More stories

  • in

    Evolutionary assembly of flowering plants into sky islands

    1.Lavergne, S., Mouquet, N., Thuiller, W. & Ronce, O. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu. Rev. Ecol. Evol. Syst. 41, 321–350 (2010).Article 

    Google Scholar 
    2.Ricklefs, R. E. Community diversity: relative roles of local and regional processes. Science 235, 167–171 (1987).CAS 
    Article 

    Google Scholar 
    3.Wiens, J. J. & Graham, C. H. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    4.Münkemüller, T., Boucher, F., Thuiller, W. & Lavergne, S. Common conceptual and methodological pitfalls in the analysis of phylogenetic niche conservatism. Funct. Ecol. 29, 627–639 (2015).Article 

    Google Scholar 
    5.Behrensmeyer, A. K. et al. (eds) Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (Univ. of Chicago Press, 1992).6.Graham, A. Late Cretaceous and Cenozoic History of North American Vegetation North of Mexico (Oxford Univ. Press, 1999).7.Latham, R. E. & Ricklefs, R. E. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 294–314 (Univ. of Chicago Press, 1993).8.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    9.Wiens, J. J. & Donoghue, M. J. Historical biogeography, ecology, and species richness. Trends Ecol. Evol. 19, 639–644 (2004).Article 

    Google Scholar 
    10.Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006).Article 

    Google Scholar 
    11.Qian, H. & Sandel, B. Phylogenetic structure of regional angiosperm assemblages across latitudinal and climatic gradients in North America. Glob. Ecol. Biogeogr. 26, 1258–1269 (2017).Article 

    Google Scholar 
    12.Körner, C. Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol. Evol. 15, 513–514 (2000).Article 

    Google Scholar 
    13.Pulsipher, L. M. & Pulsipher, A. World Regional Geography: Global Patterns, Local Lives 6th edn (W.H. Freeman, 2014).14.Culmsee, H. & Leuschner, C. Consistent patterns of elevational change in tree taxonomic and phylogenetic diversity across Malesian mountain forests. J. Biogeogr. 40, 1997–2010 (2013).Article 

    Google Scholar 
    15.González-Caro, S., Umaña, M. N., Álvarez, E., Stevenson, P. R. & Swenson, N. G. Phylogenetic alpha and beta diversity in tropical tree assemblages along regional scale environmental gradients in northwest South America. J. Plant Ecol. 7, 145–153 (2014).Article 

    Google Scholar 
    16.Qian, H., Zhang, Y., Zhang, J. & Wang, X. Latitudinal gradients in phylogenetic relatedness of angiosperm trees in North America. Glob. Ecol. Biogeogr. 22, 1183–1191 (2013).Article 

    Google Scholar 
    17.Qian, H., Field, R., Zhang, J., Zhang, J. & Chen, S. Phylogenetic structure and ecological and evolutionary determinants of species richness for angiosperm trees in forest communities in China. J. Biogeogr. 43, 603–615 (2016).Article 

    Google Scholar 
    18.Qian, H. & Ricklefs, R. E. Out of the tropical lowlands: latitude versus elevation. Trends Ecol. Evol. 31, 738–741 (2016).Article 

    Google Scholar 
    19.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    20.Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography https://doi.org/10.1111/ecog.04434 (2019).21.Mazel, F. et al. Influence of tree shape and evolutionary time-scale on phylogenetic diversity metrics. Ecography 39, 913–920 (2016).CAS 
    Article 

    Google Scholar 
    22.Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    23.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems 2nd edn (Springer, 2003).24.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).Article 

    Google Scholar 
    25.Gallien, L., Zurell, D. & Zimmermann, N. E. Frequency and intensity of facilitation reveal opposing patterns along a stress gradient. Ecol. Evol. 8, 2171–2181 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    26.Choler, P., Michalet, R. & Callaway, R. M. Facilitation and competition on gradients in alpine plant communities. Ecology 82, 3295–3308 (2001).Article 

    Google Scholar 
    27.Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).CAS 
    Article 

    Google Scholar 
    28.Steinbauer et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).Article 

    Google Scholar 
    29.Takhtajan, A. L. Flowering Plants: Origin and Dispersal (Oliver & Boyd, 1969).30.Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).Article 

    Google Scholar 
    31.Heald, W. Sky Island (D. Van Nostrand Co., Inc., 1967).32.Marx, H. E. et al. Riders in the sky (islands): using a mega-phylogenetic approach to understand plant species distribution and coexistence at the altitudinal limits of angiosperm plant life. J. Biogeogr. 44, 2618–2630 (2017).Article 

    Google Scholar 
    33.Humboldt, A. V. & Bonpland, A. Essai sur la Géographie des Plantes: Accompagné d’un Tableau Physique des Régions Équinoxiales (Arno Press, 1977).34.Qian, H., White, P. S., Klinka, K. & Chourmouzis, C. Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, China, and Indian Peaks, USA. J. Veg. Sci. 10, 869–882 (1999).Article 

    Google Scholar 
    35.Körner, C., Paulsen, J. & Spehn, E. M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 121, 73–78 (2011).Article 

    Google Scholar 
    36.Chapin, F. S. III & Körner, C. in Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences (eds Chapin, F. S. III & Körner, C.) 313–320 (Springer, 1995).37.Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article 

    Google Scholar 
    38.Webb, C., Ackerly, D. & Kembel, S. Phylocom: Software for the analysis of phylogenetic community structure and character evolution, with Phylomatic. R package version 4.2 (2011).39.Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. https://doi.org/10.1016/j.pld.2020.11.005 (2021).40.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    41.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    42.Tsirogiannis, C., Sandel, B. & Cheliotis, D. Efficient computation of popular phylogenetic tree measures. Lect. Notes Comput. Sci. 7534, 30–43 (2012).Article 

    Google Scholar 
    43.Tsirogiannis, C., Sandel, B. & Kalvisa, A. New algorithms for computing phylogenetic biodiversity. Lect. Notes Comput. Sci. 8701, 187–203 (2014).Article 

    Google Scholar 
    44.Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).Article 

    Google Scholar  More

  • in

    Dynamic bacterial community response to Akashiwo sanguinea (Dinophyceae) bloom in indoor marine microcosms

    1.Azam, F. et al. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).ADS 
    Article 

    Google Scholar 
    2.Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Worden, A. Z. et al. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Science 347, 1257594 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Andersson, A. F., Riemann, L. & Bertilsson, S. Pyrosequencing reveals contrasting seasonal dynamics of taxa within Baltic Sea bacterioplankton communities. ISME J. 4, 171–181 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Chen, T., Liu, Y., Song, S. & Li, C. Characterization of the parasitic dinoflagellate Amoebophrya sp. infecting akashiwo sanguinea in coastal waters of China. J. Eukaryotic Microbiol. 65, 448–457 (2018).Article 

    Google Scholar 
    6.Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Yang, C. et al. Bacterial community dynamics during a bloom caused by Akashiwo sanguinea in the Xiamen sea area, China. Harmful algae 20, 132–141 (2012).Article 

    Google Scholar 
    8.Yang, C. et al. A comprehensive insight into functional profiles of free-living microbial community responses to a toxic Akashiwo sanguinea bloom. Sci. Rep. 6, 34645 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Kang, et al. Zooming on dynamics of marine microbial communities in the phycosphere of Akashiwo sanguinea (Dinophyta) blooms. Mol. Ecol. 30, 207–221 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Kim, H. J. et al. Effects of temperature and nutrients on changes in genetic diversity of bacterioplankton communities in a semi-closed bay, South Korea. Mar. Pollut. Bull. 106, 139–148 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Flaviani, F. et al. A pelagic microbiome (viruses to protists) from a small cup of seawater. Viruses 9, 47 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Jung, S. W. et al. Can the algicidal material Ca-aminoclay be harmful when applied to a natural ecosystem? An assessment using microcosms. J. Hazard. Mater. 298, 178–187 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Jung, S. W., Noh, S. Y., Kang, D. & Lee, T.-K. Comparison of bacterioplankton communities between before and after inoculation with an algicidal material, Ca-aminoclay, to mitigate Cochlodinium polykrikoides blooms: assessment using microcosm experiments. J. Appl. Phycol. 29, 1343–1354 (2017).CAS 
    Article 

    Google Scholar 
    14.Jung, S. W., Kim, B. H., Katano, T., Kong, D. S. & Han, M. S. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. J. Appl. Microbiol. 105, 186–195 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Jung, S. W. et al. Testing addition of Pseudomonas fluorescens HYK0210-SK09 to mitigate blooms of the diatom Stephanodiscus hantzschii in small- and large-scale mesocosms. J. Appl. Phycol. 22, 409–419 (2010).Article 

    Google Scholar 
    16.Anderson, D. M. Turning back the harmful red tide. Nature 388, 513–514 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Du, X., Peterson, W., McCulloch, A. & Liu, G. An unusual bloom of the dinoflagellate Akashiwo sanguinea off the central Oregon, USA, coast in autumn 2009. Harmful Algae 10, 784–793 (2011).Article 

    Google Scholar 
    18.Lee, C.-K., Lee, O.-H. & Lee, S.-G. Impacts of temperature, salinity and irradiance on the growth of ten harmful algal bloom-forming microalgae isolated in Korean coastal waters. The Sea (J Korean Soc Oceanogr) 10, 79–91 (2005).
    Google Scholar 
    19.Luo, Z. et al. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 66, 88–96 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Chen, T. et al. The effects of major environmental factors and nutrient limitation on growth and encystment of planktonic dinoflagellate Akashiwo sanguinea. Harmful Algae 46, 62–70 (2015).Article 

    Google Scholar 
    21.Matsubara, T. et al. Effects of temperature, salinity, and irradiance on the growth of the dinoflagellate Akashiwo sanguinea. J. Exp. Mar. Biol. Ecol. 342, 226–230 (2007).Article 

