Ecology
Subterms
More stories
213 Shares139 Views
in EcologyHigh insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon
1.Kauffman, E. B. & Kramer, L. D. Zika virus mosquito vectors: competence, biology, and vector control. J. Infect. Dis. 216, S976–S990 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
2.Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala Cameroon. BMC Infect. Dis. 12, 275 (2012).PubMed
PubMed Central
ArticleGoogle Scholar
3.Turell, M. J. et al. Vector competence of selected African mosquito (Diptera: Culicidae) Species for Rift Valley fever virus. J. Med. Entomol. 45, 102–108 (2008).PubMed
ArticleGoogle Scholar
4.Mbida, A. M. et al. Preliminary investigation on aggressive culicidae fauna and malaria transmission in two wetlands of the Wouri river estuary Littoral-Cameroon. J. Entomol. Zool. Stud. 4, 105–110 (2016).
Google Scholar
5.Farajollahi, A., Fonseca, D. M., Kramer, L. D. & Kilpatrick, A. M. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 11, 1577–1585 (2011).PubMed
PubMed Central
ArticleGoogle Scholar
6.Weissenböck, H., Hubálek, Z., Bakonyi, T. & Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280 (2010).PubMed
ArticleGoogle Scholar
7.Antonio-Nkondjio, C., Sandjo, N. N., Awono-Ambene, P. & Wondji, C. S. Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: key parameters for success. Parasit. Vectors 11, 57 (2018).PubMed
PubMed Central
ArticleGoogle Scholar
8.Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).PubMed
PubMed Central
ArticleGoogle Scholar
9.Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).PubMed
PubMed Central
ArticleGoogle Scholar
10.Talipouo, A. et al. Comparative study of Culicidae biodiversity of Manoka island and Youpwe mainland area, Littoral Cameroon. Int. J. Biosci. 10, 9–18 (2017).ArticleGoogle Scholar
11.PNLP. Plan Stratégique National 2019–2023. (2019).12.Antonio-Nkondjio, C. et al. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasit. Vectors 10, 472 (2017).PubMed
PubMed Central
ArticleGoogle Scholar
13.Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).CAS
PubMed Central
Article
PubMedGoogle Scholar
14.Chouaïbou, M. et al. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae sl from an area of extensive cotton cultivation in Northern Cameroon. Trop. Med. Int. Health 13, 476–486 (2008).PubMed
ArticleGoogle Scholar
15.Nwane, P. et al. Trends in DDT and pyrethroid resistance in Anopheles gambiaes. s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect. Dis. 9, 163 (2009).PubMed
PubMed Central
Article
CASGoogle Scholar
16.Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155 (2015).PubMed
PubMed Central
Article
CASGoogle Scholar
17.Fossog, B. T. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1–12 (2013).ArticleGoogle Scholar
18.Antonio-Nkondjio, C. et al. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit. Vectors 12, 501 (2019).PubMed
PubMed Central
ArticleGoogle Scholar
19.Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).CAS
PubMed
ArticleGoogle Scholar
20.Pocquet, N. et al. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean. PLoS ONE 8, 77855 (2013).ADS
Article
CASGoogle Scholar
21.Samantsidis, G.-R. et al. ‘What I cannot create, I do not understand’: functionally validated synergism of metabolic and target site insecticide resistance. Proc. R. Soc. B Biol. Sci. 287, 20200838 (2020).CAS
ArticleGoogle Scholar
22.Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin West Africa. Acta Trop. 101, 207–216 (2007).CAS
PubMed
ArticleGoogle Scholar
23.Yadouléton, A. et al. Insecticide resistance status in Culex quinquefasciatus in Benin. Parasit. Vectors 8, 17 (2015).PubMed
PubMed Central
Article
CASGoogle Scholar
24.Xu, Q., Wang, H., Zhang, L. & Liu, N. Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. Gene 379, 62–67 (2006).CAS
PubMed
ArticleGoogle Scholar
25.Martinez-Torres, D. et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pestic. Sci. 55, 1012–1020 (1999).CAS
ArticleGoogle Scholar
26.Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).CAS
PubMed
ArticleGoogle Scholar
27.Djogbénou, L., Akogbéto, M. & Chandre, F. Presence of insensitive acetylcholinesterase in wild populations of Culex pipiens quinquefasciatus from Benin. Acta Trop. 107, 272–274 (2008).PubMed
Article
CASGoogle Scholar
28.Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 78 (2012).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
29.Tmimi, F.-Z. et al. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Parasit. Vectors 11, 51 (2018).PubMed
PubMed Central
Article
CASGoogle Scholar
30.Kothera, L. et al. Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S. PLoS ONE 14, (2019).31.Matowo, N. S. et al. Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit. Vectors 12, 413 (2019).PubMed
PubMed Central
Article
CASGoogle Scholar
32.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).CAS
PubMed
ArticleGoogle Scholar
33.Huang, Y. et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasit. Vectors 11, 6 (2018).PubMed
PubMed Central
Article
CASGoogle Scholar
34.Cameroun fiche pays populationData.net 2020. https://www.populationdata.net/pays/cameroun/.35.Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé Cameroon. Parasite 27, 91 (2011).
