More stories

  • in

    A new fossil piddock (Bivalvia: Pholadidae) may indicate estuarine to freshwater environments near Cretaceous amber-producing forests in Myanmar

    Altogether nine polished pieces of the lower Cenomanian Kachin amber from northern Myanmar (Figs. 1A–D, 2A–E) were examined in this study (depository: Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia). A brief description of each amber piece is given below.Figure 1Lower Cenomanian Kachin amber samples with specimens and borings of †Palaeolignopholas kachinensis gen. & sp. nov. from northern Myanmar used in this study. (A) RMBH biv1115 (frontal view with the holotype). (B) RMBH biv1101 (lateral view with two paratypes and a shell fragment). (C) RMBH biv1116 (frontal view with the fossilized paratype). (D) RMBH biv1100 (frontal view with borings). The red frames indicate position of the type specimens (holotype and some paratypes). The red arrows indicate bivalve borings. Scale bars = 5 mm. (Photos: Ilya V. Vikhrev).Full size imageFigure 2Lower Cenomanian Kachin amber samples with borings of †Palaeolignopholas kachinensis gen. & sp. nov. from northern Myanmar used in this study. (A) RMBH biv1102 (frontal view). (B) RMBH biv1103 (frontal view). (C) RMBH biv1114 (frontal view). (D) RMBH biv1118 (frontal view). (E) RMBH biv1117 (frontal view). The red arrows indicate bivalve borings. Scale bars = 5 mm. (Photos: Ilya V. Vikhrev).Full size imageRMBH biv1115: Size 8.5 × 5.8 × 8.1 mm (Fig. 1A). Inclusions: articulated shell of †Palaeolignopholas kachinensis gen. & sp. nov., “floating” in the resin (the holotype).RMBH biv1101: Size 15.6 × 6.4 × 11.5 mm (Fig. 1B). Inclusions: two complete articulated shells (paratypes) and a shell fragment of †Palaeolignopholas kachinensis gen. & sp. nov., “floating” in the resin.RMBH biv1116: Size 22.5 × 8.3 × 16.5 mm (Fig. 1C). Inclusions: fossilized shell of †Palaeolignopholas kachinensis gen. & sp. nov. (paratype), borings of this species (filled with fine gray sand), unidentified fly specimens (Insecta: Diptera), and unidentified organic fragments (probably, plant debris).RMBH biv1100: Size 17.5 × 4.9 × 12.0 mm (Fig. 1D). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and an unidentified caddisfly specimen (Insecta: Trichoptera).RMBH biv1102: Size 15.6 × 5.1 × 12.7 mm (Fig. 2A). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and unidentified organic fragments (probably, plant debris).RMBH biv1103: Size 19.6 × 4.7 × 14.3 mm (Fig. 2B). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), an unidentified beetle specimen (Insecta: Coleoptera), and unidentified organic fragments (probably, plant debris).RMBH biv1114: Size 33.1 × 7.8 × 21.7 mm (Fig. 2C). Inclusions: multiple borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and unidentified plant remains.RMBH biv1118: Size 25.1 × 8.4 × 14.3 mm (Fig. 2D). Inclusions: separate borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), a plant fragment with a cluster of borings around, and an unidentified insect specimen.RMBH biv1117: Size 15.5 × 3.9 × 10.7 mm (Fig. 2E). Inclusions: borings of †Palaeolignopholas kachinensis gen. & sp. nov. (filled with fine gray sand), and an unidentified insect specimen.Additionally, six amber samples containing adult and sub-adult specimens of †Palaeolignopholas kachinensis gen. & sp. nov. were examined using photographs in published works as follows: BMNH 20205 (Department of Palaeontology, Natural History Museum, London, UK)15, NIGP 169623 and NIGP 169624 (Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China)20, RS.P1450 (Ru D. A. Smith collection, Kuala Lumpur, Malaysia)19, and AMNH (Division of Invertebrates, American Museum of Natural History, New York, NY, United States of America)16.Based on morphological analyses of the fossil piddock shells, it was found to be a genus and species new to science, which is described here.Systematic paleontologyPhylum Mollusca Linnaeus, 1758Class Bivalvia Linnaeus, 1758Family Pholadidae Lamarck, 1809Subfamily Martesiinae Grant & Gale, 1931†Palaeolignopholas gen. novLSID: http://zoobank.org/urn:lsid:zoobank.org:act:1D686DCE-A5E9-41DA-9504-2EC58C93D988Type species: †Palaeolignopholas kachinensis gen. & sp. nov.Etymology. This name is derived from the prefix ‘Palaeo-’ (ancient), and ‘-lignopholas’, the name of a recent genus of estuarine and freshwater piddocks boring into wood, mudstone rocks, brickwork, laterites, etc.11,13. Masculine in gender.Diagnosis. The new monotypic genus is conchologically similar to several other piddock genera such as Lignopholas, Martesia, and Diplothyra Tryon 1862 but can be distinguished from these taxa by the following combination of characters: mesoplax relatively small, triangular, divided longitudinally, posterior slope without concentric sculpture, sculptured valve with concave parallel ridges (Martesia-like “rasping teeth”) curved anteriorly, periostracal lamellae dense, fine, hair-like. The fossil genus †Opertochasma Stephenson, 1952 shares a divided mesoplax but it clearly differs from both †Palaeolignopholas gen. nov. and Lignopholas by having two radial grooves on the shell surface21.Distribution. Kachin State, northern Myanmar; Upper Cretaceous (lower Cenomanian)15,19,22.Comments. Both †Palaeolignopholas gen. nov. and Lignopholas appear to be closely related to each other because they share a longitudinally divided mesoplax and periostracal lamellae, which are considered diagnostic features distinguishing this clade from Martesia + Diplothyra. Based on available conchological characters, we assume that †Palaeolignopholas gen. nov. might be placed on the ancestral stem lineage of the Lignopholas clade, although a possibility of homeomorphy could not entirely be excluded.†Palaeolignopholas kachinensis gen. & sp. nov = Plant Antheridia or Fungal Sporangia indet. sensu Grimaldi et al. (2002): 9, fig. 2a,b (bivalve specimens), fig. 3 (borings), fig. 5 (shell reconstruction of an immature specimen), figs. 6 and 7 (SEMs of borings surface showing rasped ornament at different magnifications)16. = Palaeoclavaria burmitis Poinar & Brown (2003): 765, figs. 1–4 (borings) [this fungal taxon was introduced using a trace fossil (boring) as the holotype]17; Poinar (2016): 2, figs. 10, 15, 16 (borings)18. = Martesiinae indet. sensu Smith & Ross (2018): 4, figs. 1a–c, 2a,b, 3a–d (borings), 4a,b, 5a–e (bivalve specimens)19. = Pholadidae indet. sensu Mao et al. (2018): 99, figs. 8a–f (borings), 8g,h (bivalve specimens)20. = Martesia sp. 2 sensu Mayoral et al. (2020): 10, figs. 4a (borings), 7b, 8a–l (bivalve specimens)15. = Pholadidae indet. sensu Balashov (2020): 623.Figures 1, 2, 3, 4, 5, 6 and 7.Figure 3Holotype and a paratype of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Holotype: ventro-lateral view of articulated shell. (B) Paratype: anterio-lateral view of fossilized shell. VN ventral margin; DR dorsal margin; AN anterior margin; PS posterior margin; d disc; rs rasping surface of the valve; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bars = 500 µm. (Photos: Ilya V. Vikhrev).Full size imageFigure 4Paratypes of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Paratype: dorsal view of articulated shell. Scale bar = 500 µm. (B) Paratype: dorsal view of articulated shell. The detached and deflected umbonal paired fragment of the valves is framed by red square. The blue contour indicates the lifetime position of this fragment. The blue arrows show the shell breakages. Scale bar = 200 µm. (C) Umbonal paired fragment of the holotype valves (inner view). The blue arrows show the shell breakage. Scale bar = 200 µm.  VN ventral margin; DR dorsal margin; AN anterior margin; PS posterior margin; ms longitudinally divided mesoplax (inner view); pr prora; d disc; rs rasping surface of the valve; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae; sb shell breakage. (Photos: Ilya V. Vikhrev).Full size imageFigure 5Rasping surface of †Palaeolignopholas kachinensis gen. & sp. nov. shell. (A) Holotype shell. The red frame marks position of the enlarged area. (B) Undulated micro-sculpture of the rasping surface. Scale bar = 100 µm. (Photos: Ilya V. Vikhrev).Full size imageFigure 6Schematic reconstruction of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar based on the type series and other fossil material15,16,19,20. (A) Lateral view of adult specimen. (B) Dorsal view of adult specimen. (C) Ventral view of adult specimen (based on a paratype BMNH 2020515). (D) Anterio-ventral view of immature specimen. (E) Dorsal view of immature specimen. (F) Mesoplax of adult specimen. (G) Mesoplax of immature specimen. d disc; mt metaplax; ms mesoplax; hp hypoplax; ca callum; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bars = 1 mm (A–C). (Line graphics: Yulia E. Chapurina).Full size imageFigure 7Clavate borings of †Palaeolignopholas kachinensis gen. & sp. nov. from lower Cenomanian Kachin amber, northern Myanmar. (A) Cluster of borings. It marks drilling of immature piddocks into soft resin from the unidentified plant (wood?) fragment. (B–D) Clavate borings of adult piddocks. Scale bars = 1 mm. Abbreviation: bg a characteristic bioglyph indicating the shell rotation inside hardening resin. (Photos: Ilya V. Vikhrev).Full size imageLSID: http://zoobank.org/urn:lsid:zoobank.org:act:F6659EBF-B0A4-4B21-A99B-2C56BDB7EC9B.Common name. Kachin Amber Piddock.Holotype. RMBH biv1115, the adult shell with length 3.07 mm and width 1.13 mm “floating” in the resin (Figs. 1A, 3A, 5A,B), local collector leg., Russian Museum of Biodiversity Hotspots, N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences, Arkhangelsk, Russia.Paratypes. RMBH biv1116, the fossilized adult shell with length 4.05 mm and width 1.83 mm (Figs. 1C, 3B); RMBH biv1101, the immature specimen with articulated shell (width 1.86 mm) sharing a detached and deflected umbonal paired fragment of the valves due to the shell breakage (Figs. 1B, 4B,C); RMBH biv1101, the other immature specimen with shell length 2.68 mm and shell width 2.52 mm in this amber piece (Figs. 1B, 4A); BMNH 20205, adult specimen [illustrated in Mayoral et al. (2020): fig. 7B15], Department of Palaeontology, Natural History Museum, London, UK; NIGP 169623, adult specimen [illustrated in Mao et al. (2018): 100, fig. 8G20], and NIGP 169624, two adult specimens [illustrated in Mao et al. (2018): 100, fig. 8H20], Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China; RS.P1450, two sub-adult specimens [illustrated in Smith & Ross (2018): 5, fig. 4A,B19], Ru D. A. Smith collection, Kuala Lumpur, Malaysia.Type locality and strata. The Noije Bum Hill mines, Hukawng Valley, near Tanai (26.3593°N, 96.7200°E), Kachin State, northern Myanmar; Upper Cretaceous (lower Cenomanian; absolute age of youngest zircons in enclosing marine sediment: 98.79 ± 0.62 Ma)19,22.Etymology. The name of this species reflects its type locality, which is situated in the Kachin State of Myanmar.Diagnosis. As for the genus.Description. Shell small (up to 9.3 mm in length15,19,20), conical, with a rounded anterior margin, tapering posteriorly (Figs. 3A,B, 4A–C, 6A–E); its shape is similar to those in the recent Lignopholas, Martesia, and Diplothyra. Valve sculptured, with concave parallel ridges (Martesia-like “rasping teeth”) curved anteriorly (Fig. 5A,B). The ridges share a characteristic wave-like micro-sculpture (Fig. 5B). Sulcus deep (Figs. 3A, 4C, 6A–C). Mesoplax longitudinally divided, relatively small, triangular, tapering or lobed anteriorly (Fig. 3A, 6B,F), in immature specimens sometimes with lateral lobes (Figs. 4C, 6E,G). Metaplax and hypoplax long, narrow, not longitudinally divided but sometimes slightly bifurcated posteriorly (Fig. 6A–C). Periostracum densely covered by fine, hair-like lamellae (Figs. 4B,C and 6D). Umbonal reflection with large flattened ridge. Pedal gape presents in immature (Figs. 4A,B, 6D) and some adult specimens (Fig. 3A) but it is covered by callum in older specimens (Figs. 3B, 6C). Morphological details of the new species were also presented in a series of micro-CT images published Mayoral et al. (see Fig. 8 in that paper15) and in the reconstruction of Grimaldy et al. (see Fig. 5 in that work16).Figure 8Recent freshwater piddock Lignopholas fluminalis (Blanford, 1867) in the middle reaches of the Kaladan River, Rakhine State, Myanmar13. (A) Habitat of the freshwater piddock: river pool with siltstone rocks at the bottom, a possible modern analogue of the Mesozoic riverine ecosystem with †Palaeolignopholas. (B) Siltstone rock fragment with living freshwater piddocks inside their clavate borings. (C) Ethanol-preserved piddock (dorsal view). (D) Living piddock with fully developed callum (ventral view). (E) Living piddock with pedal gape (ventral view). Abbreviations: d disc; mt metaplax; ms mesoplax; ca callum; uvs umbonal ventral sulcus; pg pedal gape; pl periostracal lamellae. Scale bar = 2 mm. (Photos: Olga V. Aksenova).Full size imageBorings and corresponding ichnotaxon. The borings produced by †Palaeolignopholas kachinensis gen. & sp. nov. represent club-shaped (clavate) structures (Figs. 1C,D, 2A–E, 7A–D), sometimes with a characteristic bioglyph revealing the shell rotation in hardening resin (Fig. 7C). These borings were illustrated in detail15,16,17,19,20, and were considered belonging to Teredolites clavatus Leymerie, 184215. Initially, the trace fossils produced by the Kachin amber piddock were described as sporocarps of Palaeoclavaria burmitis Poinar & Brown, 2003, a non-gilled hymenomycete taxon17. The holotype of this taxon represents a club-shaped piddock crypt labelled as follows: “Amber from the Hukawng Valley in Burma; specimen (in piece B with accession number B-P-1) deposited in the Poinar amber collection maintained at Oregon State University (holotype)17”. Hence, Palaeoclavaria Poinar & Brown, 2003 and P. burmitis Poinar & Brown, 2003 must be considered ichnogenus and ichnospecies, respectively. New ichnotaxonomic synonymies are formally proposed here as follows: Teredolites Leymerie, 1842 (= Palaeoclavaria Poinar & Brown, 2003 syn. nov.), and Teredolites clavatus Leymerie, 1842 (= Palaeoclavaria burmitis Poinar & Brown, 2003 syn. nov.). More