    Google Scholar 
    22.Teeling, H. et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336, 608–611 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Riemann, L., Steward, G. F. & Azam, F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol. 66, 578–587 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Jones, K. L., Mikulski, C. M., Barnhorst, A. & Doucette, G. J. Comparative analysis of bacterioplankton assemblages from Karenia brevis bloom and nonbloom water on the west Florida shelf (Gulf of Mexico, USA) using 16S rRNA gene clone libraries. FEMS Microbiol. Ecol. 73, 468–485 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Theroux, S., Huang, Y. & Amaral-Zettler, L. Comparative molecular microbial ecology of the spring haptophyte bloom in a Greenland arctic oligosaline lake. Front. Microbiol. 3, 415 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Amin, S. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Mayali, X. & Azam, F. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139–144 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Tan, S. et al. An association network analysis among microeukaryotes and bacterioplankton reveals algal bloom dynamics. J. Phycol. 51, 120–132 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Cruz-López, R., Maske, H., Yarimizu, K. & Holland, N. A. The B-vitamin mutualism between the dinoflagellate Lingulodinium polyedrum and the bacterium Dinoroseobacter shibae. Front. Mar. Sci. 5, 274 (2018).Article 

    Google Scholar 
    31.Park, B. S., Joo, J.-H., Baek, K.-D. & Han, M.-S. A mutualistic interaction between the bacterium Pseudomonas asplenii and the harmful algal species Chattonella marina (Raphidophyceae). Harmful Algae 56, 29–36 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Bloem, J., Starink, M., Bär-Gilissen, M.-J.B. & Cappenberg, T. E. Protozoan grazing, bacterial activity, and mineralization in two-stage continuous cultures. Appl. Environ. Microbiol. 54, 3113–3121 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Gao, X., Olapade, O. A. & Leff, L. G. Comparison of benthic bacterial community composition in nine streams. Aquat. Microb. Ecol. 40, 51–60 (2005).Article 

    Google Scholar 
    35.González, J. M., Kiene, R. P. & Moran, M. A. Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α-subclass of the class Proteobacteria. Appl. Environ. Microbiol. 65, 3810–3819 (1999).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Cui, Y. et al. The water depth-dependent co-occurrence patterns of marine bacteria in shallow and dynamic Southern Coast, Korea. Sci. Rep. 9, 9176 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Huang, X. et al. Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiol. Res. 217, 1–13 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Orsi, W. D. et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 9, 1747–1763 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Salter, I. et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 9, 347–360 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Berdjeb, L., Parada, A., Needham, D. M. & Fuhrman, J. A. Short-term dynamics and interactions of marine protist communities during the spring–summer transition. ISME J. 12, 1907–1917 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Chow, C.-E.T., Kim, D. Y., Sachdeva, R., Caron, D. A. & Fuhrman, J. A. Top-down controls on bacterial community structure: microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 8, 816–829 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the globalocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Rivett, D. W. & Bell, T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat. Microbiol. 3, 767–772 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Amblard, C., Rachiq, S. & Bourdier, G. Photolithotrophy, photoheterotrophy and chemoheterotrophy during spring phytoplankton development (Lake Pavin). Microb. Ecol. 24, 109–123 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chun, S.-J. et al. Characterization of distinct cyanoHABs-related modules in microbial recurrent association network. Front. Microbiol. 10, 1637 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.He, T., Xie, D., Ni, J., Li, Z. & Li, Z. Nitrous oxide produced directly from ammonium, nitrate and nitrite during nitrification and denitrification. J. Hazard. Mater. 388, 122114 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Leahy, J. G. & Colwell, R. R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54, 305–315 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora 1. Limnol. Oceanogr. 25, 943–948 (1980).ADS 
    Article 

    Google Scholar 
    49.Andrew, S. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. (2010)50.Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Li, R. W. et al. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 14, 129–139 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Oksanen, J. et al. Package ‘vegan’. Community ecology package. https://github.com/vegandevs/vegan (2019).55.Paradis, E. et al. Package ‘ape’. Analyses of phylogenetics and evolution. http://ape-package.ird.fr/. (2019).56.Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics. https://github.com/tidyverse/ggplot2 (2020).57.Walker, I. R., Levesque, A. J., Cwynar, L. C. & Lotter, A. F. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolimnol. 18, 165–178 (1997).ADS 
    Article 

    Google Scholar 
    58.Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).Article 

    Google Scholar 
    59.Ter Braak, C. J. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179 (1986).Article 

    Google Scholar 
    60.Ter Braak, C.J.F. & Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, version 4.5. Ithaca, NY, USA: Microcomputer Power. (2002).61.Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, S15 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Xia, L. C., Ai, D., Cram, J., Fuhrman, J. A. & Sun, F. Efficient statistical significance approximation for local similarity analysis of high-throughput time series data. Bioinformatics 29, 230–237 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Long-term and large-scale multispecies dataset tracking population changes of common European breeding birds

    National breeding bird monitoring schemesFieldworkers record all, or a fixed, pre-defined set, of bird species heard or seen in the main breeding season in 28 European countries on an annual basis (Fig. 1). All observations are recorded following a scheme-specific standardized protocol based on established field methods for counting birds: point count transect, line transect, or territory or spot mapping10,33,34. Here, we provide a short description of the field methods used, as each scheme provides its fieldworkers with specific fieldwork instructions and training.

    1.

    Point counts: A fieldworker counts all detected birds at census points, often placed along a transect (typically >200 meters apart) during a fixed time period to sample birds in a defined study area. Each point is usually visited twice a year.

    2.

    Line transects: A fieldworker moves along a transect and records all detected birds along the predefined path to sample birds in a defined study area. Each transect is usually visited twice a year.

    3.

    Territory or spot mapping: A fieldworker records all birds showing territorial behaviour in a defined study area and marks their positions and their territorial behaviour on a map. The study area is visited multiple times a year (usually 5–12) to map breeding bird territories based on the individual species-specific behaviour recorded. The species counts reflect the number of present territories.

    National scheme coordinators provide all fieldworkers with instructions with the prescribed number and timing of survey visits, and information on how to record observations in terms of sampling effort, time of day, seasonality and weather conditions. This ensures the temporal and spatial consistency of data quality within individual national schemes35. The standardization of conditions during counting then enables unbiased comparison of results between years and individual study sites within each country.For the selection of sampling plots, national monitoring schemes use either random, stratified random, systematic selection, or allow a free choice by fieldworkers8,34. Sampling plots are selected randomly within the study boundaries using a random selection method or randomly within the stratum under the stratified random method. Under these methods, study plot selection is conducted by random generators (by computer programs) and stratum is predefined as a region with similar attributes; these might be proportions of habitat types, altitude bands, bird abundance, accessibility of survey sites, or fieldworker density, depending on the local circumstances. Systematic selection predefines a spatial grid for sampling plot selection while free choice enables fieldworkers to select their study areas without restrictions34. The use of a free choice, or stratified random selection of sampling plots may result in a biased sampling of specific habitat types (typically species-rich habitats) and regions (remote areas poorly covered), but post-hoc stratification and weighting procedures are generally used to correct for unequal sampling and reduce sampling bias as long as the number of plots per stratum is sufficient36. Moreover, national coordinators provide fieldworkers with recommendations or oversee the study plot selection to prevent oversampling of specific habitat types and regions. Detailed information on scheme-specific counting protocols, study plot selection and breeding period specification can be found for each national monitoring scheme8.National species indicesA species annual index reflects population size change relative to the population size in the reference year. On an annual basis, coordinators of the national monitoring schemes produce species indices for recorded species using a tailor-made implementation of loglinear regression models (TRIM models – Trends and Indices for Monitoring data) from time series of recorded species counts at the study plots37,38. Species counts from a study plot reflect mean (or maximum) of individuals recorded during visits at the study plot when using point counts or line transects. For some species, only the number of individuals recorded on the second visit is used because the period of the first visit coincides with the migratory period and consequently the mean number of recorded individuals might not reflect the number of breeding individuals. The method to estimate the species counts in a plot is constant within a national scheme.Missing data occur in the species counts at specific sites in individual years for various reasons, such as severe weather conditions during the counting period, abandonment of the study site, restricted access, or where counts are repeated in multi-year intervals. The TRIM model imputes missing data using species counts either from surveyed sites with similar environmental characteristics (stratified imputing) or all other sites with available data37,39. This process is based on the assumption that changes in populations at non-counted sites are similar to those at counted sites within the same stratum. To derive expected between-year changes in species population sizes, the program fits a log-linear regression model assuming Poisson distribution to time series from counted plots. Finally, we use this model to calculate missing species-specific counts for individual years37,39. The resulting time series of species counts with imputed missing values cover the whole period of counts in the national monitoring scheme. These imputed data are then used to estimate annual population sizes from all study plots and to derive population size indices for species11.European species indices and trendsThe individual national indices for a given species are combined to create the European species indices. Subsequently, long-term population size changes (trends) are calculated as the multiplicative linear slopes from species indices and represent an average between-year relative population size change over a predefined period.The European combination process is very similar to the production of national scheme species indices, but with three differences40. Firstly, the indices are calculated using national TRIM output data, consisting of imputed species counts, standard errors per year and covariance matrices. Secondly, species counts are weighted by the most recent species population size estimates (updated every three years) in a given country derived from national bird atlases, official data reports and national experts (http://datazone.birdlife.org/) to account for the country-specific population sizes and thus the unequal contribution of national indices on the European index. Thirdly, missing national time totals due to different start years of the schemes8 are imputed using species counts from a set of countries from the same geographical region6,11. For this purpose, we divided all national schemes into seven geographic regions – Central & East Europe, East Mediterranean, North Europe, South Europe, Southeast Europe, West Balkan and West Europe8. We then use a set of national indices from a given region to impute missing national indices. Therefore, the earliest periods of population size changes are based on data from a reduced number of study plots and schemes.The species trends are then imputed from species indices for four periods: 1980 onwards, 1990 onwards, 2000 onwards and using only the last ten years of data if the data are available. Despite higher uncertainty of the earliest estimates, we do provide the population index estimates for this period as no alternative and continuous measures of bird population size changes exist for this period.The uncertainty estimates of indices and trends are presented by the standard error11,37 allowing a calculation of 95% confidence limits (±1.96 × standard error). The magnitude of the trend estimates together with their 95% confidence intervals are then used for trend classification into six classes facilitating communication and interpretation of the outputs37 (Table 1).Table 1 Classification of the European bird species trends based on the magnitude and uncertainty of the estimates (using 95% confidence intervals).Full size tableFinally, European species indices and trends are presented only for a group of common and widespread bird species (hereafter ‘common bird species’) meeting two criteria:

    1.

