1.Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).Article
Google Scholar
2.Bergh, O., Børsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).CAS
PubMed
Article
Google Scholar
3.Cai, L. et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 13, 1857–1864 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Reyes, A., Semenkovich, N. P., Whiteson, K., Rohwer, F. & Gordon, J. I. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat. Rev. Microbiol. 10, 607–617 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
5.Fuhrman, J. A. Marine viruses and their biogeochemical and ecological effects. Nature 399, 541–548 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28, 127–181 (2004).CAS
PubMed
Article
Google Scholar
7.Vega Thurber, R. L., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus-host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017).Article
CAS
Google Scholar
8.Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).CAS
PubMed
Article
Google Scholar
9.Wilhelm, S. W. & Suttle, C. A. Viruses and nutrient cycles in the sea. Bioscience 49, 781–788 (1999). Seminal work modelling how viral activity in the oceans prevents up to a quarter of organic matter from being exported to higher trophic levels; instead, this matter is recycled (by viral lysis) into a form that can be assimilated by microorganisms.Article
Google Scholar
10.Calendar, R. L. The Bacteriophages 2nd edn (Oxford University Press, 2005).11.Sullivan, M. B., Weitz, J. S. & Wilhelm, S. W. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).PubMed
Article
Google Scholar
12.Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).PubMed Central
Article
PubMed
Google Scholar
13.Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). An in silico catalogue of the diversity of viruses on Earth that serves as the foundation for the Joint Genome Institute’s growing IMG/VR database.CAS
PubMed
Article
Google Scholar
14.Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Stough, J. M. A. et al. Diversity of active viral infections within the Sphagnum microbiome. Applied Environ. Microbiol. https://doi.org/10.1128/AEM.01124-18 (2018).Article
Google Scholar
16.Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e1114 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
17.De Corte, D. et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01801 (2019).Article
PubMed
PubMed Central
Google Scholar
18.Jang, H. B. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article
CAS
Google Scholar
19.Roux, S. A viral ecogenomics framework to uncover the secrets of nature’s “microbe whisperers”. mSystems 4, e00111–e00119 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
21.Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘lytic or lysogenic’. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw047 (2016).Article
PubMed
PubMed Central
Google Scholar
22.Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing economy. EMBO Reports 20, e47427 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
23.McLeod, S. M., Kimsey, H. H., Davis, B. M. & Waldor, M. K. CTXphi and Vibrio cholerae: exploring a newly recognized type of phage-host cell relationship. Mol. Microbiol. 57, 347–356 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Howard-Varona, C. et al. Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus. ISME J. 11, 284–295 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
25.Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).PubMed
PubMed Central
Article
Google Scholar
26.Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).PubMed
Article
PubMed Central
Google Scholar
27.Gregory, A. C. et al. Genomic differentiation among wild cyanophages despite widespread horizontal gene transfer. BMC Genomics 17, 930 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
28.Holmfeldt, K. et al. Large‐scale maps of variable infection efficiencies in aquatic Bacteroidetes phage‐host model systems. Environ. Microbiol. 18, 3949–3961 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
29.Zborowsky, S. & Lindell, D. Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1906897116 (2019). A meticulous investigation revealing that cyanobacteria defend against specialist phages by blocking their entry, whereas generalist phage infections are arrested intracellularly; thus generalist phages may be more common agents of horizontal gene transfer and co-infection.Article