Google Scholar
36.Edwards, F. W. Mosquitoes of the Ethiopian Region. III.-Culicine adults and pupae. Mosquitoes Ethiop. Reg. III-Culicine Adults Pupae (1941).37.Jupp, P. G. Mosquitoes of Southern Africa: culicinae and toxorhynchitinae. (Ekogilde Publishers, 1996).38.Organization, W. H. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. (2016).39.Feyereisen, R. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Manag. Sci. 71, 793–800 (2015).CAS
PubMed
ArticleGoogle Scholar
40.Smith, J. L. & Fonseca, D. M. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 70, 339–345 (2004).CAS
PubMed
ArticleGoogle Scholar
41.Scott, J. G., Yoshimizu, M. H. & Kasai, S. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic. Biochem. Physiol. 120, 68–76 (2015).CAS
PubMed
ArticleGoogle Scholar
42.Bisset, J., Rodríguez, M. M. & Fernández, D. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J. Med. Entomol. 43, 1185–1189 (2006).CAS
PubMed
ArticleGoogle Scholar
43.Low, V. L. et al. Current susceptibility status of Malaysian Culex quinquefasciatus (Diptera: Culicidae) against DDT, propoxur, malathion, and permethrin. J. Med. Entomol. 50, 103–111 (2013).CAS
PubMed
ArticleGoogle Scholar
44.Djogbénou, L., Noel, V. & Agnew, P. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar. J. 9, 12 (2010).PubMed
PubMed Central
Article
CASGoogle Scholar
45.Labbé, P. et al. Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Mol. Biol. Evol. 24, 1056–1067 (2007).PubMed
Article
CASGoogle Scholar
46.Delannay, C. et al. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS ONE 13, e0199615 (2018).PubMed
PubMed Central
Article
CASGoogle Scholar
47.Georghiou, G. P. & Pasteur, N. Organophosphate Resistance and Esterase Pattern in a Natural Population of the Southern House Mosquito from California. J. Econ. Entomol. 73, 489–492 (1980).CAS
ArticleGoogle Scholar
48.Xu, W. et al. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. Pestic. Biochem. Physiol. 142, 77–82 (2017).CAS
PubMed
ArticleGoogle Scholar
49.Gong, Y., Li, T., Feng, Y. & Liu, N. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci. Rep. 7, 1–12 (2017).Article
CASGoogle Scholar
50.Komagata, O., Kasai, S. & Tomita, T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40, 146–152 (2010).CAS
PubMed
ArticleGoogle Scholar
51.Liu, N., Li, T., Reid, W. R., Yang, T. & Zhang, L. Multiple Cytochrome P450 Genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes culex quinquefasciatus. PLoS ONE 6, e23403 (2011).ADS
CAS
PubMed
PubMed Central
ArticleGoogle Scholar
52.Gordon, J. R. & Ottea, J. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 105, 971–978 (2012).CAS
PubMed
ArticleGoogle Scholar
53.Mouches, C. et al. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. 87, 2574–2578 (1990).ADS
CAS
PubMed
ArticleGoogle Scholar
54.Pasteur, N., Nancé, E. & Bons, N. Tissue localization of overproduced esterases in the mosquito Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 38, 791–801 (2001).CAS
PubMed
ArticleGoogle Scholar
55.Achaleke, J., Martin, T., Ghogomu, R. T., Vaissayre, M. & Brévault, T. Esterase-mediated resistance to pyrethroids in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Central Africa. Pest Manag. Sci. Former. Pestic. Sci. 65, 1147–1154 (2009).CAS
ArticleGoogle Scholar
56.Simma, E. A. et al. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST Manag. Sci. 75, 1808–1818 (2019).CAS
PubMed
ArticleGoogle Scholar
57.Subra, R. Biology and control of Culex pipiens quinquefasciatus Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).CAS
ArticleGoogle Scholar More
238 Shares159 Views
in EcologyComparing sterile male releases and other methods for integrated control of the tiger mosquito in temperate and tropical climates
1.Smith, C. E. G. The history of dengue in tropical asia and its probable relationship to the mosquito aedes aegypti. J. Trop. Med. Hyg. 59, 243–51 (1956).CAS
PubMedGoogle Scholar
2.Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosquito Control Assoc. 14, 83–94 (1998).CASGoogle Scholar
3.Lounibos, L. P. Invasions by insect vectors of human disease. Ann. Rev. Entomol. 47, 233–266. https://doi.org/10.1146/annurev.ento.47.091201.145206 (2002).CAS
ArticleGoogle Scholar
4.Medley, K. A., Jenkins, D. G. & Hoffman, E. A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 24, 284–295. https://doi.org/10.1111/mec.12925 (2015).Article
PubMedGoogle Scholar
5.Sota, T. & Mogi, M. Survival time and resistance to desiccation of diapause and non-diapause eggs of temperate Aedes (Stegomyia) mosquitoes. Entomologia Experimentalis et Applicata 63, 155–161. https://doi.org/10.1111/j.1570-7458.1992.tb01570.x (1992).ArticleGoogle Scholar
6.Poelchau, M. F., Reynolds, J. A., Denlinger, D. L., Elsik, C. G. & Armbruster, P. A. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genom. 12, 619. https://doi.org/10.1186/1471-2164-12-619 (2011).CAS
ArticleGoogle Scholar
7.Bonizzoni, M., Gasperi, G., Chen, X. & James, A. A. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol. 29, 460–468. https://doi.org/10.1016/j.pt.2013.07.003 (2013).Article
PubMed
PubMed CentralGoogle Scholar
8.Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect. 11, 1177–1185. https://doi.org/10.1016/j.micinf.2009.05.005 (2009).CAS
Article
PubMedGoogle Scholar
9.Wu, J.-Y., Lun, Z.-R., James, A. A. & Chen, X.-G. Dengue fever in Mainland China. Am. J. Trop. Med. Hyg. 83, 664–671. https://doi.org/10.4269/ajtmh.2010.09-0755 (2010).Article
PubMed
PubMed CentralGoogle Scholar
10.Gasperi, G. et al. A new threat looming over the mediterranean basin: emergence of viral diseases transmitted by aedes albopictus mosquitoes. PLOS Negl. Trop. Dis. 6, e1836. https://doi.org/10.1371/journal.pntd.0001836 (2012).Article