  • in

    The phylogeographic history of Krascheninnikovia reflects the development of dry steppes and semi-deserts in Eurasia

    1.Hurka, H. et al. The Eurasian steppe belt: Status quo, origin and evolutionary history. Turczaninowia 22, 5–71 (2019).
    Google Scholar 
    2.Walter, H. Die Vegetation Osteuropas (Gustav Fischer Verlag, 1974).
    Google Scholar 
    3.Walter, H. Die Vegetation der Erde in öko-physiologischer Betrachtung , Band II : Die gemäßigten und arktischen Zonen, in ökologischer Betrachtung (Gustav Fischer Verlag, 1968).
    Google Scholar 
    4.Cohen, K. M. & Gibbard, P. L. Global chronostratigraphical correlation table for the last 2.7 million years, version 2019 QI-500. Quat. Int. 500, 20–31 (2019).Article 

    Google Scholar 
    5.Frenzel, B. Grundzüge der Pleistozänen Vegetationsgeschichte Nord-Euroasiens. Geogr. J. 136, 291 (1968).
    Google Scholar 
    6.Tarasov, P. E. et al. Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J. Biogeogr. 27, 609–620 (2000).Article 

    Google Scholar 
    7.Caves Rugenstein, J., Sjostrom, D., Mix, H., Winnick, M. & Chamberlain, C. Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: Stable isotope evidence. Am. J. Sci. 314, 1171–1201 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    8.Yanina, T., Sorokin, V., Bezrodnykh, Y. & Romanyuk, B. Late Pleistocene climatic events reflected in the Caspian Sea geological history (based on drilling data). Quat. Int. 465, 130–141 (2018).Article 

    Google Scholar 
    9.Dolukhanov, P. M., Chepalyga, A. L., Shkatova, V. K. & Lavrentiev, N. V. Late Quaternary Caspian: Sea-levels, environments and human settlement. Open Geogr. J. 2, 1–15 (2009).Article 

    Google Scholar 
    10.Tudryn, A. et al. Late Quaternary Caspian Sea environment: Late Khazarian and Early Khvalynian transgressions from the lower reaches of the Volga River. Quat. Int. 292, 193–204 (2013).Article 

    Google Scholar 
    11.Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: A synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).Article 

    Google Scholar 
    12.Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in Central Europe—a review. Grass Forage Sci. 68, 345–363 (2013).Article 

    Google Scholar 
    13.Franzke, A. et al. Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol. Ecol. 13, 2789–2795 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Hurka, H., Friesen, N., German, D. A., Franzke, A. & Neuffer, B. ‘Missing link’ species Capsella orientalis and Capsella thracicaelucidate evolution of model plant genus Capsella (Brassicaceae). Mol. Ecol. 21, 1223–1238 (2012).PubMed 
    Article 

    Google Scholar 
    15.Seregin, A. P., Anačkov, G. & Friesen, N. Molecular and morphological revision of the Allium saxatile group (Amaryllidaceae): Geographical isolation as the driving force of underestimated speciation. Bot. J. Linn. Soc. 178, 67–101 (2015).Article 

    Google Scholar 
    16.Friesen, N. et al. Dated phylogenies and historical biogeography of Dontostemon and Clausia (Brassicaceae) mirror the palaeogeographical history of the Eurasian steppe. J. Biogeogr. 43, 738–749 (2015).Article 

    Google Scholar 
    17.Friesen, N. et al. Allium species of section Rhizomatosa, early members of the Central Asian steppe vegetation. Flora 263, 151536 (2020).Article 

    Google Scholar 
    18.Friesen, N. et al. Evolutionary history of the Eurasian steppe plant Schivereckia podolica (Brassicaceae) and its close relatives. Flora 268, 151602 (2020).Article 

    Google Scholar 
    19.Volkova, P. A., Herden, T. & Friesen, N. Genetic variation in Goniolimon speciosum (Plumbaginaceae) reveals a complex history of steppe vegetation. Bot. J. Linn. Soc. 184, 113–121 (2017).
    Google Scholar 
    20.Žerdoner Čalasan, A., Seregin, A. P., Hurka, H., Hofford, N. P. & Neuffer, B. The Eurasian steppe belt in time and space: Phylogeny and historical biogeography of the false flax (Camelina Crantz, Camelineae, Brassicaceae). Flora 260, 151477 (2019).Article 

    Google Scholar 
    21.Kirschner, P. et al. Long-term isolation of European steppe outposts boosts the biome’s conservation value. Nat. Commun. 11, 1968 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Heklau, H. & von Wehrden, H. Wood anatomy reflects the distribution of Krascheninnikovia ceratoides (Chenopodiaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 206, 300–309 (2011).Article 

    Google Scholar 
    23.Heklau, H. & Röser, M. Delineation, taxonomy and phylogenetic relationships of the genus Krascheninnikovia (Amaranthaceae subtribe Axyridinae). Taxon 57, 563–576 (2008).
    Google Scholar 
    24.Takhtajan, A. Floristic Regions of the World (University of California Press, 1986).
    Google Scholar 
    25.Manafzadeh, S., Staedler, Y. M. & Conti, E. Visions of the past and dreams of the future in the Orient: The Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. Camb. Philos. Soc. 92, 1365–1388 (2017).PubMed 
    Article 

    Google Scholar 
    26.Walter, H. & Breckle, S.-W. Ecological systems of the geobiosphere. 2 Tropical and subtropical zonobiomes (Springer, 1986). https://doi.org/10.1007/978-3-662-06812-0.
    Google Scholar 
    27.Hartmann, H. Zur Flora und Vegetation der Halbwüsten, Steppen und Rasengesellschaften im südöstlichen Ladakh (Indien). in Jahrbuch des Vereins zum Schutz der Bergwelt 129–188 (1997).28.Kraudzun, T., Vanselow, K. A. & Samimi, C. Realities and myths of the Teresken syndrome—An evaluation of the exploitation of dwarf shrub resources in the Eastern Pamirs of Tajikistan. J. Environ. Manag. 132, 49–59 (2014).Article 

    Google Scholar 
    29.Vanselow, K. & Samimi, C. Predictive mapping of dwarf shrub vegetation in an arid high mountain ecosystem using remote sensing and random forests. Remote Sens. 6, 6709–6726 (2014).ADS 
    Article 

    Google Scholar 
    30.Smoliak, S. & Bezeau, L. M. Chemical composition and in vitro digestibility of range forage plants of the Stipa-Bouteloua prairie. Can. J. Plant Sci. 47, 161–167 (1967).CAS 
    Article 

    Google Scholar 
    31.Waldron, B. L., Eun, J.-S., ZoBell, D. R. & Olson, K. C. Forage kochia (Kochia prostrata) for fall and winter grazing. Small Rumin. Res. 91, 47–55 (2010).Article 

    Google Scholar 
    32.Steshenko, A. P. Formation of the semi-shrub structure in the high mountains of Pamir. Trans Akad Nauk Tadzhik SSR 50, 2 (1956).
    Google Scholar 
    33.Zalenski, O. V. & Steshenko, A. P. On the special features of the main species of the vegetation of the Pamir mountains. Proc. Bot. Soc. 7, 9–12 (1957).
    Google Scholar 
    34.Barnes, M. The Effect of Plant Source Location on Restoration Success: A Reciprocal Transplant Experiment with Winterfat (Krascheninnikovia lanata) (University of New Mexico, 2009).
    Google Scholar 
    35.Seidl, A. et al. Phylogeny and biogeography of the Pleistocene Holarctic steppe and semi-desert goosefoot plant Krascheninnikovia ceratoides. Flora 262, 151504 (2020).Article 

