First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef
1.Ford, A. K. et al. Reefs under siege: the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front. Mar. Sci. 5, 18 (2018).Article
Google Scholar
2.Brocke, H. J. et al. Organic matter degradation drives benthic cyanobacterial mat abundance on Caribbean coral reefs. PLoS ONE 10, e0125445 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
3.Charpy, L., Casareto, B. E., Langlade, M. J. & Suzuki, Y. Cyanobacteria in coral reef ecosystems: a review. J. Mar. Biol. 2012, e259571 (2012).Article
Google Scholar
4.Mangubhai, S. & Obura, D. O. Silent killer: black reefs in the Phoenix Islands Protected Area. Pac. Conserv. Biol. 25, 213 (2019).Article
Google Scholar
5.de Bakker, D. M. et al. 40 years of benthic community change on the Caribbean reefs of Curaçao and Bonaire: the rise of slimy cyanobacterial mats. Coral Reefs 36, 355–367 (2017).ADS
Article
Google Scholar
6.Albert, S., Dunbabin, M., Skinner, M., Moore, B. & Grinham, A. Benthic shift in a Solomon Islands’ lagoon: corals to cyanobacteria. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012 1–5 (2012).7.Puyana, M., Acosta, A., Bernal-Sotelo, K., Velásquez-Rodríguez, T. & Ramos, F. Spatial scale of cyanobacterial blooms in Old Providence Island Colombian Caribbean. Universitas Scientiarum 20, 83–105 (2015).Article
Google Scholar
8.Ford, A. K. et al. High sedimentary oxygen consumption indicates that sewage input from small islands drives benthic community shifts on overfished reefs. Environ. Conserv. 44, 405–411 (2017).Article
Google Scholar
9.Chapra, S. C. et al. Climate change impacts on harmful algal blooms in US freshwaters: a screening-level assessment. Environ. Sci. Technol. 51, 8933–8943 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
10.Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Gobler, C. J. Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91, 101731 (2020).PubMed
PubMed Central
Article
Google Scholar
12.Wood, S. A. et al. Toxic benthic freshwater cyanobacterial proliferations: challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshw. Biol. 65, 1824–1842 (2020).Article
Google Scholar
13.Brown, K. T., Bender-Champ, D., Bryant, D. E. P., Dove, S. & Hoegh-Guldberg, O. Human activities influence benthic community structure and the composition of the coral-algal interactions in the central Maldives. J. Exp. Mar. Biol. Ecol. 497, 33–40 (2017).Article
Google Scholar
14.Titlyanov, E. A., Yakovleva, I. M. & Titlyanova, T. V. Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J. Exp. Mar. Biol. Ecol. 342, 282–291 (2007).Article
Google Scholar
15.Carmichael, W. W. Cyanobacteria secondary metabolites—the cyanotoxins. J. Appl. Bacteriol. 72, 445–459 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Ritson-Williams, R., Paul, V. J. & Bonito, V. Marine benthic cyanobacteria overgrow coral reef organisms. Coral Reefs 24, 629–629 (2005).ADS
Article
Google Scholar
17.Kuffner, I. et al. Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar. Ecol. Prog. Ser. 323, 107–117 (2006).ADS
Article
Google Scholar
18.Kuffner, I. B. & Paul, V. J. Effects of the benthic cyanobacterium Lyngbya majuscula on larval recruitment of the reef corals Acropora surculosa and Pocillopora damicornis. Coral Reefs 23, 455–458 (2004).Article
Google Scholar
19.Ritson-Williams, R., Arnold, S. N. & Paul, V. J. The impact of macroalgae and cyanobacteria on larval survival and settlement of the scleractinian corals Acropora palmata, A cervicornis and Pseudodiploria strigosa. Mar. Biol. 167, 31 (2020).Article
Google Scholar
20.McClanahan, T. R. et al. Prioritizing key resilience indicators to support coral reef management in a changing climate. PLoS ONE 7, e42884 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
21.Cardini, U., Bednarz, V. N., Foster, R. A. & Wild, C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol. Evol. 4, 1706–1727 (2014).PubMed
PubMed Central
Article
Google Scholar
22.Brocke, H. J. et al. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. Coral Reefs 37, 861–874 (2018).ADS
Article
Google Scholar
23.Brocke, H. J. et al. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci. Rep. 5, 8852 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 1–7 (2016).Article
