More stories

  • in

    Diminished growth and vitality in juvenile Hydractinia echinata under anticipated future temperature and variable nutrient conditions

    Collection of parental coloniesWildtype colonies of H. echinata were collected by staff of the Alfred Wegener Institute within the German Bight around Sylt (55°02′ N; 08°28′ E) with the research vessel MYA II in a depth of 1–3.5 m. Here, the mean annual SST ranges between 1 and 20 °C47, and the salinity between 25 and 33 PSU48. The sampling took place in April 2016 (scenario 1) and June 2016 (scenario 2). The hydroid colonies were transported to the Carl von Ossietzky University of Oldenburg, and cultured in artificial sea water (Aqua Medic, Germany) at 12 °C and 34 PSU. Before the transport, the hermit crabs were removed from the shells colonized by hydroids. At the University of Oldenburg, the colonies were fed daily with two-day-old living Artemia salina nauplii.Reproduction and larval settlementJuvenile hydroids were cultured as described in the Helgoland Manual of Animal Development27 Eder et al.31. Overall, 10 male and 10 female adult H. echinate colonies were placed together into one big holding tank to release eggs and sperm for fertilization. The fertilized eggs then transformed into larvae. The transformation of the larvae was induced by caesium chloride49 following the protocol of as described by Eder et al.31, which randomly settled onto black glass tiles (dimensions 10 mm × 10 mm × 2 mm, Mosaikstein, Germany), at least 2–3 larvae on each tile. The colonized glass tiles were then randomly dispersed into the different treatment tanks. As these recruits result from sexual reproduction of overall 20 parental colonies, we can assume high genetic variability of individuals. For individual identification of juvenile colonies, prior to the experiment the glass tiles were engraved underneath with consecutive numbers. After three weeks, the juvenile colonies growing closer to the edges were removed to avoid edge effects, leaving one colony per tile. Prior to the start of the experiments, the colonies were kept in artificial seawater at 18 °C and 34 PSU for 24 h post settlement. From day five of post-settlement onwards, juveniles were fed with two-day-old living Artemia salina nauplii.Experimental setupThe influence of temperature and food availability on the growth of H. echinata colonies was tested in two different experiments (= scenarios) to evaluate the effect of ambient and future environmental conditions on H. echinata in the subtidal (scenario 1, Fig. 7, left panel) and in the intertidal, a habitat characterized by high temperature fluctuations (scenario 2, Fig. 7, right panel). In both scenarios, colonies were exposed to two different temperatures (control and high) cross-factored with two different food conditions (low and high; Fig. 7).Figure 7Experimental design for analysing growth performance and mortality of juvenile H. echinata in two experiments, scenario 1 (left) and 2 (right). The larvae (b) of wild type colonies (a) were settled on glass tiles (c) and transferred to holding tanks for experimental exposure to variable temperature and food conditions (d): HF = high food (dark blue and red tanks); LF = low food (light blue and red tanks); 18 °C = control temperature (blue tanks); 21 °C = high temperature (red tanks). All treatments in scenario 2 contained an extra temperature step of + 1.5 °C for six hours daily. Throughout the experimental timeline and in each treatment, the growth performance of H. echinata was monitored (e). Additionally, a numerical growth model was developed (f dark grey arrows) based on daily analysis of morphological parameters (colony area, polyp number) in hydroids in treatments HF/18 °C and LF/18 °C of scenario 2 and validated (g light grey arrows) by comparing simulated and experimental growth data in all treatments of both scenarios.Full size imageThe control temperature of ~ 18 °C simulated the actual sea surface temperature (SST) during summer in the German Bight (data from Helgoland Roads, 2010–2014, http://www.st.nmfs.noaa.gov). The high temperature of ~ 21 °C was chosen according to predicted increasing SST by the end of the century in the North Sea 8.To evaluate the influence of food availability on the growth potential in hydroids as a response to increasing SST, colonies were fed with two-day-old living A. salina nauplii ( > 1000 nauplii/ml per tank per feeding event) following either a high food (HF) or a low food (LF) scheme (Fig. 7) according to Eder et al.31. Colonies with