More stories

  • in

    Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes

    1.Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020;368:270–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669–78.CAS 
    Article 

    Google Scholar 
    4.Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Nelson EB. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol. 2004;42:271–309.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nelson EB. The seed microbiome: origins, interactions, and impacts. Plant Soil Springe Int Publ. 2018;422:7–34.CAS 
    Article 

    Google Scholar 
    8.Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112:E911–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:81–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115:E1157–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schlaeppi K, Dombrowski N, Oter RG, Ver Loren Van Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17:392–403.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    21.de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2017;50:138–50.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms’ journey between plant generations. Microbiome. 2018;6:79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Tobias TB, Farrer EC, Rosales A, Sinsabaugh RL, Suding KN, Porras-Alfaro A. Seed-associated fungi in the alpine tundra: both mutualists and pathogens could impact plant recruitment. Fungal Ecol. 2017;30:10–18.Article 

    Google Scholar 
    25.Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7:40–50.Article 

    Google Scholar 
    26.Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol. 2017;37:15–22.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Normander BO, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol. 2000;66:4372–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Green SJ, Inbar E, Michel FC, Hadar Y, Minz D. Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol. 2006;72:3975–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Ofek M, Hadar Y, Minz D. Colonization of cucumber seeds by bacteria during germination. Environ Microbiol. 2011;13:2794–807.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.OECD-FAO. Agricultural Outlook 2020–2029.32.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Rath KM, Fierer N, Daniel, Murphy V, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2018;13:836–46.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Oliverio A, Holland-Moritz H. dada2 tutorial with MiSeq dataset for Fierer Lab. 2019.37.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2020.41.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2016.42.Becker RA, Wilks AR, Minka TP, Deckmyn A. maps: draw geographical maps. 2018.43.Jari Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R. 2019. p. R package version 2.5-6.44.Rochefort A, Simonin M, Marais C, Guillerm-Erckelboudt A-Y, Barret M, Sarniguet A. Asymmetric outcome of community coalescence of seed and soil microbiota during early seedling growth. bioRxiv. 2020.11.19.390344.45.Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4:e00186–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Software; Vol 1, Issue 2. 2010.47.Douma JC, Weedon JT. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods. Ecol Evol. 2019;10:1412–30.
    Google Scholar 
    48.Kuhn M. caret: classification and regression training. 2020.49.Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.Article 

    Google Scholar 
    50.Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol. 2019;4:122–31.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Aboubacry K. et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European Soils. FEMS Microbiol Ecol. 2016;96:fiaa067Article 
    CAS 

    Google Scholar 
    52.Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes. Sci Rep. 2016;6:25581.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One. 2012;7:e30438.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:201.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Nelson EB, Simoneau P, Barret M. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    57.Shmida A, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20.Article 

    Google Scholar 
    58.Hannula SE, Kielak AM, Steinauer K, Huberty M, Jongen R, De Long JR, et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. MBio. 2019;10:e02635–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jack ALH, Nelson EB. A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil. 2018;422:209–22.CAS 
    Article 

    Google Scholar 
    60.Verma SK, Kharwar RN, White JF. The role of seed-vectored endophytes in seedling development and establishment. Symbiosis. 2019;78:107–13.Article 

    Google Scholar 
    61.Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol Evol. 2019;3:1445–54.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017;15:e2001793.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Maignien L, DeForce EA, Chafee ME, Murat Eren A, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio. 2014;5:e00682–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell. 2018;175:973–83.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol. 2018;20:124–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Useful plants have deep evolutionary roots

    1.Díaz, S. et al. Science 359, 270–272 (2018).Article 

    Google Scholar 
    2.Molina-Venegas, R., Rodríguez, M. Á., Pardo-de-Santayana, M., Ronquillo, C. & Mabberley, D. J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01414-2 (2021).3.Faith, D. P. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    4.Mabberley, D. J. Mabberley’s Plant-Book (Cambridge Univ. Press, 2017).5.Jin, Y. & Qian, H. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    6.Tucker, C. M. et al. Biol. Rev. 94, 1740–1760 (2019).Article 

    Google Scholar 
    7.Forest, F. et al. Nature 445, 757–760 (2007).CAS 
    Article 

    Google Scholar 
    8.Newman, J. A., Varner, G. & Linquist, S. Defending Biodiversity (Cambridge Univ. Press, 2017).9.Cline, B. Ethics Environ. 25, 45–72 (2020).Article 

    Google Scholar 
    10.Díaz, S. et al. Science 370, 411–413 (2020).Article 

    Google Scholar  More

  • in

    Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind

    1.Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sust. 2, 66–74 (2010).Article 

    Google Scholar 
    2.Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).Article 

    Google Scholar 
    3.Oka, C., Aiba, M. & Nakashizuka, T. Phylogenetic clustering in beneficial attributes of tree species directly linked to provisioning, regulating and cultural ecosystem services. Ecol. Indic. 96, 477–495 (2019).Article 

    Google Scholar 
    4.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    5.Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect?—Systematics and the agony of choice. Biol. Conserv. 55, 235–254 (1991).Article 

    Google Scholar 
    6.Crozier, R. H. Genetic diversity and the agony of choice. Biol. Conserv. 61, 11–15 (1992).Article 

    Google Scholar 
    7.Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).Article 

    Google Scholar 
    8.Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).Article 

    Google Scholar 
    9.Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).Article 

    Google Scholar 
    10.Mazel, F. et al. Reply to: ‘Global conservation of phylogenetic diversity captures more than just functional diversity’. Nat. Commun. 10, 858 (2019).Article 

    Google Scholar 
    11.Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).CAS 
    Article 

    Google Scholar 
    12.Cook, F. E. M. Economic Botany Data Collection Standard (International Working Group on Taxonomic Databases for Plant Sciences, Royal Botanic Gardens, UK, 1995).13.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    14.Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    15.Mabberley, D. J. Mabberley’s Plant-book: A Portable Dictionary of Plants, Their Classification and Uses 4th edn (Cambridge Univ. Press, 2017).16.Cox, P. A. Will tribal knowledge survive the millennium? Science 287, 44–45 (2000).CAS 
    Article 

    Google Scholar 
    17.Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H. & Macía, M. J. Ethnobotanical knowledge is vastly under-documented in northwestern South America. PLoS ONE 9, e85794 (2014).Article 

    Google Scholar 
    18.Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).Article 

    Google Scholar 
    19.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    Article 

    Google Scholar 
    20.Gilbert, G. S., Magarey, R., Suiter, K. & Webb, C. O. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5, 869–878 (2012).Article 

    Google Scholar 
    21.Calatayud, J. et al. Geography and major host evolutionary transitions shape the resource use of plant parasites. Proc. Natl Acad. Sci. USA 113, 9840–9845 (2016).CAS 
    Article 

    Google Scholar 
    22.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eai9214 (2017).Article 

    Google Scholar 
    23.Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    24.de Lucena, R. F. P. et al. The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: an assessment based on use value. J. Environ. Manag. 96, 106–115 (2012).Article 

    Google Scholar 
    25.Menendez-Baceta, G. et al. The importance of cultural factors in the distribution of medicinal plant knowledge: a case study in four Basque regions. J. Ethnopharmacol. 161, 116–127 (2015).Article 