PubMed
PubMed CentralGoogle Scholar
11.Rezza, G. Aedes albopictus and the reemergence of Dengue. BMC Publ. Health 12, 72. https://doi.org/10.1186/1471-2458-12-72 (2012).ArticleGoogle Scholar
12.Higgs, S. The 2005–2006 chikungunya epidemic in the Indian Ocean. Vector-Borne Zoo. Dis. 6, 115–116. https://doi.org/10.1089/vbz.2006.6.115 (2006).ArticleGoogle Scholar
13.Ratsitorahina, M. et al. Outbreak of Dengue and Chikungunya Fevers, Toamasina, Madagascar, 2006. Emerg. Infect. Dis. 14, 1135–1137. https://doi.org/10.3201/eid1407.071521 (2008).Article
PubMed
PubMed CentralGoogle Scholar
14.Grard, G. et al. Zika virus in gabon (Central Africa): 2007—A new threat from aedes albopictus?. PLOS Negl. Trop. Dis. 8, e2681. https://doi.org/10.1371/journal.pntd.0002681 (2014).Article
PubMed
PubMed CentralGoogle Scholar
15.Vincent, M. et al. From the threat to the large outbreak: dengue on Reunion Island, 2015 to 2018. Eurosurveillhttps://doi.org/10.2807/1560-7917.ES.2019.24.47.1900346 (2019).ArticleGoogle Scholar
16.Rezza, G. et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370, 1840–1846. https://doi.org/10.1016/S0140-6736(07)61779-6 (2007).CAS
Article
PubMedGoogle Scholar
17.Lindh, E. et al. The Italian 2017 outbreak chikungunya virus belongs to an emerging aedes albopictus-adapted virus cluster introduced from the Indian subcontinent. Open Forum Infect. Dis.https://doi.org/10.1093/ofid/ofy321 (2018).Article
PubMed
PubMed CentralGoogle Scholar
18.Ruche, G. L. et al. First two autochthonous dengue virus infections in metropolitan France, September 2010. Eurosurveillance 15, 19676. https://doi.org/10.2807/ese.15.39.19676-en (2010).Article
PubMedGoogle Scholar
19.Gjenero-Margan, I. et al. Autochthonous dengue fever in Croatia, August–September 2010. Eurosurveillance 16, 19805. https://doi.org/10.2807/ese.16.09.19805-en (2011).Article
PubMedGoogle Scholar
20.Rovida, F. et al. Viremic Dengue virus infections in travellers: potential for local outbreak in Northern Italy. J. Clin. Virol. 50, 76–79. https://doi.org/10.1016/j.jcv.2010.09.015 (2011).Article
PubMedGoogle Scholar
21.WHO. Dengue vaccine: WHO position paper—September 2018. Weekly epidemiological record 457–476 (2018).22.World Health Organization and others. Dengue and severe dengue. Tech. Rep., World Health Organization. Regional Office for the Eastern Mediterranean (2019).23.Organization, W. H. Dengue : Guidelines for Diagnosis, Treatment, Prevention and Control (WHO, 2009). Google-Books-ID: dlc0YSIyGYwC.24.Connelly, C., Florida, C. & Control, M. The State of the Mission as Defined by Mosquito Controllers, Regulators, and Environmental Managers 2009 2009 (University of Florida, Vero Beach, 2009).
Google Scholar
25.Achee, N. L. et al. Alternative strategies for mosquito-borne arbovirus control. PLOS Negl. Trop. Dis. 13, e0006822. https://doi.org/10.1371/journal.pntd.0006822 (2019).CAS
Article
PubMed
PubMed CentralGoogle Scholar
26.Faraji, A. & Unlu, I. The eye of the tiger, the thrill of the fight: effective larval and adult control measures against the asian tiger mosquito, aedes albopictus (diptera: culicidae). North Am. J. Med. Entomol. 53, 1029–1047. https://doi.org/10.1093/jme/tjw096 (2016).ArticleGoogle Scholar
27.Mackay, A. J., Amador, M. & Barrera, R. An improved autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasites & Vectors 6, 225. https://doi.org/10.1186/1756-3305-6-225 (2013).CAS
ArticleGoogle Scholar
28.Barrera, R. et al. Impact of autocidal gravid ovitraps on chikungunya virus incidence in aedes aegypti (diptera: culicidae) in areas with and without traps. J. Med. Entomol. 54, 387–395. https://doi.org/10.1093/jme/tjw187 (2017).CAS
Article
PubMed
PubMed CentralGoogle Scholar
29.Barrera, R., Amador, M., Munoz, J. & Acevedo, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasites & Vectors 11, 88. https://doi.org/10.1186/s13071-017-2596-4 (2018).ArticleGoogle Scholar
30.Jawara, M. et al. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in the gambia. PLOS ONE 4, e8167. https://doi.org/10.1371/journal.pone.0008167 (2009).ADS
CAS
Article
PubMed
PubMed CentralGoogle Scholar
31.Englbrecht, C., Gordon, S., Venturelli, C., Rose, A. & Geier, M. Evaluation of BG-sentinel trap as a management tool to reduce aedes albopictus nuisance in an urban environment in Italy. Moco 31, 16–25. https://doi.org/10.2987/14-6444.1 (2015).ArticleGoogle Scholar
32.Lacroix, R., Delatte, H., Hue, T., Dehecq, J. S. & Reiter, P. Adaptation of the BG-Sentinel trap to capture male and female Aedes albopictus mosquitoes. Med. Vet. Entomol. 23, 160–162. https://doi.org/10.1111/j.1365-2915.2009.00806.x (2009).CAS
Article
PubMedGoogle Scholar
33.Suman, D. S. et al. Point-source and area-wide field studies of pyriproxyfen autodissemination against urban container-inhabiting mosquitoes. Acta Trop. 135, 96–103. https://doi.org/10.1016/j.actatropica.2014.03.026 (2014).CAS
Article
PubMedGoogle Scholar
34.Devine, G. Auto-dissemination of pyriproxyfen for the control of container-inhabiting mosquitoes: a progress review. Outlooks Pest Manag. 27, 164–167 (2016).ADS
ArticleGoogle Scholar
35.Devine, G. J. et al. Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats., Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proc. Natl. Acad. Sci. USA 106, 11530–11534. https://doi.org/10.1073/pnas.0901369106 (2009).ADS
Article
PubMedGoogle Scholar
36.Caputo, B. et al. The auto-dissemination approach: a novel concept to fight aedes albopictus in urban areas. PLOS Negl. Trop. Dis. 6, e1793. https://doi.org/10.1371/journal.pntd.0001793 (2012).Article
PubMed
PubMed CentralGoogle Scholar