    The estimated breeding population (http://datazone.birdlife.org/) is at least 50 000 pairs in PECBMS Europe (EU countries, Norway, Switzerland and the United Kingdom; Fig. 1). Additionally, Red-billed Chough (Pyrrhocorax pyrrhocorax) and Spotted Redshank (Tringa erythropus) with population sizes below 50 000 pairs are included, as large parts of their breeding populations are covered in the PECBMS Europe.

    2.

    The estimated breeding population in PECBMS countries providing data for a given species8 covers at least 50% of the whole PECBMS Europe breeding population (http://datazone.birdlife.org/).

    The resulting datasets of European population size indices and trends consist of relative population changes for 170 common bird species.UpdatesWe aim to maintain the PECBMS database with annual updates. The annual updates will be available through the PECBMS database deposited at the Zenodo repository8 to ensure long-term public availability of the data. More

  • in

    Vegetation and microbes interact to preserve carbon in many wooded peatlands

    Study sites and soil samplingOur major study sites were located in a shrub-dominated bog13 in the Pocosin Lakes National Wildlife Refuge, NC, USA and a Sphagnum-dominated bog47 in the Marcell Experimental Forest, MN, USA (Supplementary Tables 1 and 2). Three sites ( >1 km apart) around Pungo Lake including Pungo West, Pungo Southwest, and Pungo East were selected at the shrub bogs in North Carolina. Ilex glabra and Lyonia lucida cover about 85% and 10%, respectively at Pungo West. Ilex glabra and Lyonia lucida also dominate Pungo Southwest but distribute evenly, also there are many Woodwardia virginica ferns during the growing season. The water level at Pungo Southwest is always higher than at Pungo West. Both Pungo West and Pungo Southwest have prescribed light fire every 4–5 years. There has been no fire disturbance at the Pungo East site over last 30 years, where more dominant plant species exist, including Lyonia lucida, Ilex glabra, Zenobia pulverulenta, Gaylussacia frondosa, Vaccinium formosum.One hollow and one hummock were selected at the Sphagnum-dominated bogs in Minnesota. A lot of mature trees including Picea mariana, Pinus resinosa, Larix laricina with different bryophytes and shrubs grow at both the hollows and the hummocks. S. fallax dominates the bryophyte layer at the hollows, and S. angustifolium and S. magellanicum dominate at the hummocks. The understory has a layer of ericaceous shrubs including Rhododendron groenlandicum, Chamaedaphne calyculata, Vaccinium oxycoccos at the hummocks, however, only scattered shrubs present in the hollows. Other site information is described in Supplementary Tables 1 and 2. We took three soil cores at each sites (with a distance >4 m from each other), and each soil core was sliced to four subsamples (0–5, 5–10, 10–15, and 15–20 cm). Big roots were removed in lab. The hair roots of all plants were included in the soil samples.Additionally, we took three soil cores at depth 0–10 cm in the shrub-dominated area in Dajiuhu peatlands in Shennongjia, China (31°29′N, 109°59′E) in May 2017. The dominant shrub at Dajiuhu is Betula albosinensis and Spiraea salicifolia with a dense Sphagnum layer (detailed plant information is described in Supplementary Tables 1 and 2). The samples were transported to the laboratory in iceboxes. Half of the samples were frozen at −80 °C for DNA isolation; the other half was stored at 4 °C for chemical analysis.Soil chemistry analysisWe used the deionized water extraction of fresh soil for DOC and soluble phenolics measurements. DOC was measured as the difference between total C and inorganic C with a total C analyzer (Shimadzu 5000 A, Kyoto, Japan). Soluble phenolics were measured by following the Folin-Ciocalteu procedure50. Inorganic nitrogen (NH4+–N and NO3−–N + NO2−–N) extract with 2 M KCl was determined colorimetrically on a flow-injection analyzer (Lachat QuikChem 8000, Milwaukee, WI, USA). Total carbon and nitrogen in soil were analyzed with combustion CN soil analyzer equipped with a TCD detector (ThermoQuest Flash EA1112, Milan, Italy). A 1:10 soil/water solution was used to measure soil pH.DNA extraction, PCR, and sequencingGenomic DNA was extracted from 0.25 g (fresh weight) of each homogenized soil sample using the PowerSoil DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA, USA). DNA of each replicate was extracted 3 times and homogenized together as one DNA template. For Pocosin and Minnesota samples, a set of fungus-specific primers, ITS1F (3′-CTTGGTCATTTAGAGGAAGTAA-5′) and ITS4 (3′-TCCTCCGCTTATTGATATGC-5′), were used to amplify the internal transcribed spacer (ITS) region using barcoded ITS1F primers. For Dajiuhu samples, ITS1F and ITS2 (3′-GCTGCGTTCTTCATCGATGC-5′) were used. All PCR reactions were repeated in triplicate, together with the negative controls in which the template DNA was replaced with deionized H2O. The amplicon concentration of each sample was determined after purification using Qubit® 2.0 Fluorometer (Invitrogen, Grand Island, NY, USA), samples pooled at equimolar concentrations, purified using AMPure Bead cleanup. The amplicons from Pocosin, Minnesota and Dajiuhu samples were submitted to the core facility at Duke University (Durham, NC, USA) and Allwegene Tech Beijing (Beijing, China) for sequencing using Illumina MiSeq (Illumina, San Diego, CA, USA), respectively.Bioinformatics processingSequence data of Pocosins and Minnesota samples were obtained from both ITS1 and ITS2 gene regions. ITS sequences were quality filtered and processed using the standard QIIME pipeline, with each fungal taxon represented by an OTU at the 97% sequence similarity level. Singleton OTUs were omitted51, and OTUs classified taxonomically using a QIIME-based wrapper of BLAST against the UNITE database52,53 (see Supplementary Methods for further details). The quality and depth of coverage of both primers’ reads were not significantly different, thus libraries from ITS4 reads were used for further analysis of fungal communities. Taxonomic-based alpha diversity was calculated as the total number of phylotypes (richness) and Shannon’s diversity index (H′). A total of 150,967 ITS sequences from ITS2 region passed quality control criteria in the Pocosin and Minnesota sites. These sorted into 590 OTUs. Following the same procedure, a total of 115,936 ITS1 sequences from Dajiuhu samples were assigned into 307 OTUs. Following the processing procedure described by Wilson et al.47, relative abundance of beta-proteobacteria at the controlled site in the boreal Sphagnum site was recalculated from Wilson and others’ sequence data34 available from the National Center for Biotechnology Information at SRP071256. Relative abundance of fungi from a bog forest at the Calvert Island in Canada was recalculated from the raw amplicon reads in the European Nucleotide Archive, ITS (ERS1798771-ERS1799064).Lab incubationsThe decomposing capability of microbes in the Sphagnum- and shrub-dominated peatlandsWe tested the decomposing capability of microbes in the Sphagnum- and shrub-dominated peatlands by amending peat inocula from both sites in North Carolina and Minnesota to their peats and labile carbon-enriched mineral soil. Fresh Sphagnum- and shrub-formed peat inocula were prepared by mixing 0.5 kg of each type of fresh peat (10–20 cm) with 2 L of deionized water. After 1 h of stirring and 1-day settlement, the suspension liquid inoculum was filtered through a Buchner funnels (without filter, pore size 0.25–0.5 mm). We added 2 g of glucose to 50 g of nutrient-poor mineral soil (initially 0.05% total nitrogen, 0.64% total soil carbon) to produce a mineral soil medium with high labile carbon content. All incubation media (peat and mineral soil) and jars were sterilized by an autoclave before inoculation. About 30-g fresh Sphagnum-formed peat (2.5–2.8 g in dry weight) or shrub-formed peat (9.1–9.3 g in dry weight), or 50-g mineral soil with 2-g glucose was placed in Mason jars (triplicate, 8-cm diameter, 12-cm height, vacuum seal lid with a stainless-steel fitting with sampling septum), then 20 ml of its own or other’s inoculum was added to the peat media, and 5 ml of inoculum from each site was added to the mineral soil. Finally, all samples were aerobically incubated at a constant temperature of 25 °C. We initially used Parafilm M® Laboratory film, which is air permeable but water resistant, to seal the top for 3-day equilibration, afterward we collected gas samples by syringe from the headspace of each jar at the beginning and end of 1-h sealed incubation and used a GC (Varian 450, CA, USA) to analyze CO2 concentration. As microbial biomass itself is a factor regulating soil respiration rates, standardized CO2 emissions at the microbial biomass were calculated based on the elevated CO2 concentration, time, air volume in the jar, and the amount of added MBC from the inoculum. To prevent microbial acclimation to the assay chemistry18,31, we only incubated the soils for a short time. A chloroform fumigation-extraction method (0.5 M K2SO4 to extract biomass C)54 was used to determine soil MBC by the difference in measured carbon contents between fumigated and control replicates of each sample.Temperature sensitivityTo test temperature sensitivity of soil respiration, nine fresh peat samples (30 g) from each site were added to jars and sealed with Parafilm M® Laboratory film. Triplicate samples were incubated at 4, 25, and 44.5 °C. The highest temperature in this incubation does not match the in situ conditions in our sites, but it may happen shortly in tropical wooded peatlands in the future. After 3-day equilibration, we used the same method as above to measure gas emission and calculated soil respiration based on soil dry weight. We conducted regression analyses for soil from each site using R = αeβT, where R is soil respiration, coefficient α is the intercept of soil respiration when temperature is zero, coefficient β represents the temperature sensitivity of soil respiration, and T is soil temperature.The relative contributions of fungi and bacteria to peat decompositionWe subsampled 20 g each of our archived material from the Sphagnum-dominated bog in Minnesota and the shrub-dominated peatland in North Carolina, then subsamples were well mixed to make two composite bulk samples (one for Sphagnum-formed peat, one for shrub-formed peat) for the following incubations.A total of nine broad-spectrum antibiotics were tested either alone or in combination for their inhibition on bacteria or/and fungal respiration using a selective inhibition (SI) technique55 without glucose. The antibiotics include 5 fungicides (cycloheximide, benomyl, nystatin, natamycin, amphotericin B) and 4 bactericides (streptomycin, penicillin, oxytetracycline hydrochloride, neomycin). Both fungicide and bactericide were used alone or combined at concentrations of 0, 10, 20, 100, 500, and 1000 µg g−1 soil for the shrub-formed peat or 0, 35, 71, 357, 1785, and 3571 µg g−1 soil for the Sphagnum-formed peat. Each concentration of antibiotics (triplicate) was added to a 3-g fresh peat placed in a 50-ml tube. Mason jars (8-cm diameter, 12-cm height, vacuum seal lid with a stainless-steel fitting with sampling septum) are used to incubate the treated samples. CO2 accumulation rates over 24 h was measured and calculated as same as testing temperature sensitivity of soil respiration above. We found that all bactericides used in this study increased CO2 emission along with their concentrations. The results suggest that: (1) the contribution of bacteria to peat decomposition in general was simply very little, (2) the bacteria that were inhibited by bactericide contribute negligibly to peat decomposition, (3) the non-targeted bacteria were stimulated after the targeted-bacteria were inhibited, although the bactericides are broad-spectrum antibiotics, they did not inhibit the dominant bacteria at all in our sites, and /or (4) both bacteria and fungi in our sites may utilize these bactericides as a carbon source. As to the fungicide, only cycloheximide at a concentration of 357 µg g−1 soil slightly decrease CO2 emission in the Sphagnum-formed peat, but not the shrub-formed peat. Other fungicides did not suppress the CO2 emission regardless of their concentrations, or increased the CO2 emission along with increase in concentrations of fungicide, which suggest that these fungicides did not inhibit the dominant fungi in our sites. Therefore, we found no evidence that SI technique could detect the relative contribution of bacteria and fungi to peat decomposition in our sites. To further examine our fungal dominance hypothesis, we next used filtration by size to assess dominant decomposers.According to the literature (e.g., refs. 56,57,58), the average size of most bacteria is between 0.2 and 2.0 µm in diameter, with most of them less than 1.5 µm; while most fungi grow as hyphae in soil, which are cylindrical, thread-like structures 1.5–10 µm in diameter and up to several centimeters in length57,59,60. The sizes of most fungal spore are more than 2.0 µm in diameter61,62,63. Theoretically, porous filters could physically separate bacteria from fungi58. Domeignoz-Horta et al.64 used 0.8-μm filter to exclude fungi successfully64. In our test, filters with pore sizes of 0.22, 0.45, 1.2, and 1.5 μm were selected. The filtrates through 1.2- and 1.5-μm filters contain most of the bacteria, in which a small portion of larger bacteria and small fungi may pass through pores due to a lack of rigidity of their cells58.Sphagnum- and shrub-formed peat inocula were made by mixing 50 g of each type of fresh peat with 250 ml of sterilized deionized water. After 1 h of stirring and 1-day settlement, the suspension liquid inoculum was first filtered through a Buchner funnels (without filter, pore size 0.25–0.5 mm). The filtrate, we assumed, contain all bacteria and fungi while removing large decomposers like insects and worms. The 0.25–0.5 mm filtrate was used to make other inocula containing no-bacteria/fungi, nanobacteria and non-fungi, and most bacteria and non-fungi by filtering through 0.22- (nylon), 0.45- (nylon), 1.2- (glass fiber), and 1.5-μm (glass fiber) filters, separately. In total, 6 treatments including 5 inocula (filtrates through 0.22, 0.45, 1.2, 1.5, and 250–500-μm filters) and control (sterilized deionized water) were established. Either inoculum or sterilized deionized water was added to a 3-g sterilized Sphagnum- or shrub-formed peat (triplicate) and incubated at 25 °C. CO2 emission was measured within 24 h.Statistical analysisOne-way ANOVA with Duncan’s multiple-range test was used to compare the means of soil physicochemical parameters. Standard error of the mean was calculated for each mean. The significant level of the test was set at a probability of 0.05. The ANOSIM function in the vegan package in R was used to test statistical significance in fungal composition within and among sites in the shrub- and the Sphagnum-dominated peatlands (999 permutations), which shows that fungal communities were significantly different within sites at the shrub-dominated peatlands (Pungo East, Pungo West, and Pungo Southwest) and at the Sphagnum-dominated peatlands (hollows and hummocks) (Supplementary Fig. 5). Mantel test and redundancy analysis (RDA) were employed to explain the relative roles of soil physicochemical factors in fungal community composition using vegan package in R. The correlation of the redundancy axes with the explanatory matrix was determined with the general permutation test (anova.cca function; 999 permutations). Stepwise regression was further run to test what primarily control the slow-growing versus fast-growing fungi and soil acidity. More

