Extreme philopatry and genetic diversification at unprecedented scales in a seabird
1.Rodríguez, A. et al. Future directions in conservation research on petrels and shearwaters. Front. Mar. Sci. 6, 94 (2019).ADS
Article
Google Scholar
2.Thomson, S. A. et al. Taxonomy based on science is necessary for global conservation. PLoS Biol. 16, e2005075 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
3.Friesen, V. L., Burg, T. M. & McCoy, K. D. Mechanisms of population differentiation in seabirds. Mol. Ecol. 16(9), 1765–1785 (2007).CAS
PubMed
Article
Google Scholar
4.Lombal, A. J., O’Dwyer, J. E., Friesen, V. L., Woehler, E. J. & Burridge, C. P. Identifying mechanisms of genetic differentiation among population in vagile species: historical factors dominate genetic differentiation in seabirds. Biol. Rev. 95(3), 625–651 (2020).PubMed
Article
Google Scholar
5.Friesen, V. L. Speciation in seabirds: why are there so many species…and why aren’t there more?. J. Ornithol. 156, 27–39 (2015).Article
Google Scholar
6.Morris-Pocock, J. A., Steeves, T. E., Estela, F. A., Anderson, D. J. & Friesen, V. L. Comparative phylogeography of brown (Sula leucogaster) and red-footed boobies (Sula sula): the influence of physical barriers and habitat preference on gene flow in pelagic seabirds. Mol. Phylogenet. Evol. 54(3), 883–896 (2010).CAS
PubMed
Article
Google Scholar
7.Morris-Pocock, J. A., Anderson, D. J. & Friesen, V. L. Biological barriers to dispersal and rare gene flow shape population genetic structure in red-footed boobies (Sula sula). J. Biogeogr. 43(11), 2125–2135 (2016).Article
Google Scholar
8.Nuss, A., Carlos, C. J., Moreno, I. B. & Fagundes, N. J. R. Population genetic structure of the Magnificent Frigatebird Fregata magnificens (Aces, Suliformes) breeding colonies in the western Atlantic Ocean. PLoS ONE 11, e0149834 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
9.Friesen, V. L., González, J. A. & Cruz-Delgado, F. Population genetic structure and conservation of the Galápagos Petrel (Pterodroma phaeopygia). Conserv. Genet. 7, 105–115 (2006).Article
Google Scholar
10.Frugone, M. J. et al. Contrasting phylogeographic patterns among Eudyptes penguins around the Southern Ocean. Sci. Rep. 8, 17481 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
11.Croxall, J. P. et al. Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv. Int. 22(1), 1–34 (2012).Article
Google Scholar
12.Montevecchi, W. A. Interactions between fisheries and seabirds. In The Biology of Marine Birds (eds Schrieber, E. A. & Burger, J.) 527–557 (CRC Press, 2002).13.Hamer, K. C. Breeding biology, life histories and life history-environment interaction in seabirds. In The Biology of Marine Birds (eds Schrieber, E. A. & Burger, J.) 217–261 (CRC Press, 2002).14.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).15.Wan, Q. H., Wu, H., Fujihara, T. & Fang, S. G. Which genetic marker for which conservation geneitic issue?. Electrophoresis 25, 2165–2176 (2004).CAS
PubMed
Article
Google Scholar
16.Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10(6), e0129342 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Pinet, P. et al. Barau’s Petrel Pterodroma baraui: history, biology and conservation of an endangered endemic petrel. Mar. Ornithol. 37, 107–113 (2009).
