Diel niche variation in mammals associated with expanded trait space
1.Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).PubMed
Article
PubMed Central
Google Scholar
2.Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed
Article
PubMed Central
Google Scholar
3.Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed
Article
PubMed Central
Google Scholar
4.Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).Article
Google Scholar
5.DeCoursey, P. J. Diversity of function of SCN pacemakers in behavior and ecology of three species of sciurid rodents. Biol. Rhythm Res. 35, 13–33 (2004).Article
Google Scholar
6.Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. In Neurobiology of Circadian Timing, Vol. 199 (eds. Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G.) 281–304 (Elsevier, 2012).7.Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).PubMed
Article
PubMed Central
Google Scholar
8.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed
PubMed Central
Article
Google Scholar
9.Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).Article
Google Scholar
10.Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed
Article
PubMed Central
Google Scholar
11.Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
13.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article
Google Scholar
14.Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).ADS
PubMed
Article
PubMed Central
Google Scholar
15.Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
16.Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).Article
Google Scholar
17.Ankel-Simons, F. & Rasmussen, D. T. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 137, 100–117 (2008).Article
Google Scholar
18.Russo, D., Maglio, G., Rainho, A., Meyer, C. F. J. & Palmeirim, J. M. Out of the dark: diurnal activity in the bat Hipposideros ruber on São Tomé island (West Africa). Mamm. Biol. 76, 701–708 (2011).Article
Google Scholar
19.Halle, S. Ecological relevance of daily activity patterns. In Activity Patterns in Small Mammals: An Ecological Approach (eds. Halle, S. & Stenseth, N. C.) 67–90 (Springer, 2000).20.Mammola, S. Assessing similarity of n-dimensional hypervolumes: which metric to use? J. Biogeogr. 46, 2012–2023 (2019).Article
Google Scholar
21.Langerhans, R. B. & DeWitt, T. J. Shared and unique features of evolutionary diversification. Am. Nat. 164, 335–349 (2004).PubMed
Article
PubMed Central
Google Scholar
22.Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
23.Bielby, J. et al. The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
25.Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
26.Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).PubMed
Article
PubMed Central
Google Scholar
27.Roll, U., Dayan, T. & Kronfeld-Schor, N. On the role of phylogeny in determining activity patterns of rodents. Evol. Ecol. 20, 479–490 (2006).Article
Google Scholar
28.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
29.Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
30.Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).PubMed
Article
PubMed Central
Google Scholar
31.Pei, Y., Valcu, M. & Kempenaers, B. Interference competition pressure predicts the number of avian predators that shifted their timing of activity. Proc. R. Soc. B 285, 20180744 (2018).PubMed
Article
PubMed Central
Google Scholar
32.Donati, G. & Borgognini-Tarli, S. M. From darkness to daylight: cathemeral activity in primates. J. Anthropol. Sci. 84, 7–32 (2006).
Google Scholar
33.Veilleux, C. C. & Cummings, M. E. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J. Exp. Biol. 215, 4085 (2012).PubMed
Article
PubMed Central
Google Scholar
34.le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107 (2009).Article
Google Scholar
35.Voigt, C. C. & Lewanzik, D. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc. R. Soc. B 278, 2311–2317 (2011).PubMed
Article
PubMed Central
Google Scholar
36.Rydell, J. & Speakman, J. R. Evolution of nocturnality in bats: potential competitors and predators during their early history. Biol. J. Linn. Soc. 54, 183–191 (1995).Article
Google Scholar
37.Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article
Google Scholar
38.Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).PubMed
Article
PubMed Central
Google Scholar
39.Muul, I. & Lim, B. L. Comparative morphology, food habits, and ecology of some Malaysian arboreal rodents. In The Ecology of Arboreal Folivores (ed. Montgomery, G. G.) 361–368 (Smithsonian Institution, 1978).40.Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of mammals. Proc. R. Soc. B 279, 4962–4968 (2012).PubMed
Article
PubMed Central
Google Scholar
41.Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain. Behav. Evol. 75, 195–203 (2010).PubMed
Article
PubMed Central
Google Scholar
42.Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).Article
Google Scholar
43.Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).Article
Google Scholar
44.Benítez-López, A. Animals feel safer from humans in the dark. Science 360, 1185–1186 (2018).ADS
PubMed
Article
PubMed Central
Google Scholar
45.Rabaiotti, D. & Woodroffe, R. Coping with climate change: limited behavioral responses to hot weather in a tropical carnivore. Oecologia 189, 587–599 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
46.Gaston, K. J., Visser, M. E. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B 370, 20140133 (2015).Article
Google Scholar
47.McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).ADS
Article
Google Scholar
48.Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).ADS
Article
Google Scholar
49.Campbell, G. S. & Norman, J. M. Animals and their environment. In An Introduction to Environmental Biophysics (eds. Campbell, G. S. & Norman, J. M.) 185–207 (Springer, 1998).50.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
51.Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).Article
Google Scholar
52.Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162 (2015).Article
Google Scholar
53.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).Article
Google Scholar
54.Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002).Article
Google Scholar
55.Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B 370, 20140005 (2015).Article
Google Scholar
56.Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).PubMed
Article
PubMed Central
Google Scholar
57.Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).PubMed
Article
PubMed Central
Google Scholar
58.Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World, Vol. 1–4 & 6–9 (Lynx Edicions, 2001).59.R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).60.Pineda-Munoz, S. & Alroy, J. Dietary characterization of terrestrial mammals. Proc. R. Soc. B 281, 20141173 (2014).PubMed
Article
PubMed Central
Google Scholar
61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed
Article
PubMed Central
Google Scholar
62.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article
Google Scholar
63.Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article
Google Scholar
64.Taugourdeau, S., Villerd, J., Plantureux, S., Huguenin-Elie, O. & Amiaud, B. Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data. Ecol. Evol. 4, 944–958 (2014).PubMed
PubMed Central
Article
Google Scholar
65.Filho, J. A. F. D., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66, 1079–1090 (2012).Article
Google Scholar
66.Duong, T. & Hazelton, M. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).MathSciNet
MATH
Article
Google Scholar
67.Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article
Google Scholar
68.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed
Article
PubMed Central
Google Scholar
69.Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article
Google Scholar More