More stories

  • in

    Anthropogenic nutrient loads and season variability drive high atmospheric N2O fluxes in a fragmented mangrove system

    1.Kroeze, C., Dumont, E. & Seitzinger, S. P. New estimates of global emissions of N2O from rivers and estuaries. Environ. Sci. 2(2–3), 159–165. https://doi.org/10.1080/15693430500384671 (2005).Article 

    Google Scholar 
    2.Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 465–570 (Cambridge University Press, 2014).3.Forster, P. et al. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis (2007).4.Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2013.0122 (2013).Article 

    Google Scholar 
    5.Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil. 410(1–2), 1–19. https://doi.org/10.1007/s11104-016-3123-7#citeas (2017).CAS 
    Article 

    Google Scholar 
    6.Rao, K., Priya, N. & Ramanathan, A. L. Impacts of anthropogenic perturbations on reactive nitrogen dynamics in mangrove ecosystem: Climate change perspective. J. Clim. Change 5(2), 9–21 (2019).Article 

    Google Scholar 
    7.Centre for Coastal Zone Management and Coastal Shelter Belt, Ministry of Environment, Forests and Climate change, Govt. of India http://iomenvis.nic.in/index2.aspx?slid=758&sublinkid=119&langid=1&mid=1 (2017).8.FSI. India State of Forest Report. 2019. Forest Survey of India, Ministry of Environment and Forests, Dehradun (2019).9.Borges, A. V. et al. Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci. Total Environ. 610, 342–355. https://doi.org/10.1016/j.scitotenv.2017.08.047 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Lin, H. et al. Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China. Mar. Chem. 182, 14–24. https://doi.org/10.1016/j.marchem.2016.03.005 (2016).CAS 
    Article 

    Google Scholar 
    11.Reading, M. J. et al. Land use drives nitrous oxide dynamics in estuaries on regional and global scales. Limnol. 65(8), 1903–1920. https://doi.org/10.1002/lno.11426 (2020).CAS 
    Article 

    Google Scholar 
    12.Chauhan, R., Ramanathan, A. L. & Adhya, T. K. Assessment of methane and nitrous oxide flux from mangrove along Eastern coast of India. Geofluids 8, 321332. https://doi.org/10.1111/j.1468-8123.2008.00227.x (2008).CAS 
    Article 

    Google Scholar 
    13.Krithika, K., Purvaja, R. & Ramesh, R. Fluxes of methane and nitrous oxide from an Indian mangrove. Curr. Sci. 94, 218224, https://www.jstor.org/stable/24101861 (2008).14.Fernandes, S. O., LokaBharathi, P. A., Bonin, P. C. & Michotey, V. D. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India). J. Environ. Qual. 39, 1507–1516. https://doi.org/10.2134/jeq2009.0477 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys Res. 97, 7373–7382. https://doi.org/10.4319/lom.2014.12.351 (1992).ADS 
    Article 

    Google Scholar 
    16.Wanninkhof, R. & McGillis, W. M. A cubic relationship between gas transfer and wind speed. Geophys. Res. Lett. 26, 1889–1893. https://doi.org/10.1029/1999GL900363 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Raymond, P. A. & Cole, J. J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries 24, 312–317. https://doi.org/10.2307/1352954 (2001).CAS 
    Article 

    Google Scholar 
    18.Hershey, R. N., Nandan, S. B. & Vasu, N. K. Trophic status and nutrient regime of Cochin estuarine system, India. Indian J. Mar. Sci. 49(08), 2582–6727 http://nopr.niscair.res.in/handle/123456789/55309 (2020).19.Hershey, R. N. et al. Nitrous oxide flux from a Tropical estuarine system (Cochin estuary, India). Reg. Stud. Mar. Sci. 30, 100725. https://doi.org/10.1016/j.rsma.2019.100725 (2019).Article 

    Google Scholar 
    20.Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701. https://doi.org/10.1038/srep25701 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Tait, D. R. et al. Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ring-down spectroscopy observations. Environ. Sci. Technol. 51(23), 13771–13778. https://doi.org/10.1021/acs.est.7b04627 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Wells, N. S. et al. Estuaries as sources and sinks of N2O across a land use gradient in subtropical Australia. Glob. Biogeochem. Cycles. 32, 877–894. https://doi.org/10.1029/2017GB005826 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Upstill-Goddard, R. C. Air–sea gas exchange in the coastal zone. Estuar Coast Shelf Sci. 70, 388–404. https://doi.org/10.1016/j.ecss.2006.05.043 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Zappa, C. J., Raymond, P. A., Terray, E. A. & Mcgillis, W. R. Variation in surface turbulence and gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26, 1401–1415. https://doi.org/10.1007/BF02803649/citeas (2003).CAS 
    Article 

    Google Scholar 
    25.Borges, A. V. et al. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49, 1630–1641. https://doi.org/10.4319/lo.2004.49.5.1630 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Munoz-Hincapie, M., Morell, J. M. & Corredor, J. E. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Mar. Pollut. Bull. 44, 992–996. https://doi.org/10.1016/S0025-326X(02)00132-7 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Srinivas, K., Revichandran, P., Maheswaran, P. A., Mohammed Ashraf, T. T. & Nuncio, M. Propagation of tides in the Cochin estuarine system, southwest coast of India. Indian J. Geomar. Sci. 32(1), 14–24 (2003).
    Google Scholar 
    28.Srinivas, K., Revichandran, C. & Dinesh Kumar, P. K. Statistical forecasting of met-ocean parameters in the Cochin estuarine system, southwest coast of India. Indian J. Geomar. Sci. 32(4), 285–293 (2003).
    Google Scholar 
    29.Balachandran, K. K., Joseph, T., Nair, K. K. C., Nair, M. & Joseph, P. S. The complex estuarine formation of six rivers (Cochin backwaters system on westcoast of India)—Sources and distribution of trace metals and nutrients. In:APN/SASCOM/LOICZ Regional Workshop on Assessment of Material Fluxes To the Coastal Zone in South Asia and their Impacts. Sri Lanka National Committee of IGBP, Colombo, Sri Lanka, 359, http://drs.nio.org/drs/handle/2264/1340 (2002).30.Martin, G. D. et al. Freshwater influence on nutrient stoichiometry in a tropical estuary, southwest coast of India. Appl. Ecol. Environ. Res. 6, 57–64 (2008).Article 

    Google Scholar 
    31.Liu, D. et al. N2O fluxes and rates of nitrification and denitrification at the sediment-water interface in Taihu Lake, China. Water 10, 911. https://doi.org/10.3390/w10070911 (2018).CAS 
    Article 

    Google Scholar 
    32.Luijn, F. V., Boers, P. C. M. & Lijklema, L. Comparison of denitrification rates in lake sediments obtained by the N2 flux method, the 15N isotope pairing technique and the mass balance approach. Water Res. 30, 893–900. https://doi.org/10.1016/0043-1354(95)00250-2 (1996).Article 

    Google Scholar 
    33.Pfenning, K. S. & McMahon, P. B. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J. Hydrol. 187, 283–295. https://doi.org/10.1016/S0022-1694(96)03052-1 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8(8), 637–642. https://doi.org/10.1038/ngeo2486 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proc. Natl. Acad. Sci. U. S. A. 114(17), 4330–4335. https://doi.org/10.1073/pnas.1617454114 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Soued, C., del Giorgio, P. A. & Maranger, R. Nitrous oxide sinks and emissions in boreal aquatic networks in Quebec. Nat. Geosci. 9(2), 116–120, https://www.x-mol.com/paperRedirect/68353 (2016).37.Hu, M. P., Chen, D. J. & Dahlgren, R. A. Modeling nitrous oxide emission from rivers: A global assessment. Glob. Change Biol. 22(11), 3566–3582. https://doi.org/10.1111/gcb.13351 (2016).ADS 
    Article 

    Google Scholar 
    38.Murray, R., Erler, D. V., Rosentreter, J., Wells, N. S. & Eyre, B. D. Seasonal and spatial controls on N2O concentrations and emissions in low-nitrogen estuaries: Evidence from three tropical systems. Mar. Chem. https://doi.org/10.1016/j.marchem.2020.103779 (2020).Article 

    Google Scholar 
    39.Ji, Q. X., Babbin, A. R., Peng, X. F., Bowen, J. L. & Ward, B. B. Nitrogen substrate dependent nitrous oxide cycling in salt marsh sediments. J. Mar. Res. 73(3–4), 71–92. https://doi.org/10.1016/j.marchem.2020.103779 (2015).CAS 
    Article 

    Google Scholar 
    40.Punshon, S. & Moore, R. M. Nitrous oxide production and consumption in a eutrophic coastal embayment. Mar. Chem. 91(1–4), 37–51. https://doi.org/10.1016/j.marchem.2004.04.003 (2004).CAS 
    Article 

    Google Scholar 
    41.Corredor, J. E., Morell, J. M. & Bauza, J. Atmospheric nitrous oxide fluxes from mangrove sediments. Mar. Pollut. Bull. 38, 473–478. https://doi.org/10.1016/S0025-326X(98)00172-6 (1999).CAS 
    Article 

    Google Scholar 
    42.Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53. https://doi.org/10.1215/21573689-1597669 (2012).Article 

    Google Scholar 
    43.Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests. 9(10), 596. https://doi.org/10.3390/f9100596 (2018).Article 

    Google Scholar 
    44.Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30, 1148–1160. https://doi.org/10.1093/treephys/tpq048 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Muller, D. et al. Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. Biogeosciences 13(8), 2415–2428. https://doi.org/10.5194/bg-13-2415-2016 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Hasegawa, T. & Okino, T. Seasonal variation of denitrification rate in Lake Suwa sediment. Limnology 5(1), 33–39. https://doi.org/10.1007/PL00021725/citeas (2004).CAS 
    Article 

    Google Scholar 
    47.Myrstener, M., Jonsson, A. & Bergström, A. K. The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments. J. Environ. Sci. (China).48.Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis. 2nd edn. 310 (Fisheries Research Board of Canada, 1972).49.Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of seawater analysis. 2nd edn. 419 (Verlag Chemie, 1983).50.Garcia, H. & Gordon, L. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37, 1307–1312. https://doi.org/10.4319/lo.1992.37.6.1307 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    51.Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of Seawater Analysis 3rd edn. (VCH, 1999).
    Google Scholar 
    52.David, A. R. Analysis of Total organic carbon. UMass Environmental Engineering Program (2012).53.Polunin, N. V. et al. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser. 220, 13–23. https://doi.org/10.3354/meps220013 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    54.McAuliffe, C. GC determination of solutes by multiple phase equilibrations. Chem. Tech. 1, 46–50 (1971).
    Google Scholar 
    55.Liss, P. S. & Merlivat, L. Air-sea exchange rates: Introduction and synthesis, in the role of air-sea exchange in geochemical cycling. In (ed. Buat-Menard, P.) 113–127 (D Reidel, 1986) https://doi.org/10.1007/978-94-009-4738-2_5.56.Weiss, R. F. & Price, B. A. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359. https://doi.org/10.1016/0304-4203(80)90024-9 (1980).CAS 
    Article 

    Google Scholar 
    57.Rao, G. D., Rao, V. D. & Sarma, V. V. S. S. Distribution and air–sea exchange of Nitrous oxide in the Coastal Bay of Bengal during peak discharge period(southwest monsoon). Mar. Chem. 155, 1–9. https://doi.org/10.1016/j.marchem.2013.04.014 (2013).CAS 
    Article 

    Google Scholar  More

  • in

    Phenolic acid-degrading Paraburkholderia prime decomposition in forest soil

    1.Van Hees, P. A. W., Jones, D. L., Finlay, R., Godbold, D. L. & Lundström, U. S. The carbon we do not see – The impact of low molecular weight compounds on carbon dynamics and respiration in forest soils: a review. Soil Biol. Biochem. 37, 1–13 (2005).Article 
    CAS 

    Google Scholar 
    2.Shindo, H., Ohta, S. & Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IX. Distribution of phenolic acids in soils of paddy fields and forests. Soil Sci. Plant Nutr. 24, 233–243 (1978).CAS 
    Article 

    Google Scholar 
    3.Katase, T. Distribution of different forms of p-hydroxybenzoic, vanillic, p-coumaric and ferulic acids in forest soil. Soil Sci. Plant Nutr. 27, 365–371 (1981).CAS 
    Article 

    Google Scholar 
    4.Muscolo, A. & Sidari, M. Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil. 284, 305–318 (2006).CAS 
    Article 

    Google Scholar 
    5.Whitehead, D. C., Dibb, H. & Hartley, R. D. Bound phenolic compounds in water extracts of soils, plant roots and leaf litter. Soil Biol. Biochem. 15, 133–136 (1983).CAS 
    Article 

