More stories

  • in

    Submicron polymer particles may mask the presence of toxicants in wastewater effluents probed by reporter gene containing bacteria

    1.Pivokonsky, M. et al. Occurrence of microplastics in raw and treated drinking water. Sci. Total. Environ. 643, 1644–1651 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. & Narayanaswamy, B. E. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the rockall trough, North Atlantic Ocean. Environ. Pollut. 231, 271–280 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Koongolla, J. B. et al. Occurrence of microplastics in gastrointestinal tracts and gills of fish from Beibu Gulf, South China Sea. Environ. Pollut. 258, 113734 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Qu, M. et al. Nanopolystyrene at predicted environmental concentration enhances microcystin-LR toxicity by inducing intestinal damage in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 183, 109568 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Li, Y. et al. Low level of polystyrene microplastics decreases early developmental toxicity of phenanthrene on marine medaka (Oryzias melastigma). J. Hazard. Mater. 385, 121586 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Shao, H. & Wang, D. Long-term and low-dose exposure to nanopolystyrene induces a protective strategy to maintain functional state of intestine barrier in nematode Caenorhabditis elegans. Environ. Pollut. 258, 113649 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Sørensen, L., Rogers, E., Altin, D., Salaberria, I. & Booth, A. M. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ. Pollut. 258, 113844 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    9.Lee, K.-W., Shim, W. J., Kwon, O. Y. & Kang, J.-H. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ. Sci. Technol. 47, 11278–11283 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Sun, X. et al. Toxicities of polystyrene nano-and microplastics toward marine bacterium Halomonas alkaliphila. Sci. Total. Environ. 642, 1378–1385 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Ivask, A. et al. Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environ. Sci. Technol. 46, 2398–2405 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Heinlaan, M. et al. Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total. Environ. 707, 136073 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Miyazaki, J. et al. Bacterial toxicity of functionalized polystyrene latex nanoparticles toward Escherichia coli. Adv. Mat. Res. 699, 672–677 (2013).CAS 

    Google Scholar 
    14.Kwon, Y.-N. & Leckie, J. O. Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance. J. Membr. Sci. 282, 456–464 (2006).CAS 
    Article 

    Google Scholar 
    15.Ateia, M., Kanan, A. & Karanfil, T. Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere 251, 126452 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Mammo, F., Amoah, I., Gani, K., Pillay, L., Ratha, S., Bux, F. & Kumari, S. Microplastics in the environment: Interactions with microbes and chemical contaminants. Sci. Total. Environ. 743, 140518 (2020).18.Engler, R. E. The complex interaction between marine debris and toxic chemicals in the ocean. Environ. Sci. Technol. 46, 12302–12315 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L.-A. An emerging matter of environmental urgency. In Microplastic contamination in aquatic environments (ed. Zeng, E.) 379–399 (Elsevier, 2018).
    Google Scholar 
    20.Sumampouw, O. J. & Risjani, Y. Bacteria as indicators of environmental pollution. Environment 51, 52 (2014).
    Google Scholar 
    21.Hassan, S. H. et al. Real-time monitoring of water quality of stream water using sulfur-oxidizing bacteria as bio-indicator. Chemosphere 223, 58–63 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Bowdre, J. H. & Krieg, N. R. Water quality monitoring: bacteria as indicators (Virginia Water Resources Research Center, 1974).
    Google Scholar 
    23.Leusch, F. D. et al. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses. Water Res. 50, 420–431 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Federation, Water Environmental and American Public Health Association (APHA). Standard methods for the examination of water and wastewater, Vol. 2 , Washington, DC, USA, (1915).25.Belkin, S. et al. A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res. 31, 3009–3016 (1997).CAS 
    Article 

    Google Scholar 
    26.Bhuvaneshwari, M. et al. Toxicity of chlorinated and ozonated wastewater effluents probed by genetically modified bioluminescent bacteria and cyanobacteria Spirulina sp. Water Res. 164, 114910 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bianchi, E. et al. Evaluation of genotoxicity and cytotoxicity of water samples from the Sinos River Basin, southern Brazil. Braz. J. Biol. 75, 68–74 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Melamed, S. et al. A printed nanolitre-scale bacterial sensor array. Lab Chip 11, 139–146 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Jia, K., Eltzov, E., Toury, T., Marks, R. S. & Ionescu, R. E, A lower limit of detection for atrazine was obtained using bioluminescent reporter bacteria via a lower incubation temperature. Ecotoxicol. Environ. Saf. 84, 221–226 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kim, B. C. & Gu, M. B, A bioluminescent sensor for high throughput toxicity classification. Biosens. Bioelectron 18, 1015–1021 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Gu, M. B., Min, J. & Kim, E. J, Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 46, 289–294 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Woutersen, M., Belkin, S., Brouwer, B., van Wezel, A. P. & Heringa, M. B, Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources?. Anal Bioanal Chem 4, 915–929 (2011).Article 
    CAS 

    Google Scholar 
    33.Manivannan, B. et al. Water toxicity evaluations: comparing genetically modified bioluminescent bacteria and CHO cells as biomonitoring tools. Ecotoxicol. Environ. Saf. 203, 110984 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Gambardella, C. et al. Microplastics do not affect standard ecotoxicological endpoints in marine unicellular organisms. Mar. Pollut. Bull. 143, 140–143 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Magnusson, K. & Norén, F. Screening of microplastic particles in and down-stream a wastewater treatment plant (IVL Swedish Environmental Research Institute, 2014).
    Google Scholar 
    36.Talvitie, J. et al. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Sci. Technol. 72, 1495–1504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Carr, S. A., Liu, J. & Tesoro, A. G. Transport and fate of microplastic particles in wastewater treatment plants. Water Res. 91, 174–182 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Dris, R. et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environ. Chem. 5, 592–599 (2015).Article 
    CAS 

    Google Scholar 
    39.HELCOM, 2014. Baltic Marine Environment Protection Commission, Preliminary study on Synthetic microfibers and particles at a municipal waste water treatment plant, BASE project 2012–2014.40.Lares, M., Ncibi, M. C., Sillanpää, M. & Sillanpää, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res 133, 236–246 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Murphy, F., Ewins, C., Carbonnier, F. & Quinn, B. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800–5808 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Garside, M. Global plastic production from 1950 to 2018. Statista. Available online at: https://www.statista.com/statistics/282732/global-production-ofplastics-since-1950 (2019).43.Jang, M. et al. H, Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ Pollut. 231, 785–794 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.De-la-Torre, G. E., Dioses-Salinas, D. C., Pizarro-Ortega, C. I. & Saldaña-Serran, M. Global distribution of two polystyrene-derived contaminants in the marine environment: A review. Mar. Pollut. Bull. 161, 111729 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Zitko, V. Expanded polystyrene as a source of contaminants. Mar. Pollut. Bull 10, 584–585 (1993).Article 

    Google Scholar 
    46.Hoerter, J. & Eisenstark, A. Synergistic killing of bacteria and phage by polystyrene and ultraviolet radiation. Environ. Mutagen. 12, 261–264 (1988).CAS 
    Article 

    Google Scholar 
    47.Miao, L. et al. Acute effects of nanoplastics and microplastics on periphytic biofilms depending on particle size, concentration and surface modification. Environ. Pollut. 255, 113300 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Rupe, L. A., Tuthill, L. B. & Leikhim, J. W. Thickened bleach compositions for treating hard-to-remove soils. U.S. Patent No. 4116851. (1978).49.Merritt, K., Hitchins, V. M. & Brown, S. A. Safety and cleaning of medical materials and devices. J. Biomed. Mater. Res. 53, 131–136 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.https://www.dutscher.com/data/pdf_guides/en/CCTPPA.pdf Material Pour Laboratories ET Industries, Dominique Dutscher.51.Messing, A. & Sela, Y. SHAFDAN (Greater Tel Aviv Wastewater Treatment Plant): recent upgrade and expansion. Water Pract. Technol 2, 288–297 (2016).Article 

    Google Scholar 
    52.Eldad Spivak, Engineering Firm LTD., Raanana wastewater facility, Israel. http://www.spivak.co.il/en/projects/raanana-wastewater-facility.53.Balasha Jalon, Infrastructure systems LTD., Karmiel wastewater treatment plant- First stage- Israel. http://bj-is.com/karmiel-wwtp.54.Heinlaan, M. et al. & Kahru, A, Hazard evaluation of polystyrene nanoplastic with nine bioassays did not show particle-specific acute toxicity. Sci. Total Environ. 707, 136073 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Snead, M. C. Benefits of maintaining a chlorine residual in water supply systems, 600/2-80-0100 (US Environmental Protection Agency, 1980).56.Harp, D.L. Current technology for chlorine analysis in water and wastewater. Technical Information Series—Booklet No.17. Hach Company (2002).57.4500-Cl CHLORINE (RESIDUAL). Standard Methods For the Examination of Water and Wastewater, 23rd (2018).58.Engelhardt, T. & Malkov, V. B. Chlorination, chloramination and chlorine measurement 18–20 (HACH, 2015).
    Google Scholar 
    59.https://www.polyfluor.nl/en/chemical-resistance/ptfe/. Specialist in PTFE, Engineering and Manufacturing Service, Polyfluor.60.Vollmer, A. C., Belkin, S., Smulski, D. R., Van Dyk, T. K. & LaRossa, R. A. Detection of DNA damage by use of Escherichia coli carrying recA’: lux, uvrA’: lux, or alkA’: lux reporter plasmids. Appl. Environ. Microbiol. 63, 2566–2571 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Van Dyk, T. K. et al. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 60, 1414–1420 (1994).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Eltzov, E., Marks, R. S., Voost, S., Wullings, B. A. & Heringa, M. B. Flow-through real time bacterial biosensor for toxic compounds in water. Sensors Actuators B: Chem. 142, 11–18 (2009).CAS 
    Article 