HF were fed five times a week and with LF three times a week. The LF treatments simulated ´food stress` and were patterned on the predicted decrease in primary and secondary production during the next decades6,50.All experimental conditions, including temperature and food, but also salinity, pH, as well as water quality (ammonium, nitrite and nitrate) were constantly monitored. The temperature was measured every ten minutes using HOBO Tidbit v2 Temp Loggers (Onset, USA). The salinity was checked prior to every water exchange (five times a week) with a hand-held refractometer (Arcarda, Germany). Twice a week, the pH was measured with a pH controller (Aqua Medic, Germany), and concentrations of ammonium, nitrite and nitrate were determined with test kits (JBL, Germany). The water quality was checked once a week before the water exchange. If the limit values for ammonium, nitrite and phosphate (0.25 mg/l, 0.2 mg/l and 0.1 mg/l) were exceeded, an additional water change was performed to ensure a consistently good water quality. Juvenile colonies were exposed to a 14 h-light and 10 h-dark cycle according to in-situ conditions in the German Bight in summer (July/August)31. Each replicate tank, covered by a lid to reduce evaporation and cooling, was provided with air through an air stone, which was placed in the middle of each tank and connected to a pump (HP-40, Hiblow, Japan). To minimize bacterial and algal growth on the glass tiles they were cleaned once a week, without touching the colonies.Scenario 1In the first experiment (Fig. 7, left panel) conducted in June–August 2016, the growth of 80 H. echinata colonies was analysed. The juvenile colonies growing on glass tiles were randomly dispersed into 24 holding tanks containing 100 ml artificial sea water (3–4 glass tiles per tank, 6 replicate tanks per treatment) and exposed for six weeks to, overall, four experimental treatments: HF/18 °C, HF/21 °C, LF/18 °C, LF/21 °C (Fig. 7, left panel). The temperature treatments in this scenario were chosen according to more stable conditions in the subtidal (Fig. 8, grey solid lines), with a control temperature of 18.5 °C ± 0.41 (mean ± SD; Fig. 8, lower grey line) and a high temperature of 20.8 °C ± 0.23 (mean ± SD; Fig. 8, upper grey line). The 24 holding tanks containing the juvenile hydroids were placed in two temperature-constant water baths as described in Eder et al.31. A thermostatic heater (Thermo control 300, Eheim, Germany) and two circulation pumps (Voyager Nano, Sicce, Italy) in each water bath kept temperatures constant at 18 °C and 21 °C, respectively.Figure 8Daily temperature profiles of the control (18 °C; bottom) and high-temperature (21 °C; top) treatments in scenario 1(solid grey lines) and 2 (dotted black lines). In both scenarios, light was provided to experimental animals daily between 8 am and 10 pm (yellow box). All treatments in scenario 2 contained an extra temperature step of + 1.5 °C for six hours daily (between 15:00 and 21:00 h; red box).Full size imageScenario 2The second scenario (Fig. 7, right panel) was conducted in October-December 2016, testing 71 juvenile H. echinata colonies under fluctuating temperature stress. The tiles were dispersed randomly into 32 holding tanks (2–3 glass tiles per tank, 8 replicate tanks per treatment) filled with 300 ml artificial sea water and exposed to four different treatments for five weeks, respectively: HF/18 °C + 1.5 °C, HF/21 °C + 1.5 °C, LF/18 °C + 1.5 °C, LF/21 °C + 1.5 °C (Fig. 7, right panel). This scenario contained an additional temperature step (+ 1.5 °C) for all treatments, to implement daily temperature fluctuations and mimic natural variations in the intertidal during high and low tide51; Fig. 8, black dotted lines). Therefore, the control temperature treatments of 18.2 °C ± 0.60 was increased daily for six hours to 19.5 °C ± 0.17 (mean ± SD; Fig. 8, lower black line), and the high temperature treatments of 20.7 °C ± 0.55 to 22.3 °C ± 0.06 (mean ± SD; Fig. 8, upper black line). The holding tanks were placed into temperature-controlled incubators (MIR-554, Panasonic Healthcare Co., Japan & MIR-553, Sanyo Electric Co., Japan) for each temperature regime.Growth rates and mortalityThroughout the experiment, the colonies developed normally without any signs of polyp or tentacle deformation. Each colony was morphometrically analyzed on a weekly basis in terms of colony area and number of polyps, as indicators for individual growth performance. These parameters were determined throughout both experiments by analyzing weekly