  • in

    Biological effects of biochar and zeolite used for remediation of soil contaminated with toxic heavy metals

    1.Li, Z. Y., Ma, Z. W., van der Kuijp, T. J., Yuan, Z. W. & Huang, L. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci. Total Environ. 468, 843–853 (2014).ADS 
    Article 

    Google Scholar 
    2.Zhou, C. et al. Evaluation of different types and amounts of amendments on soil Cd immobilization and its uptake to wheat. Environ. Manag. 65, 818–828 (2020).Article 

    Google Scholar 
    3.He, Z. et al. Heavy metal contamination of soils: sources, indicators, and assessment. J. Environ. Indic. 9, 17–18 (2015).
    Google Scholar 
    4.Rodríguez-Eugenio, N., McLaughlin, M., Pennock, D. Soil Pollution: A Hidden Reality. Rome, FAO (2018).5.Lin, C.-F., Lo, S.-S., Lin, H.-Y. & Lee, Y. Stabilization of cadmium contaminated soils using synthesized zeolite. J. Hazard. Mater. 60(3), 217–226 (1998).CAS 
    Article 

    Google Scholar 
    6.Aransiola, S. A., Ijah, U. J. J., Abioye, O. P. & Bala, J. D. Microbial-aided phytoremediation of heavy metals contaminated soil: a review. Eur. J. Biol. Res. 9(2), 104–125. https://doi.org/10.5281/zenodo.3244176 (2019).CAS 
    Article 

    Google Scholar 
    7.Porter, S. K., Scheckel, K. G., Impellitteri, C. A. & Ryan, J. A. Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As and Hg. Crit. Rev. Environ. Sci. Technol. 34, 495–604 (2004).CAS 
    Article 

    Google Scholar 
    8.Contin, M., Miho, L., Pellegrini, E., Gjoka, F. & Shkurta, E. Effects of natural zeolites on ryegrass growth and bioavailability of Cd, Ni, Pb, and Zn in an Albanian contaminated soil. J. Soils Sedim. 19, 4052–4062. https://doi.org/10.1007/s11368-019-02359-7 (2019).CAS 
    Article 

    Google Scholar 
    9.Bashir, S. et al. Effective role of biochar, zeolite and steel slag on leaching behavior of Cd and its fractionations in soil column study. Bull. Environ. Contam. Toxicol. 102, 567–572. https://doi.org/10.1007/s00128-019-02573-6 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Lahori, A. H. et al. Direct and residual impacts of zeolite on the remediation of harmful elements in multiple contaminated soils using cabbage in rotation with corn. Chemosphere 250, 126317 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Mahabadi, A. A., Hajabbasi, M. A., Khademi, H. & Kazemian, H. Soil cadmium stabilization using an Iranian natural zeolite. Geoderma 137(3–4), 388–393 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Yi, N., Wu, Y., Fan, L. & Hu, S. Remediating Cd-contaminated soils using natural and chitosan-introduced zeolite, bentonite, and activated carbon. Pol. J. Environ. Stud. 28(3), 1461–1468 (2019).CAS 
    Article 

    Google Scholar 
    13.Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W. & Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348, 439. https://doi.org/10.1007/s11104-011-0948-y (2011).CAS 
    Article 

    Google Scholar 
    14.Atkinson, C. J., Fitzgerald, J. D. & Hipps, N. A. Potential mechanisms for achieving agricultural benefits from biochar application to temperature soils: a review. Plant Soil 337, 1–18 (2010).CAS 
    Article 

    Google Scholar 
    15.Peake, L. R., Reid, G. J. & Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 235–236, 182–190 (2014).ADS 
    Article 

    Google Scholar 
    16.Mukherjee, A. & Lal, R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 3(2), 313–339 (2013).Article 

    Google Scholar 
    17.Głąb, T., Palmowska, J., Zaleski, T. & Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 281, 11–20 (2016).ADS 
    Article 

    Google Scholar 
    18.Li, H. et al. Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178, 466–478 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Jadia, C. D. & Fuleka, M. H. Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J. Appl. Biosci. 10, 491–499 (2008).
    Google Scholar 
    20.Bandura, L., Franus, M., Józefaciuk, G. & Franus, W. Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147, 100–107 (2015).CAS 
    Article 

    Google Scholar 
    21.International Biochar Initiative. Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil (aka IBI Biochar Standards), Version 2.0, IBI-STD-2.0 (2014).22.Gondek, K. & Mierzwa-Hersztek, M. Effect of low-temperature biochar derived from pig manure and poultry litter on mobile and organic matter-bound forms of Cu, Cd, Pb and Zn in sandy soil. Soil Use Manag. 32, 357–367 (2016).Article 