    Google Scholar 
    63.Harpaz, D. et al. Measuring artificial sweeteners toxicity using a bioluminescent bacterial panel. Molecules 23, 2454 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Thiagarajan, V., Iswarya, V., Seenivasan, R., Chandrasekaran, N. & Mukherjee, A. Influence of differently functionalized polystyrene microplastics on the toxic effects of P25 TiO2 NPs towards marine algae Chlorella sp. Aquat. Toxicol. 207, 208–216 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Kelkar, V. P. et al. Chemical and physical changes of microplastics during sterilization by chlorination. Water Res. 163, 114871 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Zhang, X. et al. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant. Chemosphere 242, 125227 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Yan, M., Roccaro, P., Fabbricino, M. & Korshin, G. V. Comparison of the effects of chloramine and chlorine on the aromaticity of dissolved organic matter and yields of disinfection by-products. Chemosphere 191, 477–484 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Hüffer, T. & Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 214, 194–201 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Reflections and projections on a decade of climate science

    When I began my PhD a decade ago, climate change economics was an extremely niche area. Just a few topics dominated — especially discounting and the relative merits of different climate policy instruments — and the number of researchers was small, incommensurate with the scale of the environmental, economic or policy challenges that climate change presents. However, since then, the field has broadened, deepened and strengthened links to climate science.Notably, there has been an explosion of studies documenting the sensitivity of social and economic systems to temperature. This literature, using statistical approaches designed to identify causal relationships in non-experimental data, has uncovered the effects of temperature across a wide range of outcomes: conflict risk, pre-term birth, classroom learning as well as overall economic productivity across many sectors. This discovery of pervasive and, in some cases, large temperature impacts, even in wealthy countries, is a sharp break with previous work, which understood effects to be mostly limited to a few highly exposed sectors, such as agriculture and coastal infrastructure.Important advances have come from questioning assumptions underlying the cost–benefit assessment of climate policy. Ten years ago, conventional wisdom held that substantial emissions reductions by 2050, required to limit warming to less than 2 °C, could not be justified on a cost–benefit basis. Many studies now show that this finding is overturned under alternate but justifiable models of how climate change affects the economy and human welfare. Two prominent examples are the question of whether climate change affects the underlying growth rate of the economy, and disentangling risk and time preferences in the utility function.A welcome development has been growing interest across the entire economics discipline, with scholars from labour, development, macro, health and financial economics working on questions of weather and climate. Even more important has been recognition of systemic climate risk within major financial institutions. Central banks, institutional investors and credit rating agencies direct capital investment flows and manage economic risks, and will play a critical role in structuring future adaptive transitions. Markets, communities, households and businesses will have to adapt both to a continuously changing climate, and to a low-carbon economy. Forward-looking regulations and investments that anticipate these changes will lower the costs of these transitions.I see several important areas still in need of substantive work. Firstly, an assessment of alternative policy instruments that better incorporates the political and technological feedbacks that will accompany major climate policy. Economists tend to favour carbon pricing because of its cost-effectiveness. But how do pricing policies perform given a richer representation of other relevant market failures or real political constraints? Examples include subsidy-driven declines in technology costs or strategic interest group dynamics, where policies themselves create or undermine powerful interest groups and therefore alter the space of political possibility. Collaboration with engineers and political scientists can help address these questions. An expanded focus on desirable policies for low- and middle-income countries, essential to meet ambitious decarbonization goals and which present distinct challenges, is also critical.More work is needed on understanding climate damages, particularly those that fall outside of traditional market measures, such as losses of cultural heritage, conflict risk or biodiversity loss. These are extremely difficult to value and are not adequately incorporated into current estimates of aggregate climate damages, such as the social cost of carbon. Also critical is understanding the transition and adjustment costs associated with a continuously changing climate. Too many studies estimate equilibrium damages or assume costless adjustment. But infrastructure is long-lived, and natural hazards are already under-priced in many property markets. In this context, climate change risks creating stranded assets, price bubbles and unsustainable liabilities for local or even national governments, all of which could add substantially to climate change cost estimates.
    Credit: Peter Cade/Stone/Getty More