photographs of colonies (Fig. 1), taken through a binocular microscope (Leica M205 C, Leica Microsystems, Germany) between the ages of 5–46 days post-settlement (scenario 1) and 8–36 days post-settlement (scenario 2). In scenario 1, the photographs of animals in the HF and LF treatments were taken three days apart for logistical reasons. The area of each colony was determined graphically by an automated script developed using Matlab (Version R2015b, The MathWorks, Inc., USA). The script identifies the shape of the largest patch on each glass tile and excludes the spaces between the stolonal channels. Geometric patterns were not taken into consideration to counteract potential morphological differences based on genetic variations or similarities (e.g. sheet or runner like colonies). For the determination of polyp number, only completely developed polyps equipped with tentacles were counted, whereas buddies were ignored. The juveniles did not reach sexual maturity during the experiment, therefore the colonies consisted exclusively of feeding polyps.Additionally, we analyzed mortality rates by day 35 post-settlement for both scenarios, which were characterized by visible colony-wide signs of cell necrosis and tissue detachment from the surface.In the treatments HF/18 °C and LF/18 °C of the second scenario, daily pictures of eight colonies (four colonies of each treatment) were taken between day 8 and 27 post-settlement to develop and validate a numerical growth model.Model development and validationTo identify physiological response mechanisms of juvenile hydroids exposed to nutrient and temperature stress, we developed a numerical growth model based on morphological data. The effect of environmental stress was simulated by phenomenological relationships, such as temperature-driven metabolism and the negative effects of resource limitation on growth rates. To identify unexpected trends and features in the experimental growth data, the results of the model simulations were compared to the experimental data.The model simulated the day-to-day growth of the colonies through building up feeding polyps and the stolon system. The polyps were described by nodes of a growing network connected by stolon branches. The energy was treated as an artificial, dimensionless quantity that was distributed over the nodes of the network. Food uptake resulted in an increase of the energy amount of every feeding polyp. Energy loss was accounted for by temperature-dependent rest and activity respiration according to van’t Hoff’s rule and the costs for stolon and polyp growth. The energy of a node was equally distributed to adjacent stolons and polyps at a fixed distribution rate, whereby pressure inequalities in stolon branches were not considered due to an assumed constant stolon diameter.The model was initialized by one feeding polyp. Depending on the available energy, the colony developed feeding polyps first to increase its energy intake. Then, if enough energy was left, the colony built up stolon branches of a certain length in an arbitrary direction. The energy needed for stolon growth was proportional to the length and had to exceed the parameterized amount for the growth of a stolon of reference length. The minimum distance between two polyps was also parameterized, as well as the energy needed for this process.Parameter values were partly taken from the experiments and partly estimated by automatic parameter optimization (Supplementary Table 1). For this, the parameters of the model were trained to the lab data of the LF/18 °C treatment (scenario 2) in respect to the number of feeding polyps and area of the colony. The trained parameter set was then used for all other simulations. The simulation was repeated 100 times per treatment, with the respective temperature and food scheme and randomized stolon growth. The model was programmed in C and ran for 43 days (scenario 1) and 37 days (scenario 2) with a time step of 6 h to simulate the periods of frequent temperature stress in scenario 2 (= additional temperature step). The model was calibrated using the treatment LF/18 °C (scenario 2).StatisticsWe compared the growth performance over time between experimental data and simulated data, for both scenarios separately. Area and polyp growth rates were compared by a pairwise Wilcoxon test with multiple-testing adjustment (Bonferroni-Holmes) in R (R version 3.5.1, R Core Team 2018). The 18 °C high-food condition (HF/18 °C) was set as the reference group. The respective parameters ((alpha ,b)) were calculated as follows:

