Accelerated Varroa destructor population growth in honey bee (Apis mellifera) colonies is associated with visitation from non-natal bees
1.Calderone, N. W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992–2009. PLoS ONE 7(5), e37235 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
2.Stern, R. et al. Sequential introduction of honeybee colonies increases cross-pollination, fruit-set and yield of ‘Spadona’pear (Pyrus communis L.). J. Hortic. Sci. Biotechnol. 79(4), 652–658 (2004).Article
Google Scholar
3.Sabbahi, R., DeOliveira, D. & Marceau, J. Influence of honey bee (Hymenoptera: Apidae) density on the production of canola (Crucifera: Brassicacae). J. Econ. Entomol. 98(2), 367–372 (2005).PubMed
Article
Google Scholar
4.Stern, R., Eisikowitch, D. & Dag, A. Sequential introduction of honeybee colonies and doubling their density increases cross-pollination, fruit-set and yield in ‘Red Delicious’ apple. J. Hortic. Sci. Biotechnol. 76(1), 17–23 (2001).Article
Google Scholar
5.Walters, S. A. & Taylor, B. H. Effects of honey bee pollination on pumpkin fruit and seed yield. HortScience 41(2), 370–373 (2006).Article
Google Scholar
6.Aras, P., De Oliveira, D. & Savoie, L. Effect of a Honey Bee (Hymenoptera: Apidae) Gradient on the Pollination and Yield of Lowbush Blueberry. J. Econ. Entomol. 89(5), 1080–1083 (1996).Article
Google Scholar
7.Steinhauer, N., et al., Drivers of colony losses. Curr. Opin. Insect Sci. 2018.8.Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower then agricultural demand for pollination. Curr. Biol. 19(11), 915–918 (2009).CAS
PubMed
Article
Google Scholar
9.Kulhanek, K. et al. A national survey of managed honey bee 2015–2016 annual colony losses in the USA. J. Apic. Res. 56, 328–340 (2017).Article
Google Scholar
10.Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49(1), 1–6 (2010).Article
Google Scholar
11.Kang, Y. et al. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector. Math. Biosci. 275, 71–92 (2016).MathSciNet
PubMed
MATH
Article
Google Scholar
12.Ruffinengo, S. et al. Integrated Pest Management to control Varroa destructor and its implications to Apis mellifera colonies. Zootec. Trop. 32(2), 149–168 (2015).
Google Scholar
13.Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103(Suppl 1), S96-119 (2010).PubMed
Article
Google Scholar
14.Boecking, O. & Genersch, E. Varroosis–the ongoing crisis in bee keeping. J. Verbr. Lebensm. 3(2), 221–228 (2008).Article
Google Scholar
15.Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. 116(5), 1792–1801 (2019).CAS
PubMed
Article
Google Scholar
16.Yang, X. & Cox-Foster, D. Effects of parasitization by Varroa destructor on survivorship and physiological traits of Apis mellifera in correlation with viral incidence and microbial challenge. Parasitology 134(3), 405–412 (2007).CAS
PubMed
Article
Google Scholar
17.Francis, R. M., Nielsen, S. L. & Kryger, P. Varroa-virus interaction in collapsing honey bee colonies. PLoS ONE 8(3), e57540 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
18.Traynor, K. S. et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie 23, 113–121 (2016).