37.Gaugler, R., Suman, D. & Wang, Y. An autodissemination station for the transfer of an insect growth regulator to mosquito oviposition sites. Med. Vet. Entomol. 26, 37–45. https://doi.org/10.1111/j.1365-2915.2011.00970.x (2012).CAS
Article
PubMedGoogle Scholar
38.El-Sayed, A. M., Suckling, D. M., Wearing, C. H. & Byers, J. A. Potential of mass trapping for long-term pest management and eradication of invasive species. J. Econ. Entomol. 99, 1550–1564. https://doi.org/10.1093/jee/99.5.1550 (2006).CAS
Article
PubMedGoogle Scholar
39.Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT): an introduction. Entomol. Exp. Appl. 164, 151–154. https://doi.org/10.1111/eea.12619 (2017).ArticleGoogle Scholar
40.Flores, H. A. & O’Neill, S. L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol.https://doi.org/10.1038/s41579-018-0025-0 (2018).Article
PubMedGoogle Scholar
41.Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).CAS
ArticleGoogle Scholar
42.Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61. https://doi.org/10.1038/s41586-019-1407-9 (2019).CAS
Article
PubMedGoogle Scholar
43.Bouyer, J. & Vreysen, M. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends in Parasitology (2020) (in press).44.Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoo. Dis. 10, 295–311. https://doi.org/10.1089/vbz.2009.0014 (2010).ArticleGoogle Scholar
45.Baldacchino, F. C. et al. Pest management science: wiley online library. Pest Manag. Sci.https://doi.org/10.1002/ps.4044 (2015).46.Lees, R., Gilles, J., Hendrichs, J., Vreysen, M. & Bourtzis, K. Back to the future: the sterile insect technique against mosquito disease vectors. Curr. Opin. Insect Sci. 10, 156–162. https://doi.org/10.1016/j.cois.2015.05.011 (2015).Article
PubMedGoogle Scholar
47.Pleydell, D. R. J. & Bouyer, J. Biopesticides improve efficiency of the sterile insect technique for controlling mosquito-driven dengue epidemics. Commun. Biol. 2, 201. https://doi.org/10.1038/s42003-019-0451-1 (2019).Article
PubMed
PubMed CentralGoogle Scholar
48.Bouyer, J. & Lefrançois, T. Boosting the sterile insect technique to control mosquitoes. Trends Parasitol. 30, 271–273. https://doi.org/10.1016/j.pt.2014.04.002 (2014).Article
PubMedGoogle Scholar
49.Bouyer, J., Chandre, F., Gilles, J. & Baldet, T. Alternative vector control methods to manage the Zika virus outbreak: more haste, less speed. Lancet Glob. Health 4, e364. https://doi.org/10.1016/S2214-109X(16)00082-6 (2016).Article
PubMedGoogle Scholar
50.Invest, J. & Lucas, J. Pyriproxyfen as a mosquito larvicide. Proceedings of the Sixth International Conference on Urban Pests 239–245, (2008).51.Maoz, D. et al. Community effectiveness of pyriproxyfen as a dengue vector control method: a systematic review. PLOS Negl. Trop. Dis. 11, e0005651. https://doi.org/10.1371/journal.pntd.0005651 (2017).CAS
Article
PubMed
PubMed CentralGoogle Scholar
52.White, M. T. et al. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasites Vectors 4, 153. https://doi.org/10.1186/1756-3305-4-153 (2011).Article
PubMed
PubMed CentralGoogle Scholar
53.Cailly, P. et al. Climate-driven abundance model to assess mosquito control strategies. Ecol. Model. ECOL MODEL 227, 7–17. https://doi.org/10.1016/j.ecolmodel.2011.10.027 (2012).ADS
ArticleGoogle Scholar
54.Arifin, S. N., Madey, G. R. & Collins, F. H. Examining the impact of larval source management and insecticide-treated nets using a spatial agent-based model of Anopheles gambiae and a landscape generator tool. Malar J. 12, 290. https://doi.org/10.1186/1475-2875-12-290 (2013).CAS
Article
PubMed
PubMed CentralGoogle Scholar
55.Lee, S. S., Baker, R. E., Gaffney, E. A. & White, S. M. Optimal barrier zones for stopping the invasion of Aedes aegypti mosquitoes via transgenic or sterile insect techniques. Theor. Ecol. 6, 427–442. https://doi.org/10.1007/s12080-013-0178-4 (2013).ArticleGoogle Scholar
56.Yakob, L. & Yan, G. Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control. PLOS ONE 4, e6921. https://doi.org/10.1371/journal.pone.0006921 (2009).ADS
CAS
Article
PubMed
PubMed CentralGoogle Scholar
57.Almeida, L., Duprez, M., Privat, Y. & Vauchelet, N. Control strategies on mosquitos population for the fight against arboviruses. arXiv:1901.05688 [math] (2019).58.North, A. R., Burt, A. & Godfray, H. C. J. Modelling the potential of genetic control of malaria mosquitoes at national scale. BMC Biol. 17, 26. https://doi.org/10.1186/s12915-019-0645-5 (2019).Article
PubMed
PubMed CentralGoogle Scholar
59.Strugarek, M., Bossin, H. & Dumont, Y. On the use of the sterile insect release technique to reduce or eliminate mosquito populations. Appl. Math. Model. 68, 443–470. https://doi.org/10.1016/j.apm.2018.11.026 (2019).MathSciNet
Article
MATHGoogle Scholar
60.Maiti, A., Patra, B. & Samanta, G. P. Sterile insect release method as a control measure of insect pests: a mathematical model. J. Appl. Math. Comput. 22, 71–86. https://doi.org/10.1007/BF02832038 (2006).MathSciNet
Article
MATHGoogle Scholar
61.White, S. M., Rohani, P. & Sait, S. M. Modelling pulsed releases for sterile insect techniques: fitness costs of sterile and transgenic males and the effects on mosquito dynamics. J. Appl. Ecol. 47, 1329–1339. https://doi.org/10.1111/j.1365-2664.2010.01880.x (2010) (WOS:000283983200020).ArticleGoogle Scholar
62.Dufourd, C. & Dumont, Y. Impact of environmental factors on mosquito dispersal in the prospect of sterile insect technique control. Comput. Math. Appl. 66, 1695–1715. https://doi.org/10.1016/j.camwa.2013.03.024 (2013).MathSciNet
Article
MATHGoogle Scholar