Google Scholar
18.Lougnon, A. Sous le Signe de la Tortue. Voyage Anciens a I’Ile Bourbon, (1611–1725). Saint-Denis, La Reunion, France. (Editions Orphie, 2006).19.Milot, E., Weimerskirch, H. & Bernatchez, L. The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Mol. Ecol. 17(7), 1658–1673 (2008).CAS
PubMed
Article
Google Scholar
20.Antaky, C. C., Coklin, E. E., Toonen, R. J., Knapp, I. S. S. & Price, M. R. Unexpectedly high genetic diversity in a rare and endangered seabird in the Hawaiian Archipelago. PeerK 8, e8463 (2020).Article
Google Scholar
21.Smith, A. L. & Friesen, V. L. Differentiation of sympatric populations of the Band-rumped Storm Petrel in the Galapagos Islands: an examination of genetics, morphology, and vocalizations. Mol. Ecol. 16(8), 1593–1603 (2007).CAS
PubMed
Article
Google Scholar
22.Wiley, A. E. et al. Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird. Oecologia 168, 119–130 (2011).ADS
PubMed
Article
Google Scholar
23.Hardy, O. J., Charbonnel, N., Fréville, H. & Heuertz, M. Microsatellite allele sizes: a simple test to assess their significance of genetic differentiation. Genetics 163(4), 1467–1482 (2003).CAS
PubMed
PubMed Central
Google Scholar
24.Faubet, P., Waples, R. S. & Gaggiotti, O. E. Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol. Ecol. 16(6), 1149–1166 (2008).Article
Google Scholar
25.Brooke, M. Albatrosses and Petrels Across the World (Oxford University, 2004).26.Pinet, P., Jaquemet, S., Phillips, R. A. & Le Corre, M. Sex-specific foraging strategies throughout the breeding season in a tropical sexually monomorphic small petrel. Anim. Behav. 83(4), 979–989 (2012).Article
Google Scholar
27.Friesen, V. L. et al. Sympatric speciation by allochrony in a seabird. PNAS 104(47), 18589–18594 (2007).ADS
CAS
PubMed
Article
Google Scholar
28.Gay, L. et al. Speciation with gene flow in the large white-headed gulls: Does selection counterbalance introgression?. Heredity 102, 122–146 (2009).Article
CAS
Google Scholar
29.Zidat, T. et al. Reproductive isolation maintains distinct genotypes, phenotypes and chemical signatures in mixed colonies of the two European Calonectris shearwaters (Procellariiformes: Procellariidae). Zool. J. Linnean. Soc. 181(3), 711–726 (2017).Article
Google Scholar
30.Abbott, C. L. & Double, M. C. Genetic structure, conservation genetics and evidence of speciation by range expansion in shy and white-capped albatrosses. Mol. Evol. 12, 2953–2962 (2003).
Google Scholar
31.Welch, A. J. et al. Population divergence and gene flow in an endangered and highly mobile seabird. Heredity 109, 19–28 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Pinet, P. Biologie, écologie & conservation d’un oiseau marin endemique de La Réunion: Le Petrel de Barau (Pterodroma baraui), Thèse de Doctorat de l’Université de La Réunion (2012).33.Coulson, J. C. A review of philopatry in seabirds and comparisons with other waterbird species. Waterbirds 39, 229–326 (2016).Article
Google Scholar
34.Cristofari, R. et al. Unexpected population fragmentation in an endangered seabird: the case of the Peruvian diving-petrel. Sci. Rep. 9, 2021 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
35.Pinet, P. et al. Migration, wintering distribution and habitat use of an endangered tropical seabird, Barau’s Petrel Pterodroma baraui. Mar. Ecol. Prog. Ser. 423, 291–302 (2011).ADS
Article
Google Scholar
36.Danckwerts, D. K., Corré, S., Pinet, P. L., Corre, M. & Humeau, L. Isolation and characterization of 15 polymorphic microsatellite loci for the Barau’s Petrel (Pterodroma baraui), an endangered endemic of Réunion Island (Indian Ocean). Waterbirds 39, 413–416 (2016).Article
Google Scholar
37.Schuelke, M. An economic method for the fluorescent labelling of PCR fragments. Nat. Biotechnol. 18(2), 233–234 (2000).CAS
PubMed
Article
Google Scholar
38.van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Resour. 43(3), 535–538 (2004).Article
CAS
Google Scholar
39.Rousset, F. Genepop’007: a complete re-implementation of the GENEPOP software for windows and linus. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed
Article
Google Scholar
40.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57(1), 289–300 (1995).MathSciNet
MATH
Google Scholar
41.Agapow, P. M. & Burt, A. Indices of multi-locus linkage disequilibrium. Mol. Ecol. Resour. 1, 101–102 (2001).CAS
Article
Google Scholar
42.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer J 4, 2281 (2014).
