More stories

  • in

    Identifying unknown Indian wolves by their distinctive howls: its potential as a non-invasive survey method

    1.Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. Introductory concepts. In Distance Sampling. Estimating Abundance of Biological Populations 446 (1993). https://doi.org/10.1002/9780470752784.part1.2.Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    3.Garland, L., Crosby, A., Hedley, R., Boutin, S. & Bayne, E. Acoustic vs. Photographic monitoring of gray wolves (Canis lupus): a methodological comparison of two passive monitoring techniques. Can. J. Zool. 98, 219–228 (2020).Article 

    Google Scholar 
    4.Crunchant, A. S., Borchers, D., Kühl, H. & Piel, A. Listening and watching: do camera traps or acoustic sensors more efficiently detect wild chimpanzees in an open habitat?. Methods Ecol. Evol. 11, 542–552 (2020).Article 

    Google Scholar 
    5.Wood, C. M. et al. Using the ecological significance of animal vocalizations to improve inference in acoustic monitoring programs. Conserv. Biol. https://doi.org/10.1111/cobi.13516 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Rhinehart, T. A., Chronister, L. M., Devlin, T. & Kitzes, J. Acoustic localization of terrestrial wildlife: current practices and future opportunities. Ecol. Evol. 10, 6794–6818 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Kidney, D. et al. An efficient acoustic density estimation method with human detectors applied to gibbons in Cambodia. PLoS ONE 11, 1–16 (2016).Article 
    CAS 

    Google Scholar 
    8.Thompson, M. E., Schwager, S. J., Payne, K. B. & Turkalo, A. K. Acoustic estimation of wildlife abundance: methodology for vocal mammals in forested habitats. Afr. J. Ecol. 48, 654–661 (2010).Article 

    Google Scholar 
    9.Parra, J. M. Passive acoustic aquatic animal finder apparatus and method. US patent 5,099,455 (1992).10.Riede, K. Acoustic monitoring of Orthoptera and its potential for conservation. J. Insect Conserv. 2, 217–223 (1998).Article 

    Google Scholar 
    11.Petrusková, T., Pišvejcová, I., Kinštová, A., Brinke, T. & Petrusek, A. Repertoire-based individual acoustic monitoring of a migratory passerine bird with complex song as an efficient tool for tracking territorial dynamics and annual return rates. Methods Ecol. Evol. 7, 274–284 (2016).Article 

    Google Scholar 
    12.Sanders, C. E. & Mennill, D. J. Acoustic monitoring of nocturnally migrating birds accurately assesses the timing and magnitude of migration through the Great Lakes. Condor 116, 371–383 (2014).Article 

    Google Scholar 
    13.Acevedo, M. A. & Villanueva-Rivera, L. J. From the field: Using automated digital recording systems as effective tools for the monitoring of birds and amphibians. Wildl. Soc. Bull. 34, 211–214 (2006).Article 

    Google Scholar 
    14.Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).Article 

    Google Scholar 
    15.Pérez-Granados, C. et al. Vocal activity rate index: a useful method to infer terrestrial bird abundance with acoustic monitoring. Ibis (Lond. 1859) 161, 901–907 (2019).Article 

    Google Scholar 
    16.Kimura, S. et al. Comparison of stationary acoustic monitoring and visual observation of finless porpoises. J. Acoust. Soc. Am. 125, 547–553 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13101 (2018).Article 

    Google Scholar 
    18.Papin, M., Aznar, M., Germain, E., Guérold, F. & Pichenot, J. Using acoustic indices to estimate wolf pack size. Ecol. Indic. 103, 202–211 (2019).Article 

    Google Scholar 
    19.Depraetere, M. et al. Monitoring animal diversity using acoustic indices: implementation in a temperate woodland. Ecol. Indic. 13, 46–54 (2012).Article 

    Google Scholar 
    20.Wheeldon, A., Mossman, H. L., Mathenge, J. & De Kort, S. R. Comparison of acoustic and traditional point count methods to assess bird diversity and composition in the Aberdare National. Afr. J. Ecol. https://doi.org/10.1111/aje.12596 (2019).Article 

    Google Scholar 
    21.Wilson, S. J. & Bayne, E. M. Use of an acoustic location system to understand how presence of conspecifics and canopy cover influence Ovenbird (Seiurus aurocapilla) space use near reclaimed wellsites in the boreal forest of Alberta. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01248-130204 (2018).Article 

    Google Scholar 
    22.Gable, T. D., Windels, S. K. & Bump, J. K. Finding wolf homesites: improving the efficacy of howl surveys to study wolves. PeerJ 6, e5629 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.O’Gara, J. R. et al. Efficacy of acoustic triangulation for gray wolves. Wildl. Soc. Bull. https://doi.org/10.1002/wsb.1089 (2020).Article 

    Google Scholar 
    24.Dawson, D. K. & Efford, M. G. Bird population density estimated from acoustic signals. J. Appl. Ecol. 46, 1201–1209 (2009).Article 

    Google Scholar 
    25.Stevenson, B. C. et al. A general framework for animal density estimation from acoustic detections across a fixed microphone array. Methods Ecol. Evol. 6, 38–48 (2015).Article 

    Google Scholar 
    26.Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture (Academic Press, 2013).
    Google Scholar 
    27.Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Adi, K., Johnson, M. T. & Osiejuk, T. S. Acoustic censusing using automatic vocalization classification and identity recognition. J. Acoust. Soc. Am. 127, 874–883 (2010).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Lettink, M. & Armstrong, D. P. An introduction to using mark-recapture analysis for monitoring threatened species. Dep. Conserv. Tech. Ser. 28A, 5–32 (2003).
    Google Scholar 
    30.Clink, D. J. & Klinck, H. Unsupervised acoustic classification of individual gibbon females and the implications for passive acoustic monitoring. Methods Ecol. Evol. 1, 1–2 (2020).
    Google Scholar 
    31.Theberge, J. B. & Falls, J. B. Howling as a means of communication in timber wolves. Am. Zool. 7, 331–338 (1967).Article 

    Google Scholar 
    32.Kershenbaum, A. et al. Disentangling canid howls across multiple species and subspecies: structure in a complex communication channel. Behav. Process. 124, 149–157 (2016).Article 

    Google Scholar 
    33.Harrington, F. H. & Mech, D. L. Wolf howling and its role in territory maintenance. Behaviour 68, 207–249 (1978).Article 

    Google Scholar 
    34.Joslin, P. Summer Activities of Two Timber Wolf (Canis lupus) Packs in Algonquin Park (University of Toronto, 1966).35.Suter, S. M., Giordano, M., Nietlispach, S., Apollonio, M. & Passilongo, D. Non-invasive acoustic detection of wolves. Bioacoustics 4622, 1–12 (2016).
    Google Scholar 
    36.Harrington, F. H. & Mech, D. L. Wolf vocalization. In Wolf and man, 109–132 (Elsevier, 1978). https://doi.org/10.1016/B978-0-12-319250-9.50014-1.37.Blanco, J. C. & Cortés, Y. Surveying wolves without snow: a critical review of the methods used in Spain. Hystrix 23, 35–48 (2012).
    Google Scholar 
    38.Tooze, Z. J., Harrington, F. H. & Fentress, J. C. Individually distinct vocalizations in timber wolves, Canis lupus. Anim. Behav. 40, 723–730 (1990).Article 

    Google Scholar 
    39.Root-Gutteridge, H. et al. Improving individual identification in captive Eastern grey wolves (Canis lupus lycaon) using the time course of howl amplitudes. Bioacoust. Int. J. Anim. Sound Rec. 23, 39–53 (2014).
    Google Scholar 
    40.Hull, C., McCombe, C. & Dassow, A. Acoustic identification of wild gray wolves, Canis lupus, using low quality recordings. Am. J. Undergrad. Res. 16, 41–49 (2020).Article 

    Google Scholar 
    41.Wasser, S. K., Smith, H., Madden, L., Marks, N. & Vynne, C. Scent-matching dogs determine number of unique individuals from scat. J. Wildl. Manag. 73, 1233–1240 (2009).Article 

    Google Scholar 
    42.Brennan, A., Cross, P. C., Ausband, D. E., Barbknecht, A. & Creel, S. Testing automated howling devices in a wintertime wolf survey. Wildl. Soc. Bull. 37, 389–393 (2013).Article 

    Google Scholar 
    43.Ausband, D. E., Skrivseth, J. & Mitchell, M. S. An automated device for provoking and capturing wildlife calls. Wildl. Soc. Bull. 35, 498–503 (2011).Article 

    Google Scholar 
    44.Papin, M., Pichenot, J., Guérold, F. & Germain, E. Acoustic localization at large scales: a promising method for grey wolf monitoring. Front. Zool. 15, 1–10 (2018).Article 

    Google Scholar 
    45.Root-Gutteridge, H. et al. Identifying individual wild Eastern grey wolves (Canis lupus lycaon) using fundamental frequency and amplitude of howls. Bioacoust. Int. J. Anim. Sound Rec. 23, 55–66 (2014).
    Google Scholar 
    46.Singh, M. & Kumara, H. N. Distribution, status and conservation of Indian gray wolf (Canis lupus pallipes) in Karnataka, India. J. Zool. 270, 164–169 (2006).
    Google Scholar 
    47.Jhala, Y. V. & Giles, R. H. The status and conservation of the wolf in Gujarat and Rajasthan, India. Conserv. Biol. 5, 476–483 (1991).Article 

