More stories

  • in

    The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization

    1.Bradford MA, Wieder WR, Bonan GB, Fierer N, Raymond PA, Crowther TW. Managing uncertainty in soil carbon feedbacks to climate change. Nat Clim Chang. 2016;6:751–8.Article 
    CAS 

    Google Scholar 
    2.Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Crowther TW, Hoogen JVD, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Heimann M, Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 2008;451:289–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Chang. 2013;3:909–12.CAS 
    Article 

    Google Scholar 
    6.Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Chang. 2018;8:885–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Li JQ, Pei JM, Pendall E, Fang CM, Nie M. Spatial heterogeneity of temperature sensitivity of soil respiration: a global analysis of field observations. Soil Biol Biochem. 2020;141:107675.CAS 
    Article 

    Google Scholar 
    9.Wang QK, Zhao XC, Chen LC, Yang QP, Chen S, Zhang WD, et al. Global synthesis of temperature sensitivity of soil organic carbon decomposition: latitudinal patterns and mechanisms. Funct Ecol. 2019;33:514–23.Article 

    Google Scholar 
    10.Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Chang Biol. 2019;25:827–38.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ye JS, Bradford MA, Dacal M, Maestre FT, García-Palacios P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob Chang Biol. 2019;25:3354–64.PubMed 
    Article 

    Google Scholar 
    12.Smith TP, Thomas TJH, Garcia-Carreras B, Sal S, Yvon-Durocher G, Bell T, et al. Community-level respiration of prokaryotic microbes may rise with global warming. Nat Commun. 2019;10:5124.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Schipper LA, Hobbs JK, Rutledge S, Arcus VL. Thermodynamic theory explains the temperature optima of soil microbial processes and high Q10 values at low temperatures. Glob Chang Biol 2014;20:3578–86.PubMed 
    Article 

    Google Scholar 
    14.Pietikainen J, Pettersson M, Baath E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiol Ecol. 2005;52:49–58.PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Bárcenas-Moreno G, Gómez-Brandón M, Rousk J, Bååth E. Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Glob Chang Biol. 2009;15:2950–7.Article 

    Google Scholar 
    16.Engqvist MKM. Correlating enzyme annotations with a large set of microbial growth temperatures reveals metabolic adaptations to growth at diverse temperatures. BMC Microbiol. 2018;18:177.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Glob Chang Biol. 2017;23:2117–29.PubMed 
    Article 

    Google Scholar 
    18.Bier RL, Bernhardt ES, Boot CM, Graham EB, Hall EK, Lennon JT, et al. Linking microbial community structure and microbial processes: an empirical and conceptual overview. FEMS Microbiol Ecol. 2015;91:fiv113.PubMed 
    Article 
    CAS 

    Google Scholar 
    19.Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28:2405–29.Article 

    Google Scholar 
    20.Hungate BA, Mau RL, Schwartz E, Caporaso JG, Dijkstra P, van Gestel N, et al. Quantitative microbial ecology through stable isotope probing. Appl Environ Microbiol. 2015;81:7570–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Koch BJ, McHugh TA, Hayer M, Schwartz E, Blazewicz SJ, Dijkstra P, et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere. 2018;9:e02090.Article 

    Google Scholar 
    22.Hamdi S, Moyano F, Sall S, Bernoux M, Chevallier T. Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol Biochem. 2013;58:115–26.CAS 
    Article 

    Google Scholar 
    23.Martiny AC, Treseder K, Pusch G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 2013;7:830–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.DeAngelis KM, Pold G, Topçuoğlu BD, van Diepen LTA, Varney RM, Blanchard JL, et al. Long-term forest soil warming alters microbial communities in temperate forest soils. Front Microbiol. 2015;6:104.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Euskirchen ES, Bret-Harte MS, Shaver GR, Edgar CW, Romanovsky VE. Long-term release of carbon dioxide from Arctic Tundra ecosystems in Alaska. Ecosystems. 2017;20:960–74.CAS 
    Article 

    Google Scholar 
    26.Reed SC, Reibold R, Cavaleri MA, Alonso-Rodríguez AM, Berberich ME, Wood TE. Chapter six—soil biogeochemical responses of a tropical forest to warming and hurricane disturbance. In: Dumbrell AJ, Turner EC, Fayle TM, editors. Advances in ecological research. (Academic Press, Cambridge MA, 2020) pp 225–52.27.Witt C, Gaunt JL, Galicia CC, Ottow JCG, Neue HU. A rapid chloroform-fumigation extraction method for measuring soil microbial biomass carbon and nitrogen in flooded rice soils. Biol Fertil Soils. 2000;30:510–9.CAS 
    Article 

    Google Scholar 
    28.Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 2012;78:612.CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    29.Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    30.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Rohland N, Reich D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012;22:939–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Aronesty E. ea-utils: “Command-line tools for processing biological sequencing data”. 2011. https://github.com/ExpressionAnalysis/ea-utils.33.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Caporaso JG, Bittinger K, Bushman FD, Desantis TZ, Andersen GL, Knight R. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics. 2010;26:266–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Morrissey EM, Mau RL, Schwartz E, McHugh TA, Dijkstra P, Koch BJ, et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 2017;11:1890–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu X-JA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Gross N, Bagousse-Pinguet YL, Liancourt P, Berdugo M, Gotelli NJ, Maestre FT. Functional trait diversity maximizes ecosystem multifunctionality. Nat Ecol Evol. 2017;1:0132.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Laliberté E, Norton DA, Scott D. Contrasting effects of productivity and disturbance on plant functional diversity at local and metacommunity scales. J Veg Sci. 2013;24:834–42.Article 

    Google Scholar 
    42.Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA. Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLOS ONE. 2016;11:e0154014.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.Götzenberger L, Botta-Dukát Z, Lepš J, Pärtel M, Zobel M, de Bello F. Which randomizations detect convergence and divergence in trait-based community assembly? A test of commonly used null models. J Veg Sci. 2016;27:1275–87.Article 

    Google Scholar 
    44.Delgado-Baquerizo M, Trivedi P, Trivedi C, Eldridge DJ, Reich PB, Jeffries TC, et al. Microbial richness and composition independently drive soil multifunctionality. Funct Ecol. 2017;31:2330–43.Article 

    Google Scholar 
    45.R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.org/.46.Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, et al. Global trait–environment relationships of plant communities. Nat Ecol Evol. 2018;2:1906–17.PubMed 
    Article 

    Google Scholar 
    47.Piton G, Legay N, Arnoldi C, Lavorel S, Clément J-C, Foulquier A. Using proxies of microbial community-weighted means traits to explain the cascading effect of management intensity, soil and plant traits on ecosystem resilience in mountain grasslands. J Ecol. 2020;108:876–93.CAS 
    Article 

    Google Scholar 
    48.Alster CJ, von Fischer JC, Allison SD, Treseder KK. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob Chang Biol. 2020;26:3221–9.PubMed 
    Article 

    Google Scholar 
    49.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Li J, Nie M, Pendall E, Reich PB, Pei J, Noh NJ, et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob Chang Biol. 2020;26:1873–85.PubMed 
    Article 

    Google Scholar 
    51.Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.PubMed 
    PubMed Central 

    Google Scholar 
    52.Buckeridge KM, Mason KE, McNamara NP, Ostle N, Puissant J, Goodall T, et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun Earth Environ. 2020;1:36.Article 

    Google Scholar 
    53.Ali A, Yan E-R, Chang SX, Cheng J-Y, Liu X-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci Total Environ. 2017;574:654–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.PubMed 
    Article 

    Google Scholar 
    55.Luo Y-H, Cadotte MW, Burgess KS, Liu J, Tan S-L, Zou J-Y, et al. Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function. Ecol Lett. 2019;22:1449–61.PubMed 
    Article 

    Google Scholar 
    56.Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM. Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci USA. 2007;104:20684–9.PubMed 
    Article 

    Google Scholar 
    57.Bradford MA. Thermal adaptation of decomposer communities in warming soils. Front Microbiol. 2013;4:333.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Morrissey EM, Mau RL, Schwartz E, Koch BJ, Hayer M, Hungate BA. Taxonomic patterns in the nitrogen assimilation of soil prokaryotes. Environ Microbiol. 2018;20:1112–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Coskun OK, Ozen V, Wankel SD, Orsi WD. Quantifying population-specific growth in benthic bacterial communities under low oxygen using H218O. ISME J. 2019;13:1546–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Zhou G, Zhou X, Liu R, Du Z, Zhou L, Li S, et al. Soil fungi and fine root biomass mediate drought-induced reductions in soil respiration. Funct Ecol. 2020;34:2634–43.Article 

