More stories

  • in

    Finding Nemo’s clock reveals switch from nocturnal to diurnal activity

    1.Thresher, R. E., Colin, P. L. & Bell, L. J. Planktonic duration, distribution and population structure of western and Central Pacific Damselfishes (Pomacentridae). Copeia 420–434, 1989. https://doi.org/10.2307/1445439 (1989).Article 

    Google Scholar 
    2.Leis, J. M. Behaviour as input for modelling dispersal of fish larvae: Behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography. Mar. Ecol. Prog. Ser. 347, 185–194. https://doi.org/10.3354/meps06977 (2007).Article 
    ADS 

    Google Scholar 
    3.Fisher, R., Leis, J. M., Clark, D. L. & Wilson, S. K. Critical swimming speeds of late-stage coral reef fish larvae: Variation within species, among species and between locations. Mar. Biol. 147, 1201–1212. https://doi.org/10.1007/s00227-005-0001-x (2005).Article 

    Google Scholar 
    4.Stobutzki, I. & Bellwood, D. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41. https://doi.org/10.3354/meps149035 (1997).Article 
    ADS 

    Google Scholar 
    5.Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. 104, 858–863. https://doi.org/10.1073/pnas.0606777104 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    6.Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. & Jones, G. P. Local Replenishment of Coral Reef fish populations in a Marine Reserve. Science 316, 742–744. https://doi.org/10.1126/science.1140597 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    7.Jones, G. P., Planes, S. & Thorrold, S. R. Coral Reef Fish Larvae Settle Close to Home. Curr. Biol. 15, 1314–1318. https://doi.org/10.1016/j.cub.2005.06.061 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70, 309–340 (2002).
    Google Scholar 
    9.Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS ONE. https://doi.org/10.1371/journal.pone.0066039 (2013).10.Dufour, V. & Galzin, R. Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Mar. Ecol. Prog. Ser. 102, 143–152. https://doi.org/10.3354/meps102143 (1993).Article 
    ADS 

    Google Scholar 
    11.Holbrook, S. & Schmitt, R. Settlement patterns and process in a coral reef damselfish: In situ nocturnal observations using infrared video. In Proceedings of the 8th International Coral Reef Symposium, Vol. 2, 1143–1148 (1997).12.Leis, J. M. & Carson-Ewart, B. M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fishes 53, 259–266. https://doi.org/10.1023/A:1007424719764 (1998).Article 

    Google Scholar 
    13.Litsios, G. et al. Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evol. Biol. 12, 212. https://doi.org/10.1186/1471-2148-12-212 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bridge, T., Scott, A. & Steinberg, D. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia. Coral Reefs 31, 1057–1062. https://doi.org/10.1007/s00338-012-0916-x (2012).Article 
    ADS 

    Google Scholar 
    15.Mariscal, R. N. Behavior of symbiotic fishes and sea anemones. In Winn, H. E. & Olla, B. L. (eds.) Behavior of Marine Animals, 327–360 (Springer US, 1972). https://doi.org/10.1007/978-1-4684-0910-9_4.16.Tauber, E., Last, K. S., Olive, P. J. & Kyriacou, C. P. Clock gene evolution and functional divergence. J. Biol. Rhythm. 19, 445–458. https://doi.org/10.1177/0748730404268775 (2004).CAS 
    Article 

    Google Scholar 
    17.Emran, F., Rihel, J., Adolph, A. R. & Dowling, J. E. Zebrafish larvae lose vision at night. Proc. Natl. Acad. Sci. 107, 6034–6039. https://doi.org/10.1073/pnas.0914718107 (2010).Article 
    PubMed 
    ADS 

    Google Scholar 
    18.Cahill, G. M., Hurd, M. W. & Batchelor, M. M. Circadian rhythmicity in the locomotor activity of larval zebrafish. NeuroReport 9, 3445–3449. https://doi.org/10.1097/00001756-199810260-00020 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Ceinos, R. M. et al. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2. Sci. Rep. 8, 8754. https://doi.org/10.1038/s41598-018-27080-2 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Frøland Steindal, I. & Whitmore, D. Circadian clocks in fish—What have we learned so far?. Biology 8, 17. https://doi.org/10.3390/biology8010017 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Vatine, G., Vallone, D., Gothilf, Y. & Foulkes, N. S. It’s time to swim! Zebrafish and the circadian clock. FEBS Lett. 585, 1485–1494. https://doi.org/10.1016/j.febslet.2011.04.007 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276. https://doi.org/10.1039/b902763g (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Häder, D.-P., Kumar, H. D., Smith, R. C. & Worrest, R. C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6, 267–285. https://doi.org/10.1039/B700020K (2007).Article 
    PubMed 

    Google Scholar 
    24.Eckes, M., Siebeck, U., Dove, S. & Grutter, A. Ultraviolet sunscreens in reef fish mucus. Mar. Ecol. Prog. Ser. 353, 203–211. https://doi.org/10.3354/meps07210 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    25.Kienzler, A., Bony, S. & Devaux, A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 134–135, 47–56. https://doi.org/10.1016/j.aquatox.2013.03.005 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084 (1984).27.Tan, M. H. et al. Finding Nemo: Hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. GigaScience. https://doi.org/10.1093/gigascience/gix137 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Cavallari, N. et al. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001142 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Vallone, D., Gondi, S. B., Whitmore, D. & Foulkes, N. S. E-box function in a period gene repressed by light. Proc. Natl. Acad. Sci. 101, 4106–4111. https://doi.org/10.1073/pnas.0305436101 (2004).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    30.Vatine, G. et al. Light directs Zebrafish period2 expression via conserved D and E boxes. PLOS Biol. https://doi.org/10.1371/journal.pbio.1000223 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Mracek, P. et al. Regulation of per and cry Genes Reveals a Central Role for the D-Box Enhancer in Light-Dependent Gene Expression. PLOS ONE https://doi.org/10.1371/journal.pone.0051278 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Zhao, H. et al. Modulation of DNA repair systems in blind cavefish during evolution in constant darkness. Curr. Biol. 28, 3229-3243.e4. https://doi.org/10.1016/j.cub.2018.08.039 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Tolimieri, N., Haine, O., Jeffs, A., McCauley, R. & Montgomery, J. Directional orientation of pomacentrid larvae to ambient reef sound. Coral Reefs 23, 184–191. https://doi.org/10.1007/s00338-004-0383-0 (2004).Article 

    Google Scholar 
    34.Fisher, R. & Bellwood, D. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Mar. Ecol. Prog. Ser. 263, 177–188. https://doi.org/10.3354/meps263177 (2003).Article 
    ADS 

    Google Scholar 
    35.Elliott, J. K. & Mariscal, R. N. Ontogenetic and interspecific variation in the protection of anemonefishes from sea anemones. J. Exp. Mar. Biol. Ecol. 208, 57–72. https://doi.org/10.1016/S0022-0981(96)02629-9 (1997).Article 

    Google Scholar 
    36.Fautin, D. G. The anemonefish symbiosis: What is known and what is not. Symbiosis 10, 23–46 (1991).
    Google Scholar 
    37.Di Rosa, V., Frigato, E., López-Olmeda, J. F., Sánchez-Vázquez, F. J. & Bertolucci, C. The light wavelength affects the ontogeny of clock gene expression and activity rhythms in zebrafish larvae. PLOS ONE https://doi.org/10.1371/journal.pone.0132235 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Idda, M. L. et al. Chapter 3—Circadian clocks: Lessons from fish. In Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G. (eds.) The Neurobiology of Circadian Timing, vol. 199 of Progress in Brain Research, 41–57, DOI: https://doi.org/10.1016/B978-0-444-59427-3.00003-4 (Elsevier, 2012).39.Patiño, M. A. L., Rodríguez-Illamola, A., Conde-Sieira, M., Soengas, J. L. & Míguez, J. M. Daily rhythmic expression patterns of Clock1a, Bmal1, and Per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus Mykiss. Chronobiol. Int. 28, 381–389. https://doi.org/10.3109/07420528.2011.566398 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Vera, L. M. et al. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol. Int. 30, 649–661. https://doi.org/10.3109/07420528.2013.775143 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Martín-Robles, A. J., Whitmore, D., Sánchez-Vázquez, F. J., Pendón, C. & Muñoz-Cueto, J. A. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole,Solea senegalensis. J. Comp. Physiol. B 182, 673–685. https://doi.org/10.1007/s00360-012-0653-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Park, J.-G., Park, Y.-J., Sugama, N., Kim, S.-J. & Takemura, A. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J. Comp. Physiol. A 193, 403–411. https://doi.org/10.1007/s00359-006-0194-6 (2007).CAS 
    Article 

    Google Scholar 
    43.Martín-Robles, A. J., Isorna, E., Whitmore, D., Muñoz-Cueto, J. A. & Pendón, C. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 7–15. https://doi.org/10.1016/j.cbpa.2011.01.015 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Whitmore, D., Foulkes, N. S., Strähle, U. & Sassone-Corsi, P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1, 701–707. https://doi.org/10.1038/3703 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685. https://doi.org/10.1126/science.288.5466.682 (2000).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    46.Yagita, K. et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc. Natl. Acad. Sci. 107, 3846–3851. https://doi.org/10.1073/pnas.0913256107 (2010).Article 
    PubMed 
    ADS 