  • in

    Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions

    1.Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A. & Quéguiner, B. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Glob. Biogeochem. Cycles 9, 359–372 (1995).
    Google Scholar 
    2.Smetacek, V. et al. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom. Nature 487, 313–319 (2012).
    Google Scholar 
    3.Hutchins, D. A., DiTullio, G. R., Zhang, Y. & Bruland, K. W. An iron limitation mosaic in the California upwelling regime. Limnol. Oceanogr. 43, 1037–1054 (1998).
    Google Scholar 
    4.Bruland, K. W., Rue, E. L. & Smith, G. J. Iron and macronutrients in California coastal upwelling regimes: implications for diatom blooms. Limnol. Oceanogr. 46, 1661–1674 (2001).
    Google Scholar 
    5.Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617 (2007).
    Google Scholar 
    6.Brzezinski, M. A. et al. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. J. Geophys. Res. Oceans 120, 4654–4669 (2015).
    Google Scholar 
    7.Arteaga, L. A., Pahlow, M., Bushinsky, S. M. & Sarmiento, J. L. Nutrient controls on export production in the Southern Ocean. Glob. Biogeochem. Cycles 33, 942–956 (2019).
    Google Scholar 
    8.Stukel, M. R. & Barbeau, K. A. Investigating the nutrient landscape in a coastal upwelling region and its relationship to the biological carbon pump. Geophys. Res. Lett. 47, e2020GL087351 (2020).
    Google Scholar 
    9.Hutchins, D. A. & Bruland, K. W. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature 393, 561–564 (1998).
    Google Scholar 
    10.Takeda, S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature 393, 774–777 (1998).
    Google Scholar 
    11.Pichevin, L. E., Ganeshram, R. S., Geibert, W., Thunell, R. & Hinton, R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat. Geosci. 7, 541–546 (2014).
    Google Scholar 
    12.Brzezinski, M. A. et al. A switch from Si(OH)4 to NO3− depletion in the glacial Southern Ocean. Geophys. Res. Lett. 29, 1564 (2002).13.Matsumoto, K., Sarmiento, J. L. & Brzezinski, M. A. Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Glob. Biogeochem. Cycles 16, 1031 (2002).
    Google Scholar 
    14.Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).
    Google Scholar 
    15.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).
    Google Scholar 
    16.Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).
    Google Scholar 
    17.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience 49, 781–788 (1999).
    Google Scholar 
    18.Kranzler, C. F. et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat. Microbiol. 4, 1790–1797 (2019).19.Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
    Google Scholar 
    20.Yamada, Y., Tomaru, Y., Fukuda, H. & Nagata, T. Aggregate formation during the viral lysis of a marine diatom. Front. Mar. Sci. 5, 167 (2018).
    Google Scholar 
    21.Pelusi, A. et al. Virus-induced spore formation as a defense mechanism in marine diatoms. New Phytol. 229, 2251–2259 (2020).
    Google Scholar 
    22.Johnson, K. S., Chavez, F. P. & Friederich, G. E. Continental-shelf sediment as a primary source of iron for coastal phytoplankton. Nature 398, 697–700 (1999).
    Google Scholar 
    23.Harrison, P. J. Station Papa time series: insights into ecosystem dynamics. J. Oceanogr. 58, 259–264 (2002).
    Google Scholar 
    24.Marchetti, A. et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J. Phycol. 53, 820–832 (2017).
    Google Scholar 
    25.Cohen, N. R. et al. Diatom transcriptional and physiological responses to changes in iron bioavailability across ocean provinces. Front. Mar. Sci. 4, 360 (2017).
    Google Scholar 
    26.Lampe, R. H. et al. Different iron storage strategies among bloom-forming diatoms. Proc. Natl Acad. Sci. USA 115, E12275–E12284 (2018).
    Google Scholar 
    27.King, A. L. & Barbeau, K. Evidence for phytoplankton iron limitation in the southern California Current System. Mar. Ecol. Prog. Ser. 342, 91–103 (2007).
    Google Scholar 
    28.Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405–2432 (1999).
    Google Scholar 
    29.Till, C. P. et al. The iron limitation mosaic in the California Current System: factors governing Fe availability in the shelf/near-shelf region. Limnol. Oceanogr. 64, 109–123 (2019).
    Google Scholar 
    30.Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).
    Google Scholar 
    31.Richaud, C. & Zabulon, G. The heme oxygenase gene (pbsA) in the red alga Rhodella violacea is discontinuous and transcriptionally activated during iron limitation. Proc. Natl Acad. Sci. USA 94, 11736–11741 (1997).
    Google Scholar 
    32.Allen, A. E. et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc. Natl Acad. Sci. USA 105, 10438–10443 (2008).
    Google Scholar 
    33.Thamatrakoln, K., Korenovska, O., Niheu, A. K. & Bidle, K. D. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ. Microbiol. 14, 67–81 (2012).
    Google Scholar 
    34.Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).
    Google Scholar 
    35.De La Rocha, C. L., Hutchins, D. A., Brzezinski, M. A. & Zhang, Y. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Mar. Ecol. Prog. Ser. 195, 71–79 (2000).
    Google Scholar 
    36.Leynaert, A. et al. Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol. Oceanogr. 49, 1134–1143 (2004).
    Google Scholar 
    37.van Creveld, S. G., Rosenwasser, S., Levin, Y. & Vardi, A. Chronic iron limitation confers transient resistance to oxidative stress in marine diatoms. Plant Physiol. 172, 968–979 (2016).
    Google Scholar 
    38.Slagter, H. A., Gerringa, L. J. A. & Brussaard, C. P. D. Phytoplankton virus production negatively affected by iron limitation. Front. Mar. Sci. 3, 156 (2016).
    Google Scholar 
    39.Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).
    Google Scholar 
    40.Weinbauer, M. G., Arrieta, J. M., Griebler, C. & Herndlb, G. J. Enhanced viral production and infection of bacterioplankton during an iron-induced phytoplankton bloom in the Southern Ocean. Limnol. Oceanogr. 54, 774–784 (2009).
    Google Scholar 
    41.Torres, M. A., Jones, J. D. G. & Dangl, J. L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373–378 (2006).
    Google Scholar 
    42.Sheyn, U., Rosenwasser, S., Ben-Dor, S., Porat, Z. & Vardi, A. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean. ISME J. 10, 1742–1754 (2016).
    Google Scholar 
    43.Hyodo, K., Hashimoto, K., Kuchitsu, K., Suzuki, N. & Okuno, T. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus. Proc. Natl Acad. Sci. USA 114, E1282–E1290 (2017).
    Google Scholar 
    44.Espinoza, J. A., Gonzalez, P. A. & Kalergis, A. M. Modulation of antiviral immunity by heme oxygenase-1. Am. J. Pathol. 187, 487–493 (2017).
    Google Scholar 
    45.Durkin, C. A. et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol. Oceanogr. 57, 1619–1633 (2012).
    Google Scholar 
    46.Assmy, P. et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc. Natl Acad. Sci. USA 110, 20633–20638 (2013).
    Google Scholar 
    47.Kimura, K. & Tomaru, Y. Effects of temperature and salinity on diatom cell lysis by DNA and RNA viruses. Aquat. Microb. Ecol. 79, 79–83 (2017).
    Google Scholar 
    48.Thamatrakoln, K. et al. Light regulation of coccolithophore host–virus interactions. New Phytol. 221, 1289–1302 (2019).
    Google Scholar 
    49.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).
    Google Scholar 
    50.Brzezinski, M. A. et al. Co-limitation of diatoms by iron and silicic acid in the equatorial Pacific. Deep Sea Res. II 58, 493–511 (2011).
    Google Scholar 
    51.Boyer, T. P. et al. World Ocean Database 2013 (NOAA Atlas, 2013).52.Krause, J. W. et al. The interaction of physical and biological factors drives phytoplankton spatial distribution in the northern California Current. Limnol. Oceanogr. 65, 1974–1989 (2020).
    Google Scholar 
    53.Krause, J. W., Nelson, D. M. & Brzezinski, M. A. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep Sea Res. II 58, 434–448 (2011).
    Google Scholar 
    54.Brzezinski, M. A. & Phillips, D. R. Evaluation of 32Si as a tracer for measuring silica production rates in marine waters. Limnol. Oceanogr. 42, 856–865 (1997).
    Google Scholar 
    55.Nelson, D. M., Brzezinski, M. A., Sigmon, D. E. & Franck, V. M. A seasonal progression of Si limitation in the Pacific sector of the Southern Ocean. Deep Sea Res. II 48, 3973–3995 (2001).
    Google Scholar 
    56.Krause, J. W., Brzezinski, M. A., Villareal, T. A. & Wilson, C. Increased kinetic efficiency for silicic acid uptake as a driver of summer diatom blooms in the North Pacific subtropical gyre. Limnol. Oceanogr. 57, 1084–1098 (2012).
    Google Scholar 
    57.Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25, 2872–2877 (2009).
    Google Scholar 
    58.Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 7, 909–912 (2010).
    Google Scholar 
    59.Gremme, G., Steinbiss, S. & Kurtz, S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE/ACM Trans. Comput. Biol. Bioinform. 10, 645–656 (2013).
    Google Scholar 
    60.Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).
    Google Scholar 
    61.Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
    Google Scholar 
    62.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
    Google Scholar 
    63.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).64.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
    Google Scholar 
    65.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).
    Google Scholar 
    66.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).67.Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 131, 281–285 (2012).
    Google Scholar 
    68.Alexander, H., Jenkins, B. D., Rynearson, T. A. & Dyhrman, S. T. Metatranscriptome analyses indicate resource partitioning between diatoms in the field. Proc. Natl Acad. Sci. USA 112, E2182–E2190 (2015).
    Google Scholar 
    69.Lampe, R. H. et al. Divergent gene expression among phytoplankton taxa in response to upwelling. Environ. Microbiol. 20, 3069–3082 (2018).
    Google Scholar 
    70.Warnes, G. R. et al. gplots: Various R Programming Tools for Plotting Data https://cran.r-project.org/web/packages/gplots/index.html (2019).71.Oksanen, J. et al. vegan: Community Ecology Package https://cran.r-project.org/web/packages/vegan/index.html (2019).72.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Google Scholar 
    73.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).
    Google Scholar 
    74.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
    Google Scholar 
    75.Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).
    Google Scholar 
    76.Shirai, Y. et al. Isolation and characterization of a single-stranded RNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus Meunier. Appl. Environ. Microbiol. 74, 4022–4027 (2008).
    Google Scholar 
    77.Chen, L.-M., Edelstein, T. & McLachlan, J. Bonnemaisonia hamifera Hariot in nature and in culture. J. Phycol. 5, 211–220 (1969).
    Google Scholar 
    78.Harrison, P. J., Waters, R. E. & Taylor, F. J. R. A broad spectrum artificial sea water medium for coastal and open ocean phytoplankton. J. Phycol. 16, 28–35 (1980).
    Google Scholar 
    79.Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).
    Google Scholar 
    80.Sunda, W. G., Price, N. M. & Morel, F. M. M. Trace metal ion buffers and their use in culture studies. Algal Cult. Tech. 4, 35–63 (2005).
    Google Scholar 
    81.Tomaru, Y., Shirai, Y., Toyoda, K. & Nagasaki, K. Isolation and characterization of a single-stranded DNA virus infecting the marine planktonic diatom Chaetoceros tenuissimus. Aquat. Microb. Ecol. 64, 175–184 (2011).
    Google Scholar 
    82.Parsons, T. R. A Manual of Chemical & Biological Methods for Seawater Analysis (Elsevier, 2013).83.Krause, J. W., Lomas, M. W. & Nelson, D. M. Biogenic silica at the Bermuda Atlantic time-series study site in the Sargasso Sea: temporal changes and their inferred controls based on a 15-year record. Glob. Biogeochem. Cycles 23, GB3004 (2009).84.Gorbunov, M. Y. & Falkowski, P. G. Fluorescence induction and relaxation (FIRe) technique and instrumentation for monitoring photosynthetic processes and primary production in aquatic ecosystems. In Photosynthesis: Fundamental Aspects to Global Perspectives—Proc. 13th International Congress of Photosynthesis (eds Van der Est, A. & Bruce, D.) 1029–1031 (Allen and Unwin, 2004).85.Suttle, C. A. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. F. et al.) 121–134 (CRC Press, 1993).86.Klee, A. J. A computer program for the determination of most probable number and its confidence limits. J. Microbiol. Methods 18, 91–98 (1993).
    Google Scholar  More

  • in

    Pollinator interaction flexibility across scales affects patch colonization and occupancy

    1.Kaiser-Bunbury, C. N. et al. Ecosystem restoration strengthens pollination network resilience and function. Nature 542, 223–227 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. B 271, 2605–2611 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Ponisio, L. C., Gaiarsa, M. P. & Kremen, C. Opportunistic attachment assembles plant–pollinator networks. Ecol. Lett. 20, 1261–1272 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spiesman, B. J. & Gratton, C. Flexible foraging shapes the topology of plant–pollinator interaction networks. Ecology 97, 1431–1441 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.CaraDonna, P. J. et al. Interaction rewiring and the rapid turnover of plant–pollinator networks. Ecol. Lett. 20, 385–394 (2017).8.Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Yeakel, J. D. et al. Collapse of an ecological network in Ancient Egypt. Proc. Natl Acad. Sci. USA 111, 14472–14477 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Burkle, L. A. & Alarcón, R. The future of plant–pollinator diversity: understanding interaction networks across time, space, and global change. Am. J. Bot. 98, 528–538 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol. Syst. 48, 24–48 (2017).13.Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).14.MacLeod, M., Genung, M. A., Ascher, J. S. & Winfree, R. Measuring partner choice in plant–pollinator networks: using null models to separate rewiring and fidelity from chance. Ecology 97, 2925–2931 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Fortuna, M. A., Nagavci, A., Barbour, M. A. & Bascompte, J. Partner fidelity and asymmetric specialization in ecological networks. Am. Nat. 196, 382–389 (2020).16.Bascompte, J. & Stouffer, D. B. The assembly and disassembly of ecological networks. Philos. Trans. R. Soc. B 364, 1781 (2009).Article 

    Google Scholar 
    17.Cirtwill, A. R., Roslin, T., Rasmussen, C., Olesen, J. M. & Stouffer, D. B. Between-year changes in community composition shape species’ roles in an Arctic plant–pollinator network. Oikos 127, 1163–1176 (2018).18.Mora, B. B., Shin, E., CaraDonna, P. J. & Stouffer, D. B. Untangling the seasonal dynamics of plant–pollinator communities. Nat. Commun. 11, 4086 (2020).19.Saavedra, S., Stouffer, D. B., Uzzi, B. & Bascompte, J. Strong contributors to network persistence are the most vulnerable to extinction. Nature 478, 233–235 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Sebastián-González, E. Drivers of species role in avian seed-dispersal mutualistic networks. J. Anim. Ecol. 86, 878–887 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.CaraDonna, P. J. et al. Seeing through the static: the temporal dimension of plant–animal mutualistic interactions. Ecol. Lett. 24, 149–161 (2020).23.Vázquez, D. P., Chacoff, N. P. & Cagnolo, L. Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90, 2039–2046 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Vázquez, D. P., Blüthgen, N., Cagnolo, L. & Chacoff, N. P. Uniting pattern and process in plant–animal mutualistic networks: a review. Ann. Bot. 103, 1445–1457 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Olesen, J. M., Bascompte, J., Dupont, Y. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Brosi, B. J. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Valdovinos, F. S. et al. Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol. Lett. 19, 1277–1286 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Rafferty, N. E., CaraDonna, P. J. & Bronstein, J. L. Phenological shifts and the fate of mutualisms. Oikos 124, 14–21 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Species abundance, not diet breadth, drives the persistence of the most linked pollinators as plant–pollinator networks disassemble. Am. Nat. 183, 600–611 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).Article 