    Google Scholar 
    23.Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319. https://doi.org/10.1021/ja01269a023 (1938).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Barrett, E. P., Joyner, L. G. & Halenda, P. P. The determination of pore volume and area distributions in porous substances II. J. Am. Chem. Soc. 73, 373–380. https://doi.org/10.1021/ja01145a126 (1951).CAS 
    Article 

    Google Scholar 
    25.Smucker, A. J. M., McBurney, S. L. & Srivastava, A. K. Quantitative separation ofroots from compacted soil profiles by the hydropneumatic elutriation system. Agron. J. 74, 500–503 (1982).Article 

    Google Scholar 
    26.Bauhus, J. & Messier, C. Evaluation of fine root length and diametermeasurements obtained using RHIZO image analysis. Agron. J. 91, 142–147 (1999).Article 

    Google Scholar 
    27.Głąb, T., Gondek, K. & Mierzwa-Hersztek, M. Pyrolysis improves the effect of straw amendment on the productivity of perennial ryegrass (Lolium perenne L.). Agronomy 10, 1455 (2020).Article 

    Google Scholar 
    28.Karthik, A., Hussainy, S. A. H. & Rajasekar, M. Effect of biochar on the growth and yield of cotton and maize: a review. Int. J. Chem. Stud. 8(3), 572–578 (2020).CAS 
    Article 

    Google Scholar 
    29.Fiaz, K. et al. Drought impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. J. Soil Sci. Plant Nutr. 14, 4. https://doi.org/10.4067/S0718-95162014005000067 (2014).Article 

    Google Scholar 
    30.Rehman, M. Z. et al. Effect of acidified biochar on bioaccumulation of cadmium (Cd) and rice growth in contaminated soil. Environ. Technol. Innov. 19, 101015 (2020).Article 

    Google Scholar 
    31.Xu, P. et al. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil. Ecotoxicol. Environ. Saf. 132, 94–100. https://doi.org/10.1016/j.ecoenv.2016.05.031 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Rehman, M. Z. et al. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicol. Environ. Saf. 133, 218–225. https://doi.org/10.1016/j.ecoenv.2016.07.023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Butorac, A. et al. Crop response to the application of special natural amendments based on zeolite tuff. Rostlinná Výroba 48, 118–124 (2002).
    Google Scholar 
    34.Wang, S. B. & Peng, Y. L. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010).CAS 
    Article 

    Google Scholar 
    35.Nakhli, S. A. A., Delkash, M., Bakhshayesh, B. E. & Kazemian, H. Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water Air Soil Pollut. 228, 464. https://doi.org/10.1007/s11270-017-3649-1 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Ozbahce, A., Tari, A. F., Gönülal, E., Simsekli, N. & Padem, H. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress. Arch. Agron. Soil Sci. 61(5), 615–626. https://doi.org/10.1080/03650340.2014.946021 (2015).CAS 
    Article 

    Google Scholar 
    37.De Smedt, C., Someus, E. & Spanoghe, P. Potential and actual uses of zeolites in crop protection. Pest Manag. Sci. 71, 1355–1367. https://doi.org/10.1002/ps.3999 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Rees, F., Sterckeman, T. & Morel, J. L. Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 142, 48–55. https://doi.org/10.1016/j.chemosphere.2015.03.068 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Houben, D., Evrard, L. & Sonnet, P. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57, 196–204. https://doi.org/10.1016/j.biombioe.2013.07.019 (2013).CAS 
    Article 

    Google Scholar 
    40.Reibe, K., Götz, K. P., Döring, T. F., Ros, C. L. & Ellmer, F. Impact of hydro-/biochars on root morphology of spring wheat. Arch. Agron. Soil Sci. 61(8), 1041–1054. https://doi.org/10.1080/03650340.2014.983090 (2015).CAS 
    Article 

    Google Scholar 
    41.Shahbaz, A. K. et al. Improvement in productivity, nutritional quality, and antioxidative defence mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. J. Environ. Manag. 218, 256–270 (2018).CAS 
    Article 

    Google Scholar 
    42.Xiang, Y., Deng, Q., Duan, H. & Guo, Y. Effects of biochar application on root traits: a meta-analysis. GCB Bioenergy 9, 1563–1572. https://doi.org/10.1111/gcbb.12449 (2017).Article 

    Google Scholar 
    43.Olmo, M., Villar, R., Salazar, P. & Alburquerque, J. A. Changes in soil nutrient availability explain biochar’s impact on wheat root development. Plant Soil 399, 333–343. https://doi.org/10.1007/s11104-015-2700-5 (2016).CAS 
    Article 

    Google Scholar 
    44.McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).Article 

    Google Scholar 
    45.Bonifas, K. D., Walters, D. T., Cassman, K. G. & Lindquist, J. L. Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci. 53, 670–675 (2005).CAS 
    Article 

    Google Scholar 
    46.Agren, G. I. & Franklin, O. Root:shoot ratios, optimization and nitrogen productivity. Ann. Bot. 92(6), 795–800 (2003).CAS 
    Article 

    Google Scholar 
    47.Palazzo, A. J., Cary, T. J., Hardy, S. E. & Lee, C. R. Root growth and metal uptake in four grasses grown on zinc-contaminated soils. J. Environ. Qual. 32, 834–840. https://doi.org/10.2134/jeq2003.8340 (2003).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Natural recovery of a marine foundation species emerges decades after landscape-scale mortality

    1.Pandolfi, J. M. et al. Global trajectories of long-term decline of coral reef ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809. https://doi.org/10.1126/science.1128035 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445. https://doi.org/10.2307/2937118 (1992).Article 

    Google Scholar 
    5.Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71. https://doi.org/10.1126/science.1232310 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    6.Palumbi, S. R., McLeod, K. L. & Grunbaum, D. Ecosystems in action: Lessons from marine ecology about recovery, resistance, and reversibility. Bioscience 58, 33–42. https://doi.org/10.1641/b580108 (2008).Article 

    Google Scholar 
    7.O’Leary, J. K. et al. The resilience of marine ecosystems to climatic disturbances. Bioscience 67, 208–220. https://doi.org/10.1093/biosci/biw161 (2017).Article 

    Google Scholar 
    8.Castorani, M. C. N., Reed, D. C. & Miller, R. J. Loss of foundation species: disturbance frequency outweighs severity in structuring kelp forest communities. Ecology 99, 2442–2454. https://doi.org/10.1002/ecy.2485 (2018).Article 
    PubMed 

    Google Scholar 
    9.Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13. https://doi.org/10.2307/1939452 (1984).Article 

    Google Scholar 
    10.Hillebrand, H. & Kunze, C. Meta-analysis on pulse disturbances reveals differences in functional and compositional recovery across ecosystems. Ecol. Lett. 23, 575–585. https://doi.org/10.1111/ele.13457 (2020).Article 
    PubMed 

    Google Scholar 
    11.Robblee, M. B. et al. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar. Ecol. Prog. Ser. 71, 297–299. https://doi.org/10.3354/meps071297 (1991).ADS 
    Article 

    Google Scholar 
    12.Nuttle, W. K., Fourqurean, J. W., Cosby, B. J., Zieman, J. C. & Robblee, M. B. Influence of net freshwater supply on salinity in Florida Bay. Water Resour. Res. 36, 1805–1822. https://doi.org/10.1029/1999wr900352 (2000).ADS 
    Article 

    Google Scholar 
    13.Hall, M. O., Durako, M. J., Fourqurean, J. W. & Zieman, J. C. Decadal changes in seagrass distribution and abundance in Florida Bay. Estuaries 22, 445–459. https://doi.org/10.2307/1353210 (1999).Article 

    Google Scholar 
    14.Folke, C. et al. Regime shifts, resilience, and biodiversity in ecosystem management. Ann. Rev. Ecol. Evol. and Syst. 35, 557–581. https://doi.org/10.1146/annurev.ecolsys.35.021103.105711 (2004).Article 

    Google Scholar 
    15.Gunderson, L. H. Managing surprising ecosystems in southern Florida. Ecol. Econ. 37, 371–378 (2001).Article 

    Google Scholar 
    16.Biggs, R., Peterson, G. D. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. https://doi.org/10.5751/ES-10264-230309 (2018).Article 

    Google Scholar 
    17.Larkum, A. W. D., Orth, R. J. & Duarte, C. M. Seagrasses: Biology, Ecology, and Conservation. 691 p. (Springer, 2006).18.Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175. https://doi.org/10.1016/J.Jembe.2007.06.016 (2007).Article 

    Google Scholar 
    19.Johnson, A. J., Shields, E. C., Kendrick, G. A. & Orth, R. J. Recovery dynamics of the seagrass Zostera marina following mass mortalities from two extreme climatic events. Estuar. Coasts 44, 344–535. https://doi.org/10.1007/s12237-020-00816-y (2020).CAS 
    Article 

    Google Scholar 
    20.van Tussenbroek, B. I. et al. The biology of Thalassia: paradigms and recent advances in research in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J. & Duarte, C. M.) 409–439 (Springer, 2006).21.Walker, D. I., Kendrick, G. A. & McComb, A. J. Decline and recovery of seagrass ecosystems – the dynamics of change in Seagrasses: Biology, Ecology and Conservation (eds Larkum, A. W. D., Orth, R. J., & Duarte, C. M.) 551–565 (Springer, 2006).22.Phlips, E. J., Badylak, S. & Lynch, T. C. Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol. Oceanogr. 44, 1166–1175 (1999).ADS 
    Article 

    Google Scholar 
    23.Williams, S. L. Experimental studies of Caribbean seagrass bed development. Ecol. Monogr. 60, 449–469. https://doi.org/10.2307/1943015 (1990).Article 

    Google Scholar 
    24.Kenworthy, W. J., Hall, M. O., Hammerstrom, K. K., Merello, M. & Schwartzschild, A. Restoration of tropical seagrass beds using wild bird fertilization and sediment regrading. Ecol. Eng. 112, 72–81. https://doi.org/10.1016/j.ecoleng.2017.12.008 (2018).Article 

    Google Scholar 
    25.Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45. https://doi.org/10.1016/j.jembe.2004.03.022 (2004).Article 