PubMed
PubMed Central
Google Scholar
30.Lwoff, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511 (2017).PubMed
PubMed Central
Article
Google Scholar
32.Abedon, S. T. The murky origin of Snow White and her T-even dwarfs. Genetics 155, 481–486 (2000).CAS
PubMed
PubMed Central
Google Scholar
33.Demerec, M. & Fano, U. Bacteriophage-resistant mutants in Escherichia coli. Genetics 30, 119–136 (1945).CAS
PubMed
PubMed Central
Google Scholar
34.Bronfenbrenner, J. J. & Korb, C. Studies on the bacteriophage of d’Herelle: I. Is the lytic principle volatile? J. Exp. Med. 41, 73–79 (1925).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Kourilsky, P. & Knapp, A. Lysogenization by bacteriophage lambda: III. – Multiplicity dependent phenomena occuring upon infection by lambda. Biochimie 56, 1517–1523 (1975).Article
Google Scholar
36.St-Pierre, F. & Endy, D. Determination of cell fate selection during phage lambda infection. Proc. Natl Acad. Sci. USA 105, 20705 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Zeng, L. et al. Decision making at a subcellular level determines the outcome of bacteriophage infection. Cell 141, 682–691 (2010). Re-examination of the phage λ decision switch via single-cell tracking of infection fates, revealing how increasing cellular multiplicity of infection increases the stochastic tendency towards lysogeny after infection.CAS
PubMed
PubMed Central
Article
Google Scholar
38.Trinh, J. T., Székely, T., Shao, Q., Balázsi, G. & Zeng, L. Cell fate decisions emerge as phages cooperate or compete inside their host. Nat. Commun. 8, 14341 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Joh, R. I. & Weitz, J. S. To lyse or not to lyse: Transient-mediated stochastic fate determination in cells infected by bacteriophages. PLOS Comput. Biol. 7, e1002006 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Fillol-Salom, A. et al. Bacteriophages benefit from generalized transduction. PLOS Pathog. 15, e1007888 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Howard-Varona, C. et al. Fighting fire with fire: phage potential for the treatment of E. coli O157 infection. Antibiotics 7, 101 (2018).CAS
PubMed Central
Article
PubMed
Google Scholar
42.Pratama, A. A. & van Elsas, J. D. A novel inducible prophage from the mycosphere inhabitant Paraburkholderia terrae BS437. Sci. Rep. 7, 9156 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
43.Jiang, S. C. & Paul, J. H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar. Ecol. Prog. Ser. 104, 163–172 (1994).Article
Google Scholar
44.Brum, J. R., Hurwitz, B. L., Schofield, O., Ducklow, H. W. & Sullivan, M. B. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J. 10, 437–449 (2016). Demonstration that lysogenic activity is favoured in low-productivity polar months (and lytic activity is favoured in high-productivity months), providing support for decades-old ecological hypotheses on the link between abiotic factors and viral strategies.CAS
PubMed
Article
Google Scholar
45.Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).CAS
PubMed
Article
Google Scholar
46.Vega Thurber, R. L. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).CAS
PubMed
Article
Google Scholar
47.Correa, A. M. S. et al. Viral outbreak in corals associated with an in situ bleaching event: atypical herpes-like viruses and a new megavirus infecting Symbiodinium. Front. Microbiol. 7, 127 (2016).PubMed
PubMed Central
Article
Google Scholar
48.Lawrence, S. A., Davy, J. E., Aeby, G. S., Wilson, W. H. & Davy, S. K. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss. Coral Reefs 33, 687–691 (2014).Article
Google Scholar
49.Lawrence, S. A., Floge, S. A., Davy, J. E., Davy, S. K. & Wilson, W. H. Exploratory analysis of Symbiodinium transcriptomes reveals potential latent infection by large dsDNA viruses. Environ. Microbiol. 19, 3909–3919 (2017).CAS
PubMed
Article
Google Scholar
50.Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).Article
Google Scholar
51.Ptashne, M. et al. How the λ repressor and cro work. Cell 19, 1–11 (1980).CAS
PubMed
Article
Google Scholar