    Google Scholar 
    31.Grab, H. et al. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J. Appl. Ecol. 56, 2144–2154 (2019).Article 

    Google Scholar 
    32.Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: diet expansion at high density. J. Ecol. 96, 1002–1010 (2008).Article 

    Google Scholar 
    33.Stouffer, D. B., Sales-Pardo, M., Sirer, M. I. & Bascompte, J. Evolutionary conservation of species’ roles in food webs. Science 335, 1489–1492 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Simmons, B. I. et al. Motifs in bipartite ecological networks: uncovering indirect interactions. Oikos 128, 154–170 (2019).Article 

    Google Scholar 
    35.Ponisio, L. C. Pyrodiversity promotes interaction complementarity and population resistance. Ecol. Evol. 10, 4431–4447 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Grab, H., Blitzer, E. J., Danforth, B., Loeb, G. & Poveda, K. Temporally dependent pollinator competition and facilitation with mass flowering crops affects yield in co-blooming crops. Sci. Rep. 7, 45296 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).Article 

    Google Scholar 
    38.Mitchell, W. A. An optimal control theory of diet selection: the effects of resource depletion and exploitative competition. Oikos 58, 16–24 (1990).39.Robinson, B. W. & Wilson, D. S. Optimal foraging, specialization, and a solution to Liem’s paradox. Am. Nat. 151, 223–235 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Valdovinos, F. S., Moisset de Espanés, P., Flores, J. D. & Ramos-Jiliberto, R. Adaptive foraging allows the maintenance of biodiversity of pollination networks. Oikos 122, 907–917 (2013).Article 

    Google Scholar 
    41.Ponisio, L. C. et al. A network perspective for community assembly. Front. Ecol. Environ. 7, 103 (2019).Article 

    Google Scholar 
    42.Benadi, G. & Gegear, R. J. Adaptive foraging of pollinators can promote pollination of a rare plant species. Am. Nat. 192, E81–E92 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Vaudo, A. D., Patch, H. M., Mortensen, D. A., Tooker, J. F. & Grozinger, C. M. Macronutrient ratios in pollen shape bumble bee (Bombus impatiens) foraging strategies and floral preferences. Proc. Natl Acad. Sci. USA 113, E4035–E4042 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).Article 

    Google Scholar 
    45.Fort, H., Vázquez, D. P. & Lan, B. L. Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma. Ecol. Lett. 19, 4–11 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Bascompte, J. & Ferrera, A. in Theoretical Ecology: Concepts and Applications (eds McCann, A. S. & Gellner, G.) 93–115 (Oxford Univ. Press, 2020).49.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Naeem, S. & Li, S. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    52.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kremen, C. & M’Gonigle, L. K. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J. Appl. Ecol. 52, 602–610 (2015).Article 

    Google Scholar 
    54.Kremen, C., Williams, N. & Thorp, R. Crop pollination from native bees at risk from agricultural intensification. Proc. Natl Acad. Sci. USA 99, 16812–16816 (2002).55.Morandin, L., Long, R. & Kremen, C. Pest control and pollination cost–benefit analysis of hedgerow restoration in a simplified agricultural landscape. J. Econ. Entomol. 109, 1020–1027 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Brittain, C., Williams, N., Kremen, C. & Klein, A. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B 280, 1471–2954 (2013).Article 

    Google Scholar 
    57.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article 

    Google Scholar 
    58.Oksanen, J. et al. vegan: Community Ecology Package (2019); https://CRAN.R-project.org/package=vegan59.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Mora, B. B., Cirtwill, A. R. & Stouffer, D. B. pymfinder: a tool for the motif analysis of binary and quantitative complex networks (2018); https://doi.org/10.1101/36470362.Simmons, B. I. et al. bmotif: a package for motif analyses of bipartite networks. Methods Ecol. Evol. 10, 695–701 (2019).Article 

    Google Scholar 
    63.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    64.Baker, N. J., Kaartinen, R., Roslin, T. & Stouffer, D. B. Species’ roles in food webs show fidelity across a highly variable oak forest. Ecography 38, 130–139 (2015).Article 

    Google Scholar 
    65.Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Dormann, C., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8 (2008).
    Google Scholar 
    67.Dorazio, R. M., Kery, M., Royle, J. A. & Plattner, M. Models for inference in dynamic metacommunity systems. Ecology 91, 2466–2475 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Ponisio, L. C., de Valpine, P., M’Gonigle, L. K. & Kremen, C. Proximity of restored hedgerows interacts with local floral diversity and species’ traits to shape long-term pollinator metacommunity dynamics. Ecol. Lett. 22, 1048–1060 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Royle, J. A. & Kéry, M. A Bayesian state–space formulation of dynamic occupancy models. Ecology 88, 1813–1823 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Ponisio, L. C., de Valpine, P., Michaud, N. & Turek, D. One size does not fit all: customizing MCMC methods for hierarchical models using NIMBLE. Ecol. Evol. 10, 2385–2416 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.de Valpine, P. et al. Programming with models: writing statistical algorithms for general model structures with NIMBLE. J. Comput. Graph. Stat. 26, 403–413 (2017).Article 

    Google Scholar 
    72.Shipley, B. Cause and Correlation in Biology: A User’s Guide to Path Analysis, Structural Equations and Causal Inference (Cambridge Univ. Press, 2004).73.Kremen, C., M’Gonigle, L. K. & Ponisio, L. C. Pollinator community assembly tracks changes in floral resources as restored hedgerows mature in agricultural landscapes. Front. Ecol. Evol. 6, 170 (2018).Article 

    Google Scholar 
    74.Ponisio, L. C., M’gonigle, L. K. & Kremen, C. On-farm habitat restoration counters biotic homogenization in intensively managed agriculture. Glob. Change Biol. 22, 704–715 (2016).Article 

    Google Scholar 
    75.Lefcheck, J. S. PiecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    76.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/ More