    Google Scholar 
    61.Melillo JM, Frey SD, Deangelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science. 2017;358:101–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Johnston ASA, Sibly RM. The influence of soil communities on the temperature sensitivity of soil respiration. Nat Ecol Evol. 2018;2:1597–602.PubMed 
    Article 

    Google Scholar  More

  • in

    Influence of soil heterogeneity on soybean plant development and crop yield evaluated using time-series of UAV and ground-based geophysical imagery

    We demonstrate our approach using an agricultural field under active commercial cultivation of soybeans located in the Arkansas Delta. For this study, we acquired time-series datasets of UAV and geophysical data during the 2018 growing season. This provided the opportunity to investigate the relationship between plant growth and spatially heterogeneous soil physical properties, as well as to analyse the temporal dynamics of such a relationship. All the methodology and data collection comply with relevant institutional and national legislation.Site description and crop managementThe investigated study area (34° 24.458′ N, 91° 40.462′ W), located in Humphrey, Arkansas, is a crop field of about 20 hectars that is under active commercial cultivation of soybeans (Fig. 1).Figure 1Study area located in Humphrey, Arkansas: (a) map produced by cropScape (USDA) showing part of the Delta region with the main agricultural land covers; (b) map of the field under study reporting the locations of the ground data collection; (c) map showing the topographic elevation derived by an UAV-based DEM, acquired acquisition prior to planting; (d) gSSurgo map provided by USDA, showing the soil types. Black vertical lines separate the east, center, and west sections used in the statistical analysis. Maps made with QGIS (v 3.6, https://www.qgis.org)36.Full size imageThe study area is part of the Lower Mississippi River Basin’s (LMRB) alluvial plain37. This region is characterized by a wide range of cropland, such as soybean, corn, rice, grass, and pasture, supported by a humid subtropical climate with hot, humid summers and mild, slightly drier winters.The crop field is adjacent to the oxbow Glenwood Lake (shown in Fig. 1) and is characterized by an alternating of Hebert silt-loam and Rilla silt-loam, according to the description provided by the gSSURGO map38. The Hebert profile consists of a very deep, poorly drained, moderately slowly permeable soil that formed in silty alluvium, while the Rilla profile consists of a very deep, well drained, moderately permeable soils that formed in reddish silty and loamy alluvium.High-quality soybean seed requires three appropriate conditions for germination—soil moisture, temperature and oxygen. Provided that the soil is not saturated, oxygen concentration is not a limitation, but germination will not occur in flooded soil dueto lack of oxygen. Research shows that soybeans are in general very susceptible to soil saturation and anoxic conditions, which would provoke damage to the root system and in some case the termination of the plant growth39.Planting started on April 21st in rows (raised beds) with a spacing of 0.9 m. Plants reached their first vegetative stage of emergence (VE) on the first days of May and developed their first node with fully developed unifoliate leaves around mid-May (V1). The stage of initial bloom, which represents the starting of the reproductive stage (R1–R8) after the last vegetative stage, started in mid-June, reaching the full maturity (R8) about the end of September. Subsequent to R8, the leaves dry then fall from the plant at the time of harvest, which was performed on October 24th.A common channeled (furrowed) surface irrigation approach was used as an irrigation system, which consists of a plastic pipe (polytube) located along one side of the field to deliver water into the channels between the rows40. At the site, the plastic pipe was located on the east side of the field with the rows and furrows running east to west following the main slope gradient (Fig. 1) from east to west, in order to facilitate the water flow. Smoothing of the field’s ground surface was performed prior to the planting to ensure a good surface drainage. Irrigation started on June 12th, after the rain period, and performed every 14 days.Temperature and precipitation were measured by a weather station that we installed in the southest corner of the field (Fig. 1). Based on the data collected, the average daily temperature increased from 14.6 to 24.7 °C between planting and the first vegetative stage (April–May), reached 27 °C during the vegetative period through the initial reproductive period (June–July), and decreased from 27 to 24 °C during the final period of maturity (August–September). The 2018 growing season was characterized by sporadic heavy-rain events, especially during the vegetative period (from April to mid-June), with a total cumulative precipitation (period April–September) of about 650 mm (Supplementary Figure S1). As a result of rain events, the soil moisture in April ranged from 0.17 (m3/m3) to 0.3 (m3/m3) (Supplementary Figure S2).Instrumentation, data acquisition, and preprocessingUAV-data acquisitionMultitemporal image acquisitions were performed over the field using UAV-mounted sensors. The images were acquired on: May 8th, a few days after planting, May 28th, during the early vegetative development, and June 25th, July 23rd, September 19th, the beginning, middle, and end of the reproductive period.We used the DJI Matrice 600 flying platform with the DJI FC350 on-board RGB (red, green, blue) camera as the primary image acquisition sensor. A flight plan to acquire high-resolution images at centimeter resolution was designed using this acquisition system. Flights were performed during the maximum Sun’s elevation and with clear sky to avoid possible changes in light conditions, at an altitude of about 60 m, with a 75% image overlap, reaching a ground resolution of 2 cm.In order to minimize the impact of possible variations in illumination conditions during each acquisition, two normalized mosaics were computed by using the pictures of a reference panel taken before and after each flight. The final mosaic was obtained by averaging the two normalized mosaics.A total of 13 Ground Control Points (GCP) were positioned along the field perimeter and within the field for the mosaic reconstruction (Fig. 1). These consisted of flat targets and were surveyed at each acquisition with a Topcon real‐time kinematic differential global positioning system (Hyper-V RTK-GPS). The system is composed of a rover and a fixed base station, ensuring high-resolution geolocation information at centimeter resolution. All the collected geolocation data were post-processed obtaining an average planar error of about 2 cm and a vertical error of about 3 cm.We used the commercial PhotoScan (Agisoft) software for photogrammetry to construct the final mosaics. The software uses photogrammetry techniques based on structure from motion from multi-view stereo (SfM-MVS) images42. The processing produced mosaics with spatial resolution less than 10 cm, but the mosaics used in this work have a have a pixel size of 10 cm. Additionally, we used the software to compute digital elevation models (DEMs) from the RGB images with a final vertical resolution less than 5 cm.Electromagnetic Induction (EMI) systemSoil ECa was measured with an electromagnetic induction (EMI) system (CMD Mini-Explorer, GF Instruments), which consists of a transmitter and three receiver coils, allowing an effective acquisition of soil apparent electrical conductivity (ECa) averaged across a depth range of 0.5 m, 1.0 m, and 1.8 m from the surface. The instrument provides soil ECa measurements in milliSiemes per meter (mS/m) and the in-phase in parts per thousand (not considered in this study). The system was mounted in a sled pulled by an all-terrain vehicle and supported by a Differential Global Positioning System (DGPS) in order to tag each measurement with high-resolution positioning information. Time-lapse soil ECa data collection was performed four times, including before and during the growing season: April 21st, May 12th , June 11th, and July 9th. EMI acquisitons were planned according to the irrigation plan and UAV acquisitions. Since the EMI instrument is sensitive to changes in soil moisture, we avoided the collection during or right after irrigation events. The data were acquired consistently every 10 rows with a distance between traverses of about 9 m.In situ soil monitoring, ground imagery, and soil samplingSoil sensors (5TE, METER) were used for continuous acquisition of volumetric water content (VWC) and soil temperature. The sensors were deployed in five areas (A, B …, E, see Fig. 1) based on two factors: a) spatial varibaility of geophysical properties, b) differences in yield during the 2017 growing season (historical data available for this study). Each area has one logger that accomodates 4 sensors within a maximum radius of 4 m. To capture both shallower and deeper soil dynamics, we positioned 2 sensors vertically aligned at the depths of 12 cm and 25 cm on both the south (side1) and north (side2) of the logger. The areas A and D were positioned in high and low soil EC zones, respectively, while B was in an area of transition. Sensors A, B, and D were positioned along the same rows to forms two transects, one on the south and one on the north. Sensor E was positioned within a a very low 2017 yield in the west side of the field but at a mid-range of soil EC values. The logger C was positioned across a soil EC boundarie, but it stopped recording data at early season and was discarded from this analysis. The collected temprature data are used to correct the EMI acquisitions, whereas soil moisture is used to track the irrigation events and possible saturations. As a support system for the sensors’ data transmission, we used EM60G (METER) data loggers and ZENTRA cloud (METER) for cloud data storage.Ground RGB images were taken at several plots (Fig. 1) for ground-based plant spatial abundance assessment. We used a wooden-frame of 1 m by 1 m to delimit the plot’s area and took a picture from above (1.4 m from the ground). This assessment will be used to validate UAV-based plant spatial abundance estimates.Soil samples were collected at twelve locations (Fig. 1). Physical laboratory testing was performed at the Fayetteville Agriculture Diagnostic Laboratory of the University fo Arkanas to characterize soil properties, such as clay density, porosity, dry bulk density, volumetric water content, and organic matter. Such information was used for statistical analysis and to provide an interpretation of the soil ECa measurements. No plant tissues or seeds were collected in this study.Yield data from a combine harvesterCrop yield was harvested on October 24th. The combine harvester recorded yield information as cloud-point data in bushels per acre (bu/ac) and reported here in kilogram per hectare (kg/ha), and the relativre geolocation information. The combine harvester is able to collect 11 rows at once and records a point measurement every 2 s. Areas with artefacts were determined based on the swath parameter recorded during the harvesting. The wrong choice of the swath parameter on the combine harvester would produce unreliable yield values. Such areas were not considered in further analysis.MethodologyWe designed a data analysis framework to combine the UAV optical images and soil geophysical measurements for characterizing plant phenological and physiological properties and soil spatial heterogeneity, respectively. We then performed statistical analysis of their co-variability to quantify the influence of soil properties on plant development. This framework is constructed by the following three steps:

    1.

    UAV-based monitoring of plant dynamics: This step presents the data processing pipeline used for computing UAV products to characterize plant phenology and structure, such as plant spatial abundance, plant-specific vigor, and plant height.

    2.

    EMI-based monitoring of soil characterization: This step focuses on quantifying the soil spatial variability. We perform statistical analyses to identify the relationship between soil ECa signal and textural information derived by soil samples collected during the ground data acquisition.

    3.

    Quantifying soil–plant spatiotemporal co-variability: This step focuses on the statistical analysis of plant physiological and structural properties and near-surface properties, as well as identifying key environmental factors.

    UAV-based plant monitoringFigure 2 depicts the data processing pipeline developed to assess the spatial variability of plant characteristics during the growing season. The steps to obtain the plant spatial abundance and plant vigor maps are presented in detail in the following sections.Figure 2Pipeline developed for the UAV data processing.Full size imagePlant spatial abundancePlant spatial abundance is estimated by the RGB mosaics. In the first step of the procedure, a vegetation map was obtained by performing a binary classification to discriminate the two classes of vegetation and soil. We used a supervised spectral-spatial image classification approach43 that combines both the spectral and the contextual (i.e., geometrical) information. The contextual information represents the pixel spatial arrangement and the spatial reletionship between adjacent pixels. By modelling such infromation, we can extract structures within the scene. For this step, we use mathematical operators, such as attibute profiles44,45,46 that belong to the image processing sub-field of mathematical morpohlogy. Such operators are 2D filters that act on regions of connected pixels based on the evaluation of an attribute (e.g., scale, defined as number of pixel composing the region). The advantage of using this operator is the ability to preserve the geometrical detail of the structures in the scene. In a filtered image (or feature), regions with similar properties (i.e., scale) are preserved or otherwise merged to their surroundings (i.e., filtered). A multiscale contextual characterization is obtained by applying a filter recursively and relaxing the scale parameter of the filter at each iteration, resulting in a stack of filtered images. An automatic procedure developed in45 is used to perform such a characterization. Such operation serves to extract homogeneous structures present in the scene at different spatial scales, allowing us to better delineate the soybean rows. The original RGB image, together with the filtered images, compose the feature space used as input to a support vector machine (SVM) algorithm with a radial basis function (RBF) kernel. The algorithm is based on the LIBSVM library47 developed for the MATLAB environment, using a one-against-one multiclass strategy. In a second step, we compute the spatial abundance of the detected plants as the percentage of pixels that belong to the vegetation class within a grid unit. In our study we chose a grid unit of 2 by 2 m, which would allow to obtain a good approximation of the local change, while capturing large scale patterns. The quality of the plant spatial abundance map is mainly dependent on the performance of the classification algorithm used to separate the plants from the soil in the background. To validate this product, we computed the classification performance based on ground-truth data and compared the UAV-based estimates of plant abundance to ground-based assessments. The ground assessment of the plant spatial abundance was performed by selecting 31 plots in conjunction of the UAV acquisition occurring in May 28th, 2018. The plots were located mainly along the east and west sides of the field within a distance that ranges between 12 and 25 m from the edge of the field towards the field center; and some plots were collected along the south and north sides within a distance of 50 m from the field edge. These plots were selected to captured representative spatial abundances, ranging from 0% (almost bare) to 60%. Ground images were systematically taken at a height of 1.4 m from the ground. From these images, we computed the GCC and identified a threshold to separate the plant covered area from the soil backgroun. The plant spatial abundance was then computed as the percentage of pixels identified as soybean over the entire area of the plot. All the ground-data were geolocated using the RTK-GPS system previously described.Plant-specific vigor estimationRemote-sensing-derived VIs have been extensively used as a proxy to estimate plant vigor and investigate plant physiology and response to possible ecosystem changes. Widely used VIs for plant characterization are in general derived by the near-infrared (NIR) channel (e.g., NDVI, SAVI, etc.), which is sensitive to changes in chlorophyll and leaf area. However, RGB-based indices have been developed and used in several phenology studies, showing their effectiveness in estimating plant characteristics compared to NIR-based VIs48. The GCC was chosen based on authors’ recent studies, showing that this RGB-based VI is less affected by saturation compared to NDVI31. GCC is formally defined as follows:$${text{GCC}} = frac{{{text{G}}_{{{text{DN}}}} }}{{{text{B}}_{{{text{DN}}}} + {text{G}}_{{{text{DN}}}} + {text{R}}_{{{text{DN}}}} }},$$
    (1)

    where R, G, and B are the red, green, and blue channels, and DN refers to the pixel intensity values as digital numbers41. The plant-specific vigor was computed considering only those pixels identified as vegetation, the information for which is provided by the binary classification. In order to have products spatially comparable, the plant-specific vigor was transformed into a 2 by 2 m grid by computing the average within each grid unit. This procedure has the advantage to minimize the soil component in estimating plant vigor, avoiding the nonuniqueness of lower productivity versus increased soil coverage. Specifically, it allows a more accurate way of capturing the spatial variability of the plant’s vigor, in particular during the early vegetative stage, when the soil component is overabundant compared to the plant spatial abundance. This is a clear advantage over a satellite-derived VI with a coarser resolution that would provide an underestimation of plant vigor due to soil coverage.Plant height estimationPlant height was computed by subtracting the digital elevation model (DEM) of bare soil (i.e., reference DEM) from the digital surface model computed at each acquisition. The reference DEM was computed from acquisition occurred on May 8th, which was planned a week after planting so that it is not affected by surface disturbances by the planter. DEMs were computed using the PhotoScan software (Agisoft) during the mosaic reconstruction phase. We assume that the ground surface elevation stays the same during the growing season.EMI-based soil characterizationWe used the ECa data to evaluate the spatial heterogeneity of soil properties and the temporal variability in soil moisture. We primarily used the EMI measurements associated with the 1 m effective depth, which is the depth range expected to encompass the soybean roots. Temperature corrections were applied to the point-cloud data for correcting the measured soil ECa to the reference temperature of 25 °C. We employed the exponential model presented in Corwin and Lesch49 and developed by Sheets and Hendrickx50, and formally described as follows:$${text{E}}C_{25} = {text{E}}C_{a} cdot left[ {0.4470 + 1.4034e^{{left( { – T/26.815} right)}} } right],$$
    (2)

    where ({text{E}}C_left{ {25} right}) represents the corrected soil ECa at the reference temperature of 25 °C, ({text{E}}C_a) represents the measured soil ECa, and ({text{T}}) represents the soil temperature at the time of the acquisition. The model was chosen based on the on the methodological comparison51, which shows that the exponential model provides very similar estimations compared to the widely used ratio model31,52 in the temperature range of 3–43 °C, but with a smaller total residual.A spatial correction was applied to the data to resolve a spatial shift caused by the distance from the EMI instrument and the actual position of the GPS antenna, which were 4.5 m apart due to the system setup. We performed statistical analysis between EMI data and soil samples collected during the April data acquisition to identify the main control on the spatial variability of soil ECa.Co-variability among plant and soil signaturesWe performed a suite of statistical analyses, based on the high-resolution data layers, on soil and plant characteristics (i.e., plant spatial abundance, plant vigor, plant height, soil ECa, and crop yield) to investigate the impact of soil properties on plant development during the growing season. For the analysis, we considered the yield point-cloud data as geo-reference.Since the EMI and crop-yield data had a lower vertical resolution (along the y axis) of about 10 m (distance between rows selected for the data collection), we computed the average of each metric within a window of 20 m by 20 m. The exploratory data analysis included run charts and scatter plots to investigate the temporal evolution of plant development during the growing season, and the co-variability between plant characteristics and soil ECa. We evaluated the correlation between variables using Pearson’s correlation, as well as their spatial association. To control for the spatial non-independence, we derived a corrected Perason’s correlation by using the hypothesis testing procedure propsed by Clifford, Richardson, and Hémon (1989)53. The method uses Moran’s I54 to compute the spatial autocorrelation in the spatial data sets and estimate the correct degrees of freedom, which are then used to assess the significance of the correlation. The method uses the Sturges’ formula to identify the number of distance classes55. More