    Google Scholar 
    36.Yang, J. Y., Fu, X. Q., Yan, G. X. & Zhang, S. Z. Analysis of three species of the genus Ceratoides. Grassl. China 1, 67–71 (1996).
    Google Scholar 
    37.Rubtsov, M., Sagimbaev, R., Shakhanov, E., Tiran, T. & Balyan, G. Natural polyploids of prostrate summer cypress and winterfat as initial material for breeding. Sov. Agric. Sci. 4, 20–24 (1989).
    Google Scholar 
    38.Yan, G., Zhang, S., Yan, J., Fu, X. & Wang, L. Chromosome numbers and geographical distribution of 68 species of forage plants. Grassl. China 4, 53–60 (1989).
    Google Scholar 
    39.Kurban, N. Karyotype analysis of three species of Ceratoides (Chenopodiaceae). J. Syst. Evol. 22, 466–468 (1984).
    Google Scholar 
    40.Zakharjeva, O. I. & Soskov, Y. D. Chromosome numbers in desert herbage plants. Bulleten VNII Rastenievod. Im. N.I. Vavilova 108, 57–60 (1981).
    Google Scholar 
    41.Domínguez, F. et al. Krascheninnikovia ceratoides (L.) Gueldenst (Chenopodiaceae) en Aragón (España): Algunos resultados para su conservación. Bol. R. Soc. Esp. Hist. Nat. (Sec. Biol.) 96, 15–26 (2001).
    Google Scholar 
    42.Zakirova, R. Chromosome numbers of some Alliaceae, Salicaceae, Polygonaceae, and Chenopodiaceae of the South Balkhash territory. Citologija 41, 1064 (1999).
    Google Scholar 
    43.Dobes, C. H., Hahn, B. & Morawetz, W. Chromosomenzahlen zur Gefässpflanzenflora Österreichs. Linzer Biol. Beitr 29, 5–43 (1997).
    Google Scholar 
    44.Sainz Ollero, H., Múgica, F. & Arias Torcal, J. Estrategias para la conservación de la flora amenazada de Aragón (Consejo de Protección de la Naturaleza de Aragón, 1996).
    Google Scholar 
    45.Lomonosova, M. N. & Krasnikov, A. A. Chromosome numbers in some members of the Chenopodiaceae. Bot. Zurn. (Moscow Leningrad) 78, 158–159 (1993).
    Google Scholar 
    46.Castroviejo, S. & Soriano, C. Krascheninnikovia ceratoides Gueldenst (Publicaciones del CSIC, 1990).
    Google Scholar 
    47.Takhtajan, A. Numeri chromosomatum magnoliophytorum florae URSS. Aceraceae–Menyanthaceae. (Academis Scientiarum Rossica, Institutum Botanicum nomine VL Komarovii;” Nauka”, 1990).48.Ghaffari, S. M., Balaei, Z., Chatrenoor, T. & Akhani, H. Cytology of SW Asian Chenopodiaceae: New data from Iran and a review of previous records and correlations with life forms and C4 photosynthesis. Plant Syst. Evol. 301, 501–521 (2014).Article 

    Google Scholar 
    49.eFloras. Published on the Internet http://www.efloras.org. (2008).50.Kadereit, G., Mavrodiev, E. V., Zacharias, E. H. & Sukhorukov, A. P. Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): Implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. Am. J. Bot. 97, 1664–1687 (2010).PubMed 
    Article 

    Google Scholar 
    51.Di Vincenzo, V. et al. Evolutionary diversification of the African achyranthoid clade (Amaranthaceae) in the context of sterile flower evolution and epizoochory. Ann. Bot. 122, 69–85 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).Article 

    Google Scholar 
    53.Doležel, J. & Greilhuber, J. Nuclear genome size: Are we getting closer?. Cytom. Part A 77, 635–642 (2010).Article 
    CAS 

    Google Scholar 
    54.Yokoya, K., Roberts, A. V., Mottley, J., Lewis, R. & Brandham, P. E. Nuclear DNA amounts in roses. Ann. Bot. 85, 557–561 (2000).CAS 
    Article 

    Google Scholar 
    55.Poland, J. A., Brown, P. J., Sorrells, M. E. & Jannink, J.-L. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7, e32253 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Weiß, C. L., Pais, M., Cano, L. M., Kamoun, S. & Burbano, H. A. nQuire: A statistical framework for ploidy estimation using next generation sequencing. BMC Bioinform. 19, 122 (2018).Article 
    CAS 

    Google Scholar 
    58.Corrêa, A., dos Santos, R., Goldman, G. H. & Riaño-Pachón, D. M. ploidyNGS: Visually exploring ploidy with next generation sequencing data. Bioinformatics 33, 2575–2576 (2017).Article 
    CAS 

    Google Scholar 
    59.Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2013).62.Frichot, E. & François, O. LEA: An R package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).Article 

    Google Scholar 
    63.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Gruber, B., Unmack, P. J., Berry, O. F. & Georges, A. dartr: An R package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 18, 691–699 (2018).PubMed 
    Article 

    Google Scholar 
    65.Bradley, M. raxml_ascbias. GitHub https://github.com/btmartin721/raxml_ascbias (2018).66.Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Rambaut, A. FigTree v1.3.1. (2010).73.Kalinowski, S. T. hp-rare 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 
    Article 

    Google Scholar 
    74.Brummitt, R. World geographical scheme for recording plant distributions. (2001).75.Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).PubMed 
    Article 

    Google Scholar 
    76.Matzke, N. J. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis with R scripts. Version 1.1. 1, published on GitHub on 6 November 2018. (2018).77.Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63, 951–970 (2014).PubMed 
    Article 

    Google Scholar 
    78.Matzke, N. J. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 2 (2013).Article 

    Google Scholar 
    79.Ronquist, F. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203 (1997).Article 

    Google Scholar 
    80.Strömberg, C. A. E. Evolution of grasses and grassland ecosystems. Annu. Rev. Earth Planet. Sci. 39, 517–544 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    81.Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P. & Richardson, D. M. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol. Rev. 93, 1125–1144 (2017).PubMed 
    Article 

    Google Scholar 
    82.Devyatkin, E. V. Meridional distribution of Pleistocene ecosystems in Asia: Basic problems. Stratigr. Geol. Correl. 1, 77–83 (1993).
    Google Scholar 
    83.Arkhipov, S. A. & Volkova, V. S. Geological history of Pleistocene landscapes and climate in West Siberia. (1994).84.Akhmetyev, M. A. et al. Chapter 8: Kazakhstan and Central Asia (plains and foothills). In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.139.
    Google Scholar 
    85.Arkhipov, S. A. et al. Chapter 4: West Siberia. In Cenozoic Climatic and Environmental Changes in Russia (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2382-5.67.
    Google Scholar 
    86.Li, Q. Q. et al. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 106, 709–733 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Hais, M., Komprdová, K., Ermakov, N. & Chytrý, M. Modelling the last glacial maximum environments for a refugium of Pleistocene biota in the Russian Altai mountains Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 438, 135–145 (2015).Article 

    Google Scholar 
    88.Fedeneva, I. N. & Dergacheva, M. I. Paleosols as the basis of environmental reconstruction in Altai mountainous areas. Quat. Int. 106–107, 89–101 (2003).Article 

    Google Scholar 
    89.Braun-Blanquet, J. & Bolòs i Capdevila, O. de. Les groupements végétaux du bassin moyen de l’Ebre et leur dynamisme. An. la Estac. Exp. Aula Dei 5, 1–266 (1957).
    Google Scholar 
    90.Tutin, T., Webb, D., Heywood, V., Walters, S. & Moore, D. Flora Europaea (Cambridge University Press, 1993).
    Google Scholar 
    91.Heklau, H. Proposal to conserve the name Krascheninnikovia against Ceratoides (Chenopodiaceae. Taxon 55, 1044–1045 (2006).Article 

    Google Scholar 
    92.Davis, P. H. Flora of Turkey and the east Aegean islands (Edinburgh University Press, 1988).
    Google Scholar 
    93.Welsh, S., Atwood, N., Higgins, L. & Goodrich, S. A Utah Flora. Gt. Basin Nat. 9, 123 (1987).
    Google Scholar 
    94.Täckholm, V. Students’ Flora of Egypt (Cairo University Publishing, 1974).
    Google Scholar 
    95.Komarov, V. Flora of the U.R.S.S (Academiae Sciencitarum U.R.S.S, 1964).
    Google Scholar 
    96.Rechinger, K. Flora Iranica (Akademische Druck- und Verlagsanstalt, 1963).
    Google Scholar 
    97.Crawford, K. M. & Whitney, K. D. Population genetic diversity influences colonization success. Mol. Ecol. 19, 1253–1263 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Hilbig, W. Vegetation of Mongolia (SPB Academic Pubishing, 1995).
    Google Scholar 
    99.Briggs, J. C. Chapter 7 Neogene. In Global Biogeography Vol. 14 (ed. Briggs, J. C.) 147–189 (Elsevier, Amsterdam, 1995).
    Google Scholar 
    100.Yurtsev, B. A. The Pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. 20, 165–174 (2001).ADS 
    Article 

    Google Scholar 
    101.Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: Individualistic responses of species in space and time. Proc. Biol. Sci. 277, 661–671 (2010).PubMed 

    Google Scholar 
    102.Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in eastern Central Europe. Relict Species https://doi.org/10.1007/978-3-540-92160-8_3 (2009).Article 

    Google Scholar 
    103.Willis, K. J. & Vanandel, T. Trees or no trees? The environments of central and eastern Europe during the Last Glaciation. Quat. Sci. Rev. 23, 2369–2387 (2004).ADS 
    Article 

    Google Scholar 
    104.Tremetsberger, K. et al. Pleistocene refugia and polytopic replacement of diploids by tetraploids in the Patagonian and Subantarctic plant Hypochaeris incana (Asteraceae, Cichorieae). Mol. Ecol. 18, 3668–3682 (2009).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Multi-decadal trends in contingent mixing of Atlantic mackerel (Scomber scombrus) in the Northwest Atlantic from otolith stable isotopes

    1.Tsukamoto, K., Nakai, I. & Tesch, W.-V. Do all freshwater eels migrate?. Nature 396, 635–636 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Fromentin, J.-M. & Powers, J. E. Atlantic bluefin tuna: population dynamics, ecology, fisheries and management. Fish. Fish. 6, 281–306 (2005).Article 

    Google Scholar 
    3.Kerr, L. A. & Secor, D. H. Bioenergetic trajectories underlying partial migration in Patuxent River (Chesapeake Bay) white perch (Morone americana). Can. J. Fish. Aquat. Sci. 66, 602–612 (2009).Article 

    Google Scholar 
    4.Cadrin, S. X. et al. Population structure of beaked redfish, Sebastes mentella: evidence of divergence associated with different habitats. ICES J. Mar. Sci. 67, 1617–1630 (2010).Article 

    Google Scholar 
    5.Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Tilman, D., Lehman, C. L. & Bristow, C. E. Diversity-stability relationships: statistical inevitability or ecological consequence?. Am. Nat. 151, 277–282 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Secor, D. H., Kerr, L. A. & Cadrin, S. X. Connectivity effects on productivity, stability, and persistence in a herring metapopulation model. ICES J. Mar. Sci. 66, 1726–1732 (2009).Article 