63.Fister, K. R., McCarthy, M. L., Oppenheimer, S. F. & Collins, C. Optimal control of insects through sterile insect release and habitat modification. Math. Biosci. 244, 201–212. https://doi.org/10.1016/j.mbs.2013.05.008 (2013) (WOS:000322805400014).MathSciNet
Article
MATHGoogle Scholar
64.Cai, L., Ai, S. & Li, J. Dynamics of mosquitoes populations with different strategies for releasing sterile mosquitoes. SIAM J. Appl. Math. 74, 1786–1809. https://doi.org/10.1137/13094102X (2014) (WOS:000346845900004).MathSciNet
Article
MATHGoogle Scholar
65.Evans, T. P. & Bishop, S. R. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti. Math. Biosci. 254, 6–27. https://doi.org/10.1016/j.mbs.2014.06.001 (2014).MathSciNet
Article
MATHGoogle Scholar
66.Li, J. & Yuan, Z. Modelling releases of sterile mosquitoes with different strategies. J. Biol. Dyn. 9, 1–14. https://doi.org/10.1080/17513758.2014.977971 (2015).MathSciNet
Article
PubMed
MATHGoogle Scholar
67.Hendron, R.-W.S. & Bonsall, M. B. The interplay of vaccination and vector control on small dengue networks. J. Theor. Biol. 407, 349–361. https://doi.org/10.1016/j.jtbi.2016.07.034 (2016).MathSciNet
Article
PubMed
PubMed Central
MATHGoogle Scholar
68.Huang, M., Song, X. & Li, J. Modelling and analysis of impulsive releases of sterile mosquitoes. J. Biol. Dyn. 11, 147–171. https://doi.org/10.1080/17513758.2016.1254286 (2017) (WOS:000389042600004).MathSciNet
Article
PubMed
MATHGoogle Scholar
69.Mishra, A., Ambrosio, B., Gakkhar, S. & Aziz-Alaoui, M. A. A network model for control of dengue epidemic using sterile insect technique. Math. Biosci. Eng. 15, 441–460. https://doi.org/10.3934/mbe.2018020 (2018) (WOS:000412001800006).MathSciNet
Article
PubMed
MATHGoogle Scholar
70.Multerer, L., Smith, T. & Chitnis, N. Modeling the impact of sterile males on an Aedes aegypti population with optimal control. Math. Biosci. 311, 91–102. https://doi.org/10.1016/j.mbs.2019.03.003 (2019).MathSciNet
Article
PubMed
MATHGoogle Scholar
71.Haramboure, M. et al. Modelling the control of Aedes albopictus mosquitoes based on sterile males release techniques in a tropical environment. Ecol. Model. 424, 109002. https://doi.org/10.1016/j.ecolmodel.2020.109002 (2020).ArticleGoogle Scholar
72.ANSES. Portail de signalement du moustique tigre.73.Delisle, E. et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance 20, 21108. https://doi.org/10.2807/1560-7917.ES2015.20.17.21108 (2015) (Publisher: European Centre for Disease Prevention and Control).Article
PubMedGoogle Scholar
74.Tran, A. et al. A rainfall- and temperature-driven abundance model for aedes albopictus populations. Int. J. Environ. Res. Publ. Health 10, 1698–1719. https://doi.org/10.3390/ijerph10051698 (2013).ArticleGoogle Scholar
75.WHO & others. WHO position statement on integrated vector management. Weekly Epidemiological Record= Relevé épidémiologique hebdomadaire83, 177–181 (2008).76.Johnson, B. J., Ritchie, S. A. & Fonseca, D. M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8, 5. https://doi.org/10.3390/insects8010005 (2017).Article
PubMed CentralGoogle Scholar
77.Delatte, H. et al. Aedes albopictus, vecteur des virus du chikungunya et de la dengue à la Réunion?: biologie et contrôle. Parasite 15, 3–13. https://doi.org/10.1051/parasite/2008151003 (2008).CAS
Article
PubMedGoogle Scholar
78.Dufourd, C. & Dumont, Y. Modeling and simulations of mosquito dispersal: the case of aedes albopictus. BIOMATH 1, 1209262. https://doi.org/10.11145/j.biomath.2012.09.262 (2012).MathSciNet
Article
MATHGoogle Scholar
79.Bouyer, J., Yamada, H., Pereira, R., Bourtzis, K. & Vreysen, M. J. B. Phased conditional approach for mosquito management using sterile insect technique. Trends Parasitol. 36, 325–336. https://doi.org/10.1016/j.pt.2020.01.004 (2020).Article
PubMedGoogle Scholar
80.McIntire, K. M. & Juliano, S. A. How can mortality increase population size? A test of two mechanistic hypotheses. Ecology 99, 1660–1670. https://doi.org/10.1002/ecy.2375 (2018).Article
PubMed
PubMed CentralGoogle Scholar
81.Neale, J. T. & Juliano, S. A. Finding the sweet spot: What levels of larval mortality lead to compensation or overcompensation in adult production?. Ecosphere 10, e02855. https://doi.org/10.1002/ecs2.2855 (2019).Article
PubMed
PubMed CentralGoogle Scholar
82.Seixas, G. et al. An evaluation of efficacy of the auto-dissemination technique as a tool for Aedes aegypti control in Madeira, Portugal. Parasites Vectors 12, 202. https://doi.org/10.1186/s13071-019-3454-3 (2019).Article
PubMed
PubMed CentralGoogle Scholar
83.Mains, J. W., Brelsfoard, C. L. & Dobson, S. L. Male mosquitoes as vehicles for insecticide. PLOS Negl. Trop. Dis. 9, e0003406. https://doi.org/10.1371/journal.pntd.0003406 (2015).CAS
Article
PubMed
PubMed CentralGoogle Scholar
84.Ritchie, S. A., Long, S., Hart, A., Webb, C. E. & Russell, R. C. An adulticidal sticky ovitrap for sampling container-breeding mosquitoes. J. Am. Mosq. Control Assoc. 19, 235–242 (2003).PubMedGoogle Scholar
85.Lacroix, R., Delatte, H., Hue, T. & Reiter, P. Dispersal and Survival of Male and Female Aedes albopictus (Diptera: Culicidae) on Réunion Island. Ment 46, 1117–1124. https://doi.org/10.1603/033.046.0519 (2009).CAS
ArticleGoogle Scholar
86.Marini, F., Caputo, B., Pombi, M., Tarsitani, G. & Torre, A. D. Study of Aedes albopictus dispersal in Rome, Italy, using sticky traps in mark-release-recapture experiments. Med. Vet. Entomol. 24, 361–368. https://doi.org/10.1111/j.1365-2915.2010.00898.x (2010).CAS
Article
PubMedGoogle Scholar
87.Garziera, L. et al. Effect of interruption of over-flooding releases of transgenic mosquitoes over wild population of Aedes aegypti: two case studies in Brazil. Entomol. Exp. Appl. 164, 327–339. https://doi.org/10.1111/eea.12618 (2017) (WOS:000413403700015).ArticleGoogle Scholar