  • in

    A fine soft day for surveying moss and liverworts

    My work focuses on a side of Ireland that few visitors ever see: the temperate rainforest of Killarney National Park, a 10,200-hectare reserve near the southwest coast. The climate here — usually damp and, by Irish standards, relatively warm, with temperatures in autumn afternoons typically edging beyond 10 °C — creates ideal growing conditions for all sorts of mosses, ferns and simple moss-like plants called liverworts.Here, in a picture taken last November, I’m taking a close look at a piece of moss growing in a marshy spot next to a holly tree. I’m an independent, freelance scientist, and the government often hires me to survey the area’s incredible biodiversity.One square metre of ground here can support 30 species of moss and liverwort, and it often takes a keen eye to tell one from another. If I’m stumped, I’ll take a sample back to my laboratory — actually a spare room in my house — to examine the cell structure and other identifying features under a microscope.I grew up near this park, and despite all the time that I’ve spent here, there are still surprises. In summer 2019, I found a tiny tropical fern (Stenogrammitis myosuroides) that is native to the mountains of Jamaica, the Dominican Republic and Cuba. The most likely explanation for its appearance here is that spores got swept up into the atmosphere, soared across the Atlantic and happened to land in a place where the plant can survive. It makes you think about all the spores and seeds floating around out there that aren’t so lucky.Here, I’m a two-hour walk away from the nearest road. Sometimes, red deer walk by and white-tailed eagles fly overhead. When it’s pouring down with rain, I wonder what I’m doing out here. But, in between storms, there’s no place I’d rather be. It’s quiet but lively, and when you have an eye for moss, there’s always something to catch your attention. More

  • in

    Variable influences of soil and seed-associated bacterial communities on the assembly of seedling microbiomes

    1.Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, Mitchell-Olds T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol Lett. 2014;17:717–26.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science. 2020;368:270–4.PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem. 2010;42:669–78.CAS 
    Article 

    Google Scholar 
    4.Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18:607–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Nelson EB. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol. 2004;42:271–309.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nelson EB. The seed microbiome: origins, interactions, and impacts. Plant Soil Springe Int Publ. 2018;422:7–34.CAS 
    Article 

    Google Scholar 
    8.Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112:E911–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Fitzpatrick CR, Salas-González I, Conway JM, Finkel OM, Gilbert S, Russ D, et al. The plant microbiome: from ecology to reductionism and beyond. Annu Rev Microbiol. 2020;74:81–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Chaparro JM, Badri DV, Vivanco JM. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014;8:790–803.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci USA. 2018;115:E1157–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Schlaeppi K, Dombrowski N, Oter RG, Ver Loren Van Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe. 2015;17:392–403.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA. 2013;110:6548–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. N Phytol. 2016;209:798–811.CAS 
    Article 

    Google Scholar 
    21.de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S, Miao J, et al. Genomic features of bacterial adaptation to plants. Nat Genet. 2017;50:138–50.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Vannier N, Mony C, Bittebiere A-K, Michon-Coudouel S, Biget M, Vandenkoornhuyse P. A microorganisms’ journey between plant generations. Microbiome. 2018;6:79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Tobias TB, Farrer EC, Rosales A, Sinsabaugh RL, Suding KN, Porras-Alfaro A. Seed-associated fungi in the alpine tundra: both mutualists and pathogens could impact plant recruitment. Fungal Ecol. 2017;30:10–18.Article 

    Google Scholar 
    25.Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep. 2015;7:40–50.Article 

    Google Scholar 
    26.Shade A, Jacques M-A, Barret M. Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol. 2017;37:15–22.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev. 2015;79:293–320.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Normander BO, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol. 2000;66:4372–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Green SJ, Inbar E, Michel FC, Hadar Y, Minz D. Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol. 2006;72:3975–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Ofek M, Hadar Y, Minz D. Colonization of cucumber seeds by bacteria during germination. Environ Microbiol. 2011;13:2794–807.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.OECD-FAO. Agricultural Outlook 2020–2029.32.Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Rath KM, Fierer N, Daniel, Murphy V, Rousk J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2018;13:836–46.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA. 2011;108:4516–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Oliverio A, Holland-Moritz H. dada2 tutorial with MiSeq dataset for Fierer Lab. 2019.37.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–596.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005;21:456–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2020.41.Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag: New York; 2016.42.Becker RA, Wilks AR, Minka TP, Deckmyn A. maps: draw geographical maps. 2018.43.Jari Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R. 2019. p. R package version 2.5-6.44.Rochefort A, Simonin M, Marais C, Guillerm-Erckelboudt A-Y, Barret M, Sarniguet A. Asymmetric outcome of community coalescence of seed and soil microbiota during early seedling growth. bioRxiv. 2020.11.19.390344.45.Minich JJ, Sanders JG, Amir A, Humphrey G, Gilbert JA, Knight R. Quantifying and understanding well-to-well contamination in microbiome research. mSystems. 2019;4:e00186–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Software; Vol 1, Issue 2. 2010.47.Douma JC, Weedon JT. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods. Ecol Evol. 2019;10:1412–30.
    Google Scholar 
    48.Kuhn M. caret: classification and regression training. 2020.49.Wright MN, Ziegler A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw. 2017;77:1–17.Article 

    Google Scholar 
    50.Thiergart T, Durán P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, et al. Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol. 2019;4:122–31.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Simonin M, Dasilva C, Terzi V, Ngonkeu ELM, Diouf D, Aboubacry K. et al. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European Soils. FEMS Microbiol Ecol. 2016;96:fiaa067Article 
    CAS 

    Google Scholar 
    52.Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH. Wheat seed embryo excision enables the creation of axenic seedlings and Koch’s postulates testing of putative bacterial endophytes. Sci Rep. 2016;6:25581.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Walterson AM, Stavrinides J. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol Rev. 2015;39:968–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One. 2012;7:e30438.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:201.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    56.Nelson EB, Simoneau P, Barret M. Editorial special issue: the soil, the seed, the microbes and the plant. Plant Soil. 2018;422:1–5.CAS 
    Article 

    Google Scholar 
    57.Shmida A, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20.Article 

    Google Scholar 
    58.Hannula SE, Kielak AM, Steinauer K, Huberty M, Jongen R, De Long JR, et al. Time after time: temporal variation in the effects of grass and forb species on soil bacterial and fungal communities. MBio. 2019;10:e02635–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jack ALH, Nelson EB. A seed-recruited microbiome protects developing seedlings from disease by altering homing responses of Pythium aphanidermatum zoospores. Plant Soil. 2018;422:209–22.CAS 
    Article 

    Google Scholar 
    60.Verma SK, Kharwar RN, White JF. The role of seed-vectored endophytes in seedling development and establishment. Symbiosis. 2019;78:107–13.Article 

    Google Scholar 
    61.Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol Evol. 2019;3:1445–54.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 2017;15:e2001793.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Finkel OM, Castrillo G, Herrera Paredes S, Salas González I, Dangl JL. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–63.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Maignien L, DeForce EA, Chafee ME, Murat Eren A, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio. 2014;5:e00682–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Wei Z, Gu Y, Friman V-P, Kowalchuk GA, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, et al. Microbial interkingdom interactions in roots promote arabidopsis survival. Cell. 2018;175:973–83.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Hamonts K, Trivedi P, Garg A, Janitz C, Grinyer J, Holford P, et al. Field study reveals core plant microbiota and relative importance of their drivers. Environ Microbiol. 2018;20:124–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Useful plants have deep evolutionary roots