    Google Scholar 
    47.Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655. https://doi.org/10.1210/en.2007-0804 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.del Pozo, A., Montoya, A., Vera, L. M. & Sánchez-Vázquez, F. J. Daily rhythms of clock gene expression, glycaemia and digestive physiology in diurnal/nocturnal European seabass. Physiol. Behav. 106, 446–450. https://doi.org/10.1016/j.physbeh.2012.03.006 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Job, S. & Shand, J. Spectral sensitivity of larval and juvenile coral reef fishes: Implications for feeding in a variable light environment. Mar. Ecol. Prog. Ser. 214, 267–277. https://doi.org/10.3354/meps214267 (2001).Article 
    ADS 

    Google Scholar 
    50.Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719. https://doi.org/10.1111/j.1095-8649.2007.01445.x (2007).Article 

    Google Scholar 
    51.Godwin, J. & Fautin, D. G. Defense of host actinians by anemonefishes. Copeia 902–908, 1992. https://doi.org/10.2307/1446171 (1992).Article 

    Google Scholar 
    52.Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34. https://doi.org/10.1016/j.jembe.2008.11.006 (2009).CAS 
    Article 

    Google Scholar 
    53.Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602. https://doi.org/10.1007/s00227-010-1583-5 (2011).Article 

    Google Scholar 
    54.Verde, E. A., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: Direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429. https://doi.org/10.1007/s00227-015-2768-8 (2015).CAS 
    Article 

    Google Scholar 
    55.da Silva, K. B. & Nedosyko, A. Sea Anemones and Anemonefish: A Match Made in Heaven. In Goffredo, S. & Dubinsky, Z. (eds.) The Cnidaria, Past, Present and Future, 425–438 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-31305-4_27.56.Vallone, D., Santoriello, C., Gondi, S. B. & Foulkes, N. S. Basic protocols for zebrafish cell lines. In Rosato, E. (ed.) Circadian Rhythms: Methods and Protocols, 429–441. https://doi.org/10.1007/978-1-59745-257-1_35 (Humana Press, 2007).57.Dekens, M. P. S., Foulkes, N. S. & Tessmar-Raible, K. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0172038 (2017).58.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).60.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Use R! (Springer, 2009).61.Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythm. 29, 391–400. https://doi.org/10.1177/0748730414553029 (2014).Article 

    Google Scholar 
    62.Kõressaar, T. et al. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938. https://doi.org/10.1093/bioinformatics/bty036 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115. https://doi.org/10.1093/nar/gks596 (2012).64.Kõressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291. https://doi.org/10.1093/bioinformatics/btm091 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).CAS 
    Article 

    Google Scholar 
    66.Wit, P. D. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067. https://doi.org/10.1111/1755-0998.12003 (2012).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    First observation of seasonal variations in the meat and co-products of the snow crab (Chionoecetes opilio) in the Barents Sea

    Collection of crabsMale snow crabs of legal size and with hard shells were caught by the commercial SC vessel Northeastern (Opilio AS) using traditional SC pots in the NEAFC area (N 75° 49.2 E 37° 39.2). SCs were stored live onboard the vessel and subsequently delivered to Nofima’s facilities in Tromsø (N 69° 39). The crabs were caught in June, and September 2016, February, April, and December 2017 and will only be referred to by month. Upon slaughtering, data from individual crabs was obtained by recording the weight of the whole animal, clusters + claws, hemolymph, hepatopancreas, and gills (n = 56 September, n = 45 December, n = 29 February, n = 66 April, n = 50 June). Subsequently, different fractions were pooled and analysed as outlined below.Biochemical- and meat content-analysesThe biochemical analyses were performed on each month of analysis (September, December, February, April, and June) and consisted of water, protein, lipid, and ash contents. All analyses were performed on meat (i.e., main product) and the different co-products divided in the following ways: pooled internal organs (mainly hemolymph, hepatopancreas and gonads) with and without added carapace, hemolymph alone and hepatopancreas alone. Lipid class and fatty acid analyses were performed on the lipid storage organ hepatopancreas. Each biochemical analysis consisted of co-products from 10 randomly selected animals. All biochemical analyses (water-, ash-, lipid and protein-content) were determined by Toslab (9266 Tromsø, Norway), lipid classes and fatty acid identifications were performed by Biolab (5141 Fyllingsdalen, Norway). Both are commercial laboratories accredited according to ISO 17025.Water and dry matter content3–5 g of material was weighed in a marked porcelain crucible. The crucible was placed in a preheated drying cabinet at 103 °C ± 1 °C. After precisely 4 h 30 min, the crucible was allowed to cool down in a desiccator before being weighed. Water and dry matter contents were calculated according to Eqs. (1) and (2) respectively:$$Waterleft(%right)=frac{left(a-bright)}{w}times 100$$
    (1)
    $$Dry;matter;content left(%right)=frac{left(b-cright)}{w}times 100$$
    (2)
    where a = weight (g) of crucible with weighed sample; b = weight (g) of crucible with dried sample; c = weight (g) of crucible; w = weight (g) of weighed sample9.Ash content3–5 g of material was weighed in a marked porcelain crucible. The crucible was placed in a preheated muffle furnace at 550 °C ± 20 °C. After 16 h, the crucible was allowed to cool down in a desiccator before being weighed. The ash content was calculated according to Eq. (3):$$Ash left(%right)=frac{left(d-cright)}{{w}^{^{prime}}}times 100$$
    (3)
    where d = weight (g) of crucible with calcinated sample; c = weight (g) of crucible; w′ =  weight (g) of dry matter sample10.Fat contentThe fat in the samples was extracted with a polar solvent consisting of CHCl3, MeOH and H2O in a mixing ratio of 1:2:0.8 to give a single-phase system. 5–20 g of material was weighed into a 250 ml test tube. H2O was added so that water content plus added material corresponded to 16 ml. MeOH (40 ml) and CHCl3 (20 ml) were added. The mix was homogenized for 60 s. CHCl3 (20 ml) was again added and the mix was homogenized for 30 s H2O (20 ml) was added, and the mix was homogenized again for 30 s. The test tube was sealed and cooled in a water bath with ice. The emulsion was quickly filtered out through a small cotton ball in a funnel. The upper layer of the collected liquid consisting of MeOH and H2O was removed by suction. 5–20 ml of the remaining CHCl3 phase was transferred to a tared evaporation dish with a positive displacement pipette. The solvent was evaporated with an infrared lamp. The dish was cooled in a desiccator and weighed. The fat content was calculated according to the Eq. (4):$$Fat;content left(%right)=frac{dtimes b}{W times left(c-frac{d}{mathrm{0,92}}right)}times 100$$
    (4)
    where b = ml CHCl3 added; c = ml CHCl3 transferred; d = weight of fat in evaporation dish (g); 0.92 = specific gravity for fat, g/ml; w = weight (g) of the sample11.Protein contentProtein content analysis was performed with a fully automated Kjeltec 8400 (Foss Analytics, Denmark). 0.5–1 g of nitrogen free paper of previously dried sample was allowed to be digested in a digestion unit with concentrated H2SO4 (17.5 ml) and two catalyser tablets for 2 h 20 min at 420 °C. The digested liquid was transferred to the titration unit after cooling and was titrated fully automated by the equipment.Blanking was performed only with nitrogen free paper, titration with standardized HCl solution and 1% (w/w) boric acid solution containing a pH sensitive indicator. The protein content was calculated according to the Eq. (5):$$Protein;content left(%right)=frac{mathrm{14,007}times N times f times left(a-bright)}{wtimes 1000}times 100$$
    (5)
    where 14.007 = atomic weight of Nitrogen; N = Normality of the titration solution; f = protein factor (6.25); w = weight (g) of weighed sample; a = ml of HCl consumed for sample titration; b = ml of HCl consumed for blank titration12.
    Cis-fatty acid and trans-fatty acids compositionThis method was designed to determine the fatty acid composition of marine oils and marine oil esters in relative (area-%) values, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in absolute (g/100 g) values using a bonded polyglycol liquid phase in a flexible fused silica capillary column. C23:0 fatty acid was used as an internal standard.For methyl esterification of oil samples for the analysis of cis-fatty acids, two drops of the oil sample were weighed and transferred to a 15 ml test tube with a screw cap. The test amount should be between 20 and 35 mg. Exactly 900 µl of the internal standard solution was added. The solvent was evaporated by nitrogen on a heating block at 80 °C. NaOH solution (1.5 ml, 0.5 N) was added. The mix was incubated in boiling water for 5 min and cooled in cold water. A 15% BF3-solution (2 ml) was added. The mix was again incubated in boiling water for 30 min and cooled to 30–40 °C. Isooctane (1 ml) was added. A cork was set, and the mixture grated with gentle movements for 30 s. Saturated NaCl (5 ml) was added immediately. A cork was set, and the mixture was again grated with gentle movements for 30 s. The isooctane phase was transferred to a test tube with a lid. The test tube was centrifuged at 3000 rpm if phase separation was difficult to achieve. Another 1 ml of isooctane was added to the test tube. A cork was set, and the mixture grated with gentle movements for 30 s. The isooctane phase was transferred to the same test tube with a lid. 5 µl of this transferred isooctane phase was diluted into a new test tube with 1 ml of isooctane.The procedure for methyl esterification of trans-fatty acids was identical to that for methyl esterification of cis-fatty acids, with one exception: incubation time after the addition of BF3-solution was 5 min.For the GC analysis an analytical capillary column (60 m × 0.25 mm × 0.25 µm-70% Cyanopropyl Polysilphenylene-siloxane) was used. (P/N: 054623, manufacturer: SGE). During the analysis the gas valves on the wall panel for synthetic air and hydrogen were left open.Two different GC programs were used for the analysis (Table 1).Table 1 GC-program for analysis of fatty acids.Full size tableThe identification of the different fatty acid methyl esters was performed by comparing the pattern and relative retention times by chromatography of different standards. Empirical response factor was used in quantifying fatty acids, based on calibration solution analysis with equal amounts of included fatty acid methyl esters (GLC-793, Nu-Chek-Prep Inc. Elysian MN, USA). It was calculated according to the Eq. (6):$${RF}_{em }=frac{{A}_{23:0}}{{A}_{FS}}$$
    (6)
    The absolute amount of each fatty acid, calculated as fatty acid methyl ester was calculated according to the Eq. (7):$${C}_{FS}(g/100)=left(frac{{A}_{FS }times {IS}_{W} times {RF}_{em} }{ {A}_{23:0} times W}right)times 100$$
    (7)
    where AFS = Area of the fatty acid A23:0 = Area of internal standard; ISW = Number of milligrams (mg) internal standard added; RFem = Empirical response factor to the fatty acid with reference to 23:0; W = Weighed sample amount in milligrams (mg); 100 = Factor for conversion to g/100 g13,14,15.Lipid classesThe dominant lipid classes were separated by HPLC equipped with a LiChroCART 125-4, diol 5 µm column and a Charged Aerosol Detector (CAD), using a tertiary gradient mobile phase composition. The fat was extracted as previously described (“Fat content”). A suitable amount of CH3Cl was added to the fat sample, the mix was pipetted into a tared test tube and evaporated on a heating block under nitrogen. The temperature of the heating block must be at 60 °C. The test tube with the evaporated sample was weighed and the weight of the fat calculated. The sample was diluted with an appropriate amount of CH3Cl. Prior to injection the CAD detector was programmed with these settings: range = 500, Filter = Med, Offset = 5, T = 30 °C. The gradient profile is shown Table 2.Table 2 Gradient profile for separation of lipid classes.Full size tableThe quantification was based on external standards with a purity ≥ 98%. Triacylglycerols (TAG) in natural marine oils have a large elution range compared to the other lipid classes, therefore a standard control oil (fish oil) for the preparation of the TAG standard curve was used. This provides a better adaptation to real samples compared to a pure TAG compound.Meat contentMeat content was measured on cooked clusters from the middle of the merus on the first walking leg as an area-percentage of meat-to-shell using an elliptic area formula; Internal height and width of shells and external height and width of muscle was measured, width (w) and height (h) were multiplied to each other and π to calculate the elliptical areas (n = 56 September, n = 45 December, n = 29 February, n = 66 April, n = 50 June). The meat content (MC) was defined as the percentage of space occupied by meat according to the Eq. (8) and the hepatopancreas index (HI) was calculated according to the Eq. (9):$$MCleft(%right)=frac{h;muscletimes w;muscletimes pi }{h;shelltimes w;shelltimes pi }times 100$$
    (8)
    $$HIleft(%right)=frac{{W}_{hept}}{{W}_{live}}times 100$$
    (9)
    where Whept is the weight of the hepatopancreas and Wlive is the live weight of the crab (n = 56 September, n = 50 December, n = 70 February, n = 70 April, n = 50 June).Graphs, ordinary one-way ANOVA, and linear regressions were made using GraphPad Prism version 7.03 (CA, USA). Meat content data failed the normality test (Shapiro–Wilk) and was analysed using Kruskal–Wallis One Way Analyses of Variance on Ranks and statistical significance was assumed when P  More