    Google Scholar 
    26.Rollon, R. N., Van Steveninck, E. D. D. R., Van Vierssen, W. & Fortes, M. D. Contrasting recolonization strategies in multi-species seagrass meadows. Mar. Pollut. Bull. 37, 450–459. https://doi.org/10.1016/S0025-326X(99)00105-8 (1999).Article 

    Google Scholar 
    27.Olesen, B., Marba, N., Duarte, C. M., Savela, R. S. & Fortes, M. D. Recolonization dynamics in a mixed seagrass meadow: the role of clonal versus sexual processes. Estuaries 27, 770–780. https://doi.org/10.1007/BF02912039 (2004).Article 

    Google Scholar 
    28.Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 106, 12377–12381 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605. https://doi.org/10.1016/j.tree.2011.07.008 (2011).Article 
    PubMed 

    Google Scholar 
    30.Lavorel, S. Ecological diversity and resilience of Mediterranean vegetation to disturbance. Divers. Distrib. 5, 3–13. https://doi.org/10.1046/j.1472-4642.1999.00033.x (1999).Article 

    Google Scholar 
    31.Zhang, J.-Z., Fischer, C. J. & Ortner, P. B. Potential availability of sedimentary phosphorus to sediment resuspension in Florida Bay. Glob. Biogeochem. Cycles 18, 15–25. https://doi.org/10.1029/2004gb002255 (2004).Article 

    Google Scholar 
    32.Koch, M. S., Schopmeyer, S. A., Nielsen, O. I., Kyhn-Hansen, C. & Madden, C. J. Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J. Exp. Mar. Biol. Ecol. 350, 73–88. https://doi.org/10.1016/j.jembe.2007.05.031 (2007).CAS 
    Article 

    Google Scholar 
    33.Birch, W. R. & Birch, M. Succession and pattern of tropical intertidal seagrasses in Cockle Bay, Queensland, Australia: a decade of observations. Aquat. Bot. 19, 343–367. https://doi.org/10.1016/0304-3770(84)90048-2 (1984).Article 

    Google Scholar 
    34.Fraser, M. W. et al. Extreme climate events lower resilience of foundation seagrass at edge of biogeographical range. J. Ecol. 102, 1528–1536. https://doi.org/10.1111/1365-2745.12300 (2014).Article 

    Google Scholar 
    35.Winters, G. et al. The tropical seagrass Halophila stipulacea: reviewing what we know from its native and invasive habitats, alongside identifying knowledge gaps. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00300 (2020).Article 

    Google Scholar 
    36.Ling, S. D. et al. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 370, 20130269. https://doi.org/10.1098/rstb.2013.0269 (2014).Article 

    Google Scholar 
    37.Stafford, N. B. & Bell, S. S. Space competition between seagrass and Caulerpa prolifera (Forsskaal) Lamouroux following simulated disturbances in Lassing Park, FL. J. Exp. Mar. Biol. Ecol. 333, 49–57. https://doi.org/10.1016/j.jembe.2005.11.025 (2006).Article 

    Google Scholar 
    38.Raniello, R., Mollo, E., Lorenti, M., Gavagnin, M. & Buia, M. C. Phytotoxic activity of caulerpenyne from the Mediterranean invasive variety of Caulerpa racemosa: a potential allelochemical. Biol. Invasions 9, 361–368. https://doi.org/10.1007/s10530-006-9044-2 (2007).Article 

    Google Scholar 
    39.Molina Hernández, A. L. & van Tussenbroek, B. I. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Mar. Ecol. Prog. Ser. 517, 143–157 (2014).ADS 
    Article 

    Google Scholar 
    40.Armitage, A. R. & Fourqurean, J. W. The short-term influence of herbivory near patch reefs varies between seagrass species. J. Exp. Mar. Biol. Ecol. 339, 65–74. https://doi.org/10.1016/j.jembe.2006.07.013 (2006).Article 

    Google Scholar 
    41.Thrush, S. F. et al. Forecasting the limits of resilience: integrating empirical research with theory. Proc. R. Soc. B 276, 3209–3217. https://doi.org/10.1098/rspb.2009.0661 (2009).Article 
    PubMed 

    Google Scholar 
    42.MacNeil, M. A. et al. Water quality mediates resilience on the Great Barrier Reef. Nat. Ecol. Evol. 3, 620–627. https://doi.org/10.1038/s41559-019-0832-3 (2019).Article 
    PubMed 

    Google Scholar 
    43.Zieman, J. C., Fourqurean, J. W. & Frankovich, T. A. Reply to B.E. Lapointe and P.J. Barile (2004). Comment on J. C. Zieman, J. W. Fourqurean, and T. A Frankovich 1999 Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass Thalassia testudinum. Estuaries 27, 165–172, https://doi.org/10.1007/Bf02803570 (2004)44.Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355. https://doi.org/10.1371/journal.pbio.2003355 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Bricker, E., Waycott, M., Calladine, A. & Zieman, J. C. High connectivity across environmental gradients and implications for phenotypic plasticity in a marine plant. Mar. Ecol. Prog. Ser. 423, 57–67. https://doi.org/10.3354/meps08962 (2011).ADS 
    Article 

    Google Scholar 
    46.Fourqurean, J. W. & Robblee, M. B. Florida Bay: a history of recent ecological changes. Estuaries 22, 345–357. https://doi.org/10.2307/1353203 (1999).CAS 
    Article 

    Google Scholar 
    47.Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629. https://doi.org/10.1126/science.1059199 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Tabb, D. C., Dubrow, D. L. & Manning, R. B. The ecology of northern Florida Bay and adjacent esturaries. (Florida State Board of Conservation, Technical Series No. 39, 1962).49.Schmidt, T. W. & Davis, G. E. A summary of estuarine and marine water quality information collected in Everglades National Park, Biscayne National Monument, and adjacent estuaries from 1879 to 1977. 79 pp. (U.S. National Park Service, South Florida Research Center, Everglades National Park, Homestead, FL, Report T-519, 1978).50.Hall, M. O., Furman, B. T., Merello, M. & Durako, M. J. Recurrence of Thalassia testudinum seagrass die-off in Florida Bay, USA: initial observations. Mar. Ecol. Prog. Ser. 560, 243–249. https://doi.org/10.3354/meps11923 (2016).ADS 
    Article 

    Google Scholar 
    51.Zieman, J. C., Fourqurean, J. W. & Frankovich, T. A. Seagrass die-off in Florida Bay: long-term trends in abundance and growth of turtle grass Thalassia testudinum. Estuaries 22, 460–470. https://doi.org/10.2307/1353211 (1999).Article 

    Google Scholar 
    52.Zieman, J. C., Fourqurean, J. W. & Iverson, R. L. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bull. Mar. Sci. 44, 292–311 (1989).
    Google Scholar 
    53.Durako, M. J. Seagrass die-off in Florida Bay (USA): changes in shoot demographic characteristics and population dynamics in Thalassia testudinum. Mar. Ecol. Prog. Ser. 110, 59–66. https://doi.org/10.3354/Meps110059 (1994).ADS 
    Article 

    Google Scholar  More

  • in

    Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype

    Sequencing summary and microbial diversity across growing regionsThere were 31,255 to 506,166 and 22,716 to 252,810 reads per sample for 16S rRNA and ITS biogeography datasets, respectively. We rarefied samples to 31,255 reads for 16S rRNA gene amplicons and to 22,716 for ITS. With these thresholds, we achieved richness asymptotes for both datasets, suggesting that sequencing efforts were sufficient to capture comparative dynamics and diversity (Fig. S3). The total richness observed at this rarefaction depth was 1,505 fungal and 23,872 bacterial and archaeal OTUs.As reported in other rhizosphere studies, the total fungal diversity was lower than bacterial/archaeal diversity in the rhizosphere of the common bean [41,42,43]. Richness varied by growing location (ANOVA, F value = 12.4, p-value  2.5), as well as connector (Pi  > 0.62, Zi  More

  • in

    Mass mortality events of autochthonous faunas in a Lower Cretaceous Gondwanan Lagerstätte

    1.Neumann, V. H., Borrego, A. G., Cabrera, L. & Dino, R. Organic matter composition and distribution through the Aptian-Albian lacustrine sequences of the Araripe Basin, northeastern Brazil. Int. J. Coal. Geol. 54, 21–40. https://doi.org/10.1016/S0166-5162(03)00018-1 (2003).CAS 
    Article 

    Google Scholar 
    2.Heimhofer, U. & Martill, D. M. Stratigraphy of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 25–43 (Cambridge University Press, 2007).
    Google Scholar 
    3.Neumann, V. H. M. L. Estratigrafía, sedimentología, geoquímica y diagénesis de los sistemas lacustres Aptienses-Albienses de la Cuenca de Araripe (Noreste de Brasil) (Universidad de Barcelona, 1999).
    Google Scholar 
    4.Martill, D. M. The geology of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 8–24 (Cambridge University Press, 2007).
    Google Scholar 
    5.Martill, D. M. & Wilby, P. R. Stratigraphy. In Fossils of the Santana and Crato Formations, Brazil (ed. Martill, D. M.) 20–50 (The Palaeontological Association Field Guides to Fossils, 1993).
    Google Scholar 
    6.Heimhofer, U. et al. Deciphering the depositional environment of the laminated Crato fossil beds (Early Cretaceous, Araripe Basin, North-eastern Brazil). Sedimentology 57(2), 677–694. https://doi.org/10.1111/j.1365-3091.2009.01114.x (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Martínez-Delclòs, X., Briggs, D. E. G. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203, 19–64. https://doi.org/10.1016/S0031-0182(03)00643-6 (2004).Article 