    1.

    Area growth (colony area as a function of time) of the individual colonies was square root transformed and fitted with a linear model of the form, (sqrt[4]{{varvec{A}}}left( {varvec{t}} right) = {varvec{a}} + {varvec{bt}} + {varvec{varepsilon}}left( {varvec{t}} right),user2{ })([4])({{varvec{A}}}left( {varvec{t}} right) = {varvec{a}} + {varvec{bt}} + {varvec{varepsilon}}left( {varvec{t}} right),user2{ }) where ({varvec{A}}) is the colony area, ({varvec{a}},{varvec{b}}) represent intercept and slope of the fitted area growth curve, respectively, and ({varvec{varepsilon}}) is the model error.

    2.

    The polyp growth (number of polyps as a function of time) was fitted using the parametric Gompertz function without transformation, usually used to describe tumour growth kinetics (Laird, 1964) as follows: ({varvec{N}}left( {{varvec{t}};{varvec{alpha}},{varvec{beta}}} right) = {varvec{e}}^{{{varvec{alpha}}/{varvec{beta}}left( {1 – {varvec{e}}^{{ – user2{beta t}}} } right)}} ,user2{ }) where ({varvec{alpha}} > 0) is the initial growth constant, (mathop {lim }limits_{{{varvec{t}} to 0}} frac{{varvec{d}}}{{{varvec{dt}}}}{varvec{N}}left( {varvec{t}} right) = user2{alpha N}left( {varvec{t}} right),user2{ }) i.e. initial exponential growth, (mathop {lim }limits_{{{varvec{t}} to 0}} {varvec{N}}left( {varvec{t}} right) = exp left( {user2{alpha t}} right)), and ({varvec{beta}} > 0) is the growth constant at the maximum growth rate, i.e., (frac{{varvec{d}}}{{{varvec{dt}}}}{varvec{N}}left( {{varvec{t}} = {varvec{t}}_{{mathbf{i}}} } right) = user2{beta N}left( {{varvec{t}} = {varvec{t}}_{{mathbf{i}}} } right) = frac{{varvec{beta}}}{{varvec{e}}}{varvec{e}}^{{{varvec{alpha}}/{varvec{beta}}}}), with ({varvec{t}}_{{mathbf{i}}} = left( {ln frac{{varvec{alpha}}}{{varvec{beta}}}} right)/{varvec{beta}}) defining the inflexion point of the (sigmoidal) growth curve. The function follows the trend of a logistic growth curve, but is characterized by asymmetric growth through saturation. In both experiments, saturation was probably not reached, but in scenario 2, growth declined towards the end of the experiment. This decline was set as an indicator for the end of the optimal growth phase and, therefore, the end of the experiment. The ({varvec{beta}}) parameter determined for the experimental polyp growth curve of each colony was always significantly lower than the respective ({varvec{alpha}}) parameter and did not differ significantly across the conditions. This allowed us to compare the conditions in terms of the ({varvec{alpha}}) parameter only.

    The analysis of numerical growth model data followed the same procedure. Then, the growth curves over time (polyp number, colony area) for the experimental data and the simulation were qualitatively compared based on the shape and the discrepancies between the curves. Parametric functions to experimental growth curves were fitted using NonlinearModelFit in Wolfram Mathematica (Version 11, Wolfram Research, UK). R was used for statistical analysis and for producing graphical output. The effect sizes (Cohen’s effect size, Odds Ratio) are presented in the supplements (Supplementary Table 4, 5).In addition, we analyzed the experimental data in terms of mortality, which was defined as the proportion of colonies that died 35 days after settlement, using the proportion test in R.Animal rightsAll applicable international, national, and/or institutional guidelines of the University Oldenburg and the federal state Lower Saxony (Germany) for the care and use of animals were followed. More

