More stories

  • in

    Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions

    1.Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).
    Google Scholar 
    2.Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).
    Google Scholar 
    3.Hutchins, D. A., DiTullio, G. R., Zhang, Y. & Bruland, K. W. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43, 1037–1054 (1998).
    Google Scholar 
    4.Bruland, K. W., Rue, E. L. & Smith, G. J. Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol. Oceanogr. 46, 1661–1674 (2001).
    Google Scholar 
    5.Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).
    Google Scholar 
    6.Brzezinski, M. A. et al. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. J. Geophys. Res. Oceans 120, 4654–4669 (2015).
    Google Scholar 
    7.Arteaga, L. A., Pahlow, M., Bushinsky, S. M. & Sarmiento, J. L. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles 33, 942–956 (2019).
    Google Scholar 
    8.Stukel, M. R. & Barbeau, K. A. Investigating the nutrient landscape in a coastal upwelling region and its relationship to the biological carbon pump. Geophys. Res. Lett. 47, e2020GL087351 (2020).
    Google Scholar 
    9.Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
    Google Scholar 
    10.Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
    Google Scholar 
    11.Pichevin, L. E., Ganeshram, R. S., Geibert, W., Thunell, R. & Hinton, R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541–546 (2014).
    Google Scholar 
    12.Brzezinski, M. A. et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).13.Matsumoto, K., Sarmiento, J. L. & Brzezinski, M. A. Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Glob. Biogeochem. Cycles 16, 1031 (2002).
    Google Scholar 
    14.Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).
    Google Scholar 
    15.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).
    Google Scholar 
    16.Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
    Google Scholar 
    17.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
    Google Scholar 
    18.Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 4, 1790–1797 (2019).19.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
    Google Scholar 
    20.Yamada, Y., Tomaru, Y., Fukuda, H. & Nagata, T. Aggregate formation during the viral lysis of a marine diatom. Front. Mar. Sci. 5, 167 (2018).
    Google Scholar 
    21.Pelusi, A. et al. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol. 229, 2251–2259 (2020).
    Google Scholar 
    22.Johnson, K. S., Chavez, F. P. & Friederich, G. E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398, 697–700 (1999).
    Google Scholar 
    23.Harrison, P. J. Station Papa time series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).
    Google Scholar 
    24.Marchetti, A. et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J. Phycol. 53, 820–832 (2017).
    Google Scholar 
    25.Cohen, N. R. et al. Diatom transcriptional and physiological responses to changes in iron bioavailability across ocean provinces. Front. Mar. Sci. 4, 360 (2017).
    Google Scholar 
    26.Lampe, R. H. et al. Different iron storage strategies among bloom-forming diatoms. Proc. Natl Acad. Sci. USA 115, E12275–E12284 (2018).
    Google Scholar 
    27.King, A. L. & Barbeau, K. Evidence for phytoplankton iron limitation in the southern California Current System. Mar. Ecol. Prog. Ser. 342, 91–103 (2007).
    Google Scholar 
    28.Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).
    Google Scholar 
    29.Till, C. P. et al. The iron limitation mosaic in the California Current System: factors governing Fe availability in the shelf/near-shelf region. Limnol. Oceanogr. 64, 109–123 (2019).
    Google Scholar 
    30.Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).
    Google Scholar 
    31.Richaud, C. & Zabulon, G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc. Natl Acad. Sci. USA 94, 11736–11741 (1997).
    Google Scholar 
    32.Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).
    Google Scholar 
    33.Thamatrakoln, K., Korenovska, O., Niheu, A. K. & Bidle, K. D. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ. Microbiol. 14, 67–81 (2012).
    Google Scholar 
    34.Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).
    Google Scholar 
    35.De La Rocha, C. L., Hutchins, D. A., Brzezinski, M. A. & Zhang, Y. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Mar. Ecol. Prog. Ser. 195, 71–79 (2000).
    Google Scholar 
    36.Leynaert, A. et al. Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol. Oceanogr. 49, 1134–1143 (2004).
    Google Scholar 
    37.van Creveld, S. G., Rosenwasser, S., Levin, Y. & Vardi, A. Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiol. 172, 968–979 (2016).
    Google Scholar 
    38.Slagter, H. A., Gerringa, L. J. A. & Brussaard, C. P. D. Phytoplankton virus production negatively affected by iron limitation. Front. Mar. Sci. 3, 156 (2016).
    Google Scholar 
    39.Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).
    Google Scholar 
    40.Weinbauer, M. G., Arrieta, J. M., Griebler, C. & Herndlb, G. J. Enhanced viral production and infection of bacterioplankton during an iron-induced phytoplankton bloom in the Southern Ocean. Limnol. Oceanogr. 54, 774–784 (2009).
    Google Scholar 
    41.Torres, M. A., Jones, J. D. G. & Dangl, J. L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373–378 (2006).
    Google Scholar 
    42.Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. & Vardi, A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 10, 1742–1754 (2016).
    Google Scholar 
    43.Hyodo, K., Hashimoto, K., Kuchitsu, K., Suzuki, N. & Okuno, T. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc. Natl Acad. Sci. USA 114, E1282–E1290 (2017).
    Google Scholar 
    44.Espinoza, J. A., Gonzalez, P. A. & Kalergis, A. M. Modulation of antiviral immunity by heme oxygenase-1. Am. J. Pathol. 187, 487–493 (2017).
    Google Scholar 
    45.Durkin, C. A. et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol. Oceanogr. 57, 1619–1633 (2012).
    Google Scholar 
    46.Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl Acad. Sci. USA 110, 20633–20638 (2013).
    Google Scholar 
    47.Kimura, K. & Tomaru, Y. Effects of temperature and salinity on diatom cell lysis by DNA and RNA viruses. Aquat. Microb. Ecol. 79, 79–83 (2017).
    Google Scholar 
    48.Thamatrakoln, K. et al. Light regulation of coccolithophore host–virus interactions. New Phytol. 221, 1289–1302 (2019).
    Google Scholar 
    49.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).
    Google Scholar 
    50.Brzezinski, M. A. et al. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep Sea Res. II 58, 493–511 (2011).
    Google Scholar 
    51.Boyer, T. P. et al. World Ocean Database 2013 (NOAA Atlas, 2013).52.Krause, J. W. et al. The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnol. Oceanogr. 65, 1974–1989 (2020).
    Google Scholar 
    53.Krause, J. W., Nelson, D. M. & Brzezinski, M. A. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep Sea Res. II 58, 434–448 (2011).
    Google Scholar 
    54.Brzezinski, M. A. & Phillips, D. R. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol. Oceanogr. 42, 856–865 (1997).
    Google Scholar 
    55.Nelson, D. M., Brzezinski, M. A., Sigmon, D. E. & Franck, V. M. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res. II 48, 3973–3995 (2001).
    Google Scholar 
    56.Krause, J. W., Brzezinski, M. A., Villareal, T. A. & Wilson, C. Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnol. Oceanogr. 57, 1084–1098 (2012).
    Google Scholar 
    57.Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25, 2872–2877 (2009).
    Google Scholar 
    58.Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).
    Google Scholar 
    59.Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).
    Google Scholar 
    60.Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
    Google Scholar 
    61.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    Google Scholar 
    62.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
    Google Scholar 
    63.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).64.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
    Google Scholar 
    65.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    66.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).67.Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).
    Google Scholar 
    68.Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).
    Google Scholar 
    69.Lampe, R. H. et al. Divergent gene expression among phytoplankton taxa in response to upwelling. Environ. Microbiol. 20, 3069–3082 (2018).
    Google Scholar 
    70.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data https://cran.r-project.org/web/packages/gplots/index.html (2019).71.Oksanen, J. et al. vegan: Community Ecology Package https://cran.r-project.org/web/packages/vegan/index.html (2019).72.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Google Scholar 
    73.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    Google Scholar 
    74.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    Google Scholar 
    75.Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 
    76.Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).
    Google Scholar 
    77.Chen, L.-M., Edelstein, T. & McLachlan, J. Bonnemaisonia hamifera Hariot in nature and in culture. J. Phycol. 5, 211–220 (1969).
    Google Scholar 
    78.Harrison, P. J., Waters, R. E. & Taylor, F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J. Phycol. 16, 28–35 (1980).
    Google Scholar 
    79.Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).
    Google Scholar 
    80.Sunda, W. G., Price, N. M. & Morel, F. M. M. Trace metal ion buffers and their use in culture studies. Algal Cult. Tech. 4, 35–63 (2005).
    Google Scholar 
    81.Tomaru, Y., Shirai, Y., Toyoda, K. & Nagasaki, K. Isolation and characterization of a single-stranded DNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus. Aquat. Microb. Ecol. 64, 175–184 (2011).
    Google Scholar 
    82.Parsons, T. R. A Manual of Chemical & Biological Methods for Seawater Analysis (Elsevier, 2013).83.Krause, J. W., Lomas, M. W. & Nelson, D. M. Biogenic silica at the Bermuda Atlantic time-series study site in the Sargasso Sea: temporal changes and their inferred controls based on a 15-year record. Glob. Biogeochem. Cycles 23, GB3004 (2009).84.Gorbunov, M. Y. & Falkowski, P. G. Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In Photosynthesis: Fundamental Aspects to Global Perspectives—Proc. 13th International Congress of Photosynthesis (eds Van der Est, A. & Bruce, D.) 1029–1031 (Allen and Unwin, 2004).85.Suttle, C. A. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 121–134 (CRC Press, 1993).86.Klee, A. J. A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18, 91–98 (1993).
    Google Scholar  More