    Google Scholar 
    48.Habib, B. Ecology of Indian wolf [Canis lupus pallipes sykes. 1831), and modeling its potential habitat in the great Indian bustard sanctuary, Maharashtra, India (Aligarh Muslim University, Aligarh, India, 2007).49.Dey, S., Sagar, V., Dey, S. & Choudhary, S. K. 2 Sight record of the Indian wolf Canis lupus pallipes in the river Gandak floodplains. J. Bombay Nat. Hist. Soc. 107, 51 (2010).
    Google Scholar 
    50.Jethva, B. D. & Jhala, Y. V. Foraging ecology, economics and conservation of Indian wolves in the Bhal region of Gujarat, Western India. Biol. Conserv. 116, 351–357 (2004).Article 

    Google Scholar 
    51.Jethva, B. D. & Jhala, Y. V. Computing biomass consumption from prey occurrences in Indian wolf scats. Zoo Biol. 23, 513–520 (2004).Article 

    Google Scholar 
    52.Jhala YV. Human conflict in India. In “Beyond: Realties of Global Wolf Restoration” Symposium February, 23–26 (2020).53.Habib, B. & Kumar, S. D. shifting by wolves in semi-wild landscapes in the Deccan Plateau, Maharashtra, India. J. Zool. 272, 259–265 (2007).Article 

    Google Scholar 
    54.Meek, P. D. et al. Camera traps can be heard and seen by animals. PLoS ONE 9, e110832 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Sadhukhan, S., Hennelly, L. & Habib, B. Characterising the harmonic vocal repertoire of the Indian wolf (Canis lupus pallipes). PLoS ONE 14, e0216186 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Rodgers, W. A. & Panwar, S. H. Biogeographical classification of India. New For. Dehra Dun, India (1988).57.Reddy, C. S., Jha, C. S., Diwakar, P. G. & Dadhwal, V. K. Nationwide classification of forest types of India using remote sensing and GIS. Environ. Monit. Assess. 187, 777 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    58.Majgaonkar, I. et al. Land-sharing potential of large carnivores in human-modified landscapes of western India. Conserv. Sci. Pract. 1, e34 (2019).Article 

    Google Scholar 
    59.Morin, D. J., Kelly, M. J. & Waits, L. P. Monitoring coyote population dynamics with fecal DNA and spatial capture-recapture. J. Wildl. Manag. 80, 824–836 (2016).Article 

    Google Scholar 
    60.Harrington, F. H. & Mech, D. L. An analysis of howling response parameters useful for wolf pack censusing. J. Wildl. Manag. 46, 686–693 (1982).Article 

    Google Scholar 
    61.Bioacoustics Research Program. Raven Pro: interactive sound analysis software. The Cornell Lab of Ornithology (2014).62.Rader, C. M. Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56, 1107–1108 (1968).Article 

    Google Scholar 
    63.Rohatgi, A. WebPlotDigitizer. (2017).64.Kuhn, M. et al. Applied Predictive Modeling Vol. 26 (Springer, 2013).
    Google Scholar 
    65.Kaufman, L. & Rousseeuw, P. J. Agglomerative nesting (Program AGNES). In Finding Groups in Data 199–252 (Wiley, 2009).66.Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics https://doi.org/10.1093/bioinformatics/btv428 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Galaverni, M. et al. Monitoring wolves (Canis lupus) by non-invasive genetics and camera trapping: a small-scale pilot study. Eur. J. Wildl. Res. 58, 47–58 (2012).Article 

    Google Scholar 
    68.Jhala, Y. V, Qureshi, Q. & Nayak, A. K. Status of tigers, co-predators and prey in India 2018: summary report. (2019).69.López-Bao, J. V. et al. Toward reliable population estimates of wolves by combining spatial capture-recapture models and non-invasive DNA monitoring. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    70.Laake, J. L. & Borchers, D. L. Methods for incomplete detection at distance zero. Advance in Distance Sampling (eds Buckland, S. T., Andersen, D. R., Burn, K. P., Laake, J. L. & Thomas, L.) 108–189 (2004).71.Palacios, V., Font, E. & Márquez, R. Iberian wolf howls: acoustic structure, individual variation, and a comparison with North American populations. J. Mammal. 88, 606–613 (2007).Article 

    Google Scholar 
    72.Passilongo, D., Mattioli, L., Bassi, E., Szabó, L. & Apollonio, M. Visualizing sound: counting wolves by using a spectral view of the chorus howling. Front. Zool. 12, 12–22 (2015).Article 

    Google Scholar 
    73.Fernández-Juricic, E., del Nevo, A. J. & Poston, R. Identification of individual and population-level variation in vocalizations of the endangered Southwestern Willow Flycatcher (Empidonax traillii extimus). Auk 126, 89–99 (2009).Article 

    Google Scholar  More

  • in

    Molecular sexing of degraded DNA from elephants and mammoths: a genotyping assay relevant both to conservation biology and to paleogenetics

