More stories

  • in

    Diel niche variation in mammals associated with expanded trait space

    1.Grossnickle, D. M., Smith, S. M. & Wilson, G. P. Untangling the multiple ecological radiations of early mammals. Trends Ecol. Evol. 34, 936–949 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Faurby, S. et al. PHYLACINE 1.2: the phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Refinetti, R. The diversity of temporal niches in mammals. Biol. Rhythm Res. 39, 173–192 (2008).Article 

    Google Scholar 
    5.DeCoursey, P. J. Diversity of function of SCN pacemakers in behavior and ecology of three species of sciurid rodents. Biol. Rhythm Res. 35, 13–33 (2004).Article 

    Google Scholar 
    6.Hut, R. A., Kronfeld-Schor, N., van der Vinne, V. & De la Iglesia, H. In search of a temporal niche: environmental factors. In Neurobiology of Circadian Timing, Vol. 199 (eds. Kalsbeek, A., Merrow, M., Roenneberg, T. & Foster, R. G.) 281–304 (Elsevier, 2012).7.Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, or exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).Article 

    Google Scholar 
    10.Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    14.Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).Article 

    Google Scholar 
    17.Ankel-Simons, F. & Rasmussen, D. T. Diurnality, nocturnality, and the evolution of primate visual systems. Am. J. Phys. Anthropol. 137, 100–117 (2008).Article 

    Google Scholar 
    18.Russo, D., Maglio, G., Rainho, A., Meyer, C. F. J. & Palmeirim, J. M. Out of the dark: diurnal activity in the bat Hipposideros ruber on São Tomé island (West Africa). Mamm. Biol. 76, 701–708 (2011).Article 

    Google Scholar 
    19.Halle, S. Ecological relevance of daily activity patterns. In Activity Patterns in Small Mammals: An Ecological Approach (eds. Halle, S. & Stenseth, N. C.) 67–90 (Springer, 2000).20.Mammola, S. Assessing similarity of n-dimensional hypervolumes: which metric to use? J. Biogeogr. 46, 2012–2023 (2019).Article 

    Google Scholar 
    21.Langerhans, R. B. & DeWitt, T. J. Shared and unique features of evolutionary diversification. Am. Nat. 164, 335–349 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bielby, J. et al. The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. Proc. Natl Acad. Sci. USA 111, 13727–13732 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Roll, U., Dayan, T. & Kronfeld-Schor, N. On the role of phylogeny in determining activity patterns of rodents. Evol. Ecol. 20, 479–490 (2006).Article 

    Google Scholar 
    28.Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Wilson, G. P. et al. Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483, 457–460 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Anderson, S. R. & Wiens, J. J. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Pei, Y., Valcu, M. & Kempenaers, B. Interference competition pressure predicts the number of avian predators that shifted their timing of activity. Proc. R. Soc. B 285, 20180744 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Donati, G. & Borgognini-Tarli, S. M. From darkness to daylight: cathemeral activity in primates. J. Anthropol. Sci. 84, 7–32 (2006).
    Google Scholar 
    33.Veilleux, C. C. & Cummings, M. E. Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. J. Exp. Biol. 215, 4085 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.le Roux, A., Cherry, M. I., Gygax, L. & Manser, M. B. Vigilance behaviour and fitness consequences: comparing a solitary foraging and an obligate group-foraging mammal. Behav. Ecol. Sociobiol. 63, 1097–1107 (2009).Article 

    Google Scholar 
    35.Voigt, C. C. & Lewanzik, D. Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats. Proc. R. Soc. B 278, 2311–2317 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Rydell, J. & Speakman, J. R. Evolution of nocturnality in bats: potential competitors and predators during their early history. Biol. J. Linn. Soc. 54, 183–191 (1995).Article 

    Google Scholar 
    37.Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    38.Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Muul, I. & Lim, B. L. Comparative morphology, food habits, and ecology of some Malaysian arboreal rodents. In The Ecology of Arboreal Folivores (ed. Montgomery, G. G.) 361–368 (Smithsonian Institution, 1978).40.Hall, M. I., Kamilar, J. M. & Kirk, E. C. Eye shape and the nocturnal bottleneck of mammals. Proc. R. Soc. B 279, 4962–4968 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Heesy, C. P. & Hall, M. I. The nocturnal bottleneck and the evolution of mammalian vision. Brain. Behav. Evol. 75, 195–203 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Buckley, L. B., Hurlbert, A. H. & Jetz, W. Broad-scale ecological implications of ectothermy and endothermy in changing environments. Glob. Ecol. Biogeogr. 21, 873–885 (2012).Article 

