Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes
1.Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.PubMed
PubMed Central
Article
Google Scholar
2.de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020;368:270–4.PubMed
Article
CAS
Google Scholar
3.Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669–78.CAS
Article
Google Scholar
4.Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS
PubMed
Article
Google Scholar
5.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS
PubMed
PubMed Central
Article
Google Scholar
6.Nelson EB. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol. 2004;42:271–309.CAS
PubMed
Article
PubMed Central
Google Scholar
7.Nelson EB. The seed microbiome: origins, interactions, and impacts. Plant Soil Springe Int Publ. 2018;422:7–34.CAS
Article
Google Scholar
8.Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112:E911–20.CAS
PubMed
Article
PubMed Central
Google Scholar
9.Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:81–100.CAS
PubMed
Article
Google Scholar
10.Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.CAS
PubMed
Article
PubMed Central
Google Scholar
11.Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.PubMed
PubMed Central
Article
Google Scholar
12.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115:E1157–65.CAS
PubMed
Article
Google Scholar
14.Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.PubMed
PubMed Central
Article
CAS
Google Scholar
15.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS
PubMed
PubMed Central
Article
Google Scholar
16.Schlaeppi K, Dombrowski N, Oter RG, Ver Loren Van Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.CAS
PubMed
Article
Google Scholar
17.Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17:392–403.CAS
PubMed
PubMed Central
Article
Google Scholar
18.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS
PubMed
Article
Google Scholar
19.Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS
PubMed
Article
Google Scholar
20.Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N Phytol. 2016;209:798–811.CAS
Article
Google Scholar
21.de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed
PubMed Central
Article
CAS
Google Scholar
22.Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2017;50:138–50.PubMed
PubMed Central
Article
CAS
Google Scholar
23.Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms’ journey between plant generations. Microbiome. 2018;6:79.PubMed
PubMed Central
Article
Google Scholar
24.Tobias TB, Farrer EC, Rosales A, Sinsabaugh RL, Suding KN, Porras-Alfaro A. Seed-associated fungi in the alpine tundra: both mutualists and pathogens could impact plant recruitment. Fungal Ecol. 2017;30:10–18.Article
Google Scholar
25.Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7:40–50.Article
Google Scholar
26.Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol. 2017;37:15–22.PubMed
Article
PubMed Central
Google Scholar
27.Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320.PubMed
PubMed Central
Article
Google Scholar
28.Normander BO, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol. 2000;66:4372–7.CAS
PubMed
PubMed Central
Article
Google Scholar
29.Green SJ, Inbar E, Michel FC, Hadar Y, Minz D. Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol. 2006;72:3975–83.CAS
PubMed
PubMed Central
Article
Google Scholar
30.Ofek M, Hadar Y, Minz D. Colonization of cucumber seeds by bacteria during germination. Environ Microbiol. 2011;13:2794–807.PubMed
Article
PubMed Central
Google Scholar
31.OECD-FAO. Agricultural Outlook 2020–2029.32.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Rath KM, Fierer N, Daniel, Murphy V, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2018;13:836–46.PubMed
PubMed Central
Article
CAS
Google Scholar
34.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS
PubMed
Article
PubMed Central
Google Scholar
35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Article
Google Scholar
36.Oliverio A, Holland-Moritz H. dada2 tutorial with MiSeq dataset for Fierer Lab. 2019.37.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS
PubMed
Article
PubMed Central
Google Scholar
38.Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–63.CAS
PubMed
Article
PubMed Central
Google Scholar
39.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS
PubMed
Article
PubMed Central
Google Scholar
40.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2020.41.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2016.42.Becker RA, Wilks AR, Minka TP, Deckmyn A. maps: draw geographical maps. 2018.43.Jari Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R. 2019. p. R package version 2.5-6.44.Rochefort A, Simonin M, Marais C, Guillerm-Erckelboudt A-Y, Barret M, Sarniguet A. Asymmetric outcome of community coalescence of seed and soil microbiota during early seedling growth. bioRxiv. 2020.11.19.390344.45.Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4:e00186–19.PubMed
PubMed Central
Article
Google Scholar
46.Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Software; Vol 1, Issue 2. 2010.47.Douma JC, Weedon JT. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods. Ecol Evol. 2019;10:1412–30.
Google Scholar
48.Kuhn M. caret: classification and regression training. 2020.49.Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.Article
Google Scholar
50.Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol. 2019;4:122–31.PubMed
Article
PubMed Central
Google Scholar
51.Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Aboubacry K. et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European Soils. FEMS Microbiol Ecol. 2016;96:fiaa067Article
CAS
Google Scholar
52.Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes. Sci Rep. 2016;6:25581.CAS
PubMed
PubMed Central
Article
Google Scholar
53.Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84.CAS
PubMed
Article
PubMed Central
Google Scholar
54.Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One. 2012;7:e30438.CAS
PubMed
PubMed Central
Article
Google Scholar
55.Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:201.PubMed
PubMed Central
Article
CAS
Google Scholar
56.Nelson EB, Simoneau P, Barret M. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS
Article
Google Scholar
57.Shmida A, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20.Article
Google Scholar
58.Hannula SE, Kielak AM, Steinauer K, Huberty M, Jongen R, De Long JR, et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. MBio. 2019;10:e02635–19.PubMed
PubMed Central
Article
Google Scholar
59.Jack ALH, Nelson EB. A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil. 2018;422:209–22.CAS
Article
Google Scholar
60.Verma SK, Kharwar RN, White JF. The role of seed-vectored endophytes in seedling development and establishment. Symbiosis. 2019;78:107–13.Article
Google Scholar
61.Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol Evol. 2019;3:1445–54.PubMed
PubMed Central
Article
Google Scholar
62.Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017;15:e2001793.PubMed
PubMed Central
Article
CAS
Google Scholar
63.Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed
PubMed Central
Article
Google Scholar
64.Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed
Article
PubMed Central
Google Scholar
65.Maignien L, DeForce EA, Chafee ME, Murat Eren A, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio. 2014;5:e00682–13.PubMed
PubMed Central
Article
CAS
Google Scholar
66.Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS
PubMed
PubMed Central
Article
Google Scholar
67.Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell. 2018;175:973–83.PubMed
PubMed Central
Article
CAS
Google Scholar
68.Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol. 2018;20:124–40.CAS
PubMed
Article
PubMed Central
Google Scholar More