52.Warwick-Dugdale, J., Buchholz, H. H., Allen, M. J. & Temperton, B. Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol. 16, 15 (2019).Article
Google Scholar
53.Silpe, J. E. & Bassler, B. L. A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Cell 176, 268–280.e213 (2019).CAS
PubMed
Article
Google Scholar
54.Erez, Z. et al. Communication between viruses guides lysis–lysogeny decisions. Nature 541, 488 (2017). Demonstration that viruses can ‘communicate’ to decide between lysis and lysogeny by co-opting a host system: extracellular release of small peptides.CAS
PubMed
PubMed Central
Article
Google Scholar
55.Stokar-Avihail, A., Tal, N., Erez, Z., Lopatina, A. & Sorek, R. Widespread utilization of peptide communication in phages infecting soil and pathogenic bacteria. Cell Host Microbe 25, 746–755 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
56.Ofir, G. & Sorek, R. Contemporary phage biology: from classic models to new insights. Cell 172, 1260–1270 (2018).CAS
PubMed
Article
Google Scholar
57.McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215–221 (1996).CAS
PubMed
Article
Google Scholar
58.Tan, D. et al. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. ISME J. 14, 1731–1742 (2020).CAS
PubMed
Article
Google Scholar
59.Pleška, M., Lang, M., Refardt, D., Levin, B. R. & Guet, C. C. Phage–host population dynamics promotes prophage acquisition in bacteria with innate immunity. Nat. Ecol. Evol 2, 359–366 (2018).PubMed
Article
Google Scholar
60.Güemes, A. G. C. et al. Viruses as winners in the game of life. Annu. Rev. Virol. 3, 197–214 (2016).Article
CAS
Google Scholar
61.Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984). A seminal article that lays out key pressure points that should dictate temperate phage biology.CAS
PubMed
Article
Google Scholar
62.Lipsitch, M., Siller, S. & Nowak, M. A. The evolution of virulence in pathogens with vertical and horizontal transmission. Evolution 50, 1729–1741 (1996).PubMed
Article
Google Scholar
63.Frank, S. A. Models of parasite virulence. Q. Rev. Biol. 71, 37–78 (1996).CAS
PubMed
Article
Google Scholar
64.Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. https://doi.org/10.1093/ve/vez006 (2019). Theoretical study that examines the impact of ecological factors on the proliferation of viruses, enabled by a cell-centric (rather than a particle-centric) view of viral invasion fitness.Article
PubMed
PubMed Central
Google Scholar
65.Li, G., Cortez, M. H., Dushoff, J. & Weitz, J. S. When to be temperate: on the fitness benefits of lysis vs. lysogeny. Virus Evol. https://doi.org/10.1093/ve/veaa042 (2020).Article
PubMed
PubMed Central
Google Scholar
66.Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLOS Pathog. 9, e1003209 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Wahl, L. M., Betti, M. I., Dick, D. W., Pattenden, T. & Puccini, A. J. Evolutionary stability of the lysis-lysogeny decision: Why be virulent? Evolution 73, 92–98 (2019).CAS
PubMed
Google Scholar
68.Coy, S. R., Alsante, A. N., Van Etten, J. L. & Wilhelm, S. W. Cryopreservation of Paramecium bursaria Chlorella virus-1 during an active infection cycle of its host. PLoS ONE 14, e0211755 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Godfrey-Smith, P. in Individuals Across the Sciences (eds Guay, A. & T. Pradeu, T.) (Oxford University Press, 2015).70.Forterre, P. The virocell concept and environmental microbiology. ISME J. 7, 233 (2013). Proposes the virocell concept, which argues that a given cell represents distinct entities when infected versus uninfected by a virus, providing a non-lytic mechanism by which viruses can significantly alter biogeochemical cycles.CAS
PubMed
Article
Google Scholar
71.Rosenwasser, S., Ziv, C., van Creveld, S. G. & Vardi, A. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean. Trends Microbiol. 24, 821–832 (2016).CAS
PubMed
Article
Google Scholar
72.Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed
PubMed Central
Article
Google Scholar
73.Forterre, P. (ed.) Virocell Concept, The. In eLS https://doi.org/10.1002/9780470015902.a0023264 (2012).74.Diekmann, O., Heesterbeek, H. & Britton, T. Mathematical Tools for Understanding Infectious Disease Dynamics. 1st edn, 517 (Princeton University Press, 2012).75.Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365–382 (1990).CAS