    Google Scholar 
    8.Menon, F. & Martill, D. M. Taphonomy and preservation of Crato Formation arthropods. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 79–96 (Cambridge University Press, 2007).
    Google Scholar 
    9.Martins-Neto, R. G. New mayflies (Insecta, Ephemeroptera) from the Santana Formation (Lower Cretaceous), Araripe Basin, northeastern Brazil. Rev. Esp. Paleontol. 11(2), 177–192 (1996).
    Google Scholar 
    10.Brito, P. M. The Crato Formation fish fauna. In The Crato Fossil Beds of Brazil: Window into an ancient world (eds Martill, D. M. et al.) 429–443 (Cambridge University Press, 2007).
    Google Scholar 
    11.Sinitshenkova, N. D. The Mesozoic mayflies (Ephemeroptera) with special reference to their ecology. In 4th International Conference of Ephemeroptera (eds Landa, V. et al.) 61–66 (Czechoslovak Academy of Science, 1984).
    Google Scholar 
    12.Martill, D. M., Brito, P. M. & Washington-Evans, J. Mass mortality of fishes in the Santana Formation (Lower Cretaceous, Albian) of northeast Brazil. Cretac. Res. 29(4), 649–658. https://doi.org/10.1016/j.cretres.2008.01.012 (2008).Article 

    Google Scholar 
    13.Martins-Neto, R. G. Insetos fósseis como bioindicadores em depósitos sedimentares: um estudo de caso para o Cretáceo da Bacia do Araripe (Brasil). Rev. Bras. Zoociências. 8(2), 155–183 (2006).
    Google Scholar 
    14.Bechly, G. et al. A revision and phylogenetic study of Mesozoic Aeshnoptera, with description of several new families, genera and species (Insecta: Odonata: Anisoptera). Neue Paläontologische Abhandlungen. 4, 1–219 (2001).
    Google Scholar 
    15.Martins-Neto, R. G. & Gallego, O. F. Death behaviour”—Thanatoethology, new term and concept: A taphonomic analysis providing possible paleoethologic inferences. Special cases from arthropods of the santana formation (Lower Cretaceous, Northeast Brazil). Geociências. 25(2), 241–254 (2006).
    Google Scholar 
    16.Osés, G. L. et al. Deciphering the preservation of fossil insects: A case study from the Crato Member, Early Cretaceous of Brazil. PeerJ. 4, e2756. https://doi.org/10.7717/peerj.2756 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    17.Saraiva, A. A. F., Hessel, M. H., Guerra, N. C. & Fara, E. Concreções Calcárias da Formação Santana, Bacia do Araripe: uma proposta de classificação. Estud. Geol. 17(1), 40–58 (2007).
    Google Scholar 
    18.Assine, M. L. Bacia do Araripe. Boletim de Geociências da Petrobras. 15(2), 371–389 (2007).
    Google Scholar 
    19.Neumann, V. H. & Cabrera, L. Una nueva propuesta estratigráfica para la tectonosecuencia post-rifte de la cuenca de Araripe, nordeste de Brasil. Boletim do 5° Simpósio sobre o Cretáceo do Brasil. 279–285 (1999).

    Google Scholar 
    20.Viana, M. S. & Neumann, V. H. L. Membro Crato da Formação Santana, Chapada do Araripe, CE-Riquíssimo registro de fauna e flora do Cretáceo. In Sítios Geológicos e Paleontológicos do Brasil (eds Schobbenhaus, C. et al.) 113–120 (Comissão Brasileira de Sítios Geológicos e Paleobiológicos, 2002).
    Google Scholar 
    21.Staniczek, A. H. Ephemeroptera: Mayflies. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 163–184 (Cambridge University Press, 2007).
    Google Scholar 
    22.Datta, D., Mukherjee, D. & Ray, S. Taphonomic signatures of a new Upper Triassic phytosaur (Diapsida, Archosauria) bonebed from India: Aggregation of a juvenile-dominated paleocommunity. J. Vertebr. Paleontol. 39(6), e1726361 (2020).Article 

    Google Scholar 
    23.Barling, N. The Fidelity of Preservation of Insects from the Crato Formation (Lower Cretaceous) of Brazil (University of Portsmouth, 2018).
    Google Scholar 
    24.Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).
    Google Scholar 
    25.Grande, L. Palaeontology of the Green River Formation, with a Review of the Fish Fauna 2nd edn, Vol. 63, 1–333 (Geological Survey of Wyoming Bulletin, 1984).
    Google Scholar 
    26.McCafferty, W. P. Chapter 2. Ephemeroptera. Bull. Am. Mus. Nat. Hist. 195, 20–50 (1990).
    Google Scholar 
    27.Meshkova, N. P. On nymph Ephemeropsis trisetalis Eichwald (Insecta). Paleontol. Zh. 4, 164–168 (1961).
    Google Scholar 
    28.Polegatto, C. M. & Zamboni, J. C. Inferences regarding the feeding behavior and morphoecological patterns of fossil mayfly nymphs (Insecta Ephemeroptera) from the Lower Cretaceous Santana Formation of northeastern Brazil. Acta. Geol. Leopold. 24, 145–160 (2001).
    Google Scholar 
    29.Bouchard, R. W. Guide to Aquatic Macroinvertebrates of the Upper Midwest (University of Minnesota, 2004).
    Google Scholar 
    30.Tshernova, O. A. On the classification of Fossil and Recent Ephemeroptera. Entomol. Rev. 49, 71–81 (1970).
    Google Scholar 
    31.Braz, F. F. Registro angiospérmico Eocretáceo do Membro Crato, Formação Santana, Bacia do Araripe, NE do Brasil: Interpretações paleoambientais, paleoclimáticas e paleofitogeográficas (Universidade de São Paulo, 2012).
    Google Scholar 
    32.Archibald, S. B. & Makarkin, V. N. Tertiary giant lacewings (Neuroptera: Polystoechotidae): Revision and description of new taxa from western North America and Denmark. J. Syst. Palaeontol. 4, 1–37. https://doi.org/10.1017/S1477201906001817 (2005).Article 

    Google Scholar 
    33.Boyero, L., Cardinale, B. J., Bastian, M. & Pearson, R. G. Biotic vs abiotic control of decomposition: A comparison of the effects of simulated extinctions and changes in temperature. PLoS ONE 9(1), e87426. https://doi.org/10.1371/journal.pone.0087426 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Gall, J. C. Les Voiles Microbiens. Leur Contribution à la Fossilisation des Organismes au Corps Mou. Lethaia 23, 21–28 (1990).Article 

    Google Scholar 
    35.Martill, D. M. Fish oblique to bedding in early diagenetic concretions from the Cretaceous Santana Formation of Brazil e implications for substrate consistency. Palaeontology 41, 1011–1026 (1997).
    Google Scholar 
    36.Iniesto, M. et al. Soft tissue histology of insect larvae decayed in laboratory experiments using microbial mats: Taphonomic comparison with Cretaceous fossil insects from the exceptionally preserved biota of Araripe, Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 564, 110156. https://doi.org/10.1016/j.palaeo.2020.110156 (2021).Article 

    Google Scholar 
    37.Kok, M. D., Schouten, S. & Damsté, J. S. S. Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates. Geochim. Cosmochim. Acta. 64, 2689–2699. https://doi.org/10.1016/S0016-7037(00)00382-3 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Kluge, N. J. The Phylogenetic System of Ephemeroptera (Kluwer Academic, 2004). https://doi.org/10.1007/978-94-007-0872-3.
    Google Scholar 
    39.Camp, A. A., Funk, D. H. & Buchwalter, D. B. A stressful shortness of breath: Molting disrupts breathing in the mayfly Cloeon dipterum. Freshw. Sci. 33(3), 695–699. https://doi.org/10.1086/677899 (2014).Article 

    Google Scholar 
    40.Mohr, B. A. R., Bernardes-De-Oliveira, M. E. C. & Loveridge, R. F. The macrophyte flora of the Crato Formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 537–565 (Cambridge University Press, 2007).
    Google Scholar 
    41.Kunzmann, L., Mohr, B. A. R. & Bernardes-De-Oliveira, M. E. C. Gymnosperms from the Early Cretaceous Crato Formation (Brazil). I. Araucariaceae and Lindleycladus (incertae sedis). Foss. Rec. 7, 155–174. https://doi.org/10.1002/mmng.20040070109 (2004).Article 

    Google Scholar 
    42.Mohr, B., Schultka, S., Süss, H. & Bernardes-De Oliveira, M. E. C. A new drought resistant gymnosperm taxon Duartenia araripensis gen. nov. et sp. nov. (Cheirolepidiaceae?) from the Early Cretaceous of Northern Gondwana. Palaeontogr. Abt. B. 289(1–3), 1–25. https://doi.org/10.1127/palb/289/2012/1 (2012).Article 

    Google Scholar 
    43.Bernardes-De-Oliveira, M. E. C. et al. Indicadores Paleoclimáticos na Paleoflora do Crato, final do Aptiano do Gondwana Norocidental. In Paleontologia: Cenários de Vida-Paleoclimas (eds Carvalho, I. S. et al.) 100–118 (Editora Interciência, 2013).
    Google Scholar 
    44.Kershaw, P. & Wagstaff, B. The Southern Conifer Family Araucariaceae: History, status, and value for paleoenvironmental reconstruction. Annu. Rev. Ecol. Syst. 32, 397–414. https://doi.org/10.1146/annurev.ecolsys.32.081501.114059 (2001).Article 

    Google Scholar 
    45.Lima, F. J. et al. Fire in the paradise: Evidence of repeated palaeo-wildfires from the Araripe Fossil Lagerstätte (Araripe Basin, Aptian-Albian), Northeast Brazil. Palaeobio. Palaeoenv. 99, 367–378. https://doi.org/10.1007/s12549-018-0359-7 (2019).Article 

    Google Scholar 
    46.Makarkin, V. N. & Menon, F. New species of the Mesochrysopidae (Insecta, Neuroptera) from the Crato Formation of Brazil (Lower Cretaceous), with taxonomic treatment of the family. Cretac. Res. 26, 801–812. https://doi.org/10.1016/j.cretres.2005.05.009 (2005).Article 