    Google Scholar 
    8.Cadrin, S. X. & Secor, D. H. Accounting for spatial population structure in stock assessment: past, present, and future. In The Future of Fisheries Science in North America (eds Beamish, R. J. & Rothschild, B. J.) 405–426 (Springer, 2009).
    Google Scholar 
    9.Secor, D. H. The unit stock concept: bounded fish and fisheries. In Stock Identification Methods: Applications in Fishery Science 2nd edn (eds Cadrin, S. X. et al.) 7–28 (Elsevier, 2014).
    Google Scholar 
    10.Ricker, W. E. Maximum sustained yields from fluctuating environments and mixed stocks. J. Fish. Res. Board Can. 15, 991–1006 (1958).Article 

    Google Scholar 
    11.Kerr, L. A. et al. Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish. ICES J. Mar. Sci. 74, 1708–1722 (2017).Article 

    Google Scholar 
    12.Kerr, L. A., Cadrin, S. X. & Kovach, A. I. Consequences of a mismatch between biological and management units on our perception of Atlantic cod off New England. ICES J. Mar. Sci. 71, 1366–1381 (2014).Article 

    Google Scholar 
    13.Goethel, D. R. & Berger, A. M. Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can. J. Fish. Aquat. Sci. 74, 1878–1894 (2017).Article 

    Google Scholar 
    14.Van Beveren, E., Duplisea, D. E., Brosset, P. & Castonguay, M. Assessment modelling approaches for stocks with spawning components, seasonal and spatial dynamics, and limited resources for data collection. PLoS ONE 14, e0222472 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Cadrin, S. X. Defining spatial structure for fishery stock assessment. Fish. Res. 221, 105397 (2020).Article 

    Google Scholar 
    16.Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part II:migration and habits. Fish. Bull. 51, 251–358 (1950).
    Google Scholar 
    17.Moores, J. A., Winters, G. H. & Parsons, L. S. Migrations and biological characteristics of Atlantic mackerel (Scomber scombrus) occurring in Newfoundland waters. J. Fish. Res. Board Can. 32, 1347–1357 (1975).Article 

    Google Scholar 
    18.Redding, S. G., Cooper, L. W., Castonguay, M., Wiernicki, C. & Secor, D. H. Northwest Atlantic mackerel population structure evaluated using otolith δ18O composition. ICES J. Mar. Sci. 77, 2582–2589 (2020).Article 

    Google Scholar 
    19.Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf ecosystem with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159 (2000).Article 

    Google Scholar 
    20.Tyrrell, M. C., Link, J. S., Moustahfid, H. & Overholtz, W. J. Evaluating the effect of predation mortality on forage species population dynamics in the Northeast US continental shelf ecosystem using multispecies virtual population analysis. ICES J. Mar. Sci. 65, 1689–1700 (2008).Article 

    Google Scholar 
    21.Jansen, T. & Gislason, H. Population structure of Atlantic mackerel (Scomber scombrus). PLoS ONE 8, e64744 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Nøttestad, L. et al. Quantifying changes in abundance, biomass, and spatial distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic seas from 2007 to 2014. ICES J. Mar. Sci. 73, 359–373 (2016).Article 

    Google Scholar 
    23.Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep-Sea. Res. Part II 159, 152–168 (2019).Article 

    Google Scholar 
    24.FAO. The state of world fisheries and aquaculture 2020. Sustainability in action. 244 http://www.fao.org/documents/card/en/c/ca9229en (2020). Accessed on 23 July 2020.25.NEFSC. 64th Northeast Regional Stock Assessment Workshop (64th SAW) Assessment Report. 536 (2018).26.DFO. Assessment of the Atlantic mackerel stock for the Northwest Atlantic (Subareas 3 and 4) in 2018. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2019/035: 14 (2019).27.Secor, D. H. Specifying divergent migrations in the concept of stock: the contingent hypothesis. Fish. Res. 43, 13–34 (1999).Article 

    Google Scholar 
    28.Sette, O. E. Biology of the Atlantic mackerel (Scomber scombrus) of North America. Part I: early life history, including the growth, drift, and mortality of the egg and larval populations. Fish. Bull. 50, 149–237 (1943).
    Google Scholar 
    29.Berrien, P. L. Eggs and larvae of Scomber scombrus and Scomber japonicus in continental shelf waters between Massachusetts and Florida. Fish. Bull. 76, 95–115 (1978).
    Google Scholar 
    30.Overholtz, W. J., Hare, J. A. & Keith, C. M. Impacts of interannual environmental forcing and climate change on the distribution of Atlantic mackerel on the U.S. Northeast continental shelf. Mar. Coast. Fish. 3, 219–232 (2011).Article 

    Google Scholar 
    31.McManus, M. C., Hare, J. A., Richardson, D. E. & Collie, J. S. Tracking shifts in Atlantic mackerel (Scomber scombrus) larval habitat suitability on the Northeast U.S. Continental Shelf. Fish. Oceanogr. 27, 49–62 (2018).Article 

    Google Scholar 
    32.Richardson, D. E., Carter, L., Curti, K. L., Marancik, K. E. & Castonguay, M. Changes in the spawning distribution and biomass of Atlantic mackerel (Scomber scombrus) in the western Atlantic Ocean over 4 decades. Fish. Bull. 118, 120–134 (2020).Article 

    Google Scholar 
    33.Moura, A. et al. Population structure and dynamics of the Atlantic mackerel (Scomber scombrus) in the North Atlantic inferred from otolith chemical and shape signatures. Fish. Res. 230, 105621 (2020).Article 

    Google Scholar 
    34.Rooker, J. et al. Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths. Mar. Ecol. Prog. Ser. 368, 231–239 (2008).ADS 
    Article 

    Google Scholar 
    35.Clarke, L. M., Munch, S. B., Thorrold, S. R. & Conover, D. O. High connectivity among locally adapted populations of a marine fish (Menidia menidia). Ecology 91, 3526–3537 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wells, R. J. D. et al. Natural tracers reveal population structure of albacore (Thunnus alalunga) in the eastern North Pacific. ICES J. Mar. Sci. 72, 2118–2127 (2015).Article 

    Google Scholar 
    37.Moreira, C. et al. Population structure of the blue jack mackerel (Trachurus picturatus) in the NE Atlantic inferred from otolith microchemistry. Fish. Res. 197, 113–122 (2018).Article 

    Google Scholar 
    38.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.McMahon, K. W., Hamady, L. L. & Thorrold, S. R. A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol. Oceanogr. 58, 697–714 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Kalish, J. M. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. Prog. Ser. 75, 191–203 (1991).ADS 
    Article 

    Google Scholar 
    41.Solomon, C. T. et al. Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can. J. Fish. Aquat. Sci. 63, 79–89 (2006).CAS 
    Article 

    Google Scholar 
    42.Tohse, H. & Mugiya, Y. Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquat. Biol. 1, 259–268 (2008).Article 

    Google Scholar 
    43.Chung, M.-T., Trueman, C. N., Godiksen, J. A., Holmstrup, M. E. & Grønkjær, P. Field metabolic rates of teleost fishes are recorded in otolith carbonate. Commun. Biol. 2, 24 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Rooker, J. R. & Secor, D. H. Microchemistry: migration and ecology of Atlantic bluefin tuna. In The Future of Bluefin Tunas: Ecology, Fisheries Management, and Conservation (ed. Block, B. A.) (Johns Hopkins University Press, 2019).
    Google Scholar 
    45.Uriarte, A. et al. Spatial pattern of migration and recruitment of North East Atlantic mackerel. ICES CM 2001/O:17 (2001).46.Mendiola, D., Alvarez, P., Cotano, U. & Martínez de Murguía, A. Early development and growth of the laboratory reared north-east Atlantic mackerel (Scomber scombrus) L. J. Fish. Biol. 70, 911–933 (2007).Article 

    Google Scholar 
    47.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    48.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models (2020).50.Kerr, L. A. et al. Mixed stock origin of Atlantic bluefin tuna in the U.S. rod and reel fishery (Gulf of Maine) and implications for fisheries management. Fish. Res. 224, 105461 (2020).Article 

    Google Scholar 
    51.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    52.Smith, A. D. et al. Atlantic mackerel (Scomber scombrus L.) in NAFO Subareas 3 and 4 in 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2020/013. iv + 37 p. (2020).53.Lambrey de Souza, J., Sévigny, J.-M., Chanut, J.-P., Barry, W. F. & Grégoire, F. High genetic variability in the mtDNA control region of a Northwestern Atlantic teleost, Scomber scombrus L. Can. Tech. Rep. Fish. Aquat. Sci. 2625, vi+25 (2006).
    Google Scholar 
    54.Radlinski, M. K., Sundermeyer, M. A., Bisagni, J. J. & Cadrin, S. X. Spatial and temporal distribution of Atlantic mackerel (Scomber scombrus) along the northeast coast of the United States, 1985–1999. ICES J. Mar. Sci. 70, 1151–1161 (2013).Article 

    Google Scholar 
    55.Castonguay, M., Plourde, S., Robert, D., Runge, J. A. & Fortier, L. Copepod production drives recruitment in a marine fish. Can. J. Fish. Aquat. Sci. 65, 1528–1531 (2008).Article 

    Google Scholar 
    56.McManus, M. C. Atlantic Mackerel (Scomber scombrus) Population and Habitat Trends in the Northwest Atlantic (University of Rhode Island, 2017).
    Google Scholar 
    57.Schloesser, R. W., Rooker, J. R., Louchuoarn, P., Neilson, J. D. & Secord, D. H. Interdecadal variation in seawater δ13C and δ18O recorded in fish otoliths. Limnol. Oceanogr. 54, 1665–1668 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    58.Schloesser, R. W., Neilson, J. D., Secor, D. H. & Rooker, J. R. Natal origin of Atlantic bluefin tuna (Thunnus thynnus) from Canadian waters based on otolith δ13C and δ18O. Can. J. Fish. Aquat. Sci. 67, 563–569 (2010).CAS 
    Article 

    Google Scholar 
    59.Thorrold, S. R., Campana, S. E., Jones, C. M. & Swart, P. K. Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim. Cosmochim. Acta. 61, 2909–2919 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Campana, S. E. Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).ADS 
    Article 

    Google Scholar 
    63.Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Brickman, D., Hebert, D. & Wang, Z. Mechanism for the recent ocean warming events on the Scotian Shelf of eastern Canada. Cont. Shelf. Res. 156, 11–22 (2018).ADS 
    Article 

    Google Scholar 
    65.Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Gillanders, B. M. Using elemental chemistry of fish otoliths to determine connectivity between estuarine and coastal habitats. Estuar. Coast. Shelf. Sci. 64, 47–57 (2005).ADS 
    Article 

    Google Scholar 
    67.Høie, H., Andersson, C., Folkvord, A. & Karlsen, Ø. Precision and accuracy of stable isotope signals in otoliths of pen-reared cod (Gadus morhua) when sampled with a high-resolution micromill. Mar. Biol. 144, 1039–1049 (2004).Article 