PubMed
Article
Google Scholar
76.Diekmann, O., Heesterbeek, J. A. P. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010).CAS
PubMed
Article
Google Scholar
77.van den Driessche, P. & Watmough, J. in Mathematical Epidemiology. Lecture Notes in Mathematics Vol. 1945 (eds Brauer, F., van den Driessche, P. & Wu, J.) 159–178 (Springer, 2008).78.Gandon, S., Day, T., Metcalf, C. J. E. & Grenfell, B. T. Forecasting epidemiological and evolutionary dynamics of infectious diseases. Trends Ecol. Evol. 31, 776–788 (2016).PubMed
Article
Google Scholar
79.Roossinck, M. J. The good viruses: viral mutualistic symbioses. Nat. Rev. Microbiol. 9, 99–108 (2011).CAS
PubMed
Article
Google Scholar
80.Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).CAS
PubMed
Article
Google Scholar
81.Nanda, A. M., Thormann, K. & Frunzke, J. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J. Bacteriol. 197, 410 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
82.Obeng, N., Pratama, A. A. & Elsas, J. D. V. The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol. 24, 440–449 (2016).CAS
PubMed
Article
Google Scholar
83.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symposia Quant. Biol. 22, 415–427 (1957).Article
Google Scholar
84.Taylor, V. L., Fitzpatrick, A. D., Islam, Z. & Maxwell, K. L. The diverse impacts of phage morons on bacterial fitness and virulence. Adv. Virus Res. 103, 1–31 (2019).CAS
PubMed
Article
Google Scholar
85.Hendrix, R. W., Lawrence, J. G., Hatfull, G. F. & Casjens, S. The origins and ongoing evolution of viruses. Trends Microbiol. 8, 504–508 (2000).CAS
PubMed
Article
Google Scholar
86.Casjens, S. R. & Hendrix, R. W. Bacteriophage lambda: early pioneer and still relevant. Virology 479-480, 310–330 (2015).CAS
PubMed
Article
Google Scholar
87.Fortier, L. C. & Sekulovic, O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence 4, 354–365 (2013).PubMed
PubMed Central
Article
Google Scholar
88.Harrison, E. & Brockhurst, M. A. Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. BioEssays 39, 1700112 (2017).Article
Google Scholar
89.Berngruber, T. W., Weissing, F. J. & Gandon, S. Inhibition of superinfection and the evolution of viral latency. J. Virol. 4, 10200–10208 (2010).Article
CAS
Google Scholar
90.Susskind, M. M., Botstein, D. & Wright, A. Superinfection exclusion by P22 prophage in lysogens of Salmonella typhimurium: III. Failure of superinfecting phage DNA to enter sieA+ lysogens. Virology 62, 350–366 (1974).CAS
PubMed
Article
PubMed Central
Google Scholar
91.van Houte, S., Buckling, A. & Westra, E. R. Evolutionary ecology of prokaryotic immune mechanisms. Microbiol. Mol. Biol. Rev. 80, 745 (2016).PubMed
PubMed Central
Article
Google Scholar
92.Dodd, I. B., Shearwin, K. E. & Egan, J. B. Revisited gene regulation in bacteriophage lambda. Curr. Opin. Genet. Dev. 15, 145–152 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
93.Díaz-Muñoz, S. L. Viral coinfection is shaped by host ecology and virus-virus interactions across diverse microbial taxa and environments. Virus Evol. 3, vex011 (2017).PubMed
PubMed Central
Article
Google Scholar
94.Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).CAS
PubMed
Article
Google Scholar
95.Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).CAS
PubMed
Article
Google Scholar
96.Weitz, J. S., Beckett, S. J., Brum, J. R., Cael, B. B. & Dushoff, J. Lysis, lysogeny and virus-microbe ratios. Nature 549, E1–E3 (2017).CAS
PubMed
Article
Google Scholar
97.Knowles, B. & Rohwer, F. Knowles & Rohwer reply. Nature 549, E3–E4 (2017).CAS
PubMed
Article
Google Scholar
98.Wagner, P. L. & Waldor, M. K. Bacteriophage control of bacterial virulence. Infect. Immun. 70, 3985–3993 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
99.Erickson, A. K. et al. Bacteria facilitate enteric virus co-infection of mammalian cells and promote genetic recombination. Cell Host Microbe 23, 77–88.e75 (2018).CAS
PubMed
Article
Google Scholar
100.Davies, E. V., Winstanley, C., Fothergill, J. L. & James, C. E. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnw015 (2016).Article
PubMed
PubMed Central
Google Scholar
101.Schroven, K., Aertsen, A. & Lavigne, R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuaa041 (2020).Article
Google Scholar