    Design of the novel Zinc-Finger TaqMan assayIn order to establish the level of sequence conservation of the Zinc-Finger gene within the elephantine taxa, we aligned the known ZFX/Y regions for both alleles and each genus using Geneious R9. For the Asian elephants (Elephas maximus), we used the previously published Sanger sequences24 (Supplementary Table S1). For the woolly mammoths (Mammuthus primigenius) and the African elephants (Loxodonta africana and Loxodonta cyclotis), due to the lack of actual Zinc-Finger sequences deposited in sequence databanks, we recovered the corresponding sequences via the mapping of published whole-genome NGS reads from known male specimens20,29 (Supplementary Table S2). This alignment shows the complete conservation of the signatures discriminating the ZFX and ZFY alleles in Asian elephants at the scale of the elephantine subfamily. Low coverage data of this region (4X) are also available for the American mastodon (Mammut americanum; Supplementary Table S2), an extinct proboscidean species, which is a quite distant relative to the elephantine taxa: their most recent common ancestor dates back to 25–30 Mya (clade Elephantimorpha30). The comparison with the elephantine sequences strongly suggests the antiquity of these allelic signatures within the proboscideans (Supplementary Fig. S1). Conversely, when added to our comparison, the overlapping ZFX/Y sequences of modern humans show several fixed divergent positions from the elephantids (Fig. 1).Figure 1Alignment of the Zinc-Finger amplicon of interest for the ZFX and ZFY alleles from humans and elephantine taxa: Loxodonta (African elephants), Elephas (Asian elephants) and Mammuthus (mammoths). The top sequence represents the elephant ZFX allele; identities are indicated by dots. Primers and MGB probes are displayed in annealing position.Full size imageWe designed one pair of primers: ZF_Forward (5′-ACAAAATGGTGCATAAGGAAAAG-3′; Tm = 58.9 °C) and ZF_Reverse (5′-CTCAGCTGTCTCGTATTCACA-3′; Tm = 60.3 °C), which promote the amplification of a 74 bp long amplicon surrounding two sex-specific polymorphic sites. We chose priming sites exhibiting fixed divergent positions with human ZFX/Y sequences—specifically the final 3′ position of the forward primer—to reduce the risk of amplification of human contaminants. Based on the melting temperatures of the chosen primers, we designed two sex-specific Minor Groove Binding (MGB) fluorescent probes diverging from each other by two of their 13 nucleotides (Fig. 1): ZFX 5′-VIC/AGCCAACAAAATG/NFQ/MGB-3′ (Tm = 69.0 °C) and ZFY 5′-FAM/ATCCAGCAAAATG/NFQ/MGB-3′ (Tm = 68.8 °C), labelled with the two fluorescent dyes used by default in bi-allelic discrimination31, and manufactured by Applied Biosystems (Foster City, CA).In vitro sensitivity experimentsTo address the sensitivity of our assay, we first generated sex-specific quantitative standards: we diluted a male mammoth DNA extract (Lyakhov mammoth; Supplementary Table S4) until the point when real-time PCR reactions using this dilution as a template would only yield the amplification of one or the other sex-specific allele (or no product at all). We pooled three reactions for which only the X allele was detected in one microtube, and three other Y-positive reactions in another microtube. Each pool was purified using the minelute PCR purification kit (Qiagen, Venlo, NL) and concentrated separately in 10 µl of EBT buffer (Qiagen EB buffer supplemented with 0.05% Tween-20). We quantitated each sex-specific standard using the Qubit High Sensitivity assay kit (Invitrogen, Waltham, MA) and prepared a tenfold dilution series ranging from 1010 copies down to 10−1 copy per µl. Standard series were stored in frozen aliquots and thawed only before use.We analyzed the sensitivity of the assay in two dimensions: (I) the sensitivity of the PCR amplification in absolute copy numbers and (II) the relative sensitivity of both X- and Y-specific allele diagnostics. We first tested the general sensitivity of the assay using a SYBR Green I approach, with 1X Sso-Advanced Supermix (Bio-Rad, Ipswich, MA) and a standard series of each allele (105 down to 10−1 each), using 6 replicates of the standards at the low end (2 × 100 and 2 × 10−1). We then evaluated the reciprocal sensitivity of each MGB probe via a TaqMan reaction using a standard series ranging from 105 down to 100 each, with three replicates for the latest. For probe-based PCR reactions, we used the dedicated TaqMan Fast Advanced Master Mix (Applied Biosystems, Foster City, CA) which contains dUTP and Uracyl-N-glycosylase (UNG) pre-treatment steps to avoid PCR contamination from carryover PCR products.Quantitative PCR optimization and genotype analysesWe compared the behaviour of TaqMan reactions with various combinations of primer concentrations between 400 and 900 nM, final probe concentrations ranging between 200 and 600 nM, and an annealing/extension temperature gradient (55–65 °C). The best sensitivity was obtained around 60.5 °C regardless of the reagent concentrations: the Cq of the standards were retarded by up to 0.8 or 1.2 cycles when lower or higher temperatures were picked, respectively. Balanced MGB probe concentrations systematically yielded a higher response of the FAM probe over the VIC one (up to 150%), and sometimes caused a shallow crosstalk-signal artifact within the VIC detection range. Implementing uneven probe concentrations—increasing VIC by one-third and lowering FAM by as much—addressed both issues. We thus adopted the following conditions for all subsequent experiments: final reaction volumes of 15 µl with 1X of TaqMan Supermix, 800 nM of each primer, 375 nM of Y-FAM probe, 525 nM of X-VIC probe, and 1–2 µl of DNA extract.We performed all PCR reactions on a CFX-96 real-time thermocycler (Bio-Rad, Ipswich, MA) using the following 2-step conditions: after a first denaturation of 2′ at 95 °C, we performed 40 cycles of 95.0 °C 10 s and 60.5 °C 35 s. We conducted the allelic discrimination from the qPCR output with the CFX-Manager software v3.1 (Bio-Rad, Ipswich, MA) using the following set of parameters: baseline subtracted curve fit, quantification cycle (Cq) determined via a single threshold set to 10% of average plateau fluorescence (measured in Rescaled Fluorescence Units, RFU), call of alleles on the last PCR cycle.Specificity analysesWe investigated the level of specificity of our assay against human contaminants via straight qPCR attempts with various concentrations of control human genomic DNA (Thermofisher, cat. number 4312660): 1, 5, and 25 ng per reaction. We complemented this analysis with an in silico assessment of our assay: we used BLASTn32 to analyze the ‘nr’ collection database in GenBank, and identify which taxa shared sequence identity with at least one of our primers. Among those hits, we focused on the putative sympatric taxa of elephantids (modern and extinct) for which we aligned the available ZFX/Y fragments.Although the risk of non-specific detection is extremely low with an MGB-TaqMan methodology31, we chose to monitor the specificity of PCR design in our case study experiments. We prepared two pools—one per case study—from all positive PCR reactions from actual specimens across an entire replicate series. We transformed these pools in double-indexed Illumina libraries33 and performed a shallow sequencing of each (in paired-end 2 * 75 bp).Case study on elephant fecal extractsWe conducted the fecal sampling of wild elephants from November 2016 to January 2019 in Sebitoli area in the vicinity of Kibale National Park (south-western Uganda). The wildlife of this forest area, located at the north of the protected area, is studied by the Sebitoli Chimpanzee Project/Great Apes Conservation Project and the Muséum national d’Histoire naturelle (MNHN, Paris, France). Commercially logged in the 1970s, the Sebitoli forest is now composed of 70% of regenerating forests and only 14% of old-growth forest34. In areas adjacent to Kibale, human population density is high35 (circa 300 inhabitants/km2). They grow monocultures such as tea fields, eucalyptus, and banana plantations as well as crops like maize, which attract elephants and primates out of the forest. This survey is part of a project aiming at mitigating the human-wildlife conflict at the edge of the protected area in the framework of the Memorandum of Understanding SJ 445-12 between MNHN, Uganda Wildlife Authority, and Makerere University in Uganda and the MoU between UWA and GACP.To avoid the repeated sampling of the same individuals, we collected only once when we encountered several dung boli of similar size on the same day and location. Since female elephants live in close family groups36,37—while the adult males are mostly solitary—this strategy made the sampling of male dung more likely than female ones. A quantity of 10 to 15 g of feces was stored in 70% ethanol for 24 h. After removing the supernatant, feces were placed in gauze on silica gel beads and stored at ambient temperature until processed in the laboratory. After removing the largest vegetal compounds, between 150 and 200 mg of dried feces were extracted with the Power fecal DNA Isolation Kit (MoBio, Carlsbad, CA). The DNA extraction was performed in France, at the modern lab of the ‘Plateau de Paléogénomique et Génétique Moléculaire’ (P2GM platform) from the MNHN. Total DNA yields from the extracts, as measured with a NanoDrop 2000 (ThermoFisher Scientific, Waltham, MA), ranged from 2.9 to 186.7 ng/μl (Supplementary Table S3).To validate the assay, we used a set of 12 elephant extracts for which sex was known a priori: six male and six female specimens. We then implemented our assay in a case study that involved 91 specimens of unknown sex. Two PCR replicates per individual extract were performed, in parallel with a total of 7 PCR negative controls (NTC for ‘No Template Control’ reactions).Case study on mammoth ancient DNAOver the last 20 years, we have gathered several dozens of woolly mammoth samples that have been used in various paleogenetic analyses38,39. They are part of a broad comparative genomics project of diachronic specimens from Beringia which objective is to address the diversity and gene flow throughout the Late Pleistocene populations of woolly mammoths. Here we attempted to derive the genetic sex for a subset of 29 specimens using the novel assay. These samples all come from the Late Pleistocene in Siberia, and the radiocarbon-dated specimens range from 4420 up to beyond 50 ky BP (Supplementary Table S4).DNA extractions and PCR setup of mammoth samples took place in the dedicated ‘ancient DNA cleanroom’ at the P2GM platform, which is physically isolated from the modern lab. We used a protocol previously published for DNA extraction from bone39 and extracted the specimens in 5 different series—each along with one extraction blank. We first tested six specimens of known sex (thanks to a morphological diagnosis): Lyakhov, Jarkov and Oymiakon (all males), 2001/174, Lyuba and Khroma (all females). We then implemented the assay on 23 extracts of unknown sex together with each extraction blank, several NTCs, and one absolute standard series to establish the number of template molecules for each X and Y allele available from our mammoth extracts.Our sexing assay relies on the identification of one homozygous genotype (female) and one heterozygous genotype (male) via a bi-allelic target. In such a design, the risk of false assignation of a male to the female genotype due to allelic dropout of the Y allele is a limitation, particularly when working with templates of low DNA content40,41. We carried out all mammoth PCR reactions in triplicates, to comply with the multi-tube strategy developed to control for that risk. The implementation of a quantitative PCR framework in our sexing assay provided us with the ability to refine the estimate of the accuracy of the genotypes. Taberlet et al.41 showed that (i) the allele amplification of a bi-allelic marker behaves stochastically for very dilute samples, and (ii) for a known amount (U) of diploid genome copies in a reaction, the probability of allelic dropout can be precisely modeled (Supplementary Fig. S4). We posited that the sum of ZFX and ZFY allele copy numbers per reaction inferred via qPCR is a relevant proxy of this amount among our samples—a reasonable assumption when one considers that Zinc-Finger is a single copy nuclear gene. We derived the absolute copy number (CN) based on the Cq calculations for both Y-FAM and X-VIC between the positive specimens and the corresponding standard series. We then used this metric to estimate the probability PXX of allele dropout per reaction for a true heterozygote, based on Taberlet et al.’s model. For each specimen, the theoretical risk of wrongly being deemed a female due to allelic dropout thus translates as (PXX)n from the binomial distribution of parameters n and PXX, where n refers to the number of PCR attempts that yielded a genotype (Supplementary Table S6). More

  • in

    eDNA metabarcoding of small plankton samples to detect fish larvae and their preys from Atlantic and Pacific waters

    1.Johnson, C. L., Runge, J. A., Curtis, K. A. & Durbin, E. G. Biodiversity and ecosystem function in the Gulf of Maine: Pattern and role of Zooplankton and Pelagic Nekton. PLoS ONE 6(1), e16491 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Bulman, C. M., He, X. & Koslow, J. A. Trophic ecology of the mid-slope demersal fish community off southern Tasmania, Australia. Mar. Freshw. Res. 53(1), 59–72 (2002).Article 

    Google Scholar 
    3.Walker, W. A., Mead, J. G. & Brownell, R. L. Diets of Baird’s beaked whales, Berardius bairdii, in the southern Sea of Okhotsk and off the Pacific coast of Honshu, Japan. Mar. Mamm. Sci. 18, 902–919 (2002).Article 

    Google Scholar 
    4.Boeing, W. J. & Duffy-Anderson, J. T. Ichthyoplankton dynamics and biodiversity in the Gulf of Alaska: Responses to environmental change. Ecol. Ind. 8, 292–302 (2008).Article 