  • in

    Amazon tree dominance across forest strata

    Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USAFrederick C. Draper & Christopher BaralotoSchool of Geography, University of Leeds, Leeds, UKFrederick C. Draper, Oliver L. Phillips, Timothy R. Baker, Roel J. W. Brienen & David R. GalbraithCenter for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USAFrederick C. Draper, Gregory P. Asner, Jason Vleminckx & Oscar J. Valverde BarrantesInstituto Nacional de Pesquisas da Amazônia (INPA), Manaus, BrazilFlavia R. C. Costa, Juliana Schietti, Fernanda Coelho de Souza, William E. Magnusson, Karina Melgaço, André B. Junqueira, Ana C. Andrade, José Luís Camargo, Flávia D. Santana, Ricardo O. Perdiz, Jessica Soares Cravo, Alberto Vicentini, Henrique Nascimento, Niro Higuchi & Thaiane Rodrigues de SousaEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAGabriel Arellano & Paul E. BerryDepartamento de Ciencias Forestales, Universidad Nacional de Colombia, Medellín, ColombiaAlvaro Duque & Mauricio Sánchez SáenzDepartamento de Biología, Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaCentro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, SpainManuel J. MacíaNaturalis Biodiversity Center, Leiden, The NetherlandsHans ter Steege & Tinde Van AndelSystems Ecology, Vrije Universiteit, Amsterdam, The NetherlandsHans ter SteegeLancaster Environment Centre, Lancaster University, Lancaster, UKErika BerenguerEnvironmental Change Institute, University of Oxford, Oxford, UKErika Berenguer & Yadvinder MalhiFaculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, NorwayJacob B. SocolarSchool of Geosciences, University of Edinburgh, Edinburgh, UKKyle G. DexterMissouri Botanical Garden, St Louis, MO, USAPeter M. Jørgensen & J. Sebastian TelloBrazilian Agricultural Research Corporation (Embrapa), Roraima, BrazilCarolina V. CastilhoUniversidad Nacional de San Antonio Abad del Cusco, Cusco, PeruAbel Monteagudo-Mendoza, Victor Chama Moscoso, Darcy Galiano Cabrera & Percy Núñez VargasDepartment of Intergrative Biology, University of California Berkeley, Berkeley, CA, USAPaul V. A. Fine & Italo MesonesDepartment of Biology, University of Turku, Turku, FinlandKalle RuokolainenInstituto de Investigaciones de la Amazonía Peruana, Iquitos, PeruEuridice N. Honorio Coronado, Nállarett Dávila, Marcos A. Rios Paredes, Jhon del Aguila Pasquel, Gerardo Flores Llampazo, Ricardo Zarate Gomez, José Reyna Huaymacari, Julio M. Grandez Rios & Cesar J. Cordova OrocheUNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Mesa de Cavacas, VenezuelaGerardo AymardCompensation International Progress S. A.—Ciprogress Greenlife, Bogotá, ColombiaGerardo AymardAMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceJulien Engel, Claire Fortunel, Jean-François Molino, Daniel Sabatier & Maxime Réjou-MéchainEnvironmental and Rural Science, University of New England, Armidale, New South Wales, AustraliaC. E. Timothy PaineINRA, UMR EcoFoG, AgroParisTech, CNRS, CIRAD, Université des Antilles, Université de Guyane, Kourou, French GuianaJean-Yves Goret & Elodie AllieCIRAD, UMR EcoFoG, Kourou, French GuianaAurelie Dourdain & Pascal PetronelliBIOMAS, Universidad de Las Américas, Quito, EcuadorJuan E. Guevara AndinoInstituto de Ecología, Herbario Nacional de Bolivia, La Paz, BoliviaLeslie Cayola Pérez, Narel Y. Paniagua Zambrana & Alfredo F. FuentesDepartamento de Biologia, Universidade Federal de Rondônia, Porto Velho, BrazilÂngelo G. ManzattoLaboratoire Evolution et Diversité Biologique (EDB) CNRS/UPS, Toulouse, FranceJerôme ChaveSchool of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UKSophie FausetDepartment of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USARoosevelt Garcia VillacortaDepartment of Geography, University of Exeter, Exeter, UKTed R. FeldpauschFacultad de Ciencias Biológicas, Universidad Nacional de la Amazonía Peruana, Iquito, PeruElvis Valderamma Sandoval, Gilberto E. Navarro Aguilar, Jim Vega Arenas & Manuel FloresEstación Biológica del Jardín Botánico de Missouri, Oxapampa, PeruRodolfo Vasquez Martinez, Victor Chama Moscoso & Luis Valenzuela GamarraInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré B. JunqueiraSchool of Geography & Sustainable Development, University of St Andrews, St Andrews, UKKatherine H. RoucouxDepartment of Environment and Development, Federal University of Amapá, Macapa, BrazilJosé J. de Toledo & Renato R. HilárioCentre for Tropical Environmental and Sustainability Science (TESS) and College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, AustraliaWilliam F. Laurance & Susan G. LauranceDepartment of Environmental Science and Policy, George Mason University, Fairfax, VA, USAThomas E. LovejoyInventory and Monitoring Program, National Park Service, Fredericksburg, VA, USAJames A. ComiskeySmithsonian Institution, Washington DC, USAJames A. ComiskeyDepartment of Plant Sciences, University of Cambridge, Cambridge, UKMichelle KalamandeenLiving with Lakes Centre, Laurentian University, Greater Sudbury, Ontario, CanadaMichelle KalamandeenDRGB, Instituto Nacional de Innovación Agraria (INIA), Lima, PeruCarlos A. Amasifuen GuerraHerbarium Amazonense (AMAZ), Universidad Nacional de la Amazonia Peruana, Loreto, PerúLuis A. Torres MontenegroDepartment of Ecology, Universidade de São Paulo, São Paulo, BrazilMarcelo P. PansonatoInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsJoost F. DuivenvoordenCentro de Estudos da Biodiversidade, Universidade Federal de Roraima, Boa Vista, BrazilSidney Araújo de Sousa & Marcos Salgado VitalMuseo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel Rene Moreno, Santa Cruz, BoliviaLuzmila Arroyo, Alejandro Araujo-Murakami & Germaine A. Parada GutierrezFaculdade de Ciências Agrárias, Biológicas e Sociais Aplicadas, Universidad do Estado de Mato Grosso, Nova Xavantina, BrazilBeatriz S. Marimon, Ben Hur Marimon Junior, Ricardo Keichi Umetsu & Nayane C. C. S. PrestesCentro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, BrazilFernanda Antunes CarvalhoDepartment of Ecology, Evolution and Behaviour, University of Minnesota, Minneapolis, MN, USAGabriel DamascoDepartment of Geography, University College London, London, UKMathias DisneyDepartamento de Ciencias Biológicas, Universidad de Los Andes (Colombia), Bogotá, ColombiaPablo R. Stevenson Diaz & Ana M. AldanaCentro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, BrazilSabina Cerruto Ribeiro, Richarlly da Costa Silva & Wenderson CastroNicholas School of the Environment, Duke University, Durham, NC, USAJohn W. TerborghIwokrama International Centre for Rainforest Conservation and Development, Georgetown, GuyanaRaquel S. ThomasSmithsonian’s National Zoo & Conservation Biology Institute, Washington DC, USAFrancisco DallmeierInstituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, ColombiaAdriana PrietoUniversidade Federal Rural da Amazônia—UFRA/CAPES, Belém, BrazilRafael P. SalomãoMuseu Paraense Emílio Goeldi, Belém, BrasilRafael P. Salomão, Ima C. Guimarães Vieira & Antonio S. LimaLaboratorio de Ecología de Bosques Tropicales y Primatología, Fundación Natura Colombia, Universidad de Los Andes, Bogotá, ColombiaLuisa F. CasasFacultad de Forestales, Universidad Nacional de la Amazonía Peruana, Iquito, PeruFredy Ramirez ArevaloInstitute of Research for Forestry Development, Universidad de los Andes, Merida, VenezuelaHirma Ramírez-Angulo, Emilio Vilanova Torre & Armando Torres-LezamaSchool of Environmental and Forest Sciences (SEFS), University of Washington, Seattle, WA, USAEmilio Vilanova TorreUniversidad Regional Amazónica Ikiam, Tena, EcuadorMaria C. PeñuelaAgteca-Amazonica, Santa Cruz, BoliviaTimothy J. KilleenUniversidad Autónoma del Beni, Riberalta, BoliviaGuido Pardo & Vincent VosInstituto Amazónico de Investigaciones (IMANI), Universidad Nacional de Colombia, Sede Amazonia, BrazilEliana Jimenez-RojasBroward County Parks and Recreation, Miami, FL, USAJohn PipolyBiological Sciences, Florida Atlantic University-Davie, Miami, FL, USAJohn PipolyMuseu Universitário, Universidade Federal do Acre, Rio Branco, BrazilMarcos SilveraFacultad de Ingeniería Ambiental, Universidad Estatal Amazónica, Puyo, EcuadorDavid NeillDepartment of Biology, Washington University in St Louis, St Louis, MO, USADilys M. VelaNational Institute for Space Research (INPE), São José dos Campos, BrazilLuiz E. O. C. AragãoGeoinformática & Sistemas (GeoIS), Quito, EcuadorRodrigo SierraSchool of Earth Sciences and Environmental Sustainability, Northern Arizona University, Flagstaff, AZ, USAOphelia WangDepartment of Geography and the Environment, University of Texas at Austin, Austin, TX, USAKenneth R. YoungInstituto de Ciência e Tecnologia, São Paulo State University (UNESP), São José dos Campos, BrazilKlécia G. MassiSchool of Anthropology and Conservation, University of Kent, Canterbury, UKMiguel N. AlexiadesUniversidade Federal do Amazonas, Manaus, BrazilFabrício BaccaroHerbario Alfredo Paredes (QAP), Universidad Central del Ecuador, Quito, EcuadorCarlos CéronSchool of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UKAdriane Esquivel MuelbertDepartment of Life Sciences, Imperial College London, London, UKJonathan L. LloydScience and Education, The Field Museum, Chicago, IL, USANigel C. A. PitmanUniversidad Tecnica del Norte, Herbario Nacional del Ecuador, Quito, EcuadorWalter PalaciosResearch Institute Alexander von Humboldt, Bogotá, ColombiaSandra PatiñoF.C.D. and C.B. conceived the study. F.C.D., G.P.A. and C.B. designed the study with input from F.R.C.C., G. Arellano, O.L.P. and H.t.S. F.C.D. and J.B.S. performed the analysis with input from C.B., G.P.A., G. Arellano, O.L.P., A. Duque, F.C.d.S. and K.D. F.C.D. wrote the manuscript with input from C.B., F.R.C.C., G. Arellano, O.L.P., A. Duque, M.J.M., G.P.A. and H.t.S. All other coauthors contributed data and had the opportunity to comment on the manuscript. More

  • in

    Methane mitigation is associated with reduced abundance of methanogenic and methanotrophic communities in paddy soils continuously sub-irrigated with treated wastewater

    Experimental design and crop establishmentA microcosm experiment was conducted at Yamagata University, Tsuruoka City, Japan, from May to October 2019, with six growth containers (36 cm in height, 30 cm in width, 60 cm in length) to simulate paddy fields of 0.18 m2 in area (see Supplementary Fig. S1). The experiment was laid out in a completely randomized design with three replications of two treatments: (1) rice cropping under CSI and (2) conventional rice cultivation fertilized with mineral fertilisers and irrigated with tap water (Control).Each container was filled with 32 kg of a paddy soil collected from an experimental field in the university farm and transplanted with four hills of 30-day-old seedlings (Oryza sativa L., cv. Bekoaoba) on 27th May 2019. The experiment was performed in accordance with relevant guidelines and regulations for research involving plants. The experimental soil was classified as loamy soil (air-dried, 20% moisture) with the following basic properties: pH (H2O) of 5.78, electrical conductivity (EC) of 0.09 dS m−1, SOM of 4.9%, and a total N, P, and K of 1.46, 0.88, and 3.17 g kg−1, respectively. The TWW used in the CSI system was collected from a local WWTP and monitored weekly for its basic properties (Table 2) following our previous studies6,7. In brief, pH, EC, and DO of water samples were measured on-site using pH/conductivity and DO portable meters (D-54 and OM-51, HORIBA, Ltd., Kyoto, Japan), whereas TOC and total N were analyzed using a TOC analyzer (TOC-VCSV, Shimadzu Corp., Kyoto, Japan) attached to a total N measuring unit (TNM-1, Shimadzu Corp., Kyoto, Japan). After a standard acid-digestion of water samples6, the concentration of P was measured using a portable colorimeter (DR/890, HATCH, USA), and the concentration of K was measured using an inductively coupled plasma mass spectrometry (ICP-MS ELAN DRCII, PerkinElmer Japan Co., Ltd.). The tap water used in this study was also tested on a regular basis and found to be stable throughout the crop season, with the following properties: pH of 7.8, EC of 0.095 dS m−1, DO, TOC, N, and P of 6.85, 0.49, 0.06, and 0.07 mg L−1, respectively, with K being below the ICP-MS detection limit ( More