  • in

    Reply to: Old-growth forest carbon sinks overestimated

    1.Gundersen, P. Old-growth forest carbon sinks overestimated. Nature https://doi.org/10.1038/s41586-021-03266-z (2021).2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Yang, Y., Luo, Y. & Finzi, A. C. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol. 190, 977–989 (2011).CAS 
    Article 

    Google Scholar 
    4.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Fontaine, S. et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450, 277–280 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Houlton, B. Z. & Dahlgren, R. A. Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science 62, 58–62 (2018).ADS 
    Article 

    Google Scholar 
    7.Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).CAS 
    Article 

    Google Scholar 
    8.Hyvönen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2006).Article 

    Google Scholar 
    9.Clark, D. A. et al. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecol. Appl. 11, 371–384 (2001).Article 

    Google Scholar 
    10.Wharton, S. & Falk, M. Climate indices strongly influence old-growth forest carbon exchange. Environ. Res. Lett. 11, 044016 (2016).ADS 
    Article 

    Google Scholar 
    11.Campioli, M. et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 7, 13717 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Luyssaert, S. et al. Toward a consistency cross-check of eddy covariance flux-based and biometric estimates of ecosystem carbon balance. Glob. Biogeochem. Cycles 23, https://doi.org/10.1029/2008GB003377 (2009).13.Nord-Larsen, T., Vesterdal, L., Bentsen, N. S. & Larsen, J. B. Ecosystem carbon stocks and their temporal resilience in a semi-natural beech-dominated forest. For. Ecol. Manage. 447, 67–76 (2019).Article 

    Google Scholar 
    14.Kwon, H., Law, B. E., Thomas, C. K. & Johnson, B. G. The influence of hydrological variability on inherent water use efficiency in forests of contrasting composition, age, and precipitation regimes in the Pacific Northwest U.S. Agric. For. Meteorol. 249, 488–500 (2018).ADS 
    Article 

    Google Scholar 
    15.Law, B. E. & Berner, L. T. NACP TERRA-PNW: Forest Plant Traits, NPP, Biomass, and Soil Properties 1999–2014 https://doi.org/10.3334/ORNLDAAC/1292 (ORNL DAAC, 2015).16.Falk, M., Wharton, S., Schroeder, M., Ustin, S. L. & Paw, U. K. T. Flux partitioning in an old-growth forest: seasonal and interannual dynamics. Tree Physiol. 28, 509–520 (2008).CAS 
    Article 

    Google Scholar 
    17.FLUXNET2015 Dataset: Data Processing https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/ (Fluxnet, accessed 25 April 2020).18.Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).ADS 
    Article 

    Google Scholar 
    19.Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849–851 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Zhou, G. et al. Old-growth forests can accumulate carbon in soils. Science 314, 1417–1417 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Chang. 3, 792–796 (2013).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    A trade-off between plant and soil carbon storage under elevated CO2

    1.Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 

    Google Scholar 
    2.Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Keenan, T. et al. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat. Commun. 7, 13428 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Baig, S., Medlyn, B. E., Mercado, L. M. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).ADS 

    Google Scholar 
    5.Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    6.Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344, 508 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 

    Google Scholar 
    9.Todd-Brown, K. E. O. et al. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences 11, 2341–2356 (2014).ADS 
    CAS 

    Google Scholar 
    10.Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).ADS 
    CAS 

    Google Scholar 
    11.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6, 751–758 (2016).ADS 

    Google Scholar 
    12.Terrer, C. et al. Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 9, 684–689 (2019).ADS 
    CAS 

    Google Scholar 
    13.Reich, P. B., Hungate, B. A. & Luo, Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. Syst. 37, 611–636 (2006).
    Google Scholar 
    14.Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. 42, 181–203 (2011).
    Google Scholar 
    15.Terrer, C. et al. Ecosystem responses to elevated CO2 governed by plant–soil interactions and the cost of nitrogen acquisition. New Phytol. 217, 507–522 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Olson, J. S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).
    Google Scholar 
    17.Hungate, B. A. et al. Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta‐analyses. Glob. Change Biol. 15, 2020–2034 (2009).ADS 

    Google Scholar 
    18.Kuzyakov, Y., Horwath, W. R., Dorodnikov, M. & Blagodatskaya, E. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles. Soil Biol. Biochem. 128, 66–78 (2019).CAS 

    Google Scholar 
    19.Tian, H. et al. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions. Glob. Biogeochem. Cycles 29, 775–792 (2015).ADS 
    CAS 

    Google Scholar 
    20.Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).ADS 

    Google Scholar 
    21.Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta‐analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).
    Google Scholar 
    22.Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).CAS 

    Google Scholar 
    23.Treseder, K. K. A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).
    Google Scholar 
    24.Jastrow, J. D. et al. Elevated atmospheric carbon dioxide increases soil carbon. Glob. Change Biol. 11, 2057–2064 (2005).ADS 

    Google Scholar 
    25.Carrillo, Y., Dijkstra, F. A., LeCain, D. & Pendall, E. Mediation of soil C decomposition by arbuscular mycorrizhal fungi in grass rhizospheres under elevated CO2. Biogeochemistry 127, 45–55 (2016).CAS 

    Google Scholar 
    26.Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).CAS 

    Google Scholar 
    27.Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).ADS 

    Google Scholar 
    28.Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).ADS 
    CAS 

    Google Scholar 
    29.Craig, M. E. et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Change Biol. 24, 3317–3330 (2018).ADS 

    Google Scholar 
    30.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).
    Google Scholar 
    32.Sokol, N. W., Kuebbing, S. E., Karlsen‐Ayala, E. & Bradford, M. A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon. New Phytol. 221, 233–246 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Evans, R. D. et al. Greater ecosystem carbon in the Mojave Desert after ten years exposure to elevated CO2. Nat. Clim. Chang. 4, 394–397 (2014).ADS 
    CAS 

