Functional groups in microbial ecology: updated definitions of piezophiles as suggested by hydrostatic pressure dependence on temperature
1.Capece MC, Clark E, Saleh JK, Halford D, Heinl N, Hoskins S, et al. Polyextremophiles and the constraints for terrestrial habitability. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. Life under muliple forms of stress. Dordrecht, Neaderlands: Springer; 2013. p. 3–60.2.Harrison JP, Gheeraert N, Tsigelnitskiy D, Cockell CS. The limits for life under multiple extremes. Trends Microbiol. 2013;21:204–12.CAS
PubMed
Article
PubMed Central
Google Scholar
3.Oger PM, Jebbar M. The many ways of coping with pressure. Res Microbiol. 2010;161:799–809.PubMed
Article
PubMed Central
Google Scholar
4.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS
PubMed
Article
PubMed Central
Google Scholar
5.Bartlett DH. Pressure effects on in vivo microbial processes. Biochim Biophys Acta. 2002;1595:367–81.CAS
PubMed
Article
PubMed Central
Google Scholar
6.Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol. 2009;27:434–41.CAS
PubMed
Article
PubMed Central
Google Scholar
7.Jannasch HW, Taylor CD. Deep-sea microbiology. Ann Rev Microbiol. 1984;38:487–514.CAS
Article
Google Scholar
8.Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol. 2010;18:413–22.CAS
PubMed
Article
PubMed Central
Google Scholar
9.Yayanos AA. Microbiology to 10,500 meters in the deep sea. Ann Rev Microbiol. 1995;49:777–805.CAS
Article
Google Scholar
10.Eloe EA, Lauro FM, Vogel RF, Bartlett DH. The deep-sea bacterium Photobacterium profundum SS9 utilizes separate flagellar systems for swimming and swarming under high-pressure conditions. Appl Environ Microbiol. 2008;74:6298–305.CAS
PubMed
PubMed Central
Article
Google Scholar
11.Horikoshi K, Bull AT Prologue: Definition, categories, distribution, origin and evolution, pioneering studies, and emerging fields of extremophiles. In: Horikoshi K, editor. Extremophiles handbook. Tokyo, Japan: Springer; 2011. p. 3–18.12.Holt RD. Bringing the Hutchinsonian niche into the 21st century: ecological and evolutionary perspectives. Proc Natl Acad Sci USA. 2009;106:19659–65.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Talley LD, Pickard GL, Emery WJ, Swift JH. Typical distributions of water characteristics. In: Descriptive physical oceanography, 6th ed. London, UK: Elsevier; 2011. p. 67–110.14.Jebbar M, Franzetti B, Girard E, Oger P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles. 2015;19:721–40.CAS
PubMed
Article
PubMed Central
Google Scholar
15.Berhardt G, Jaenicke R, Ludemann H-D, Konig H, Stetter KO. High pressure enhances the growth rate of the thermophilic archaebacterium Methanococcus thermolithotrophicus without extending its temperature range. Appl Environ Microbiol. 1998;54:1258–61.Article
Google Scholar
16.Scoma A, Garrido-Amador P, Nielsen SD, Roy H, Kjeldsen KU. The polyextremophilic bacterium Clostridium paradoxum attains piezophilic traits by modulating its energy metabolism and cell membrane composition. Appl Environ Microbiol. 2019;85:e00802–19.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Wiegel J. Temperature spans for growth: hypothesis and discussion. FEMS Microbiol Rev. 1990;75:155–70.Article
Google Scholar
18.Morita RY. Psychrophilic bacteria. Bacteriol Rev. 1975;39:144–67.CAS
PubMed
PubMed Central
Article
Google Scholar
19.Zeikus JG. Thermophilic Bacteria—Ecology. Physiol Technol Enz Microb Technol. 1979;1:243–52.CAS
Article
Google Scholar