    1.Díaz, S. et al. Science 359, 270–272 (2018).Article 

    Google Scholar 
    2.Molina-Venegas, R., Rodríguez, M. Á., Pardo-de-Santayana, M., Ronquillo, C. & Mabberley, D. J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01414-2 (2021).3.Faith, D. P. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    4.Mabberley, D. J. Mabberley’s Plant-Book (Cambridge Univ. Press, 2017).5.Jin, Y. & Qian, H. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    6.Tucker, C. M. et al. Biol. Rev. 94, 1740–1760 (2019).Article 

    Google Scholar 
    7.Forest, F. et al. Nature 445, 757–760 (2007).CAS 
    Article 

    Google Scholar 
    8.Newman, J. A., Varner, G. & Linquist, S. Defending Biodiversity (Cambridge Univ. Press, 2017).9.Cline, B. Ethics Environ. 25, 45–72 (2020).Article 

    Google Scholar 
    10.Díaz, S. et al. Science 370, 411–413 (2020).Article 

    Google Scholar  More

  • in

    Maximum levels of global phylogenetic diversity efficiently capture plant services for humankind

    1.Faith, D. P. et al. Evosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr. Opin. Environ. Sust. 2, 66–74 (2010).Article 

    Google Scholar 
    2.Cámara-Leret, R. et al. Fundamental species traits explain provisioning services of tropical American palms. Nat. Plants 3, 16220 (2017).Article 

    Google Scholar 
    3.Oka, C., Aiba, M. & Nakashizuka, T. Phylogenetic clustering in beneficial attributes of tree species directly linked to provisioning, regulating and cultural ecosystem services. Ecol. Indic. 96, 477–495 (2019).Article 

    Google Scholar 
    4.Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).Article 

    Google Scholar 
    5.Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect?—Systematics and the agony of choice. Biol. Conserv. 55, 235–254 (1991).Article 

    Google Scholar 
    6.Crozier, R. H. Genetic diversity and the agony of choice. Biol. Conserv. 61, 11–15 (1992).Article 

    Google Scholar 
    7.Tucker, C. M. et al. Assessing the utility of conserving evolutionary history. Biol. Rev. 94, 1740–1760 (2019).Article 

    Google Scholar 
    8.Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019).Article 

    Google Scholar 
    9.Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).Article 

    Google Scholar 
    10.Mazel, F. et al. Reply to: ‘Global conservation of phylogenetic diversity captures more than just functional diversity’. Nat. Commun. 10, 858 (2019).Article 

    Google Scholar 
    11.Forest, F. et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445, 757–760 (2007).CAS 
    Article 

    Google Scholar 
    12.Cook, F. E. M. Economic Botany Data Collection Standard (International Working Group on Taxonomic Databases for Plant Sciences, Royal Botanic Gardens, UK, 1995).13.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 

    Google Scholar 
    14.Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    15.Mabberley, D. J. Mabberley’s Plant-book: A Portable Dictionary of Plants, Their Classification and Uses 4th edn (Cambridge Univ. Press, 2017).16.Cox, P. A. Will tribal knowledge survive the millennium? Science 287, 44–45 (2000).CAS 
    Article 

    Google Scholar 
    17.Cámara-Leret, R., Paniagua-Zambrana, N., Balslev, H. & Macía, M. J. Ethnobotanical knowledge is vastly under-documented in northwestern South America. PLoS ONE 9, e85794 (2014).Article 

    Google Scholar 
    18.Cámara-Leret, R. & Dennehy, Z. Information gaps in indigenous and local knowledge for science-policy assessments. Nat. Sustain. 2, 736–741 (2019).Article 

    Google Scholar 
    19.Novotny, V. et al. Low host specificity of herbivorous insects in a tropical forest. Nature 416, 841–844 (2002).CAS 
    Article 

    Google Scholar 
    20.Gilbert, G. S., Magarey, R., Suiter, K. & Webb, C. O. Evolutionary tools for phytosanitary risk analysis: phylogenetic signal as a predictor of host range of plant pests and pathogens. Evol. Appl. 5, 869–878 (2012).Article 

    Google Scholar 
    21.Calatayud, J. et al. Geography and major host evolutionary transitions shape the resource use of plant parasites. Proc. Natl Acad. Sci. USA 113, 9840–9845 (2016).CAS 
    Article 

    Google Scholar 
    22.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eai9214 (2017).Article 

    Google Scholar 
    23.Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    24.de Lucena, R. F. P. et al. The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: an assessment based on use value. J. Environ. Manag. 96, 106–115 (2012).Article 

    Google Scholar 
    25.Menendez-Baceta, G. et al. The importance of cultural factors in the distribution of medicinal plant knowledge: a case study in four Basque regions. J. Ethnopharmacol. 161, 116–127 (2015).Article 

    Google Scholar 
    26.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    27.Global Information on Scoping for the Thematic Assessment of Sustainable Use of Wild Species (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2018); https://ipbes.net/sustainable-use-wild-species-assessment28.Karki, M., Senaratna Sellamuttu, S., Okayasu, S. & Suzuki, W. (eds) Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific (Secretariat of the IPBES, 2018).29.Pardo-de-Santayana, M. & Macía, M. The benefits of traditional knowledge. Nature 518, 487–488 (2015).CAS 
    Article 

    Google Scholar 
    30.Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).Article 

    Google Scholar 
    31.Antonelli, A. et al. State of the World’s Plants and Fungi 2020 (Royal Botanic Gardens, Kew, 2020).32.Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2, 421–445 (2020).Article 

    Google Scholar 
    33.Plants of the World Online (Royal Botanic Gardens, Kew, 2021); http://www.plantsoftheworldonline.org/34.Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 

    Google Scholar 
    35.The Plant List, version 1.1 (The Plant List, 2013); http://www.theplantlist.org/36.Rangel, T. F. et al. Phylogenetic uncertainty revisited: implications for ecological analyses. Evolution 69, 1301–1312 (2015).Article 

    Google Scholar 
    37.Federhen, S. The NCBI taxonomy database. Nucleic Acids Res. 40, D136–D143 (2012).CAS 
    Article 

    Google Scholar 
    38.Hörandl, E. & Stuessy, T. F. Paraphyletic groups as natural units of biological classification. Taxon 59, 1641–1653 (2010).Article 

    Google Scholar 
    39.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    40.Rodrigues, A. S. L. & Gaston, K. J. Maximising phylogenetic diversity in the selection of networks of conservation areas. Biol. Conserv. 105, 103–111 (2002).Article 

    Google Scholar 
    41.Bordewich, M., Rodrigo, A. G. & Semple, C. Selecting taxa to save or sequence: desirable criteria and a greedy solution. Syst. Biol. 57, 825–834 (2008).Article 

    Google Scholar 
    42.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).Article 

    Google Scholar 
    43.Kembel, S. W. Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).Article 

    Google Scholar 
    44.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).45.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    Article 

    Google Scholar 
    46.Brummitt, R. K. World Geographical Scheme for Recording Plant Distributions 2nd edn (International Working Group on Taxonomic Databases for Plant Sciences, 2001).47.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar  More

  • in

    Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic

    1.Gurarie, E., Andrews, R. D. & Laidre, K. L. A novel method for identifying behavioural changes in animal movement data. Ecol. Lett. 12, 395–408 (2009).PubMed 
    Article 

    Google Scholar 
    2.Block, B. A. et al. Tracking apex marine predator movements in a dynamic ocean. Nature 475, 86–90 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Dulau, V. et al. Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again!. Mov. Ecol. 5, 11 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 5 (2017).Article 

    Google Scholar 
    5.Moorter, B. V., Rolandsen, C. M., Basille, M. & Gaillard, J.-M. Movement is the glue connecting home ranges and habitat selection. J. Anim. Ecol. 85, 21–31 (2016).PubMed 
    Article 

    Google Scholar 
    6.Sodhi, N. S., Koh, L. P., Brook, B. W. & Ng, P. K. L. Southeast Asian biodiversity: an impending disaster. Trends Ecol. Evol. 19, 654–660 (2004).PubMed 
    Article 

    Google Scholar 
    7.Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014).PubMed 
    Article 

    Google Scholar 
    8.Schneider, A. et al. A new urban landscape in East-Southeast Asia, 2000–2010. Environ. Res. Lett. 10, 034002 (2015).ADS 
    Article 

    Google Scholar 
    9.Böhm, M. et al. Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size—extinction risk correlates in squamate reptiles. Glob. Ecol. Biogeogr. 25, 391–405 (2016).Article 