    Google Scholar 
    6.Kuiters, A. T. & Sarink, H. M. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees. Soil Biol. Biochem. 18, 475–480 (1986).CAS 
    Article 

    Google Scholar 
    7.Gallet, C. & Pellissier, F. Phenolic compounds in natural solutions of a coniferous forest. J. Chem. Ecol. 23, 2401–2412 (1997).CAS 
    Article 

    Google Scholar 
    8.Schofield, J. A., Hagerman, A. E. & Harold, A. Loss of tannins and other phenolics from willow leaf litter. J. Chem. Ecol. 24, 1409–1421 (1998).CAS 
    Article 

    Google Scholar 
    9.Kaiser, K., Guggenberger, G., Haumaier, L. & Zech, W. Seasonal variations in the chemical composition of dissolved organic matter in organic forest floor layer leachates of old-growth Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) stands in northeastern Bavaria, German. Biogeochemistry. 55, 103–143 (2001).CAS 
    Article 

    Google Scholar 
    10.Li H. et al. Forest gaps alter the total phenol dynamics in decomposing litter in an alpine fir forest. PLoS ONE. 11, e0148426 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    11.Blagodatskaya, E. & Kuzyakov, Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol. Fertil. Soils. 45, 115–131 (2008).Article 

    Google Scholar 
    12.Nottingham, A. T., Turner, B. L., Chamberlain, P. M., Stott, A. W. & Tanner, E. V. J. Priming and microbial nutrient limitation in lowland tropical forest soils of contrasting fertility. Biogeochemistry. 111, 219–237 (2012).CAS 
    Article 

    Google Scholar 
    13.Stewart, C. E., Moturi, P., Follett, R. F. & Halvorson, A. D. Lignin biochemistry and soil N determine crop residue decomposition and soil priming. Biogeochemistry. 124, 335–351 (2015).CAS 
    Article 

    Google Scholar 
    14.Lonardo, D. P. Di et al. Priming of soil organic matter: chemical structure of added compounds is more important than the energy content. Soil Biol. Biochem. 108, 41–54 (2017).Article 
    CAS 

    Google Scholar 
    15.Zwetsloot, M. J. et al. Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biol. Biochem. 145, 530–541 (2020).Article 
    CAS 

    Google Scholar 
    16.Tao, X. et al. Winter warming in Alaska accelerates lignin decomposition contributed by Proteobacteria. Microbiome 8, 84 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Wutzler, T. & Reichstein, M. Priming and substrate quality interactions in soil organic matter models. Biogeosciences. 10, 2089–2103 (2013).Article 

    Google Scholar 
    18.Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob Chang Biol. 24, 1873–1883 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Schöning, I. & Kögel-Knabner, I. Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol. Biochem. 38, 2411–2424 (2006).Article 
    CAS 

    Google Scholar 
    20.Kleber, M. et al. Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Chang Biol. 17, 1097–1107 (2011).Article 

    Google Scholar 
    21.Northup, R. R., Dahlgren, R. A. & Yu, Z. Intraspecific variation of conifer phenolic concentration on a marine terrace soil acidity gradient; a new interpretation. Plant Soil. 171, 255–262 (1995).CAS 
    Article 

    Google Scholar 
    22.Sanger, L. J., Cox, P., Splatt, P., Whelan, M. J. & Anderson, J. M. Variability in the quality of Pinus sylvestris needles and litter from sites with different soil characteristics: Lignin and phenylpropanoid signature. Soil Biol. Biochem. 28, 829–835 (1996).CAS 
    Article 

    Google Scholar 
    23.Thevenot, M., Dignac, M. F. & Rumpel, C. Fate of lignins in soils: a review. Soil Biol. Biochem. 42, 1200–1211 (2010).CAS 
    Article 

    Google Scholar 
    24.Zwetsloot, M. J. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Burges, N., Hurst, H. & Walkden, B. The phenolic constituents of humic acid and their relation to the lignin of the plant cover. Geochim. Cosmochim. Acta. 28, 1547–1554 (1964).CAS 
    Article 

    Google Scholar 
    26.Kuiters, A. T. & Denneman, C. A. J. Water-soluble phenolic substances in soils under several coniferous and deciduous tree species. Soil Biol. Biochem. 19, 765–769 (1987).CAS 
    Article 

    Google Scholar 
    27.Jalal, M. A. F. & Read, D. J. The organic acid composition of Calluna heathland soil with special reference to phyto- and fungitoxicity. Plant Soil. 70, 273–286 (1983).CAS 
    Article 

    Google Scholar 
    28.Shindo, H., Ohta, S. & Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IX. Distribution of phenolic acids in soils of paddy fields and forests. Soil Sci. Plant Nutr. 24, 233–243 (1978).CAS 
    Article 

    Google Scholar 
    29.Whitehead, D. C., Dibb, H. & Hartley, R. D. Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol. Biochem. 13, 343–348 (1981).CAS 
    Article 

    Google Scholar 
    30.Ed, V., Boyd, S. & Mokma, D. Extraction of phenolic compounds from a spodsol profile. Soil Sci. 140, 412–420 (1985).Article 

    Google Scholar 
    31.Wang, Y. et al. Environmental behaviors of phenolic acids dominated their rhizodeposition in boreal poplar plantation forest soils. J. Soils Sediments. 16, 1858–1870 (2016).CAS 
    Article 

    Google Scholar 
    32.Phillips, R. P. et al. Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology. 87, 1302–1313 (2006).PubMed 
    Article 

    Google Scholar 
    33.Blum, U. & Shafer, S. R. Microbial populations and phenolic acids in soil. Soil Biol. Biochem. 20, 793–800 (1988).CAS 
    Article 

    Google Scholar 
    34.Shafer, S. R. & Blum, U. Influence of Phenolic acids on microbial populations in the rhizosphere of cucumber. J. Chem. Ecol. 17, 369–389 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Eilers, K. G., Lauber, C. L., Knight, R. & Fierer, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42, 896–903 (2010).CAS 
    Article 

    Google Scholar 
    36.Morrissey, E. M. et al. Phylogenetic organization of bacterial activity. ISME J. 10, 2336–2340 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Huang P., Wang T., Wang M., Wu M., Hsu N. Retention of phenolic acids by noncrystalline hydroxy-aluminum and-iron compounds and clay minerals of soils. Soil Sci. 123, 213–219 (1977).CAS 
    Article 

    Google Scholar 
    38.Cecchi, A. M., Koskinen, W. C., Cheng, H. H. & Haider, K. Sorption-desorption of phenolic acids as affected by soil properties. Biol. Fertil. Soils. 39, 235–242 (2004).CAS 
    Article 

    Google Scholar 
    39.Shindo, H. & Kuwatsuka, S. Behavior of phenolic substances in the decaying process of plants: IV adsorption and movement of phenolic acids in soils. Soil Sci. Plant Nutr. 22, 23–33 (1976).CAS 
    Article 

    Google Scholar 
    40.DeAngelis K. M. et al. Characterization of trapped lignin-degrading microbes in tropical forest soil. PLoS ONE. 6, e19306 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Pold G., Melillo J. M., DeAngelis K. M. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Front Microbiol. 6, 480 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Folman, L. B., Klein Gunnewiek, P. J. A., Boddy, L., De & Boer, W. Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol. Ecol. 63, 181–191 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Valášková, V. et al. Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J. 3, 1218–1221 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Mandal, S. M., Chakraborty, D. & Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 5, 359–368 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Munoz Aguilar, M. et al. Chemotaxis of rhizobium leguminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol. 134, 2741–2746 (1988).CAS 

    Google Scholar 
    47.Morrissey, E. M. et al. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter. ISME J. 11, 1890–1899 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Fontaine, S., Mariotti, A. & Abbadie, L. The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843 (2003).CAS 
    Article 

    Google Scholar 
    49.Liu, X. J. A. et al. The soil priming effect: consistent across ecosystems, elusive mechanisms. Soil Biol Biochem. 140, 107617 (2020).CAS 
    Article 

    Google Scholar 
    50.Fanin, N., Alavoine, G. & Bertrand, I. Temporal dynamics of litter quality, soil properties and microbial strategies as main drivers of the priming effect. Geoderma [Internet]. 377, 114576 (2020).CAS 
    Article 

    Google Scholar 
    51.Fuchs, G., Boll, M. & Heider, J. Microbial degradation of aromatic compounds – from one strategy to four. Nat. Rev. Microbiol. 9, 803–816 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Yang, Z. H. & Ji, G. D. Quantitative response relationships between degradation rates and functional genes during the degradation of beta-cypermethrin in soil. J. Hazard Mater. 299, 719–724 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Nishiyama, E., Ohtsubo, Y., Nagata, Y. & Tsuda, M. Identification of Burkholderia multivorans ATCC 17616 genes induced in soil environment by in vivo expression technology. Environ. Microbiol. 12, 2539–2558 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Wilhelm et al. Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int. J. Syst. Evol. Microbiol. 70, (2020). https://doi.org/10.1099/ijsem.0.004029.55.Pallant, E. & Riha, S. J. Surface soil acidification under red pine and Norway spruce. Soil Sci. Soc. Am. J. 54, 1124–1130 (1990).CAS 
    Article 

    Google Scholar 
    56.Fahey T. J. et al. Earthworm effects on the incorporation of litter C and N into soil organic matter in a sugar maple forest. Ecol. Appl. 23, 1185–1201 (2013).PubMed 
    Article 

    Google Scholar 
    57.Melvin, A. M. & Goodale, C. L. Tree species and earthworm effects on soil nutrient distribution and turnover in a northeastern United States common garden. Can. J. For. Res. 43, 180–187 (2013).CAS 
    Article 

    Google Scholar 
    58.Suarez E. Invasion of Northern Hardwood Forests by Exotic Earthworm Communities in South-Central New York. Cornell; 2004.59.Greweling T., Peech M. Chemical soil tests. Ithaca; 1960.60.Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Neufeld, J. D. et al. DNA stable-isotope probing. Nat. Protoc. 2, 860–866 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Wilhelm, R., Szeitz, A., Klassen, T. L. & Mohn, W. W. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl. Environ. Microbiol. 80, 7206–7211 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    63.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    65.De Caceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology, Ecology. 90, 3566–3574 (2009). http://sites.google.com/site/miqueldecaceres/.PubMed 
    Article 

    Google Scholar 
    66.Wilhelm, R. C., Niederberger, T. D., Greer, C. & Whyte, L. G. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic. Can. J. Microbiol. 57, 303–315 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Ye, J. et al. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 13, 134 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.López-Gutiérrez, J. C. et al. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J. Microbiol. Methods. 57, 399–407 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    69.Markowitz, V. M. et al. IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Res. 36(Suppl. 1), 534–538 (2008).
    Google Scholar 
    70.Martiny, A. C., Treseder, K. & Pusch, G. Phylogenetic conservatism of functional traits in microorganisms. ISME J. 7, 830–838 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), 590–596 (2013).Article 
    CAS 

    Google Scholar 
    74.Wickham, H. Elegant graphics for data analysis. Media. 35, 211 (2009).
    Google Scholar 
    75.McMurdie P. J., Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Oksanen J. et al. Vegan: community ecology package. R Packag. 2015;77.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Price M. N., Dehal P. S., Arkin A. P. FastTree 2 – Approximately maximum-likelihood trees for large alignments. PLoS ONE. 5, e9490 (2010).Article 
    CAS 

    Google Scholar 
    79.Wilhelm R. C. et al. Paraburkholderia solitsugae sp. nov. and Paraburkholderia elongata sp. nov., phenolic acid-degrading bacteria isolated from forest soil and emended description of Paraburkholderia madseniana. Int. J. Syst. Evol. Microbiol. 70, 5093–5105 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Chain, P. S. G. et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. PNAS. 103, 15280–15287 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Mason-Jones, K. & Kuzyakov, Y. “Non-metabolizable” glucose analogue shines new light on priming mechanisms: Triggering of microbial metabolism. Soil Biol. Biochem. 107, 68–76 (2017).CAS 
    Article 

    Google Scholar 
    82.Yuan, Y. et al. Exudate components exert different influences on microbially mediated C losses in simulated rhizosphere soils of a spruce plantation. Plant Soil. 419, 127–140 (2017).CAS 
    Article 

    Google Scholar 
    83.Liu, X. J. A. et al. Labile carbon input determines the direction and magnitude of the priming effect. Appl. Soil Ecol. 109, 7–13 (2017).Article 