    Google Scholar 
    68.Martino, J. C., Doubleday, Z. A., Chung, M.-T. & Gillanders, B. M. Experimental support towards a metabolic proxy in fish using otolith carbon isotopes. J. Exp. Biol. 223, jeb217091 (2020).PubMed 
    Article 

    Google Scholar 
    69.Manel, S., Gaggiotti, O. E. & Waples, R. S. Assignment methods: matching biological questions with appropriate techniques. Trends Ecol. Evol. 20, 136–142 (2005).PubMed 
    Article 

    Google Scholar 
    70.Siskey, M. R., Wilberg, M. J., Allman, R. J., Barnett, B. K. & Secor, D. H. Forty years of fishing: changes in age structure and stock mixing in northwestern Atlantic bluefin tuna (Thunnus thynnus) associated with size-selective and long-term exploitation. ICES J. Mar. Sci. 73, 2518–2528 (2016).Article 

    Google Scholar 
    71.Kerr, L. A., Cadrin, S. X. & Secor, D. H. The role of spatial dynamics in the stability, resilience, and productivity of an estuarine fish population. Ecol. Appl. 20, 497–507 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Goethel, D. R., Quinn, T. J. & Cadrin, S. X. Incorporating spatial structure in stock assessment: movement modeling in marine fish population dynamics. Rev. Fish. Sci. 19, 119–136 (2011).Article 

    Google Scholar 
    73.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
    Google Scholar  More

  • in

    Coastal road mortality of land crab during spawning migration

    1.Firth, L. B. et al. Ocean sprawl: Challenges and opportunities for biodiversity management in a changing world. Oceanogr. Mar. Biol. Annu. Rev. 54, 193–269 (2016).
    Google Scholar 
    2.Forman, R. T. T. et al. Road Ecology: Science and Solutions (Island Press, 2003).
    Google Scholar 
    3.Bishop, M. J. et al. Effects of ocean sprawl on ecological connectivity: Impacts and solutions. J. Exp. Mar. Biol. Ecol. 492, 7–30. https://doi.org/10.1016/j.jembe.2017.01.021 (2017).Article 

    Google Scholar 
    4.Sobocinski, K. L., Cordell, J. R. & Simenstad, C. A. Effects of shoreline modifications on supratidal macroinvertebrate fauna on Puget Sound, Washington beaches. Estuar. Coast 33, 699–711. https://doi.org/10.1007/s12237-009-9262-9 (2010).CAS 
    Article 

    Google Scholar 
    5.Carlton, J. T. & Hodder, J. Maritime mammals: Terrestrial mammals as consumers in marine intertidal communities. Mar. Ecol. Prog. Ser. 256, 271–286. https://doi.org/10.3354/meps256271 (2003).ADS 
    Article 

    Google Scholar 
    6.Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451. https://doi.org/10.1007/s10021-001-0021-4 (2001).CAS 
    Article 

    Google Scholar 
    7.Lee, Y. Study on Changes in the Coastal Environment Due to Human Interference: A Case Study of Sand Beach Coast in Gangneung. Master’s Thesis. Korea National University of Education, Cheongju (2011).8.Son, S. et al. Analysis of Influential factors of roadkill occurrence—A case study of Seorak national park. J. Korean Inst. Landsc. Arch. 44, 1–12. https://doi.org/10.9715/KILA.2016.44.3.001 (2016).ADS 
    Article 

    Google Scholar 
    9.Carr, L. W. & Fahrig, L. Effect of road traffic on two amphibian species of differing vagility. Conserv. Biol. 15, 1071–1078. https://doi.org/10.1046/j.1523-1739.2001.0150041071.x (2001).Article 

    Google Scholar 
    10.Coffin, A. W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406. https://doi.org/10.1016/j.jtrangeo.2006.11.006 (2007).Article 

    Google Scholar 
    11.Zielin, S. B., Littlejohn, J., de Rivera, C. E., Smith, W. P. & Jacobson, S. L. Ecological investigations to select mitigation options to reduce vehicle-caused mortality of a threatened butterfly. J. Insect Conserv. 20, 845–854. https://doi.org/10.1007/s10841-016-9916-4 (2016).Article 

    Google Scholar 
    12.Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).Article 

    Google Scholar 
    13.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D. & Wegner, J. F. Effect of road traffic on amphibian density. Biol. Conserv. 73, 177–182. https://doi.org/10.1016/0006-3207(94)00102-V (1995).Article 

    Google Scholar 
    14.Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726. https://doi.org/10.1080/15627020.2015.1021161 (2008).Article 

    Google Scholar 
    15.Finder, R. A., Roseberry, J. L. & Woolf, A. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 44, 77–85. https://doi.org/10.1016/S0169-2046(99)00006-7 (1999).Article 

    Google Scholar 
    16.Glista, D. J., DeVault, T. L. & DeWoody, J. A. Vertebrate road mortality predominantly impacts amphibians. Herpetol. Conserv. Biol. 3, 77–87 (2008).
    Google Scholar 
    17.Grilo, C., Bissonette, J. A. & Cramer, P. C. Mitigation measures to reduce impacts on biodiversity. In Highways: Construction (ed. Jones, S. R.) 73–114 (Management and Maintenance. Nova Science Publishers, 2010).
    Google Scholar 
    18.Baine, M. et al. The development of management options for the black land crab (Gecarcinus ruricola) catchery in the San Andres Archipelago, Colombia. Ocean Coast Manage. 50, 564–589. https://doi.org/10.1016/j.ocecoaman.2007.02.007 (2007).Article 

    Google Scholar 
    19.Kantola, T., Tracy, J. L., Baum, K. A., Quinn, M. A. & Coulson, R. N. Spatial risk assessment of eastern monarch butterfly road mortality during autumn migration within the southern corridor. Biol. Conserv. 231, 150–160. https://doi.org/10.1016/j.biocon.2019.01.008 (2019).Article 

    Google Scholar 
    20.Koivula, M. J. & Vermeulen, H. J. W. Highways and forest fragmentation—Effects on carabid beetles (Coleoptera, Carabidae). Landsc. Ecol. 20, 911–926. https://doi.org/10.1007/s10980-005-7301-x (2005).Article 

    Google Scholar 
    21.Costa, L. L., Mothé, N. A. & Zalmon, I. R. Light pollution and ghost crab road-kill on coastal habitats. Reg. Stud. Mar. Sci. 39, 101457. https://doi.org/10.1016/j.rsma.2020.101457 (2020).Article 

    Google Scholar 
    22.Hübner, L., Pennings, S. C. & Zimmer, M. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: A multi-parameter approach. Oecologia 178, 999–1015. https://doi.org/10.1007/s00442-015-3271-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    23.Burggren, W. W. & McMahon, B. R. Biology of the Terrestrial Crabs (Cambridge University Press, 1988).
    Google Scholar 
    24.Micheli, F., Gherardi, F. & Vannini, M. Feeding and burrowing ecology of two East African mangrove crabs. Mar. Biol. 111, 247–254. https://doi.org/10.1007/BF01319706 (1991).Article 

    Google Scholar 
    25.Green, P. T., O’Dowd, D. J. & Lake, P. S. Recruitment dynamics in a rainforest seedling community: Context independent impact of a keystone consumer. Oecologia 156, 373–385. https://doi.org/10.1007/s00442-008-0992-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    26.Suzuki, S. The life history of Sesarma haematocheirin the Miura peninsula. Res. Crust 11, 51–65. https://doi.org/10.18353/rcustacea.11.0_51 (1981).Article 

    Google Scholar 
    27.Adamczewska, A. M. & Morris, S. Ecology and behavior of Gecarcoideanatalis, the Christmas Island red crab, during the annual breeding migration. Biol. Bull. 200, 305–320. https://doi.org/10.2307/1543512 (2001).Article 

    Google Scholar 
    28.Le Galliard, J.-F., Fitze, P. S., Ferriere, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl. Acad. Sci. 102, 18231–18236. https://doi.org/10.1073/pnas.0505172102 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).
    Google Scholar 
    30.Aresco, M. J. The effect of sex-specific terrestrial movements and roads on the sex ratio of freshwater turtles. Biol. Conserv. 123, 37–44. https://doi.org/10.1016/j.biocon.2004.10.006 (2005).Article 

    Google Scholar 
    31.Mumme, R. L., Schoech, S. J., Woolfenden, G. E. & Fitzpatrick, J. W. Life and death in the fast lane: Demographic consequences of road mortality in the Florida scrub-jay. Conserv. Biol. 14, 501–512. https://doi.org/10.1046/j.1523-1739.2000.98370.x (2000).Article 

    Google Scholar 
    32.Kioko, J., Kiffner, C., Jenkins, N. & Collinson, W. J. Wildlife roadkill patterns on a major highway in northern Tanzania. Afr. Zool. 50, 17–22. https://doi.org/10.1080/15627020.2015.1021161 (2015).Article 

    Google Scholar 
    33.Seo, C., Thorne, J. H., Choi, T., Kwon, H. & Park, C. H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 11, 87–99. https://doi.org/10.1007/s11355-013-0239-2 (2015).Article 

    Google Scholar 
    34.Beebee, T. J. C. Effects of road mortality and mitigation measures on amphibian populations. Conserv. Biol. 27, 657–668. https://doi.org/10.1111/cobi.12063 (2013).Article 
    PubMed 

    Google Scholar 
    35.Zhang, W. et al. Daytime driving decreases amphibian roadkill. PeerJ 6, e5385. https://doi.org/10.7717/peerj.5385 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Saigusa, M. & Hidaka, T. Semilunar rhythm in the zoea-release activity of the terrestrial crabs Sesarma. Oecologia 37, 163–176. https://doi.org/10.1007/BF00344988 (1978).ADS 
    Article 
    PubMed 

    Google Scholar 
    37.Hartnoll, R. G. et al. Reproduction in the land crab Johngarthialagostoma on Ascension Island. J. Crust. Biol. 30, 83–92. https://doi.org/10.1651/09-3143.1 (2010).Article 

    Google Scholar 
    38.Schmidt, A. J., Bemvenutia, C. E. & Dieleet, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340. https://doi.org/10.1016/j.anbehav.2012.04.023 (2012).Article 

    Google Scholar 
    39.Saigusa, M. Ecological distribution of three species of the genus Sesarma in winter season. Zool. Mag. 87, 142–150 (1978).
    Google Scholar 
    40.Saigusa, M. Adaptive significance of a semilunar rhythm in the terrestrial crab Sesarma. Biol. Bull. 160, 311–321. https://doi.org/10.2307/1540891 (1981).Article 

    Google Scholar 
    41.Saigusa, M., Terajima, M. & Yamamoto, M. Structure, formation, mechanical properties, and disposal of the embryo attachment system of an estuarine crab, Sesarma haematocheir. Biol. Bull. 203, 289–306. https://doi.org/10.2307/1543572 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Saigusa, M. Hatching of an estuarine crab, sesarma haematochier: Factors affecting the timing of hatching in detached embryos, and enhancement of hatching synchrony by the female. J. Oceanogr. 56, 93–102. https://doi.org/10.1023/A:1011118726283 (2000).Article 