  • in

    Pollinator interaction flexibility across scales affects patch colonization and occupancy

    1.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spiesman, B. J. & Gratton, C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97, 1431–1441 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).8.Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Burkle, L. A. & Alarcón, R. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Syst. 48, 24–48 (2017).13.Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).14.MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Fortuna, M. A., Nagavci, A., Barbour, M. A. & Bascompte, J. Partner fidelity and asymmetric specialization in ecological networks. Am. Nat. 196, 382–389 (2020).16.Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781 (2009).Article 

    Google Scholar 
    17.Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).18.Mora, B. B., Shin, E., CaraDonna, P. J. & Stouffer, D. B. Untangling the seasonal dynamics of plant–pollinator communities. Nat. Commun. 11, 4086 (2020).19.Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478, 233–235 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Sebastián-González, E. Drivers of species role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2020).23.Vázquez, D. P., Chacoff, N. P. & Cagnolo, L. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90, 2039–2046 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Olesen, J. M., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant–pollinator networks disassemble. Am. Nat. 183, 600–611 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).Article 

    Google Scholar 
    31.Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).Article 

    Google Scholar 
    32.Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).Article 

    Google Scholar 
    33.Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).Article 

    Google Scholar 
    35.Ponisio, L. C. Pyrodiversity promotes interaction complementarity and population resistance. Ecol. Evol. 10, 4431–4447 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Grab, H., Blitzer, E. J., Danforth, B., Loeb, G. & Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article 

    Google Scholar 
    38.Mitchell, W. A. An optimal control theory of diet selection: the effects of resource depletion and exploitative competition. Oikos 58, 16–24 (1990).39.Robinson, B. W. & Wilson, D. S. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151, 223–235 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).Article 

    Google Scholar 
    41.Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Environ. 7, 103 (2019).Article 

    Google Scholar 
    42.Benadi, G. & Gegear, R. J. Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat. 192, E81–E92 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).Article 

    Google Scholar 
    45.Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Bascompte, J. & Ferrera, A. in Theoretical Ecology: Concepts and Applications (eds McCann, A. S. & Gellner, G.) 93–115 (Oxford Univ. Press, 2020).49.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    52.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).Article 

    Google Scholar 
    54.Kremen, C., Williams, N. & Thorp, R. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).55.Morandin, L., Long, R. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Brittain, C., Williams, N., Kremen, C. & Klein, A. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 1471–2954 (2013).Article 

    Google Scholar 
    57.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article 

    Google Scholar 
    58.Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan59.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Mora, B. B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks (2018); https://doi.org/10.1101/36470362.Simmons, B. I. et al. bmotif: a package for motif analyses of bipartite networks. Methods Ecol. Evol. 10, 695–701 (2019).Article 

    Google Scholar 
    63.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    64.Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).Article 