    Google Scholar 
    84.Sugai, S. F. & Schimel, J. P. Decomposition and biomass incorporation of 14C-labeled glucose and phenolics in taiga forest floor: effect of substrate quality, successional state, and season. Soil Biol. Biochem. 25, 1379–1389 (1993).CAS 
    Article 

    Google Scholar 
    85.Fontaine, S. et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol. Biochem. 43, 86–96 (2011).CAS 
    Article 

    Google Scholar 
    86.Zhu, Z. et al. Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil. Soil Biol. Biochem. 121, 67–76 (2018).CAS 
    Article 

    Google Scholar 
    87.Roller, B. R. K., Stoddard, S. F. & Schmidt, T. M. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    88.Smirnova, G. V. & Oktyabrsky, O. N. Relationship between Escherichia coli growth rate and bacterial susceptibility to ciprofloxacin. FEMS Microbiol. Lett. 365, 1–6 (2018).Article 
    CAS 

    Google Scholar 
    89.Klappenbach, J. A., Dunbar, J. M. & Schmidt, T. M. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Méndez V., Agulló L., González M., Seeger M. The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400. PLoS ONE. 6, e17583 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Johnson, G. R. & Olsen, R. H. Multiple pathways for toluene degradation in Burkholderia sp. strain JS150. Appl. Environ. Microbiol. 63, 4047–4052 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Andreolli, M. et al. Endophytic Burkholderia fungorum DBT1 can improve phytoremediation efficiency of polycyclic aromatic hydrocarbons. Chemosphere. 92, 688–694 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Somtrakoon, K. et al. Phenanthrene stimulates the degradation of pyrene and fluoranthene by Burkholderia sp. VUN10013. World J. Microbiol. Biotechnol. 24, 523–531 (2008).CAS 
    Article 

    Google Scholar 
    94.Chain, P. S. G. et al. Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc. Natl. Acad. Sci. 103, 15280–15287 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Raj, A., Krishna Reddy, M. M. & Chandra, R. Identification of low molecular weight aromatic compounds by gas chromatography-mass spectrometry (GC-MS) from kraft lignin degradation by three Bacillus sp. Int. Biodeterior Biodegrad. 59, 292–296 (2007).CAS 
    Article 

    Google Scholar 
    96.Shi, Y. et al. Biochemical investigation of kraft lignin degradation by Pandoraea sp. B-6 isolated from bamboo slips. Bioprocess Biosyst. Eng. 36, 1957–1965 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Moraes, E. C. et al. Lignolytic-consortium omics analyses reveal novel genomes and pathways involved in lignin modification and valorization. Biotechnol. Biofuels. 11, 1–16 (2018).CAS 
    Article 

    Google Scholar 
    98.Coenye, T. et al. Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int. J. Syst. Evol. Microbiol. 51, 1099–1107 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Lim, Y. W., Baik, K. S., Han, S. K., Kim, S. B. & Bae, K. S. Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida. Int. J. Syst. Evol. Microbiol. 53, 1631–1636 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Herzog C. et al. Microbial succession on decomposing root litter in a drought-prone Scots pine forest. ISME J. 13, 2346–2362 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Yeoh Y. K. et al. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8, 215 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    102.Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    103.Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).CAS 
    Article 

    Google Scholar 
    105.Henning, J. A. et al. Root bacterial endophytes alter plant phenotype, but not physiology. PeerJ. 2016, 1–20 (2016).
    Google Scholar 
    106.Caballero-Mellado, J., Martínez-Aguilar, L., Paredes-Valdez, G., & Estrada-de los Santos, P. Burkholderia unamae sp. nov., an N2-fixing rhizospheric and endophytic species. Int. J. Syst. Evol. Microbiol. 54, 1165–1172 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Martínez-Aguilar, L. et al. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek. Int. J. Gen. Mol. Microbiol. 104, 1063–1071 (2013).
    Google Scholar 
    108.De Meyer, S. E. et al. Symbiotic and non-symbiotic Paraburkholderia isolated from South African Lebeckia ambigua root nodules and the description of Paraburkholderia fynbosensis sp. Nov. Int. J. Syst. Evol. Microbiol. 68, 2607–2614 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    109.Peeters, C. et al. Phylogenomic study of Burkholderia glathei-like organisms, proposal of 13 novel Burkholderia species and emended descriptions of Burkholderia sordidicola, Burkholderia zhejiangensis, and Burkholderia grimmiae. Front Microbiol. 7, 1–19 (2016).
    Google Scholar 
    110.Vandamme, P. et al. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosph. Int. J. Syst. Evol. Microbiol. 63(PART 12), 4707–4718 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Shiraishi, A., Matsushita, N. & Hougetsu, T. Nodulation in black locust by the Gammaproteobacteria Pseudomonas sp. and the Betaproteobacteria Burkholderia sp. Syst. Appl. Microbiol. 33, 269–274 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    112.Thijs, S. et al. Exploring the rhizospheric and endophytic bacterial communities of Acer pseudoplatanus growing on a TNT-contaminated soil: towards the development of a rhizocompetent TNT-detoxifying plant growth promoting consortium. Plant Soil. 385, 15–36 (2014).CAS 
    Article 

    Google Scholar 
    113.Mavengere, N. R., Ellis, A. G. & Le Roux, J. J. Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb. Int. J. Syst. Evol. Microbiol. 64(PART 6), 1906–1912 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Blair, P. M. et al. Exploration of the biosynthetic potential of the populus microbiome. mSystems. 3, 1–17 (2018).Article 

    Google Scholar 
    115.Peters, N. K. & Verma, D. P. S. Phenolic compounds as regulators of gene expression in plant-microbe interactions. Mol. Plant-Microbe Interact. 3, 4–8 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Successful extraction of insect DNA from recent copal inclusions: limits and perspectives

    1.Higuchi, R. et al. DNA sequences from the quagga, an extinct member of the horse family. Nature 312, 282–284 (1984).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U. S. A. 110, 15758–15763 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    3.Hansen, H. B. et al. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS ONE 12, e0170940 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Hagan, R. W. et al. Comparison of extraction methods for recovering ancient microbial DNA from paleofeces. Am. J. Phys. Anthropol. 171, 275–284 (2020).PubMed 
    Article 

    Google Scholar 
    5.Epp, L. S., Zimmermann, H. H. & Stoof-Leichsenring, K. R. Sampling and extraction of ancient DNA from sediments. In Ancient DNA. Methods in Molecular Biology (eds Shapiro, B. et al.) 31–44 (Humana Press, 2019).
    Google Scholar 
    6.Modi, A. et al. Combined methodologies for gaining much information from ancient dental calculus: testing experimental strategies for simultaneously analysing DNA and food residues. Archaeol. Anthropol. Sci. 12, 10 (2020).Article 

    Google Scholar 
    7.Campos, P. F. & Gilbert, M. T. P. DNA extraction from keratin and chitin. In Ancient DNA. Methods in Molecular Biology (eds Shapiro, B. et al.) 57–63 (Humana Press, 2019).
    Google Scholar 
    8.Adler, C. J. et al. Sequencing ancient calcified dental plaque shows changes in oral microbiota with dietary shifts of the neolithic and industrial revolutions. Nat. Genet. 45, 450-455e1 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Warinner, C. et al. Pathogens and host immunity in the ancient human oral cavity. Nat. Genet. 46, 336–344 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    12.Teasdale, M. D. et al. The York Gospels: a 1000-year biological palimpsest. R. Soc. Open. Sci. 4, 170988 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    13.Boast, A. et al. Coprolites reveal ecological interactions lost with the extinction of New Zealand birds. Proc. Natl. Acad. Sci. U. S. A. 115, 1546–1551 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Zarrillo, S. et al. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nat. Ecol. Evol. 2, 1879–1888 (2018).PubMed 
    Article 

    Google Scholar 
    15.Cano, R. J. et al. Amplification and sequencing of DNA from a 120–135 million-year-old weevil. Nature 363, 536–538 (1993).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    16.DeSalle, R. et al. DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications. Science 257, 1933–1936 (1992).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    17.Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. U. S. A. 112, 9961–9966 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    18.Sadowski, E. M. et al. Carnivorous leaves from Baltic amber. Proc. Natl. Acad. Sci. U. S. A. 112, 190–195 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    19.Xing, L. et al. A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Curr. Biol. 26, 3352–3360 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Rikkinen, J., Grimaldi, D. A. & Schmidt, A. R. Morphological stasis in the first myxomycete from the Mesozoic, and the likely role of cryptobiosis. Sci. Rep. 9, 19730 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    21.Peñalver, E. et al. Thrips pollination of Mesozoic gymnosperms. Proc. Natl. Acad. Sci. U. S. A. 109, 8623–8628 (2012).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    22.Cai, C. et al. Beetle pollination of cycads in the mesozoic. Curr. Biol. 28, 2806-2812.e1 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Bao, T., Wang, B., Li, J. & Dilcher, D. Pollination of Cretaceous flowers. Proc. Natl. Acad. Sci. U. S. A. 116, 24707–24711 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Labandeira, C. Amber. Paleont. Soc. Pap. 20, 163–215 (2014).Article 

    Google Scholar 
    25.Solórzano-Kraemer, M. M. et al. A revised definition for copal and its significance for palaeontological and Anthropocene biodiversity-loss studies. Sci. Rep. 10, 19904 (2020).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    26.Clifford, D. J. & Hatcher, P. G. Structural transformations of polylabdanoid resinites during maturation. Org. Geochem. 23, 407–418 (1995).CAS 
    Article 

    Google Scholar 
    27.Lambert, J. B., Santiago-Blay, J. A., Wu, Y. & Levy, A. J. Examination of amber and 490 related materials by NMR spectroscopy. Magn. Reson. Chem. 53, 2–8 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Stankiewicz, B. A. et al. Chemical preservation of plants and insects in natural resins. Proc. Biol. Sci. 265, 641–647 (1998).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    29.McCoy, V. E. et al. Ancient amino acids from fossil feathers in amber. Sci. Rep. 9, 6420 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    30.Bada, J. L. et al. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim. Cosmochim. Acta. 58, 3131–3135 (1994).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    31.Collins, M. J. et al. Is amino acid racemization a useful tool for screening for ancient DNA in bone?. Proc. R. Soc. B 276, 2971–2977 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Allentoft, M. E. et al. The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proc. R. Soc. B 279, 4724–4733 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Kistler, L. et al. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.DeSalle, R., Barcia, M. & Wray, C. PCR jumping in clones of 30-million-year-old DNA fragments from amber preserved termites (Mastotermes electrodominicus). Experientia 49, 906–909 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Poinar, G. O., Poinar, H. N. & Cano, R. J. DNA from amber inclusions. In Ancient DNA (eds Herrmann, B. & Hummel, S.) 92–103 (Springer, 1994).
    Google Scholar 
    36.Austin, J. J. et al. Problems of reproducibility: does geologically ancient DNA survive in amber-preserved insects?. Proc. Roy. Soc. Lond. Ser. B 264, 467–474 (1997).CAS 
    Article 
    ADS 

    Google Scholar 
    37.Penney, D. et al. Absence of ancient DNA in sub-fossil insect inclusions preserved in ‘Anthropocene’ Colombian copal. PLoS ONE 8, e73150 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    38.Peris, D. et al. DNA from resin-embedded organisms: past, present and future. PLoS ONE 15, e0239521 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    40.Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    41.Prüfer, K. et al. The complete genome sequence of a Neandertal from the Altai Mountains. Nature 505, 43–49 (2014).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    42.Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    43.Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    44.Gilbert, M. T., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).PubMed 
    Article 

    Google Scholar 
    45.Willerslev, E. & Cooper, A. Ancient DNA. Proc. Biol. Sci. 272, 3–16 (2005).CAS 
    PubMed 

    Google Scholar 
    46.Penney, D., Wadsworth, C. & Green, D. I. Extraction of inclusions from (sub)fossil resins, with description of a new species of stingless bee (Hymenoptera: Apidae: Meliponini), in quaternary Colombian copal. Paleontol. Contrib. 2013, 7:1–6 (2013).
    Google Scholar 
    47.Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 6, pdb.prot5448 (2010).Article 