    Google Scholar 
    43.Saigusa, M. Larval release rhythm coinciding with solar day and tidal cycles in the terrestrial crab Sesarma-harmony with the semilunar timing and its adaptive significance. Biol. Bull. 162, 371–386. https://doi.org/10.2307/1540990 (1982).Article 

    Google Scholar 
    44.Forward, R. B. Larval release rhythms of decapod crustaceans: An overview. Bull. Mar. Sci. 41, 165–176 (1987).
    Google Scholar 
    45.Hicks, J. W. The breeding behaviour and migrations of the terrestrial crab Gecarcoideanatalis (Decapoda: Brachyura). Aust. J. Zool. 33, 127–142. https://doi.org/10.1071/ZO9850127 (1985).Article 

    Google Scholar 
    46.Morgan, S. G. & Christy, J. H. Adaptive significance of the timing of larval release by crabs. Am. Nat. 145, 457–479. https://doi.org/10.1086/285749 (1995).Article 

    Google Scholar 
    47.Paula, J. Rhythms of larval release of decapod crustaceans in the Mira Estuary, Portugal. Mar. Biol. 100, 309–312. https://doi.org/10.1007/BF00391144 (1989).Article 

    Google Scholar 
    48.Bergin, M. E. Hatching rhythms in Ucapugilator (Decapoda: Brachyura). Mar. Biol. 63, 151–158. https://doi.org/10.1007/BF00406823 (1981).Article 

    Google Scholar 
    49.Christy, J. H. Adaptive significance of semilunar cycles of larval release in fiddler crabs (Genus Uca): Test of a hypothesis. Biol. Bull. 163, 251–263. https://doi.org/10.2307/1541264 (1982).Article 

    Google Scholar 
    50.Quintero-Angel, A., Osorio-Dominguez, D., Vargas-Salinas, F. & Saavedra-Rodriguez, C. A. Roadkill rate of snakes in a disturbed landscape of central Andes of Columbia. Herpetol. Notes 5, 99–105 (2012).
    Google Scholar 
    51.Orłowski, G. Roadside hedgerows and trees as factors increasing road mortality of birds: Implications for management of roadside vegetation in rural landscapes. Landsc. Urban Plan. 86, 153–161. https://doi.org/10.1016/j.landurbplan.2008.02.003 (2008).Article 

    Google Scholar 
    52.Saeki, M. & Macdonald, D. W. The effects of traffic on the raccoon dog (Nyctereutes procyonoides viverrinus) and other mammals in Japan. Biol. Conserv. 118, 559–571. https://doi.org/10.1016/j.biocon.2003.10.004 (2004).Article 

    Google Scholar 
    53.Costa, L. L., Secco, H., Arueira, V. F. & Zalmon, I. R. Mortality of the Atlantic ghost crab Ocypode quadrata (Fabricius, 1787) due to vehicle traffic on sandy beaches: A road ecology approach. J. Environ. Manage. 260, 110168. https://doi.org/10.1016/j.jenvman.2020.110168 (2020).Article 
    PubMed 

    Google Scholar 
    54.Tsai, J. R., Hsieh, Y. T., Lin & H. C. The effect of dike types on terrestrial crab passage through the access road: The predicament of terrestrial crab conservation in Gaomei Wetland. In Proceedings of the 39th Oceans Engineering Conference in Taiwan Hungkuang University, November (2017)55.Bellis, M. A., Jackson, S. D., Griffin, C. R., Warren, P. S. & Thompson, A. O. Utilizing a multi-technique, multi-taxa approach to monitoring wildlife passageways in southern Vermont. Oecol. Aust. 17, 111–128. https://doi.org/10.4257/oeco.2013.1701.10 (2007).Article 

    Google Scholar 
    56.Song, J. et al. Roadkill of amphibians in the Korea national park. Korean J. Environ. Ecol. 23, 187–193 (2009).
    Google Scholar 
    57.Ryu, M. & Kim, J. G. Influence of roadkill during breeding migration on the sex ratio of land crab (Sesarma haematoche). J. Environ. Ecol. 44, 23. https://doi.org/10.1186/s41610-020-00167-6 (2020).Article 

    Google Scholar 
    58.Mizuta, T. Moonlight-related mortality: Lunar conditions and roadkill occurrence in the Amami woodcock Scolopax mira. Wilson J. Ornithol. 126, 544–552. https://doi.org/10.1676/13-159.1 (2014).Article 

    Google Scholar 
    59.Gibbs, J. P. & Steen, D. A. Trends in sex ratios of turtles in the United States: Implications of road mortality. Conserv. Biol. 19, 552–556. https://doi.org/10.1111/j.1523-1739.2005.000155.x (2005).Article 

    Google Scholar 
    60.Rytwinski, T. & Fahrig, L. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147, 87–98. https://doi.org/10.1016/j.biocon.2011.11.023 (2012).Article 

    Google Scholar 
    61.Korea Astronomy and Space Science Institute. Korean Astronomical Almanac (Korea Astronomy and Space Science Institute, 2017).
    Google Scholar  More

  • in

    Monitoring respiratory effects of allergenic pollen

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    1.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013;15:3040–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bay S, Ferrari BC, Greening C. Life without water: how do bacteria generate biomass in desert ecosystems? Microbiol Austral. 2018;39:28–32.Article 

    Google Scholar 
    5.Ray A, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon and nitrogen limitation. Front Microbiol. 2020;11:1–13.Article 

    Google Scholar 
    6.Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci. 2014;111:4257–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nessner Kavamura V, Taketani RG, Lançoni MD, Andreote FD, Mendes R, Soares de Melo I. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS ONE. 2013;8:e73606.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Serkebaeva YM, Kim Y, Liesack W, Dedysh SN. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS ONE. 2013;8:e63994.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ward LM, Cardona T, Holland-Moritz H. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol. 2019;10:1658.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, et al. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol. 2020;22:3143–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, et al. The canine oral microbiome. PLoS ONE. 2012;7:e36067.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol. 2014;6. https://doi.org/10.3402/jom.v6.25468.16.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, et al. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Pol Biol. 2015;39:237–49.Article 

    Google Scholar 
    18.Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. Gigascience. 2016;5:21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Polar soil bacterial and fungal biodiversity survey, Ver. 1. Australian Antarctic Data Centre; 2014. https://doi.org/10.4225/15/526F42ADA05B1. Accessed 11 Feb 2021.21.Lane D. Nucleic acid techniques in bacterial systematics. In: Stackebrandt E, Goodfellow M, editors. Chichester NY: John Wiley and Sons; 1991. p. 115–75.22.Siciliano SD, Palmer A, Winsley T, Lamb E, Bissett A, Brown M, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20.CAS 
    Article 

    Google Scholar 
    23.Archer E. R package. 2016.24.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btu170.25.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, United States: Lawrence Berkeley National Laboratory; 2014.27.Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2014;2:e603.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    34.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    37.Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev. 2007;71:576–99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci. 2008;363:2629–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Sondergaard D, Pedersen CN, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol. 1998;64:4973–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol. 2002;4:713–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Lindahl V. Improved soil dispersion procedures for total bacterial counts, extraction of sandy clayey silt soil bacteria and cell survival. J Microbiol Meth. 1996;25:279–86.Article 

    Google Scholar 
    46.Ferrari BC, Tujula N, Stoner K, Kjelleberg S. Catalysed reporter deposition-FISH allows for enrichment independent detection of microcolony forming soil bacteria. Appl Environ Microbiol. 2006;72:918–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kim M, Lim HS, Hyun CU, Cho A, Noh HJ, Hong SG, et al. Local-scale variation of soil bacterial communities in ice-free regions of maritime Antarctica. Soil Biol Biochem. 2019;133:165–73.CAS 
    Article 

    Google Scholar 
    48.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tremblay PL, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol. 2014;18:30–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.English RS, Lorbach SC, Qin X, Shively JM. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol. 1994;12:647–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, et al. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep. 2016;17:1565–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Gamiz-Hernandez AP, Kaila VRI. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys. 2016;18:2802–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, van Dorst J, et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.McCrindle SL, Kappler U, McEwan AG. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Micro Physiol. 2005;50:147–98.CAS 
    Article 

    Google Scholar 
    59.Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol Microbiol. 2012;86:1452–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol. 2013;195:2518–29.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Nichols NN, Harwood CS. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol. 1997;179:5056–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep. 2015;5:8026.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 2012;12:207.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol. 2004;11:721–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28:56–63.CAS 
    Article 

    Google Scholar 
    66.Cheggour A, Fanuel L, Duez C, Joris B, Bouillenne F, Devreese B, et al. The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol. 2000;38:504–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Geueke B, Heck T, Limbach M, Nesatyy V, Seebach D, Kohler HPE. Bacterial β-peptidyl aminopeptidases with unique substrate specificities for β-oligopeptides and mixed β,α-oligopeptides. FEBS J. 2006;273:5261–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Driessen AJM, van de Vossenberg JLM, Konings WN. Membrane composition and ion-permeability in extremophiles. FEMS Microbiol Rev. 1996;18:139–48.CAS 
    Article 

    Google Scholar 
    69.Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, et al. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J. 2012;6:158–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, et al. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol. 2018;9:1982.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol. 2011;77:2399–405.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15:165–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Siebers A, Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988;178:131–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Milkman R. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proc Natl Acad Sci. 1994;91:3510–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Holtmann G, Bakker EP, Uozumi N, Bremer E. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol. 2003;185:1289–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol. 1999;181:3525–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Geisseler D, Horwath WR. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem. 2008;40:3040–8.CAS 
    Article 

    Google Scholar 
    78.Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, et al. Structure of cytochrome c nitrite reductase. Nature. 1999;400:476–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Simon J, Pisa R, Stein T, Eichler R, Klimmek O, Gross R. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. Eur J Biochem. 2001;268:5776–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Nair RV, Bennett GN, Papoutsakis ET. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 1994;176:871–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol. 2014;10:e1003898.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Erbilgin O, McDonald KL, Kerfeld CA. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol. 2014;80:2193–205.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Srinivasan V, Morowitz HJ. The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol Bull. 2009;216:126–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science. 2018;359:559–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bekal S, Van Beeumen J, Samyn B, Garmyn D, Henini S, Diviès C, et al. Purification of Leuconostoc mesenteroides citrate lyase and cloning and characterization of the citCDEFG gene cluster. J Bacteriol. 1998;180:647–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Dimroth P, Jockel P, Schmid M. Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump. Biochim Biophys Acta. 2001;1505:1–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta. 2008;1777:985–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Lewis Smith RI. Plant community dynamics in Wilkes Land, Antarctica, vol. 3. Proceedings of the NIPR Symposium on Polar Biology. 1990. p. 229–44.90.Seppelt RD. Plant communities at Wilkes Land. In: Geoecology of Antarctic ice-free coastal landscapes. Ecological studies (Analysis and synthesis), vol. 154. Springer; 2002. p. 233–48. More

  • in

    Vibrational communication and mating behavior of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae)