CAS
Google Scholar
25.Box, S. J. & Mumby, P. J. Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar. Ecol. Prog. Ser. 342, 139–149 (2007).ADS
Article
Google Scholar
26.Webster, F. J., Babcock, R. C., Keulen, M. V. & Loneragan, N. R. Macroalgae inhibits larval settlement and increases recruit mortality at Ningaloo Reef, Western Australia. PLoS ONE 10, e0124162 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
27.Barott, K. et al. Natural history of coral−algae competition across a gradient of human activity in the Line Islands. Mar. Ecol. Prog. Ser. 460, 1–12 (2012).ADS
Article
Google Scholar
28.Bonaldo, R. M. & Hay, M. E. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience. PLoS ONE 9, e85786 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
29.Rasher, D. B., Hoey, A. S. & Hay, M. E. Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94, 1347–1358 (2013).PubMed
PubMed Central
Article
Google Scholar
30.Capper, A., Cruz-Rivera, E., Paul, V. J. & Tibbetts, I. R. Chemical deterrence of a marine cyanobacterium against sympatric and non-sympatric consumers. Hydrobiologia 553, 319 (2006).CAS
Article
Google Scholar
31.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. https://doi.org/10.1111/bij.12914 (2016).Article
Google Scholar
32.Cissell, E. C., Manning, J. C. & McCoy, S. J. Consumption of benthic cyanobacterial mats on a Caribbean coral reef. Sci. Rep. 9, 12693 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
33.Edwards, C. B. et al. Global assessment of the status of coral reef herbivorous fishes: evidence for fishing effects. Proc. Biol. Sci. 281, 20131835 (2014).CAS
PubMed
PubMed Central
Google Scholar
34.Goatley, C., Bonaldo, R., Fox, R. & Bellwood, D. Sediments and herbivory as sensitive indicators of coral reef degradation. Ecol. Soc. 21, 29 (2016).35.Robinson, J. P. W. et al. Habitat and fishing control grazing potential on coral reefs. Funct. Ecol. 34, 240–251 (2020).Article
Google Scholar
36.Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).ADS
CAS
PubMed
Article
Google Scholar
37.Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article
Google Scholar
38.Duperron, S. et al. New benthic cyanobacteria from Guadeloupe mangroves as producers of antimicrobials. Mar. Drugs https://doi.org/10.3390/md18010016 (2020).Article
Google Scholar
39.Bonaldo, R. M., Pires, M. M., Junior, P. R. G., Hoey, A. S. & Hay, M. E. Small marine protected areas in Fiji provide refuge for reef fish assemblages, feeding groups, and corals. PLoS ONE 12, e0170638 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
40.Ford, A. K. et al. Evaluation of coral reef management effectiveness using conventional versus resilience-based metrics. Ecol. Ind. 85, 308–317 (2018).Article
Google Scholar
41.Robinson, J. P. W. et al. Environmental conditions and herbivore biomass determine coral reef benthic community composition: implications for quantitative baselines. Coral Reefs 37, 1157–1168 (2018).ADS
PubMed
PubMed Central
Article
Google Scholar
42.Capper, A. et al. Palatability and chemical defences of benthic cyanobacteria to a suite of herbivores. J. Exp. Mar. Biol. Ecol. 474, 100–108 (2016).CAS
Article
Google Scholar
43.Cruz-Rivera, E. & Paul, V. J. Chemical deterrence of a cyanobacterial metabolite against generalized and specialized grazers. J. Chem. Ecol. 33, 213–217 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Bejarano, S. et al. The shape of success in a turbulent world: wave exposure filtering of coral reef herbivory. Funct. Ecol. 31, 1312–1324 (2017).Article
Google Scholar
45.Lefcheck, J. S. et al. Tropical fish diversity enhances coral reef functioning across multiple scales. Sci. Adv. 5, eaav6420 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
46.Nagle, D. G. & Paul, V. J. Chemical defense of a marine cyanobacterial bloom. J. Exp. Mar. Biol. Ecol. 225, 29–38 (1998).CAS
Article
Google Scholar
47.Wilson, S. K., Graham, N. J., Pratchett, M. S., Jones, G. P. & Polunin, N. V. C. Multiple disturbances and the global degradation of coral reefs: are reef fishes at risk or resilient? Glob. Change Biol. 12, 2220–2234 (2006).ADS
Article
Google Scholar
48.Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr. Mar. Biol. Ann. Rev. 46, 251–296 (2006).