    Google Scholar 
    26.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    27.Global Information on Scoping for the Thematic Assessment of Sustainable Use of Wild Species (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://ipbes.net/sustainable-use-wild-species-assessment28.Karki, M., Senaratna Sellamuttu, S., Okayasu, S. & Suzuki, W. (eds) Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific (Secretariat of the IPBES, 2018).29.Pardo-de-Santayana, M. & Macía, M. The benefits of traditional knowledge. Nature 518, 487–488 (2015).CAS 
    Article 

    Google Scholar 
    30.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article 

    Google Scholar 
    31.Antonelli, A. et al. State of the World’s Plants and Fungi 2020 (Royal Botanic Gardens, Kew, 2020).32.Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).Article 

    Google Scholar 
    33.Plants of the World Online (Royal Botanic Gardens, Kew, 2021); http://www.plantsoftheworldonline.org/34.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    35.The Plant List, version 1.1 (The Plant List, 2013); http://www.theplantlist.org/36.Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).Article 

    Google Scholar 
    37.Federhen, S. The NCBI taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).CAS 
    Article 

    Google Scholar 
    38.Hörandl, E. & Stuessy, T. F. Paraphyletic groups as natural units of biological classification. Taxon 59, 1641–1653 (2010).Article 

    Google Scholar 
    39.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    40.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    41.Bordewich, M., Rodrigo, A. G. & Semple, C. Selecting taxa to save or sequence: desirable criteria and a greedy solution. Syst. Biol. 57, 825–834 (2008).Article 

    Google Scholar 
    42.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    43.Kembel, S. W. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).Article 

    Google Scholar 
    44.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).45.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    Article 

    Google Scholar 
    46.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions 2nd edn (International Working Group on Taxonomic Databases for Plant Sciences, 2001).47.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar  More

  • in

    Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic

    1.Gurarie, E., Andrews, R. D. & Laidre, K. L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 12, 395–408 (2009).PubMed 
    Article 

    Google Scholar 
    2.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Dulau, V. et al. Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again!. Mov. Ecol. 5, 11 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 5 (2017).Article 

    Google Scholar 
    5.Moorter, B. V., Rolandsen, C. M., Basille, M. & Gaillard, J.-M. Movement is the glue connecting home ranges and habitat selection. J. Anim. Ecol. 85, 21–31 (2016).PubMed 
    Article 

    Google Scholar 
    6.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).PubMed 
    Article 

    Google Scholar 
    7.Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).PubMed 
    Article 

    Google Scholar 
    8.Schneider, A. et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 10, 034002 (2015).ADS 
    Article 

    Google Scholar 
    9.Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size—extinction risk correlates in squamate reptiles. Glob. Ecol. Biogeogr. 25, 391–405 (2016).Article 

    Google Scholar 
    10.Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).Article 

    Google Scholar 
    11.Shamoon, H., Maor, R., Saltz, D. & Dayan, T. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 226, 32–41 (2018).Article 

    Google Scholar 
    12.Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: the ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Large Snakes Mosaic Rural Landsc. Ecol. Carpet Pythons Morelia Spilota Serpentes Pythonidae Coast. East. Aust. 76, 113–122 (1996).13.Charles, K. E. & Linklater, W. L. Dietary breadth as a predictor of potential native avian–human conflict in urban landscapes. Wildl. Res. 40, 482 (2013).Article 

    Google Scholar 
    14.Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).Article 

    Google Scholar 
    15.Gibbon, J. W. et al. The global decline of reptiles Déjà Vu Amphibians. BioScience 50, 653 (2000).Article 

    Google Scholar 
    16.Todd, B., Willson, J. & Gibbons, J. The Global Status of Reptiles and Causes of Their Decline. in Ecotoxicology of Amphibians and Reptiles, Second Edition (eds. Sparling, D., Linder, G., Bishop, C. & Krest, S.) 47–67 (CRC Press, 2010). https://doi.org/10.1201/EBK1420064162-c3.17.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    18.Barker, D. G. & Barker, T. M. The distribution of the burmese python, python molurus bivittatus. Bull. Chic. Herpetol. Soc. 43, 33–38 (2008).
    Google Scholar 
    19.Rahman, S. C., Jenkins, C. L., Trageser, S. J. & Rashid, S. M. A. Radio-telemetry study of Burmese python (Python molurus bivittatus) and elongated tortoise (Indotestudo elongata) in Lawachara National Park, Bangladesh: a prelimiary observation. Khan MAR Ali MS Feeroz MM Naser MN Ed. Festschr. 50th Anniversary IUCN Red List Threat. Species 54–62 (2014).20.Bhupathy, S., Ramesh, C. & Bahuguna, A. Feeding habits of Indian rock pythons in Keoladeo National Park, Bharatpur India. Herpetol. J. 24, 59–64 (2014).
    Google Scholar 
    21.Shine, R., Harlow, P. S., Keogh, J. S. & Boeadi. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1998).22.Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Dove, C. J., Snow, R. W., Rochford, M. R. & Mazzotti, F. J. Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J. Ornithol. 123, 126–131 (2011).Article 

    Google Scholar 
    24.Stuart, B. et al. Python bivittatus (errata version published in 2019). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T193451A151341916.en. (2019).25.Goodyear, N. C. Python molurus bivittatus (Burmese python) Movements. Herpetol. Rev. 25, 71–72 (1994).
    Google Scholar 
    26.You, C.-W. et al. Return of the pythons: first formal records, with a special note on recovery of the Burmese python in the demilitarized Kinmen islands. Zool. Stud. 52, 8 (2013).Article 

    Google Scholar 
    27.Miranda, E. B. P., Ribeiro, R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 43–77 (2016).Article 

    Google Scholar 
    28.Nóbrega Alves, R. R. et al. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. J. Ethnobiol. Ethnomed. 8, 27 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M. & Hunter, M. E. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE 14, e0213943 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Marshall, B. M. et al. No room to roam: King Cobras reduce movement in agriculture. Mov. Ecol. 8, 33 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Reed, R. N. & Rodda, G. H. Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor: U.S. Geological Survey Open-File Report. (2009).32.Reinert, H. K. & Cundall, D. An Improved Surgical Implantation Method for Radio-Tracking Snakes. Copeia 1982, 702–705 (1982).Article 

    Google Scholar 
    33.R Core Team. R: a language and environment for statistical computing.34.R Studio Team. RStudio: integrated development environment for R.35.Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models. Mov. Ecol. 8, 43 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).PubMed 
    Article 

    Google Scholar 
    38.Kranstauber, B., Smolla, M. & Scharf, A. K. move: Visualizing and Analyzing Animal Track Data. (2020).39.Calenge, C. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article 

    Google Scholar 
    40.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2020).41.Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography https://doi.org/10.1111/ecog.03618 (2018).Article 

    Google Scholar 
    42.Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, art149 (2015).43.Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630 (2016).Article 

    Google Scholar 
    44.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools ( amt ): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Marshall, B. M. et al. Data set and code supporting Marshall et al. 2020. No room to roam: King Cobras reduce movement in agriculture. (Version 1.1) . (2020).46.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).PubMed 
    Article 