    Google Scholar 
    48.Modi, A. et al. Complete mitochondrial sequences from Mesolithic Sardinia. Sci. Rep. 7, 42869 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    49.Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Andrews, S. FastQC: a quality control tool for high throughput sequence data (2010). Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc51.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Li, H. et al. The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Altschul, S. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Jackman, S. D. et al. ABySS 2.0: resource-efficient assembly of large genomes using a Bloom filter. Genome Res. 27, 768–777 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Huson, D. H. et al. MEGAN community edition: interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 12, e1004957 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Hofreiter, M., Jaenicke, V., Serre, D., Haeseler, A. & Pääbo, S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 9, 4793–4799 (2011).
    Google Scholar 
    58.Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl. Acad. Sci. U. S. A. 104, 14616–14621 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    59.Sawyer, S., Krause, J., Guschanski, K., Savolainen, V. & Pääbo, S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    60.Jonsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Kumar, S. et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Noonan, J. P. et al. Genomic sequencing of pleistocene cave bears. Science 309, 597–599 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    64.Green, R. E. et al. Analysis of one million base pairs of Neanderthal DNA. Nature 444, 330–336 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    65.Garcia-Garcera, M. et al. Fragmentation of contaminant and endogenous DNA in ancient samples determined by shotgun sequencing; prospects for human palaeogenomics. PLoS ONE 6, e24161 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    66.Llamas, B. et al. From the field to the laboratory: Controlling DNA contamination in human ancient DNA research in the high-throughput sequencing era. STAR 3, 1–14 (2017).Article 

    Google Scholar 
    67.Wintertona, S. L., Brian, M. W. & Evert, I. S. Phylogeny and Bayesian divergence time estimations of small-headed Xies (Diptera: Acroceridae) using multiple molecular markers. Mol. Phylogenet. Evol. 43, 808–832 (2007).Article 
    CAS 

    Google Scholar 
    68.Gillung, J. P. & Wintertona, S. L. Evolution of fossil and living spider flies based onmorphological and molecular data (Diptera, Acroceridae). Syst. Entomol. 44, 820–841 (2019).Article 

    Google Scholar 
    69.Klasson, L. et al. The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc. Natl. Acad. Sci. U. S. A. 106, 5725–5730 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    70.Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Distributions of Arctic and Northwest Atlantic killer whales inferred from oxygen isotopes

    1.Forney, K. A. & Wade, P. R. Worldwide distribution and abundance of killer whales. In Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) 145–162 (University of California Press, 2006).
    Google Scholar 
    2.Reeves, R. R. & Mitchell, E. Distribution and seasonality of killer whales in the eastern Canadian Arctic. Rit Fiskideildar 11, 136–160 (1988).
    Google Scholar 
    3.Mitchell, E. & Reeves, R. R. Records of killer whales in the western North Atlantic, with emphasis on eastern Canadian waters. Rit Fiskideildar 11, 161–193 (1988).
    Google Scholar 
    4.Katona, S. K., Beard, J. A., Girton, P. E. & Wenzel, F. Killer whales (Orcinus orca) from the Bay of Fundy to the equator, including the Gulf of Mexico. Rit Fiskideildar 11, 205–224 (1988).
    Google Scholar 
    5.Higdon, J. W. & Ferguson, S. H. Sea ice declines causing punctuated change as observed with killer whale (Orcinus orca) sightings in the Hudson Bay region over the past century. Ecolog. Appl. 19, 1365–1375 (2009).Article 

    Google Scholar 
    6.Lawson, J. W. & Stevens, T. S. Historic and seasonal distribution patterns and abundance of killer whales (Orcinus orca) in the northwest Atlantic. J. Mar. Biol. Assoc. 94, 1253–1265 (2014).Article 

    Google Scholar 
    7.Jourdain, E. et al. North Atlantic killer whale Orcinus orca populations: a review of current knowledge and threats to conservation. Mammal Rev. 49, 384–400 (2019).Article 

    Google Scholar 
    8.Breed, G. A. et al. Sustained disruption of habitat use and behavior of narwhals in the presence of Arctic killer whales. Proc. Natl. Acad. Sci. U.S.A. 114, 2628–2633. https://doi.org/10.1073/pnas.1611707114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Matthews, C. J. D., Breed, G. A., Leblanc, B. & Ferguson, S. H. Killer whale presence drives bowhead whale selection for sea ice in Arctic seascapes of fear. Proc. Natl. Acad. Sci. U.S.A. 117, 6590–6598. https://doi.org/10.1073/pnas.1911761117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Matthews, C. J. D., Luque, S. L., Petersen, S. D., Andrews, R. D. & Ferguson, S. H. Satellite tracking of a killer whale (Orcinus orca) in the eastern Canadian Arctic documents ice avoidance and rapid, long-distance movement into the North Atlantic. Polar Biol. 34, 1091–1096 (2011).Article 

    Google Scholar 
    11.Lefort, K. J. et al. A review of Canadian Arctic killer whale (Orcinus orca) ecology. Can. J. Zool. 98, 245–253 (2020).Article 

    Google Scholar 
    12.Lien, J., Stenson, G. B. & Jones, P. W. Killer whales (Orcinus orca) in waters off Newfoundland and Labrador, 1978–1986. Rit Fiskideildar 11, 194–201 (1988).
    Google Scholar 
    13.Øien, N. The distribution of killer whales (Orcinus orca) in the North Atlantic based on Norwegian catches, 1938–1981, and incidental sightings, 1967–1987. Rit Fiskideildar 11, 65–78 (1988).
    Google Scholar 
    14.Reeves, R. R. & Mitchell, E. Killer whale sightings and takes by American pelagic whalers in the North Atlantic. Rit Fiskideildar 11, 7–23 (1988).
    Google Scholar 
    15.Higdon, J.W. Status of knowledge on killer whales (Orcinus orca) in the Canadian Arctic. Fisheries and Oceans Canada. Canadian Science Advisory Secretariat Research Document 2007/048 (2007)16.Young, B. G., Higdon, J. W. & Ferguson, S. H. Killer whale (Orcinus orca) photo-identification in the eastern Canadian Arctic. Polar Res. 30, 7203 (2011).Article 

    Google Scholar 
    17.Matthews, C. J. D., Ghazal, M., Lefort, K. J. & Inuarak, E. Epizoic barnacles on Arctic killer whales indicate residency in warm waters. Mar. Mamm. Sci. 36, 1–5 (2020).Article 

    Google Scholar 
    18.Hobson, K. A. Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314–326 (1999).PubMed 
    Article 
    ADS 

    Google Scholar 
    19.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    20.Magozzi, S., Yool, A., Vander Zanden, H. B., Wunder, M. B. & Trueman, C. N. Using ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 8(5), e01673 (2017).Article 

    Google Scholar 
    21.Yoshida, N. & Miyazaki, N. Oxygen isotope correlation of cetacean bone phosphate with environmental water. J. Geophys. Res. 96, 815–820 (1991).Article 
    ADS 

    Google Scholar 
    22.Matthews, C. J. D., Longstaffe, F. J. & Ferguson, S. H. Dentine oxygen isotopes (δ18O) as a proxy for odontocete distributions and movements. Ecol. Evol. 6, 4643–4653. https://doi.org/10.1002/ece3.2238 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.LeGrande, A. N. & Schmidt, G. A. Global gridded data set of the oxygen isotopic composition in seawater. Geophys. Res. Lett. 33, L12604 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    24.Hui, C. A. Seawater consumption and water flux in the common dolphin Delphinus delphis. Physiol. Zool. 54, 430–440 (1981).CAS 
    Article 

    Google Scholar 
    25.Andersen, S. H. & Nielsen, E. Exchange of water between the harbor porpoise, Phocoena phocoena, and the environment. Experientia 39, 52–53 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Kohn, M. J. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochim. Cosmochim. Acta 60, 4811–4829 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    27.Longinelli, A. Oxygen isotopes in mammal bone phosphate: A new tool for paleohydrological and paleoclimatological research?. Geochim. Cosmochim. Acta 48, 385–390 (1984).CAS 
    Article 
    ADS 

    Google Scholar 
    28.Luz, B., Kolodny, Y. & Horowitz, M. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochim. Cosmochim. Acta 48, 1689–1693 (1984).CAS 
    Article 
    ADS 

    Google Scholar 
    29.Barrick, R. E., Fisher, A. G., Kolodny, Y., Luz, B. & Bohasha, D. Cetacean bone oxygen isotopes as proxies for Miocene ocean composition and glaciation. Palaios 7, 521–531 (1992).Article 
    ADS 

    Google Scholar 
    30.Borrell, A. et al. Stable isotopes provide insight into population structure and segregation in eastern North Atlantic sperm whales. PLoS ONE 8, e82398 (2013).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    31.Vighi, M., Borrell, A. & Aguilar, A. Stable isotope analysis and fin whale subpopulation structure in the eastern North Atlantic. Mar. Mamm. Sci. 32, 535–551 (2015).Article 

    Google Scholar 
    32.R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).33.Matthews, C. J. D., Raverty, S. A., Noren, D. P., Arragutainaq, L. & Ferguson, S. H. Ice entrapment mortality may slow expanding presence of Arctic killer whales. Polar Biol. 42, 639–644 (2019).Article 

    Google Scholar 
    34.Goldberg, M., Kulkarni, A. B., Young, M. & Boskey, A. Dentin: structure, composition and mineralization. Front. Biosci. 3, 711–735. https://doi.org/10.2741/e281 (2011).Article 

    Google Scholar 
    35.Firsching, F. H. Precipitation of silver phosphate from homogeneous solution. Analyt. Chem. 33, 873–874 (1961).CAS 
    Article 

    Google Scholar 
    36.Stuart-Williams, H. & Schwarcz, H. P. Oxygen isotope analysis of silver orthophosphate using a reaction with bromine. Geochim. Cosmochim. Acta 59, 3837–3841 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    37.Flanagan, L. B. & Farquhar, G. D. Variation in the carbon and oxygen isotope composition of biomass and its relationship to water-use efficiency at the leaf- and ecosystem-scales in a northern Great Plains grassland. Plant Cell Environ. 37, 425–438 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Webb, E. C., White, C. D. & Longstaffe, F. J. Investigating inherent differences in isotopic composition between human bone and enamel bioapatite: implications for reconstructing residential histories. J. Archaeol. Sci. 50, 97–107 (2014).CAS 
    Article 

    Google Scholar 
    39.Lécuyer, C., Amiot, R., Touzeau, A. & Trotter, J. Calibration of the phosphate δ18O thermometer with carbonate-water isotope fractionation equations. Chem. Geol. 347, 217–226 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    40.Snoeck, C. & Pellegrini, M. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 1—Impact on structure and chemical composition. Chem. Geol. 417, 394–403 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    41.Pellegrini, M. & Snoeck, C. Comparing bioapatite carbonate pre-treatments for isotopic measurements: Part 2—Impact on carbon and oxygen isotope compositions. Chem. Geol. 420, 88–96 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    42.Sonnerup, R. E. et al. Reconstructing the oceanic 13C Suess effect. Global Biogeochem. Cycles 13, 857–872 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    43.Quay, P., Sonnerup, R., Westsby, T., Stutsman, J. & McNichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Global Biogeochem. Cycles 17, 1004 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    44.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    45.Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.30, https://github.com/droglenc/FSA (2020).46.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster Analysis Basics and Extensions. R package version 2.1.0 (2019).47.Galili, T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering (2015).48.Spiess, A.-N. propagate: Propagation of Uncertainty. R package version 1.0–6. http://CRAN.R-project.org/package=propagate (2018).49.Schmidt, G. A., Bigg, G. R. & Rohling, E. J. “Global Seawater Oxygen-18 Database – v1.21” http://data.giss.nasa.gov/o18data/ (1999).50.Lee-Thorp, J. A., Sealy, J. C. & van der Merwe, N. J. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. J. Archaeol. Sci. 16, 585–599 (1989).Article 

    Google Scholar 
    51.Matthews, C. J. D. & Ferguson, S. H. Spatial segregation and similar trophic-level diet among eastern Canadian Arctic/north-west Atlantic killer whales inferred from bulk and compound specific isotopic analysis. J. Mar. Biol. Assoc. 94, 1343–1355 (2014).CAS 
    Article 

    Google Scholar 
    52.Matthews, C. J. D., Lawson, J. W. & Ferguson, S. H. Amino acid δ15N patterns consistent with killer whale ecotypes in the Arctic and Northwest Atlantic. Submitted September 2020.53.Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/ (2005).54.Bivand, R. S., Pebesma, E. & Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. Springer, NY. https://asdar-book.org/ (2013).55.Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.1–5. https://CRAN.R-project.org/package=raster (2020).56.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17. https://CRAN.R-project.org/package=ncdf4 (2019).57.Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4–8. https://CRAN.R-project.org/package=rgdal) (2019).58.Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).Article 

    Google Scholar 
    59.Baird, R. W. & Dill, L. M. Occurrence and behaviour of transient killer whales: seasonal and pod-specific variability, foraging behavior, and prey handling. Can. J. Zool. 73, 1300–1311 (1995).Article 

    Google Scholar 
    60.Higdon, J. W., Hauser, D. D. W. & Ferguson, S. H. Killer whales (Orcinus orca) in the Canadian Arctic: distribution, prey items, group sizes, and seasonality. Mar. Mamm. Sci. 28, E93–E109 (2011).Article 

    Google Scholar 
    61.Courtiol, A. et al. Isoscape computation and inference of spatial origins with mixed models using the R package IsoriX. In Tracking Animal Migration with Stable Isotopes 2nd edn (eds Hobson, K. A. & Wassenaar, L. I.) (Academic Press, 2019).
    Google Scholar 
    62.Tan, F. C. & Strain, P. M. The distribution of sea ice meltwater in the eastern Canadian Arctic. J. Geophys. Res. 85, 1925–1932 (1980).CAS 
    Article 
    ADS 

    Google Scholar 
    63.Tan, F. C. & Strain, P. M. Sea ice and oxygen isotopes in Foxe Basin, Hudson Bay and Hudson Strait, Canada. J. Geophys. Res. 101, 20869–20876 (1996).CAS 
    Article 
    ADS 

    Google Scholar 
    64.Bédard, P., Hillaire-Marcel, C. & Pagé, P. 18O modelling of freshwater inputs in Baffin Bay and Canadian Arctic coastal waters. Nature 293, 287–289 (1981).Article 
    ADS 

    Google Scholar 
    65.Bolaños-Jiménez, J. et al. Distribution, feeding habits and morphology of killer whales Orcinus orca in the Caribbean Sea. Mamm. Rev. 44, 177–189 (2014).Article 

    Google Scholar 
    66.Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461–472 (2001).PubMed 
    Article 
    ADS 

    Google Scholar 
    67.Hobson, K. A. et al. A multi-isotope (δ13C, δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere 3(5), 44 (2012).Article 

    Google Scholar 
    68.Bowen, G. J., Liu, Z., Vander Zanden, H. B., Zhao, L. & Takahashi, G. Geographic assignment with stable isotopes in IsoMAP. Methods Ecol. Evol. 5, 201–206 (2014).Article 

    Google Scholar 
    69.Ambrose, S. H. & Norr, L. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone (eds Lambert, J. B. & Grupe, G.) (Springer, 1993). https://doi.org/10.1007/978-3-662-02894-0_1.
    Google Scholar 
    70.Tieszen, L. L. & Fagre, T. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In Prehistoric Human Bone (eds Lambert, J. B. & Grupe, G.) (Springer, 1993). https://doi.org/10.1007/978-3-662-02894-0_5.
    Google Scholar 
    71.Myrick, A. C., Yochem, P. K. & Cornell, L. H. Toward calibrating dentinal layers in captive killer whales by use of tetracycline labels. Rit Fiskideildar 11, 285–296 (1988).
    Google Scholar 
    72.Klevezal, G. A. Layers in the hard tissues of mammals as a record of growth rhythms of individuals. Reports of the International Whaling Commission. Special Issue 3, 89–94 (1980)73.Klevezal, G. A. Recording structures of mammals: determination of age and reconstruction of life history. A.A. Balkema, Rotterdam. xi + 274 p (1996)74.Stern, R. A., Outridge, P. M., Davis, W. J. & Stewart, R. E. A. Reconstructing lead isotope exposure histories preserved in the growth layers of walrus teeth using the SHRIMP II ion microprobe. Environ. Sci. Technol. 33, 1771–1775 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    75.Foote, A. D. et al. Genetic differentiation among North Atlantic killer whale populations. Mol. Ecol. 20, 629–641 (2011).PubMed 
    Article 

    Google Scholar 
    76.Lefort, K. J. The demography of Canadian Arctic killer whales. M.Sc. Thesis. University of Manitoba. 100 pp. (2020)77.Foote, A. D., Newton, J., Piertney, S. B., Willerslev, E. & Gilbert, M. T. P. Ecological, morphological and genetic divergence of sympatric North Atlantic killer whale populations. Mol. Ecol. 18, 5207–5217 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Vennemann, T. W., Hegner, E., Cliff, G. & Benz, G. W. Isotopic composition of recent shark teeth as a proxy for environmental conditions. Geochim. Cosmochim. Acta 65, 1583–1599 (2001).CAS 
    Article 
    ADS 

    Google Scholar 
    79.Towers, J. R. et al. Movements and dive behavior of a toothfish-depredating killer and sperm whale. ICES J. Mar. Sci. 76, 298–311 (2019).Article 

    Google Scholar 
    80.Bigg, M. A., Olesiuk, P. K., Ellis, G. M., Ford, J. K. B. & Balcomb, K. C. Social organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of British Columbia and Washington State. Rep. Int. Whal. Comm. 12, 383–406 (1990).
    Google Scholar 
    81.Reisinger, R. R., Beukes, C., Hoelzel, R. A. & Nico de Bruyn, P. J. Kinship and association in a highly social apex predator population, killer whales at Marion Island. Behav. Ecol. 28, 750–759 (2017).Article 

    Google Scholar 
    82.Higdon, J. W., Westdal, K. H. & Ferguson, S. H. Distribution and abundance of killer whales (Orcinus orca) in Nunavut, Canada: an Inuit knowledge survey. J. Mar. Biol. Assoc. 94, 1293–1304 (2014).Article 

    Google Scholar 
    83.Wassmann, P., Duarte, C. M., Agustí, S. & Sejr, M. K. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).Article 
    ADS 

    Google Scholar 
    84.Clementz, M. T., Fordyce, R. E., Peek, S. L. & Fox, D. L. Ancient marine isoscapes and isotopic evidence of bulk-feeding by Oligocene cetaceans. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 28–40 (2014).Article 

    Google Scholar  More

  • in

    Increasing availability of palatable prey induces predator-dependence and increases predation on unpalatable prey

    1.Elton, C. S. Animal Ecology (Sidgwick and Jackson, 1927).
    Google Scholar 
    2.Curio, E. The Ethology of Predation (Springer, 1976).
    Google Scholar 
    3.Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology (The University of Chicago Press, 2007).
    Google Scholar 
    4.Holling, C. S. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. Can. Entomol. 91, 293–320 (1959).Article 

    Google Scholar 
    5.Hassell, M. P. & Varley, G. C. New inductive population model for insect parasites and its bearing on biological control. Nature 223, 1133–1137 (1969).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    6.Beddington, J. R. Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975).Article 

    Google Scholar 
    7.DeAngelis, D. L., Goldstein, R. A. & O’Neill, R. V. A model for tropic interaction. Ecology 56, 881–892 (1975).Article 

    Google Scholar 
    8.Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
    Google Scholar 
    9.Murdoch, W. W., Avery, S. & Smyth, M. E. B. Switching in predatory fish. Ecology 56, 1094–1105 (1975).Article 

    Google Scholar 
    10.Akre, B. G. & Johnson, D. M. Switching and sigmoid functional response curves by damselfly naiads with alternative prey available. J. Anim. Ecol. 48, 703–720 (1979).Article 

    Google Scholar 
    11.Benhadi-Marín, J., Pereira, J. A., Sousa, J. P. & Santos, S. A. P. Functional responses of three guilds of spiders: comparing single- and multiprey approaches. Ann. Appl. Biol. 175, 202–214 (2019).Article 

    Google Scholar 
    12.Tschanz, B., Bersier, L. F. & Bacher, S. Functional responses: a question of alternative prey and predator density. Ecology 88, 1300–1308 (2007).PubMed 
    Article 

    Google Scholar 
    13.Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail?. Anim. Behav. 61, 379–390 (2001).Article 

    Google Scholar 
    14.Nakano, S., Fausch, K. D. & Kitano, S. Flexible niche partitioning via a foraging mode shift: a proposed mechanism for coexistence in stream-dwelling charrs. J. Anim. Ecol. 68, 1079–1092 (1999).Article 

    Google Scholar 
    15.Kullberg, C. Strategy of the Pygmy Owl while hunting avian and mammalian prey. Ornis Fenn. 72, 72–78 (1995).
    Google Scholar 
    16.Oaten, A. & Murdoch, W. W. Switching, functional response, and stability in predator-prey systems. Am. Nat. 109, 299–318 (1975).Article 

    Google Scholar 
    17.Abrams, P. A. The adaptive dynamics of consumer choice. Am. Nat. 153, 83–97 (1999).PubMed 
    Article 

    Google Scholar 
    18.Abrams, P. A. & Kawecki, T. J. Adaptive host preference and the dynamics of host–parasitoid interactions. Theor. Popul. Biol. 56, 307–324 (1999).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    19.van Baleen, M., Krivan, V., van Rijn, P. & Sabelis, M. Alternative food, switching predators and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001).Article 

    Google Scholar 
    20.Formanowicz, D. R. & Bradley, P. J. Fluctuations in prey density: effects on the foraging tactics of scolopendrid centipedes. Anim. Behav. 35, 453–461 (1987).Article 

    Google Scholar 
    21.Hirvonen, H. Shifts in foraging tactics of larval damselflies: effects of prey density. Oikos 86, 443–452 (1999).Article 

    Google Scholar 
    22.Hassell, M. P. The Dynamics of Arthropod Predator–Prey Systems (Princeton University Press, 1978).
    Google Scholar 
    23.Arditi, R. & Akçakaya, H. R. Underestimation of mutual interference of predators. Oecologia 83, 358–361 (1990).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    24.Abrams, P. A. & Ginzburg, L. R. The nature of predation: prey dependent, ratio dependent or neither?. Trends Ecol. Evol. 15, 337–341 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Arditi, R. & Ginzburg, L. R. How Species Interact: Altering the Standard View of Trophic Ecology (Oxford University Press, 2012).
    Google Scholar 
    26.Chan, K. et al. Improving the assessment of predator functional responses by considering alternate prey and predator interactions. Ecology 98, 1787–1796 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Tyutyunov, Y. V. & Titova, L. I. From Lotka-Volterra to Arditi-Ginzbug: 90 years of evolving trophic functions. Biol. Bull. Rev. 10, 167–185 (2020).Article 

    Google Scholar 
    28.Novak, M. & Stouffer, D. B. Systematic bias in studies of consumer functional responses. Ecol. Lett. 24, 580–593 (2020).PubMed 
    Article 

    Google Scholar 
    29.Schenk, D., Bersier, L. F. & Bacher, S. An experimental test of the nature of predation: neither prey- nor ratio-dependent. J. Anim. Ecol. 74, 86–91 (2005).Article 

    Google Scholar 
    30.Hossie, T. J. & Murray, D. L. Spatial arrangement of prey affects the shape of ratio-dependent functional responses in strongly antagonistic predators. Ecology 97, 834–841 (2016).PubMed 
    Article 

    Google Scholar 
    31.Pulliam, H. R. On the theory of optimal diets. Am. Nat. 108, 59–74 (1974).Article 

    Google Scholar 
    32.Charnov, E. L. Optimal foraging: attack strategy of a mantid. Am. Nat. 110, 141–151 (1976).Article 

    Google Scholar 
    33.Baudrot, V., Perasso, A., Fritsch, C., Giraudoux, P. & Raoul, F. The adaptation of generalist predators’ diet in a multi-prey context: insights from new functional responses. Ecology 97, 1832–1841 (2016).PubMed 
    Article 

    Google Scholar 
    34.Palma, L., Beja, P., Pais, M. & Da Fonseca, L. C. Why do raptors take domestic prey? The case of Bonelli’s eagles and pigeons. J. Appl. Ecol. 43, 1075–1086 (2006).Article 

    Google Scholar 
    35.Hossie, T. J. & Murray, D. L. You can’t run but you can hide: refuge use in frog tadpoles elicits density-dependent predation by dragonfly larvae. Oecologia 163, 395–404 (2010).PubMed 
    Article 
    ADS 

    Google Scholar 
    36.Hossie, T. J. & Murray, D. L. Assessing behavioural and morphological responses of frog tadpoles to temporal variability in predation risk. J. Zool. 288, 275–282 (2012).Article 

    Google Scholar 
    37.Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 541–554 (2001).Article 

    Google Scholar 
    38.Hossie, T. J., Landolt, K. & Murray, D. L. Determinants and co-expression of anti-predator responses in amphibian tadpoles: a meta-analysis. Oikos 126, 20. https://doi.org/10.1111/oik.03305 (2017).Article 

    Google Scholar 
    39.Relyea, R. A. The relationship between predation risk and antipredator responses in larval anurans. Ecology 82, 541–554 (2001).Article 

    Google Scholar 
    40.Shine, R. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Quart. Rev. Biol. 85, 253–291 (2010).PubMed 
    Article 