    Google Scholar 
    5.Beaugrand, G., Brander, K. M., Souissi, J. A. L. S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Möllmann, C. & Diekmann, R. Marine ecosystem regime shifts induced by climate and overfishing: A review for the Northern Hemisphere. Adv. Ecol. Res. 47, 303 (2012).Article 

    Google Scholar 
    7.Morote, E., Olivar, M. P., Bozzano, A., Villate, F. & Uriarte, I. Feeding selectivity in larvae of the European hake (Merluccius merluccius) in relation to ontogeny and visual capabilities. Mar. Biol. 158, 1349–1361 (2011).Article 

    Google Scholar 
    8.Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276(1670), 3053–3062 (2009).Article 

    Google Scholar 
    9.Piontkovski, S. A. & Castellani, C. Long-term declining trend of zooplankton biomass in the Tropical Atlantic. Hydrobiologia 632, 365–370 (2009).Article 

    Google Scholar 
    10.Ruppert, K. M., Kline, R. J. & Rahman, Md. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    11.Ardura, A., Morote, E., Kochzius, M. & Garcia-Vazquez, E. Diversity of planktonic fish larvae along a latitudinal gradient in the Eastern Atlantic Ocean estimated through DNA barcodes. PeerJ 4, e2438 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Fuentes, S., Rick, J., Scherp, P., Chistoserdov, A., & Noel, J. Development of Real-Time PCR assays for the detection of Cylindrospermopsis raciborskii. In Proceedings of the 12th International Conference on Harmful Algae, 397 (2008).13.Zaiko, A. et al. Metabarcoding approach for the ballast water surveillance—An advantageous solution or an awkward challenge?. Mar. Pollut. Bull. 92, 25–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Zaiko, A. et al. Detecting nuisance species using NGST: Methodology shortcomings and possible application in ballast water monitoring. Mar. Environ. Res. 112(B), 64–72 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Ardura, A., Zaiko, A., Martinez, J. L., Borrell, Y. J. & Garcia-Vazquez, E. Environmental DNA evidence of transfer of North Sea molluscs across tropical waters. J. Molluscan Stud. 81(4), 495–501 (2015).Article 

    Google Scholar 
    16.Zaiko, A., Samulioviene, A., Ardura, A. & Garcia-Vazquez, E. Metabarcoding approach for nonindigenous species surveillance in marine coastal waters. Mar. Pollut. Bull. 10, 53–59 (2015).Article 
    CAS 

    Google Scholar 
    17.Borrell, Y. J. et al. Metabarcoding and post-sampling strategies to discover non-indigenous species: A case study in the estuaries of the central south Bay of Biscay. J. Nat. Conserv. 42, 67–74. https://doi.org/10.1016/j.jnc.2017.07.002 (2017).Article 

    Google Scholar 
    18.Steyaert, M. et al. Advances in metabarcoding techniques bring us closer to reliable monitoring of the marine benthos. J. Appl. Ecol. 57, 2234–2245. https://doi.org/10.1111/1365-2664.13729 (2020).CAS 
    Article 

    Google Scholar 
    19.von Ammon, U. et al. Combining morpho-taxonomy and metabarcoding enhances the detection of non-indigenous marine pests in biofouling communities. Sci. Rep. 8, 16290. https://doi.org/10.1038/s41598-018-34541-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348(6237), 1261359. https://doi.org/10.1126/science.1261359 (2015).CAS 
    Article 

    Google Scholar 
    21.Gimmler, A., de Vargas, C., Audic, S. & Stoeck, T. The Tara Oceans voyage reveals global diversity and distribution patterns of marine planktonic ciliates. Sci. Rep. 6, 33555 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bucklin, A., Lindeque, P. K., Rodriguez-Ezpeleta, N., Albaina, A. & Lehtiniemi, M. Metabarcoding of marine zooplankton: Prospects, progress and pitfalls. J. Plankton Res. 38(3), 393–400. https://doi.org/10.1093/plankt/fbw023 (2016).CAS 
    Article 

    Google Scholar 
    23.Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25, 929e942 (2016).Article 
    CAS 

    Google Scholar 
    24.Holdaway, R. et al. Using DNA metabarcoding to assess New Zealand’s terrestrial biodiversity. N. Z. J. Ecol. 41(2), 251–262. https://doi.org/10.20417/nzjecol.41.28 (2017).Article 

    Google Scholar 
    25.van der Loos, L. M. & Nijland, R. Biases in bulk: DNA metabarcoding of marine communities and the methodology involved. Mol. Ecol. 00, 1–19. https://doi.org/10.1111/mec.15592 (2020).Article 

    Google Scholar 
    26.Weigand, H. et al. DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work. Sci. Tot. Environ. 678, 499–524 (2019).CAS 
    Article 

    Google Scholar 
    27.Ardura, A. Species-specific markers for early detection of marine invertebrate invaders through eDNA methods: Gaps and priorities in GenBank as database example. J. Nat. Conserv. 47, 51–57. https://doi.org/10.1016/j.jnc.2018.11.005 (2019).Article 

    Google Scholar 
    28.Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. Natl. Acad. Sci. U. S. A. 270, 313–321 (2003).CAS 

    Google Scholar 
    29.Ward, R., Hanner, R. & Hebert, P. The campaign to DNA barcode all fishes, FISH-BOL. J. Fish Biol. 74, 329–356. https://doi.org/10.1111/j.1095-8649.2008.02080.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11. https://doi.org/10.3389/fenvs.2017.00011 (2017).Article 

    Google Scholar 
    31.Albaina, A., Aguirre, M., Abad, D., Santos, M. & Estonba, A. 18S rRNA V9 metabarcoding for diet characterization: A critical evaluation with two sympatric zooplanktivorous fish species. Ecol. Evol. 6(6), 1809–1824 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Abad, D., Albaina, A., Aguirre, M. & Estonaba, A. 18S V9 metabarcoding correctly depicts plankton estuarine community drivers. Mar. Ecol. Prog. Ser. 584, 31–43 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Günther, B., Knebelsberger, T., Neumann, H., Laakman, S. & Martinez Arbizu, P. Metabarcoding of marine environmental DNA based on mitochondrial and nuclear genes. Sci. Rep. 8, 14822 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Borrell, Y. J., Miralles, L., Do-Huu, H., Mohammed-Geba, K. & Garcia-Vazquez, E. DNA in a bottle—Rapid metabarcoding survey for early alerts of invasive species in ports. PLoS ONE 12(9), e0183347. https://doi.org/10.1371/journal.pone.0183347 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Ardura, A. et al. Nuisance Algae in ballast water facing international conventions. Insights from DNA metabarcoding in ships arriving in bay of Biscay. Water 12(8), 1–14. https://doi.org/10.3390/W12082168 (2020).Article 

    Google Scholar 
    36.Jose, E. C., Furio, E. F., Borja, V. M., Gatdula, N. C. & Santos, M. D. Zooplankton composition and abundance and its relationship with physico-chemical parameters in Manila Bay. J. Oceanogr. Mar. Res. 3(1), 1000136 (2015).Article 

    Google Scholar 
    37.Montoya-Maya, P. & Strydom, N. A. Zooplankton composition, abundance and distribution in selected south and west coast estuaries in South Africa. Afr. J. Aquat. Sci. 34(2), 147–157 (2009).Article 

    Google Scholar 
    38.Youssara, F. & Gaudy, R. Variations of zooplankton in the frontal area of the Alboran sea (Mediterranean Sea) in winter 1997. Oceanol. Acta 24, 361–376 (2001).Article 

    Google Scholar 
    39.Ndour, I., Berraho, A., Fall, M., Ettahiri, O. & Sambe, B. Composition, distribution and abundance of zooplankton and ichthyoplankton along the Senegal-Guinea maritime zone (West Africa). Egypt. J. Aquat. Res. 44(2), 109–124 (2018).Article 

    Google Scholar 
    40.Siokou-Frangou, I. et al. Plankton in the open Mediterranean Sea: A review. Biogeosciences 7, 1543–1586 (2010).ADS 
    Article 

    Google Scholar 
    41.Uye, S., Iwamoto, N., Ueda, T., Tamaki, H. & Nakahira, K. Geographical variations in the trophic structure of the plankton community along a eutrophic-mesotrophic-oligotrophic transect. Fish. Oceanogr. 8(3), 227–237 (1999).Article 

    Google Scholar 
    42.Hanfland, C. & König, B. The Expedition PS116 of the Research Vessel Polarstern to the Atlantic Ocean in 2018, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research. Bremerhaven Alfred Wegener Inst. Polar Mar. Res. 731, 54. https://doi.org/10.2312/BzPM_0731_2019 (2019).Article 

    Google Scholar 
    43.Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10(1), 34. https://doi.org/10.1186/1742-9994-10-34 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Fernandez, S., Rodríguez-Martínez, S., Martínez, J. L., Garcia-Vazquez, E. & Ardura, A. How can eDNA contribute in riverine macroinvertebrate assessment? A metabarcoding approach in the Nalón River (Asturias, Northern Spain). Environ. DNA 1, 385–401. https://doi.org/10.1002/edn3.40 (2019).Article 