    Google Scholar 
    48.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).49.Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 8 (2015).Article 

    Google Scholar 
    50.Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Rettie, W. J. & Messier, F. Range use and movement rates of woodland caribou in Saskatchewan. Can. J. Zool. 79, 1933–1940 (2001).Article 

    Google Scholar 
    52.Doherty, T. S., Fist, C. N. & Driscoll, D. A. Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landsc. Ecol. 34, 603–614 (2019).Article 

    Google Scholar 
    53.Young, L. I., Dickman, C. R., Addison, J. & Pavey, C. R. Spatial ecology and shelter resources of a threatened desert rodent (Pseudomys australis) in refuge habitat. J. Mammal. 98, 1604–1614 (2017).Article 

    Google Scholar 
    54.Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: A behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87 (2015).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    55.Krysko, K., Nifong, J., Mazzotti, F., Snow, R. & Enge, K. Reproduction of the Burmese python (Python molurus bivittatus) in southern Florida. Appl. Herpetol. 5, 93–95 (2008).Article 

    Google Scholar 
    56.Smith, B. J. et al. Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).Article 

    Google Scholar 
    57.Hunter, M. E. et al. Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE 10, e0121655 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).ADS 
    Article 

    Google Scholar 
    59.Fujioka, M., Don Lee, S. & Kurechi, M. Bird use of Rice Fields in Korea and Japan. Waterbirds 33, 8 (2010).Article 

    Google Scholar 
    60.Marshall, B. M. et al. Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphib.-Reptil. 40, 163–178 (2019).Article 

    Google Scholar 
    61.Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).Article 

    Google Scholar 
    62.Crane, M. et al. A report of a Malayan Krait Snake Bungarus Candidus Mortality as By-Catch in a Local Fish Trap from Nakhon Ratchasima Thailand. Trop. Conserv. Sci. 9, 313–320 (2016).Article 

    Google Scholar 
    63.Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras ( Ophiophagus hannah ) in Northeastern Thailand. Trop. Conserv. Sci. 11, 194008291881840 (2018).Article 

    Google Scholar 
    64.Webster, M. M. & Rutz, C. How strange are your study animals?. Nature 582, 337–340 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Mutascio, H. E., Pittman, S. E., Zollner, P. A. & D’Acunto, L. E. Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python molurus bivittatus). Landsc. Ecol. 33, 257–274 (2018).Article 

    Google Scholar 
    66.Steen, D. A. Snakes in the grass: secretive natural histories defy both conventional and progressive statistics. Herpetol. Conserv. Biol. 5, 183 (2010).
    Google Scholar  More

  • in

    Biological effects of biochar and zeolite used for remediation of soil contaminated with toxic heavy metals

    1.Li, Z. Y., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W. & Huang, L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014).ADS 
    Article 

    Google Scholar 
    2.Zhou, C. et al. Evaluation of different types and amounts of amendments on soil Cd immobilization and its uptake to wheat. Environ. Manag. 65, 818–828 (2020).Article 

    Google Scholar 
    3.He, Z. et al. Heavy metal contamination of soils: sources, indicators, and assessment. J. Environ. Indic. 9, 17–18 (2015).
    Google Scholar 
    4.Rodríguez-Eugenio, N., McLaughlin, M., Pennock, D. Soil Pollution: A Hidden Reality. Rome, FAO (2018).5.Lin, C.-F., Lo, S.-S., Lin, H.-Y. & Lee, Y. Stabilization of cadmium contaminated soils using synthesized zeolite. J. Hazard. Mater. 60(3), 217–226 (1998).CAS 
    Article 

    Google Scholar 
    6.Aransiola, S. A., Ijah, U. J. J., Abioye, O. P. & Bala, J. D. Microbial-aided phytoremediation of heavy metals contaminated soil: a review. Eur. J. Biol. Res. 9(2), 104–125. https://doi.org/10.5281/zenodo.3244176 (2019).CAS 
    Article 

    Google Scholar 
    7.Porter, S. K., Scheckel, K. G., Impellitteri, C. A. & Ryan, J. A. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Crit. Rev. Environ. Sci. Technol. 34, 495–604 (2004).CAS 
    Article 

    Google Scholar 
    8.Contin, M., Miho, L., Pellegrini, E., Gjoka, F. & Shkurta, E. Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. J. Soils Sedim. 19, 4052–4062. https://doi.org/10.1007/s11368-019-02359-7 (2019).CAS 
    Article 

    Google Scholar 
    9.Bashir, S. et al. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bull. Environ. Contam. Toxicol. 102, 567–572. https://doi.org/10.1007/s00128-019-02573-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Lahori, A. H. et al. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere 250, 126317 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Mahabadi, A. A., Hajabbasi, M. A., Khademi, H. & Kazemian, H. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137(3–4), 388–393 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Yi, N., Wu, Y., Fan, L. & Hu, S. Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon. Pol. J. Environ. Stud. 28(3), 1461–1468 (2019).CAS 
    Article 

    Google Scholar 
    13.Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439. https://doi.org/10.1007/s11104-011-0948-y (2011).CAS 
    Article 

    Google Scholar 
    14.Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant Soil 337, 1–18 (2010).CAS 
    Article 

    Google Scholar 
    15.Peake, L. R., Reid, G. J. & Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190 (2014).ADS 
    Article 

    Google Scholar 
    16.Mukherjee, A. & Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2), 313–339 (2013).Article 

    Google Scholar 
    17.Głąb, T., Palmowska, J., Zaleski, T. & Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281, 11–20 (2016).ADS 
    Article 

    Google Scholar 
    18.Li, H. et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Jadia, C. D. & Fuleka, M. H. Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J. Appl. Biosci. 10, 491–499 (2008).
    Google Scholar 
    20.Bandura, L., Franus, M., Józefaciuk, G. & Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100–107 (2015).CAS 
    Article 

    Google Scholar 
    21.International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards), Version 2.0, IBI-STD-2.0 (2014).22.Gondek, K. & Mierzwa-Hersztek, M. Effect of low-temperature biochar derived from pig manure and poultry litter on mobile and organic matter-bound forms of Cu, Cd, Pb and Zn in sandy soil. Soil Use Manag. 32, 357–367 (2016).Article 

    Google Scholar 
    23.Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 (1938).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances II. J. Am. Chem. Soc. 73, 373–380. https://doi.org/10.1021/ja01145a126 (1951).CAS 
    Article 

    Google Scholar 
    25.Smucker, A. J. M., McBurney, S. L. & Srivastava, A. K. Quantitative separation ofroots from compacted soil profiles by the hydropneumatic elutriation system. Agron. J. 74, 500–503 (1982).Article 

    Google Scholar 
    26.Bauhus, J. & Messier, C. Evaluation of fine root length and diametermeasurements obtained using RHIZO image analysis. Agron. J. 91, 142–147 (1999).Article 

    Google Scholar 
    27.Głąb, T., Gondek, K. & Mierzwa-Hersztek, M. Pyrolysis improves the effect of straw amendment on the productivity of perennial ryegrass (Lolium perenne L.). Agronomy 10, 1455 (2020).Article 