102.Waldor, M. K. & Mekalanos, J. J. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272, 1910–1914 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
103.Matsuda, M. & Barksdale, L. Phage-directed synthesis of diphtherial toxin in non-toxinogenic Corynebacterium diphtheriae. Nature 210, 911–913 (1966).CAS
PubMed
Article
PubMed Central
Google Scholar
104.O’Brien, A. D. et al. Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226, 694 (1984).PubMed
Article
PubMed Central
Google Scholar
105.Gerlach, D. et al. Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature 563, 705–709 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
106.Jahn, M. T. et al. A phage protein aids bacterial symbionts in eukaryote immune evasion. Cell Host Microbe 26, 542–550.e545 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
107.Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & Van Oppen, M. J. H. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
108.Menouni, R., Hutinet, G., Petit, M. A. & Ansaldi, M. Bacterial genome remodeling through bacteriophage recombination. FEMS Microbiol. Lett. 362, 1–10 (2015).CAS
PubMed
Article
Google Scholar
109.Feiner, R. et al. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Nat. Rev. Microbiol. 13, 641–650 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
110.Duerkop, B. A., Clements, C. V., Rollins, D., Rodrigues, J. L. M. & Hooper, L. V. A composite bacteriophage alters colonization by an intestinal commensal bacterium. Proc. Natl Acad. Sci. USA 109, 17621–17626 (2012). Demonstrates that temperate virus infections (including those derived from distinct, spatially separated prophage elements) can ‘make winners’ out of their hosts by providing the hosts with competitive advantages.CAS
PubMed
Article
Google Scholar
111.Gama, J. A. et al. Temperate bacterial viruses as double-edged swords in bacterial warfare. PLoS ONE https://doi.org/10.1371/journal.pone.0059043 (2013).Article
PubMed
PubMed Central
Google Scholar
112.Davies, E. V. et al. Temperate phages enhance pathogen fitness in chronic lung infection. ISME J. 10, 2553–2555 (2016).PubMed
PubMed Central
Article
Google Scholar
113.Bossi, L., Fuentes, J. A., Mora, G. & Figueroa-Bossi, N. Prophage contribution to bacterial population dynamics. J. Bacteriol. 185, 6467–6471 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
114.Basso, J. T. R. et al. Genetically similar temperate phages form coalitions with their shared host that lead to niche-specific fitness effects. ISME J. 14, 1688–1700 (2020). Demonstrates that two genetically similar, but incompatible, temperate phages that lysogenize the same Roseobacter host can impart distinct physiological traits on that host; thus, each makes its host ‘the winner’ under different environmental conditions.CAS
PubMed
PubMed Central
Article
Google Scholar
115.Li, X. Y. et al. Temperate phages as self-replicating weapons in bacterial competition. J. R. Soc. Interface https://doi.org/10.1098/rsif.2017.0563 (2017).Article
PubMed
PubMed Central
Google Scholar
116.Weitz, J. S. et al. Phage-bacteria infection networks. Trends Microbiol. 21, 82–91 (2013).CAS
PubMed
Article
Google Scholar
117.Dang, V., Howard-Varona, C., Schwenck, S. & Sullivan, M. B. Variably lytic infection dynamics of large Bacteroidetes podovirus phi38:1 against two Cellulophaga baltica host strains. Environ. Microbiol. 17, 4659–4671 (2015).CAS
PubMed
Article
Google Scholar
118.Holmfeldt, K., Howard-Varona, C., Solonenko, N. & Sullivan, M. B. Contrasting genomic patterns and infection strategies of two co-existing Bacteroidetes podovirus genera. Environ. Microbiol. 16, 2501–2513 (2014).CAS
PubMed
Article
Google Scholar
119.Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host–phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
120.Parmar, K. M., Gaikwad, S. L., Dhakephalkar, P. K., Kothari, R. & Singh, R. P. Intriguing interaction of bacteriophage-host association: an understanding in the era of omics. Front. Microbiol. 8, 559 (2017).PubMed
PubMed Central
Article
Google Scholar
121.Flores, C. O., Valverde, S. & Weitz, J. S. Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages. ISME J. 7, 520 (2012).PubMed
PubMed Central
Article
Google Scholar