  • in

    Siland a R package for estimating the spatial influence of landscape

    We consider a response variable measured at n different sites denoted Yi (i stands for a site), L local variables which can be continuous or discrete and are denoted as xil (l stands for a local variable and i for a site) and K landscape variables denoted as zrk (k stands for a landscape variable and r for a polygon in the landscape). In the Bsiland method, the effect of landscape variables is modelled using buffers with (p_{{i},delta_{k}}^{k}), the percentage of the landscape variable k in a buffer of radius δk and centered on site i. Since the Bsiland model is based on the generalized linear models framework, the expected value of the response variable Yi is modelled as follows:$$ mu_{i} = mu + sumlimits_{l in L} {alpha_{l} x_{i}^{l} } + sumlimits_{k in K} {beta_{k} p_{{i},delta_{k}}^{k} } $$
    (1)
    where µ is the intercept, αl and βk are the effects of local and landscape variables, respectively.The Fsiland method is based on Spatial Influence Functions (SIFs) in a similar framework to Chandler & Hepinstall-Cymerman 9. To simplify computations, the entire study area is not considered as continuous but rasterized, i.e. pixelated on a regular grid, named R. The value of each landscape variable k at a pixel r is described in zrk. For instance, if the landscape variable k is a presence/absence variable, zrk is equal to one or zero. The expected value of the response variable Yi is then modelled as follows:$$ mu_{i} = mu + sumlimits_{l in L} {alpha_{l} x_{i}^{l} } + sumlimits_{k in K} {beta_{k} } sumlimits_{r in R} {f_{{delta}_{k}} (d_{i,r} )z_{r}^{k} } $$
    (2)
    where fδk(.) is the SIF associated with the landscape variable k and di,r is the distance between the center of pixel r and the observation at site i. The SIF is a density function decreasing with the distance. The scale of effect of a landscape variable k is calibrated through the parameter δk, the mean distance of fδk. Two families of SIF are currently implemented in the siland package, exponential and Gaussian families defined as fδ(d) = 2/(πδ2)exp(-2d/δ) and fδ(d) = 1/(2δ)2exp(-π(d/2δ)2), respectively19. The effect of a landscape variable k is modelled by two parameters: an intensity parameter, βk describing its strength and its direction and a scale parameter, δk, describing how this effect declines with distance. Each pixel potentially has an effect on the response variable at any observation site. No set of scales of effects is initially determined. In Eq. 2, the sum on the regular grid R is an approximation of the integration on the continuous study area. The choice of the grid definition is a tradeoff between computing precision and computing time. The smallest the mesh size of the grid is, the better are the precision but the longer the computing time is (and the larger the required memory size is). The parameters estimation may be very sensitive to this mesh size. To obtain a reliable estimation, we recommend to ensure, after the estimation procedure, that mesh size is at least three times smaller than the smallest estimated SIF (see Supplementary Fig. S2 online for details). If not, it is recommended to proceed with a new estimation with a smaller mesh (by using the wd argument of the Fsiland function, set at 30 by default).All parameters, µ, {α1,…, αK}, {β1,…, βK} but also {δ1,…, δK} are simultaneously estimated by likelihood maximization for both Bsiland and Fsiland methods. We have developed a sequential algorithm. At the initialization stage, values are arbitrarily defined for the {δ1,..,δK} scales parameters. In step A, the µ, {α1,.., αK}, {β1,.., βK} parameters are estimated using the classical maximization procedures implemented in the lm and glm functions knowing the fixed values of the scale parameters. In step B, the scale parameters are estimated by likelihood maximization knowing the parameters estimated in step A. The values of the scale parameters are then fixed at the new estimated values. Steps A and B are thus repeated until the relative increase in likelihood decreased below a threshold or the maximum number of repetitions is reached. Tests performed (obtained using the summary function) are similar to those given by summary.lm or summary.glm function (see R Core Team16 for details, this implies that tests are given conditionally to the estimated scale parameters.). More

  • in

    Lightning threatens permafrost

    1.Veraverbeke, S. et al. Nat. Clim. Change 7, 529–534 (2017).Article 

    Google Scholar 
    2.Murray, L. T. Nat. Clim. Change 8, 191–192 (2018).Article 

    Google Scholar 
    3.Chen, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-021-01011-y (2021).Article 

    Google Scholar 
    4.Witze, A. Nature 585, 336–337 (2020).CAS 
    Article 

    Google Scholar 
    5.Holzworth, R. H. et al. Geophys. Res. Lett. (in the press).6.Finney, D. L. et al. Geophys. Res. Lett. 47, e2020GL088163 (2020).Article 

    Google Scholar 
    7.Thornhill, G. et al. Atmos. Chem. Phys. 21, 1105–1126 (2021).CAS 
    Article 

    Google Scholar 
    8.Bonan, G. B. & Doney, S. C. Science 359, eaam8328 (2018).Article 