    Google Scholar 
    10.Ditchkoff, S. S., Saalfeld, S. T. & Gibson, C. J. Animal behavior in urban ecosystems: Modifications due to human-induced stress. Urban Ecosyst. 9, 5–12 (2006).Article 

    Google Scholar 
    11.Shamoon, H., Maor, R., Saltz, D. & Dayan, T. Increased mammal nocturnality in agricultural landscapes results in fragmentation due to cascading effects. Biol. Conserv. 226, 32–41 (2018).Article 

    Google Scholar 
    12.Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: the ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Large Snakes Mosaic Rural Landsc. Ecol. Carpet Pythons Morelia Spilota Serpentes Pythonidae Coast. East. Aust. 76, 113–122 (1996).13.Charles, K. E. & Linklater, W. L. Dietary breadth as a predictor of potential native avian–human conflict in urban landscapes. Wildl. Res. 40, 482 (2013).Article 

    Google Scholar 
    14.Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: a review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).Article 

    Google Scholar 
    15.Gibbon, J. W. et al. The global decline of reptiles Déjà Vu Amphibians. BioScience 50, 653 (2000).Article 

    Google Scholar 
    16.Todd, B., Willson, J. & Gibbons, J. The Global Status of Reptiles and Causes of Their Decline. in Ecotoxicology of Amphibians and Reptiles, Second Edition (eds. Sparling, D., Linder, G., Bishop, C. & Krest, S.) 47–67 (CRC Press, 2010). https://doi.org/10.1201/EBK1420064162-c3.17.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    18.Barker, D. G. & Barker, T. M. The distribution of the burmese python, python molurus bivittatus. Bull. Chic. Herpetol. Soc. 43, 33–38 (2008).
    Google Scholar 
    19.Rahman, S. C., Jenkins, C. L., Trageser, S. J. & Rashid, S. M. A. Radio-telemetry study of Burmese python (Python molurus bivittatus) and elongated tortoise (Indotestudo elongata) in Lawachara National Park, Bangladesh: a prelimiary observation. Khan MAR Ali MS Feeroz MM Naser MN Ed. Festschr. 50th Anniversary IUCN Red List Threat. Species 54–62 (2014).20.Bhupathy, S., Ramesh, C. & Bahuguna, A. Feeding habits of Indian rock pythons in Keoladeo National Park, Bharatpur India. Herpetol. J. 24, 59–64 (2014).
    Google Scholar 
    21.Shine, R., Harlow, P. S., Keogh, J. S. & Boeadi. The influence of sex and body size on food habits of a giant tropical snake, Python reticulatus. Funct. Ecol. 12, 248–258 (1998).22.Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Dove, C. J., Snow, R. W., Rochford, M. R. & Mazzotti, F. J. Birds Consumed by the Invasive Burmese Python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J. Ornithol. 123, 126–131 (2011).Article 

    Google Scholar 
    24.Stuart, B. et al. Python bivittatus (errata version published in 2019). https://doi.org/10.2305/IUCN.UK.2012-1.RLTS.T193451A151341916.en. (2019).25.Goodyear, N. C. Python molurus bivittatus (Burmese python) Movements. Herpetol. Rev. 25, 71–72 (1994).
    Google Scholar 
    26.You, C.-W. et al. Return of the pythons: first formal records, with a special note on recovery of the Burmese python in the demilitarized Kinmen islands. Zool. Stud. 52, 8 (2013).Article 

    Google Scholar 
    27.Miranda, E. B. P., Ribeiro, R. P. & Strüssmann, C. The ecology of human-anaconda conflict: a study using internet videos. Trop. Conserv. Sci. 9, 43–77 (2016).Article 

    Google Scholar 
    28.Nóbrega Alves, R. R. et al. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. J. Ethnobiol. Ethnomed. 8, 27 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Orzechowski, S. C. M., Frederick, P. C., Dorazio, R. M. & Hunter, M. E. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades. PLoS ONE 14, e0213943 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Marshall, B. M. et al. No room to roam: King Cobras reduce movement in agriculture. Mov. Ecol. 8, 33 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Reed, R. N. & Rodda, G. H. Giant constrictors: biological and management profiles and an establishment risk assessment for nine large species of pythons, anacondas, and the boa constrictor: U.S. Geological Survey Open-File Report. (2009).32.Reinert, H. K. & Cundall, D. An Improved Surgical Implantation Method for Radio-Tracking Snakes. Copeia 1982, 702–705 (1982).Article 

    Google Scholar 
    33.R Core Team. R: a language and environment for statistical computing.34.R Studio Team. RStudio: integrated development environment for R.35.Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian Bridge Movement Models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models. Mov. Ecol. 8, 43 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Kranstauber, B., Kays, R., LaPoint, S. D., Wikelski, M. & Safi, K. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J. Anim. Ecol. 81, 738–746 (2012).PubMed 
    Article 

    Google Scholar 
    38.Kranstauber, B., Smolla, M. & Scharf, A. K. move: Visualizing and Analyzing Animal Track Data. (2020).39.Calenge, C. The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article 

    Google Scholar 
    40.Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). (2020).41.Bracis, C., Bildstein, K. L. & Mueller, T. Revisitation analysis uncovers spatio-temporal patterns in animal movement data. Ecography https://doi.org/10.1111/ecog.03618 (2018).Article 

    Google Scholar 
    42.Berger-Tal, O. & Bar-David, S. Recursive movement patterns: review and synthesis across species. Ecosphere 6, art149 (2015).43.Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630 (2016).Article 

    Google Scholar 
    44.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools ( amt ): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Marshall, B. M. et al. Data set and code supporting Marshall et al. 2020. No room to roam: King Cobras reduce movement in agriculture. (Version 1.1) . (2020).46.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).PubMed 
    Article 

    Google Scholar 
    48.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319–392 (2009).49.Hart, K. M. et al. Home range, habitat use, and movement patterns of non-native Burmese pythons in Everglades National Park, Florida, USA. Anim. Biotelemetry 3, 8 (2015).Article 

    Google Scholar 
    50.Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Rettie, W. J. & Messier, F. Range use and movement rates of woodland caribou in Saskatchewan. Can. J. Zool. 79, 1933–1940 (2001).Article 

    Google Scholar 
    52.Doherty, T. S., Fist, C. N. & Driscoll, D. A. Animal movement varies with resource availability, landscape configuration and body size: a conceptual model and empirical example. Landsc. Ecol. 34, 603–614 (2019).Article 

    Google Scholar 
    53.Young, L. I., Dickman, C. R., Addison, J. & Pavey, C. R. Spatial ecology and shelter resources of a threatened desert rodent (Pseudomys australis) in refuge habitat. J. Mammal. 98, 1604–1614 (2017).Article 

    Google Scholar 
    54.Ross, C. T. & Winterhalder, B. Sit-and-wait versus active-search hunting: A behavioral ecological model of optimal search mode. J. Theor. Biol. 387, 76–87 (2015).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    55.Krysko, K., Nifong, J., Mazzotti, F., Snow, R. & Enge, K. Reproduction of the Burmese python (Python molurus bivittatus) in southern Florida. Appl. Herpetol. 5, 93–95 (2008).Article 

    Google Scholar 
    56.Smith, B. J. et al. Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).Article 

    Google Scholar 
    57.Hunter, M. E. et al. Environmental DNA (eDNA) Sampling Improves Occurrence and Detection Estimates of Invasive Burmese Pythons. PLoS ONE 10, e0121655 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Frishkoff, L. O., Hadly, E. A. & Daily, G. C. Thermal niche predicts tolerance to habitat conversion in tropical amphibians and reptiles. Glob. Change Biol. 21, 3901–3916 (2015).ADS 
    Article 

    Google Scholar 
    59.Fujioka, M., Don Lee, S. & Kurechi, M. Bird use of Rice Fields in Korea and Japan. Waterbirds 33, 8 (2010).Article 

    Google Scholar 
    60.Marshall, B. M. et al. Space fit for a king: spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphib.-Reptil. 40, 163–178 (2019).Article 

    Google Scholar 
    61.Barua, M., Bhagwat, S. A. & Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts, opportunity and transaction costs. Biol. Conserv. 157, 309–316 (2013).Article 

    Google Scholar 
    62.Crane, M. et al. A report of a Malayan Krait Snake Bungarus Candidus Mortality as By-Catch in a Local Fish Trap from Nakhon Ratchasima Thailand. Trop. Conserv. Sci. 9, 313–320 (2016).Article 