    Google Scholar 
    41.Üveges, B. et al. Age- and environment-dependent changes in chemical defences of larval and post-metamorphic toads. BMC Evol. Biol. 17, 137 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Jeschke, J. M. Density-dependent effect of prey defences and predator offences. J. Theor. Biol. 242, 900–907 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    43.Holt, R. D. Predation, apparent competition, and the structure of prey communities. Theor. Popul. Biol. 12, 197–229 (1977).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Chaneton, E. J. & Bonsall, M. B. Enemy-mediated apparent competition: empirical patterns and the evidence. Oikos 88, 380–394 (2000).Article 

    Google Scholar 
    45.Holt, R. D. & Kotler, B. P. Short-term apparent competition. Am. Nat. 130, 412–430 (1987).Article 

    Google Scholar 
    46.Abrams, P. A. Effect of increased productivity on the abundances of trophic levels. Am. Nat. 141, 351–371 (1993).Article 

    Google Scholar 
    47.Jara, F. G. & Perotti, M. G. Toad tadpole responses to predator risk: ontogenetic change between constitutive and inducible defenses. J. Herpetol. 43, 82–88 (2009).Article 

    Google Scholar 
    48.Murdoch, W. W. Switching in general predators: experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article 

    Google Scholar 
    49.Chesson, P. L. Variable predators and switching behavior. Theor. Popul. Biol. 26, 1–26 (1984).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    50.Gende, S. M., Quinn, T. P. & Willson, M. F. Consumption choice by bears feeding on salmon. Oecologia 127, 372–382 (2001).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    51.Skelhorn, J. & Rowe, C. Predator avoidance learning of prey with secreted or stored defences and the evolution of insect defences. Anim. Behav. 72, 827–834 (2006).Article 

    Google Scholar 
    52.Vucetich, J. A., Vucetich, L. M. & Peterson, R. O. The causes and consequences of partial prey consumption by wolves preying on moose. Behav. Ecol. Sociobiol. 66, 295–303 (2012).Article 

    Google Scholar 
    53.Sih, A. Optimal foraging: partial consumption of prey. Am. Nat. 116, 281–290 (1980).Article 

    Google Scholar 
    54.Lucas, J. R. & Grafen, A. Partial prey consumption by ambush predators. Theor. Popul. Biol. 113, 455–473 (1985).MathSciNet 
    Article 

    Google Scholar 
    55.Halliday, D. C. et al. Cane toad toxicity: an assessment of extracts from early developmental stages and adult tissues using MDCK cell culture. Toxicon 53, 385–391 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Toledo, R. C. & Jared, C. Cutaneous granular glands and amphibian venoms. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 111, 1–29 (1995).Article 

    Google Scholar 
    57.Parrott, M. L., Doody, J. S., McHenry, C. & Clulow, S. Eat your heart out: choice and handling of novel toxic prey by predatory water rats. Aust. Mammal. 42, 235–239 (2019).Article 

    Google Scholar 
    58.Ruxton, G. D., Allen, W. L., Sherratt, T. N. & Speed, M. P. Avoiding Attack: The Evolutionary Ecology of Crypsis, Aposematism, and Mimicry 2nd edn. (Oxford University Press, 2018).
    Google Scholar 
    59.Sherratt, T. N. The optimal strategy for sampling unfamiliar prey. Evolution 65, 2114–2025 (2011).Article 

    Google Scholar 
    60.Skelhorn, J. & Rowe, C. Predators’ toxin burdens influence their strategic decisions to eat toxic prey. Curr. Biol. 17, 1479–1483 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Barnett, C. A., Skelhorn, J., Bateson, M. & Rowe, C. Educated predators make strategic decisions to eat defended prey according to their toxin content. Behav. Ecol. 23, 418–424 (2012).Article 

    Google Scholar 
    62.Nonacs, P. Foraging in a dynamic mimicry complex. Am. Nat. 126, 165–180 (1985).Article 

    Google Scholar 
    63.Sherratt, T. N. State-dependent risk-taking by predators in systems with defended prey. Oikos 103, 93–100 (2003).Article 

    Google Scholar 
    64.Jeschke, J. M., Kopp, M. & Tollrian, R. Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biol. Rev. 79, 337–349 (2004).PubMed 
    Article 

    Google Scholar 
    65.Wilbur, H. M. Density-dependent aspects of growth and metamorphosis in Bufo americanus. Ecology 58, 196–200 (1977).Article 

    Google Scholar 
    66.Loman, J. Density regulation in tadpoles of Rana temporaria: a full pond experiment. Ecology 85, 1611–1618 (2004).Article 

    Google Scholar 
    67.Yagi, K. T. & Green, D. M. Mechanisms of denity-dependent growth and survival in tadpoles of Fowler’s Toad, Anaxyrus fowleri: volume vs. abundance. Copeia 104, 942–951 (2016).Article 

    Google Scholar 
    68.Marshal, J. P. & Boutin, S. Power analysis of wolf-moose functional responses. J. Wild. Manag. 63, 396–402 (1999).Article 

    Google Scholar 
    69.Novak, M. & Stouffer, D. B. Systematic bias of consumer functional responses. Ecol. Lett. 24, 580–593 (2020).PubMed 
    Article 

    Google Scholar 
    70.Hossie, T. J. & Murray, D. L. Effects of structural refuge and density on foraging behaviour and mortality of hungry tadpoles subject to predation risk. Ethology 117, 777–785 (2011).Article 

    Google Scholar 
    71.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).
    Google Scholar 
    72.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019). More

  • in

    Total body irradiation causes a chronic decrease in antioxidant levels

    1.Preston, D. et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat. Res. 168, 1–64 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Neriishi, K. et al. Postoperative cataract cases among atomic bomb survivors: Radiation dose response and threshold. Radiat. Res. 168, 404–408 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Sasaki, H., Wong, F. L., Yamada, M. & Kodama, K. The effects of aging and radiation exposure on blood pressure levels of atomic bomb survivors. J. Clin. Epidemiol. 55, 974–981 (2002).Article 

    Google Scholar 
    4.Shimizu, Y. et al. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950–2003. BMJ 340, b5349 (2010).Article 

    Google Scholar 
    5.Yamada, M., Naito, K., Kasagi, F., Masunari, N. & Suzuki, G. Prevalence of atherosclerosis in relation to atomic bomb radiation exposure: An RERF Adult Health Study. Int. J. Radiat. Biol. 81, 821–826 (2005).CAS 
    Article 

    Google Scholar 
    6.Hayashi, T. et al. Evaluation of systemic markers of inflammation in atomic-bomb survivors with special reference to radiation and age effects. FASEB J. 26, 4765–4773 (2012).CAS 
    Article 

    Google Scholar 
    7.Sun, L. et al. Dose-dependent decrease in anti-oxidant capacity of whole blood after irradiation: A novel potential marker for biodosimetry. Sci. Rep. 8, 1–8 (2018).
    Google Scholar 
    8.Zitka, O. et al. Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 4, 1247–1253 (2012).CAS 
    Article 

    Google Scholar 
    9.Chen, J., Small-Howard, A., Yin, A. & Berry, M. J. The responses of Ht22 cells to oxidative stress induced by buthionine sulfoximine (BSO). BMC Neurosci. 6, 1–8 (2005).CAS 
    Article 

    Google Scholar 
    10.Díaz-Hung, M.-L. et al. Transient glutathione depletion in the substantia nigra compacta is associated with neuroinflammation in rats. Neuroscience 335, 207–220 (2016).Article 

    Google Scholar 
    11.Mitchell, J. & Russo, A. The role of glutathione in radiation and drug induced cytotoxicity. Br. J. Cancer Suppl. 8, 96 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Preston, D. L., Shimizu, Y., Pierce, D. A., Suyama, A. & Mabuchi, K. Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950–1997. Radiat. Res. 160, 381–407. https://doi.org/10.1667/rr3049 (2003).13.Yamada, M., Wong, F. L., Fujiwara, S., Akahoshi, M. & Suzuki, G. Noncancer disease incidence in atomic bomb survivors, 1958–1998. Radiat. Res. 161, 622–632. https://doi.org/10.1667/rr3183 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Stewart, F. et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 41, 1–322 (2012).CAS 
    Article 

    Google Scholar 
    15.Stewart, F. A. et al. ICRP PUBLICATION 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs: Threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 41, 1–322. https://doi.org/10.1016/j.icrp.2012.02.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Carey, J. W., Pinarci, E. Y., Penugonda, S., Karacal, H. & Ercal, N. In vivo inhibition of l-buthionine-(S, R)-sulfoximine-induced cataracts by a novel antioxidant, N-acetylcysteine amide. Free Radical Biol. Med. 50, 722–729 (2011).CAS 
    Article 

    Google Scholar 
    17.Rodríguez-Gómez, I. et al. Role of sympathetic tone in BSO-induced hypertension in mice. Am. J. Hypertens. 23, 882–888 (2010).Article 

    Google Scholar 
    18.Rosenblat, M., Coleman, R. & Aviram, M. Increased macrophage glutathione content reduces cell-mediated oxidation of LDL and atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 163, 17–28 (2002).CAS 
    Article 

    Google Scholar 
    19.Rajasekaran, N. S., Sathyanarayanan, S., Devaraj, N. S. & Devaraj, H. Chronic depletion of glutathione (GSH) and minimal modification of LDL in vivo: its prevention by glutathione mono ester (GME) therapy. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1741, 103–112 (2005).20.Gokce, G. et al. Glutathione depletion by buthionine sulfoximine induces oxidative damage to DNA in organs of rabbits in vivo. Biochemistry 48, 4980–4987 (2009).CAS 
    Article 

    Google Scholar 
    21.Richie, J. P., Komninou, D. & Albino, A. P. Induction of colon tumorigenesis by glutathione depletion in p53-knock-out mice. Int. J. Oncol. 30, 1539–1543 (2007).CAS 
    PubMed 

    Google Scholar 
    22.Beatty, A. et al. Metabolite profiling reveals the glutathione biosynthetic pathway as a therapeutic target in triple-negative breast cancer. Mol. Cancer Ther. 17, 264–275 (2018).CAS 
    Article 

    Google Scholar 
    23.Otsuki, Y. et al. Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy. Cancer Sci. 111, 127–136 (2020).CAS 
    Article 

    Google Scholar 
    24.Rivina, L., Davoren, M. J. & Schiestl, R. H. Mouse models for radiation-induced cancers. Mutagenesis 31, 491–509. https://doi.org/10.1093/mutage/gew019 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Neriishi, K., Nakashima, E. & Delongchamp, R. Persistent subclinical inflammation among A-bomb survivors. Int. J. Radiat. Biol. 77, 475–482 (2001).CAS 
    Article 

    Google Scholar 
    26.Wong, F. L., Yamada, M., Sasaki, H., Kodama, K. & Hosoda, Y. Effects of radiation on the longitudinal trends of total serum cholesterol levels in the atomic bomb survivors. Radiat. Res. 151, 736–746 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Kurokawa, Y. The late effects of atomic bomb injuries in Hiroshima and Nagasaki. Nagoya J. Med. Sci. 82, 187–202 (1955).
    Google Scholar 
    28.Chua, H. L. et al. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 103, 356–366. https://doi.org/10.1097/HP.0b013e3182666d6f (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Robbins, M. E. & Zhao, W. Chronic oxidative stress and radiation-induced late normal tissue injury: A review. Int. J. Radiat. Biol. 80, 251–259. https://doi.org/10.1080/09553000410001692726 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Robbins, M. E., Zhao, W., Davis, C. S., Toyokuni, S. & Bonsib, S. M. Radiation-induced kidney injury: A role for chronic oxidative stress?. Micron 33, 133–141 (2002).CAS 
    Article 

    Google Scholar 
    31.Kang, S. K. et al. Overexpression of extracellular superoxide dismutase protects mice from radiation-induced lung injury. Int. J. Radiat. Oncol. Biol. Phys. 57, 1056–1066. https://doi.org/10.1016/s0360-3016(03)01369-5 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Yin, Z., Yang, G., Deng, S. & Wang, Q. Oxidative stress levels and dynamic changes in mitochondrial gene expression in a radiation-induced lung injury model. J. Radiat. Res. 60, 204–214 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Volkova, P. Y., Geras’kin, S. A. & Kazakova, E. A. Radiation exposure in the remote period after the Chernobyl accident caused oxidative stress and genetic effects in Scots pine populations. Sci. Rep. 7, 1–9 (2017).34.Urushihara, Y. et al. Analysis of plasma protein concentrations and enzyme activities in cattle within the ex-evacuation zone of the Fukushima Daiichi nuclear plant accident. PLoS ONE 11, e0155069 (2016).Article 

    Google Scholar 
    35.Malekirad, A. A. et al. Oxidative stress in radiology staff. Environ. Toxicol. Pharmacol. 20, 215–218 (2005).CAS 
    Article 