    Google Scholar 
    65.Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8 (2008).
    Google Scholar 
    67.Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. Models for inference in dynamic metacommunity systems. Ecology 91, 2466–2475 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Ponisio, L. C., de Valpine, P., M’Gonigle, L. K. & Kremen, C. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecol. Lett. 22, 1048–1060 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Royle, J. A. & Kéry, M. A Bayesian state–space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ponisio, L. C., de Valpine, P., Michaud, N. & Turek, D. One size does not fit all: customizing MCMC methods for hierarchical models using NIMBLE. Ecol. Evol. 10, 2385–2416 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.de Valpine, P. et al. Programming with models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).Article 

    Google Scholar 
    72.Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).73.Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170 (2018).Article 

    Google Scholar 
    74.Ponisio, L. C., M’gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).Article 

    Google Scholar 
    75.Lefcheck, J. S. PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    76.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/ More

  • in

    Amazon tree dominance across forest strata

    Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USAFrederick C. Draper & Christopher BaralotoSchool of Geography, University of Leeds, Leeds, UKFrederick C. Draper, Oliver L. Phillips, Timothy R. Baker, Roel J. W. Brienen & David R. GalbraithCenter for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USAFrederick C. Draper, Gregory P. Asner, Jason Vleminckx & Oscar J. Valverde BarrantesInstituto Nacional de Pesquisas da Amazônia (INPA), Manaus, BrazilFlavia R. C. Costa, Juliana Schietti, Fernanda Coelho de Souza, William E. Magnusson, Karina Melgaço, André B. Junqueira, Ana C. Andrade, José Luís Camargo, Flávia D. Santana, Ricardo O. Perdiz, Jessica Soares Cravo, Alberto Vicentini, Henrique Nascimento, Niro Higuchi & Thaiane Rodrigues de SousaEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAGabriel Arellano & Paul E. BerryDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Medellín, ColombiaAlvaro Duque & Mauricio Sánchez SáenzDepartamento de Biología, Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaNaturalis Biodiversity Center, Leiden, The NetherlandsHans ter Steege & Tinde Van AndelSystems Ecology, Vrije Universiteit, Amsterdam, The NetherlandsHans ter SteegeLancaster Environment Centre, Lancaster University, Lancaster, UKErika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, UKErika Berenguer & Yadvinder MalhiFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, NorwayJacob B. SocolarSchool of Geosciences, University of Edinburgh, Edinburgh, UKKyle G. DexterMissouri Botanical Garden, St Louis, MO, USAPeter M. Jørgensen & J. Sebastian TelloBrazilian Agricultural Research Corporation (Embrapa), Roraima, BrazilCarolina V. CastilhoUniversidad Nacional de San Antonio Abad del Cusco, Cusco, PeruAbel Monteagudo-Mendoza, Victor Chama Moscoso, Darcy Galiano Cabrera & Percy Núñez VargasDepartment of Intergrative Biology, University of California Berkeley, Berkeley, CA, USAPaul V. A. Fine & Italo MesonesDepartment of Biology, University of Turku, Turku, FinlandKalle RuokolainenInstituto de Investigaciones de la Amazonía Peruana, Iquitos, PeruEuridice N. Honorio Coronado, Nállarett Dávila, Marcos A. Rios Paredes, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Ricardo Zarate Gomez, José Reyna Huaymacari, Julio M. Grandez Rios & Cesar J. Cordova OrocheUNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, VenezuelaGerardo AymardCompensation International Progress S. A.—Ciprogress Greenlife, Bogotá, ColombiaGerardo AymardAMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceJulien Engel, Claire Fortunel, Jean-François Molino, Daniel Sabatier & Maxime Réjou-MéchainEnvironmental and Rural Science, University of New England, Armidale, New South Wales, AustraliaC. E. Timothy PaineINRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane, Kourou, French GuianaJean-Yves Goret & Elodie AllieCIRAD, UMR EcoFoG, Kourou, French GuianaAurelie Dourdain & Pascal PetronelliBIOMAS, Universidad de Las Américas, Quito, EcuadorJuan E. Guevara AndinoInstituto de Ecología, Herbario Nacional de Bolivia, La Paz, BoliviaLeslie Cayola Pérez, Narel Y. Paniagua Zambrana & Alfredo F. FuentesDepartamento de Biologia, Universidade Federal de Rondônia, Porto Velho, BrazilÂngelo G. ManzattoLaboratoire Evolution et Diversité Biologique (EDB) CNRS/UPS, Toulouse, FranceJerôme ChaveSchool of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UKSophie FausetDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USARoosevelt Garcia VillacortaDepartment of Geography, University of Exeter, Exeter, UKTed R. FeldpauschFacultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquito, PeruElvis Valderamma Sandoval, Gilberto E. Navarro Aguilar, Jim Vega Arenas & Manuel FloresEstación Biológica del Jardín Botánico de Missouri, Oxapampa, PeruRodolfo Vasquez Martinez, Victor Chama Moscoso & Luis Valenzuela GamarraInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré B. JunqueiraSchool of Geography & Sustainable Development, University of St Andrews, St Andrews, UKKatherine H. RoucouxDepartment of Environment and Development, Federal University of Amapá, Macapa, BrazilJosé J. de Toledo & Renato R. HilárioCentre for Tropical Environmental and Sustainability Science (TESS) and College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, AustraliaWilliam F. Laurance & Susan G. LauranceDepartment of Environmental Science and Policy, George Mason University, Fairfax, VA, USAThomas E. LovejoyInventory and Monitoring Program, National Park Service, Fredericksburg, VA, USAJames A. ComiskeySmithsonian Institution, Washington DC, USAJames A. ComiskeyDepartment of Plant Sciences, University of Cambridge, Cambridge, UKMichelle KalamandeenLiving with Lakes Centre, Laurentian University, Greater Sudbury, Ontario, CanadaMichelle KalamandeenDRGB, Instituto Nacional de Innovación Agraria (INIA), Lima, PeruCarlos A. Amasifuen GuerraHerbarium Amazonense (AMAZ), Universidad Nacional de la Amazonia Peruana, Loreto, PerúLuis A. Torres MontenegroDepartment of Ecology, Universidade de São Paulo, São Paulo, BrazilMarcelo P. PansonatoInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsJoost F. DuivenvoordenCentro de Estudos da Biodiversidade, Universidade Federal de Roraima, Boa Vista, BrazilSidney Araújo de Sousa & Marcos Salgado VitalMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz, BoliviaLuzmila Arroyo, Alejandro Araujo-Murakami & Germaine A. Parada GutierrezFaculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidad do Estado de Mato Grosso, Nova Xavantina, BrazilBeatriz S. Marimon, Ben Hur Marimon Junior, Ricardo Keichi Umetsu & Nayane C. C. S. PrestesCentro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, BrazilFernanda Antunes CarvalhoDepartment of Ecology, Evolution and Behaviour, University of Minnesota, Minneapolis, MN, USAGabriel DamascoDepartment of Geography, University College London, London, UKMathias DisneyDepartamento de Ciencias Biológicas, Universidad de Los Andes (Colombia), Bogotá, ColombiaPablo R. Stevenson Diaz & Ana M. AldanaCentro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, BrazilSabina Cerruto Ribeiro, Richarlly da Costa Silva & Wenderson CastroNicholas School of the Environment, Duke University, Durham, NC, USAJohn W. TerborghIwokrama International Centre for Rainforest Conservation and Development, Georgetown, GuyanaRaquel S. ThomasSmithsonian’s National Zoo & Conservation Biology Institute, Washington DC, USAFrancisco DallmeierInstituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, ColombiaAdriana PrietoUniversidade Federal Rural da Amazônia—UFRA/CAPES, Belém, BrazilRafael P. SalomãoMuseu Paraense Emílio Goeldi, Belém, BrasilRafael P. Salomão, Ima C. Guimarães Vieira & Antonio S. LimaLaboratorio de Ecología de Bosques Tropicales y Primatología, Fundación Natura Colombia, Universidad de Los Andes, Bogotá, ColombiaLuisa F. CasasFacultad de Forestales, Universidad Nacional de la Amazonía Peruana, Iquito, PeruFredy Ramirez ArevaloInstitute of Research for Forestry Development, Universidad de los Andes, Merida, VenezuelaHirma Ramírez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaSchool of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USAEmilio Vilanova TorreUniversidad Regional Amazónica Ikiam, Tena, EcuadorMaria C. PeñuelaAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenUniversidad Autónoma del Beni, Riberalta, BoliviaGuido Pardo & Vincent VosInstituto Amazónico de Investigaciones (IMANI), Universidad Nacional de Colombia, Sede Amazonia, BrazilEliana Jimenez-RojasBroward County Parks and Recreation, Miami, FL, USAJohn PipolyBiological Sciences, Florida Atlantic University-Davie, Miami, FL, USAJohn PipolyMuseu Universitário, Universidade Federal do Acre, Rio Branco, BrazilMarcos SilveraFacultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, EcuadorDavid NeillDepartment of Biology, Washington University in St Louis, St Louis, MO, USADilys M. VelaNational Institute for Space Research (INPE), São José dos Campos, BrazilLuiz E. O. C. AragãoGeoinformática & Sistemas (GeoIS), Quito, EcuadorRodrigo SierraSchool of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USAOphelia WangDepartment of Geography and the Environment, University of Texas at Austin, Austin, TX, USAKenneth R. YoungInstituto de Ciência e Tecnologia, São Paulo State University (UNESP), São José dos Campos, BrazilKlécia G. MassiSchool of Anthropology and Conservation, University of Kent, Canterbury, UKMiguel N. AlexiadesUniversidade Federal do Amazonas, Manaus, BrazilFabrício BaccaroHerbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito, EcuadorCarlos CéronSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UKAdriane Esquivel MuelbertDepartment of Life Sciences, Imperial College London, London, UKJonathan L. LloydScience and Education, The Field Museum, Chicago, IL, USANigel C. A. PitmanUniversidad Tecnica del Norte, Herbario Nacional del Ecuador, Quito, EcuadorWalter PalaciosResearch Institute Alexander von Humboldt, Bogotá, ColombiaSandra PatiñoF.C.D. and C.B. conceived the study. F.C.D., G.P.A. and C.B. designed the study with input from F.R.C.C., G. Arellano, O.L.P. and H.t.S. F.C.D. and J.B.S. performed the analysis with input from C.B., G.P.A., G. Arellano, O.L.P., A. Duque, F.C.d.S. and K.D. F.C.D. wrote the manuscript with input from C.B., F.R.C.C., G. Arellano, O.L.P., A. Duque, M.J.M., G.P.A. and H.t.S. All other coauthors contributed data and had the opportunity to comment on the manuscript. More