    Google Scholar 
    34.Walker, A. P. et al. FACE-MDS Phase 2: Model Output https://www.osti.gov/dataexplorer/biblio/dataset/1480327 (2018).35.Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).ADS 

    Google Scholar 
    36.Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Glob. Biogeochem. Cycles 33, 501–523 (2019).ADS 
    CAS 

    Google Scholar 
    37.Shi, M., Fisher, J. B., Brzostek, E. R. & Phillips, R. P. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model. Glob. Change Biol. 22, 1299–1314 (2016).ADS 

    Google Scholar 
    38.Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    40.Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3, 909–912 (2013).ADS 
    CAS 

    Google Scholar 
    41.Terrer, C. Report of Mutualistic Associations, Nutrients, and Carbon Under eCO2 (ROMANCE) v1.0 Dataset. https://doi.org/10.6084/m9.figshare.11704491.v7 (2020).42.Dieleman, W. I. J. et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).ADS 

    Google Scholar 
    43.Borenstein, M., Hedges, L. V., Higgins, J. P. T. & Rothstein, H. R. in Introduction to Meta‐Analysis 225–238 (John Wiley & Sons, 2009).44.Del Re, A. C. & Hoyt, W. T. MAd: meta-analysis with mean differences. R Package Version 08-2 https://cran.r-project.org/package=MAd (2014).45.Song, J. & Wan, S. A Global Database Of Plant Production And Carbon Exchange From Global Change Manipulative Experiments https://doi.org/10.6084/m9.figshare.7442915.v9 (2020).46.Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, https://doi.org/10.18637/jss.v036.i03 (2010).47.Osenberg, C. W., Sarnelle, O., Cooper, S. D. & Holt, R. D. Resolving ecological questions through meta-analysis: goals, metrics, and models. Ecology 80, 1105–1117 (1999).
    Google Scholar 
    48.Rubin, D. B. & Schenker, N. Multiple imputation in health‐are databases: an overview and some applications. Stat. Med. 10, 585–598 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Lajeunesse, M. J. Facilitating systematic reviews, data extraction and meta‐analysis with the METAGEAR package for R. Methods Ecol. Evol. 7, 323–330 (2016).
    Google Scholar 
    50.Van Lissa, C. J. MetaForest: exploring heterogeneity in meta-analysis using random forests. Preprint at https://psyarxiv.com/myg6s/ (2017).51.Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, https://doi.org/10.18637/jss.v028.i05 (2008).52.Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, https://doi.org/10.18637/jss.v034.i12 (2010).53.van Groenigen, K. J. et al. Element interactions limit soil carbon storage. Proc. Natl Acad. Sci. USA 103, 6571–6574 (2006).ADS 

    Google Scholar 
    54.Wang, B. & Qiu, Y. L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16, 299–363 (2006).CAS 

    Google Scholar 
    55.Maherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K. & McGlinn, D. J. Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am. Nat. 188, E113–E125 (2016).
    Google Scholar 
    56.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).ADS 
    CAS 

    Google Scholar 
    57.Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Chang. 5, 528–534 (2015).ADS 

    Google Scholar 
    58.Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free‐Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.De Kauwe, M. G. et al. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites. New Phytol. 203, 883–899 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    60.Walker, A. P. et al. Comprehensive ecosystem model‐data synthesis using multiple data sets at two temperate forest free‐air CO2 enrichment experiments: model performance at ambient CO2 concentration. J. Geophys. Res. Biogeosci. 119, 937–964 (2014).ADS 
    CAS 

    Google Scholar 
    61.Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO2 enrichment. Nat. Commun. 10, 454 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Schlesinger, W. et al. in Managed Ecosystems and CO2 197–212 (2006).63.Hungate, B. A. et al. Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland. New Phytol. 200, 753–766 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Jordan, D. N. et al. Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO2 Enrichment (FACE) Facility. Glob. Change Biol. 5, 659–668 (1999).ADS 

    Google Scholar 
    65.Carrillo, Y., Dijkstra, F., LeCain, D., Blumenthal, D. & Pendall, E. Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Ecol. Lett. 21, 1639–1648 (2018).
    Google Scholar 
    66.Mueller, K. E. et al. Impacts of warming and elevated CO2 on a semi‐arid grassland are non‐additive, shift with precipitation, and reverse over time. Ecol. Lett. 19, 956–966 (2016).CAS 

    Google Scholar 
    67.Zak, D. R., Pregitzer, K. S., Kubiske, M. E. & Burton, A. J. Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade‐long net primary productivity enhancement by CO2. Ecol. Lett. 14, 1220–1226 (2011).
    Google Scholar 
    68.Oleson, K. et al. Technical Description of Version 4.5 of the Community Land Model (CLM) Report NCAR/TN-503+STR, https://doi.org/10.5065/D6RR1W7M (2013).69.Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description—Part 2: Carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).ADS 

    Google Scholar 
    70.Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2003GB002199 (2005).71.Haverd, V. et al. A new version of the CABLE land surface model (subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).ADS 
    CAS 

    Google Scholar 
    72.Lawrence, D. M. et al. The Community Land Model Version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 

    Google Scholar 
    73.Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).ADS 
    CAS 

    Google Scholar 
    74.Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).ADS 

    Google Scholar 
    75.Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 

    Google Scholar 
    76.Friedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).ADS 

    Google Scholar 
    77.Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    78.Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    80.Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68 (2016).ADS 
    CAS 

    Google Scholar 
    81.Shangguan, W., Dai, Y., Duan, Q., Liu, B. & Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 6, 249–263 (2014).ADS 

    Google Scholar  More

  • in

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    In a paper in Nature, Terrer et al.1 reveal an unexpected trade-off between the effects of rising atmospheric carbon dioxide levels on plant biomass and on stocks of soil carbon. Contrary to the assumptions encoded in most computational models of terrestrial ecosystems, the accrual of soil carbon is not positively related to the amount of carbon taken up by plants for biomass growth when CO2 concentrations increase. Instead, the authors show that carbon accumulates in soils when there is a small boost in plant biomass growth in response to CO2, and declines when the growth of biomass is high. Terrer et al. propose that associations of plants with mycorrhizal soil fungi are a key factor in this relationship between the above- and below-ground responses to elevated CO2 levels.
    Read the paper: A trade-off between plant and soil carbon storage under elevated CO2
    Rising levels of atmospheric CO2 are thought to have driven an increase in the amount of carbon absorbed globally by land ecosystems over the past few decades, a phenomenon known as the CO2 fertilization effect2. This occurs because, at the scale of leaves, higher CO2 levels enhance photosynthesis and the efficiency with which resources (water, light and nutrients such as nitrogen) are used to assimilate CO2 and support biomass growth3. Evidence supporting the existence of the CO2 fertilization effect has been observed in experiments in which the atmosphere around plants or plant communities is enriched with CO2. But at the level of whole ecosystems, responses to CO2 enrichment are more difficult to track, because the effects are diluted throughout a chain of connected processes. Constraining estimates of the response of the global land carbon sink to rising CO2 levels therefore remains a major challenge (see go.nature.com/3vgvhj).Changes in soil carbon are inherently difficult to detect, and studies that assess the effects of elevated CO2 levels on soil-carbon stocks have been equivocal4. Terrer and colleagues set out to investigate these effects by carrying out a meta-analysis of 108 CO2-enrichment experiments. The authors estimate that, in these studies, soil-carbon stocks increased in non-forest sites but remained almost unchanged in forests. By evaluating the effects of multiple environmental variables, the authors found that, surprisingly, the best explanation for the observed patterns is that the changes in soil carbon stocks are inversely related to the changes in above-ground plant biomass: high accumulation of carbon in biomass was associated with soil-carbon loss, whereas low biomass accumulation was associated with soil-carbon gain. This relationship was evident only in experiments in which no nutrients had been added to the studied systems, leading the authors to propose that plant nutrient-acquisition strategies are responsible — which, in turn, depend on the mycorrhizal soil fungi associated with the plants.
    Soils linked to climate change
    A previous study reported5 that only a small increase in above-ground biomass occurs in CO2-enriched plants that associate with a particular family of mycorrhizae (arbuscular mycorrhizae; AM). AM-associated plants benefit from the fungi’s extensive network of hyphae (branching filaments that aid vegetative growth), which support the plants’ uptake of nitrogen from the soil solution. However, AM have only a limited ability to ‘mine’ nitrogen from organic matter in the soil. The availability of soil nitrogen therefore limits the increase of biomass growth of AM-associated plants in response to elevated CO2 levels. By contrast, plant species that associate with a different group of soil fungi (the ectomycorrhizae; ECM) exhibit a greater increase in above-ground biomass in CO2-enrichment studies, because some of their carbon is allocated to ECM that can mine for nitrogen5. Mining for nutrients by ECM is, however, thought to accelerate the decomposition of organic matter in soil.Terrer et al. now find that AM-associated plants produce a bigger increase in soil-carbon stocks in CO2-enrichment experiments than do ECM-associated plants. The authors suggest that this is because AM-associated plants allocate more carbon to fine roots and to compounds exuded by the roots, resulting in soil-carbon accrual (Fig. 1a). By contrast, nutrient acquisition by ECM-associated plants results in increased turnover — and therefore loss — of soil organic matter (Fig. 1b). Overall, this would lead to an ecosystem-scale trade-off between the amount of carbon sequestered in plants and that sequestered in soil, in a CO2-enriched atmosphere.