  • in

    The photosynthetic pathways of plant species surveyed in Australia’s national terrestrial monitoring network

    1.Collatz, G. J., Berry, J. A. & Clark, J. S. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114, 441–454 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.von Fischer, J. C., Tieszen, L. L. & Schimel, D. S. Climate controls on C3 vs. C4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Glob. Chang. Biol. 14, 1141–1155 (2008).ADS 
    Article 

    Google Scholar 
    3.Sage, R. F., Wedin, D. A. & Li, M. The biogeography of C4 photosynthesis: patterns and controlling factors. in C4 plant biology (eds Rowan F. Sage & Russel K. Monson) 313–373 (Academic Press, 1999).4.Kellogg, E. A. Evolutionary history of the grasses. Plant Physiol. 125, 1198–1205 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Sage, R. F. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and hall of fame. J Exp. Bot. 68, 11–28 (2016).
    Google Scholar 
    6.Sage, R. F., Sage, T. L. & Kocacinar, F. Photorespiration and the evolution of C4 photosynthesis. Ann. Rev. Plant. Biol. 63, 19–47 (2012).CAS 
    Article 

    Google Scholar 
    7.Sayed, O. H. Crassulacean Acid Metabolism 1975–2000, a Check List. Photosynthetica 39, 339–352 (2001).CAS 
    Article 

    Google Scholar 
    8.Andrews, J. T. & Lorimer, G. H. Rubisco: structure, mechanisms, and prospects for improvement. in The Biochemistry of Plants: A Comprehensive Treatise Vol. 10 (eds MD Haleh & NK Boardman) 132–207 (Academic Press, 1987).9.Ogren, W. L. Photorespiration: pathways, regulation, and modification. Annu. Rev. Plant. Physiol. 35, 415–442 (1984).CAS 
    Article 

    Google Scholar 
    10.Walker, B. J., VanLoocke, A., Bernacchi, C. J. & Ort, D. R. The costs of photorespiration to food production now and in the future. Annu. Rev. Plant. Biol. 67, 107–129 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Dusenge, M. E., Duarte, A. G. & Way, D. A. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 221, 32–49 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Winter, K. Ecophysiology of constitutive and facultative CAM photosynthesis. J Exp. Bot. 70, 6495–6508 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Edwards, E. J. & Still, C. J. Climate, phylogeny and the ecological distribution of C4 grasses. Ecol. Lett. 11, 266–276 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hasegawa, S. et al. Elevated CO2 concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus woodland. J Ecol. 106, 1483–1494 (2018).CAS 
    Article 

    Google Scholar 
    15.Wittmer, M. H. O. M., Auerswald, K., Bai, Y., Schaufele, R. & Schnyder, H. Changes in the abundance of C3/C4 species of Inner Mongolia grassland: evidence from isotopic composition of soil and vegetation. Glob. Chang. Biol. 16, 605–616 (2010).ADS 
    Article 

    Google Scholar 
    16.Winslow, J. C., Hunt, E. R. Jr & Piper, S. C. The influence of seasonal water availability on global C3 versus C4 grassland biomass and its implications for climate change research. Ecol. Model. 163, 153–173 (2003).CAS 
    Article 

    Google Scholar 
    17.Haveles, A. W., Fox, D. L. & Fox-Dobbs, K. Carbon isoscapes of rodent diets in the Great Plains USA deviate from regional gradients in C4 grass abundance due to a preference for C3 plant resources. Palaeogeogr. Palaeoclimatol. Palaeoecol. 527, 53–66 (2019).Article 

    Google Scholar 
    18.Haddad, N. M. et al. Plant species loss decreases arthropod diversity and shifts trophic structure. Ecol. Lett. 12, 1029–1039 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Warne, R. W., Pershall, A. D. & Wolf, B. O. Linking precipitation and C3–C4 plant production to resource dynamics in higher‐trophic‐level consumers. Ecology 91, 1628–1638 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Griffith, D. M. et al. Biogeographically distinct controls on C3 and C4 grass distributions: merging community and physiological ecology. Glob. Ecol. Biogeogr. 24, 304–313 (2015).Article 

    Google Scholar 
    21.Still, C. J., Cotton, J. M. & Griffith, D. M. Assessing earth system model predictions of C4 grass cover in North America: From the glacial era to the end of this century. Glob. Ecol. Biogeogr. 28, 145–157 (2019).Article 

    Google Scholar 
    22.Griffith, D. M., Cotton, J. M., Powell, R. L., Sheldon, N. D. & Still, C. J. Multi-century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution. J Biogeogr. 44, 2564–2574 (2017).Article 

    Google Scholar 
    23.Hattersley, P. The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia 57, 113–128 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Sage, R. F., Sage, T. L., Pearcy, R. W. & Borsch, T. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. Am J Bot 94, 1992–2003 (2007).PubMed 
    Article 

    Google Scholar 
    26.Murphy, B. P. & Bowman, D. M. Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Glob. Ecol. Biogeogr. 16, 160–169 (2007).Article 

    Google Scholar 
    27.White, A. et al. AUSPLOTS rangelands survey protocols manual. (The University of Adelaide Press, 2012).28.Sparrow, B. D. et al. A vegetation and soil survey method for surveillance monitoring of rangeland environments. Front. Ecol. Evol. 8 (2020).29.Orians, G. H. & Milewski, A. V. Ecology of Australia: the effects of nutrient‐poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).PubMed 
    Article 

    Google Scholar 
    30.Sparrow, B. et al. Our capacity to tell an Australian ecological story. in Biodiversity and Environmental Change: Monitoring, Challenges and Direction 51–84 (CSIRO Publishing Collingwood, Victoria, 2014).31.Thackway, R. & Cresswell, I. An Interim Biogeographic Regionalisation for Australia: a framework for establishing the national system of reserves, Version 4.0. (Australian Nature Conservation Agency, Canberra, 1995).32.Tokmakoff, A., Sparrow, B., Turner, D. & Lowe, A. AusPlots Rangelands field data collection and publication: Infrastructure for ecological monitoring. Future Gener. Comp. Sy. 56, 537–549 (2016).Article 

    Google Scholar 
    33.R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).34.Guerin, G. et al. ausplotsR: TERN AusPlots analysis package. https://cran.r-project.org/web/packages/ausplotsR/index.html (2020).35.Munroe, S. et al. ausplotsR: An R package for rapid extraction and analysis of vegetation and soil data collected by Australia’s Terrestrial Ecosystem Research Network. Preprint at https://ecoevorxiv.org/25phx/ (2020).36.Osborne, C. P. et al. A global database of C4 photosynthesis in grasses. New Phytol. 204, 441–446 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Watson, L., & Dallwitz, M. J. The Families of Flowering Plants: Descriptions, Illustrations, Identification, and Information Retrieval. http://www1.biologie.uni-hamburg.de/b-online/delta/angio/index.htm (1992).38.Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. PNAS 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.O’Leary, M. H. Carbon isotopes in photosynthesis. Bioscience 38, 328–336 (1988).Article 

    Google Scholar 
    40.Winter, K., Holtum, J. A. M. & Smith, J. A. C. Crassulacean acid metabolism: a continuous or discrete trait? New Phytol. 208, 73–78 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Winter, K. & Holtum, J. A. How closely do the δ13C values of crassulacean acid metabolism plants reflect the proportion of CO2 fixed during day and night? Plant Physiol. 129, 1843–1851 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Cernusak, L. A. et al. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 200, 950–965 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Winter, K. & Holtum, J. A. M. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis. J Exp. Bot. 65, 3425–3441 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bloom, A. J. & Troughton, J. H. High productivity and photosynthetic flexibility in a CAM plant. Oecologia 38, 35–43 (1979).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Hancock, L. P., Holtum, J. A. M. & Edwards, E. J. The evolution of CAM photosynthesis in Australian Calandrinia reveals lability in C3+ CAM phenotypes and a possible constraint to the evolution of strong CAM. Integr. Comp. Biol. 59, 517–534 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Guralnick, L. J., Cline, A., Smith, M. & Sage, R. F. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae. J Exp. Bot. 59, 1735–1742 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Munroe, S. et al. The Photosynthetic Pathways of Plant Species surveyed in TERN Ecosystem Surveillance Plots. Terrestrial Ecosystem Research Network (TERN) https://doi.org/10.25901/k61f-yz90 (2020).48.Sage, R. F. The evolution of C4 photosynthesis. New Phytol. 161, 341–370 (2004).CAS 
    Article 

    Google Scholar 
    49.Keeley, J. E. & Rundel, P. W. Evolution of CAM and C4 carbon-concentrating mechanisms. Int. J Plant Sci. 164, S55–S77 (2003).CAS 
    Article 

    Google Scholar 
    50.Wang, R. & Ma, L. Climate-driven C4 plant distributions in China: divergence in C4 taxa. Sci. Rep. 6, 27977 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Stowe, L. G. & Teeri, J. A. The geographic distribution of C4 species of the Dicotyledonae in relation to climate. Am. Nat. 112, 609–623 (1978).Article 