Google Scholar
49.Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. J. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).Article
Google Scholar
50.Potts, D. C. Suppression of coral populations by filamentous algae within damselfish territories. J. Exp. Mar. Biol. Ecol. 28, 207–216 (1977).Article
Google Scholar
51.Mumby, P. J. et al. Empirical relationships among resilience indicators on Micronesian reefs. Coral Reefs https://doi.org/10.1007/s00338-012-0966-0 (2012).Article
Google Scholar
52.Birrell, C. L., McCook, L. J. & Willis, B. L. Effects of algal turfs and sediment on coral settlement. Mar. Pollut. Bull. 51, 408–414 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
54.de la Morinière, E. C. et al. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagrass-reef continuum: stable isotopes and gut-content analysis. Mar. Ecol. Prog. Ser. 246, 279–289 (2003).ADS
Article
Google Scholar
55.Komárek, J. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51, 346–353 (2016).Article
CAS
Google Scholar
56.Xiao, X. et al. Use of high throughput sequencing and light microscopy show contrasting results in a study of phytoplankton occurrence in a freshwater environment. PLoS ONE 9, e106510 (2014).ADS
PubMed
PubMed Central
Article
Google Scholar
57.Palinska, K. A. & Surosz, W. Taxonomy of cyanobacteria: a contribution to consensus approach. Hydrobiologia 740, 1–11 (2014).Article
Google Scholar
58.Li, X. et al. Factors related to aggravated Cylindrospermopsis (cyanobacteria) bloom following sediment dredging in an eutrophic shallow lake. Environ. Sci. Ecotechnol. 2, 100014 (2020).Article
Google Scholar
59.Taton, A., Grubisic, S., Brambilla, E., De Wit, R. & Wilmotte, A. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157–5169 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Knight, R. et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 16, 410–422 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
62.Hoffmann, L. & Demoulin, V. Marine Cyanophyceae of Papua New Guinea. III. The genera Borzia and Oscillatoria. Bot. Mar. 36, 451–459 (1993).Article
Google Scholar
63.Engene, N. et al. Moorea producens gen. nov., sp. Nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int. J. Syst. Evol. Microbiol. 62, 1171–1178 (2012).PubMed
PubMed Central
Article
Google Scholar
64.Engene, N. et al. Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoriales, Cyanoprokaryota). J. Phycol. 49, 1095–1106 (2013).PubMed
Article
PubMed Central
Google Scholar
65.Komarek, J., Kaštovský, J., Mares, J. & Johansen, J. R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86, 295–335 (2014).
Google Scholar
66.Wilmotte, A., Laughinghouse, H. D. I., Capelli, C., Rippka, R. & Salmaso, N. Taxonomic Identification of Cyanobacteria by a Polyphasic Approach. Molecular Tools for the Detection and Quantification of Toxigenic Cyanobacteria (Wiley, 2017).
Google Scholar
67.Salmaso, N. et al. Diversity and cyclical seasonal transitions in the bacterial community in a large and deep perialpine lake. Microb. Ecol. 76, 125–143 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
68.Zubia, M. et al. Benthic cyanobacteria on coral reefs of Moorea Island (French Polynesia): diversity response to habitat quality. Hydrobiologia 843, 61–78 (2019).Article
Google Scholar
69.Bernard, C. et al. Appendix 2: Cyanobacteria Associated with the Production of Cyanotoxins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501–525 (Wiley, 2017). https://doi.org/10.1002/9781119068761.app2.
Google Scholar
70.Moritz, C. et al. Status and Trends of Coral Reefs in the Pacific (Global Coral Reef Monitoring Network, 2018).
Google Scholar
71.Smith, J. E. et al. Re-evaluating the health of coral reef communities: baselines and evidence for human impacts across the central Pacific. Proc. R. Soc. B Biol. Sci. 283, 20151985 (2016).Article
CAS
Google Scholar
72.Kelly, L. W. et al. Black reefs: iron-induced phase shifts on coral reefs. ISME J. 6, 638–649 (2012).CAS
PubMed
Article
Google Scholar
73.Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. NOAA Technical Report NMFS 41, 21 (1986).74.Froese, R. & Pauly, D. FishBase. World Wide Web electronic publication. www.fishbase.orghttps://www.fishbase.org/.75.Heenan, A., Hoey, A. S., Williams, G. J. & Williams, I. D. Natural bounds on herbivorous coral reef fishes. Proc. R. Soc. B Biol. Sci. 283, 20161716 (2016).Article
Google Scholar
76.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).77.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article
Google Scholar
78.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.3.3.0. (2020). http://florianhartig.github.io/DHARMa/79.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
80.Komárek, J. & Anagnostidis, K. Cyanoprokaryota 2.Teil: Oscillatoriales (Elsevier, 2005).
Google Scholar
81.Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinform. 12, 38 (2011).Article
Google Scholar
82.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
83.Ramos, V., Morais, J. & Vasconcelos, V. M. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies. Sci. Data 4, 170054 (2017).PubMed
PubMed Central
Article
Google Scholar
84.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
85.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
86.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, W256–W259 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar More