Anthropogenic nutrient loads and season variability drive high atmospheric N2O fluxes in a fragmented mangrove system
1.Kroeze, C., Dumont, E. & Seitzinger, S. P. New estimates of global emissions of N2O from rivers and estuaries. Environ. Sci. 2(2–3), 159–165. https://doi.org/10.1080/15693430500384671 (2005).Article
Google Scholar
2.Ciais, P. et al. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 465–570 (Cambridge University Press, 2014).3.Forster, P. et al. Changes in atmospheric constituents and in radiative forcing. Chapter 2. In Climate Change 2007. The Physical Science Basis (2007).4.Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R. & Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls?. Philos. Trans. R. Soc. B. https://doi.org/10.1098/rstb.2013.0122 (2013).Article
Google Scholar
5.Reis, C. R. G., Nardoto, G. B. & Oliveira, R. S. Global overview on nitrogen dynamics in mangroves and consequences of increasing nitrogen availability for these systems. Plant Soil. 410(1–2), 1–19. https://doi.org/10.1007/s11104-016-3123-7#citeas (2017).CAS
Article
Google Scholar
6.Rao, K., Priya, N. & Ramanathan, A. L. Impacts of anthropogenic perturbations on reactive nitrogen dynamics in mangrove ecosystem: Climate change perspective. J. Clim. Change 5(2), 9–21 (2019).Article
Google Scholar
7.Centre for Coastal Zone Management and Coastal Shelter Belt, Ministry of Environment, Forests and Climate change, Govt. of India http://iomenvis.nic.in/index2.aspx?slid=758&sublinkid=119&langid=1&mid=1 (2017).8.FSI. India State of Forest Report. 2019. Forest Survey of India, Ministry of Environment and Forests, Dehradun (2019).9.Borges, A. V. et al. Effects of agricultural land use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large European river, the Meuse (Belgium). Sci. Total Environ. 610, 342–355. https://doi.org/10.1016/j.scitotenv.2017.08.047 (2018).ADS
CAS
Article
PubMed
Google Scholar
10.Lin, H. et al. Spatiotemporal variability of nitrous oxide in a large eutrophic estuarine system: The Pearl River Estuary, China. Mar. Chem. 182, 14–24. https://doi.org/10.1016/j.marchem.2016.03.005 (2016).CAS
Article
Google Scholar
11.Reading, M. J. et al. Land use drives nitrous oxide dynamics in estuaries on regional and global scales. Limnol. 65(8), 1903–1920. https://doi.org/10.1002/lno.11426 (2020).CAS
Article
Google Scholar
12.Chauhan, R., Ramanathan, A. L. & Adhya, T. K. Assessment of methane and nitrous oxide flux from mangrove along Eastern coast of India. Geofluids 8, 321332. https://doi.org/10.1111/j.1468-8123.2008.00227.x (2008).CAS
Article
Google Scholar
13.Krithika, K., Purvaja, R. & Ramesh, R. Fluxes of methane and nitrous oxide from an Indian mangrove. Curr. Sci. 94, 218224, https://www.jstor.org/stable/24101861 (2008).14.Fernandes, S. O., LokaBharathi, P. A., Bonin, P. C. & Michotey, V. D. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India). J. Environ. Qual. 39, 1507–1516. https://doi.org/10.2134/jeq2009.0477 (2010).CAS
Article
PubMed
Google Scholar
15.Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys Res. 97, 7373–7382. https://doi.org/10.4319/lom.2014.12.351 (1992).ADS
Article
Google Scholar
16.Wanninkhof, R. & McGillis, W. M. A cubic relationship between gas transfer and wind speed. Geophys. Res. Lett. 26, 1889–1893. https://doi.org/10.1029/1999GL900363 (1999).ADS
CAS
Article
Google Scholar
17.Raymond, P. A. & Cole, J. J. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity. Estuaries 24, 312–317. https://doi.org/10.2307/1352954 (2001).CAS
Article
Google Scholar
18.Hershey, R. N., Nandan, S. B. & Vasu, N. K. Trophic status and nutrient regime of Cochin estuarine system, India. Indian J. Mar. Sci. 49(08), 2582–6727 http://nopr.niscair.res.in/handle/123456789/55309 (2020).19.Hershey, R. N. et al. Nitrous oxide flux from a Tropical estuarine system (Cochin estuary, India). Reg. Stud. Mar. Sci. 30, 100725. https://doi.org/10.1016/j.rsma.2019.100725 (2019).Article
Google Scholar
20.Maher, D. T., Sippo, J. Z., Tait, D. R., Holloway, C. & Santos, I. R. Pristine mangrove creek waters are a sink of nitrous oxide. Sci. Rep. 6, 25701. https://doi.org/10.1038/srep25701 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
21.Tait, D. R. et al. Greenhouse gas dynamics in a salt-wedge estuary revealed by high resolution cavity ring-down spectroscopy observations. Environ. Sci. Technol. 51(23), 13771–13778. https://doi.org/10.1021/acs.est.7b04627 (2017).ADS
CAS
Article
PubMed
Google Scholar
22.Wells, N. S. et al. Estuaries as sources and sinks of N2O across a land use gradient in subtropical Australia. Glob. Biogeochem. Cycles. 32, 877–894. https://doi.org/10.1029/2017GB005826 (2018).ADS
CAS
Article
Google Scholar
23.Upstill-Goddard, R. C. Air–sea gas exchange in the coastal zone. Estuar Coast Shelf Sci. 70, 388–404. https://doi.org/10.1016/j.ecss.2006.05.043 (2006).ADS
CAS
Article
Google Scholar
24.Zappa, C. J., Raymond, P. A., Terray, E. A. & Mcgillis, W. R. Variation in surface turbulence and gas transfer velocity over a tidal cycle in a macro-tidal estuary. Estuaries 26, 1401–1415. https://doi.org/10.1007/BF02803649/citeas (2003).CAS
Article
Google Scholar
25.Borges, A. V. et al. Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49, 1630–1641. https://doi.org/10.4319/lo.2004.49.5.1630 (2004).ADS
CAS
Article
Google Scholar
26.Munoz-Hincapie, M., Morell, J. M. & Corredor, J. E. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Mar. Pollut. Bull. 44, 992–996. https://doi.org/10.1016/S0025-326X(02)00132-7 (2002).CAS
Article
PubMed
Google Scholar
27.Srinivas, K., Revichandran, P., Maheswaran, P. A., Mohammed Ashraf, T. T. & Nuncio, M. Propagation of tides in the Cochin estuarine system, southwest coast of India. Indian J. Geomar. Sci. 32(1), 14–24 (2003).
Google Scholar
28.Srinivas, K., Revichandran, C. & Dinesh Kumar, P. K. Statistical forecasting of met-ocean parameters in the Cochin estuarine system, southwest coast of India. Indian J. Geomar. Sci. 32(4), 285–293 (2003).
Google Scholar
29.Balachandran, K. K., Joseph, T., Nair, K. K. C., Nair, M. & Joseph, P. S. The complex estuarine formation of six rivers (Cochin backwaters system on westcoast of India)—Sources and distribution of trace metals and nutrients. In:APN/SASCOM/LOICZ Regional Workshop on Assessment of Material Fluxes To the Coastal Zone in South Asia and their Impacts. Sri Lanka National Committee of IGBP, Colombo, Sri Lanka, 359, http://drs.nio.org/drs/handle/2264/1340 (2002).30.Martin, G. D. et al. Freshwater influence on nutrient stoichiometry in a tropical estuary, southwest coast of India. Appl. Ecol. Environ. Res. 6, 57–64 (2008).Article
Google Scholar
31.Liu, D. et al. N2O fluxes and rates of nitrification and denitrification at the sediment-water interface in Taihu Lake, China. Water 10, 911. https://doi.org/10.3390/w10070911 (2018).CAS
Article
Google Scholar
32.Luijn, F. V., Boers, P. C. M. & Lijklema, L. Comparison of denitrification rates in lake sediments obtained by the N2 flux method, the 15N isotope pairing technique and the mass balance approach. Water Res. 30, 893–900. https://doi.org/10.1016/0043-1354(95)00250-2 (1996).Article
Google Scholar
33.Pfenning, K. S. & McMahon, P. B. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J. Hydrol. 187, 283–295. https://doi.org/10.1016/S0022-1694(96)03052-1 (1997).ADS
CAS
Article
Google Scholar
34.Borges, A. V. et al. Globally significant greenhouse-gas emissions from African inland waters. Nat. Geosci. 8(8), 637–642. https://doi.org/10.1038/ngeo2486 (2015).ADS
CAS
Article
Google Scholar
35.Marzadri, A., Dee, M. M., Tonina, D., Bellin, A. & Tank, J. L. Role of surface and subsurface processes in scaling N2O emissions along riverine networks. Proc. Natl. Acad. Sci. U. S. A. 114(17), 4330–4335. https://doi.org/10.1073/pnas.1617454114 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
36.Soued, C., del Giorgio, P. A. & Maranger, R. Nitrous oxide sinks and emissions in boreal aquatic networks in Quebec. Nat. Geosci. 9(2), 116–120, https://www.x-mol.com/paperRedirect/68353 (2016).37.Hu, M. P., Chen, D. J. & Dahlgren, R. A. Modeling nitrous oxide emission from rivers: A global assessment. Glob. Change Biol. 22(11), 3566–3582. https://doi.org/10.1111/gcb.13351 (2016).ADS
Article
Google Scholar
38.Murray, R., Erler, D. V., Rosentreter, J., Wells, N. S. & Eyre, B. D. Seasonal and spatial controls on N2O concentrations and emissions in low-nitrogen estuaries: Evidence from three tropical systems. Mar. Chem. https://doi.org/10.1016/j.marchem.2020.103779 (2020).Article
Google Scholar
39.Ji, Q. X., Babbin, A. R., Peng, X. F., Bowen, J. L. & Ward, B. B. Nitrogen substrate dependent nitrous oxide cycling in salt marsh sediments. J. Mar. Res. 73(3–4), 71–92. https://doi.org/10.1016/j.marchem.2020.103779 (2015).CAS
Article
Google Scholar
40.Punshon, S. & Moore, R. M. Nitrous oxide production and consumption in a eutrophic coastal embayment. Mar. Chem. 91(1–4), 37–51. https://doi.org/10.1016/j.marchem.2004.04.003 (2004).CAS
Article
Google Scholar
41.Corredor, J. E., Morell, J. M. & Bauza, J. Atmospheric nitrous oxide fluxes from mangrove sediments. Mar. Pollut. Bull. 38, 473–478. https://doi.org/10.1016/S0025-326X(98)00172-6 (1999).CAS
Article
Google Scholar
42.Raymond, P. A. et al. Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol. Oceanogr. Fluids Environ. 2, 41–53. https://doi.org/10.1215/21573689-1597669 (2012).Article
Google Scholar
43.Alongi, D. M. Impact of global change on nutrient dynamics in mangrove forests. Forests. 9(10), 596. https://doi.org/10.3390/f9100596 (2018).Article
Google Scholar
44.Reef, R., Feller, I. C. & Lovelock, C. E. Nutrition of mangroves. Tree Physiol. 30, 1148–1160. https://doi.org/10.1093/treephys/tpq048 (2010).CAS
Article
PubMed
Google Scholar
45.Muller, D. et al. Nitrous oxide and methane in two tropical estuaries in a peat-dominated region of northwestern Borneo. Biogeosciences 13(8), 2415–2428. https://doi.org/10.5194/bg-13-2415-2016 (2016).ADS
CAS
Article
Google Scholar
46.Hasegawa, T. & Okino, T. Seasonal variation of denitrification rate in Lake Suwa sediment. Limnology 5(1), 33–39. https://doi.org/10.1007/PL00021725/citeas (2004).CAS
Article
Google Scholar
47.Myrstener, M., Jonsson, A. & Bergström, A. K. The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments. J. Environ. Sci. (China).48.Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Analysis. 2nd edn. 310 (Fisheries Research Board of Canada, 1972).49.Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of seawater analysis. 2nd edn. 419 (Verlag Chemie, 1983).50.Garcia, H. & Gordon, L. Oxygen solubility in seawater: Better fitting equations. Limnol. Oceanogr. 37, 1307–1312. https://doi.org/10.4319/lo.1992.37.6.1307 (1992).ADS
CAS
Article
Google Scholar
51.Grasshoff, K., Ehrhardt, M. & Kremling, K. Methods of Seawater Analysis 3rd edn. (VCH, 1999).
Google Scholar
52.David, A. R. Analysis of Total organic carbon. UMass Environmental Engineering Program (2012).53.Polunin, N. V. et al. Feeding relationships in Mediterranean bathyal assemblages elucidated by stable nitrogen and carbon isotope data. Mar. Ecol. Prog. Ser. 220, 13–23. https://doi.org/10.3354/meps220013 (2001).ADS
CAS
Article
Google Scholar
54.McAuliffe, C. GC determination of solutes by multiple phase equilibrations. Chem. Tech. 1, 46–50 (1971).
Google Scholar
55.Liss, P. S. & Merlivat, L. Air-sea exchange rates: Introduction and synthesis, in the role of air-sea exchange in geochemical cycling. In (ed. Buat-Menard, P.) 113–127 (D Reidel, 1986) https://doi.org/10.1007/978-94-009-4738-2_5.56.Weiss, R. F. & Price, B. A. Nitrous oxide solubility in water and seawater. Mar. Chem. 8, 347–359. https://doi.org/10.1016/0304-4203(80)90024-9 (1980).CAS
Article
Google Scholar
57.Rao, G. D., Rao, V. D. & Sarma, V. V. S. S. Distribution and air–sea exchange of Nitrous oxide in the Coastal Bay of Bengal during peak discharge period(southwest monsoon). Mar. Chem. 155, 1–9. https://doi.org/10.1016/j.marchem.2013.04.014 (2013).CAS
Article
Google Scholar More