    Google Scholar 
    52.Pyankov, V. I., Gunin, P. D., Tsoog, S. & Black, C. C. C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. 123, 15-31 (2000).53.Guralnick, L. J., Edwards, G., Ku, M. S., Hockema, B. & Franceschi, V. Photosynthetic and anatomical characteristics in the C4–crassulacean acid metabolism-cycling plant Portulaca grandiflora. Funct. Plant Biol. 29, 763–773 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Winter, K., Sage, R. F., Edwards, E. J., Virgo, A. & Holtum, J. A. M. Facultative crassulacean acid metabolism in a C3–C4 intermediate. J Exp. Bot. 70, 6571–6579 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Coplen, T. B. et al. New guidelines for δ13C measurements. Anal. Chem. 78, 2439–2441 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Skrzypek, G. Normalization procedures and reference material selection in stable HCNOS isotope analyses: an overview. Anal. Bioanal. Chem. 405, 2815–2823 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Ke, L., Lin, Z. & Guoxing, Z. Study of normalization method of isotopic compositions to isotope reference scales. J Chem. Pharmaceut. Res 6, 1 (2014).
    Google Scholar 
    58.Harwood, T. et al. 9s climatology for continental Australia 1976–2005: Summary variables with elevation and radiative adjustment, version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/5afa9f7d1a552 (2016).59.Viscarra Rossel, R. et al. Soil and Landscape Grid National Soil Attribute Maps – pH – CaCl2 (3” resolution), version 3. Commonwealth Scientific and Industrial Research Organisation (CSIRO) https://doi.org/10.4225/08/546F17EC6AB6E (2014).60.Besnard, G. et al. Phylogenomics of C4 photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence. Mol. Biol. Evol. 26, 1909–1919 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Bohley, K. et al. Phylogeny of Sesuvioideae (Aizoaceae)–Biogeography, leaf anatomy and the evolution of C4 photosynthesis. Perspect. Plant Ecol. Evol. Syst. 17, 116–130 (2015).Article 

    Google Scholar 
    62.Bruhl, J. J. & Wilson, K. L. Towards a comprehensive survey of C3 and C4 photosynthetic pathways in Cyperaceae. Aliso 23, 99–148 (2007).Article 

    Google Scholar 
    63.Caddy-Retalic, S. Quantifying responses of ecological communities to bioclimatic gradients PhD thesis, University of Adelaide, School of Biological Sciences (2017).64.Carolin, R., Jacobs, S. & Vesk, M. The chlorenchyma of some members of the Salicornieae (Chenopodiaceae). Aust. J. Bot. 30, 387–392 (1982).Article 

    Google Scholar 
    65.Clayton, W. D., Vorontsova, M. S., Harman, K. T. & Williamson, H. World Grass Species: Synonymy. http://www.kew.org/data/grasses-syn.html (2002).66.D’andrea, R. M., Andreo, C. S. & Lara, M. V. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid‐like metabolism induction and reversal upon re‐watering. Physiol. Plant. 152, 414–430 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Ehleringer, J. R. & Monson, R. K. Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Evol. Syst. 24, 411–439 (1993).Article 

    Google Scholar 
    68.Feodorova, T. A., Voznesenskaya, E. V., Edwards, G. E. & Roalson, E. H. Biogeographic patterns of diversification and the origins of C4 in Cleome (Cleomaceae). Syst. Bot. 35, 811–826 (2010).Article 

    Google Scholar 
    69.Guillaume, K., Huard, M., Gignoux, J., Mariotti, A. & Abbadie, L. Does the timing of litter inputs determine natural abundance of 13C in soil organic matter? Insights from an African tiger bush ecosystem. Oecologia 127, 295–304 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Herppich, W. B. & Herppich, M. Ecophysiological investigations on plants of the genus Plectranthus (Fam. Lamiaceae) native to Yemen and southern Africa. Flora 191, 401–408 (1996).Article 

    Google Scholar 
    71.Holtum, J. A. et al. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? Curr. Opin. Plant Biol. 31, 109–117 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Holtum, J. A., Hancock, L. P., Edwards, E. J. & Winter, K. Facultative CAM photosynthesis (crassulacean acid metabolism) in four species of Calandrinia, ephemeral succulents of arid Australia. Photosynth. Res. 134, 17–25 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Horn, J. W. et al. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway. Evolution 68, 3485–3504 (2014).CAS 
    Article 

    Google Scholar 
    74.Kadereit, G., Borsch, T., Weising, K. & Freitag, H. Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int. J. Plant Sci. 164, 959–986 (2003).CAS 
    Article 

    Google Scholar 
    75.Koch, K. E. & Kennedy, R. A. Crassulacean acid metabolism in the succulent C4 dicot, Portulaca oleracea L under natural environmental conditions. Plant. Physiol. 69, 757–761 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Madhusudana Rao, I., Swamy, P. M. & Das, V. S. R. Some characteristics of crassulacean acid metabolism in five nonsucculent scrub species under natural semiarid conditions. Zeitschrift für Pflanzenphysiologie 94, 201–210 (1979).Article 

    Google Scholar 
    77.Metcalfe, C. R. Anatomy of the monocotyledons. 1. Gramineae. (Clarendon Press, 1960).78.Pate, J. S., Unkovich, M. J., Erskine, P. D. & Stewart, G. R. Australian mulga ecosystems –13C and 15N natural abundances of biota components and their ecophysiological significance. Plant Cell Environ. 21, 1231–1242 (1998).CAS 
    Article 

    Google Scholar 
    79.Schmidt, S. & Stewart, G. δ15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia 134, 569–577 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Thiede, J. & Eggli, U. Crassulaceae. in Flowering Plants· Eudicots 83–118 (Springer, 2007).82.Ting, I. P. Photosynthesis of arid and subtropical succulent plants. Aliso 12, 387–406 (1989).Article 

    Google Scholar 
    83.Watson, L., & Dallwitz, M. J. The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. https://www.delta-intkey.com/grass/intro.htm (1992).84.Winter, K., Garcia, M., Virgo, A. & Holtum, J. A. Operating at the very low end of the crassulacean acid metabolism spectrum: Sesuvium portulacastrum (Aizoaceae). J. Exp. Bot. 70, 6561–6570 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Unveiling the unknown phylogenetic position of the scallop Austrochlamys natans and its implications for marine stewardship in the Magallanes Province