    Figure 1 | Proposed effects of elevation of atmospheric carbon dioxide levels. Terrer et al.1 suggest that associations of plants with different types of mycorrhizal soil fungi affect plant and soil responses to increases in atmospheric carbon dioxide levels. a, Plants that associate with arbuscular mycorrhizal fungi (grasses and some trees, in this study) do not ‘mine’ nitrogen (N, a nutrient) from the soil, and therefore do not produce much extra above-ground biomass when CO2 levels rise. Instead, they allocate carbon to fine roots and to root-exuded substances, resulting in soil-carbon accrual. Carbon dioxide produced from the respiration of soil microorganisms returns carbon to the atmosphere. b, Plants that associate with ectomycorrhizal fungi (only trees in this study) mine the soil for nitrogen, the uptake of which supports a bigger increase in biomass growth than in a. However, nutrient mining increases the rate of decomposition of organic matter in soil. The amount of carbon in the soil therefore decreases in response to elevated CO2 levels; microbial soil respiration is greater than in a.

    Most Earth-system models that account for land carbon-cycling processes assume that rising levels of atmospheric CO2 will increase plant growth, thus producing more plant litter and thereby increasing stocks of soil carbon6. The authors compared the changes in soil carbon and above-ground plant biomass predicted by various models, both in simulations of six open-air CO2-enrichment experiments, and in global simulations of historical and future increases in atmospheric CO2. None of the models reproduced the negative relationship between carbon sequestration by soil and growth in plant biomass that was observed in the current study.Terrer and co-workers’ findings thus provide another urgent warning that current climate models overestimate the amount of carbon that will be sequestered by land ecosystems as atmospheric CO2 levels increase — not only because the models largely ignore the effects of nutrient limitations, but also because they overestimate the amount of carbon that could be sequestered in soil, particularly in forest ecosystems7. But the new study also reveals that grasslands, shrublands and other ecosystems that already have high soil-carbon stocks have great potential to accumulate more soil carbon as CO2 levels increase. These results thus add weight to previous calls to protect existing soil-carbon stocks to mitigate the effects of climate change8.
    Carbon dioxide loss from tropical soils increases on warming
    There are some limitations to the set of CO2-enrichment experiments included in Terrer and colleagues’ meta-analysis. The experiments are biased towards temperate systems, and most of the forests studied are associated with ECM, whereas the grasslands are all AM-associated. The authors did not find that the type of ecosystem had a substantial effect on the observed responses to CO2, but it remains to be seen whether the reported trade-off between above- and below-ground carbon sequestration for AM- compared with ECM-associated plants applies to forests alone9. Further experiments, especially in tropical ecosystems, are now needed to address these issues.Tropical ecosystems are large contributors to the global terrestrial carbon sink10, but they are notoriously under-studied. Field observations are scarce and few manipulation experiments — such as CO2 enrichment or nutrient additions — have been carried out in these ecosystems11,12. Below-ground processes are particularly challenging to assess in the tropics, where the effects of multiple nutrient scarcities often come into play12. Terrer and colleagues’ study provides a promising framework that can be elaborated to describe diverse plant–soil interactions in various terrestrial ecosystems in the future.CO2-enrichment experiments generally last for just a few years, or just over a decade at most13. Such timescales are unlikely to capture the effects of elevated CO2 levels on plant mortality, plant-species composition and soil-carbon turnover time, all of which can affect the sequestration of carbon by ecosystems in different ways in the longer term. Mechanistic understanding gained from experiments about the coupling between carbon and nutrient cycling can, however, be integrated into computational models. And this will allow us to constrain estimates of the size of the terrestrial carbon sink in the coming decades. The interactions between plants and their associated soil fungi, as well as other crucial below-ground agents and processes such as microbial communities, are already stirring up modelling efforts14,15. Terrer and colleagues’ study now invites researchers to test hypotheses about the processes that drive coordinated above- and below-ground responses to rising CO2 levels. Such studies could be a real step forwards in our understanding of the fate of the terrestrial carbon sink. More

  • in

    Old-growth forest carbon sinks overestimated

    1.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).5.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    6.Global Soil Organic Carbon Map (GSOCmap) Technical Report http://www.fao.org/3/I8891EN/i8891en.pdf (FAO/ITPS, 2018).7.Belyea, L. R. & Malmer, N. Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Glob. Change Biol. 10, 1043–1052 (2004).ADS 
    Article 

    Google Scholar 
    8.Zhang, J. et al. C:N:P stoichiometry in China’s forests: from organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).Article 

    Google Scholar 
    9.Fang, Y. et al. Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems. J. For. Res. 16, 341–350 (2011).CAS 
    Article 

    Google Scholar 
    10.Fenn, M. E. et al. Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol. Appl. 8, 706–733 (1998).Article 

    Google Scholar 
    11.MacDonald, J. A. et al. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob. Change Biol. 8, 1028–1033 (2002).ADS 
    Article 

    Google Scholar 
    12.Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycles 20, GB4003 (2006).ADS 
    Article 

    Google Scholar 
    13.Yang, Y., Luo, Y. & Finzi, A. C. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol. 190, 977–989 (2011).CAS 
    Article 

    Google Scholar 
    14.Moffat, A. M. et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric. For. Meteorol. 147, 209–232 (2007).ADS 
    Article 

    Google Scholar 
    15.Wu, J. et al. Synthesis on the carbon budget and cycling in a Danish, temperate deciduous forest. Agric. For. Meteorol. 181, 94–107 (2013).ADS 
    Article 

    Google Scholar 
    16.Soloway, A. D., Amiro, B. D., Dunn, A. L. & Wofsy, S. C. Carbon neutral or a sink? Uncertainty caused by gap-filling long-term flux measurements for an old-growth boreal black spruce forest. Agric. For. Meteorol. 233, 110–121 (2017).ADS 
    Article 

    Google Scholar 
    17.McHugh, I. D. et al. Interactions between nocturnal turbulent flux, storage and advection at an “ideal” eucalypt woodland site. Biogeosciences 14, 3027–3050 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Campioli, M. et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nat. Commun. 7, 13717 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Kang, M. et al. New gap-filling strategies for long-period flux data gaps using a data-driven approach. Atmosphere 10, 568 (2019).ADS 
    Article 

    Google Scholar 
    20.Hayek, M. N. et al. A novel correction for biases in forest eddy covariance carbon balance. Agric. For. Meteorol. 250–251, 90–101 (2018).ADS 
    Article 

    Google Scholar 
    21.Wirth, C., Messier, C., Bergeron, Y., Frank, D. & Fankhänel, A. Old-growth forest definitions: a pragmatic view. In Old‐Growth Forests (eds Wirth, C. et al.) Ecological Studies Vol. 207, 1–33 (Springer, 2009).22.Luyssaert, S., Inglima, I. & Jung, M. Global Forest Ecosystem Structure and Function Data for Carbon Balance Research https://doi.org/10.3334/ORNLDAAC/949 (Oak Ridge National Laboratory Distributed Active Archive Center, 2009). More

  • in

    Revisiting the rules of life for viruses of microorganisms

    1.Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).Article 

    Google Scholar 
    2.Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F. & Gordon, J. I. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 10, 607–617 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Vega Thurber, R. L., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus-host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017).Article 
    CAS 

    Google Scholar 
    8.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. Bioscience 49, 781–788 (1999). Seminal work modelling how viral activity in the oceans prevents up to a quarter of organic matter from being exported to higher trophic levels; instead, this matter is recycled (by viral lysis) into a form that can be assimilated by microorganisms.Article 

    Google Scholar 
    10.Calendar, R. L. The Bacteriophages 2nd edn (Oxford University Press, 2005).11.Sullivan, M. B., Weitz, J. S. & Wilhelm, S. W. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).PubMed 
    Article 

    Google Scholar 
    12.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    13.Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). An in silico catalogue of the diversity of viruses on Earth that serves as the foundation for the Joint Genome Institute’s growing IMG/VR database.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Stough, J. M. A. et al. Diversity of active viral infections within the Sphagnum microbiome. Applied Environ. Microbiol. https://doi.org/10.1128/AEM.01124-18 (2018).Article 

    Google Scholar 
    16.Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e1114 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01801 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    19.Roux, S. A viral ecogenomics framework to uncover the secrets of nature’s “microbe whisperers”. mSystems 4, e00111–e00119 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘lytic or lysogenic’. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw047 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing economy. EMBO Reports 20, e47427 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.McLeod, S. M., Kimsey, H. H., Davis, B. M. & Waldor, M. K. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol. Microbiol. 57, 347–356 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Holmfeldt, K. et al. Large‐scale maps of variable infection efficiencies in aquatic Bacteroidetes phage‐host model systems. Environ. Microbiol. 18, 3949–3961 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1906897116 (2019). A meticulous investigation revealing that cyanobacteria defend against specialist phages by blocking their entry, whereas generalist phage infections are arrested intracellularly; thus generalist phages may be more common agents of horizontal gene transfer and co-infection.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lwoff, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Abedon, S. T. The murky origin of Snow White and her T-even dwarfs. Genetics 155, 481–486 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Demerec, M. & Fano, U. Bacteriophage-resistant mutants in Escherichia coli. Genetics 30, 119–136 (1945).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bronfenbrenner, J. J. & Korb, C. Studies on the bacteriophage of d’Herelle: I. Is the lytic principle volatile? J. Exp. Med. 41, 73–79 (1925).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Kourilsky, P. & Knapp, A. Lysogenization by bacteriophage lambda: III. – Multiplicity dependent phenomena occuring upon infection by lambda. Biochimie 56, 1517–1523 (1975).Article 