20.Yayanos AA. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc Natl Acad Sci USA. 1986;83:9542–6.CAS
PubMed
Article
PubMed Central
Google Scholar
21.Jannasch HW, Wirsen CO. Variability of pressure adaptation in deep sea bacteria. Arch Microbiol. 1984;139:281–8.Article
Google Scholar
22.Yayanos AA, Chastain R. The influence of nutrition on the physiology of piezophilic bacteria. In: Bell CR, Brylinsky M, Johnson-Green P, Eds. Proceedings of the 8th International Symposium on Microbial Ecology. Halifax, NS, Canada: Atlantic Canada Society for Microbial Ecology; 6; 1999.23.Matsumura P, Keller DM, Marquis RE. Restricted pH ranges and reduced yields for bacterial growth under pressure. Microb Ecol. 1974;1:176–89.CAS
PubMed
Article
PubMed Central
Google Scholar
24.Oren A. Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev. 1999;63:334–48.CAS
PubMed
PubMed Central
Article
Google Scholar
25.Yayanos AA, Dietz AS, Van, Boxtel R. Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria. Appl Environ Microbiol. 1982;44:1356–61.CAS
PubMed
PubMed Central
Article
Google Scholar
26.Deming JW, Hada H, Colwell RR, Luehrsen KR, Fox GE. The ribonucleotide sequence of 5S rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol. 1984;130:1911–20.CAS
PubMed
PubMed Central
Google Scholar
27.Lauro FM, Chastain RA, Blankenship LE, Yayanos AA, Bartlett DH. The unique 16S rRNA genes of piezophiles reflect both phylogeny and adaptation. Appl Environ Microbiol. 2007;73:838–45.CAS
PubMed
Article
PubMed Central
Google Scholar
28.Marteinsson VT, Birrien J-L-, Reysenbach A-L, Vernet M, Marie D, Gambacorta A, et al. Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol. 1999;49:351–9.PubMed
Article
PubMed Central
Google Scholar
29.Alain K. Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Sys Evol Microbiol. 2002;52:1331–9.CAS
Google Scholar
30.Canganella F, Gonzalez JM, Yanagibayashi M, Kato C, Horikoshi K. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch Microbiol. 1997;168:1–7.CAS
PubMed
Article
PubMed Central
Google Scholar
31.Canganella F, Gambacorta A, Kato C, Horikoshi K. Effects of hydrostatic pressure and temperature on physiological traits of Thermococcus guaymasensis and Thermococcus aggregans growing on starch. Microbiol Res. 2000;154:297–306.CAS
PubMed
Article
PubMed Central
Google Scholar
32.Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW. Prokaryotic responses to hydrostatic pressure in the ocean-a review. Environ Microbiol. 2013;15:1262–74.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Nogi Y, Masui N, Kato C. Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles. 1998;2:1–7.CAS
PubMed
Article
PubMed Central
Google Scholar
34.Arakawa S, Nogi Y, Sato T, Yoshida Y, Usami R, Kato C. Diversity of piezophilic microorganisms in the closed ocean Japan Sea. Biosci Biotechnol Biochem. 2006;70:749–52.CAS
PubMed
Article
PubMed Central
Google Scholar
35.Xu Y, Nogi Y, Kato C, Liang Z, Ruger H-J, De Kegel D, et al. Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol. 2003;53:533–8.CAS
PubMed
Article
PubMed Central
Google Scholar
36.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Kato C. Procedure for isolation of the plastic degrading piezophilic bacteria from deep-sea environments. J Jap Soc Extremophil. 2010a;9:25–30.Article
Google Scholar
37.Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C. Isolation and characterization of biodegradable plastic degrading bacteria from deep-sea environments. JAMSTEC Rep. Res Dev. 2010b;11:33–41.