    This is the first comparative study of commercial scallop species in the Pacific coast of the MP combining morphological and molecular characters. Our phylogenetic analyses highlight the association between A. natans and Ad. colbecki; two members of monospecific tribes and last extant representatives of their Southern Ocean-restricted genera.These results confirm the presence of both Magallanes scallops in the MP, as well as the so-far unsuspected presence of mixed “banks” where both species occur in sympatry. The BND/VH ratio helps discriminate between two distinct entities that belong to the genetic lineage of Z. patagonica and to a different lineage, highly divergent from the former, which corresponds to A. natans. A. natans is the only species of a whole lineage with a particular phylogenetic value, therefore having developed and tested an accurate identification criterion for both scallops will allow efficient fishery management in the future.Here we discuss the phylogenetic position and the taxonomic status of both Magallanes scallops, as well as the implications of these results for the future management and conservation of Z. patagonica and A. natans in the Magallanes Region. Despite the numerous classifications built on morphological, ecological or molecular data, the relationships among pectinids are still under constant modification depending on the number of taxa, loci, length of the sequence and the selected outgroups1,4. The work of Alejandrino et al.7 is the most inclusive so far in terms of taxon sampling, with 81 species. Although Scherrat et al.25 included 143 species, the node supports of the phylogenetic trees are not provided, making it difficult to assess the robustness of this large phylogeny. In order to define the phylogenetic position of Zygochlamys patagonica and Austrochlamys natans, we included 93 pectinid taxa (43 genera) representative of tribes Chlamydini, Crassadomini, Fortipectini, Palliolini, Aequipectinini, Pectinini and Amussini. Comparing to Waller’s5 and Dijkstra’s15 classifications, only the subfamily Camptonectinae and the tribe Mesoplepini are missing. We used three ribosomal regions (one nuclear and two mitochondrial). Compared to Alejandrino et al.7, histone H3 is missing here, however this locus is among the least informative4. The family Pectinidae appears to be monophyletic with high support values (Fig. 5, S2), as previously demonstrated4,7,26,27,28. According to Dijkstra15 there are currently five subfamilies of Pectinidae, two of which are absent from our analysis: Camptonectinae and Pedinae. This topology supports the classifications of Waller5 and Dijkstra15, except for the position of the tribe Austrochlamydini.Our Magallanes scallops separated into two very divergent clades: Z. patagonica is associated with its conspecifics and congenerics in a single lineage (Fig. 5), which also contains species of Veprichlamys and Talochlamys. This lineage already appeared well supported as the sister clade to Palliolinae and Pectininae in Alejandrino7. For the first time, Talochlamys dichroa and T. gemmulata are nested with high support values into the Zygochlamys clade, making this latter genus paraphyletic (Fig. 5). These taxa are all restricted to high latitudes of the Southern Ocean. Due to phylogenetic and geographic affinities, we suggest that these three genera may constitute a tribe separate from Chlamydini. Since Dijkstra15 moved the two Atlantic ‘Crassadoma’ into the genus Talochlamys, the affinities among Talochlamys spp. had not been explored until now. Talochlamys species rather associate according to geographic affinities, splitting the genus into two highly divergent entities corresponding to European and New Zealand Talochlamys. A systematic revision of these four species would be useful.Austrochlamys natans associated with the Palliolinae, which was elevated to a subfamily rank by Waller5. Of the three extant tribes that compose this group, Mesopleplini are missing from our phylogenetic analyses. We included 4 genera (8 species) of the remaining two tribes: Adamussium (Adamussini) and Palliolum, Pseudamussium, Placopecten (Palliolini). The present sampling of Palliolini is the most inclusive to date and led to the monophyly and full support of the tribe Palliolini. Our phylogenetic results do not support any of the previous classifications of the tribe Austrochlamydini1,5,9,13,15, and introduce this monospecific tribe as a new member of the subfamily Palliolinae. Indeed, Austrochlamys natans clusters together with Adamussium colbecki, both in a sister clade to Palliolini. The first molecular characterization of Ad. colbecki did not lead to a clear classification due to the low polymorphism of the 18S26. Later, Ad. colbecki appears either as sister species to Chlamydinae or to Palliolini, depending on tribe sampling and the choice of outgroup and loci4,10,11. However, in the most recent and inclusive studies of taxon sampling7 (present study) or genomic cover29, Ad. colbecki is the sister group of the tribe Palliolini, as in the present phylogeny.The subfamily Palliolinae originated from a Chlamydinine ancestor in the Cretaceous and subsequently underwent diversification in the Northern Hemisphere1 and in the Southern Hemisphere, where the extinct genus Lentipecten spread in the Paleocene–Eocene Thermal Maximum30. The genus Adamussium derived from Lentipecten and appeared in the early Oligocene; it comprises 5 endemic Antarctic species; Ad. colbecki is the only one extant13,31,32. The genus Austrochlamys also appeared in the Oligocene and was first restricted to King George Island (South Shetlands), then spread around the north of the Antarctic Peninsula and achieved a circum-Antarctic distribution until the Pliocene13,33,34. Austrochlamys persisted during the progressive cooling of the Antarctic Continent from the Paleocene to the Pliocene, dominating the coastal areas, while Adamussium occupied the deep seas and continental platform33. The opening and deepening of the Drake Passage and the intensification of the Antarctic Circumpolar Current during the Pliocene provoked a drastic cooling and the extension of sea ice over the coastal habitat, which caused the northward movement of Austrochlamys and its subsequent disappearance from Antarctica, along with the circumpolar expansion of Ad. colbecki in Antarctic shallow waters33. The colonization of the coastal habitat has been related to the sea ice extent that provided a more stable environment and low-energy fine-grained sediment with which Adamussium was associated in the deep waters. Austrochlamys fossils appear in the Subantarctic Heard Island in late Pliocene layers (3.62–2.5 Ma35). Today Ad. colbecki is a circum-Antarctic and eurybathic species that reaches high local density in protected locations13,36, while all Austrochlamys became extinct except for A. natans, which is restricted to southern South America33. The phylogenetic affinity highlighted here between A. natans and Ad. colbecki has its origins in the Southern Ocean; the deep divergence between the lineages of these monospecific tribes attests to the long time since their common origin in the Paleogene. These results point out both species as relevant biogeographic models to address longstanding questions regarding the origin of marine biota from Southern Ocean.The nomenclature, taxonomy and ecology of both A. natans and Z. patagonica have been problematic for almost 200 years. Since its original description37, Z. patagonica, a.k.a. the “Ostión Patagónico” has been named with more than 10 synonyms, probably due to the great intra-specific morphological variability throughout its distribution19,38 (see the nomenclatural history in Supplementary Table S1). In contrast, there are very few records in the scientific literature and no genetic data on A. natans, a.k.a. the “Ostión del Sur”13,14,17,19, and some problems of nomenclature and establishing diagnostic characters persist since its description13,39. Many of the current junior synonyms of both species were described from small and juvenile specimens (under 52 mm VH39,40,41). Indeed, all deposited type material of A. natans ranges from 23.5 to 52 mm VH; the latter is half of the maximum size39. The criteria most commonly used for the identification of both scallops were number of radial primary ribs, maximum size, shell colour and presence of laminated concentric lines (Supplementary Table S1). Specimens with marked primary and secondary radial ribs alternated regularly and more whitish colouring of the right shell were attributed to Z. patagonica, while those with weaker and less markedly coloured radial ribs and the maximum size were considered as A. natans42. However, the number of radial ribs overlaps between Z. patagonica (26–4212,43) and A. natans (22–5017,19). These characters also have high variability across different environments and during ontogeny13,17. Thus the use of a taxonomy based on environment-sensitive and allometric characters has led to confusion in the morphological identification of these species13,38. The criterion used in the present study, the BND/VH ratio established by Jonkers13, discriminates the species efficiently. As attested by the narrow dispersal cluster in Fig. 3, this character has low intra-population variability13. In some cases a level of intraspecific variation can be detected, and this is mainly due to the environments where the scallop populations inhabit19 (e.g. exposed, protected, substrate type, fjord, oceanic). However, although there may be some intraspecific variability between populations, this variability does not generate problems for the identification of the two species. Individuals of A. natans generally presented a significantly greater BND/VH ratio than those of Z. patagonica. However, it is important to consider that, given that this character varies during ontogeny, it is more accurate in individuals over 25 mm VH13. Only the molecular identification was able to discriminate juvenile scallops of both species accurately.According to the literature, A. natans is restricted to interior waters of channels and is associated with kelp forests of M. pyrifera (Supplementary Table S1). Z. patagonica inhabits a wider range of environments such as bottoms of shells, sand, mud and gravel in protected and exposed areas, between 2 and 300 m depth (Supplementary Table S1), but is also associated with kelp forests in fjords with different degrees of glacial retreat12,16,44. The juveniles of both scallops recruit in kelp forests44,45. According to the local artisanal fishermen, adults of “Ostión del Sur” (A. natans) occur in fjords with glaciers (orange circles in Fig. 123). We included two sampling locations near glaciers (in Pia and Montañas fjords), where large individuals (between 46 and 86 mm) of A. natans and Z. patagonica occur in sympatry. This sympatry was previously reported in Silva Palma Fjord between 5 and 25 m depth16. In conclusion, scallop banks are not monospecific but rather mixed and Z. patagonica occurs in the interior waters of the channels and fjords. Consequently, these two species have overlapping ecology (recruiting zone and glacial affinity) in the channels and fjords, overturning a long-held view that these scallops have marked habitat segregation.The fishery for both species was established in the 1990s in the political-administrative Region of Magallanes16, despite the complexity of the morphological recognition of scallops. The distinction between species was based on shell colour and radial ribs42, two characters that, given the results of this study, do not have this diagnostic capacity. Consequently, the scallop fisheries in the Magallanes Region are currently based on inaccurately discriminative characters. Scallop banks in MP have always been considered as monospecific16,47. A great part of scallop landing has always been attributed to A. natans47, about which the scientific literature is scarce (Supplementary Table S1). Conversely, Z. patagonica, which was erroneously considered as the commercial species of southern Chile, has more scientific research (Supplementary Table S1).The difficulty to discriminate A. natans and Z. patagonica morphologically may lead to incorrect fishery statistics and uncertain conservation status of A. natans. Incorrect fishery statistics could overestimate the abundance of banks of A. natans compared to Z. patagonica. If the minimum catch size is reduced23 in the context of the fishing overuse of the last decade, A. natans may suffer a reduction of its maximum size48. Therefore, an identification criterion between species is a need to improve fishery management. We showcased a quantified criterion that is useful to identify both species. In the short-term, this method can be used, but it is difficult to enforce in practical ways. We suggest to train fishing inspectors, following three guidelines. First, the identification should consider only the right valve (RV) for species identification, since the left valve is not taxonomically informative. Second, for visual classification, check the outline of the BN, mainly because the individuals of Z. patagonica have a more arcute BN. Third, a reliable identification has to measure the depth of the byssal notch (BND) and shell height (VH) ratio. Lastly, future research and fishery monitoring should follow these criteria to carry out a correct identification and subsequently better landings statistics.Molecular tools allowed evaluating the phylogenetic relationships of scallops globally or regionally and incorporating parameters that can be used for the management and conservation of species of commercial interest49. For example, in the last few decades metrics have been developed to address conservation problems that give us a measure of the current state of particular taxa. These conservation priorities are often seen as measures for threatened species categorized by the IUCN Red List (World Conservation Union, 1980), one of the most widely and recognized systems. Although this prioritization metric incorporates phylogenetic distinctiveness (PD), this factor has been updated due to the importance of quantifying the loss of evolutionary diversity that would be implied by the extinction of a species50. The magnitude of the PD loss from any species will depend (but not exclusively) on the fate of its close relatives51. The “Ostión del Sur”, Austrochlamys natans is the last representative of its tribe (Austrochlamydini) in the Southern Ocean. Its phylogenetic position and the long branch length (i.e. the length of the branch from the tip to where it joins the tree), which represents an important amount of evolutionary change, highlights the degree of isolation of A. natans and calls attention to the possible loss of a unique genetic lineage. There is currently no conservation value for this relict species; we sought to alert the current fishery management that the “Ostión del Sur” is a distinct taxon and provide integrative evidence for further conservation studies.Finally, regarding the overlapping niche of these scallops and the conservation importance of the clade of A. natans, we propose three key recommendations for the future scallop fishery policies in the sub-Antarctic channels. First, it is necessary to assess the proportion of both species per bank and landing to generate a distribution map through the sub-Antarctic channels. For this assessment, the byssal notch depth is the most appropriate morphological character. Second, we recommend reassessments of biological and ecological parameters (e.g. size at first maturity) for A. natans across the glacial fjords, which are the most relevant fishing sites. As a final point, today there is a complete lack of knowledge of the genetic connectivity along the Subantarctic Channels. Thus we should generate more research about spatial population genetics at different temporal scales. The integration of genomic approaches (e.g. SNPs) with macro- and micro-environmental modelling approaches provide enormous opportunity to establish a new regional zoning for fishery management and conservation scallop strategy. More