    Google Scholar 
    36.St-Pierre, F. & Endy, D. Determination of cell fate selection during phage lambda infection. Proc. Natl Acad. Sci. USA 105, 20705 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010). Re-examination of the phage λ decision switch via single-cell tracking of infection fates, revealing how increasing cellular multiplicity of infection increases the stochastic tendency towards lysogeny after infection.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Trinh, J. T., Székely, T., Shao, Q., Balázsi, G. & Zeng, L. Cell fate decisions emerge as phages cooperate or compete inside their host. Nat. Commun. 8, 14341 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Joh, R. I. & Weitz, J. S. To lyse or not to lyse: Transient-mediated stochastic fate determination in cells infected by bacteriophages. PLOS Comput. Biol. 7, e1002006 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Fillol-Salom, A. et al. Bacteriophages benefit from generalized transduction. PLOS Pathog. 15, e1007888 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Howard-Varona, C. et al. Fighting fire with fire: phage potential for the treatment of E. coli O157 infection. Antibiotics 7, 101 (2018).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    42.Pratama, A. A. & van Elsas, J. D. A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Sci. Rep. 7, 9156 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Jiang, S. C. & Paul, J. H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar. Ecol. Prog. Ser. 104, 163–172 (1994).Article 

    Google Scholar 
    44.Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016). Demonstration that lysogenic activity is favoured in low-productivity polar months (and lytic activity is favoured in high-productivity months), providing support for decades-old ecological hypotheses on the link between abiotic factors and viral strategies.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Vega Thurber, R. L. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front. Microbiol. 7, 127 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Lawrence, S. A., Davy, J. E., Aeby, G. S., Wilson, W. H. & Davy, S. K. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs 33, 687–691 (2014).Article 

    Google Scholar 
    49.Lawrence, S. A., Floge, S. A., Davy, J. E., Davy, S. K. & Wilson, W. H. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ. Microbiol. 19, 3909–3919 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).Article 

    Google Scholar 
    51.Ptashne, M. et al. How the λ repressor and cro work. Cell 19, 1–11 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Warwick-Dugdale, J., Buchholz, H. H., Allen, M. J. & Temperton, B. Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol. 16, 15 (2019).Article 

    Google Scholar 
    53.Silpe, J. E. & Bassler, B. L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176, 268–280.e213 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488 (2017). Demonstration that viruses can ‘communicate’ to decide between lysis and lysogeny by co-opting a host system: extracellular release of small peptides.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Stokar-Avihail, A., Tal, N., Erez, Z., Lopatina, A. & Sorek, R. Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria. Cell Host Microbe 25, 746–755 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Tan, D. et al. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. ISME J. 14, 1731–1742 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Pleška, M., Lang, M., Refardt, D., Levin, B. R. & Guet, C. C. Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat. Ecol. Evol 2, 359–366 (2018).PubMed 
    Article 

    Google Scholar 
    60.Güemes, A. G. C. et al. Viruses as winners in the game of life. Annu. Rev. Virol. 3, 197–214 (2016).Article 
    CAS 

    Google Scholar 
    61.Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984). A seminal article that lays out key pressure points that should dictate temperate phage biology.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Lipsitch, M., Siller, S. & Nowak, M. A. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50, 1729–1741 (1996).PubMed 
    Article 

    Google Scholar 
    63.Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. https://doi.org/10.1093/ve/vez006 (2019). Theoretical study that examines the impact of ecological factors on the proliferation of viruses, enabled by a cell-centric (rather than a particle-centric) view of viral invasion fitness.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Li, G., Cortez, M. H., Dushoff, J. & Weitz, J. S. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol. https://doi.org/10.1093/ve/veaa042 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLOS Pathog. 9, e1003209 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Wahl, L. M., Betti, M. I., Dick, D. W., Pattenden, T. & Puccini, A. J. Evolutionary stability of the lysis-lysogeny decision: Why be virulent? Evolution 73, 92–98 (2019).CAS 
    PubMed 

    Google Scholar 
    68.Coy, S. R., Alsante, A. N., Van Etten, J. L. & Wilhelm, S. W. Cryopreservation of Paramecium bursaria Chlorella virus-1 during an active infection cycle of its host. PLoS ONE 14, e0211755 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Godfrey-Smith, P. in Individuals Across the Sciences (eds Guay, A. & T. Pradeu, T.) (Oxford University Press, 2015).70.Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233 (2013). Proposes the virocell concept, which argues that a given cell represents distinct entities when infected versus uninfected by a virus, providing a non-lytic mechanism by which viruses can significantly alter biogeochemical cycles.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Rosenwasser, S., Ziv, C., van Creveld, S. G. & Vardi, A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Forterre, P. (ed.) Virocell Concept, The. In eLS https://doi.org/10.1002/9780470015902.a0023264 (2012).74.Diekmann, O., Heesterbeek, H. & Britton, T. Mathematical Tools for Understanding Infectious Disease Dynamics. 1st edn, 517 (Princeton University Press, 2012).75.Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Diekmann, O., Heesterbeek, J. A. P. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.van den Driessche, P. & Watmough, J. in Mathematical Epidemiology. Lecture Notes in Mathematics Vol. 1945 (eds Brauer, F., van den Driessche, P. & Wu, J.) 159–178 (Springer, 2008).78.Gandon, S., Day, T., Metcalf, C. J. E. & Grenfell, B. T. Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends Ecol. Evol. 31, 776–788 (2016).PubMed 
    Article 

    Google Scholar 
    79.Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197, 410 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Obeng, N., Pratama, A. A. & Elsas, J. D. V. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symposia Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    84.Taylor, V. L., Fitzpatrick, A. D., Islam, Z. & Maxwell, K. L. The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103, 1–31 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Hendrix, R. W., Lawrence, J. G., Hatfull, G. F. & Casjens, S. The origins and ongoing evolution of viruses. Trends Microbiol. 8, 504–508 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: early pioneer and still relevant. Virology 479-480, 310–330 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Fortier, L. C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354–365 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays 39, 1700112 (2017).Article 

    Google Scholar 
    89.Berngruber, T. W., Weissing, F. J. & Gandon, S. Inhibition of superinfection and the evolution of viral latency. J. Virol. 4, 10200–10208 (2010).Article 
    CAS 

    Google Scholar 
    90.Susskind, M. M., Botstein, D. & Wright, A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium: III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology 62, 350–366 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15, 145–152 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Díaz-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.Weitz, J. S., Beckett, S. J., Brum, J. R., Cael, B. B. & Dushoff, J. Lysis, lysogeny and virus-microbe ratios. Nature 549, E1–E3 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Knowles, B. & Rohwer, F. Knowles & Rohwer reply. Nature 549, E3–E4 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Wagner, P. L. & Waldor, M. K. Bacteriophage control of bacterial virulence. Infect. Immun. 70, 3985–3993 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Erickson, A. K. et al. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 23, 77–88.e75 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Davies, E. V., Winstanley, C., Fothergill, J. L. & James, C. E. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw015 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    101.Schroven, K., Aertsen, A. & Lavigne, R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa041 (2020).Article 

    Google Scholar 
    102.Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Matsuda, M. & Barksdale, L. Phage-directed synthesis of diphtherial toxin in non-toxinogenic Corynebacterium diphtheriae. Nature 210, 911–913 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.O’Brien, A. D. et al. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226, 694 (1984).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Gerlach, D. et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563, 705–709 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550.e545 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    107.Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & Van Oppen, M. J. H. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Menouni, R., Hutinet, G., Petit, M. A. & Ansaldi, M. Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiol. Lett. 362, 1–10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012). Demonstrates that temperate virus infections (including those derived from distinct, spatially separated prophage elements) can ‘make winners’ out of their hosts by providing the hosts with competitive advantages.CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Gama, J. A. et al. Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS ONE https://doi.org/10.1371/journal.pone.0059043 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    112.Davies, E. V. et al. Temperate phages enhance pathogen fitness in chronic lung infection. ISME J. 10, 2553–2555 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Bossi, L., Fuentes, J. A., Mora, G. & Figueroa-Bossi, N. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185, 6467–6471 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Basso, J. T. R. et al. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. ISME J. 14, 1688–1700 (2020). Demonstrates that two genetically similar, but incompatible, temperate phages that lysogenize the same Roseobacter host can impart distinct physiological traits on that host; thus, each makes its host ‘the winner’ under different environmental conditions.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Li, X. Y. et al. Temperate phages as self-replicating weapons in bacterial competition. J. R. Soc. Interface https://doi.org/10.1098/rsif.2017.0563 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    116.Weitz, J. S. et al. Phage-bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Dang, V., Howard-Varona, C., Schwenck, S. & Sullivan, M. B. Variably lytic infection dynamics of large Bacteroidetes podovirus phi38:1 against two Cellulophaga baltica host strains. Environ. Microbiol. 17, 4659–4671 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Holmfeldt, K., Howard-Varona, C., Solonenko, N. & Sullivan, M. B. Contrasting genomic patterns and infection strategies of two co-existing Bacteroidetes podovirus genera. Environ. Microbiol. 16, 2501–2513 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    120.Parmar, K. M., Gaikwad, S. L., Dhakephalkar, P. K., Kothari, R. & Singh, R. P. Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front. Microbiol. 8, 559 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Flores, C. O., Valverde, S. & Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 7, 520 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Koskella, B. & Meaden, S. Understanding bacteriophage specificity in natural microbial communities. Viruses 5, 806–823 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics. eLife https://doi.org/10.7554/eLife.03125 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    124.Labonte, J. M. et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Munson-McGee, J. H. et al. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    126.Díaz-Muñoz, S. L., Sanjuán, R. & West, S. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    127.Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    129.Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. https://doi.org/10.1038/ncomms15955 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    130.Alrasheed, H., Jin, R. & Weitz, J. S. Caution in inferring viral strategies from abundance correlations in marine metagenomes. Nat. Commun. 10, 501 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Roossinck, M. J. Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front.Microbiol. https://doi.org/10.3389/fmicb.2014.00767 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    133.Gilmore, M. S. & Miller, O. K. A bacterium’s enemy isn’t your friend. Nature 563, 637–638 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    134.Callanan, J. et al. RNA phage biology in a metagenomic era. Viruses 10, 386 (2018).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    135.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Ross, A., Ward, S. & Hyman, P. More is better: Selecting for broad host range bacteriophages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01352 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    137.de Jonge, P. A. et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. iScience https://doi.org/10.1016/j.isci.2020.101439 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    138.Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    139.Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0526-2 (2019).Article 
    PubMed 