    Google Scholar  More

  • in

    Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions

    1.Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).
    Google Scholar 
    2.Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).
    Google Scholar 
    3.Hutchins, D. A., DiTullio, G. R., Zhang, Y. & Bruland, K. W. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43, 1037–1054 (1998).
    Google Scholar 
    4.Bruland, K. W., Rue, E. L. & Smith, G. J. Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol. Oceanogr. 46, 1661–1674 (2001).
    Google Scholar 
    5.Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).
    Google Scholar 
    6.Brzezinski, M. A. et al. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. J. Geophys. Res. Oceans 120, 4654–4669 (2015).
    Google Scholar 
    7.Arteaga, L. A., Pahlow, M., Bushinsky, S. M. & Sarmiento, J. L. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles 33, 942–956 (2019).
    Google Scholar 
    8.Stukel, M. R. & Barbeau, K. A. Investigating the nutrient landscape in a coastal upwelling region and its relationship to the biological carbon pump. Geophys. Res. Lett. 47, e2020GL087351 (2020).
    Google Scholar 
    9.Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
    Google Scholar 
    10.Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
    Google Scholar 
    11.Pichevin, L. E., Ganeshram, R. S., Geibert, W., Thunell, R. & Hinton, R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541–546 (2014).
    Google Scholar 
    12.Brzezinski, M. A. et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).13.Matsumoto, K., Sarmiento, J. L. & Brzezinski, M. A. Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Glob. Biogeochem. Cycles 16, 1031 (2002).
    Google Scholar 
    14.Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).
    Google Scholar 
    15.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).
    Google Scholar 
    16.Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
    Google Scholar 
    17.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
    Google Scholar 
    18.Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 4, 1790–1797 (2019).19.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
    Google Scholar 
    20.Yamada, Y., Tomaru, Y., Fukuda, H. & Nagata, T. Aggregate formation during the viral lysis of a marine diatom. Front. Mar. Sci. 5, 167 (2018).
    Google Scholar 
    21.Pelusi, A. et al. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol. 229, 2251–2259 (2020).
    Google Scholar 
    22.Johnson, K. S., Chavez, F. P. & Friederich, G. E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398, 697–700 (1999).
    Google Scholar 
    23.Harrison, P. J. Station Papa time series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).
    Google Scholar 
    24.Marchetti, A. et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J. Phycol. 53, 820–832 (2017).
    Google Scholar 
    25.Cohen, N. R. et al. Diatom transcriptional and physiological responses to changes in iron bioavailability across ocean provinces. Front. Mar. Sci. 4, 360 (2017).
    Google Scholar 
    26.Lampe, R. H. et al. Different iron storage strategies among bloom-forming diatoms. Proc. Natl Acad. Sci. USA 115, E12275–E12284 (2018).
    Google Scholar 
    27.King, A. L. & Barbeau, K. Evidence for phytoplankton iron limitation in the southern California Current System. Mar. Ecol. Prog. Ser. 342, 91–103 (2007).
    Google Scholar 
    28.Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).
    Google Scholar 
    29.Till, C. P. et al. The iron limitation mosaic in the California Current System: factors governing Fe availability in the shelf/near-shelf region. Limnol. Oceanogr. 64, 109–123 (2019).
    Google Scholar 
    30.Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).
    Google Scholar 
    31.Richaud, C. & Zabulon, G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc. Natl Acad. Sci. USA 94, 11736–11741 (1997).
    Google Scholar 
    32.Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).
    Google Scholar 
    33.Thamatrakoln, K., Korenovska, O., Niheu, A. K. & Bidle, K. D. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ. Microbiol. 14, 67–81 (2012).
    Google Scholar 
    34.Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).
    Google Scholar 
    35.De La Rocha, C. L., Hutchins, D. A., Brzezinski, M. A. & Zhang, Y. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Mar. Ecol. Prog. Ser. 195, 71–79 (2000).
    Google Scholar 
    36.Leynaert, A. et al. Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol. Oceanogr. 49, 1134–1143 (2004).
    Google Scholar 
    37.van Creveld, S. G., Rosenwasser, S., Levin, Y. & Vardi, A. Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiol. 172, 968–979 (2016).
    Google Scholar 
    38.Slagter, H. A., Gerringa, L. J. A. & Brussaard, C. P. D. Phytoplankton virus production negatively affected by iron limitation. Front. Mar. Sci. 3, 156 (2016).
    Google Scholar 
    39.Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).
    Google Scholar 
    40.Weinbauer, M. G., Arrieta, J. M., Griebler, C. & Herndlb, G. J. Enhanced viral production and infection of bacterioplankton during an iron-induced phytoplankton bloom in the Southern Ocean. Limnol. Oceanogr. 54, 774–784 (2009).
    Google Scholar 
    41.Torres, M. A., Jones, J. D. G. & Dangl, J. L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373–378 (2006).
    Google Scholar 