    Google Scholar 
    28.Karthik, A., Hussainy, S. A. H. & Rajasekar, M. Effect of biochar on the growth and yield of cotton and maize: a review. Int. J. Chem. Stud. 8(3), 572–578 (2020).CAS 
    Article 

    Google Scholar 
    29.Fiaz, K. et al. Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. J. Soil Sci. Plant Nutr. 14, 4. https://doi.org/10.4067/S0718-95162014005000067 (2014).Article 

    Google Scholar 
    30.Rehman, M. Z. et al. Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environ. Technol. Innov. 19, 101015 (2020).Article 

    Google Scholar 
    31.Xu, P. et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 132, 94–100. https://doi.org/10.1016/j.ecoenv.2016.05.031 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Rehman, M. Z. et al. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 133, 218–225. https://doi.org/10.1016/j.ecoenv.2016.07.023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Butorac, A. et al. Crop response to the application of special natural amendments based on zeolite tuff. Rostlinná Výroba 48, 118–124 (2002).
    Google Scholar 
    34.Wang, S. B. & Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010).CAS 
    Article 

    Google Scholar 
    35.Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E. & Kazemian, H. Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water Air Soil Pollut. 228, 464. https://doi.org/10.1007/s11270-017-3649-1 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Ozbahce, A., Tari, A. F., Gönülal, E., Simsekli, N. & Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 61(5), 615–626. https://doi.org/10.1080/03650340.2014.946021 (2015).CAS 
    Article 

    Google Scholar 
    37.De Smedt, C., Someus, E. & Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 71, 1355–1367. https://doi.org/10.1002/ps.3999 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Rees, F., Sterckeman, T. & Morel, J. L. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 142, 48–55. https://doi.org/10.1016/j.chemosphere.2015.03.068 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Houben, D., Evrard, L. & Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57, 196–204. https://doi.org/10.1016/j.biombioe.2013.07.019 (2013).CAS 
    Article 

    Google Scholar 
    40.Reibe, K., Götz, K. P., Döring, T. F., Ros, C. L. & Ellmer, F. Impact of hydro-/biochars on root morphology of spring wheat. Arch. Agron. Soil Sci. 61(8), 1041–1054. https://doi.org/10.1080/03650340.2014.983090 (2015).CAS 
    Article 

    Google Scholar 
    41.Shahbaz, A. K. et al. Improvement in productivity, nutritional quality, and antioxidative defence mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J. Environ. Manag. 218, 256–270 (2018).CAS 
    Article 

    Google Scholar 
    42.Xiang, Y., Deng, Q., Duan, H. & Guo, Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9, 1563–1572. https://doi.org/10.1111/gcbb.12449 (2017).Article 

    Google Scholar 
    43.Olmo, M., Villar, R., Salazar, P. & Alburquerque, J. A. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil 399, 333–343. https://doi.org/10.1007/s11104-015-2700-5 (2016).CAS 
    Article 

    Google Scholar 
    44.McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).Article 

    Google Scholar 
    45.Bonifas, K. D., Walters, D. T., Cassman, K. G. & Lindquist, J. L. Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci. 53, 670–675 (2005).CAS 
    Article 

    Google Scholar 
    46.Agren, G. I. & Franklin, O. Root:shoot ratios, optimization and nitrogen productivity. Ann. Bot. 92(6), 795–800 (2003).CAS 
    Article 

    Google Scholar 
    47.Palazzo, A. J., Cary, T. J., Hardy, S. E. & Lee, C. R. Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J. Environ. Qual. 32, 834–840. https://doi.org/10.2134/jeq2003.8340 (2003).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Natural recovery of a marine foundation species emerges decades after landscape-scale mortality

    1.Pandolfi, J. M. et al. Global trajectories of long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809. https://doi.org/10.1126/science.1128035 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445. https://doi.org/10.2307/2937118 (1992).Article 

    Google Scholar 
    5.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71. https://doi.org/10.1126/science.1232310 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    6.Palumbi, S. R., McLeod, K. L. & Grunbaum, D. Ecosystems in action: Lessons from marine ecology about recovery, resistance, and reversibility. Bioscience 58, 33–42. https://doi.org/10.1641/b580108 (2008).Article 

    Google Scholar 
    7.O’Leary, J. K. et al. The resilience of marine ecosystems to climatic disturbances. Bioscience 67, 208–220. https://doi.org/10.1093/biosci/biw161 (2017).Article 

    Google Scholar 
    8.Castorani, M. C. N., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454. https://doi.org/10.1002/ecy.2485 (2018).Article 
    PubMed 

    Google Scholar 
    9.Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13. https://doi.org/10.2307/1939452 (1984).Article 

    Google Scholar 
    10.Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585. https://doi.org/10.1111/ele.13457 (2020).Article 
    PubMed 

    Google Scholar 
    11.Robblee, M. B. et al. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar. Ecol. Prog. Ser. 71, 297–299. https://doi.org/10.3354/meps071297 (1991).ADS 
    Article 

    Google Scholar 
    12.Nuttle, W. K., Fourqurean, J. W., Cosby, B. J., Zieman, J. C. & Robblee, M. B. Influence of net freshwater supply on salinity in Florida Bay. Water Resour. Res. 36, 1805–1822. https://doi.org/10.1029/1999wr900352 (2000).ADS 
    Article 

    Google Scholar 
    13.Hall, M. O., Durako, M. J., Fourqurean, J. W. & Zieman, J. C. Decadal changes in seagrass distribution and abundance in Florida Bay. Estuaries 22, 445–459. https://doi.org/10.2307/1353210 (1999).Article 

    Google Scholar 
    14.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Ann. Rev. Ecol. Evol. and Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article 

    Google Scholar 
    15.Gunderson, L. H. Managing surprising ecosystems in southern Florida. Ecol. Econ. 37, 371–378 (2001).Article 

    Google Scholar 
    16.Biggs, R., Peterson, G. D. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. https://doi.org/10.5751/ES-10264-230309 (2018).Article 

    Google Scholar 
    17.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology, and Conservation. 691 p. (Springer, 2006).18.Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175. https://doi.org/10.1016/J.Jembe.2007.06.016 (2007).Article 

    Google Scholar 
    19.Johnson, A. J., Shields, E. C., Kendrick, G. A. & Orth, R. J. Recovery dynamics of the seagrass Zostera marina following mass mortalities from two extreme climatic events. Estuar. Coasts 44, 344–535. https://doi.org/10.1007/s12237-020-00816-y (2020).CAS 
    Article 

    Google Scholar 
    20.van Tussenbroek, B. I. et al. The biology of Thalassia: paradigms and recent advances in research in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J. & Duarte, C. M.) 409–439 (Springer, 2006).21.Walker, D. I., Kendrick, G. A. & McComb, A. J. Decline and recovery of seagrass ecosystems – the dynamics of change in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J., & Duarte, C. M.) 551–565 (Springer, 2006).22.Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Oceanogr. 44, 1166–1175 (1999).ADS 
    Article 

    Google Scholar 
    23.Williams, S. L. Experimental studies of Caribbean seagrass bed development. Ecol. Monogr. 60, 449–469. https://doi.org/10.2307/1943015 (1990).Article 