    Google Scholar 
    140.Labonte, J. M. et al. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system. Front.Microbiol. https://doi.org/10.3389/fmicb.2019.01262 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    141.Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    142.Jover, L. F., Romberg, J. & Weitz, J. S. Inferring phage–bacteria infection networks from time-series data. R. Soc. Open Sci. 3, 160654 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    143.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    144.Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    146.Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e620 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    148.Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    149.Laffy, P. W. et al. HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00822 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    150.Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights into viral ecology with software and community datasets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).PubMed 
    Article 

    Google Scholar 
    151.Baran, N., Goldin, S., Maidanik, I. & Lindell, D. Quantification of diverse virus populations in the environment using the polony method. Nat. Microbiol. 3, 62–72 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    152.Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. (2020).153.Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 4542 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    154.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    155.Bickhart, D. M. et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biol. 20, 153 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    156.Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    157.Lopez-Madrigal, S., Latorre, A., Porcar, M., Moya, A. & Gil, R. Mealybugs nested endosymbiosis: going into the ‘matryoshka’ system in Planococcus citri in depth. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-74 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    158.Noda, S. et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16, 1257–1266 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    159.Woyke, T. & Schulz, F. Entities inside one another – a matryoshka doll in biology? Environ. Microbiol. Rep. 11, 26–28 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    160.Chatterjee, A. & Duerkop, B. A. Beyond bacteria: Bacteriophage-eukaryotic host interactions reveal emerging paradigms of health and disease. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01394 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    161.Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLOS Pathog. 2, e43 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    162.Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 4987 (2018). One of the genes in Wolbachia-infecting prophage WO that was previously shown to induce cytoplasmic incompatibility (in combination with a second gene) in insect gametes is demonstrated to also independently rescue cytoplasmic incompatibility and nullify associated embryonic defects.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    163.Beckmann, J. F. et al. The toxin–antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends Genet. 35, 175–185 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    165.Marquez, L. M., Redman, R. S., Rodriguez, R. J. & Roossinck, M. J. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science 315, 513–515 (2007). An early example of a mutualistic ‘nested’ symbiosis involving viruses; in this case, the direct fungal host of a virus as well as the plant host of the fungus benefitted from viral infection.CAS 
    PubMed 
    Article 

    Google Scholar 
    166.van Oppen, M. J. H., Leong, J.-A. & Gates, R. D. Coral-virus interactions: a double-edged sword? Symbiosis 47, 1–8 (2009).Article 

    Google Scholar 
    167.Tikhe, C. V. & Husseneder, C. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02548 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Distributions of Arctic and Northwest Atlantic killer whales inferred from oxygen isotopes

    1.Forney, K. A. & Wade, P. R. Worldwide distribution and abundance of killer whales. In Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) 145–162 (University of California Press, 2006).
    Google Scholar 
    2.Reeves, R. R. & Mitchell, E. Distribution and seasonality of killer whales in the eastern Canadian Arctic. Rit Fiskideildar 11, 136–160 (1988).
    Google Scholar 
    3.Mitchell, E. & Reeves, R. R. Records of killer whales in the western North Atlantic, with emphasis on eastern Canadian waters. Rit Fiskideildar 11, 161–193 (1988).
    Google Scholar 
    4.Katona, S. K., Beard, J. A., Girton, P. E. & Wenzel, F. Killer whales (Orcinus orca) from the Bay of Fundy to the equator, including the Gulf of Mexico. Rit Fiskideildar 11, 205–224 (1988).
    Google Scholar 
    5.Higdon, J. W. & Ferguson, S. H. Sea ice declines causing punctuated change as observed with killer whale (Orcinus orca) sightings in the Hudson Bay region over the past century. Ecolog. Appl. 19, 1365–1375 (2009).Article 

    Google Scholar 
    6.Lawson, J. W. & Stevens, T. S. Historic and seasonal distribution patterns and abundance of killer whales (Orcinus orca) in the northwest Atlantic. J. Mar. Biol. Assoc. 94, 1253–1265 (2014).Article 

    Google Scholar 
    7.Jourdain, E. et al. North Atlantic killer whale Orcinus orca populations: a review of current knowledge and threats to conservation. Mammal Rev. 49, 384–400 (2019).Article 

    Google Scholar 
    8.Breed, G. A. et al. Sustained disruption of habitat use and behavior of narwhals in the presence of Arctic killer whales. Proc. Natl. Acad. Sci. U.S.A. 114, 2628–2633. https://doi.org/10.1073/pnas.1611707114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Matthews, C. J. D., Breed, G. A., Leblanc, B. & Ferguson, S. H. Killer whale presence drives bowhead whale selection for sea ice in Arctic seascapes of fear. Proc. Natl. Acad. Sci. U.S.A. 117, 6590–6598. https://doi.org/10.1073/pnas.1911761117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Matthews, C. J. D., Luque, S. L., Petersen, S. D., Andrews, R. D. & Ferguson, S. H. Satellite tracking of a killer whale (Orcinus orca) in the eastern Canadian Arctic documents ice avoidance and rapid, long-distance movement into the North Atlantic. Polar Biol. 34, 1091–1096 (2011).Article 

    Google Scholar 
    11.Lefort, K. J. et al. A review of Canadian Arctic killer whale (Orcinus orca) ecology. Can. J. Zool. 98, 245–253 (2020).Article 

    Google Scholar 
    12.Lien, J., Stenson, G. B. & Jones, P. W. Killer whales (Orcinus orca) in waters off Newfoundland and Labrador, 1978–1986. Rit Fiskideildar 11, 194–201 (1988).
    Google Scholar 
    13.Øien, N. The distribution of killer whales (Orcinus orca) in the North Atlantic based on Norwegian catches, 1938–1981, and incidental sightings, 1967–1987. Rit Fiskideildar 11, 65–78 (1988).
    Google Scholar 
    14.Reeves, R. R. & Mitchell, E. Killer whale sightings and takes by American pelagic whalers in the North Atlantic. Rit Fiskideildar 11, 7–23 (1988).
    Google Scholar 
    15.Higdon, J.W. Status of knowledge on killer whales (Orcinus orca) in the Canadian Arctic. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat Research Document 2007/048 (2007)16.Young, B. G., Higdon, J. W. & Ferguson, S. H. Killer whale (Orcinus orca) photo-identification in the eastern Canadian Arctic. Polar Res. 30, 7203 (2011).Article 

    Google Scholar 
    17.Matthews, C. J. D., Ghazal, M., Lefort, K. J. & Inuarak, E. Epizoic barnacles on Arctic killer whales indicate residency in warm waters. Mar. Mamm. Sci. 36, 1–5 (2020).Article 

    Google Scholar 
    18.Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314–326 (1999).PubMed 
    Article 
    ADS 

    Google Scholar 
    19.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    20.Magozzi, S., Yool, A., Vander Zanden, H. B., Wunder, M. B. & Trueman, C. N. Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8(5), e01673 (2017).Article 

    Google Scholar 
    21.Yoshida, N. & Miyazaki, N. Oxygen isotope correlation of cetacean bone phosphate with environmental water. J. Geophys. Res. 96, 815–820 (1991).Article 
    ADS 

    Google Scholar 
    22.Matthews, C. J. D., Longstaffe, F. J. & Ferguson, S. H. Dentine oxygen isotopes (δ18O) as a proxy for odontocete distributions and movements. Ecol. Evol. 6, 4643–4653. https://doi.org/10.1002/ece3.2238 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    24.Hui, C. A. Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol. Zool. 54, 430–440 (1981).CAS 
    Article 

    Google Scholar 
    25.Andersen, S. H. & Nielsen, E. Exchange of water between the harbor porpoise, Phocoena phocoena, and the environment. Experientia 39, 52–53 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    27.Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?. Geochim. Cosmochim. Acta 48, 385–390 (1984).CAS 
    Article 
    ADS 

    Google Scholar 
    28.Luz, B., Kolodny, Y. & Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48, 1689–1693 (1984).CAS 
    Article 
    ADS 