    In this study, we gave a comprehensive description of the mating behavior of the greenhouse whitefly, T. vaporariorum. In particular, we defined the strict association between vibrational signals and behavioral steps of the pair formation process, from the male call to the final mating. We also described some social interactions between two or more individuals of both sexes, confined to a small portion of leaf, thus simulating a natural occurring aggregation. In this regard, we found that males tend to modify the quality of their vibrational signals, by changing some spectral features, according to either the social context or the behavioral step. For example, they tend to increase the fundamental frequency of their signals (i.e., chirps and PT) when in the presence of potential rivals. A possible explanation of this behavior could be associated with the male competition for food and/or mating. In fact, species that live in high population densities are subjected to strong male-male competitions and a male needs to show his quality to females but also to be clearly recognizable from the others24. The higher quality can be witnessed by the emission of specific aggressive calls which are characterized by lower frequencies, like in some anurans25 or in Chiropteran where the relative frequency of the social calls increases when more individuals compete for a food source. An example of individual recognition behavior is the change of frequency of the calling song to avoid signal overlapping thus allowing an individual to perceive the presence of more potential partners. Frequency overlapping, in general, can be noxious to animal communication, and male responsiveness can be reduced when background noise from conspecific signals obscure the species-specific temporal pattern of a female song26. In the southern green stink bug, Nezara viridula (Heteroptera, Pentatomidae), females were found to change their calling song frequency to let the males recognize them when exposed to a disturbance stimulus27. Even if small variations of the frequency pattern may potentially affect the partner responsiveness to a call28, overlapping frequencies can seriously compromise the signal reception29. In this way, the change to a different value of frequency in presence of other calling males seems to be a more desirable solution.Another signal variation that we observed in GW males, in the presence of another male (i.e., male duos trials), regarded the chirp duration. By increasing the duration of a mating signal, some species also increase the chances to elicit the female response at the earliest stage of the mating behavior30. In various acoustic insects, females prefer longer calls and males can vary their length by adding or subtracting call elements31. However, a limit of our study was that we could not associate the signal emissions to specific individuals, therefore we did not determine not only if one or both the males were actually singing but also whether this change of chirp duration involved one or both the individuals. A definitive explanation about male-male calling interactions and how males regulate their calling activities should be provided with additional experiments with the use of playbacks to stimulate single specimens.In general, we need to consider that the alteration of the signal features is a common strategy in animals with a complex mating behavior in which different stages can alternate in a non-linear sequence29,32,33. Such an intricate behavior is on the one hand, at the basis of a species-specific mate recognition system, on the other hand, is a result of the sexual selection that worked to shape signals with certain characteristics that are able to elicit the female acceptance to mate34. Despite the considerable knowledge about vibrational signal production in the family Aleyrodidae19, we still have little information about the importance of the courtship and of the female choice in driving the reproductive isolation and speciation in this family. Aleyrodid species are known to be morphologically similar and to form a species complex (i.e. Bemisia tabaci) with several biotypes35, where the characterization of the mating behavior can be an important tool to discriminate among them. For instance, variations in the courtship behavior between different B. tabaci biotypes demonstrated the presence of pre-copulation barriers36,37. Moreover, the analysis of male vibrational signals during the courtship, combined with genetic and morphological analysis, allowed to discriminate between the camellia spiny whitefly Aleurocanthus camelliae and the citrus spiny whitefly Aleurocanthus spiniferus18. In such a context, knowing the characteristics of the mating ritual may lead to distinguish, not only among different species, but also among different populations. For example, before this study, the GW mating behavior was described only from Japanese populations where the pair formation process started with the male approaching a female before emitting any vibrational signal (i.e. courtship stage)17. Instead, in our study with European populations of GW, we observed that the male, before starting the approach, emits calling signals which can elicit the female response from a certain distance. Such a difference between geographically distant GW populations seems to suggest a different strategies of mating behavior, likely associated to distinct populations or biotypes. On this regard, it would be interesting to test them with crossed mating trials (Japanese vs Europeans) to assess the effects of the observed differences on the mating success rate.In our study, we also measured a difference of male signal parameters between different behavioral phases of the pair formation process and in particular between the courtship stage and the call and alternated duet stages. We found a significant increase of signal duration, fundamental frequency and pulse repetition rate. The duration of the courtship stage was very variable in our trials, from zero (it was skipped when females replied immediately to the male signals) up to 78 min. This means, in first instance, that the role of the courtship is to elicit the female response and thus promoting her acceptance to mate. Indeed any single behavioral step is functional to elicit the female’s acceptance and in fact, whenever females showed high responsiveness since the early stage of the mating process, males could skip whole stages and even go directly from the call to the final precopula stage, the alternated duet. It also indicates that males are available to spend a remarkable amount of energy to perform the courtship38. The use of elaborated and energetic signals during the courtship is rather common in animals34. For example, the leafhopper S. titanus and the glassy-winged sharpshooter Homalodisca vitripennis have a mating strategy that reminds the GW’s, starting with a call which is followed by the location of the partner and by the courtship. While during call and location males make use of extremely simplified signals, during the courtship they emit the most elaborated (and energetically demanding) signals, through which they try to convince the female to accept the mating21,39. A study of Las (1980) demonstrated that the GW courtship persistence (i.e., duration) is an important trigger to address the female choice. A fast and prolonged male “cycling rate” (alternation of wing flicking and antennation) during the courtship is preferred by females who become even more selective after the first mating. On the other hand, in our tests, males showed a remarkable perseverance in courting the females. The ethogram showed that after a failed mating attempt, a male always restarted from the courtship. This means that the courtship phase is the key part of the mating process but also that the female choice drives the selection in favor of “stubborn” males that persist in courting the potential partner, performing a prolonged courtship, even if the first mating attempt fails. Stubbornness affects male’s survival for its energetic cost and risk of eavesdropping. Such character fits the handicap theory model, in which condition dependent and costly traits are honest indicators of male quality40,41. On the other hand, the option of an easy surrender, and the search for another available female, after investing so many energies in courting the first one, seems to be not convenient for the male in that it would mean to spend more energy in searching for/courting a new partner also risking the possibility of dealing with competitors42.In the GW, the male courtship can be considered successful when the mating moves to the overlapped duet stage in which the female emits the Female Responding Signal (FRS). The FRS is produced in synchronous with the courtship chirp and PT and, for this reason, it requires high degree of coordination between male and female. The presence of female acceptance signals synchronized with the male’s is known for the whitefly species Aleurothrixus floccosus (Maskell)43, in which the female signal can partially overlap the male’s one, but it was unknown in the GW, until now.Another signal that we found for the first time in the GW is the male rivalry signal (MRS). Males exhibit aggressiveness towards other males. A random encounter on the leaf is enough to trigger the expression of rivalry behavior in presence of a female. Such interaction has never been observed in duos, but only in groups with responsive females, thus suggesting that the presence of receptive/active females is required to trigger the MRS production and thus provoking a context of aggressiveness and competition between males. Another male rivalry behavior that we observed in the presence of a receptive female is the silent approach (satellite behavior) to intercept a female while duetting with another male44. This behavior is known in other aleyrodids like in B. tabaci. In this species, rival males interrupt the ongoing courtship of the duetting male by approaching the female from the opposite side. In response to the competitor, the first male spreads the wings and beats the rival on the head45. In GW, the rivalry behavior is associated with the continuous production of the MRS, which is the male signal at highest frequency. Such finding strengthens the hypothesis that the frequency shift has a role in competitor’s deterrence. The rivalry behavior of GW seems to be extraordinarily strong, as much to push females to abandon the interaction with both males. In our experiments, none of the females, even those that had already established a duet with a male, eventually mated. On the contrary, they left the arena before the end of the trial. Our findings are consistent with previous observations of GW behavior, in which the contended female always walked away when two males were competing15. Therefore, we can speculate that the adaptive advantage of the male rivalry behavior in GW is not immediate and the disruption of another male’s attempt could provide more chances in the future to the intruder, by leaving a receptive female unmated. Beside the effects of the male’s rivalry, we also observed females that refused to mate and rejected approaching males with the emission of specific vibrational signals. There are several reasons to refuse mating: immature females are not yet available to mate, and recently mated females must undergo to a refractory period before they accomplish other copulations15. On the other hand, a mature female can choose whether to accept or not a courting male depending on the level of his fitness which is, very likely, testified by the courtship performance. Females can evaluate the male’s quality based on the courtship persistence, so that they need to let males perform the whole ritual before choosing whether to mate or not46. In fact, we observed both females that rejected approaching males and females that rejected them at the end of the courtship performance. The latter, in particular, was associated to wing flicking and/or male’s aedeagus parrying with the legs. Similar behaviors were also observed in B. tabaci, in which the female can either walk or fly away from approaching males, flap the wings or push the male’s abdomen away with the middle pair of legs45. What seems to be a peculiar treat of GW is the use of a specific rejective signal (FRjS). The emission of FRjS seems to reinforce the motivation of the female to reject the male. However, it is not clear to us why the FRjS signal has been observed only in the group (males and females together) trials and never in pairs (one male and one female). Our hypothesis is that in case of groups, males can approach the “wrong” female, who was close the receptive one. This implies that males are not capable of precisely locating the responding female and that the emission of FRjS by an unreceptive female would help the males to not waste too much time (and energy) with them.To conclude, this study unveiled many aspects of the mating behavior of the GW that were previously overlooked and thus it contributes to fill several gaps of knowledge that will be important to start a program in the field of applied biotremology10. The question, from which originally arose this research study, was whether the use of vibrational signals could be suitable to manipulate the mating behavior of the GW. We can say that the vibrational communication is fundamental to accomplish mating and, in our trials, with pairs and groups, we never observed mating without the exchange of vibrational signals between male and female. This means that the interruption or the disruption of this communication could be potentially useful to reduce the rate of mating success. Manipulation of intraspecific communication by means of vibrational signals has been already developed for other insect species both in the lab and in the field10. For example, the male rivalry signal has been exploited for the development of a vibrational mating disruption strategy against the grapevine leafhopper Scaphoideus titanus29, while the female playback has been used to attract and trap males in the brown marmorated stink bug Halyomorpha halys47. The use of playbacks that cover the fundamental frequencies of the male and female signals could be used to mask their communication2. Another possible approach could be to use signals that mimic the natural signals of the species48. In the case of the GW, the FRS could be employed to disrupt males and induce them in courting unreceptive females. This would lead to a substantial reduction of the mating success rate but also to a considerable increase of wasted energy caused by the male persistence in courting unreceptive females. Another possible outcome could be a change of the gender balance in the population. GW females reproduce by arrhenotokous parthenogenesis in which unfertilized eggs develop into males49. Delays in mating could lead to a sex bias that could eventually mine the population structure. Another option is the use of the MRS to generate an aggressive and stressful environment. The transmission of MRS into the plant tissues in loop could eventually negatively affect the development of GW populations. All these approaches are potentially effective and could be in the future considered as tools for IPM and/or organic protection programs. Further applied research will provide a final answer to our question and will test the effectiveness of behavioural manipulation strategies for the control of the GW. Finally, considering that the GW uses a short range sexual pheromone emitted by females50 olfactory and vibratory cues could be potentially integrated to develop new pest control technologies10. More