    Google Scholar 
    47.Martill, D. M., Loveridge, R. & Heimhofer, U. Halite pseudomorphs in the Crato Formation (Early Cretaceous, Late Aptian-Early Albian), Araripe Basin, northeast Brazil: Further evidence for hypersalinity. Cretac. Res. 28(4), 613–620. https://doi.org/10.1016/j.cretres.2006.10.003 (2007).Article 

    Google Scholar 
    48.Williams, W. D. Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes and Reservoirs. Res. Manag. 4, 85–91. https://doi.org/10.1046/j.1440-1770.1999.00089.x (1999).Article 

    Google Scholar 
    49.Clarke, R. T. & Hering, D. Errors and uncertainty in bioassessment methods, major results and conclusions from the STAR project and their application using STARBUGS. Hydrobiologia 566, 433–439. https://doi.org/10.1007/s10750-006-0079-2 (2006).Article 

    Google Scholar 
    50.Williams, W. D. Salinity tolerances of four species of fish from the Murray-Darling River system. Hydrobiologia 210, 145–160 (1991).Article 

    Google Scholar 
    51.Lancaster, J. & Scudder, G. G. E. Aquatic Coleoptera and Hemiptera in some Canadian saline lakes: Patterns in community structure. Can. J. Zool. 65(6), 1383–1390. https://doi.org/10.1139/z87-218 (1987).Article 

    Google Scholar 
    52.Metzeling, L. Benthic macroinvertebrate community structure in streams of different salinities. Mar. Freshw. Res. 44, 335–351. https://doi.org/10.1071/MF9930335 (1993).CAS 
    Article 

    Google Scholar 
    53.Berezina, N. A. Tolerance of freshwater invertebrates to changes in water salinity. Russ. J. Ecol. 34(4), 261–266. https://doi.org/10.1023/A:1024597832095 (2003).Article 

    Google Scholar 
    54.Kefford, B. J., Dalton, A., Palmer, C. G. & Nugegoda, D. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia 517(1–3), 179–192. https://doi.org/10.1023/B:HYDR.0000027346.06304.bc (2004).Article 

    Google Scholar 
    55.Chadwick, M. A., Hunter, H., Feminella, J. W. & Henry, R. P. Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water. Fla. Entomol. 85, 650–651. https://doi.org/10.1653/0015-4040(2002)085[0650:SAWBIH]2.0.CO;2 (2002).Article 

    Google Scholar 
    56.James, K. R., Cant, B. & Ryan, T. Responses of freshwater biota to rising salinity levels and implications for saline water management: A review. Aust. J. Bot. 51(6), 703. https://doi.org/10.1071/BT02110 (2003).CAS 
    Article 

    Google Scholar 
    57.Nielsen, D. L., Brock, M. A., Rees, G. N. & Baldwin, D. S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 51(6), 655–665. https://doi.org/10.1071/BT02115 (2003).Article 

    Google Scholar 
    58.Hart, B. T., Lake, P. S., Webb, J. A. & Grace, M. R. Ecological risk to aquatic systems from salinity increases. Aust. J. Bot. 51(6), 689. https://doi.org/10.1071/BT02111 (2003).CAS 
    Article 

    Google Scholar 
    59.Bagarinao, T. Systematics, genetics and life history of milkfish, Chanos chanos. Environ. Biol. Fishes. 39, 23–41 (1994).Article 

    Google Scholar 
    60.Davis, S. P. & Martill, D. M. The Gonorynchiform fish Dastilbe from the Lower Cretaceous of Brazil. Palaeontology 42(4), 715–740 (2003).Article 

    Google Scholar 
    61.Jell, P. A. & Duncan, P. M. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra fossil bed (Korumburra group), South Gippsland, Victoria. In Plants and invertebrates from the Lower Cretaceous Koonwarra fossil bed, South Gippsland, Victoria (eds Jell, P. A. & Roberts, J.) 111–205 (Memoir of the Association of Australasian Palaeontologists, 1986).
    Google Scholar 
    62.Ponomarenko, A. G. Fossil insects from the Tithonian ‘Solnhofener Plattenkalke’ in the Museum of Natural History, Vienna. Ann. Naturhist. Mus. Wien. 87, 135–144 (1985).
    Google Scholar 
    63.Zhang, J. & Zhang, H. Insects and spiders. In The Jehol Biota (eds Chang, M. et al.) 59–68 (Shanghai Scientific and Technical Publishers, 2003).
    Google Scholar 
    64.Hellawell, J. & Orr, P. J. Deciphering taphonomic processes in the Eocene Green River Formation of Wyoming. Palaeobiodivers. Palaeoenviron. 93, 353–365. https://doi.org/10.1007/s12549-012-0092-6 (2012).Article 

    Google Scholar 
    65.McGrew, P. O. Taphonomy of Eocene fish from Fossil Basin, Wyoming. Fieldiana Geology. 33, 257–270 (1975).
    Google Scholar 
    66.Krzemiński, W., Soszyńska-Maj, A., Bashkuev, A. S. & Kopeć, K. Revision of the unique Early Cretaceous Mecoptera from Koonwarra (Australia) with description of a new genus and family. Cretac. Res. 52, 501–506. https://doi.org/10.1016/j.cretres.2014.04.004 (2015).Article 

    Google Scholar 
    67.Elder, R. L. & Smith, G. R. Fish taphonomy and environmental inference in Paleolimnology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 62, 577–592 (1988).Article 

    Google Scholar 
    68.Huang, D. Tarwinia australis (Siponaptera: Tarwiniidae) from the Lower Cretaceous Koonwarra fossil bed: Morphological revision and analysis of its evolutionary relationship. Cretac. Res. 52, 507–515 (2015).Article 

    Google Scholar 
    69.Waldman, M. Fish from the freshwater Lower Cretaceous of Victoria, Australia with comments of the palaeo-environment. Spec. Pap. Palaeontol. 9, 1–124 (1971).
    Google Scholar 
    70.Brittain, J. E. & Sartori, M. Ephemeroptera. In Encyclopedia of Insects (eds Resh, V. H. & Cardé, R. T.) 328–334 (Academic Press, 2002).
    Google Scholar 
    71.Bartell, K. W., Swinburne, N. H. M. & Conway-Morris, S. Solnhofen: A Study in Mesozoic Palaeontology (Cambridge University Press, 1990).
    Google Scholar 
    72.Bechly, G. New fossil dragonflies from the Lower Cretaceous Crato Formation of north-east Brazil (Insecta: Odonata). Stuttgarter Beitrage zur Naturkunde. 264, 1–66 (1998).
    Google Scholar 
    73.Fielding, S., Martill, D. M. & Naish, D. Solnhofen-style soft-tissue preservation in a new species of turtle from the Crato Formation (Early Cretaceous, Aptian) of north-east Brazil. Palaeontology 48, 1301–1310. https://doi.org/10.1111/j.1475-4983.2005.00508.x (2005).Article 

    Google Scholar 
    74.Sartori, M. & Brittain, J. E. Order Ephemeroptera. In Ecology and General Biology: Thorp and Covich’s Freshwater Invertebrates (eds Thorp, J. & Rogers, D. C.) 873–891 (Academic Press, 2015).
    Google Scholar 
    75.Chang, M. M., Chen, P. J., Wang, Y. Q., Wang, Y. & Miao, D. S. The Jehol Fossils: TheEmergence of Feathered Dinosaurs, Beaked Birds and Flowering Plants (Academic Press, 2007).
    Google Scholar 
    76.Zhang, X. & Sha, J. Sedimentary laminations in the lacustrine Jianshangou Bed of the Yixian Formation at Sihetun, western Liaoning, China. Cretac. Res. 36, 96–105. https://doi.org/10.1016/j.cretres.2012.02.010 (2012).CAS 
    Article 

    Google Scholar 
    77.Fürsich, F. T., Sha, J., Jiang, B. & Pan, Y. High resolution palaeoecological and taphonomic analysis of Early Cretaceous lake biota, western Liaoning (NE-China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 253, 434–457. https://doi.org/10.1016/j.palaeo.2007.06.012 (2007).Article 

    Google Scholar 
    78.Pan, Y., Sha, J. & Fürsich, F. A model for organic fossilization of the Early Cretaceous Jehol Lagerstätte based on the taphonomy of “Ephemeropsis trisetalis”. Palaios 29(7/8), 363–377 (2014).ADS 
    Article 

    Google Scholar 
    79.Upchurch, G. R. & Doyle, J. A. Paleoecology of the conifers Frenelopsis and Pseudofrenelopsis (Cheirolepidiaceae) from the Cretaceous Potomac Group of Maryland and Virginia. In Geobotany II (ed. Romans, R. C.) 167–202 (Plenum, 1981).
    Google Scholar 
    80.Maisey, J. G. A new Clupeomorph fish from the Santana Formation (Albian) of NE Brazil. Am. Mus. Novit. 3076, 1–15 (1993).
    Google Scholar 
    81.Valença, M. M., Neumann, V. H. & Mabesoone, J. M. An overview on Callovian-Cenomanian intracratonic basins of northeast Brazil: Onshore stratigraphic record of the opening of the southern Atlantic. Geol. Acta. 1, 261–275. https://doi.org/10.1344/105.000001614 (2003).Article 

    Google Scholar 
    82.Barling, N., Martill, D. M., Heads, S. W. & Gallien, F. High fidelity preservation of fossil insects from the Crato Formation (Lower Cretaceous) of Brazil. Cretac. Res. 52(B), 605–622. https://doi.org/10.1016/j.cretres.2014.05.007 (2015).Article 

    Google Scholar 
    83.Catto, B., Jahnert, R. J., Warren, L. V., Varejão, F. G. & Assine, M. L. The microbial nature of laminated limestones: lessons from the Upper Aptian, Araripe Basin, Brazil. Sediment. Geol. 341, 304–315. https://doi.org/10.1016/j.sedgeo.2016.05.007 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    84.Warren, L. V. et al. Stromatolites from the Aptian Crato Formation, a hypersaline lake system in the Araripe Basin, northeastern Brazil. Facies 63(3), 2016. https://doi.org/10.1007/s10347-016-0484-6 (2017).Article 

    Google Scholar  More