  • in

    Methane mitigation is associated with reduced abundance of methanogenic and methanotrophic communities in paddy soils continuously sub-irrigated with treated wastewater

    Experimental design and crop establishmentA microcosm experiment was conducted at Yamagata University, Tsuruoka City, Japan, from May to October 2019, with six growth containers (36 cm in height, 30 cm in width, 60 cm in length) to simulate paddy fields of 0.18 m2 in area (see Supplementary Fig. S1). The experiment was laid out in a completely randomized design with three replications of two treatments: (1) rice cropping under CSI and (2) conventional rice cultivation fertilized with mineral fertilisers and irrigated with tap water (Control).Each container was filled with 32 kg of a paddy soil collected from an experimental field in the university farm and transplanted with four hills of 30-day-old seedlings (Oryza sativa L., cv. Bekoaoba) on 27th May 2019. The experiment was performed in accordance with relevant guidelines and regulations for research involving plants. The experimental soil was classified as loamy soil (air-dried, 20% moisture) with the following basic properties: pH (H2O) of 5.78, electrical conductivity (EC) of 0.09 dS m−1, SOM of 4.9%, and a total N, P, and K of 1.46, 0.88, and 3.17 g kg−1, respectively. The TWW used in the CSI system was collected from a local WWTP and monitored weekly for its basic properties (Table 2) following our previous studies6,7. In brief, pH, EC, and DO of water samples were measured on-site using pH/conductivity and DO portable meters (D-54 and OM-51, HORIBA, Ltd., Kyoto, Japan), whereas TOC and total N were analyzed using a TOC analyzer (TOC-VCSV, Shimadzu Corp., Kyoto, Japan) attached to a total N measuring unit (TNM-1, Shimadzu Corp., Kyoto, Japan). After a standard acid-digestion of water samples6, the concentration of P was measured using a portable colorimeter (DR/890, HATCH, USA), and the concentration of K was measured using an inductively coupled plasma mass spectrometry (ICP-MS ELAN DRCII, PerkinElmer Japan Co., Ltd.). The tap water used in this study was also tested on a regular basis and found to be stable throughout the crop season, with the following properties: pH of 7.8, EC of 0.095 dS m−1, DO, TOC, N, and P of 6.85, 0.49, 0.06, and 0.07 mg L−1, respectively, with K being below the ICP-MS detection limit ( More