  • in

    Drivers and constraints on offshore foraging in harbour seals

    1.Orians, G. H. & Pearson, N. E. On the theory of central place foraging. Analysis of ecological systems. In Analysis of ecological systems Vol. 2 (eds Horn D. J., Mitchell R. D. & Stairs G. R.) 155–177 (Ohio State Univ. Press, 1979).
    Google Scholar 
    2.Biuw, M. et al. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc. Natl. Acad. Sci. 104, 13705–13710 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Arcalís-Planas, A. et al. Limited use of sea ice by the Ross seal (Ommatophoca rossii), in Amundsen Sea, Antarctica, using telemetry and remote sensing data. Polar Biol. 38, 445–461 (2015).Article 

    Google Scholar 
    4.Staniland, I. J., Boyd, I. L. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar. Biol. 152, 233–241 (2007).Article 

    Google Scholar 
    5.Le Boeuf, B. et al. Foraging ecology of northern elephant seals. Ecol. Monogr. 70, 353–382 (2000).Article 

    Google Scholar 
    6.Adelung, D., Kierspel, M. A., Liebsch, N., Müller, G. & Wilson, R. P. Distribution of harbour seals in the German bight in relation to offshore wind power plants. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel J. & Peters, W.) 65–75 (Springer, 2006).
    Google Scholar 
    7.Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).Article 

    Google Scholar 
    8.Wilson, R. P. et al. Options for modulating intra-specific competition in colonial pinnipeds : the case of harbour seals (Phoca vitulina) in the Wadden Sea. PeerJ 4, e957 (2015).Article 

    Google Scholar 
    9.Sharples, R. J., Moss, S. E., Patterson, T. A. & Hammond, P. S. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina) determined by a large-scale satellite tagging program. PLoS ONE 7, e37216 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Liebsch, N., Wilson, R. P. & Adelung, D. Utilisation of time and space by harbour seals (Phoca vitulina vitulina) determined by new remote-sensing methods. In Progress in Marine Conservation in Europe (eds von Nordheim, H., Boedeker, D. & Krause, J.C.) 179–188 (Springer, 2006).
    Google Scholar 
    11.Tougaard, J., Teilmann, J. & Tougaard, S. Harbour seal spatial distribution estimated from Argos satellite telemetry: overcoming positioning errors. Endanger. Species Res. 4, 113–122 (2008).Article 

    Google Scholar 
    12.Common Wadden Sea Secretariat. Report on the State of Conservation of the World Heritage property “ The Wadden Sea ( N1314 )” (2016).13.Brasseur, S. M. J. M. et al. Echoes from the past: regional variations in recovery within a harbour seal population. PLoS ONE 13, 1–21 (2018).Article 
    CAS 

    Google Scholar 
    14.Wolff, W. J. Ecology of the Wadden Sea (Balkema, 1983).
    Google Scholar 
    15.Baumann, H., Malzahn, A. M., Voss, R. & Temming, A. The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles. J. Sea Res. 61, 234–243 (2009).ADS 
    Article 

    Google Scholar 
    16.Tulp, I., Bolle, L. J. & Rijnsdorp, A. D. Signals from the shallows: in search of common patterns in long-term trends in Dutch estuarine and coastal fish. J. Sea Res. 60, 54–73 (2008).ADS 
    Article 

    Google Scholar 
    17.Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    18.Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).ADS 
    Article 

    Google Scholar 
    19.Russell, D. J. F. et al. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos 124, 1462–1472 (2015).Article 

    Google Scholar 
    20.Sparling, C. E., Fedak, M. A. & Thompson, D. Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol. Lett. 3, 94–98 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ramasco, V., Biuw, M. & Nilssen, K. T. Improving time budget estimates through the behavioural interpretation of dive bouts in harbour seals. Anim. Behav. 94, 117–134 (2014).Article 

    Google Scholar 
    22.Mikkelsen, L. et al. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol. Evol. 9(5), 2588–2601 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov. Ecol. 4, 1–20 (2016).Article 

    Google Scholar 
    24.Boyd, I. L. Temporal scales of foraging in a marine predator author. Ecology 77, 426–434 (1996).Article 

    Google Scholar 
    25.Bjorge, A. et al. Habitat Use and Diving Behaviour of Harbour Seals in a Coastal Archipelage in Norway 211–223 (Elsevier, 1995).
    Google Scholar 
    26.Lesage, V., Hammill, M. O. & Kovacs, K. M. Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Can. J. Zool. 77, 74–87 (1999).Article 

    Google Scholar 
    27.Baechler, J., Beck, C. A. & Bowen, W. Dive shapes reveal temporal changes in the foraging behaviour of different age and sex classes of harbour seals (Phoca vitulina). Can. J. Zool. Can. Zool. 80, 1569–1577 (2002).Article 

    Google Scholar 
    28.Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar. Ecol. Prog. Ser. 452, 253–267 (2012).ADS 
    Article 

    Google Scholar 
    29.Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Horizontal and vertical movements as predictors of foraging success in a marine predator. Mar. Ecol. Prog. Ser. 447, 243–257 (2012).ADS 
    Article 

    Google Scholar 
    30.Thums, M. T., Bradshaw, C. J. A. & Hindell, M. A. In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology 92, 1258–1270 (2011).PubMed 
    Article 

    Google Scholar 
    31.Volpov, B. L., Hoskins, A. J., Battaile, B. C. & Viviant, M. Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: Field validation with animal-borne video cameras. PLoS ONE 10, e0128789 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Gallon, S. et al. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers. Deep. Res. Part II Top. Stud. Oceanogr. 88–89, 14–22 (2013).ADS 
    Article 

    Google Scholar 
    33.Viviant, M., Trites, A. W., Rosen, D. A. S., Monestiez, P. & Guinet, C. Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol. 33, 713–719 (2010).Article 

    Google Scholar 
    34.Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci. U.S.A. 110, 2199–2204 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Martín Lopez, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol. 218, 1325–1338 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Naito, Y., Bornemann, H., Takahashi, A., McIntyre, T. & Plötz, J. Fine-scale feeding behavior of Weddell seals revealed by a mandible accelerometer. Polar Sci. 4, 309–316 (2010).ADS 
    Article 

    Google Scholar 
    37.Ydesen, K. S. et al. What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina). J. Exp. Biol. 217, 2239–2243 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Johnson, M., De Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).ADS 
    Article 

    Google Scholar 
    39.Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., McKenna, M. F. & Simon, M. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).Article 

    Google Scholar 
    40.Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep. Res. Part II(54), 193–210 (2007).ADS 
    Article 

    Google Scholar 
    41.Baylis, A. M. M., Page, B. & Goldsworthy, S. D. Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can. J. Zool. 789, 774–789 (2008).Article 

    Google Scholar 
    42.McClintock, B. T., Russell, D. J. F., Matthiopoulos, J. & King, R. Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets. Ecology 94, 838–849 (2013).Article 

    Google Scholar 
    43.Siebert, U., Müller, S., Gilles, A., Sundermeyer, J. & Narberhaus, I. Chapter VII species profiles marine mammals authors: harbour porpoise red lists, conservation status and assessment. In Threatened Biodiversity in the German North and Baltic Seas-Sensitivities Towards Human Activities and the Effects of Climate Change (eds Narberhaus, I. & Krause, J.) 448–495 (Naturschutz und Biologische Vielfalt, 2012).
    Google Scholar 
    44.Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis (Lond. 1859) 103, 458–473 (1963).
    Google Scholar 
    45.Gaston, A. J., Ydenberg, R. C. & Smith, G. E. J. Ashmole’s halo and population regulation in seabirds. Mar. Ornithol. 35, 119–126 (2007).
    Google Scholar 
    46.Cronin, M., Pomeroy, P. & Jessopp, M. Size and seasonal influences on the foraging range of female grey seals in the northeast Atlantic. Mar. Biol. 160, 531–539 (2013).Article 

    Google Scholar 
    47.Dietz, R., Teilmann, J., Andersen, S. M., Rige, F. & Olsen, M. T. Movements and site fidelity of harbour seal (Phoca vitulina) in Kattegat, Denmark, with implications for the epidemiology of the phocine distemper virus. ICES J. Mar. Sci. 70, 186–195 (2013).Article 

    Google Scholar 
    48.Brasseur, S., Creuwels, J., Werf, B. & Reijnders, P. Deprivation indicates necessity for haul-out in harbor seals. Mar. Mamm. Sci. 12, 619–624 (1996).Article 

    Google Scholar 
    49.Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Sleep in the northern fur seal. Curr. Opin. Neurobiol. 44, 144–151 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Härkönen, T. et al. The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Organ. 68, 115–130 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bodewes, R. et al. Avian influenza a(H10n7) virus–associated mass deaths among harbor seals. Emerg. Infect. Dis. 21, 720–722 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Galatius, A. et al. Trilateral Surveys of Harbour Seals in the Wadden Sea and Helgoland in 2019 (2019).53.Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    54.Cremer, J. et al. EG-Seals Grey Seal Surveys in the Wadden Sea and Helgoland in 2018–2019-Steady Growth (2019).55.Christensen, J. T. & Richardson, K. Stable isotope evidence of long-term changes in the North Sea food web structure. Mar. Ecol. Prog. Ser. 368, 1–8 (2008).ADS 
    Article 

    Google Scholar 
    56.Daan, N., Gislason, H., Pope, J. G. & Rice, J. C. Changes in the North Sea fish community: Evidence of indirect effects of fishing ?. ICES J. Mar. Sci. 62, 177–188 (2005).Article 

    Google Scholar 
    57.Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Change Biol. 20, 1023–1031 (2014).ADS 
    Article 

    Google Scholar 
    58.Hasselmeier, I., Fonfara, S., Driver, J. & Siebert, U. Differential hematology profiles of free-ranging, rehabilitated, and captive harbor seals (Phoca vitulina) of the German North Sea. Aquat. Mamm. 34, 149–156 (2008).Article 

    Google Scholar 
    59.Wales, B., Tarazona, L. & Bavaro, M. Snapshot positioning for low-power miniaturised spaceborne GNSS receivers. In 2010 5th ESA Work. Satell. Navig. Technol. Eur. Work. GNSS Signals Signal Process.1–6 (IEEE, 2010).60.Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).ADS 
    Article 

    Google Scholar 
    61.Sibly, R. M., Nott, H. M. R. & Fletcher, D. J. Splitting behaviour into bouts. Anim. Behav. 39, 63–69 (1990).Article 

    Google Scholar 
    62.Bowen, W. D., Tully, D., Boness, D. J., Bulheier, B. M. & Marshall, G. J. Prey-dependent foraging tactics and preyprofitability in a marine mammal. Mar. Ecol. Prog. Ser. 244, 235–245 (2002).ADS 
    Article 

    Google Scholar 
    63.Cox, S. L. et al. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol. Evol. 9, 64–77 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).Article 

    Google Scholar 
    65.Martín López, L. M., de Soto, N. A., Miller, P. & Johnson, M. Tracking the kinematics of caudal-oscillatory swimming: a comparison of two on-animal sensing methods. J. Exp. Biol. 219, 2103–2109. https://doi.org/10.1242/jeb.136242 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc. R. Soc. B Biol. Sci. 274, 471–477 (2007).Article 

    Google Scholar 
    67.Bartoń, K. MuMIn: Multi‐model inference. R package version 1.43.17. 75 (2020). More