    Google Scholar 
    46.Zhan, A. et al. High sensitivity of 454 pyrosequencing for detection of rare species in aquatic communities. Methods Ecol. Evol. 4(6), 558–565 (2013).Article 

    Google Scholar 
    47.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, 14.1. Technical notes. (2011).49.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Baker, C. Workflow for generating a qiime-compatible blast database from an entrez search. (2017).51.Pielou, E. C. Ecological Diversity Vol. 7, 165 (Wiley, 1975).
    Google Scholar 
    52.Hammer, O., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
    Google Scholar 
    53.Perez, J., Álvarez, P., Martinez, J. L. & Garcia-Vazquez, E. Genetic identification of hake and megrim eggs in formaldehyde-fixed plankton samples. ICES J. Mar. Sci. 62(5), 908–914. https://doi.org/10.1016/j.icesjms.2005.04.001 (2005).CAS 
    Article 

    Google Scholar 
    54.Von der Heyden, S., Lipinski, M. R. & Matthee, C. A. Species specific genetic markers for identification of early life history stages of Cape hakes, Merluccius capensis and M. paradoxus in the southern Benguela Current. J. Fish Biol. 70, 262–268 (2007).Article 

    Google Scholar 
    55.Fox, C. J. et al. TaqMan DNA technology confirms likely overestimation of cod (Gadus morhua L.) egg abundance in the Irish Sea: Implications for the assessment of the cod stock and mapping of spawning areas using egg-based methods. Mol. Ecol. 14, 879–884 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Karaiskou, N. et al. Horse mackerel egg identification using DNA methodology. Mar. Ecol. 28, 429–434 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Madden, M. J. L. et al. Using DNA barcoding to improve invasive pest identification at U.S. ports-of-entry. PLoS ONE 14, e0222291. https://doi.org/10.1371/journal.pone.0222291 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43–48. https://doi.org/10.1046/j.1469-8137.2003.00861.x (2003).CAS 
    Article 

    Google Scholar 
    59.Leray, M. et al. GenBank is a reliable resource for 21st century biodiversity research. PNAS 116, 22651–22656. https://doi.org/10.1073/pnas.1911714116 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Edwards, M. et al. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25(10), 602–610. https://doi.org/10.1016/j.tree.2010.07.007 (2010).Article 
    PubMed 

    Google Scholar 
    61.Pillar, S. C. & Wilkinson, I. S. The diet of Cape hake Merluccius capensis on the south coast of South Africa. S. Afr. J. Mar. Sci. 15(1), 225–239. https://doi.org/10.2989/02577619509504845 (1995).Article 

    Google Scholar 
    62.Miossec, L., Le Deuff, R. M. & Goulletquer, R. Alien Species Alert: Crassostrea gigas (Pacific oyster). ICES Cooper. Res. Rep. 299, 42 (2009).
    Google Scholar 
    63.Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).Article 

    Google Scholar 
    64.Wellington, G. M. & Victor, B. C. Planktonic larval duration of one hundred species of Pacific and Atlantic damselfishes (Pomacentridae). Mar. Biol. 101, 557–567 (1989).Article 

    Google Scholar 
    65.Roy, K., Jablonski, D., Valentine, J. W. & Rosenberg, G. Marine latitudinal diversity gradients: Tests of causal hypotheses. Proc. Natl. Acad. Sci. U. S. A. 95, 3699–3702 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).ADS 
    Article 

    Google Scholar 
    67.Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl. Acad. Sci. U. S. A. 105(22), 7774–7778 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Chao, Z. et al. Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication. Pharmacogn. Mag. 10(40), 449–457. https://doi.org/10.4103/0973-1296.141816 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Ibabe, A., Rayon, F., Martinez, J. L. & Garcia-Vazquez, E. Environmental DNA from plastic and textile marine litter detects exotic and nuisance species nearby ports. PLoS ONE 15(6), e0228811 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70Ardura, A. et al. Stress resistance for unraveling potential biopollutants. Insight from ballast wáter community análisis through DNA. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2020.111935 (2020).Article 
    PubMed 

    Google Scholar 
    71.Brown, C. M. et al. Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. Food Webs 24, e00147. https://doi.org/10.1016/j.fooweb.2020.e00147 (2020).Article 

    Google Scholar 
    72.Paxton, A. B. et al. Artificial habitats host elevated densities of large reef-associated predators. PLoS ONE 15(9), e0237374. https://doi.org/10.1371/journal.pone.0237374 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324. https://doi.org/10.1371/journal.pone.0130324 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    High and rising economic costs of biological invasions worldwide

    1.Born, W., Rauschmayer, F. & Bräuer, I. Economic evaluation of biological invasions—a survey. Ecol. Econ. 55, 321–336 (2005).Article 

    Google Scholar 
    2.Jackson, T. Addressing the economic costs of invasive alien species: some methodological and empirical issues. Int. J. Sustain. Soc. 7, 221–240 (2015).Article 

    Google Scholar 
    3.Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7, 277 (2020).CAS 
    Article 

    Google Scholar 
    4.Bellard, C., Cassey, P. & Blackburn, T. M. Alien species as a driver of recent extinctions. Biol. Lett. 12, 20150623 (2016).Article 

    Google Scholar 
    5.Kumschick, S. et al. Ecological impacts of alien species: quantification, scope, caveats, and recommendations. Bioscience 65, 55–63 (2015).Article 

    Google Scholar 
    6.Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a One Health collaboration in science and management. R. Soc. Open Sci. 6, 181577 (2019).Article 

    Google Scholar 
    7.Jones, B. A. Invasive species impacts on human well-being using the life satisfaction index. Ecol. Econ. 134, 250–257 (2017).Article 

    Google Scholar 
    8.Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986 (2016).CAS 
    Article 

    Google Scholar 
    9.Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Change Biol. 27, 970–982 (2020).Article 

    Google Scholar 
    10.Essl, F. et al. Drivers of future alien species impacts: an expert-based assessment. Glob. Change Biol. 26, 4880–4893 (2020).Article 

    Google Scholar 
    11.Courchamp, F. et al. Invasion biology: specific problems and possible solutions. Trends Ecol. Evol. 32, 13–22 (2017).Article 

    Google Scholar 
    12.Lenzner, B. et al. A framework for global twenty-first century scenarios and models of biological invasions. Bioscience 69, 697–710 (2019).Article 

    Google Scholar 
    13.Heger, T. et al. Conceptual frameworks and methods for advancing invasion ecology. Ambio 42, 527–540 (2013).Article 

    Google Scholar 
    14.Larson, D. L. et al. A framework for sustainable invasive species management: environmental, social, and economic objectives. J. Environ. Manage. 92, 14–22 (2011).Article 

    Google Scholar 
    15.Hoffmann, B. D. & Broadhurst, L. M. The economic cost of managing invasive species in Australia. NeoBiota 31, 1–18 (2016).Article 

    Google Scholar 
    16.Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84, 1–20 (2001).Article 

    Google Scholar 
    17.Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl Acad. Sci. USA 113, 7575–7579 (2016).CAS 
    Article 

    Google Scholar 
    18.Latombe, G. et al. A vision for global monitoring of biological invasions. Biol. Conserv. 213, 295–308 (2017).Article 

    Google Scholar 
    19.Diagne, C., Catford, J. A., Essl, F., Nuñez, M. A. & Courchamp, F. What are the economic costs of biological invasions? A complex topic requiring international and interdisciplinary expertise. NeoBiota 63, 25–37 (2020).Article 

    Google Scholar 
    20.Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).CAS 
    Article 

    Google Scholar 
    21.Bishop, M. J. et al. Effects of ocean sprawl on ecological connectivity: impacts and solutions. J. Exp. Mar. Biol. Ecol. 492, 7–30 (2017).Article 

    Google Scholar 
    22.Bacher, S. et al. Socio‐Economic Impact Classification of Alien Taxa (SEICAT). Methods Ecol. Evol. 9, 159–168 (2018).23.Angulo, E. et al. Non-English languages enrich scientific knowledge: the example of economic costs of biological invasions. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144441 (2021).24.Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species. Divers. Distrib. 10, 135–141 (2004).Article 

    Google Scholar 
    25.Dana, E. D., Jeschke, J. M. & García-de-Lomas, J. Decision tools for managing biological invasions: existing biases and future needs. Oryx 48, 56–63 (2014).Article 

    Google Scholar 
    26.Jeschke, J. M., Keesing, F. & Ostfeld, R. S. Novel organisms: comparing invasive species, GMOs, and emerging pathogens. Ambio 42, 541–548 (2013).Article 

    Google Scholar 
    27.Jones, B. A. Tree shade, temperature, and human health: evidence from invasive species-induced deforestation. Ecol. Econ. 156, 12–23 (2019).Article 

    Google Scholar 
    28.Jones, B. A. & McDermott, S. M. Health impacts of invasive species through an altered natural environment: assessing air pollution sinks as a causal pathway. Environ. Resour. Econ. 71, 23–43 (2018).Article 

    Google Scholar 
    29.Pyšek, P. et al. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23, 237–244 (2008).Article 