122.Koskella, B. & Meaden, S. Understanding bacteriophage specificity in natural microbial communities. Viruses 5, 806–823 (2013).PubMed
PubMed Central
Article
Google Scholar
123.Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta- genomics. eLife https://doi.org/10.7554/eLife.03125 (2014).Article
PubMed
PubMed Central
Google Scholar
124.Labonte, J. M. et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 9, 2386–2399 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
125.Munson-McGee, J. H. et al. A virus or more in (nearly) every cell: ubiquitous networks of virus-host interactions in extreme environments. ISME J. 12, 1706–1714 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
126.Díaz-Muñoz, S. L., Sanjuán, R. & West, S. Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22, 437–441 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
127.Landsberger, M. et al. Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174, 908 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
128.Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).PubMed
PubMed Central
Article
Google Scholar
129.Coutinho, F. H. et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat. Commun. https://doi.org/10.1038/ncomms15955 (2017).Article
PubMed
PubMed Central
Google Scholar
130.Alrasheed, H., Jin, R. & Weitz, J. S. Caution in inferring viral strategies from abundance correlations in marine metagenomes. Nat. Commun. 10, 501 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
131.Roossinck, M. J. Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front.Microbiol. https://doi.org/10.3389/fmicb.2014.00767 (2015).Article
PubMed
PubMed Central
Google Scholar
132.Bordenstein, S. R. & Bordenstein, S. R. Eukaryotic association module in phage WO genomes from Wolbachia. Nat. Commun. 7, 13155 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
133.Gilmore, M. S. & Miller, O. K. A bacterium’s enemy isn’t your friend. Nature 563, 637–638 (2018).CAS
PubMed
Article
Google Scholar
134.Callanan, J. et al. RNA phage biology in a metagenomic era. Viruses 10, 386 (2018).PubMed Central
Article
CAS
PubMed
Google Scholar
135.Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).CAS
PubMed
Article
Google Scholar
136.Ross, A., Ward, S. & Hyman, P. More is better: Selecting for broad host range bacteriophages. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.01352 (2016).Article
PubMed
PubMed Central
Google Scholar
137.de Jonge, P. A. et al. Adsorption sequencing as a rapid method to link environmental bacteriophages to hosts. iScience https://doi.org/10.1016/j.isci.2020.101439 (2020).Article
PubMed
PubMed Central
Google Scholar
138.Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).CAS
PubMed
Article
Google Scholar
139.Džunková, M. et al. Defining the human gut host–phage network through single-cell viral tagging. Nat. Microbiol. https://doi.org/10.1038/s41564-019-0526-2 (2019).Article
PubMed
Google Scholar
140.Labonte, J. M. et al. Single cell genomics-based analysis of gene content and expression of prophages in a diffuse-flow deep-sea hydrothermal system. Front.Microbiol. https://doi.org/10.3389/fmicb.2019.01262 (2019).Article
PubMed
PubMed Central
Google Scholar
141.Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).CAS
PubMed
Article
Google Scholar
142.Jover, L. F., Romberg, J. & Weitz, J. S. Inferring phage–bacteria infection networks from time-series data. R. Soc. Open Sci. 3, 160654 (2016).PubMed
PubMed Central
Article
Google Scholar
143.Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).CAS
PubMed
Article
Google Scholar
144.Nayfach, S., Shi, Z. J., Seshadri, R., Pollard, K. S. & Kyrpides, N. C. New insights from uncultivated genomes of the global human gut microbiome. Nature 568, 505–510 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
145.Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
146.Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662.e620 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
147.Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
148.Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses 8, 66 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
149.Laffy, P. W. et al. HoloVir: a workflow for investigating the diversity and function of viruses in invertebrate holobionts. Front. Microbiol. https://doi.org/10.3389/fmicb.2016.00822 (2016).Article