    Google Scholar 
    36.Takabatake, M. et al. Differential effect of parity on rat mammary carcinogenesis after pre- or post-pubertal exposure to radiation. Sci Rep 8, 14325. https://doi.org/10.1038/s41598-018-32406-1 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Narendran, N., Luzhna, L. & Kovalchuk, O. Sex difference of radiation response in occupational and accidental exposure. Front. Genet. 10, 260. https://doi.org/10.3389/fgene.2019.00260 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Champion, C. J. & Xu, J. Redox state affects fecundity and insecticide susceptibility in Anopheles gambiae. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Finding Nemo’s clock reveals switch from nocturnal to diurnal activity

    1.Thresher, R. E., Colin, P. L. & Bell, L. J. Planktonic duration, distribution and population structure of western and Central Pacific Damselfishes (Pomacentridae). Copeia 420–434, 1989. https://doi.org/10.2307/1445439 (1989).Article 

    Google Scholar 
    2.Leis, J. M. Behaviour as input for modelling dispersal of fish larvae: Behaviour, biogeography, hydrodynamics, ontogeny, physiology and phylogeny meet hydrography. Mar. Ecol. Prog. Ser. 347, 185–194. https://doi.org/10.3354/meps06977 (2007).Article 
    ADS 

    Google Scholar 
    3.Fisher, R., Leis, J. M., Clark, D. L. & Wilson, S. K. Critical swimming speeds of late-stage coral reef fish larvae: Variation within species, among species and between locations. Mar. Biol. 147, 1201–1212. https://doi.org/10.1007/s00227-005-0001-x (2005).Article 

    Google Scholar 
    4.Stobutzki, I. & Bellwood, D. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar. Ecol. Prog. Ser. 149, 35–41. https://doi.org/10.3354/meps149035 (1997).Article 
    ADS 

    Google Scholar 
    5.Gerlach, G., Atema, J., Kingsford, M. J., Black, K. P. & Miller-Sims, V. Smelling home can prevent dispersal of reef fish larvae. Proc. Natl. Acad. Sci. 104, 858–863. https://doi.org/10.1073/pnas.0606777104 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    6.Almany, G. R., Berumen, M. L., Thorrold, S. R., Planes, S. & Jones, G. P. Local Replenishment of Coral Reef fish populations in a Marine Reserve. Science 316, 742–744. https://doi.org/10.1126/science.1140597 (2007).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    7.Jones, G. P., Planes, S. & Thorrold, S. R. Coral Reef Fish Larvae Settle Close to Home. Curr. Biol. 15, 1314–1318. https://doi.org/10.1016/j.cub.2005.06.061 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Kingsford, M. J. et al. Sensory environments, larval abilities and local self-recruitment. Bull. Mar. Sci. 70, 309–340 (2002).
    Google Scholar 
    9.Mouritsen, H., Atema, J., Kingsford, M. J. & Gerlach, G. Sun compass orientation helps coral reef fish larvae return to their natal reef. PLoS ONE. https://doi.org/10.1371/journal.pone.0066039 (2013).10.Dufour, V. & Galzin, R. Colonization patterns of reef fish larvae to the lagoon at Moorea Island, French Polynesia. Mar. Ecol. Prog. Ser. 102, 143–152. https://doi.org/10.3354/meps102143 (1993).Article 
    ADS 

    Google Scholar 
    11.Holbrook, S. & Schmitt, R. Settlement patterns and process in a coral reef damselfish: In situ nocturnal observations using infrared video. In Proceedings of the 8th International Coral Reef Symposium, Vol. 2, 1143–1148 (1997).12.Leis, J. M. & Carson-Ewart, B. M. Complex behaviour by coral-reef fish larvae in open-water and near-reef pelagic environments. Environ. Biol. Fishes 53, 259–266. https://doi.org/10.1023/A:1007424719764 (1998).Article 

    Google Scholar 
    13.Litsios, G. et al. Mutualism with sea anemones triggered the adaptive radiation of clownfishes. BMC Evol. Biol. 12, 212. https://doi.org/10.1186/1471-2148-12-212 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bridge, T., Scott, A. & Steinberg, D. Abundance and diversity of anemonefishes and their host sea anemones at two mesophotic sites on the Great Barrier Reef, Australia. Coral Reefs 31, 1057–1062. https://doi.org/10.1007/s00338-012-0916-x (2012).Article 
    ADS 

    Google Scholar 
    15.Mariscal, R. N. Behavior of symbiotic fishes and sea anemones. In Winn, H. E. & Olla, B. L. (eds.) Behavior of Marine Animals, 327–360 (Springer US, 1972). https://doi.org/10.1007/978-1-4684-0910-9_4.16.Tauber, E., Last, K. S., Olive, P. J. & Kyriacou, C. P. Clock gene evolution and functional divergence. J. Biol. Rhythm. 19, 445–458. https://doi.org/10.1177/0748730404268775 (2004).CAS 
    Article 

    Google Scholar 
    17.Emran, F., Rihel, J., Adolph, A. R. & Dowling, J. E. Zebrafish larvae lose vision at night. Proc. Natl. Acad. Sci. 107, 6034–6039. https://doi.org/10.1073/pnas.0914718107 (2010).Article 
    PubMed 
    ADS 

    Google Scholar 
    18.Cahill, G. M., Hurd, M. W. & Batchelor, M. M. Circadian rhythmicity in the locomotor activity of larval zebrafish. NeuroReport 9, 3445–3449. https://doi.org/10.1097/00001756-199810260-00020 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Ceinos, R. M. et al. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2. Sci. Rep. 8, 8754. https://doi.org/10.1038/s41598-018-27080-2 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    20.Frøland Steindal, I. & Whitmore, D. Circadian clocks in fish—What have we learned so far?. Biology 8, 17. https://doi.org/10.3390/biology8010017 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Vatine, G., Vallone, D., Gothilf, Y. & Foulkes, N. S. It’s time to swim! Zebrafish and the circadian clock. FEBS Lett. 585, 1485–1494. https://doi.org/10.1016/j.febslet.2011.04.007 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276. https://doi.org/10.1039/b902763g (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Häder, D.-P., Kumar, H. D., Smith, R. C. & Worrest, R. C. Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci. 6, 267–285. https://doi.org/10.1039/B700020K (2007).Article 
    PubMed 

    Google Scholar 
    24.Eckes, M., Siebeck, U., Dove, S. & Grutter, A. Ultraviolet sunscreens in reef fish mucus. Mar. Ecol. Prog. Ser. 353, 203–211. https://doi.org/10.3354/meps07210 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    25.Kienzler, A., Bony, S. & Devaux, A. DNA repair activity in fish and interest in ecotoxicology: A review. Aquat. Toxicol. 134–135, 47–56. https://doi.org/10.1016/j.aquatox.2013.03.005 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Hoogenboom, I., Daan, S., Dallinga, J. H. & Schoenmakers, M. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31. https://doi.org/10.1007/BF00379084 (1984).27.Tan, M. H. et al. Finding Nemo: Hybrid assembly with Oxford Nanopore and Illumina reads greatly improves the clownfish (Amphiprion ocellaris) genome assembly. GigaScience. https://doi.org/10.1093/gigascience/gix137 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Cavallari, N. et al. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol. https://doi.org/10.1371/journal.pbio.1001142 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Vallone, D., Gondi, S. B., Whitmore, D. & Foulkes, N. S. E-box function in a period gene repressed by light. Proc. Natl. Acad. Sci. 101, 4106–4111. https://doi.org/10.1073/pnas.0305436101 (2004).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    30.Vatine, G. et al. Light directs Zebrafish period2 expression via conserved D and E boxes. PLOS Biol. https://doi.org/10.1371/journal.pbio.1000223 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Mracek, P. et al. Regulation of per and cry Genes Reveals a Central Role for the D-Box Enhancer in Light-Dependent Gene Expression. PLOS ONE https://doi.org/10.1371/journal.pone.0051278 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Zhao, H. et al. Modulation of DNA repair systems in blind cavefish during evolution in constant darkness. Curr. Biol. 28, 3229-3243.e4. https://doi.org/10.1016/j.cub.2018.08.039 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Tolimieri, N., Haine, O., Jeffs, A., McCauley, R. & Montgomery, J. Directional orientation of pomacentrid larvae to ambient reef sound. Coral Reefs 23, 184–191. https://doi.org/10.1007/s00338-004-0383-0 (2004).Article 

    Google Scholar 
    34.Fisher, R. & Bellwood, D. Undisturbed swimming behaviour and nocturnal activity of coral reef fish larvae. Mar. Ecol. Prog. Ser. 263, 177–188. https://doi.org/10.3354/meps263177 (2003).Article 
    ADS 

    Google Scholar 
    35.Elliott, J. K. & Mariscal, R. N. Ontogenetic and interspecific variation in the protection of anemonefishes from sea anemones. J. Exp. Mar. Biol. Ecol. 208, 57–72. https://doi.org/10.1016/S0022-0981(96)02629-9 (1997).Article 

    Google Scholar 
    36.Fautin, D. G. The anemonefish symbiosis: What is known and what is not. Symbiosis 10, 23–46 (1991).
    Google Scholar 
    37.Di Rosa, V., Frigato, E., López-Olmeda, J. F., Sánchez-Vázquez, F. J. & Bertolucci, C. The light wavelength affects the ontogeny of clock gene expression and activity rhythms in zebrafish larvae. PLOS ONE https://doi.org/10.1371/journal.pone.0132235 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Idda, M. L. et al. Chapter 3—Circadian clocks: Lessons from fish. In Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G. (eds.) The Neurobiology of Circadian Timing, vol. 199 of Progress in Brain Research, 41–57, DOI: https://doi.org/10.1016/B978-0-444-59427-3.00003-4 (Elsevier, 2012).39.Patiño, M. A. L., Rodríguez-Illamola, A., Conde-Sieira, M., Soengas, J. L. & Míguez, J. M. Daily rhythmic expression patterns of Clock1a, Bmal1, and Per1 genes in retina and hypothalamus of the rainbow trout, Oncorhynchus Mykiss. Chronobiol. Int. 28, 381–389. https://doi.org/10.3109/07420528.2011.566398 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Vera, L. M. et al. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol. Int. 30, 649–661. https://doi.org/10.3109/07420528.2013.775143 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Martín-Robles, A. J., Whitmore, D., Sánchez-Vázquez, F. J., Pendón, C. & Muñoz-Cueto, J. A. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole,Solea senegalensis. J. Comp. Physiol. B 182, 673–685. https://doi.org/10.1007/s00360-012-0653-z (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Park, J.-G., Park, Y.-J., Sugama, N., Kim, S.-J. & Takemura, A. Molecular cloning and daily variations of the Period gene in a reef fish Siganus guttatus. J. Comp. Physiol. A 193, 403–411. https://doi.org/10.1007/s00359-006-0194-6 (2007).CAS 
    Article 

    Google Scholar 
    43.Martín-Robles, A. J., Isorna, E., Whitmore, D., Muñoz-Cueto, J. A. & Pendón, C. The clock gene Period3 in the nocturnal flatfish Solea senegalensis: Molecular cloning, tissue expression and daily rhythms in central areas. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 159, 7–15. https://doi.org/10.1016/j.cbpa.2011.01.015 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Whitmore, D., Foulkes, N. S., Strähle, U. & Sassone-Corsi, P. Zebrafish Clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1, 701–707. https://doi.org/10.1038/3703 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Yamazaki, S. et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 682–685. https://doi.org/10.1126/science.288.5466.682 (2000).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    46.Yagita, K. et al. Development of the circadian oscillator during differentiation of mouse embryonic stem cells in vitro. Proc. Natl. Acad. Sci. 107, 3846–3851. https://doi.org/10.1073/pnas.0913256107 (2010).Article 
    PubMed 
    ADS 

    Google Scholar 
    47.Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148, 5648–5655. https://doi.org/10.1210/en.2007-0804 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.del Pozo, A., Montoya, A., Vera, L. M. & Sánchez-Vázquez, F. J. Daily rhythms of clock gene expression, glycaemia and digestive physiology in diurnal/nocturnal European seabass. Physiol. Behav. 106, 446–450. https://doi.org/10.1016/j.physbeh.2012.03.006 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Job, S. & Shand, J. Spectral sensitivity of larval and juvenile coral reef fishes: Implications for feeding in a variable light environment. Mar. Ecol. Prog. Ser. 214, 267–277. https://doi.org/10.3354/meps214267 (2001).Article 
    ADS 

    Google Scholar 
    50.Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719. https://doi.org/10.1111/j.1095-8649.2007.01445.x (2007).Article 

