelein, C. M., Myrold, D. D. & Bottomley, P. J. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of archaea and bacteria. ISME J. 11, 896–908 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Ouyang, Y., Norton, J. M. & Stark, J. M. Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil. Soil Biol. Biochem. 113, 161–172 (2017).CAS
Article
Google Scholar
57.Mukhtar, H., Lin, Y. -P., Lin, C. -M. & Lin, Y. -R. Relative abundance of ammonia oxidizing archaea and bacteria influences soil nitrification responses to temperature. Microorganisms 7, 526 (2019).
Google Scholar
58.Fierer, N., Carney, K. M., Horner-Devine, M. C. & Megonigal, J. P. The biogeography of ammonia-oxidizing bacterial communities in soil. Microb. Ecol. 58, 435–445 (2009).PubMed
Article
PubMed Central
Google Scholar
59.Park, H.-D., Lee, S.-Y. & Hwang, S. Redundancy analysis demonstration of the relevance of temperature to ammonia-oxidizing bacterial community compositions in a full-scale nitrifying bioreactor treating saline wastewater. J. Microbiol. Biotechnol. 19, 346–350 (2009).PubMed
Article
CAS
PubMed Central
Google Scholar
60.Avrahami, S., Liesack, W. & Conrad, R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 5, 691–705 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Avrahami, S. & Conrad, R. Patterns of community change among ammonia oxidizers in meadow soils upon long-term incubation at different temperatures. Appl. Environ. Microbiol. 69, 6152–6164 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Seitzinger, S. P., Gardner, W. S. & Spratt, A. K. The effect of salinity on ammonium sorption in aquatic sediments—implications for benthic nutrient recycling. Estuaries 14, 167–174 (1991).CAS
Article
Google Scholar
63.Dollhopf, S. L. et al. Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Appl. Environ. Microbiol. 71, 240–246 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Beman, J. M., Bertics, V. J., Braunschweiler, T. & Wilson, J. M. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing archaea and bacteria in marine sediment depth profiles from Catalina Island, California. Front. Microbiol. 3, 263 (2012).CAS
PubMed
PubMed Central
Google Scholar
65.Nicol, G. W., Leininger, S., Schleper, C. & Prosser, J. I. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10, 2966–2978 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Lehtovirta, L. E., Prosser, J. I. & Nicol, G. W. Soil pH regulates the abundance and diversity of group 1.1c Crenarchaeota. FEMS Microbiol. Ecol. 70, 367–376 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Bello, M. O., Thion, C., Gubry-Rangin, C. & Prosser, J. I. Differential sensitivity of ammonia oxidising archaea and bacteria to matric and osmotic potential. Soil Biol. Biochem. 129, 184–190 (2019).CAS
Article
Google Scholar
68.Fuchslueger, L. et al. Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland. Biogeosciences. 11, 6003–6015 (2014).Article
Google Scholar
69.Thion, C. & Prosser, J. I. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol. Ecol. 90, 380–389 (2014).CAS
PubMed
PubMed Central
Google Scholar
70.Fowler, S. J., Palomo, A., Dechesne, A., Mines, P. D. & Smets, B. F. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20, 1002–1015 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
71.How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T. & Curtis, T. P. Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification. Sci. Total Environ. 693, 133526 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
72.Gonzalez-Martinez, A., Rodriguez-Sanchez, A., van Loosdrecht, M. C. M., Gonzalez-Lopez, J. & Vahala, R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ. Sci. Pollut. Res. 23, 25501–25511 (2016).CAS
Article
Google Scholar
73.Wang, D. -Q., Zhou, C. -H., Nie, M., Gu, J. -D. & Quan, Z. -X. Abundance and niche specificity of different types of complete ammonia oxidizers (comammox) in salt marshes covered by different plants. Sci. Total Environ. 768, 144933 (2021).
Google Scholar
74.Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 84, e01390 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Yu, C. et al. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Appl. Microbiol. Biotechnol. 102, 9363–9377 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Zhao, Z. et al. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Sci. Total Environ. 691, 146–155 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar More