Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y. & Hutchins, D. A. Effects of Increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria) 1. J. Phycol. 43, 485–496 (2007).
Google Scholar
Schippers, P., Lürling, M. & Scheffer, M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol. Lett. 7, 446–451 (2004).
Google Scholar
Raven, J. A., Gobler, C. J. & Hansen, P. J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae 91, 101594 (2020).CAS
Google Scholar
Gobler, C. J. et al. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl Acad. Sci. 114, 4975–4980 (2017).CAS
Google Scholar
Rost, B., Richter, K. U., Riebesell, U. & Hansen, P. J. Inorganic carbon acquisition in red tide dinoflagellates. Plant, Cell Environ. I 29, 810–822 (2006).CAS
Google Scholar
Honjo, T. Harmful Red Tides of Heterosigma akashiwo. NOAA Technical Report NMFS. 111, 27–32 (1992).Rensel, J. J. & Haigh, N. Fraser river sockeye salmon marine survival decline and harmful blooms of Heterosigma akashiwo. Harmful Algae 10, 98–115 (2010).
Google Scholar
Herndon, J. & Cochlan, W. P. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6, 260–270 (2007).
Google Scholar
Haley, S. T., Alexander, H., Juhl, A. R. & Dyhrman, S. T. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. Harmful Algae 68, 258–270 (2017).CAS
Google Scholar
Wang, Z.-h, Liang, Y. & Kang, W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa. Harmful Algae 12, 113–118 (2011).CAS
Google Scholar
Ji, N. et al. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo (raphidophyceae) bloom. Environ. Microbiol. 20, 1078–1094 (2018).CAS
Google Scholar
Zhang, H. et al. Functional differences in the blooming phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense revealed by comparative metaproteomics. Appl. Environ. Microbiol. 85, e01425–01419 (2019).CAS
Google Scholar
Redfield, A. C. The biological control of chemical factors in the environment. Am. Scientist 46, 230A–221 (1958).
Google Scholar
Liefer, J. D. et al. The macromolecular basis of phytoplankton C: N: P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).
Google Scholar
Matsumoto, K., Tanioka, T. & Rickaby, R. Linkages between dynamic phytoplankton C: N: P and the ocean carbon cycle under climate change. Oceanography 33, 44–52 (2020).
Google Scholar
Thrane, J. E., Hessen, D. O. & Andersen, T. Plasticity in algal stoichiometry: Experimental evidence of a temperature‐induced shift in optimal supply N: P ratio. Limnol. Oceanogr. 62, 1346–1354 (2017).CAS
Google Scholar
Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).CAS
Google Scholar
Mittler, R., Finka, A. & Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 37, 118–125 (2012).CAS
Google Scholar
Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).
Google Scholar
Whitten, S. T., García-Moreno E, B. & Hilser, V. J. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proc. Natl Acad. Sci. 102, 4282–4287 (2005).CAS
Google Scholar
Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).CAS
Google Scholar
Kim, H., Spivack, A. J. & Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: implications for bloom formation in an acidified ocean. Harmful Algae 26, 1–11 (2013).CAS
Google Scholar
Hennon, G. M., Williamson, O. M., Limón, M. D. H., Haley, S. T. & Dyhrman, S. T. Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2. Protist 170, 38–51 (2019).CAS
Google Scholar
Xu, H., Jaynes, J. & Ding, X. Combining two-level and three-level orthogonal arrays for factor screening and response surface exploration. Statistica Sin. 24, 269–289 (2014).
Google Scholar
Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).CAS
Google Scholar
Sterner, R. W. & Elser, J. J. in Ecological Stoichiometry (Princeton university press, 2002).Liu, H. C., Liao, H. T. & Charng, Y. Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738–751 (2011).CAS
Google Scholar
Geider, R. J. & La Roche, J. J. Redfield revisited: variability of C [ratio] N [ratio] P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).
Google Scholar
Loladze, I. & Elser, J. J. The origins of the Redfield nitrogen‐to‐phosphorus ratio are in a homoeostatic protein‐to‐rRNA ratio. Ecol. Lett. 14, 244–250 (2011).
Google Scholar
Hennige, S. J., Coyne, K. J., MacIntyre, H., Liefer, J. & Warner, M. E. The photobiology of Heterosigma akashiwo. Photoacclimation, diurnal periodicity, and its ability to rapidly exploit exposure to high light. J. Phycol. 49, 349–360 (2013).CAS
Google Scholar
Collier, J. L. & Grossman, A. A small polypeptide triggers complete degradation of light‐harvesting phycobiliproteins in nutrient‐deprived cyanobacteria. EMBO J. 13, 1039–1047 (1994).CAS
Google Scholar
Gordillo, F. J., Jimenez, C., Figueroa, F. L. & Niell, F. X. Influence of elevated CO2 and nitrogen supply on the carbon assimilation performance and cell composition of the unicellular alga Dunaliella viridis. Physiologia Plant. 119, 513–518 (2003).CAS
Google Scholar
Satoh, E., Watanabe, M. M. & Fujii, T. Photoperiodic regulation of cell division and chloroplast replication in Heterosigma akashiwo. Plant Cell Physiol. 28, 1093–1099 (1987).