  • in

    The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network

    1.Collatz, G. J., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441–454 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.von Fischer, J. C., Tieszen, L. L. & Schimel, D. S. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Glob. Chang. Biol. 14, 1141–1155 (2008).ADS 
    Article 

    Google Scholar 
    3.Sage, R. F., Wedin, D. A. & Li, M. The biogeography of C4 photosynthesis: patterns and controlling factors. in C4 plant biology (eds Rowan F. Sage & Russel K. Monson) 313–373 (Academic Press, 1999).4.Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J Exp. Bot. 68, 11–28 (2016).
    Google Scholar 
    6.Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Ann. Rev. Plant. Biol. 63, 19–47 (2012).CAS 
    Article 

    Google Scholar 
    7.Sayed, O. H. Crassulacean Acid Metabolism 1975–2000, a Check List. Photosynthetica 39, 339–352 (2001).CAS 
    Article 

    Google Scholar 
    8.Andrews, J. T. & Lorimer, G. H. Rubisco: structure, mechanisms, and prospects for improvement. in The Biochemistry of Plants: A Comprehensive Treatise Vol. 10 (eds MD Haleh & NK Boardman) 132–207 (Academic Press, 1987).9.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant. Physiol. 35, 415–442 (1984).CAS 
    Article 

    Google Scholar 
    10.Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant. Biol. 67, 107–129 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp. Bot. 70, 6495–6508 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. 106, 1483–1494 (2018).CAS 
    Article 

    Google Scholar 
    15.Wittmer, M. H. O. M., Auerswald, K., Bai, Y., Schaufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Chang. Biol. 16, 605–616 (2010).ADS 
    Article 

    Google Scholar 
    16.Winslow, J. C., Hunt, E. R. Jr & Piper, S. C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecol. Model. 163, 153–173 (2003).CAS 
    Article 

    Google Scholar 
    17.Haveles, A. W., Fox, D. L. & Fox-Dobbs, K. Carbon isoscapes of rodent diets in the Great Plains USA deviate from regional gradients in C4 grass abundance due to a preference for C3 plant resources. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527, 53–66 (2019).Article 

    Google Scholar 
    18.Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher‐trophic‐level consumers. Ecology 91, 1628–1638 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Griffith, D. M. et al. Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Glob. Ecol. Biogeogr. 24, 304–313 (2015).Article 

    Google Scholar 
    21.Still, C. J., Cotton, J. M. & Griffith, D. M. Assessing earth system model predictions of C4 grass cover in North America: From the glacial era to the end of this century. Glob. Ecol. Biogeogr. 28, 145–157 (2019).Article 

    Google Scholar 
    22.Griffith, D. M., Cotton, J. M., Powell, R. L., Sheldon, N. D. & Still, C. J. Multi-century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution. J Biogeogr. 44, 2564–2574 (2017).Article 

    Google Scholar 
    23.Hattersley, P. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57, 113–128 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Sage, R. F., Sage, T. L., Pearcy, R. W. & Borsch, T. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94, 1992–2003 (2007).PubMed 
    Article 

    Google Scholar 
    26.Murphy, B. P. & Bowman, D. M. Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Glob. Ecol. Biogeogr. 16, 160–169 (2007).Article 

    Google Scholar 
    27.White, A. et al. AUSPLOTS rangelands survey protocols manual. (The University of Adelaide Press, 2012).28.Sparrow, B. D. et al. A vegetation and soil survey method for surveillance monitoring of rangeland environments. Front. Ecol. Evol. 8 (2020).29.Orians, G. H. & Milewski, A. V. Ecology of Australia: the effects of nutrient‐poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).PubMed 
    Article 

    Google Scholar 
    30.Sparrow, B. et al. Our capacity to tell an Australian ecological story. in Biodiversity and Environmental Change: Monitoring, Challenges and Direction 51–84 (CSIRO Publishing Collingwood, Victoria, 2014).31.Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. (Australian Nature Conservation Agency, Canberra, 1995).32.Tokmakoff, A., Sparrow, B., Turner, D. & Lowe, A. AusPlots Rangelands field data collection and publication: Infrastructure for ecological monitoring. Future Gener. Comp. Sy. 56, 537–549 (2016).Article 

    Google Scholar 
    33.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).34.Guerin, G. et al. ausplotsR: TERN AusPlots analysis package. https://cran.r-project.org/web/packages/ausplotsR/index.html (2020).35.Munroe, S. et al. ausplotsR: An R package for rapid extraction and analysis of vegetation and soil data collected by Australia’s Terrestrial Ecosystem Research Network. Preprint at https://ecoevorxiv.org/25phx/ (2020).36.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Watson, L., & Dallwitz, M. J. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://www1.biologie.uni-hamburg.de/b-online/delta/angio/index.htm (1992).38.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).Article 

    Google Scholar 
    40.Winter, K., Holtum, J. A. M. & Smith, J. A. C. Crassulacean acid metabolism: a continuous or discrete trait? New Phytol. 208, 73–78 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Winter, K. & Holtum, J. A. How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol. 129, 1843–1851 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Winter, K. & Holtum, J. A. M. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp. Bot. 65, 3425–3441 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bloom, A. J. & Troughton, J. H. High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38, 35–43 (1979).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Hancock, L. P., Holtum, J. A. M. & Edwards, E. J. The evolution of CAM photosynthesis in Australian Calandrinia reveals lability in C3+ CAM phenotypes and a possible constraint to the evolution of strong CAM. Integr. Comp. Biol. 59, 517–534 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Guralnick, L. J., Cline, A., Smith, M. & Sage, R. F. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. J Exp. Bot. 59, 1735–1742 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Munroe, S. et al. The Photosynthetic Pathways of Plant Species surveyed in TERN Ecosystem Surveillance Plots. Terrestrial Ecosystem Research Network (TERN) https://doi.org/10.25901/k61f-yz90 (2020).48.Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).CAS 
    Article 

    Google Scholar 
    49.Keeley, J. E. & Rundel, P. W. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J Plant Sci. 164, S55–S77 (2003).CAS 
    Article 