    Google Scholar 
    24.Kenworthy, W. J., Hall, M. O., Hammerstrom, K. K., Merello, M. & Schwartzschild, A. Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading. Ecol. Eng. 112, 72–81. https://doi.org/10.1016/j.ecoleng.2017.12.008 (2018).Article 

    Google Scholar 
    25.Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45. https://doi.org/10.1016/j.jembe.2004.03.022 (2004).Article 

    Google Scholar 
    26.Rollon, R. N., Van Steveninck, E. D. D. R., Van Vierssen, W. & Fortes, M. D. Contrasting recolonization strategies in multi-species seagrass meadows. Mar. Pollut. Bull. 37, 450–459. https://doi.org/10.1016/S0025-326X(99)00105-8 (1999).Article 

    Google Scholar 
    27.Olesen, B., Marba, N., Duarte, C. M., Savela, R. S. & Fortes, M. D. Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual processes. Estuaries 27, 770–780. https://doi.org/10.1007/BF02912039 (2004).Article 

    Google Scholar 
    28.Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605. https://doi.org/10.1016/j.tree.2011.07.008 (2011).Article 
    PubMed 

    Google Scholar 
    30.Lavorel, S. Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers. Distrib. 5, 3–13. https://doi.org/10.1046/j.1472-4642.1999.00033.x (1999).Article 

    Google Scholar 
    31.Zhang, J.-Z., Fischer, C. J. & Ortner, P. B. Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay. Glob. Biogeochem. Cycles 18, 15–25. https://doi.org/10.1029/2004gb002255 (2004).Article 

    Google Scholar 
    32.Koch, M. S., Schopmeyer, S. A., Nielsen, O. I., Kyhn-Hansen, C. & Madden, C. J. Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J. Exp. Mar. Biol. Ecol. 350, 73–88. https://doi.org/10.1016/j.jembe.2007.05.031 (2007).CAS 
    Article 

    Google Scholar 
    33.Birch, W. R. & Birch, M. Succession and pattern of tropical intertidal seagrasses in Cockle Bay, Queensland, Australia: a decade of observations. Aquat. Bot. 19, 343–367. https://doi.org/10.1016/0304-3770(84)90048-2 (1984).Article 

    Google Scholar 
    34.Fraser, M. W. et al. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 102, 1528–1536. https://doi.org/10.1111/1365-2745.12300 (2014).Article 

    Google Scholar 
    35.Winters, G. et al. The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00300 (2020).Article 

    Google Scholar 
    36.Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 370, 20130269. https://doi.org/10.1098/rstb.2013.0269 (2014).Article 

    Google Scholar 
    37.Stafford, N. B. & Bell, S. S. Space competition between seagrass and Caulerpa prolifera (Forsskaal) Lamouroux following simulated disturbances in Lassing Park, FL. J. Exp. Mar. Biol. Ecol. 333, 49–57. https://doi.org/10.1016/j.jembe.2005.11.025 (2006).Article 

    Google Scholar 
    38.Raniello, R., Mollo, E., Lorenti, M., Gavagnin, M. & Buia, M. C. Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol. Invasions 9, 361–368. https://doi.org/10.1007/s10530-006-9044-2 (2007).Article 

    Google Scholar 
    39.Molina Hernández, A. L. & van Tussenbroek, B. I. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Mar. Ecol. Prog. Ser. 517, 143–157 (2014).ADS 
    Article 

    Google Scholar 
    40.Armitage, A. R. & Fourqurean, J. W. The short-term influence of herbivory near patch reefs varies between seagrass species. J. Exp. Mar. Biol. Ecol. 339, 65–74. https://doi.org/10.1016/j.jembe.2006.07.013 (2006).Article 

    Google Scholar 
    41.Thrush, S. F. et al. Forecasting the limits of resilience: integrating empirical research with theory. Proc. R. Soc. B 276, 3209–3217. https://doi.org/10.1098/rspb.2009.0661 (2009).Article 
    PubMed 

    Google Scholar 
    42.MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627. https://doi.org/10.1038/s41559-019-0832-3 (2019).Article 
    PubMed 

    Google Scholar 
    43.Zieman, J. C., Fourqurean, J. W. & Frankovich, T. A. Reply to B.E. Lapointe and P.J. Barile (2004). Comment on J. C. Zieman, J. W. Fourqurean, and T. A Frankovich 1999 Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass Thalassia testudinum. Estuaries 27, 165–172, https://doi.org/10.1007/Bf02803570 (2004)44.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355. https://doi.org/10.1371/journal.pbio.2003355 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Bricker, E., Waycott, M., Calladine, A. & Zieman, J. C. High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Mar. Ecol. Prog. Ser. 423, 57–67. https://doi.org/10.3354/meps08962 (2011).ADS 
    Article 

    Google Scholar 
    46.Fourqurean, J. W. & Robblee, M. B. Florida Bay: a history of recent ecological changes. Estuaries 22, 345–357. https://doi.org/10.2307/1353203 (1999).CAS 
    Article 

    Google Scholar 
    47.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629. https://doi.org/10.1126/science.1059199 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Tabb, D. C., Dubrow, D. L. & Manning, R. B. The ecology of northern Florida Bay and adjacent esturaries. (Florida State Board of Conservation, Technical Series No. 39, 1962).49.Schmidt, T. W. & Davis, G. E. A summary of estuarine and marine water quality information collected in Everglades National Park, Biscayne National Monument, and adjacent estuaries from 1879 to 1977. 79 pp. (U.S. National Park Service, South Florida Research Center, Everglades National Park, Homestead, FL, Report T-519, 1978).50.Hall, M. O., Furman, B. T., Merello, M. & Durako, M. J. Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: initial observations. Mar. Ecol. Prog. Ser. 560, 243–249. https://doi.org/10.3354/meps11923 (2016).ADS 
    Article 

    Google Scholar 
    51.Zieman, J. C., Fourqurean, J. W. & Frankovich, T. A. Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass Thalassia testudinum. Estuaries 22, 460–470. https://doi.org/10.2307/1353211 (1999).Article 

    Google Scholar 
    52.Zieman, J. C., Fourqurean, J. W. & Iverson, R. L. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bull. Mar. Sci. 44, 292–311 (1989).
    Google Scholar 
    53.Durako, M. J. Seagrass die-off in Florida Bay (USA): changes in shoot demographic characteristics and population dynamics in Thalassia testudinum. Mar. Ecol. Prog. Ser. 110, 59–66. https://doi.org/10.3354/Meps110059 (1994).ADS 
    Article 

    Google Scholar  More

  • in

    Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype

    Sequencing summary and microbial diversity across growing regionsThere were 31,255 to 506,166 and 22,716 to 252,810 reads per sample for 16S rRNA and ITS biogeography datasets, respectively. We rarefied samples to 31,255 reads for 16S rRNA gene amplicons and to 22,716 for ITS. With these thresholds, we achieved richness asymptotes for both datasets, suggesting that sequencing efforts were sufficient to capture comparative dynamics and diversity (Fig. S3). The total richness observed at this rarefaction depth was 1,505 fungal and 23,872 bacterial and archaeal OTUs.As reported in other rhizosphere studies, the total fungal diversity was lower than bacterial/archaeal diversity in the rhizosphere of the common bean [41,42,43]. Richness varied by growing location (ANOVA, F value = 12.4, p-value  2.5), as well as connector (Pi  > 0.62, Zi  More