    42.Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. & Vardi, A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 10, 1742–1754 (2016).
    Google Scholar 
    43.Hyodo, K., Hashimoto, K., Kuchitsu, K., Suzuki, N. & Okuno, T. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc. Natl Acad. Sci. USA 114, E1282–E1290 (2017).
    Google Scholar 
    44.Espinoza, J. A., Gonzalez, P. A. & Kalergis, A. M. Modulation of antiviral immunity by heme oxygenase-1. Am. J. Pathol. 187, 487–493 (2017).
    Google Scholar 
    45.Durkin, C. A. et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol. Oceanogr. 57, 1619–1633 (2012).
    Google Scholar 
    46.Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl Acad. Sci. USA 110, 20633–20638 (2013).
    Google Scholar 
    47.Kimura, K. & Tomaru, Y. Effects of temperature and salinity on diatom cell lysis by DNA and RNA viruses. Aquat. Microb. Ecol. 79, 79–83 (2017).
    Google Scholar 
    48.Thamatrakoln, K. et al. Light regulation of coccolithophore host–virus interactions. New Phytol. 221, 1289–1302 (2019).
    Google Scholar 
    49.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).
    Google Scholar 
    50.Brzezinski, M. A. et al. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep Sea Res. II 58, 493–511 (2011).
    Google Scholar 
    51.Boyer, T. P. et al. World Ocean Database 2013 (NOAA Atlas, 2013).52.Krause, J. W. et al. The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnol. Oceanogr. 65, 1974–1989 (2020).
    Google Scholar 
    53.Krause, J. W., Nelson, D. M. & Brzezinski, M. A. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep Sea Res. II 58, 434–448 (2011).
    Google Scholar 
    54.Brzezinski, M. A. & Phillips, D. R. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol. Oceanogr. 42, 856–865 (1997).
    Google Scholar 
    55.Nelson, D. M., Brzezinski, M. A., Sigmon, D. E. & Franck, V. M. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res. II 48, 3973–3995 (2001).
    Google Scholar 
    56.Krause, J. W., Brzezinski, M. A., Villareal, T. A. & Wilson, C. Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnol. Oceanogr. 57, 1084–1098 (2012).
    Google Scholar 
    57.Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25, 2872–2877 (2009).
    Google Scholar 
    58.Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).
    Google Scholar 
    59.Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).
    Google Scholar 
    60.Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
    Google Scholar 
    61.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    Google Scholar 
    62.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
    Google Scholar 
    63.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).64.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
    Google Scholar 
    65.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    66.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).67.Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).
    Google Scholar 
    68.Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).
    Google Scholar 
    69.Lampe, R. H. et al. Divergent gene expression among phytoplankton taxa in response to upwelling. Environ. Microbiol. 20, 3069–3082 (2018).
    Google Scholar 
    70.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data https://cran.r-project.org/web/packages/gplots/index.html (2019).71.Oksanen, J. et al. vegan: Community Ecology Package https://cran.r-project.org/web/packages/vegan/index.html (2019).72.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Google Scholar 
    73.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    Google Scholar 
    74.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    Google Scholar 
    75.Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 
    76.Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).
    Google Scholar 
    77.Chen, L.-M., Edelstein, T. & McLachlan, J. Bonnemaisonia hamifera Hariot in nature and in culture. J. Phycol. 5, 211–220 (1969).
    Google Scholar 
    78.Harrison, P. J., Waters, R. E. & Taylor, F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J. Phycol. 16, 28–35 (1980).
    Google Scholar 
    79.Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).
    Google Scholar 
    80.Sunda, W. G., Price, N. M. & Morel, F. M. M. Trace metal ion buffers and their use in culture studies. Algal Cult. Tech. 4, 35–63 (2005).
    Google Scholar 
    81.Tomaru, Y., Shirai, Y., Toyoda, K. & Nagasaki, K. Isolation and characterization of a single-stranded DNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus. Aquat. Microb. Ecol. 64, 175–184 (2011).
    Google Scholar 
    82.Parsons, T. R. A Manual of Chemical & Biological Methods for Seawater Analysis (Elsevier, 2013).83.Krause, J. W., Lomas, M. W. & Nelson, D. M. Biogenic silica at the Bermuda Atlantic time-series study site in the Sargasso Sea: temporal changes and their inferred controls based on a 15-year record. Glob. Biogeochem. Cycles 23, GB3004 (2009).84.Gorbunov, M. Y. & Falkowski, P. G. Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In Photosynthesis: Fundamental Aspects to Global Perspectives—Proc. 13th International Congress of Photosynthesis (eds Van der Est, A. & Bruce, D.) 1029–1031 (Allen and Unwin, 2004).85.Suttle, C. A. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 121–134 (CRC Press, 1993).86.Klee, A. J. A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18, 91–98 (1993).
    Google Scholar  More