88.Tran, A. et al. Complementarity of empirical and process-based approaches to modelling mosquito population dynamics with Aedes albopictus as an example-Application to the development of an operational mapping tool of vector populations. PLOS ONE 15, e0227407. https://doi.org/10.1371/journal.pone.0227407 (2020).CAS
Article
PubMed
PubMed CentralGoogle Scholar
89.Baldacchino, F. et al. An integrated pest control strategy against the Asian tiger mosquito in northern Italy: a case study. Pest Manag. Sci. 73, 87–93. https://doi.org/10.1002/ps.4417 (2017).CAS
Article
PubMedGoogle Scholar
90.Gentile, J. E., Rund, S. S. C. & Madey, G. R. Modelling sterile insect technique to control the population of Anopheles gambiae. Malar. J. 14, 92. https://doi.org/10.1186/s12936-015-0587-5 (2015) (WOS:000350605300001).CAS
Article
PubMed
PubMed CentralGoogle Scholar
91.Perrin, A. et al. Mosquito densoviruses: the revival of a biological control agent against urban Aedes vectors of arboviruses. bioRxiv 2020.04.23.055830, https://doi.org/10.1101/2020.04.23.055830 (2020). Publisher: Cold Spring Harbor Laboratory Section: New Results.92.Burattini, M. N. et al. Modelling the control strategies against dengue in Singapore. Epidemiol. Infect. 136, 309–319. https://doi.org/10.1017/S0950268807008667 (2008).CAS
Article
PubMedGoogle Scholar
93.Yang, H. M. & Ferreira, C. P. Assessing the effects of vector control on dengue transmission. Appl. Math. Comput. 198, 401–413. https://doi.org/10.1016/j.amc.2007.08.046 (2008).MathSciNet
Article
MATHGoogle Scholar
94.Dumont, Y. & Chiroleu, F. Vector control for the Chikungunya disease. Math. Biosci. Eng. 7, 313–345 (2010).MathSciNet
ArticleGoogle Scholar
95.Hladish, T. J. et al. Designing effective control of dengue with combined interventions. Proc. Natl. Acad. Sci. 117, 3319–3325 (2020).CAS
ArticleGoogle Scholar
96.Tang, B. et al. The effectiveness of quarantine and isolation determine the trend of the COVID-19 epidemics in the final phase of the current outbreak in China. Int. J. Infect. Dis. 95, 288–293. https://doi.org/10.1016/j.ijid.2020.03.018 (2020).CAS
Article
PubMed
PubMed CentralGoogle Scholar
97.Jr, R. C. R. et al. Estimating the impact of city-wide Aedes aegypti population control: an observational study in Iquitos, Peru. PLOS Negl. Trop. Dis. 13, e0007255. https://doi.org/10.1371/journal.pntd.0007255 (2019).98.Wahid, I. et al. Integrated vector management with additional pre-transmission season thermal fogging is associated with a reduction in dengue incidence in Makassar, Indonesia: Results of an 8-year observational study. PLOS Negl. Trop. Dis. 13, e0007606. https://doi.org/10.1371/journal.pntd.0007606 (2019).Article
PubMed
PubMed CentralGoogle Scholar
99.Castro, M. et al. A community empowerment strategy embedded in a routine dengue vector control programme: a cluster randomised controlled trial. Trans. R. Soc. Trop. Med. Hyg. 106, 315–321. https://doi.org/10.1016/j.trstmh.2012.01.013 (2012).Article
PubMedGoogle Scholar
100.Andersson, N. et al. Evidence based community mobilization for dengue prevention in Nicaragua and Mexico (Camino Verde, the Green Way): cluster randomized controlled trial. BMJ 351, h3267. https://doi.org/10.1136/bmj.h3267 (2015).Article
PubMed
PubMed CentralGoogle Scholar
101.Gubler, D. J. & Clark, G. G. Community involvement in the control of Aedes aegypti. Acta Trop. 61, 169–179. https://doi.org/10.1016/0001-706X(95)00103-L (1996).CAS
Article
PubMedGoogle Scholar
102.Baly, A. et al. Cost effectiveness of Aedes aegypti control programmes: participatory versus vertical. Trans. R. Soc. Trop. Med. Hyg. 101, 578–586. https://doi.org/10.1016/j.trstmh.2007.01.002 (2007).CAS
Article
PubMedGoogle Scholar
103.Alphey, N., Alphey, L. & Bonsall, M. B. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One 6, e25384. https://doi.org/10.1371/journal.pone.0025384 (2011) (WOS:000295966900023).ADS
CAS
Article
PubMed
PubMed CentralGoogle Scholar
104.Fontenille, D. et al.La lutte antivectorielle en France. IRD Éditions (2009).105.Oliva, C. F. et al. The sterile insect technique for controlling populations of aedes albopictus (diptera: culicidae) on reunion island: mating vigour of sterilized males. PLOS ONE 7, e49414. https://doi.org/10.1371/journal.pone.0049414 (2012).ADS
CAS
Article
PubMed
PubMed CentralGoogle Scholar
106.Madakacherry, O., Lees, R. S. & Gilles, J. R. L. Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop. 132(Suppl), S124-129. https://doi.org/10.1016/j.actatropica.2013.11.020 (2014).Article
PubMedGoogle Scholar
107.Abad-Franch, F., Zamora-Perea, E., Ferraz, G., Padilla-Torres, S. D. & Luz, S. L. B. Mosquito-disseminated pyriproxyfen yields high breeding-site coverage and boosts juvenile mosquito mortality at the neighborhood scale. PLoS Negl. Trop. Dis.https://doi.org/10.1371/journal.pntd.0003702 (2015).Article
PubMed
PubMed CentralGoogle Scholar
108.Unlu, I. et al. Large-scale operational pyriproxyfen autodissemination deployment to suppress the immature asian tiger mosquito (diptera: culicidae) populations. J. Med. Entomol.https://doi.org/10.1093/jme/tjaa011 (2020).Article
PubMedGoogle Scholar
109.Degener, C. M. et al. Mass trapping with MosquiTRAPs does not reduce Aedes aegypti abundance. Memórias do Instituto Oswaldo Cruz 110, 517–527. https://doi.org/10.1590/0074-02760140374 (2015).CAS
Article
PubMed
PubMed CentralGoogle Scholar
110.Boubidi, S. C. Surveillance et contrôle du moustique tigre, Aedes albopictus (Skuse, 1894) à Nice, sud de la France (2016).111.Kröckel, U., Rose, A., Eiras, Á. E. & Geier, M. New tools for surveillance of adult yellow fever mosquitoes: comparison of trap catches with human landing rates in an urban environment. Moco 22, 229–238. https://doi.org/10.2987/8756-971X(2006)22[229:NTFSOA]2.0.CO;2 (2006).ArticleGoogle Scholar More