    Google Scholar 
    63.Marshall, B. M. et al. Hits close to home: repeated persecution of King Cobras ( Ophiophagus hannah ) in Northeastern Thailand. Trop. Conserv. Sci. 11, 194008291881840 (2018).Article 

    Google Scholar 
    64.Webster, M. M. & Rutz, C. How strange are your study animals?. Nature 582, 337–340 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Mutascio, H. E., Pittman, S. E., Zollner, P. A. & D’Acunto, L. E. Modeling relative habitat suitability of southern Florida for invasive Burmese pythons (Python molurus bivittatus). Landsc. Ecol. 33, 257–274 (2018).Article 

    Google Scholar 
    66.Steen, D. A. Snakes in the grass: secretive natural histories defy both conventional and progressive statistics. Herpetol. Conserv. Biol. 5, 183 (2010).
    Google Scholar  More

  • in

    Implications of size-dependent tree mortality for tropical forest carbon dynamics

    1.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864 (2018).Article 

    Google Scholar 
    5.Meakem, V. et al. Role of tree size in moist tropical forest carbon cycling and water deficit responses. New Phytol. 219, 947–958 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).PubMed 
    Article 

    Google Scholar 
    8.Camac, J. S. et al. Partitioning mortality into growth-dependent and growth-independent hazards across 203 tropical tree species. Proc. Natl Acad. Sci. USA 115, 12459 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Condit, R., Hubbell, S. P. & Foster, R. B. Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol. Monogr. 65, 419–439 (1995).Article 

    Google Scholar 
    10.McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507, 90–93 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Forrester, D. I. Does individual-tree biomass growth increase continuously with tree size? For. Ecol. Manag. 481, 118717 (2021).Article 

    Google Scholar 
    13.Sheil, D. et al. Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. Funct. Ecol. 31, 568–581 (2017).Article 

    Google Scholar 
    14.Condit, R., Pérez, R., Lao, S., Aguilar, S. & Hubbell, S. P. Demographic trends and climate over 35 years in the Barro Colorado 50 ha plot. For. Ecosyst. 4, 17 (2017).Article 

    Google Scholar 
    15.McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).Article 

    Google Scholar 
    16.Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).Article 

    Google Scholar 
    17.Parlato, B., Gora, E. M. & Yanoviak, S. P. Lightning damage facilitates beetle colonization of tropical trees. Ann. Entomol. Soc. Am. 113, 447–451 (2020).
    Google Scholar 
    18.Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).Article 

    Google Scholar 
    19.Gale, N. & Hall, P. Factors determining the modes of tree death in three Bornean rain forests. J. Veg. Sci. 12, 337–348 (2001).Article 

    Google Scholar 
    20.Fontes, C. G., Chambers, J. Q. & Higuchi, N. Revealing the causes and temporal distribution of tree mortality in Central Amazonia. For. Ecol. Manag. 424, 177–183 (2018).Article 

    Google Scholar 
    21.de Toledo, J. J., Magnusson, W. E. & Castilho, C. V. Competition, exogenous disturbances and senescence shape tree size distribution in tropical forest: evidence from tree mode of death in Central Amazonia. J. Veg. Sci. 24, 651–663 (2013).Article 

    Google Scholar 
    22.Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).PubMed 
    Article 

    Google Scholar 
    23.Yanoviak, S. P. et al. Lightning is a major cause of large tropical tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).PubMed 
    Article 

    Google Scholar 
    24.Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).PubMed 
    Article 

    Google Scholar 
    25.McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Change 5, 669–672 (2015).Article 

    Google Scholar 
    26.Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).Article 

    Google Scholar 
    27.Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Roberts, J., Osvaldo, M. R. C. & De Aguiar, L. F. Stomatal and boundary-layer conductances in an Amazonian terra firme rain forest. J. Appl. Ecol. 27, 336–353 (1990).Article 

    Google Scholar 
    29.Olson, M. E. et al. Plant height and hydraulic vulnerability to drought and cold. Proc. Natl Acad. Sci. USA 115, 7551–7556 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).31.Mencuccini, M. et al. Size-mediated ageing reduces vigour in trees. Ecol. Lett. 8, 1183–1190 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).PubMed 
    Article 

    Google Scholar 
    33.Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).PubMed 
    Article 

    Google Scholar 
    34.Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).PubMed 
    Article 

    Google Scholar 
    35.da Costa, A. C. L. et al. Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol. 187, 579–591 (2010).PubMed 
    Article 

    Google Scholar 
    36.Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Bartholomew, D. C. et al. Small tropical forest trees have a greater capacity to adjust carbon metabolism to long-term drought than large canopy trees. Plant Cell Environ. 43, 2380–2393 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fauset, S. et al. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).PubMed 
    Article 

    Google Scholar 
    39.Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).PubMed 
    Article 

    Google Scholar 
    40.van der Meer, P. J. & Bongers, F. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. J. Ecol. 84, 19–29 (1996).Article 

    Google Scholar 
    41.Parker, G. G. in Forest canopies (eds Lowman, M. D. & Nadkarni, N. M.) 73–106 (Academic Press, 1995).42.Terborgh, J., Huanca Nuñez, N., Feeley, K. & Beck, H. Gaps present a trade-off between dispersal and establishment that nourishes species diversity. Ecology 101, e02996 (2020).PubMed 
    Article 

    Google Scholar 
    43.Ribeiro, G. H. P. M. et al. Mechanical vulnerability and resistance to snapping and uprooting for Central Amazon tree species. For. Ecol. Manag. 380, 1–10 (2016).Article 

    Google Scholar 
    44.Peterson, C. J. et al. Critical wind speeds suggest wind could be an important disturbance agent in Amazonian forests. Forestry 92, 444–459 (2019).Article 

    Google Scholar 
    45.Uriarte, M., Thompson, J. & Zimmerman, J. K. Hurricane María tripled stem breaks and doubled tree mortality relative to other major storms. Nat. Commun. 10, 1362 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Silvério, D. V. et al. Fire, fragmentation, and windstorms: a recipe for tropical forest degradation. J. Ecol. 107, 656–667 (2019).Article 

    Google Scholar 
    47.van Wilgen, B. W., Biggs, H. C., Mare, N. & O’Regan, S. P. A fire history of the savanna ecosystems in the Kruger National Park, South Africa, between 1941 and 1996. S. Afr. J. Sci. 96, 167–178 (2000).
    Google Scholar 
    48.Tutin, C. E. G., White, L. J. T. & Mackanga-Missandzou, A. Lightning strike burns large forest tree in the Lope Reserve, Gabon. Glob. Ecol. Biogeog. Lett. 5, 36–41 (1996).Article 

    Google Scholar 
    49.Magnusson, W. E., Lima, A. P. & de Lima, O. Group lightning mortality of trees in a Neotropical forest. J. Trop. Ecol. 12, 899–903 (1996).Article 

    Google Scholar 
    50.Anderson, J. A. R. Observations on climatic damage in peat swamp forest in Sarawak. Commonw. Forestry Rev. 43, 145–158 (1964).
    Google Scholar 
    51.Gora, E. M., Burchfield, J. C., Muller-Landau, H. C., Bitzer, P. M. & Yanoviak, S. P. Pantropical geography of lightning-caused disturbance and its implications for tropical forests. Glob. Change Biol. 26, 5017–5026 (2020).Article 

    Google Scholar 
    52.Gora, E. M. et al. A mechanistic and empirically-supported lightning risk model for forest trees. J. Ecol. 108, 1956–1966 (2020).Article 

    Google Scholar 
    53.Alencar, A., Nepstad, D. & Diaz, M. C. V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2009).Article 

    Google Scholar 
    54.Brando, P. M. et al. Droughts, wildfires, and forest carbon cycling: A pantropical synthesis. Annu. Rev. Earth Planet. Sci. 47, 555–581 (2019).CAS 
    Article 

    Google Scholar 
    55.Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Kauffman, J. B. & Uhl, C. in Fire in the Tropical Biota. Ecological Studies (Analysis and Synthesis) Vol. 84 (ed. Goldammer, J. G.) (Springer, 1990).57.Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).Article 
    CAS 

    Google Scholar 
    58.Nepstad, D. C. et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).CAS 
    Article 

    Google Scholar 
    59.Ray, D., Nepstad, D. & Moutinho, P. Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape. Ecol. Appl. 15, 1664–1678 (2005).Article 

    Google Scholar 
    60.Brando, P. M. et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Glob. Change Biol. 18, 630–641 (2012).Article 

    Google Scholar 
    61.Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecol. Lett. 6, 6–8 (2003).Article 