Google Scholar
38.Nogi Y, Kato C, Horikoshi K. Psychromonas kaikoae sp. nov., a novel piezophilic bacterium from the deepest cold-seep sediments in the Japan Trench. Int J Syst Evol Microbiol. 2002;52:1527–32.CAS
PubMed
PubMed Central
Google Scholar
39.Yayanos AA, Dietz AS, van Boxtel R. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science. 1979;205:808–10.CAS
PubMed
Article
PubMed Central
Google Scholar
40.Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Kato C, Sato T, Horikoshi K. Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodiv Cons. 1995;4:1–9.Article
Google Scholar
42.Kato C, Inoue A, Horikoshi K. Isolating and characterizing deep-sea marinemicroorganisms. Tibtech. 1996;14:6–12.CAS
Article
Google Scholar
43.Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles. 1999;3:71–7.CAS
PubMed
Article
PubMed Central
Google Scholar
44.Deming JW, Somers LK, Straube WL, Swartz DG, Macdonell MT. Isolation of an Obligately Barophilic Bacterium and Description of a New Genus, Colwellia gen. nov. Systematic and Applied Microbiology. 1988;10:152–60.Article
Google Scholar
45.Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.CAS
PubMed
Article
PubMed Central
Google Scholar
46.Cao J, Lai Q, Liu P, Wei Y, Wang L, Liu R, et al. Salinimonas sediminis sp. nov., a piezophilic bacterium isolated from a deep-sea sediment sample from the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:3766–71.CAS
PubMed
Article
PubMed Central
Google Scholar
47.Liu P, Ding W, Lai Q, Liu R, Wei Y, Wang L, et al. Physiological and genomic features of Paraoceanicella profunda gen. nov., sp. nov., a novel piezophile isolated from deep seawater of the Mariana Trench. MicrobiologyOpen. 2019;00:e966.
Google Scholar
48.Quéméneur M, Erauso G, Frouin E, Zeghal E, Vandecasteele C, Ollivier B, et al. Hydrostatic Pressure Helps to Cultivate an Original Anaerobic Bacterium From the Atlantis Massif Subseafloor (IODP Expedition 357): Petrocella atlantisensis gen. nov. sp. nov. Front Microbiol. 2019;10:1497.PubMed
PubMed Central
Article
Google Scholar
49.Xiao X, Wang P, Zeng X, Bartlett DH, Wang F. Shewanella psychrophila sp. nov. and Shewanella piezotolerans sp. nov., isolated from west Pacific deep-sea sediment. Int J Syst Evol Microbiol. 2007;57:60–5.CAS
PubMed
Article
PubMed Central
Google Scholar
50.Alazard D, Dukan S, Urios A, Verhe F, Bouabida N, Morel F, et al. Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol. 2003;53:173–8.CAS
PubMed
Article
PubMed Central
Google Scholar
51.Pathom-Aree W, Nogi Y, Sutcliffe IC, Ward AC, Horikoshi K, Bull AT, et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol. 2006;56:1233–7.CAS
PubMed
Article
PubMed Central
Google Scholar
52.Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A. Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney. Environ Microbiol. 2009;11(8):1983–97.PubMed
Article
PubMed Central
Google Scholar
53.Erauso G, Reysenbach A-L, Godfroy A, Meunier J-R, Crump B, Partensky F, et al. Pyrococcus abyssi sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Arch Microbiol. 1993;160:338–49.CAS
Article
Google Scholar
54.Li Y, Mandelco L, Wiegel J. Isolation and Characterization of a Moderately Thermophilic Anaerobic Alkaliphile. Clostridium paradoxum sp. nov. Int J Sys Bacteriol. 1993;43:450–60.Article
Google Scholar
55.Zhao W, Zeng X, Xiao X. Thermococcus eurythermalis sp. nov., a conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin. Int J Sys Evol Microbiol. 2015;65:30–5.CAS
Article
Google Scholar
56.Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A. 2008;105:10949–54.CAS
PubMed
PubMed Central
Article
Google Scholar
57.González JM, Kato C, Horikoshi K. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol. 1995;164:159–64.PubMed
Article
PubMed Central
Google Scholar
58.Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS. Methanococcusjannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol. 1983;136:254–61.CAS
Article
Google Scholar More