    Google Scholar 
    50.Wang, R. & Ma, L. Climate-driven C4 plant distributions in China: divergence in C4 taxa. Sci. Rep. 6, 27977 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Stowe, L. G. & Teeri, J. A. The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am. Nat. 112, 609–623 (1978).Article 

    Google Scholar 
    52.Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. 123, 15-31 (2000).53.Guralnick, L. J., Edwards, G., Ku, M. S., Hockema, B. & Franceschi, V. Photosynthetic and anatomical characteristics in the C4–crassulacean acid metabolism-cycling plant Portulaca grandiflora. Funct. Plant Biol. 29, 763–773 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Winter, K., Sage, R. F., Edwards, E. J., Virgo, A. & Holtum, J. A. M. Facultative crassulacean acid metabolism in a C3–C4 intermediate. J Exp. Bot. 70, 6571–6579 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Ke, L., Lin, Z. & Guoxing, Z. Study of normalization method of isotopic compositions to isotope reference scales. J Chem. Pharmaceut. Res 6, 1 (2014).
    Google Scholar 
    58.Harwood, T. et al. 9s climatology for continental Australia 1976–2005: Summary variables with elevation and radiative adjustment, version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/5afa9f7d1a552 (2016).59.Viscarra Rossel, R. et al. Soil and Landscape Grid National Soil Attribute Maps – pH – CaCl2 (3” resolution), version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/546F17EC6AB6E (2014).60.Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Bohley, K. et al. Phylogeny of Sesuvioideae (Aizoaceae)–Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspect. Plant Ecol. Evol. Syst. 17, 116–130 (2015).Article 

    Google Scholar 
    62.Bruhl, J. J. & Wilson, K. L. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso 23, 99–148 (2007).Article 

    Google Scholar 
    63.Caddy-Retalic, S. Quantifying responses of ecological communities to bioclimatic gradients PhD thesis, University of Adelaide, School of Biological Sciences (2017).64.Carolin, R., Jacobs, S. & Vesk, M. The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust. J. Bot. 30, 387–392 (1982).Article 

    Google Scholar 
    65.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. World Grass Species: Synonymy. http://www.kew.org/data/grasses-syn.html (2002).66.D’andrea, R. M., Andreo, C. S. & Lara, M. V. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid‐like metabolism induction and reversal upon re‐watering. Physiol. Plant. 152, 414–430 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24, 411–439 (1993).Article 

    Google Scholar 
    68.Feodorova, T. A., Voznesenskaya, E. V., Edwards, G. E. & Roalson, E. H. Biogeographic patterns of diversification and the origins of C4 in Cleome (Cleomaceae). Syst. Bot. 35, 811–826 (2010).Article 

    Google Scholar 
    69.Guillaume, K., Huard, M., Gignoux, J., Mariotti, A. & Abbadie, L. Does the timing of litter inputs determine natural abundance of 13C in soil organic matter? Insights from an African tiger bush ecosystem. Oecologia 127, 295–304 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Herppich, W. B. & Herppich, M. Ecophysiological investigations on plants of the genus Plectranthus (Fam. Lamiaceae) native to Yemen and southern Africa. Flora 191, 401–408 (1996).Article 

    Google Scholar 
    71.Holtum, J. A. et al. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Curr. Opin. Plant Biol. 31, 109–117 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Holtum, J. A., Hancock, L. P., Edwards, E. J. & Winter, K. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Photosynth. Res. 134, 17–25 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Horn, J. W. et al. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504 (2014).CAS 
    Article 

    Google Scholar 
    74.Kadereit, G., Borsch, T., Weising, K. & Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164, 959–986 (2003).CAS 
    Article 

    Google Scholar 
    75.Koch, K. E. & Kennedy, R. A. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L under natural environmental conditions. Plant. Physiol. 69, 757–761 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Madhusudana Rao, I., Swamy, P. M. & Das, V. S. R. Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions. Zeitschrift für Pflanzenphysiologie 94, 201–210 (1979).Article 

    Google Scholar 
    77.Metcalfe, C. R. Anatomy of the monocotyledons. 1. Gramineae. (Clarendon Press, 1960).78.Pate, J. S., Unkovich, M. J., Erskine, P. D. & Stewart, G. R. Australian mulga ecosystems –13C and 15N natural abundances of biota components and their ecophysiological significance. Plant Cell Environ. 21, 1231–1242 (1998).CAS 
    Article 

    Google Scholar 
    79.Schmidt, S. & Stewart, G. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Thiede, J. & Eggli, U. Crassulaceae. in Flowering Plants· Eudicots 83–118 (Springer, 2007).82.Ting, I. P. Photosynthesis of arid and subtropical succulent plants. Aliso 12, 387–406 (1989).Article 

    Google Scholar 
    83.Watson, L., & Dallwitz, M. J. The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. https://www.delta-intkey.com/grass/intro.htm (1992).84.Winter, K., Garcia, M., Virgo, A. & Holtum, J. A. Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). J. Exp. Bot. 70, 6561–6570 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    10 years of Nature Climate Change

    Which individuals will survive?Observing and recording the devastating impacts of climate change on natural lifeforms has long been a keystone of the climate change ecology field. As a result of years of quality research, we now understand that climate change can reduce species numbers and fitness, cause local extinctions and generally alter where, when, how and with whom organisms live.From the point of view of biodiversity conservation, things look pretty bad. And modelling predictions suggest that they are likely to remain bad or worsen in the near future, even if we do manage to rapidly rein in our global emissions.For this reason — although there is still much more to understand about how the various aspects of climate change can impact different organisms and ecosystems — some of the most vital questions arising now relate to if, and how, natural species can persist.Biological persistence in a changing world relies on an ability to fit or adapt to new conditions, and/or an ability to move to ‘greener pastures’. I was pleased to see work from Andrew Gougherty and colleagues address both climate-change-induced maladaptation and the potential for migration to minimize this maladaptation, in work that focused on a wide-ranging North American tree species, balsam poplar (Populus balsamifera)9.Importantly, the authors did not assess the adaptive capacity of the species as a whole, but instead investigated vulnerability in the context of 81 balsam polar populations spanning North America, thus incorporating intraspecific (within species) variation that may play an important role in persistence potential. In the study, maladaptation was defined based on gene–environment associations, in this case centred on flowering-time genes, which are crucial in regulating plant seasonal growth, dormancy and reproduction. Understanding the genetic variations that underlie fitness under given environmental conditions may help understand and rapidly identify individuals with the best chances of survival under climate change.The Gougherty study uses modern methods to go beyond species-level modelling and, to understand population risks in the context of maladaptation and migration, under climate change. This, in turn, can be utilized to prioritize conservation efforts. Ultimately, we hope that climate change science cannot just observe and understand the human-caused alterations to our planet, but lead us to prevent, manage and save.Tegan Armarego-Marriott has been an editor at Nature Climate Change since 2019. More