63 Shares159 Views
in EcologyCalling out and listening in
Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript. More225 Shares189 Views
in EcologySubmicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria
1.Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Sci. Total. Environ. 643, 1644–1651 (2018).ADS
CAS
PubMed
ArticleGoogle Scholar
2.Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS
PubMed
PubMed Central
Article
CASGoogle Scholar
3.Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the rockall trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).CAS
PubMed
ArticleGoogle Scholar
4.Koongolla, J. B. et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. 258, 113734 (2020).CAS
PubMed
ArticleGoogle Scholar
5.Qu, M. et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 183, 109568 (2019).CAS
PubMed
ArticleGoogle Scholar
6.Li, Y. et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J. Hazard. Mater. 385, 121586 (2020).CAS
PubMed
ArticleGoogle Scholar
7.Shao, H. & Wang, D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ. Pollut. 258, 113649 (2020).CAS
PubMed
ArticleGoogle Scholar
8.Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A. M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 258, 113844 (2020).PubMed
Article
CASGoogle Scholar
9.Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 47, 11278–11283 (2013).ADS
CAS
PubMed
ArticleGoogle Scholar
10.Sun, X. et al. Toxicities of polystyrene nano-and microplastics toward marine bacterium Halomonas alkaliphila. Sci. Total. Environ. 642, 1378–1385 (2018).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
11.Ivask, A. et al. Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environ. Sci. Technol. 46, 2398–2405 (2012).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
12.Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total. Environ. 707, 136073 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
13.Miyazaki, J. et al. Bacterial toxicity of functionalized polystyrene latex nanoparticles toward Escherichia coli. Adv. Mat. Res. 699, 672–677 (2013).CASGoogle Scholar
14.Kwon, Y.-N. & Leckie, J. O. Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J. Membr. Sci. 282, 456–464 (2006).CAS
ArticleGoogle Scholar
15.Ateia, M., Kanan, A. & Karanfil, T. Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere 251, 126452 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
16.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS
PubMed
Article
PubMed CentralGoogle Scholar
17.Mammo, F., Amoah, I., Gani, K., Pillay, L., Ratha, S., Bux, F. & Kumari, S. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total. Environ. 743, 140518 (2020).18.Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).ADS
CAS
PubMed
ArticleGoogle Scholar
19.Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L.-A. An emerging matter of environmental urgency. In Microplastic contamination in aquatic environments (ed. Zeng, E.) 379–399 (Elsevier, 2018).
Google Scholar
20.Sumampouw, O. J. & Risjani, Y. Bacteria as indicators of environmental pollution. Environment 51, 52 (2014).
Google Scholar
21.Hassan, S. H. et al. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator. Chemosphere 223, 58–63 (2019).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
22.Bowdre, J. H. & Krieg, N. R. Water quality monitoring: bacteria as indicators (Virginia Water Resources Research Center, 1974).
Google Scholar
23.Leusch, F. D. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).CAS
PubMed
Article
PubMed CentralGoogle Scholar
24.Federation, Water Environmental and American Public Health Association (APHA). Standard methods for the examination of water and wastewater, Vol. 2 , Washington, DC, USA, (1915).25.Belkin, S. et al. A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res. 31, 3009–3016 (1997).CAS
ArticleGoogle Scholar
26.Bhuvaneshwari, M. et al. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 164, 114910 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
27.Bianchi, E. et al. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Braz. J. Biol. 75, 68–74 (2015).CAS
PubMed
Article
PubMed CentralGoogle Scholar
28.Melamed, S. et al. A printed nanolitre-scale bacterial sensor array. Lab Chip 11, 139–146 (2011).CAS
PubMed
Article
PubMed CentralGoogle Scholar
29.Jia, K., Eltzov, E., Toury, T., Marks, R. S. & Ionescu, R. E, A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 84, 221–226 (2012).CAS
PubMed
Article
PubMed CentralGoogle Scholar
30.Kim, B. C. & Gu, M. B, A bioluminescent sensor for high throughput toxicity classification. Biosens. Bioelectron 18, 1015–1021 (2003).CAS
PubMed
ArticleGoogle Scholar
31.Gu, M. B., Min, J. & Kim, E. J, Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46, 289–294 (2002).ADS
CAS
PubMed
ArticleGoogle Scholar
32.Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P. & Heringa, M. B, Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?. Anal Bioanal Chem 4, 915–929 (2011).Article
CASGoogle Scholar
33.Manivannan, B. et al. Water toxicity evaluations: comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. Ecotoxicol. Environ. Saf. 203, 110984 (2020).CAS
PubMed
ArticleGoogle Scholar
34.Gambardella, C. et al. Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Mar. Pollut. Bull. 143, 140–143 (2019).CAS
PubMed
ArticleGoogle Scholar
35.Magnusson, K. & Norén, F. Screening of microplastic particles in and down-stream a wastewater treatment plant (IVL Swedish Environmental Research Institute, 2014).