    Google Scholar 
    62.Liebhold, A. M., MacDonald, W. L., Bergdahl, D. & Mastro, V. C. Invasion by Exotic Forest Pests: A Threat to Forest Ecosystems Forest Science Monographs 30 (Society of American Foresters, 1995).63.McGregor, I. R. et al. Tree height and leaf drought tolerance traits shape growth responses across droughts in a temperate broadleaf forest. New Phytol. https://doi.org/10.1111/nph.16996 (2020).64.Gilbert, G. S. & Hubbell, S. P. Plant diseases and the conservation of tropical forests. BioScience 46, 98–106 (1996).Article 

    Google Scholar 
    65.Liu, X. et al. Dilution effect of plant diversity on infectious diseases: latitudinal trend and biological context dependence. Oikos 129, 457–465 (2020).Article 

    Google Scholar 
    66.Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Bell, T., Freckleton, R. P. & Lewis, O. T. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecol. Lett. 9, 569–574 (2006).PubMed 
    Article 

    Google Scholar 
    68.Peters, H. A. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecol. Lett. 6, 757–765 (2003).Article 

    Google Scholar 
    69.Gilbert, G. S., Foster, R. B. & Hubbell, S. P. Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98, 100–108 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Coley, P. D. & Barone, J. A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).Article 

    Google Scholar 
    71.Suresh, H. S., Dattaraja, H. S. & Sukumar, R. Relationship between annual rainfall and tree mortality in a tropical dry forest: results of a 19-year study at Mudumalai, southern India. For. Ecol. Manag. 259, 762–769 (2010).Article 

    Google Scholar 
    72.Forrister, D. L., Endara, M.-J., Younkin, G. C., Coley, P. D. & Kursar, T. A. Herbivores as drivers of negative density dependence in tropical forest saplings. Science 363, 1213 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Stephenson, N. L., Das, A. J., Ampersee, N. J., Bulaon, B. M. & Yee, J. L. Which trees die during drought? The key role of insect host-tree selection. J. Ecol. 107, 2383–2401 (2019).Article 

    Google Scholar 
    74.Wing, L. D. & Buss, I. O. Elephants and forests. Wildl. Monogr. 19, 3–92 (1970).75.Berzaghi, F. et al. Carbon stocks in central African forests enhanced by elephant disturbance. Nat. Geosci. 12, 725–729 (2019).CAS 
    Article 

    Google Scholar 
    76.Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).PubMed 
    Article 

    Google Scholar 
    77.Rüger, N. et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 7, 1075–1084 (2018).Article 

    Google Scholar 
    78.Montgomery, R. A. & Chazdon, R. L. Forest structure, canopy architecture, and light transmittance in old-growth and secondgrowth tropical rain forests. Ecology 82, 2707–2718 (2001).Article 

    Google Scholar 
    79.Kobe, R. K. Carbohydrate allocation to storage as a basis of interspecific variation in sapling survivorship and growth. Oikos 80, 226–233 (1997).Article 

    Google Scholar 
    80.Waring, B. G. & Powers, J. S. Overlooking what is underground: root:shoot ratios and coarse root allometric equations for tropical forests. For. Ecol. Manag. 385, 10–15 (2017).Article 

    Google Scholar 
    81.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Casper, B. B. & Jackson, R. B. Plant competition underground. Annu. Rev. Ecol. Syst. 28, 545–570 (1997).Article 

    Google Scholar 
    83.Coomes, D. A., Duncan, R. P., Allen, R. B. & Truscott, J. Disturbances prevent stem size–density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980–989 (2003).Article 

    Google Scholar 
    84.Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).Article 

    Google Scholar 
    85.Rozendaal, D. M. A. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Rodríguez-Ronderos, M. E., Bohrer, G., Sanchez-Azofeifa, A., Powers, J. S. & Schnitzer, S. A. Contribution of lianas to plant area index and canopy structure in a Panamanian forest. Ecology 97, 3271–3277 (2016).PubMed 
    Article 

    Google Scholar 
    87.Schnitzer, S. A., Kuzee, M. E. & Bongers, F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. J. Ecol. 93, 1115–1125 (2005).Article 

    Google Scholar 
    88.Putz, F. E. The natural history of lianas on Barro Colorado Island, Panama. Ecology 65, 1713–1724 (1984).Article 

    Google Scholar 
    89.van der Heijden, G. M. F., Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. Proc. Natl Acad. Sci. USA 112, 13267–13271 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    90.Visser, M. D. et al. Tree species vary widely in their tolerance for liana infestation: A case study of differential host response to generalist parasites. J. Ecol. 106, 781–794 (2018).CAS 
    Article 

    Google Scholar 
    91.Schnitzer, S. A. & Bongers, F. The ecology of lianas and their role in forests. Trends Ecol. Evol. 17, 223–230 (2002).Article 

    Google Scholar 
    92.García León, M. M., Martínez Izquierdo, L., Mello, F. N. A., Powers, J. S. & Schnitzer, S. A. Lianas reduce community-level canopy tree reproduction in a Panamanian forest. J. Ecol. 106, 737–745 (2018).Article 
    CAS 

    Google Scholar 
    93.Reis, S. M. et al. Causes and consequences of liana infestation in Southern Amazonia. J. Ecol. 108, 2184–2197 (2020).Article 

    Google Scholar 
    94.Sheil, D., Salim, A., Chave, J., Vanclay, J. & Hawthorne, W. D. Illumination–size relationships of 109 coexisting tropical forest tree species. J. Ecol. 94, 494–507 (2006).Article 

    Google Scholar 
    95.Myers, J. A. & Kitajima, K. Carbohydrate storage enhances seedling shade and stress tolerance in a neotropical forest. J. Ecol. 95, 383–395 (2007).CAS 
    Article 

    Google Scholar 
    96.Hartmann, H. & Trumbore, S. Understanding the roles of nonstructural carbohydrates in forest trees—from what we can measure to what we want to know. New Phytol. 211, 386–403 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    97.Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).CAS 
    Article 

    Google Scholar 
    98.Hubau, W. et al. The persistence of carbon in the African forest understory. Nat. Plants 5, 133–140 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Chambers, J. Q., Higuchi, N. & Schimel, J. P. Ancient trees in Amazonia. Nature 391, 135–136 (1998).CAS 
    Article 

    Google Scholar 
    100.Poorter, L. & Kitajima, K. Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88, 1000–1011 (2007).PubMed 
    Article 

    Google Scholar 
    101.Conrath, U. et al. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Arellano, G., Medina, N. G., Tan, S., Mohamad, M. & Davies, S. J. Crown damage and the mortality of tropical trees. New Phytol. 221, 169–179 (2018).PubMed 
    Article 

    Google Scholar 
    103.Zhang, Y.-J. et al. Size‐dependent mortality in a Neotropical savanna tree: the role of height‐related adjustments in hydraulic architecture and carbon allocation. Plant Cell Environ. 32, 1456–1466 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).CAS 
    Article 

    Google Scholar 
    105.Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    106.Harel, M. & Price, C. Thunderstorm trends over Africa. J. Clim. 33, 2741–2755 (2020).Article 

    Google Scholar 
    107.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (Cambridge Univ. Press, 2014).108.Fu, Z. et al. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ. Res. Lett. 12, 104004 (2017).Article 

    Google Scholar 
    109.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    112.Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Banin, L. et al. What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Glob. Ecol. Biogeogr. 21, 1179–1190 (2012).Article 

    Google Scholar 
    114.Brando, P. et al. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest. Oecologia 150, 181–189 (2006).PubMed 
    Article 

    Google Scholar 
    115.Lugo, A. E. & Scatena, F. N. Background and catastrophic tree mortality in tropical moist, wet, and rain forests. Biotropica 28, 585–599 (1996).Article 

    Google Scholar 
    116.Feeley, K. J., Bravo-Avila., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    117.Brienen, R. J. W. et al. Forest carbon sink neutralized by pervasive growth–lifespan trade-offs. Nat. Commun. 11, 4241 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Bugmann, H. et al. Tree mortality submodels drive simulated long-term forest dynamics: assessing 15 models from the stand to global scale. Ecosphere 10, e02616 (2019).Article 

    Google Scholar 
    119.Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: A standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).Article 

    Google Scholar 
    120.Chan, K.-J., Phillips, O. L., Monteagudo, A., Torres-Lezama, A. & Vásquez Martínez, R. How do trees die? Mode of death in northern Amazonia. J. Veg. Sci. 20, 260–268 (2009).Article 

    Google Scholar  More