  • in

    High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon

    1.Kauffman, E. B. & Kramer, L. D. Zika virus mosquito vectors: competence, biology, and vector control. J. Infect. Dis. 216, S976–S990 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Antonio-Nkondjio, C. et al. High mosquito burden and malaria transmission in a district of the city of Douala Cameroon. BMC Infect. Dis. 12, 275 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Turell, M. J. et al. Vector competence of selected African mosquito (Diptera: Culicidae) Species for Rift Valley fever virus. J. Med. Entomol. 45, 102–108 (2008).PubMed 
    Article 

    Google Scholar 
    4.Mbida, A. M. et al. Preliminary investigation on aggressive culicidae fauna and malaria transmission in two wetlands of the Wouri river estuary Littoral-Cameroon. J. Entomol. Zool. Stud. 4, 105–110 (2016).
    Google Scholar 
    5.Farajollahi, A., Fonseca, D. M., Kramer, L. D. & Kilpatrick, A. M. “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 11, 1577–1585 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Weissenböck, H., Hubálek, Z., Bakonyi, T. & Nowotny, N. Zoonotic mosquito-borne flaviviruses: worldwide presence of agents with proven pathogenicity and potential candidates of future emerging diseases. Vet. Microbiol. 140, 271–280 (2010).PubMed 
    Article 

    Google Scholar 
    7.Antonio-Nkondjio, C., Sandjo, N. N., Awono-Ambene, P. & Wondji, C. S. Implementing a larviciding efficacy or effectiveness control intervention against malaria vectors: key parameters for success. Parasit. Vectors 11, 57 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nchoutpouen, E. et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé Cameroon. PLoS Negl. Trop. Dis. 13, e0007229 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Mourou, J.-R. et al. Malaria transmission in Libreville: results of a one year survey. Malar. J. 11, 40 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Talipouo, A. et al. Comparative study of Culicidae biodiversity of Manoka island and Youpwe mainland area, Littoral Cameroon. Int. J. Biosci. 10, 9–18 (2017).Article 

    Google Scholar 
    11.PNLP. Plan Stratégique National 2019–2023. (2019).12.Antonio-Nkondjio, C. et al. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasit. Vectors 10, 472 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Bamou, R. et al. Status of insecticide resistance and its mechanisms in Anopheles gambiae and Anopheles coluzzii populations from forest settings in south Cameroon. Genes 10, 741 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    14.Chouaïbou, M. et al. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae sl from an area of extensive cotton cultivation in Northern Cameroon. Trop. Med. Int. Health 13, 476–486 (2008).PubMed 
    Article 

    Google Scholar 
    15.Nwane, P. et al. Trends in DDT and pyrethroid resistance in Anopheles gambiaes. s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect. Dis. 9, 163 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Antonio-Nkondjio, C. et al. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaoundé (Cameroon). Malar. J. 14, 155 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Fossog, B. T. et al. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 13, 1–12 (2013).Article 

    Google Scholar 
    18.Antonio-Nkondjio, C. et al. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination. Parasit. Vectors 12, 501 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Hemingway, J., Hawkes, N. J., McCarroll, L. & Ranson, H. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34, 653–665 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Pocquet, N. et al. Multiple insecticide resistances in the disease vector Culex p. quinquefasciatus from Western Indian Ocean. PLoS ONE 8, 77855 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    21.Samantsidis, G.-R. et al. ‘What I cannot create, I do not understand’: functionally validated synergism of metabolic and target site insecticide resistance. Proc. R. Soc. B Biol. Sci. 287, 20200838 (2020).CAS 
    Article 

    Google Scholar 
    22.Corbel, V. et al. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin West Africa. Acta Trop. 101, 207–216 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Yadouléton, A. et al. Insecticide resistance status in Culex quinquefasciatus in Benin. Parasit. Vectors 8, 17 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Xu, Q., Wang, H., Zhang, L. & Liu, N. Sodium channel gene expression associated with pyrethroid resistant house flies and German cockroaches. Gene 379, 62–67 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Martinez-Torres, D. et al. Voltage-dependent Na+ channels in pyrethroid-resistant Culex pipiens L. mosquitoes. Pestic. Sci. 55, 1012–1020 (1999).CAS 
    Article 