Google Scholar
19.Bee Informed, P. Managment Survey Results. 2019 [cited 2018 October 1, 2018].20.Giacobino, A. et al. Risk factors associated with failures of Varroa treatments in honey bee colonies without broodless period. Apidologie 46, 573–582 (2015).Article
Google Scholar
21.Haber, A. I., Steinhauer, N. A. & van Engelsdorp, D. Use of chemical and nonchemical methods for the control of Varroa destructor (Acari: Varroidae) and associated winter colony losses in U.S. beekeeping operations. J. Econ. Entomol. 112, 1509–1525 (2019).CAS
PubMed
Article
Google Scholar
22.Thoms, C. A. et al. Beekeeper stewardship, colony loss, and Varroa destructor management. Ambio 48, 1209–1218 (2018).PubMed
PubMed Central
Article
Google Scholar
23.Wilkinson, D. & Smith, G. C. A model of the mite parasite, Varroa destructor, on honeybees (Apis mellifera) to investigate parameters important to mite population growth. Ecol. Model. 148(3), 263–275 (2002).Article
Google Scholar
24.Harris, J. W. et al. Variable population growth of Varroa destructor (Mesostigmata: Varroidae) in colonies of honey bees (Hymenoptera: Apidae) during a 10-year period. Environ. Entomol. 32(6), 1305–1312 (2003).Article
Google Scholar
25.DeGrandi-Hoffman, G. & Curry, R. A mathematical model of Varroa mite (Varroa destructor Anderson and Trueman) and honeybee (Apis mellifera L.) population dynamics. Int. J. Acarol. 30(3), 259–274 (2004).Article
Google Scholar
26.Pfeiffer, K. J. & Crailsheim, K. Drifting of honeybees. Insectes Soc. 45(2), 151–167 (1998).Article
Google Scholar
27.Goodwin, R. M. et al. Drift of Varroa destructor-infested worker honey bees to neighbouring colonies. J. Apic. Res. 45(3), 155–156 (2006).Article
Google Scholar
28.Nolan, M. P. & Delaplane, K. S. Distance between honey bee Apis mellifera colonies regulates populations of Varroa destructor at a landscape scale. Apidologie 48(1), 8–16 (2017).Article
Google Scholar
29.Seeley, T. D. & Smith, M. L. Crowding honeybee colonies in apiaries can increase their vulnerability to the deadly ectoparasite Varroa destructor. Apidologie 46(6), 716–727 (2015).Article
Google Scholar
30.Frey, E., Schnell, H. & Rosenkranz, P. Invasion of Varroa destructor mites into mite-free honey bee colonies under the controlled conditions of a military training area. J. Apic. Res. 50(2), 138–144 (2011).Article
Google Scholar
31.Frey, E. & Rosenkranz, P. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations. J. Econ. Entomol. 107(2), 508–515 (2014).PubMed
Article
Google Scholar
32.Kralj, J. & Fuchs, S. Parasitic Varroa destructor mites influence flight duration and homing ability of infested Apis mellifera foragers. Apidologie 37(5), 577–587 (2006).Article
Google Scholar
33.Peck, D. T. & Seeley, T. D. Mite bombs or robber lures? The roles of drifting and robbing in Varroa destructor transmission from collapsing honey bee colonies to their neighbors. PLoS ONE 14(6), e0218392 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Forfert, N. et al. Parasites and pathogens of the honeybee (Apis mellifera) and their influence on inter-colonial transmission. PLoS ONE 10(10), e0140337 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
35.Steinhauer, N. & Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total Environ. 753, 141629 (2020).ADS
PubMed
Article
CAS
Google Scholar
36.DeGrandi-Hoffman, G. et al. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites. Exp. Appl. Acarol. 69(1), 21–34 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Hagler, J. et al. A method for distinctly marking honey bees, Apis mellifera, originating from multiple apiary locations. J. Insect Sci. 11(1), 143 (2011).PubMed
PubMed Central
Google Scholar
38.Delaplane, K. S., van der Steen, J. & Guzman-Novoa, E. Standard methods for estimating strength parameters of Apis mellifera colonies. J. Apic. Res. 52(1), 1–12 (2013).Article
Google Scholar
39.Winston, M. The Biology of the Honey Bee 281 (Harvard University Press, Cambridge, MA, 1987).
Google Scholar
40.Nazzi, F. & Le Conte, Y. Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Ann. Rev. Entomol. 61, 417–432 (2016).CAS
Article
Google Scholar
41.Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. 117(19), 10406–10413 (2020).CAS
PubMed
Article
Google Scholar
42.Rosenkranz, P. Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud, South America. Apidologie 30(2/3), 159–172 (1999).Article
Google Scholar
43.Locke, B. Natural Varroa mite-surviving Apis mellifera honeybee populations. Apidologie 47(3), 467–482 (2016).Article
Google Scholar More