    Google Scholar 
    30.Clout, M. N. & Russell, J. C. The invasion ecology of mammals: a global perspective. Wildl. Res. 35, 180–184 (2008).Article 

    Google Scholar 
    31.Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).CAS 
    Article 

    Google Scholar 
    32.Jarić, I. et al. Crypticity in biological invasions. Trends Ecol. Evol. 34, 291–302 (2019).Article 

    Google Scholar 
    33.Pascual, U. et al. in The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations (ed. Kumar, P.) 183–256 (Earthscan, 2010).34.Spangenberg, J. H. & Settele, J. Precisely incorrect? Monetising the value of ecosystem services. Ecol. Complex. 7, 327–337 (2010).Article 

    Google Scholar 
    35.Kallis, G., Gómez-Baggethun, E. & Zografos, C. To value or not to value? That is not the question. Ecol. Econ. 94, 97–105 (2013).Article 

    Google Scholar 
    36.Meinard, Y., Dereniowska, M. & Gharbi, J.-S. The ethical stakes in monetary valuation methods for conservation purposes. Biol. Conserv. 199, 67–74 (2016).Article 

    Google Scholar 
    37.Faulkner, K. T., Robertson, M. P. & Wilson, J. R. U. Stronger regional biosecurity is essential to prevent hundreds of harmful biological invasions. Glob. Change Biol. 26, 2449–2462 (2020).Article 

    Google Scholar 
    38.Pagad, S., Genovesi, P., Carnevali, L., Schigel, D. & McGeoch, M. A. Introducing the Global Register of Introduced and Invasive Species. Sci. Data 5, 170202 (2018).Article 

    Google Scholar 
    39.Holden, M. H., Nyrop, J. P. & Ellner, S. P. The economic benefit of time‐varying surveillance effort for invasive species management. J. Appl. Ecol. 53, 712–721 (2016).Article 

    Google Scholar 
    40.Hulme, P. E. et al. Integrating invasive species policies across ornamental horticulture supply chains to prevent plant invasions. J. Appl. Ecol. 55, 92–98 (2018).Article 

    Google Scholar 
    41.Chaffin, B. C. et al. Biological invasions, ecological resilience and adaptive governance. J. Environ. Manage. 183, 399–407 (2016).Article 

    Google Scholar 
    42.Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).Article 

    Google Scholar 
    43.Seebens, H. Invasion ecology: expanding trade and the dispersal of alien species. Curr. Biol. 29, R120–R122 (2019).CAS 
    Article 

    Google Scholar 
    44.Leroy, B. et al. Analysing global economic costs of invasive alien species with the invacost R package. Preprint at https://doi.org/10.1101/2020.12.10.419432 (2020). More

  • in

    Individual differences in dominance-related traits drive dispersal and settlement in hatchery-reared juvenile brown trout

    1.Bullock, J. M., Kenward, R. E. & Hails, R. S. Dispersal Ecology (Blackwell, 2002).
    Google Scholar 
    2.Dieckmann, U., O’Hara, B. & Weisser, W. The evolutionary Ecology Of Dispersal. Trends Ecol. Evol. 14, 88–90 (1999).Article 

    Google Scholar 
    3.Allendorf, F. W. & Luikart, G. Conservation and the Genetics of Populations (Blackwell Publishing, 2009).
    Google Scholar 
    4.Vøllestad, L. A. et al. Small-scale dispersal and population structure in stream-living brown trout (Salmo trutta) inferred by mark–recapture, pedigree reconstruction, and population genetics. Can. J. Fish. Aquat. Sci. 69, 1513–1524 (2012).Article 

    Google Scholar 
    5.Edelsparre, A. H., Shahid, A. & Fitzpatrick, M. J. Habitat connectivity is determined by the scale of habitat loss and dispersal strategy. Ecol. Evol. 8, 5508–5514 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Filipe, A. F. et al. Forecasting fish distribution along stream networks: Brown trout (Salmo trutta) in Europe. Divers. Distrib. 19, 1059–1071 (2013).Article 

    Google Scholar 
    7.Cote, J., Clobert, J., Brodin, T., Fogarty, S. & Sih, A. Personality-dependent dispersal: Characterization, ontogeny and consequences for spatially structured populations. Philos. Trans. R. Soc. B. 365, 4065–4076 (2010).CAS 
    Article 

    Google Scholar 
    8.Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73 (2017).Article 

    Google Scholar 
    9.Comte, L. & Olden, J. D. Fish dispersal in flowing waters: A synthesis of movement- and genetic-based studies. Fish Fish. 19, 1063–1077 (2018).Article 

    Google Scholar 
    10.Ducatez, S. et al. Inter-individual variation in movement: is there a mobility syndrome in the large white butterfly Pieris brassicae?. Ecol. Entomol. 37, 377–385 (2012).Article 

    Google Scholar 
    11.Clobert, E., Le Galliard, J. F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209 (2009).PubMed 
    Article 

    Google Scholar 
    12.Stevens, V. M. et al. Dispersal syndromes and the use of life-histories to predict dispersal. Evol. Appl. 6, 630–642 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Daufresne, M., Capra, H. & Gaudin, P. Downstream displacement of post emergent brown trout: Effects of development stage and water velocity. J. Fish Biol. 67, 599–614 (2005).Article 

    Google Scholar 
    14.Chapman, D. W. Aggressive behaviour in juvenile coho salmon as a cause of emigration. J. Fish. Res. Bd. Can. 19, 1047–1079 (1962).Article 

    Google Scholar 
    15.McCarthy, I. D. Competitive ability is related to metabolic asymmetry in juvenile rainbow trout. J. Fish Biol. 59, 1002–1014 (2001).Article 

    Google Scholar 
    16.Metcalfe, N. B., Taylor, A. C. & Thorpe, J. E. Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim. Behav. 49, 431–436 (1995).Article 

    Google Scholar 
    17.Lahti, K., Huuskonen, H., Laurila, A. & Piironen, J. Metabolic rate and aggressiveness between Brown Trout populations. Funct. Ecol. 16, 167–174 (2002).Article 

    Google Scholar 
    18.Fraser, D. J., Weir, L. K., Darwish, T. L., Eddington, J. D. & Hutchings, J. A. Divergent compensatory growth responses within species: Linked to contrasting migrations in salmon?. Oecologia 153, 543–553 (2007).PubMed 
    Article 
    ADS 

    Google Scholar 
    19.Swain, D. P. & Holtby, L. B. Differences in morphology and agonistic behaviour in coho salmon (Oncorhynchus kisutch) rearing in a lake or its tributary stream. Can. J. Fish. Aquat. Sci. 46, 1406–1414 (1989).Article 

    Google Scholar 
    20.Kaiser, A., Merckx, T. & Van Dyck, H. Personality traits influence contest outcome, and vice versa, in a territorial butterfly. Sci. Rep. 9, 2778 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    21.Studds, C. E., Kyser, T. K. & Marra, P. P. Natal dispersal driven by environmental conditions interacting across the annual cycle of a migratory songbird. Proc. Natl. Acad. Sci. 105, 2929–2933 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    22.Behr, D. M., McNutt, J. W., Ozgul, A. & Cozzi, G. When to stay and when to leave? Proximate causes of dispersal in an endangered social carnivore. J. Anim. Ecol. 89, 2356–2366. https://doi.org/10.1111/1365-2656.13300 (2020).Article 
    PubMed 

    Google Scholar 
    23.Keenleyside, M. H. & Yamamoto, F. T. Territorial behaviour of juvenile Atlantic salmon (Salmo salar L.). Behaviour 19, 139–169 (1962).Article 

    Google Scholar 
    24.Duckworth, R. A. & Badyaev, A. V. Coupling of dispersal and aggression facilitates the the rapid range expansion of a passerine bird. Proc. Natl. Acad. Sci. USA. 104, 15017–15022 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    25.Peery, C. A. & Bjornn, T. C. Dispersal of hatchery-reared chinook salmon parr following release into four Idaho streams. N. Am. J. Fish. Manag. 20, 19–27 (2000).Article 

    Google Scholar 
    26.Nagata, M. & Irvine, J. R. Differential dispersal patterns of male and female masu salmon fry. J. Fish Biol. 51, 601–606 (1997).Article 

    Google Scholar 
    27.Li, X.-Y. & Kokko, H. Sex-biased dispersal: A review of the theory. Biol. Rev. 94, 721–736. https://doi.org/10.1111/brv.12475 (2019).Article 
    PubMed 

    Google Scholar 
    28.Hutchings, J. A. & Gerber, L. Sex-biased dispersal in a salmonid fish. Proc. R. Soc. B. 269, 2487–2493. https://doi.org/10.1098/rspb.2002.2176 (2002).Article 
    PubMed 

    Google Scholar 
    29.Bekkevold, D., Hansen, M. M. & Mensberg, K.-L.D. Genetic detection of sex-specific dispersal in historical and contemporary populations of anadromous brown trout Salmo trutta. Mol. Ecol. 13, 1707–1712. https://doi.org/10.1111/j.1365-294X.2004.02156.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659 (2010).PubMed 
    Article 

    Google Scholar 
    31.Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).Article 

    Google Scholar 
    32.Cano, J. M. & Nicieza, A. G. Temperature, metabolic rate, and constraints on locomotor performance in ectotherm vertebrates. Funct. Ecol. 20, 464–470 (2006).Article 

    Google Scholar 
    33.Van Leeuwen, T. E., Rosenfeld, J. S. & Richards, J. G. Adaptive tradeoffs in juvenile salmonid metabolism associated with habitat partitioning between coho salmon and steelhead trout in coastal streams. J. Anim. Ecol. 80, 1012–1023 (2011).PubMed 
    Article 

    Google Scholar 
    34.Sundström, L. F., Petersson, E., Höjesjö, J., Johnsson, J. I. & Järvi, T. Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): Implications for dominance. Behav. Ecol. 15, 192–198 (2004).Article 

    Google Scholar 
    35.Clobert, J., Ims, R. A. & Rousset, F. Causes, mechanisms and consequences of dispersal. In Ecology, Genetics and Evolution of Metapopulations (eds Hanski, I. & Gaggiotti, O. E.) 307–336 (Elsevier Academic Press, 2004).
    Google Scholar 
    36.Bohlin, T., Sundström, L. F., Johnsson, J. I., Höjesjö, J. & Pettersson, J. Density-dependent growth in brown trout: Effects of introducing wild and hatchery fish. J. Anim. Ecol. 71, 683–692 (2002).Article 

    Google Scholar 
    37.Gerking, S. D. The restricted movement of fish populations. Biol. Rev. 34, 221–242 (1959).Article 

    Google Scholar 
    38.Rodríguez, M. A. Restricted movement in stream fish: The paradigm is incomplete, not lost. Ecology 83, 1–13 (2002).Article 

    Google Scholar 
    39.Sánchez-González, J.-R. & Nicieza, A. G. Phenotypic convergence of artificially reared and wild trout is mediated by shape plasticity. Ecol. Evol. 7, 5922–5929 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Webb, P. W. Body form, locomotion and foraging in aquatic vertebrates. Am. Zool. 24, 107–120 (1984).Article 

    Google Scholar 
    41.Blake, R. W. Fish functional design and swimming performance. J. Fish Biol. 65, 1193–1222 (2010).Article 

    Google Scholar 
    42.Lowe, W. H. What drives long-distance dispersal? A test of theoretical predictions. Ecology 90, 1456–1462 (2009).PubMed 
    Article 

    Google Scholar 
    43.Nicieza, A. G. Morphological variation between geographically disjunct populations of Atlantic salmon: The effects of ontogeny and habitat shift. Funct. Ecol. 9, 448–456 (1995).Article 

    Google Scholar 
    44.Billman, E. J. et al. Body morphology differs in wild juvenile Chinook salmon Oncorhynchus tshawytscha that express different migratory phenotypes in the Willamette River, Oregon, USA. J. Fish Biol. 85, 1097–1110. https://doi.org/10.1111/jfb.12482 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Langerhans, R. B. & Reznick, D. N. Ecology and Evolution of Swimming Performance in Fishes: Predicting Evolution with Biomechanics. Fish Locomotion: An Ethoecological Perspective (Science Publishers, 2010).
    Google Scholar 
    46.Cano-Barbacil, C. et al. Key factors explaining critical swimming speed in freshwater fish: A review and statistical analysis for Iberian species. Sci. Rep. 10, 18947. https://doi.org/10.1038/s41598-020-75974-x (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    47.Johnsson, J. I., Nöbbelin, F. & Bohlin, T. Territorial competition among wild brown trout fry: effects of ownership and body size. J. Fish Biol. 54, 469–472 (1999).Article 

    Google Scholar 
    48.Deverill, J. I., Adams, C. E. & Bean, C. W. Prior residence, aggression and territory acquisition in hatchery-reared and wild brown trout. J. Fish Biol. 55, 868–875 (1999).Article 

    Google Scholar 
    49.Weiss, S. & Schmutz, S. Performance of hatchery-reared brown trout and their effects on wild fish in two small Austrian streams. Trans. Am. Fish. Soc. 128, 302–316 (1999).Article 

    Google Scholar 
    50.Fagan, W. F. Connectivity, fragmentation, and extinction risk in dendritic metapopulations. Ecology 83, 3243–3249 (2002).Article 

    Google Scholar 
    51.Álvarez, D. & Nicieza, A. G. Is metabolic rate a reliable predictor of growth and survival of brown trout (Salmo trutta) in the wild?. Can. J. Fish. Aquat. Sci. 62, 643–649 (2005).Article 

    Google Scholar 
    52.Álvarez, D., Cano, J. M. & Nicieza, A. G. Microgeographic variation in metabolic rate and energy storage of brown trout: Countergradient selection or thermal sensitivity?. Evol. Ecol. 20, 345–363 (2006).Article 

    Google Scholar 
    53.Valentin, A. E. et al. Arching effect on fish body shape in geometric morphometric studies. J. Fish Biol. 73, 623–638 (2008).Article 

    Google Scholar 
    54.Leblanc, C. A. & Noakes, D. L. Visible Iiplant elastomer (VIE) tags for marking small rainbow trout. N. Am. J. Fish. Manag. 32, 716–719 (2012).Article 

    Google Scholar 
    55.Rohlf, F. J. tpsDig2: A Program Digitize Landmarks and Outlines (Springer, 2013).
    Google Scholar 
    56.Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Elsevier Academic Press, 2004).
    Google Scholar 
    57.Rohlf, F. J. tpsRelw: Relative Warps Analysis (Spinger, 2013).
    Google Scholar 
    58.Horton, R. E. Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 56, 275–370 (1945).Article 

    Google Scholar 
    59.Fraser, N. H. C., Metcalfe, N. B. & Thorpe, J. E. Temperature-dependent switch between diurnal and nocturnal foraging in salmon. Proc. R. Soc. B Biol. Sci. 252, 135–139 (1993).Article 
    ADS 

    Google Scholar 
    60.Contor, C. R. & Griffith, J. S. Nocturnal emergence of juvenile rainbow trout from winter concealment relative to light intensity. Hydrobiologia 299, 179–183 (1995).Article 

    Google Scholar 
    61.Závorka, L., Aldvén, D., Näslund, J., Höjesjö, J. & Johnsson, J. I. Inactive trout come out at night: Behavioral variation, circadian activity, and fitness in the wild. Ecology 97, 2223–2231 (2016).PubMed 
    Article 

    Google Scholar 
    62.Lyon, J. P. et al. Efficiency of electrofishing in turbid lowland rivers: Implications for measuring temporal change in fish populations. Can. J. Fish. Aquat. Sci. 71, 878–886 (2014).Article 

    Google Scholar 
    63.Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).Article 

    Google Scholar 
    64.Baddeley, A. & Turner, R. spatstat: An R package for analyzing spatial point patterns. J. Stat. Softw. 12, 1–42 (2005).Article 

    Google Scholar 
    65.Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman & Hall/CRC Press Book, 2015).
    Google Scholar 
    66.R Development Core Team. R: A Language and Environment for Statistical Computing. R version 4.0.2: “Taking Off Again”. (2020).67.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-268.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    69.Benjamini, Y. Discovering the false discovery rate. J. R. Stat. Soc. B 57, 405–416 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    70.Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach. (Springer, 2002).
    Google Scholar 
    71.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    72.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    73.Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article 

    Google Scholar  More

  • in

    Coastal reclamation alters soil microbial communities following different land use patterns in the Eastern coastal zone of China

    1.Murray, N. J. et al. The global distribution and trajectory of tidal flats. Nature 565(7738), 222 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Bu, N. S. et al. Reclamation of coastal salt marshes promoted carbon loss from previously-sequestered soil carbon pool. Ecol. Eng. 81, 335–339 (2015).Article 

    Google Scholar 
    3.Cui, B. S., He, Q., Gu, B. H., Bai, J. H. & Liu, X. H. China’s coastal wetlands: understanding environmental changes and human impacts for management and conservation. Wetlands 36(Suppl 1), S1–S9 (2016).Article 

    Google Scholar 
    4.Cao, Z. Q. et al. Heavy metal pollution and the risk from tidal flat reclamation in coastal areas of Jiangsu, China. Mar. Pollut. Bull. 158, 111427 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Yin, A. J. et al. Salinity evolution of coastal soils following reclamation and intensive usage, Eastern China. Environ. Earth Sci. 75, 1281 (2016).Article 
    CAS 

    Google Scholar 
    6.Wang, W., Liu, H., Li, Y. Q. & Su, J. L. Development and management of land reclamation in China. Ocean Coast. Manage. 102, 415–425 (2014).Article 

    Google Scholar 
    7.Laffoley, D. & Grimsditch, G. The Management of Natural Coastal Carbon Sinks (IUCN, 2009).
    Google Scholar 
    8.Cheong, S. et al. Coastal adaptation with ecological engineering. Nat. Clim. Change 3, 787–791 (2013).ADS 
    Article 