    Google Scholar 
    26.Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Djogbénou, L., Akogbéto, M. & Chandre, F. Presence of insensitive acetylcholinesterase in wild populations of Culex pipiens quinquefasciatus from Benin. Acta Trop. 107, 272–274 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Jones, C. M. et al. Insecticide resistance in Culex quinquefasciatus from Zanzibar: implications for vector control programmes. Parasit. Vectors 5, 78 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tmimi, F.-Z. et al. Insecticide resistance and target site mutations (G119S ace-1 and L1014F kdr) of Culex pipiens in Morocco. Parasit. Vectors 11, 51 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Kothera, L. et al. Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S. PLoS ONE 14, (2019).31.Matowo, N. S. et al. Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit. Vectors 12, 413 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. 113, 9268–9273 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Huang, Y. et al. Culex pipiens pallens cuticular protein CPLCG5 participates in pyrethroid resistance by forming a rigid matrix. Parasit. Vectors 11, 6 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Cameroun fiche pays populationData.net 2020. https://www.populationdata.net/pays/cameroun/.35.Djamouko-Djonkam, L. et al. Implication of Anopheles funestus in malaria transmission in the city of Yaoundé Cameroon. Parasite 27, 91 (2011).
    Google Scholar 
    36.Edwards, F. W. Mosquitoes of the Ethiopian Region. III.-Culicine adults and pupae. Mosquitoes Ethiop. Reg. III-Culicine Adults Pupae (1941).37.Jupp, P. G. Mosquitoes of Southern Africa: culicinae and toxorhynchitinae. (Ekogilde Publishers, 1996).38.Organization, W. H. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. (2016).39.Feyereisen, R. Insect P450 inhibitors and insecticides: challenges and opportunities. Pest Manag. Sci. 71, 793–800 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Smith, J. L. & Fonseca, D. M. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am. J. Trop. Med. Hyg. 70, 339–345 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Scott, J. G., Yoshimizu, M. H. & Kasai, S. Pyrethroid resistance in Culex pipiens mosquitoes. Pestic. Biochem. Physiol. 120, 68–76 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bisset, J., Rodríguez, M. M. & Fernández, D. Selection of insensitive acetylcholinesterase as a resistance mechanism in Aedes aegypti (Diptera: Culicidae) from Santiago de Cuba. J. Med. Entomol. 43, 1185–1189 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Low, V. L. et al. Current susceptibility status of Malaysian Culex quinquefasciatus (Diptera: Culicidae) against DDT, propoxur, malathion, and permethrin. J. Med. Entomol. 50, 103–111 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Djogbénou, L., Noel, V. & Agnew, P. Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation. Malar. J. 9, 12 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Labbé, P. et al. Independent duplications of the acetylcholinesterase gene conferring insecticide resistance in the mosquito Culex pipiens. Mol. Biol. Evol. 24, 1056–1067 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Delannay, C. et al. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS ONE 13, e0199615 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Georghiou, G. P. & Pasteur, N. Organophosphate Resistance and Esterase Pattern in a Natural Population of the Southern House Mosquito from California. J. Econ. Entomol. 73, 489–492 (1980).CAS 
    Article 

    Google Scholar 
    48.Xu, W. et al. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. Pestic. Biochem. Physiol. 142, 77–82 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Gong, Y., Li, T., Feng, Y. & Liu, N. The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    50.Komagata, O., Kasai, S. & Tomita, T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefasciatus. Insect Biochem. Mol. Biol. 40, 146–152 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Liu, N., Li, T., Reid, W. R., Yang, T. & Zhang, L. Multiple Cytochrome P450 Genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes culex quinquefasciatus. PLoS ONE 6, e23403 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Gordon, J. R. & Ottea, J. Association of esterases with insecticide resistance in Culex quinquefasciatus (Diptera: Culicidae). J. Econ. Entomol. 105, 971–978 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Mouches, C. et al. Characterization of amplification core and esterase B1 gene responsible for insecticide resistance in Culex. Proc. Natl. Acad. Sci. 87, 2574–2578 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Pasteur, N., Nancé, E. & Bons, N. Tissue localization of overproduced esterases in the mosquito Culex pipiens (Diptera: Culicidae). J. Med. Entomol. 38, 791–801 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Achaleke, J., Martin, T., Ghogomu, R. T., Vaissayre, M. & Brévault, T. Esterase-mediated resistance to pyrethroids in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Central Africa. Pest Manag. Sci. Former. Pestic. Sci. 65, 1147–1154 (2009).CAS 
    Article 

    Google Scholar 
    56.Simma, E. A. et al. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. PEST Manag. Sci. 75, 1808–1818 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Subra, R. Biology and control of Culex pipiens quinquefasciatus Say, 1823 (Diptera, Culicidae) with special reference to Africa. Int. J. Trop. Insect Sci. 1, 319–338 (1981).CAS 
    Article 

    Google Scholar  More

  • in

    Urban storm water infiltration systems are not reliable sinks for biocides: evidence from column experiments

    Soil propertiesStone contentThe stone content ranged from (15,pm ,8%) (w/w) at V.18 to (44,pm ,13%) (w/w) at F.3 (Fig. 1a, Table 1). These differences between sites may partly be due to different sources of the raw material used to create the SIS. Further, the stone content increased with depth within the first 15 cm (V.18) and 10 cm (W.10), but remained approximately constant over depth at F.3. Hence, the stone content in the upper layers of the older SIS (W.10 and V.18) was lower than in the lower layers. These depth-related differences at each site may be related to time-dependent developments within the SIS. In the uppermost layers of V.18 and W.10, stone content was comparatively low probably due to input of fine mineral and organic particles by storm water. For the oldest SIS (V.18), this assumption is supported by the field observation of soil material lying on a bricked stone border near the inflow within the SIS.Figure 1Depth-dependent soil properties: (a) stone content [% (w/w)], (b) bulk density ((hbox {g},hbox {cm}^{-3})), (c) pH (0.01 M (hbox {CaCl}_{2})) and (d) organic carbon content (OC) [% (w/w)] of the three sites F3, W.10, V18. The error bars are the standard deviation ((hbox {n}=4)).Full size imageTable 1 Soil properties of SIS.Full size tableBulk densityThe bulk density in the upper layers of the different SIS increased in the following order: V.18 < W.10 < F.3 (Fig. 1b, Table 1). At V.18, we observed the strongest change with depth from (1.0,pm ,0.1,hbox {g},hbox {cm}^{-3}) (0–5 cm) to (1.5,pm ,0.1,hbox {g},hbox {cm}^{-3}) (15–20 cm). In contrast, we observed almost no depth-dependent change of bulk density at the youngest site of F.3 ((1.6,pm ,0.2,hbox {g},hbox {cm}^{-3})).In samples of the older sites of V.18 and W.10, low bulk densities in the uppermost layers compared to deeper layers were probably caused by the activity of macrofauna, an intensive rooting, a higher organic carbon (OC) content and the input of strongly sorted fine material. The older the SIS, the stronger the effect of these factors.At F.3 the bulk density was relatively high. Here, we supposed an uniform compaction of the soil layer under the topsoil during construction. This assumption was supported by the observation of redox characteristics (iron-red stains next to grey iron-depleted areas) in the soil at approximately 25 cm depth caused by the lack of oxygen due to accumulating water45 in compacted soil.TextureThe mean texture of fine soil at all SIS was very similar: 57–80% (w/w) sand, 16–34% (w/w) silt and 5–9% (w/w) clay, since similar textured materials were used for construction to guarantee solute retention and sufficient hydraulic conductivity31. Average clay contents of all SIS were within acceptable ranges of Best Management Practice (BMP) claimed by ATV-DVWK A-138 (( More