    Google Scholar 
    51.Godwin, J. & Fautin, D. G. Defense of host actinians by anemonefishes. Copeia 902–908, 1992. https://doi.org/10.2307/1446171 (1992).Article 

    Google Scholar 
    52.Roopin, M. & Chadwick, N. E. Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370, 27–34. https://doi.org/10.1016/j.jembe.2008.11.006 (2009).CAS 
    Article 

    Google Scholar 
    53.Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602. https://doi.org/10.1007/s00227-010-1583-5 (2011).Article 

    Google Scholar 
    54.Verde, E. A., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: Direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429. https://doi.org/10.1007/s00227-015-2768-8 (2015).CAS 
    Article 

    Google Scholar 
    55.da Silva, K. B. & Nedosyko, A. Sea Anemones and Anemonefish: A Match Made in Heaven. In Goffredo, S. & Dubinsky, Z. (eds.) The Cnidaria, Past, Present and Future, 425–438 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-31305-4_27.56.Vallone, D., Santoriello, C., Gondi, S. B. & Foulkes, N. S. Basic protocols for zebrafish cell lines. In Rosato, E. (ed.) Circadian Rhythms: Methods and Protocols, 429–441. https://doi.org/10.1007/978-1-59745-257-1_35 (Humana Press, 2007).57.Dekens, M. P. S., Foulkes, N. S. & Tessmar-Raible, K. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0172038 (2017).58.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).60.Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Use R! (Springer, 2009).61.Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. J. Biol. Rhythm. 29, 391–400. https://doi.org/10.1177/0748730414553029 (2014).Article 

    Google Scholar 
    62.Kõressaar, T. et al. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938. https://doi.org/10.1093/bioinformatics/bty036 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115. https://doi.org/10.1093/nar/gks596 (2012).64.Kõressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291. https://doi.org/10.1093/bioinformatics/btm091 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinforma 13, 134. https://doi.org/10.1186/1471-2105-13-134 (2012).CAS 
    Article 

    Google Scholar 
    66.Wit, P. D. et al. The simple fool’s guide to population genomics via RNA-Seq: An introduction to high-throughput sequencing data analysis. Mol. Ecol. Resour. 12, 1058–1067. https://doi.org/10.1111/1755-0998.12003 (2012).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    First observation of seasonal variations in the meat and co-products of the snow crab (Chionoecetes opilio) in the Barents Sea

    Collection of crabsMale snow crabs of legal size and with hard shells were caught by the commercial SC vessel Northeastern (Opilio AS) using traditional SC pots in the NEAFC area (N 75° 49.2 E 37° 39.2). SCs were stored live onboard the vessel and subsequently delivered to Nofima’s facilities in Tromsø (N 69° 39). The crabs were caught in June, and September 2016, February, April, and December 2017 and will only be referred to by month. Upon slaughtering, data from individual crabs was obtained by recording the weight of the whole animal, clusters + claws, hemolymph, hepatopancreas, and gills (n = 56 September, n = 45 December, n = 29 February, n = 66 April, n = 50 June). Subsequently, different fractions were pooled and analysed as outlined below.Biochemical- and meat content-analysesThe biochemical analyses were performed on each month of analysis (September, December, February, April, and June) and consisted of water, protein, lipid, and ash contents. All analyses were performed on meat (i.e., main product) and the different co-products divided in the following ways: pooled internal organs (mainly hemolymph, hepatopancreas and gonads) with and without added carapace, hemolymph alone and hepatopancreas alone. Lipid class and fatty acid analyses were performed on the lipid storage organ hepatopancreas. Each biochemical analysis consisted of co-products from 10 randomly selected animals. All biochemical analyses (water-, ash-, lipid and protein-content) were determined by Toslab (9266 Tromsø, Norway), lipid classes and fatty acid identifications were performed by Biolab (5141 Fyllingsdalen, Norway). Both are commercial laboratories accredited according to ISO 17025.Water and dry matter content3–5 g of material was weighed in a marked porcelain crucible. The crucible was placed in a preheated drying cabinet at 103 °C ± 1 °C. After precisely 4 h 30 min, the crucible was allowed to cool down in a desiccator before being weighed. Water and dry matter contents were calculated according to Eqs. (1) and (2) respectively:$$Waterleft(%right)=frac{left(a-bright)}{w}times 100$$
    (1)
    $$Dry;matter;content left(%right)=frac{left(b-cright)}{w}times 100$$
    (2)
    where a = weight (g) of crucible with weighed sample; b = weight (g) of crucible with dried sample; c = weight (g) of crucible; w = weight (g) of weighed sample9.Ash content3–5 g of material was weighed in a marked porcelain crucible. The crucible was placed in a preheated muffle furnace at 550 °C ± 20 °C. After 16 h, the crucible was allowed to cool down in a desiccator before being weighed. The ash content was calculated according to Eq. (3):$$Ash left(%right)=frac{left(d-cright)}{{w}^{^{prime}}}times 100$$
    (3)
    where d = weight (g) of crucible with calcinated sample; c = weight (g) of crucible; w′ =  weight (g) of dry matter sample10.Fat contentThe fat in the samples was extracted with a polar solvent consisting of CHCl3, MeOH and H2O in a mixing ratio of 1:2:0.8 to give a single-phase system. 5–20 g of material was weighed into a 250 ml test tube. H2O was added so that water content plus added material corresponded to 16 ml. MeOH (40 ml) and CHCl3 (20 ml) were added. The mix was homogenized for 60 s. CHCl3 (20 ml) was again added and the mix was homogenized for 30 s H2O (20 ml) was added, and the mix was homogenized again for 30 s. The test tube was sealed and cooled in a water bath with ice. The emulsion was quickly filtered out through a small cotton ball in a funnel. The upper layer of the collected liquid consisting of MeOH and H2O was removed by suction. 5–20 ml of the remaining CHCl3 phase was transferred to a tared evaporation dish with a positive displacement pipette. The solvent was evaporated with an infrared lamp. The dish was cooled in a desiccator and weighed. The fat content was calculated according to the Eq. (4):$$Fat;content left(%right)=frac{dtimes b}{W times left(c-frac{d}{mathrm{0,92}}right)}times 100$$
    (4)
    where b = ml CHCl3 added; c = ml CHCl3 transferred; d = weight of fat in evaporation dish (g); 0.92 = specific gravity for fat, g/ml; w = weight (g) of the sample11.Protein contentProtein content analysis was performed with a fully automated Kjeltec 8400 (Foss Analytics, Denmark). 0.5–1 g of nitrogen free paper of previously dried sample was allowed to be digested in a digestion unit with concentrated H2SO4 (17.5 ml) and two catalyser tablets for 2 h 20 min at 420 °C. The digested liquid was transferred to the titration unit after cooling and was titrated fully automated by the equipment.Blanking was performed only with nitrogen free paper, titration with standardized HCl solution and 1% (w/w) boric acid solution containing a pH sensitive indicator. The protein content was calculated according to the Eq. (5):$$Protein;content left(%right)=frac{mathrm{14,007}times N times f times left(a-bright)}{wtimes 1000}times 100$$
    (5)
    where 14.007 = atomic weight of Nitrogen; N = Normality of the titration solution; f = protein factor (6.25); w = weight (g) of weighed sample; a = ml of HCl consumed for sample titration; b = ml of HCl consumed for blank titration12.
    Cis-fatty acid and trans-fatty acids compositionThis method was designed to determine the fatty acid composition of marine oils and marine oil esters in relative (area-%) values, and eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in absolute (g/100 g) values using a bonded polyglycol liquid phase in a flexible fused silica capillary column. C23:0 fatty acid was used as an internal standard.For methyl esterification of oil samples for the analysis of cis-fatty acids, two drops of the oil sample were weighed and transferred to a 15 ml test tube with a screw cap. The test amount should be between 20 and 35 mg. Exactly 900 µl of the internal standard solution was added. The solvent was evaporated by nitrogen on a heating block at 80 °C. NaOH solution (1.5 ml, 0.5 N) was added. The mix was incubated in boiling water for 5 min and cooled in cold water. A 15% BF3-solution (2 ml) was added. The mix was again incubated in boiling water for 30 min and cooled to 30–40 °C. Isooctane (1 ml) was added. A cork was set, and the mixture grated with gentle movements for 30 s. Saturated NaCl (5 ml) was added immediately. A cork was set, and the mixture was again grated with gentle movements for 30 s. The isooctane phase was transferred to a test tube with a lid. The test tube was centrifuged at 3000 rpm if phase separation was difficult to achieve. Another 1 ml of isooctane was added to the test tube. A cork was set, and the mixture grated with gentle movements for 30 s. The isooctane phase was transferred to the same test tube with a lid. 5 µl of this transferred isooctane phase was diluted into a new test tube with 1 ml of isooctane.The procedure for methyl esterification of trans-fatty acids was identical to that for methyl esterification of cis-fatty acids, with one exception: incubation time after the addition of BF3-solution was 5 min.For the GC analysis an analytical capillary column (60 m × 0.25 mm × 0.25 µm-70% Cyanopropyl Polysilphenylene-siloxane) was used. (P/N: 054623, manufacturer: SGE). During the analysis the gas valves on the wall panel for synthetic air and hydrogen were left open.Two different GC programs were used for the analysis (Table 1).Table 1 GC-program for analysis of fatty acids.Full size tableThe identification of the different fatty acid methyl esters was performed by comparing the pattern and relative retention times by chromatography of different standards. Empirical response factor was used in quantifying fatty acids, based on calibration solution analysis with equal amounts of included fatty acid methyl esters (GLC-793, Nu-Chek-Prep Inc. Elysian MN, USA). It was calculated according to the Eq. (6):$${RF}_{em }=frac{{A}_{23:0}}{{A}_{FS}}$$
    (6)
    The absolute amount of each fatty acid, calculated as fatty acid methyl ester was calculated according to the Eq. (7):$${C}_{FS}(g/100)=left(frac{{A}_{FS }times {IS}_{W} times {RF}_{em} }{ {A}_{23:0} times W}right)times 100$$
    (7)
    where AFS = Area of the fatty acid A23:0 = Area of internal standard; ISW = Number of milligrams (mg) internal standard added; RFem = Empirical response factor to the fatty acid with reference to 23:0; W = Weighed sample amount in milligrams (mg); 100 = Factor for conversion to g/100 g13,14,15.Lipid classesThe dominant lipid classes were separated by HPLC equipped with a LiChroCART 125-4, diol 5 µm column and a Charged Aerosol Detector (CAD), using a tertiary gradient mobile phase composition. The fat was extracted as previously described (“Fat content”). A suitable amount of CH3Cl was added to the fat sample, the mix was pipetted into a tared test tube and evaporated on a heating block under nitrogen. The temperature of the heating block must be at 60 °C. The test tube with the evaporated sample was weighed and the weight of the fat calculated. The sample was diluted with an appropriate amount of CH3Cl. Prior to injection the CAD detector was programmed with these settings: range = 500, Filter = Med, Offset = 5, T = 30 °C. The gradient profile is shown Table 2.Table 2 Gradient profile for separation of lipid classes.Full size tableThe quantification was based on external standards with a purity ≥ 98%. Triacylglycerols (TAG) in natural marine oils have a large elution range compared to the other lipid classes, therefore a standard control oil (fish oil) for the preparation of the TAG standard curve was used. This provides a better adaptation to real samples compared to a pure TAG compound.Meat contentMeat content was measured on cooked clusters from the middle of the merus on the first walking leg as an area-percentage of meat-to-shell using an elliptic area formula; Internal height and width of shells and external height and width of muscle was measured, width (w) and height (h) were multiplied to each other and π to calculate the elliptical areas (n = 56 September, n = 45 December, n = 29 February, n = 66 April, n = 50 June). The meat content (MC) was defined as the percentage of space occupied by meat according to the Eq. (8) and the hepatopancreas index (HI) was calculated according to the Eq. (9):$$MCleft(%right)=frac{h;muscletimes w;muscletimes pi }{h;shelltimes w;shelltimes pi }times 100$$
    (8)
    $$HIleft(%right)=frac{{W}_{hept}}{{W}_{live}}times 100$$
    (9)
    where Whept is the weight of the hepatopancreas and Wlive is the live weight of the crab (n = 56 September, n = 50 December, n = 70 February, n = 70 April, n = 50 June).Graphs, ordinary one-way ANOVA, and linear regressions were made using GraphPad Prism version 7.03 (CA, USA). Meat content data failed the normality test (Shapiro–Wilk) and was analysed using Kruskal–Wallis One Way Analyses of Variance on Ranks and statistical significance was assumed when P  More