Google Scholar
43.Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590 (1978).CAS
PubMed
PubMed Central
Google Scholar
44.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4(1), 1–9 (2001).
Google Scholar
46.El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among population of the argan tree [Argania spinose (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).PubMed
Article
Google Scholar
47.Goudet, J. FSTAT (version 1.2): a computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).Article
Google Scholar
48.Paradis, E. Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 56, 330–338 (1922).Article
Google Scholar
50.Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395–420 (1965).Article
Google Scholar
51.Weir, B. S. & Cockerham, C. C. Estimating F-statistics of population structure. Evolution 38(6), 1358–1370 (1984).CAS
PubMed
PubMed Central
Google Scholar
52.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Hardy, O. J. & Vekemans, X. SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual and population levels. Mol. Ecol. Resour. 2, 618–620 (2002).Article
CAS
Google Scholar
54.Meirmans, P. G. GENODIVE version 3.0: easy-to-use software for the analysis of genetic data of diploids and polyploids. Mol. Ecol. Resour. 20(4), 1126–1131 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Pons, O. & Petit, R. J. Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics 144, 1237–1245 (1996).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 155(2), 945–959 (2000).
Google Scholar
58.Porras-Hurtado, L. et al. An overview of STRUCUTE: applications, parameter settings, and supporting software. Front. Genet. 4, 98 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
59.Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4), 1567–1587 (2003).CAS
PubMed
PubMed Central
Google Scholar
60.Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferrign weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332 (2009).PubMed
PubMed Central
Article
Google Scholar
61.Pritchard, J., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS
PubMed
PubMed Central
Google Scholar
62.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Earl, D. A. & von Holdt, B. M. Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Cons Genet Res 4, 359–361 (2012).Article
Google Scholar
64.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15(5), 1179–1191 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed
PubMed Central
Article
Google Scholar
66.Carlen, E. & Munshi-South, J. Widespread genetic connectivity of feral pigeons across the Northeastern megacity. Evol. Appl. 14, 1–13 (2020).
Google Scholar
67.Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1(3), 462–474 (2008).PubMed
PubMed Central
Article
Google Scholar
68.Do, C. et al. NeEstimator V2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).CAS
PubMed
Article
Google Scholar
69.Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: a computer program for detecting recent reduction in effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article
Google Scholar
70.Peery, M. Z. et al. Reliability of genetic bottleneck tests for detecting recent population declines. Mol. Ecol. 21(14), 3403–3418 (2012).PubMed
Article
Google Scholar
71.Luikart, G., Cornuet, J. M. & Allendorf, F. W. Temporal changes in allele frequencies provide estimates of population bottleneck size. Cons. Biol. 13(3), 523–530 (1999).Article
Google Scholar
72.Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: an r package for manipulating, summarizing and analyzing population genetic data. Mol. Ecol. Resour. 17(1), 5–11 (2017).CAS
PubMed
Article
Google Scholar
73.Nikolic, N. & Chevalet, C. Detecting past changes of effective population size. Evol. Appl. 7(6), 663–681 (2014).PubMed
PubMed Central
Article
Google Scholar
74.Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10(3), 305–318 (2001).CAS
PubMed
Article
Google Scholar
75.Wickman, H. François, R. Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 1.0.2. https://CRAN.R-project.org/package=dplyr (2020).76.Humeau, L. et al. Genetic structuring among colonies of a pantropical seabird: Implication for subspecies validation and conservation. Ecol. Evol. (in press).77.Nunes, G. T. & Bugoni, L. Local adaptation drives population isolation in a tropical seabird. J Biogeogr. 45(2), 332–341 (2018).Article
Google Scholar
78.Barlow, E. J. et al. Weak large-scale population genetic structure in a philopatric seabird, the European Shag Phalacrocorax aristotelis. Ibis 153(4), 768–778 (2011).Article
Google Scholar
79.QGIS.org. QGIS Geographical Information System version 3.10. QGIS Association. http://www.qgis.org (2020). More