Google Scholar
Ashworth, J. et al. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc. Natl Acad. Sci. 110, 7518–7523 (2013).CAS
Google Scholar
Thangaraj, S. & Sun, J. J. E. M. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ. Microbiol. 23, 980–995 (2021).CAS
Google Scholar
Nakajima, K., Tanaka, A. & Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl Acad. Sci. 110, 1767–1772 (2013).CAS
Google Scholar
Kranz, S. A. et al. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. N. Phytologist 205, 192–201 (2015).CAS
Google Scholar
Ralston, A. & Shaw, K. Gene expression regulates cell differentiation. Nat. Educ. 1, 127–131 (2008).
Google Scholar
Lobo, I. Environmental influences on gene expression. Nat. Educ. 1, 39 (2008).
Google Scholar
Suzuki, N. et al. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14, 691–699 (2011).CAS
Google Scholar
Saidi, Y., Finka, A. & Goloubinoff, P. Heat perception and signalling in plants: a tortuous path to thermotolerance. N. Phytologist 190, 556–565 (2011).CAS
Google Scholar
Saidi, Y. et al. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21, 2829–2843 (2009).CAS
Google Scholar
Zhang, W. et al. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol. 149, 1773–1784 (2009).CAS
Google Scholar
Li, S. et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells 29, 475–483 (2010).CAS
Google Scholar
Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H. & Dhindsa, R. S. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31, 629–638 (2002).CAS
Google Scholar
Reddy, A. S., Ali, G. S., Celesnik, H. & Day, I. S. Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23, 2010–2032 (2011).CAS
Google Scholar
Meiri, D. & Breiman, A. J. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90. 1 and affecting the accumulation of HsfA2‐regulated sHSPs. Plant J. 59, 387–399 (2009).CAS
Google Scholar
Mishkind, M., Vermeer, J. E., Darwish, E. & Munnik, T. J. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J. 60, 10–21 (2009).CAS
Google Scholar
Zheng, S. Z. et al. Phosphoinositide‐specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 69, 689–700 (2012).CAS
Google Scholar
Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).
Google Scholar
Sugio, A., Dreos, R., Aparicio, F. & Maule, A. J. The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21, 642–654 (2009).CAS
Google Scholar
Vasseur, F., Pantin, F. & Vile, D. J. P. Cell & Environment. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ. 34, 1563–1576 (2011).CAS
Google Scholar
Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. J. Physiol. 19, 207–215 (2004).CAS
Google Scholar
Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).CAS
Google Scholar
Cipriano, D. J. et al. Structure and regulation of the vacuolar ATPases. Biochim. et. Biophys. Acta -Bioenerg. 1777, 599–604 (2008).CAS
Google Scholar
Abad, M. F. C., Di Benedetto, G., Magalhães, P. J., Filippin, L. & Pozzan, T. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J. Biol. Chem. 279, 11521–11529 (2004).CAS
Google Scholar
McCORMACK, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).CAS
Google Scholar
Garlid, K. D., Sun, X., Paucek, P. & Woldegiorgis, G. in Methods in enzymology Vol. 260 331–348 (Elsevier, 1995).Yamada, E. W. & Huzel, N. J. J. B. Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of calcium. Biochemistry 28, 9714–9718 (1989).CAS
Google Scholar
Moreno-Sánchez, R. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator. Biochim. et. Biophys. Acta -Bioenerg. 724, 278–285 (1983).
Google Scholar
Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2, 318–325 (2000).CAS
Google Scholar
Sunda, W. G., Price, N. M. & Morel, F. M. Trace metal ion buffers and their use in culture studies. Algal Cultur. Tech. 4, 35–63 (2005).
Google Scholar
Sun, J. et al. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo‐nitzschia multiseries. Limnol. Oceanogr. 56, 829–840 (2011).CAS
Google Scholar
Pierrot, D., Lewis, E. & Wallace, D. J. MS Excel Program Developed for CO2 System Calculations ORNL/CDIAC‐105 (US Dept. of Energy, Oak Ridge, TN, 2006).Wilbur, K. M. & Anderson, N. G. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).CAS
Google Scholar
Solórzano, L. & Sharp, J. H. Determination of total dissolved phosphorus and particulate phosphorus in natural waters 1. Limnol. Oceanogr. 25, 754–758 (1980).
Google Scholar
Myklestad, S. M., Skånøy, E. & Hestmann, S. J. Sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Mar. Chem. 56, 279–286 (1997).CAS
Google Scholar
Pakulski, J. D. & Benner, R. J. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar. Chem. 40, 143–160 (1992).CAS
Google Scholar
Folch, J. & Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS
Google Scholar
Pande, S., Khan, R. P. & Venkitasubramanian, T. Microdetermination of lipids and serum total fatty acids. Anal. Biochem. 6, 415–423 (1963).CAS
Google Scholar
Lowry, O., Rosebrough, N., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).CAS
Google Scholar
Berdalet, E., Roldán, C., Olivar, M. P. & Lysnes, K. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part A. Optimisation of the assay. Sci. Mar. 69, 1–16 (2005).CAS
Google Scholar
Chomoczynski, P. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-form extraction. Anal. Biochem. 162, 156–159 (1987).
Google Scholar
Sañudo-Wilhelmy, S. A. et al. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Phycol. Res. 432, 897–901 (2004).
Google Scholar
Dyhrman, S. T. Nutrients and their acquisition: phosphorus physiology in microalgae. Physiol. Microalgae 155–183 (2016).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
Google Scholar
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS
Google Scholar
Pruitt, K. D., Tatusova, T. & Maglott, D. R. J. N. A. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).CAS
Google Scholar
Kanehisa, M. & Goto, S. J. N. A. R. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS
Google Scholar
Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).CAS
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Google Scholar
Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. J. B. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).
Google Scholar More