PubMed
PubMed Central
Google Scholar
150.Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights into viral ecology with software and community datasets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).PubMed
Article
Google Scholar
151.Baran, N., Goldin, S., Maidanik, I. & Lindell, D. Quantification of diverse virus populations in the environment using the polony method. Nat. Microbiol. 3, 62–72 (2018).CAS
PubMed
Article
Google Scholar
152.Mruwat, N. et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. (2020).153.Martínez-García, M., Santos, F., Moreno-Paz, M., Parro, V. & Antón, J. Unveiling viral–host interactions within the ‘microbial dark matter’. Nat. Commun. 5, 4542 (2014).PubMed
Article
CAS
Google Scholar
154.Spencer, S. J. et al. Massively parallel sequencing of single cells by epicPCR links functional genes with phylogenetic markers. ISME J. 10, 427–436 (2016).CAS
PubMed
Article
Google Scholar
155.Bickhart, D. M. et al. Assignment of virus and antimicrobial resistance genes to microbial hosts in a complex microbial community by combined long-read assembly and proximity ligation. Genome Biol. 20, 153 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
156.Marbouty, M., Baudry, L., Cournac, A. & Koszul, R. Scaffolding bacterial genomes and probing host-virus interactions in gut microbiome by proximity ligation (chromosome capture) assay. Sci. Adv. 3, e1602105 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
157.Lopez-Madrigal, S., Latorre, A., Porcar, M., Moya, A. & Gil, R. Mealybugs nested endosymbiosis: going into the ‘matryoshka’ system in Planococcus citri in depth. BMC Microbiol. https://doi.org/10.1186/1471-2180-13-74 (2013).Article
PubMed
PubMed Central
Google Scholar
158.Noda, S. et al. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol. Ecol. 16, 1257–1266 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
159.Woyke, T. & Schulz, F. Entities inside one another – a matryoshka doll in biology? Environ. Microbiol. Rep. 11, 26–28 (2019).PubMed
Article
PubMed Central
Google Scholar
160.Chatterjee, A. & Duerkop, B. A. Beyond bacteria: Bacteriophage-eukaryotic host interactions reveal emerging paradigms of health and disease. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01394 (2018).Article
PubMed
PubMed Central
Google Scholar
161.Bordenstein, S. R., Marshall, M. L., Fry, A. J., Kim, U. & Wernegreen, J. J. The tripartite associations between bacteriophage, Wolbachia, and arthropods. PLOS Pathog. 2, e43 (2006).PubMed
PubMed Central
Article
Google Scholar
162.Shropshire, J. D., On, J., Layton, E. M., Zhou, H. & Bordenstein, S. R. One prophage WO gene rescues cytoplasmic incompatibility in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 115, 4987 (2018). One of the genes in Wolbachia-infecting prophage WO that was previously shown to induce cytoplasmic incompatibility (in combination with a second gene) in insect gametes is demonstrated to also independently rescue cytoplasmic incompatibility and nullify associated embryonic defects.CAS
PubMed
Article
PubMed Central
Google Scholar
163.Beckmann, J. F. et al. The toxin–antidote model of cytoplasmic incompatibility: Genetics and evolutionary implications. Trends Genet. 35, 175–185 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
164.Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 363, eaat9691 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
165.Marquez, L. M., Redman, R. S., Rodriguez, R. J. & Roossinck, M. J. A virus in a fungus in a plant: Three-way symbiosis required for thermal tolerance. Science 315, 513–515 (2007). An early example of a mutualistic ‘nested’ symbiosis involving viruses; in this case, the direct fungal host of a virus as well as the plant host of the fungus benefitted from viral infection.CAS
PubMed
Article
Google Scholar
166.van Oppen, M. J. H., Leong, J.-A. & Gates, R. D. Coral-virus interactions: a double-edged sword? Symbiosis 47, 1–8 (2009).Article
Google Scholar
167.Tikhe, C. V. & Husseneder, C. Metavirome sequencing of the termite gut reveals the presence of an unexplored bacteriophage community. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02548 (2018).Article
PubMed
PubMed Central
Google Scholar More