    Google Scholar 
    29.Barrick, R. E., Fisher, A. G., Kolodny, Y., Luz, B. & Bohasha, D. Cetacean bone oxygen isotopes as proxies for Miocene ocean composition and glaciation. Palaios 7, 521–531 (1992).Article 
    ADS 

    Google Scholar 
    30.Borrell, A. et al. Stable isotopes provide insight into population structure and segregation in eastern North Atlantic sperm whales. PLoS ONE 8, e82398 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    31.Vighi, M., Borrell, A. & Aguilar, A. Stable isotope analysis and fin whale subpopulation structure in the eastern North Atlantic. Mar. Mamm. Sci. 32, 535–551 (2015).Article 

    Google Scholar 
    32.R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).33.Matthews, C. J. D., Raverty, S. A., Noren, D. P., Arragutainaq, L. & Ferguson, S. H. Ice entrapment mortality may slow expanding presence of Arctic killer whales. Polar Biol. 42, 639–644 (2019).Article 

    Google Scholar 
    34.Goldberg, M., Kulkarni, A. B., Young, M. & Boskey, A. Dentin: structure, composition and mineralization. Front. Biosci. 3, 711–735. https://doi.org/10.2741/e281 (2011).Article 

    Google Scholar 
    35.Firsching, F. H. Precipitation of silver phosphate from homogeneous solution. Analyt. Chem. 33, 873–874 (1961).CAS 
    Article 

    Google Scholar 
    36.Stuart-Williams, H. & Schwarcz, H. P. Oxygen isotope analysis of silver orthophosphate using a reaction with bromine. Geochim. Cosmochim. Acta 59, 3837–3841 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    37.Flanagan, L. B. & Farquhar, G. D. Variation in the carbon and oxygen isotope composition of biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland. Plant Cell Environ. 37, 425–438 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Webb, E. C., White, C. D. & Longstaffe, F. J. Investigating inherent differences in isotopic composition between human bone and enamel bioapatite: implications for reconstructing residential histories. J. Archaeol. Sci. 50, 97–107 (2014).CAS 
    Article 

    Google Scholar 
    39.Lécuyer, C., Amiot, R., Touzeau, A. & Trotter, J. Calibration of the phosphate δ18O thermometer with carbonate-water isotope fractionation equations. Chem. Geol. 347, 217–226 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    40.Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1—Impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2—Impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    42.Sonnerup, R. E. et al. Reconstructing the oceanic 13C Suess effect. Global Biogeochem. Cycles 13, 857–872 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    43.Quay, P., Sonnerup, R., Westsby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    44.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    45.Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.30, https://github.com/droglenc/FSA (2020).46.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster Analysis Basics and Extensions. R package version 2.1.0 (2019).47.Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering (2015).48.Spiess, A.-N. propagate: Propagation of Uncertainty. R package version 1.0–6. http://CRAN.R-project.org/package=propagate (2018).49.Schmidt, G. A., Bigg, G. R. & Rohling, E. J. “Global Seawater Oxygen-18 Database – v1.21” http://data.giss.nasa.gov/o18data/ (1999).50.Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16, 585–599 (1989).Article 

    Google Scholar 
    51.Matthews, C. J. D. & Ferguson, S. H. Spatial segregation and similar trophic-level diet among eastern Canadian Arctic/north-west Atlantic killer whales inferred from bulk and compound specific isotopic analysis. J. Mar. Biol. Assoc. 94, 1343–1355 (2014).CAS 
    Article 

    Google Scholar 
    52.Matthews, C. J. D., Lawson, J. W. & Ferguson, S. H. Amino acid δ15N patterns consistent with killer whale ecotypes in the Arctic and Northwest Atlantic. Submitted September 2020.53.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/ (2005).54.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/ (2013).55.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.1–5. https://CRAN.R-project.org/package=raster (2020).56.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17. https://CRAN.R-project.org/package=ncdf4 (2019).57.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4–8. https://CRAN.R-project.org/package=rgdal) (2019).58.Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).Article 

    Google Scholar 
    59.Baird, R. W. & Dill, L. M. Occurrence and behaviour of transient killer whales: seasonal and pod-specific variability, foraging behavior, and prey handling. Can. J. Zool. 73, 1300–1311 (1995).Article 

    Google Scholar 
    60.Higdon, J. W., Hauser, D. D. W. & Ferguson, S. H. Killer whales (Orcinus orca) in the Canadian Arctic: distribution, prey items, group sizes, and seasonality. Mar. Mamm. Sci. 28, E93–E109 (2011).Article 

    Google Scholar 
    61.Courtiol, A. et al. Isoscape computation and inference of spatial origins with mixed models using the R package IsoriX. In Tracking Animal Migration with Stable Isotopes 2nd edn (eds Hobson, K. A. & Wassenaar, L. I.) (Academic Press, 2019).
    Google Scholar 
    62.Tan, F. C. & Strain, P. M. The distribution of sea ice meltwater in the eastern Canadian Arctic. J. Geophys. Res. 85, 1925–1932 (1980).CAS 
    Article 
    ADS 

    Google Scholar 
    63.Tan, F. C. & Strain, P. M. Sea ice and oxygen isotopes in Foxe Basin, Hudson Bay and Hudson Strait, Canada. J. Geophys. Res. 101, 20869–20876 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Bédard, P., Hillaire-Marcel, C. & Pagé, P. 18O modelling of freshwater inputs in Baffin Bay and Canadian Arctic coastal waters. Nature 293, 287–289 (1981).Article 
    ADS 

    Google Scholar 
    65.Bolaños-Jiménez, J. et al. Distribution, feeding habits and morphology of killer whales Orcinus orca in the Caribbean Sea. Mamm. Rev. 44, 177–189 (2014).Article 

    Google Scholar 
    66.Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461–472 (2001).PubMed 
    Article 
    ADS 

    Google Scholar 
    67.Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere 3(5), 44 (2012).Article 

    Google Scholar 
    68.Bowen, G. J., Liu, Z., Vander Zanden, H. B., Zhao, L. & Takahashi, G. Geographic assignment with stable isotopes in IsoMAP. Methods Ecol. Evol. 5, 201–206 (2014).Article 

    Google Scholar 
    69.Ambrose, S. H. & Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone (eds Lambert, J. B. & Grupe, G.) (Springer, 1993). https://doi.org/10.1007/978-3-662-02894-0_1.
    Google Scholar 
    70.Tieszen, L. L. & Fagre, T. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In Prehistoric Human Bone (eds Lambert, J. B. & Grupe, G.) (Springer, 1993). https://doi.org/10.1007/978-3-662-02894-0_5.
    Google Scholar 
    71.Myrick, A. C., Yochem, P. K. & Cornell, L. H. Toward calibrating dentinal layers in captive killer whales by use of tetracycline labels. Rit Fiskideildar 11, 285–296 (1988).
    Google Scholar 
    72.Klevezal, G. A. Layers in the hard tissues of mammals as a record of growth rhythms of individuals. Reports of the International Whaling Commission. Special Issue 3, 89–94 (1980)73.Klevezal, G. A. Recording structures of mammals: determination of age and reconstruction of life history. A.A. Balkema, Rotterdam. xi + 274 p (1996)74.Stern, R. A., Outridge, P. M., Davis, W. J. & Stewart, R. E. A. Reconstructing lead isotope exposure histories preserved in the growth layers of walrus teeth using the SHRIMP II ion microprobe. Environ. Sci. Technol. 33, 1771–1775 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    75.Foote, A. D. et al. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20, 629–641 (2011).PubMed 
    Article 

    Google Scholar 
    76.Lefort, K. J. The demography of Canadian Arctic killer whales. M.Sc. Thesis. University of Manitoba. 100 pp. (2020)77.Foote, A. D., Newton, J., Piertney, S. B., Willerslev, E. & Gilbert, M. T. P. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Mol. Ecol. 18, 5207–5217 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Vennemann, T. W., Hegner, E., Cliff, G. & Benz, G. W. Isotopic composition of recent shark teeth as a proxy for environmental conditions. Geochim. Cosmochim. Acta 65, 1583–1599 (2001).CAS 
    Article 
    ADS 

    Google Scholar 
    79.Towers, J. R. et al. Movements and dive behavior of a toothfish-depredating killer and sperm whale. ICES J. Mar. Sci. 76, 298–311 (2019).Article 

    Google Scholar 
    80.Bigg, M. A., Olesiuk, P. K., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Comm. 12, 383–406 (1990).
    Google Scholar 
    81.Reisinger, R. R., Beukes, C., Hoelzel, R. A. & Nico de Bruyn, P. J. Kinship and association in a highly social apex predator population, killer whales at Marion Island. Behav. Ecol. 28, 750–759 (2017).Article 

    Google Scholar 
    82.Higdon, J. W., Westdal, K. H. & Ferguson, S. H. Distribution and abundance of killer whales (Orcinus orca) in Nunavut, Canada: an Inuit knowledge survey. J. Mar. Biol. Assoc. 94, 1293–1304 (2014).Article 

    Google Scholar 
    83.Wassmann, P., Duarte, C. M., Agustí, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).Article 
    ADS 

    Google Scholar 
    84.Clementz, M. T., Fordyce, R. E., Peek, S. L. & Fox, D. L. Ancient marine isoscapes and isotopic evidence of bulk-feeding by Oligocene cetaceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 28–40 (2014).Article 

    Google Scholar  More