Google Scholar
36.Talvitie, J. et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 72, 1495–1504 (2015).CAS
PubMed
ArticleGoogle Scholar
37.Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).CAS
PubMed
ArticleGoogle Scholar
38.Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 5, 592–599 (2015).Article
CASGoogle Scholar
39.HELCOM, 2014. Baltic Marine Environment Protection Commission, Preliminary study on Synthetic microfibers and particles at a municipal waste water treatment plant, BASE project 2012–2014.40.Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133, 236–246 (2018).CAS
PubMed
ArticleGoogle Scholar
41.Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).ADS
CAS
PubMed
ArticleGoogle Scholar
42.Garside, M. Global plastic production from 1950 to 2018. Statista. Available online at: https://www.statista.com/statistics/282732/global-production-ofplastics-since-1950 (2019).43.Jang, M. et al. H, Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut. 231, 785–794 (2017).CAS
PubMed
ArticleGoogle Scholar
44.De-la-Torre, G. E., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. & Saldaña-Serran, M. Global distribution of two polystyrene-derived contaminants in the marine environment: A review. Mar. Pollut. Bull. 161, 111729 (2020).CAS
PubMed
ArticleGoogle Scholar
45.Zitko, V. Expanded polystyrene as a source of contaminants. Mar. Pollut. Bull 10, 584–585 (1993).ArticleGoogle Scholar
46.Hoerter, J. & Eisenstark, A. Synergistic killing of bacteria and phage by polystyrene and ultraviolet radiation. Environ. Mutagen. 12, 261–264 (1988).CAS
ArticleGoogle Scholar
47.Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).CAS
PubMed
ArticleGoogle Scholar
48.Rupe, L. A., Tuthill, L. B. & Leikhim, J. W. Thickened bleach compositions for treating hard-to-remove soils. U.S. Patent No. 4116851. (1978).49.Merritt, K., Hitchins, V. M. & Brown, S. A. Safety and cleaning of medical materials and devices. J. Biomed. Mater. Res. 53, 131–136 (2000).CAS
PubMed
ArticleGoogle Scholar
50.https://www.dutscher.com/data/pdf_guides/en/CCTPPA.pdf Material Pour Laboratories ET Industries, Dominique Dutscher.51.Messing, A. & Sela, Y. SHAFDAN (Greater Tel Aviv Wastewater Treatment Plant): recent upgrade and expansion. Water Pract. Technol 2, 288–297 (2016).ArticleGoogle Scholar
52.Eldad Spivak, Engineering Firm LTD., Raanana wastewater facility, Israel. http://www.spivak.co.il/en/projects/raanana-wastewater-facility.53.Balasha Jalon, Infrastructure systems LTD., Karmiel wastewater treatment plant- First stage- Israel. http://bj-is.com/karmiel-wwtp.54.Heinlaan, M. et al. & Kahru, A, Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
55.Snead, M. C. Benefits of maintaining a chlorine residual in water supply systems, 600/2-80-0100 (US Environmental Protection Agency, 1980).56.Harp, D.L. Current technology for chlorine analysis in water and wastewater. Technical Information Series—Booklet No.17. Hach Company (2002).57.4500-Cl CHLORINE (RESIDUAL). Standard Methods For the Examination of Water and Wastewater, 23rd (2018).58.Engelhardt, T. & Malkov, V. B. Chlorination, chloramination and chlorine measurement 18–20 (HACH, 2015).
Google Scholar
59.https://www.polyfluor.nl/en/chemical-resistance/ptfe/. Specialist in PTFE, Engineering and Manufacturing Service, Polyfluor.60.Vollmer, A. C., Belkin, S., Smulski, D. R., Van Dyk, T. K. & LaRossa, R. A. Detection of DNA damage by use of Escherichia coli carrying recA’: lux, uvrA’: lux, or alkA’: lux reporter plasmids. Appl. Environ. Microbiol. 63, 2566–2571 (1997).CAS
PubMed
PubMed Central
ArticleGoogle Scholar
61.Van Dyk, T. K. et al. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414–1420 (1994).PubMed
PubMed Central
ArticleGoogle Scholar
62.Eltzov, E., Marks, R. S., Voost, S., Wullings, B. A. & Heringa, M. B. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors Actuators B: Chem. 142, 11–18 (2009).CAS
ArticleGoogle Scholar
63.Harpaz, D. et al. Measuring artificial sweeteners toxicity using a bioluminescent bacterial panel. Molecules 23, 2454 (2018).PubMed Central
Article
CASGoogle Scholar
64.Thiagarajan, V., Iswarya, V., Seenivasan, R., Chandrasekaran, N. & Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 207, 208–216 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
65.Kelkar, V. P. et al. Chemical and physical changes of microplastics during sterilization by chlorination. Water Res. 163, 114871 (2019).CAS
PubMed
Article
PubMed CentralGoogle Scholar
66.Zhang, X. et al. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 242, 125227 (2020).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
67.Yan, M., Roccaro, P., Fabbricino, M. & Korshin, G. V. Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere 191, 477–484 (2018).ADS
CAS
PubMed
Article
PubMed CentralGoogle Scholar
68.Hüffer, T. & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 214, 194–201 (2016).PubMed
Article
CAS
PubMed CentralGoogle Scholar More