  • in

    Mass mortality events of autochthonous faunas in a Lower Cretaceous Gondwanan Lagerstätte

    1.Neumann, V. H., Borrego, A. G., Cabrera, L. & Dino, R. Organic matter composition and distribution through the Aptian-Albian lacustrine sequences of the Araripe Basin, northeastern Brazil. Int. J. Coal. Geol. 54, 21–40. https://doi.org/10.1016/S0166-5162(03)00018-1 (2003).CAS 
    Article 

    Google Scholar 
    2.Heimhofer, U. & Martill, D. M. Stratigraphy of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 25–43 (Cambridge University Press, 2007).
    Google Scholar 
    3.Neumann, V. H. M. L. Estratigrafía, sedimentología, geoquímica y diagénesis de los sistemas lacustres Aptienses-Albienses de la Cuenca de Araripe (Noreste de Brasil) (Universidad de Barcelona, 1999).
    Google Scholar 
    4.Martill, D. M. The geology of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 8–24 (Cambridge University Press, 2007).
    Google Scholar 
    5.Martill, D. M. & Wilby, P. R. Stratigraphy. In Fossils of the Santana and Crato Formations, Brazil (ed. Martill, D. M.) 20–50 (The Palaeontological Association Field Guides to Fossils, 1993).
    Google Scholar 
    6.Heimhofer, U. et al. Deciphering the depositional environment of the laminated Crato fossil beds (Early Cretaceous, Araripe Basin, North-eastern Brazil). Sedimentology 57(2), 677–694. https://doi.org/10.1111/j.1365-3091.2009.01114.x (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Martínez-Delclòs, X., Briggs, D. E. G. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 19–64. https://doi.org/10.1016/S0031-0182(03)00643-6 (2004).Article 

    Google Scholar 
    8.Menon, F. & Martill, D. M. Taphonomy and preservation of Crato Formation arthropods. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 79–96 (Cambridge University Press, 2007).
    Google Scholar 
    9.Martins-Neto, R. G. New mayflies (Insecta, Ephemeroptera) from the Santana Formation (Lower Cretaceous), Araripe Basin, northeastern Brazil. Rev. Esp. Paleontol. 11(2), 177–192 (1996).
    Google Scholar 
    10.Brito, P. M. The Crato Formation fish fauna. In The Crato Fossil Beds of Brazil: Window into an ancient world (eds Martill, D. M. et al.) 429–443 (Cambridge University Press, 2007).
    Google Scholar 
    11.Sinitshenkova, N. D. The Mesozoic mayflies (Ephemeroptera) with special reference to their ecology. In 4th International Conference of Ephemeroptera (eds Landa, V. et al.) 61–66 (Czechoslovak Academy of Science, 1984).
    Google Scholar 
    12.Martill, D. M., Brito, P. M. & Washington-Evans, J. Mass mortality of fishes in the Santana Formation (Lower Cretaceous, Albian) of northeast Brazil. Cretac. Res. 29(4), 649–658. https://doi.org/10.1016/j.cretres.2008.01.012 (2008).Article 

    Google Scholar 
    13.Martins-Neto, R. G. Insetos fósseis como bioindicadores em depósitos sedimentares: um estudo de caso para o Cretáceo da Bacia do Araripe (Brasil). Rev. Bras. Zoociências. 8(2), 155–183 (2006).
    Google Scholar 
    14.Bechly, G. et al. A revision and phylogenetic study of Mesozoic Aeshnoptera, with description of several new families, genera and species (Insecta: Odonata: Anisoptera). Neue Paläontologische Abhandlungen. 4, 1–219 (2001).
    Google Scholar 
    15.Martins-Neto, R. G. & Gallego, O. F. Death behaviour”—Thanatoethology, new term and concept: A taphonomic analysis providing possible paleoethologic inferences. Special cases from arthropods of the santana formation (Lower Cretaceous, Northeast Brazil). Geociências. 25(2), 241–254 (2006).
    Google Scholar 
    16.Osés, G. L. et al. Deciphering the preservation of fossil insects: A case study from the Crato Member, Early Cretaceous of Brazil. PeerJ. 4, e2756. https://doi.org/10.7717/peerj.2756 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Saraiva, A. A. F., Hessel, M. H., Guerra, N. C. & Fara, E. Concreções Calcárias da Formação Santana, Bacia do Araripe: uma proposta de classificação. Estud. Geol. 17(1), 40–58 (2007).
    Google Scholar 
    18.Assine, M. L. Bacia do Araripe. Boletim de Geociências da Petrobras. 15(2), 371–389 (2007).
    Google Scholar 
    19.Neumann, V. H. & Cabrera, L. Una nueva propuesta estratigráfica para la tectonosecuencia post-rifte de la cuenca de Araripe, nordeste de Brasil. Boletim do 5° Simpósio sobre o Cretáceo do Brasil. 279–285 (1999).

    Google Scholar 
    20.Viana, M. S. & Neumann, V. H. L. Membro Crato da Formação Santana, Chapada do Araripe, CE-Riquíssimo registro de fauna e flora do Cretáceo. In Sítios Geológicos e Paleontológicos do Brasil (eds Schobbenhaus, C. et al.) 113–120 (Comissão Brasileira de Sítios Geológicos e Paleobiológicos, 2002).
    Google Scholar 
    21.Staniczek, A. H. Ephemeroptera: Mayflies. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 163–184 (Cambridge University Press, 2007).
    Google Scholar 
    22.Datta, D., Mukherjee, D. & Ray, S. Taphonomic signatures of a new Upper Triassic phytosaur (Diapsida, Archosauria) bonebed from India: Aggregation of a juvenile-dominated paleocommunity. J. Vertebr. Paleontol. 39(6), e1726361 (2020).Article 

    Google Scholar 
    23.Barling, N. The Fidelity of Preservation of Insects from the Crato Formation (Lower Cretaceous) of Brazil (University of Portsmouth, 2018).
    Google Scholar 
    24.Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).
    Google Scholar 
    25.Grande, L. Palaeontology of the Green River Formation, with a Review of the Fish Fauna 2nd edn, Vol. 63, 1–333 (Geological Survey of Wyoming Bulletin, 1984).
    Google Scholar 
    26.McCafferty, W. P. Chapter 2. Ephemeroptera. Bull. Am. Mus. Nat. Hist. 195, 20–50 (1990).
    Google Scholar 
    27.Meshkova, N. P. On nymph Ephemeropsis trisetalis Eichwald (Insecta). Paleontol. Zh. 4, 164–168 (1961).
    Google Scholar 
    28.Polegatto, C. M. & Zamboni, J. C. Inferences regarding the feeding behavior and morphoecological patterns of fossil mayfly nymphs (Insecta Ephemeroptera) from the Lower Cretaceous Santana Formation of northeastern Brazil. Acta. Geol. Leopold. 24, 145–160 (2001).
    Google Scholar 
    29.Bouchard, R. W. Guide to Aquatic Macroinvertebrates of the Upper Midwest (University of Minnesota, 2004).
    Google Scholar 
    30.Tshernova, O. A. On the classification of Fossil and Recent Ephemeroptera. Entomol. Rev. 49, 71–81 (1970).
    Google Scholar 
    31.Braz, F. F. Registro angiospérmico Eocretáceo do Membro Crato, Formação Santana, Bacia do Araripe, NE do Brasil: Interpretações paleoambientais, paleoclimáticas e paleofitogeográficas (Universidade de São Paulo, 2012).
    Google Scholar 
    32.Archibald, S. B. & Makarkin, V. N. Tertiary giant lacewings (Neuroptera: Polystoechotidae): Revision and description of new taxa from western North America and Denmark. J. Syst. Palaeontol. 4, 1–37. https://doi.org/10.1017/S1477201906001817 (2005).Article 

