The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization
1.Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 2016;6:751–8.Article
CAS
Google Scholar
2.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS
PubMed
PubMed Central
Article
Google Scholar
3.Crowther TW, Hoogen JVD, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS
PubMed
Article
Google Scholar
4.Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–92.CAS
PubMed
Article
Google Scholar
5.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.CAS
Article
Google Scholar
6.Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang. 2018;8:885–9.CAS
PubMed
PubMed Central
Article
Google Scholar
7.Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.CAS
PubMed
Article
Google Scholar
8.Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.CAS
Article
Google Scholar
9.Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD, et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct Ecol. 2019;33:514–23.Article
Google Scholar
10.Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Chang Biol. 2019;25:827–38.PubMed
PubMed Central
Article
Google Scholar
11.Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Chang Biol. 2019;25:3354–64.PubMed
Article
Google Scholar
12.Smith TP, Thomas TJH, Garcia-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.PubMed
PubMed Central
Article
CAS
Google Scholar
13.Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 2014;20:3578–86.PubMed
Article
Google Scholar
14.Pietikainen J, Pettersson M, Baath E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52:49–58.PubMed
Article
CAS
Google Scholar
15.Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article
Google Scholar
16.Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 2018;18:177.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol. 2017;23:2117–29.PubMed
Article
Google Scholar
18.Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.PubMed
Article
CAS
Google Scholar
19.Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28:2405–29.Article
Google Scholar
20.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS
PubMed
PubMed Central
Article
Google Scholar
21.Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.Article
Google Scholar
22.Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.CAS
Article
Google Scholar
23.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS
PubMed
Article
Google Scholar
24.DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.PubMed
PubMed Central
Article
Google Scholar
25.Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. Long-term release of carbon dioxide from Arctic Tundra ecosystems in Alaska. Ecosystems. 2017;20:960–74.CAS
Article
Google Scholar
26.Reed SC, Reibold R, Cavaleri MA, Alonso-Rodríguez AM, Berberich ME, Wood TE. Chapter six—soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Advances in ecological research. (Academic Press, Cambridge MA, 2020) pp 225–52.27.Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils. 2000;30:510–9.CAS
Article
Google Scholar
28.Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2012;78:612.CAS
PubMed Central
Article
PubMed
Google Scholar
29.Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article
Google Scholar
30.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS
PubMed
Article
Google Scholar
31.Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.CAS
PubMed
PubMed Central
Article
Google Scholar
32.Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data”. 2011. https://github.com/ExpressionAnalysis/ea-utils.33.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS
PubMed
PubMed Central
Article
Google Scholar
34.Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.CAS
PubMed
Article
Google Scholar
35.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS
PubMed
Article
Google Scholar
36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS
PubMed
Article
PubMed Central
Google Scholar
37.Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.CAS
PubMed
PubMed Central
Article
Google Scholar
38.Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.PubMed
PubMed Central
Article
Google Scholar
39.Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu X-JA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.PubMed
PubMed Central
Article
Google Scholar
40.Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT. Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol. 2017;1:0132.PubMed
PubMed Central
Article
Google Scholar
41.Laliberté E, Norton DA, Scott D. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci. 2013;24:834–42.Article
Google Scholar
42.Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA. Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLOS ONE. 2016;11:e0154014.PubMed
PubMed Central
Article
CAS
Google Scholar
43.Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F. Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. J Veg Sci. 2016;27:1275–87.Article
Google Scholar
44.Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 2017;31:2330–43.Article
Google Scholar
45.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.46.Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, et al. Global trait–environment relationships of plant communities. Nat Ecol Evol. 2018;2:1906–17.PubMed
Article
Google Scholar
47.Piton G, Legay N, Arnoldi C, Lavorel S, Clément J-C, Foulquier A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J Ecol. 2020;108:876–93.CAS
Article
Google Scholar
48.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:3221–9.PubMed
Article
Google Scholar
49.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS
PubMed
PubMed Central
Article
Google Scholar
50.Li J, Nie M, Pendall E, Reich PB, Pei J, Noh NJ, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Chang Biol. 2020;26:1873–85.PubMed
Article
Google Scholar
51.Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.PubMed
PubMed Central
Google Scholar
52.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T, et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36.Article
Google Scholar
53.Ali A, Yan E-R, Chang SX, Cheng J-Y, Liu X-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ. 2017;574:654–62.CAS
PubMed
Article
Google Scholar
54.Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.PubMed
Article
Google Scholar
55.Luo Y-H, Cadotte MW, Burgess KS, Liu J, Tan S-L, Zou J-Y, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett. 2019;22:1449–61.PubMed
Article
Google Scholar
56.Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA. 2007;104:20684–9.PubMed
Article
Google Scholar
57.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.PubMed
PubMed Central
Article
Google Scholar
58.Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9.CAS
PubMed
Article
Google Scholar
59.Coskun OK, Ozen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.CAS
PubMed
PubMed Central
Article
Google Scholar
60.Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct Ecol. 2020;34:2634–43.Article
Google Scholar
61.Melillo JM, Frey SD, Deangelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5.CAS
PubMed
Article
Google Scholar
62.Johnston ASA, Sibly RM. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2018;2:1597–602.PubMed
Article
Google Scholar More