    Google Scholar 
    9.Yang, W. et al. Seawall construction alters soil carbon and nitrogen dynamics and soil microbial biomass in an invasive Spartina alterniflora salt marsh in eastern China. Appl. Soil Ecol. 110, 1–11 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Ding, L. J., Su, J. Q., Li, H., Zhu, Y. G. & Cao, Z. H. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biol. Biochem. 104, 59–67 (2017).CAS 
    Article 

    Google Scholar 
    11.Zhang, H. et al. Changes in surface soil organic/inorganic carbon concentrations and their driving forces in reclaimed coastal tidal flats. Geoderma 352, 150–159 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Han, G. X. et al. Agricultural reclamation effects on ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agr. Ecosyst. Environ. 196, 187–198 (2014).Article 

    Google Scholar 
    13.Hargreaves, S. K. & Hofmockel, K. S. Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem. Biogeochemistry 117, 67–79 (2014).CAS 
    Article 

    Google Scholar 
    14.Ramirez, K. S., Lauber, C. L., Knight, R., Bradford, M. A. & Fierer, N. Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91, 3463–3470 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42, 516–520 (2010).CAS 
    Article 

    Google Scholar 
    16.Kamble, P. N., Gaikwad, V. B., Kuchekar, S. R. & Bååth, E. Microbial growth, biomass, community structure and nutrient limitation in high pH and salinity soils from Pravaranagar (India). Eur. J. Soil Biol. 65, 87–95 (2014).CAS 
    Article 

    Google Scholar 
    17.Gao, Y. C. et al. Effects of salinization and crude oil contamination on soil bacterial community structure in the Yellow River Delta region, China. Appl. Soil Ecol. 86, 165–173 (2015).Article 

    Google Scholar 
    18.Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall – induced carbon oxide pulses results from sequential resuscitation of phylogenetically cluster microbial groups. Proc. Natl. Acad. Sci. 109, 10931–10936 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Yuan, Y. et al. Responses of microbial community structure to land-use conversion and fertilization in southern China. Eur. J. Soil Biol. 70, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    20.Iost, S., Landgraf, D. & Makeschin, F. Chemical soil properties of reclaimed marsh soil from Zhejiang Province P.R. China. Geoderma 142, 245–250 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Yang, W. et al. Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci. Rep. 9, 5921 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena 153, 89–99 (2017).CAS 
    Article 

    Google Scholar 
    23.Chen, G. X., Gao, D. Z., Wang, Z. P. & Zeng, C. S. Contents of carbon, nitrogen and phosphorus in sediments in aquaculture ponds for different reclamation years in Shanyutan wetlands and its pollution risk assessment. Wetland Sci. 15, 309–314 (2017).
    Google Scholar 
    24.Whitting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B. 53, 521–528 (2001).ADS 

    Google Scholar 
    25.Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage. Res. 126, 60–71 (2013).Article 

    Google Scholar 
    26.Xing, W. L., Cheng, X. R., Xiong, J., Yuan, H. J. & Yu, M. K. Variations in soil biological properties in poplar plantations along coastal reclamation stages. Appl. Soil Ecol. 154, 103649 (2020).Article 

    Google Scholar 
    27.Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pedrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Krishnamoorthy, R., Kim, K., Kim, C. & Sa, T. Changes of arbuscular mycorrhizal traits and community structure with respect to soil salinity in a coastal reclamation land. Soil Biol. Biochem. 72, 1–10 (2014).CAS 
    Article 

    Google Scholar 
    29.Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 64, 7–14 (2013).Article 

    Google Scholar 
    30.Peay, K. G., Baraloto, C. & Fine, P. V. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 7, 1852–1861 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Santonja, M. et al. Plant litter mixture partly mitigates the negative effects of extended drought on soil biota and litter decomposition in a Mediterranean oak forest. J. Ecol. 105, 801–815 (2017).Article 

    Google Scholar 
    32.Yang, W. et al. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora invasion in a coastal wetland of eastern China. Plant Soil 408, 443–456 (2016).CAS 
    Article 

    Google Scholar 
    33.Anderson, C. R. et al. Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia 54, 309–320 (2011).CAS 
    Article 

    Google Scholar 
    34.Mavi, M. S. & Marschner, P. Salinity affects the response of soil microbial activity and biomass to addition of carbon and nitrogen. Soil Res. 51, 68–75 (2013).CAS 
    Article 

    Google Scholar 
    35.Xie, X. F. et al. Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land. Ecol. Indic. 120, 106925 (2021).CAS 
    Article 

    Google Scholar 
    36.Mohammad, M. J., Malkawi, H. I. & Shibli, R. Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J. Plant Nutr. 26, 125–137 (2003).CAS 
    Article 

    Google Scholar 
    37.Cui, X. C., Hu, J. L., Wang, J. J., Yang, J. S. & Lin, X. G. Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Appl. Soil Ecol. 98, 140–149 (2016).Article 

    Google Scholar 
    38.Guo, X. & Gong, J. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24, 79–94 (2014).PubMed 
    Article 

    Google Scholar 
    39.Yamato, M., Yagame, T., Yoshimura, Y. & Iwase, K. Effect of environmental gradient in coastal vegetation on communities of arbuscular mycorrhizal fungi associated with Ixeris repens (Asteraceae). Mycorrhiza 22, 622–630 (2012).Article 

    Google Scholar 
    40.Strickland, M. S. & Rousk, J. Considering fungal :bacterial dominance in soils: Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 
    Article 

    Google Scholar 
    41.Collins, C. G., Stajich, J. E., Weber, S. E., Pombubpa, N. & Diez, J. M. Shrub range expansion alters diversity and distribution of soil fungal communities across an alpine elevation gradient. Mol. Ecol. 27, 2461–2476 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Yang, W. et al. Soil fungal communities vary with invasion by the exotic Spartina alternifolia Loisel. in coastal salt marshes of eastern China. Plant Soil 442, 215–232 (2019).CAS 
    Article 

    Google Scholar 
    43.Yang, W. et al. Exotic Spartina alterniflora Loisel. invasion significantly shifts soil bacterial communities with the successional gradient of saltmarsh in eastern China. Plant Soil 449, 97–115 (2020).CAS 
    Article 

    Google Scholar 
    44.Wang, C. et al. Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biol. Biochem. 121, 103–112 (2018).CAS 
    Article 

    Google Scholar 
    45.Högberg, M. N., Baath, E., Nordgren, A., Arnebrant, K. & Högberg, P. Contrasting effects of nitrogen availability on plant carbon supply to mycorrhizal fungi and saprotrophs: A hypothesis based on field observations in boreal forests. New Phytol. 160, 225–238 (2003).Article 
    CAS 

    Google Scholar 
    46.Joergensen, R. G. & Wichern, F. Quantitative assessment of the fungal contribution to microbial tissue in soil. Soil Biol. Biochem. 40, 2977–2991 (2008).CAS 
    Article 

    Google Scholar 
    47.Xu, S. Q. et al. Comparison of microbial community composition and diversity in native coastal wetlands and wetlands that have undergone long-term agricultural reclamation. Wetlands 37, 99–108 (2017).CAS 
    Article 

    Google Scholar 
    48.Vangestel, M., Merckx, R. & Vlassak, K. Microbial biomass responses to soil drying and rewetting-the fate of fast-growing and slow-growing microorganisms in soils from different climates. Soil Biol. Biochem. 25, 109–123 (1993).Article 

    Google Scholar 
    49.Farrell, M. Microbial utilisation of biochar-derived carbon. Sci. Total Environ. 465, 288–297 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Luo, S. S. Aggregate-related changes in soil microbial communities under different ameliorant applications in saline-sodic soils. Geoderma 329, 108–117 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Tripathi, B. M. et al. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb. Ecol. 64, 474–484 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 103, 626–631 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Huang, Y. M., Liu, D. & An, S. S. Effects of slope aspect on soil nitrogen and microbial properties in the Chinese Loess region. Catena 125, 135–145 (2015).CAS 
    Article 

    Google Scholar 
    54.Bossio, D. A., Fleck, J. A., Scow, K. M. & Fujii, R. Alteration of soil microbial communities and water quality in restored wetlands. Soil Biol. Biochem. 38, 1223–1233 (2006).CAS 
    Article 

    Google Scholar 
    55.Chang, E. H., Chen, C. P., Tian, G. L. & Chiu, C. Y. Replacement of natural hardwood forest with planted bamboo and cedar in a humid subtropical mountain affects soil microbial community. Appl. Soil Ecol. 124, 146–154 (2018).ADS 
    Article 

    Google Scholar 
    56.Cao, Y. S. et al. Soil microbial community composition under Eucalyptus plantations of different age in subtropical China. Eur. J. Soil Biol. 46, 128–135 (2010).CAS 
    Article 

    Google Scholar 
    57.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    58.Bossio, D. A. & Scow, K. M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial. Ecol. 35, 265–278 (1998).CAS 
    Article 

    Google Scholar 
    59.Bååth, E. & Anderson, T. H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol. Biochem. 35, 955–963 (2003).Article 
    CAS 

    Google Scholar 
    60.Kourtev, P. S., Ehrenfeld, J. G. & Häggblom, M. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83, 3152–3166 (2002).Article 

    Google Scholar  More