    Google Scholar 
    33.Boyero, L., Cardinale, B. J., Bastian, M. & Pearson, R. G. Biotic vs abiotic control of decomposition: A comparison of the effects of simulated extinctions and changes in temperature. PLoS ONE 9(1), e87426. https://doi.org/10.1371/journal.pone.0087426 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Gall, J. C. Les Voiles Microbiens. Leur Contribution à la Fossilisation des Organismes au Corps Mou. Lethaia 23, 21–28 (1990).Article 

    Google Scholar 
    35.Martill, D. M. Fish oblique to bedding in early diagenetic concretions from the Cretaceous Santana Formation of Brazil e implications for substrate consistency. Palaeontology 41, 1011–1026 (1997).
    Google Scholar 
    36.Iniesto, M. et al. Soft tissue histology of insect larvae decayed in laboratory experiments using microbial mats: Taphonomic comparison with Cretaceous fossil insects from the exceptionally preserved biota of Araripe, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 564, 110156. https://doi.org/10.1016/j.palaeo.2020.110156 (2021).Article 

    Google Scholar 
    37.Kok, M. D., Schouten, S. & Damsté, J. S. S. Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates. Geochim. Cosmochim. Acta. 64, 2689–2699. https://doi.org/10.1016/S0016-7037(00)00382-3 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Kluge, N. J. The Phylogenetic System of Ephemeroptera (Kluwer Academic, 2004). https://doi.org/10.1007/978-94-007-0872-3.
    Google Scholar 
    39.Camp, A. A., Funk, D. H. & Buchwalter, D. B. A stressful shortness of breath: Molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33(3), 695–699. https://doi.org/10.1086/677899 (2014).Article 

    Google Scholar 
    40.Mohr, B. A. R., Bernardes-De-Oliveira, M. E. C. & Loveridge, R. F. The macrophyte flora of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 537–565 (Cambridge University Press, 2007).
    Google Scholar 
    41.Kunzmann, L., Mohr, B. A. R. & Bernardes-De-Oliveira, M. E. C. Gymnosperms from the Early Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis). Foss. Rec. 7, 155–174. https://doi.org/10.1002/mmng.20040070109 (2004).Article 

    Google Scholar 
    42.Mohr, B., Schultka, S., Süss, H. & Bernardes-De Oliveira, M. E. C. A new drought resistant gymnosperm taxon Duartenia araripensis gen. nov. et sp. nov. (Cheirolepidiaceae?) from the Early Cretaceous of Northern Gondwana. Palaeontogr. Abt. B. 289(1–3), 1–25. https://doi.org/10.1127/palb/289/2012/1 (2012).Article 

    Google Scholar 
    43.Bernardes-De-Oliveira, M. E. C. et al. Indicadores Paleoclimáticos na Paleoflora do Crato, final do Aptiano do Gondwana Norocidental. In Paleontologia: Cenários de Vida-Paleoclimas (eds Carvalho, I. S. et al.) 100–118 (Editora Interciência, 2013).
    Google Scholar 
    44.Kershaw, P. & Wagstaff, B. The Southern Conifer Family Araucariaceae: History, status, and value for paleoenvironmental reconstruction. Annu. Rev. Ecol. Syst. 32, 397–414. https://doi.org/10.1146/annurev.ecolsys.32.081501.114059 (2001).Article 

    Google Scholar 
    45.Lima, F. J. et al. Fire in the paradise: Evidence of repeated palaeo-wildfires from the Araripe Fossil Lagerstätte (Araripe Basin, Aptian-Albian), Northeast Brazil. Palaeobio. Palaeoenv. 99, 367–378. https://doi.org/10.1007/s12549-018-0359-7 (2019).Article 

    Google Scholar 
    46.Makarkin, V. N. & Menon, F. New species of the Mesochrysopidae (Insecta, Neuroptera) from the Crato Formation of Brazil (Lower Cretaceous), with taxonomic treatment of the family. Cretac. Res. 26, 801–812. https://doi.org/10.1016/j.cretres.2005.05.009 (2005).Article 

    Google Scholar 
    47.Martill, D. M., Loveridge, R. & Heimhofer, U. Halite pseudomorphs in the Crato Formation (Early Cretaceous, Late Aptian-Early Albian), Araripe Basin, northeast Brazil: Further evidence for hypersalinity. Cretac. Res. 28(4), 613–620. https://doi.org/10.1016/j.cretres.2006.10.003 (2007).Article 

    Google Scholar 
    48.Williams, W. D. Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs. Res. Manag. 4, 85–91. https://doi.org/10.1046/j.1440-1770.1999.00089.x (1999).Article 

    Google Scholar 
    49.Clarke, R. T. & Hering, D. Errors and uncertainty in bioassessment methods, major results and conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566, 433–439. https://doi.org/10.1007/s10750-006-0079-2 (2006).Article 

    Google Scholar 
    50.Williams, W. D. Salinity tolerances of four species of fish from the Murray-Darling River system. Hydrobiologia 210, 145–160 (1991).Article 

    Google Scholar 
    51.Lancaster, J. & Scudder, G. G. E. Aquatic Coleoptera and Hemiptera in some Canadian saline lakes: Patterns in community structure. Can. J. Zool. 65(6), 1383–1390. https://doi.org/10.1139/z87-218 (1987).Article 

    Google Scholar 
    52.Metzeling, L. Benthic macroinvertebrate community structure in streams of different salinities. Mar. Freshw. Res. 44, 335–351. https://doi.org/10.1071/MF9930335 (1993).CAS 
    Article 

    Google Scholar 
    53.Berezina, N. A. Tolerance of freshwater invertebrates to changes in water salinity. Russ. J. Ecol. 34(4), 261–266. https://doi.org/10.1023/A:1024597832095 (2003).Article 

    Google Scholar 
    54.Kefford, B. J., Dalton, A., Palmer, C. G. & Nugegoda, D. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia 517(1–3), 179–192. https://doi.org/10.1023/B:HYDR.0000027346.06304.bc (2004).Article 

    Google Scholar 
    55.Chadwick, M. A., Hunter, H., Feminella, J. W. & Henry, R. P. Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water. Fla. Entomol. 85, 650–651. https://doi.org/10.1653/0015-4040(2002)085[0650:SAWBIH]2.0.CO;2 (2002).Article 

    Google Scholar 
    56.James, K. R., Cant, B. & Ryan, T. Responses of freshwater biota to rising salinity levels and implications for saline water management: A review. Aust. J. Bot. 51(6), 703. https://doi.org/10.1071/BT02110 (2003).CAS 
    Article 

    Google Scholar 
    57.Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).Article 

    Google Scholar 
    58.Hart, B. T., Lake, P. S., Webb, J. A. & Grace, M. R. Ecological risk to aquatic systems from salinity increases. Aust. J. Bot. 51(6), 689. https://doi.org/10.1071/BT02111 (2003).CAS 
    Article 

    Google Scholar 
    59.Bagarinao, T. Systematics, genetics and life history of milkfish, Chanos chanos. Environ. Biol. Fishes. 39, 23–41 (1994).Article 

    Google Scholar 
    60.Davis, S. P. & Martill, D. M. The Gonorynchiform fish Dastilbe from the Lower Cretaceous of Brazil. Palaeontology 42(4), 715–740 (2003).Article 

    Google Scholar 
    61.Jell, P. A. & Duncan, P. M. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra fossil bed (Korumburra group), South Gippsland, Victoria. In Plants and invertebrates from the Lower Cretaceous Koonwarra fossil bed, South Gippsland, Victoria (eds Jell, P. A. & Roberts, J.) 111–205 (Memoir of the Association of Australasian Palaeontologists, 1986).
    Google Scholar 
    62.Ponomarenko, A. G. Fossil insects from the Tithonian ‘Solnhofener Plattenkalke’ in the Museum of Natural History, Vienna. Ann. Naturhist. Mus. Wien. 87, 135–144 (1985).
    Google Scholar 
    63.Zhang, J. & Zhang, H. Insects and spiders. In The Jehol Biota (eds Chang, M. et al.) 59–68 (Shanghai Scientific and Technical Publishers, 2003).
    Google Scholar 
    64.Hellawell, J. & Orr, P. J. Deciphering taphonomic processes in the Eocene Green River Formation of Wyoming. Palaeobiodivers. Palaeoenviron. 93, 353–365. https://doi.org/10.1007/s12549-012-0092-6 (2012).Article 

    Google Scholar 
    65.McGrew, P. O. Taphonomy of Eocene fish from Fossil Basin, Wyoming. Fieldiana Geology. 33, 257–270 (1975).
    Google Scholar 
    66.Krzemiński, W., Soszyńska-Maj, A., Bashkuev, A. S. & Kopeć, K. Revision of the unique Early Cretaceous Mecoptera from Koonwarra (Australia) with description of a new genus and family. Cretac. Res. 52, 501–506. https://doi.org/10.1016/j.cretres.2014.04.004 (2015).Article 

    Google Scholar 
    67.Elder, R. L. & Smith, G. R. Fish taphonomy and environmental inference in Paleolimnology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 62, 577–592 (1988).Article 

    Google Scholar 
    68.Huang, D. Tarwinia australis (Siponaptera: Tarwiniidae) from the Lower Cretaceous Koonwarra fossil bed: Morphological revision and analysis of its evolutionary relationship. Cretac. Res. 52, 507–515 (2015).Article 

    Google Scholar 
    69.Waldman, M. Fish from the freshwater Lower Cretaceous of Victoria, Australia with comments of the palaeo-environment. Spec. Pap. Palaeontol. 9, 1–124 (1971).
    Google Scholar 
    70.Brittain, J. E. & Sartori, M. Ephemeroptera. In Encyclopedia of Insects (eds Resh, V. H. & Cardé, R. T.) 328–334 (Academic Press, 2002).
    Google Scholar 
    71.Bartell, K. W., Swinburne, N. H. M. & Conway-Morris, S. Solnhofen: A Study in Mesozoic Palaeontology (Cambridge University Press, 1990).
    Google Scholar 
    72.Bechly, G. New fossil dragonflies from the Lower Cretaceous Crato Formation of north-east Brazil (Insecta: Odonata). Stuttgarter Beitrage zur Naturkunde. 264, 1–66 (1998).
    Google Scholar 
    73.Fielding, S., Martill, D. M. & Naish, D. Solnhofen-style soft-tissue preservation in a new species of turtle from the Crato Formation (Early Cretaceous, Aptian) of north-east Brazil. Palaeontology 48, 1301–1310. https://doi.org/10.1111/j.1475-4983.2005.00508.x (2005).Article 

    Google Scholar 
    74.Sartori, M. & Brittain, J. E. Order Ephemeroptera. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates (eds Thorp, J. & Rogers, D. C.) 873–891 (Academic Press, 2015).
    Google Scholar 
    75.Chang, M. M., Chen, P. J., Wang, Y. Q., Wang, Y. & Miao, D. S. The Jehol Fossils: TheEmergence of Feathered Dinosaurs, Beaked Birds and Flowering Plants (Academic Press, 2007).
    Google Scholar 
    76.Zhang, X. & Sha, J. Sedimentary laminations in the lacustrine Jianshangou Bed of the Yixian Formation at Sihetun, western Liaoning, China. Cretac. Res. 36, 96–105. https://doi.org/10.1016/j.cretres.2012.02.010 (2012).CAS 
    Article 

    Google Scholar 
    77.Fürsich, F. T., Sha, J., Jiang, B. & Pan, Y. High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 434–457. https://doi.org/10.1016/j.palaeo.2007.06.012 (2007).Article 

    Google Scholar 
    78.Pan, Y., Sha, J. & Fürsich, F. A model for organic fossilization of the Early Cretaceous Jehol Lagerstätte based on the taphonomy of “Ephemeropsis trisetalis”. Palaios 29(7/8), 363–377 (2014).ADS 
    Article 

    Google Scholar 
    79.Upchurch, G. R. & Doyle, J. A. Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In Geobotany II (ed. Romans, R. C.) 167–202 (Plenum, 1981).
    Google Scholar 
    80.Maisey, J. G. A new Clupeomorph fish from the Santana Formation (Albian) of NE Brazil. Am. Mus. Novit. 3076, 1–15 (1993).
    Google Scholar 
    81.Valença, M. M., Neumann, V. H. & Mabesoone, J. M. An overview on Callovian-Cenomanian intracratonic basins of northeast Brazil: Onshore stratigraphic record of the opening of the southern Atlantic. Geol. Acta. 1, 261–275. https://doi.org/10.1344/105.000001614 (2003).Article 

    Google Scholar 
    82.Barling, N., Martill, D. M., Heads, S. W. & Gallien, F. High fidelity preservation of fossil insects from the Crato Formation (Lower Cretaceous) of Brazil. Cretac. Res. 52(B), 605–622. https://doi.org/10.1016/j.cretres.2014.05.007 (2015).Article 

    Google Scholar 
    83.Catto, B., Jahnert, R. J., Warren, L. V., Varejão, F. G. & Assine, M. L. The microbial nature of laminated limestones: lessons from the Upper Aptian, Araripe Basin, Brazil. Sediment. Geol. 341, 304–315. https://doi.org/10.1016/j.sedgeo.2016.05.007 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Warren, L. V. et al. Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil. Facies 63(3), 2016. https://doi.org/10.1007/s10347-016-0484-6 (2017).Article 

    Google Scholar  More