    Google Scholar 
    43.Frey, S., Volpe, J. P., Heim, N. A., Paczkowski, J. & Fisher, J. T. Move to nocturnality not a universal trend in carnivore species on disturbed landscapes. Oikos 129, 1128–1140 (2020).Article 

    Google Scholar 
    44.Benítez-López, A. Animals feel safer from humans in the dark. Science 360, 1185–1186 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Rabaiotti, D. & Woodroffe, R. Coping with climate change: limited behavioral responses to hot weather in a tropical carnivore. Oecologia 189, 587–599 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Gaston, K. J., Visser, M. E. & Hölker, F. The biological impacts of artificial light at night: the research challenge. Philos. Trans. R. Soc. B 370, 20140133 (2015).Article 

    Google Scholar 
    47.McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).ADS 
    Article 

    Google Scholar 
    48.Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).ADS 
    Article 

    Google Scholar 
    49.Campbell, G. S. & Norman, J. M. Animals and their environment. In An Introduction to Environmental Biophysics (eds. Campbell, G. S. & Norman, J. M.) 185–207 (Springer, 1998).50.Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Shores, C. R., Dellinger, J. A., Newkirk, E. S., Kachel, S. M. & Wirsing, A. J. Mesopredators change temporal activity in response to a recolonizing apex predator. Behav. Ecol. 30, 1324–1335 (2019).Article 

    Google Scholar 
    52.Carter, N., Jasny, M., Gurung, B. & Liu, J. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162 (2015).Article 

    Google Scholar 
    53.Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Ecological distinctiveness of birds and mammals at the global scale. Glob. Ecol. Conserv. 22, e00970 (2020).Article 

    Google Scholar 
    54.Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002).Article 

    Google Scholar 
    55.Thuiller, W. et al. Conserving the functional and phylogenetic trees of life of European tetrapods. Philos. Trans. R. Soc. B 370, 20140005 (2015).Article 

    Google Scholar 
    56.Larsen, T. H., Williams, N. M. & Kremen, C. Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol. Lett. 8, 538–547 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Holker, F., Wolter, C., Perkin, E. K. & Tockner, K. Light pollution as a biodiversity threat. Trends Ecol. Evol. 25, 681–682 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World, Vol. 1–4 & 6–9 (Lynx Edicions, 2001).59.R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).60.Pineda-Munoz, S. & Alroy, J. Dietary characterization of terrestrial mammals. Proc. R. Soc. B 281, 20141173 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014).Article 

    Google Scholar 
    63.Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    64.Taugourdeau, S., Villerd, J., Plantureux, S., Huguenin-Elie, O. & Amiaud, B. Filling the gap in functional trait databases: use of ecological hypotheses to replace missing data. Ecol. Evol. 4, 944–958 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Filho, J. A. F. D., Rangel, T. F., Santos, T. & Bini, L. M. Exploring patterns of interspecific variation in quantitative traits using sequential phylogenetic eigenvector regressions. Evolution 66, 1079–1090 (2012).Article 

    Google Scholar 
    66.Duong, T. & Hazelton, M. Plug-in bandwidth matrices for bivariate kernel density estimation. J. Nonparametr. Stat. 15, 17–30 (2003).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    67.Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    68.Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar  More

  • in

    Behavioural movement strategies in cyclic models

    In this work, we performed stochastic simulations of a cyclic nonhierarchical system composed of 5 species. To this purpose, we implemented a standard numerical algorithm largely used to study spatial biological systems11,13,41. We considered a generalisation of the rock-paper-scissors game for 5 species, whose rules are illustrated in Fig. 1a. The arrows indicate a cyclic dominance among the species. Accordingly, individuals of species i beat individuals of species (i+1), with (i=1,2,3,4,5).The dynamics of individuals’ spatial organisation occurs in a square lattice with periodic boundary conditions, following the rules: selection, reproduction, and mobility. We assumed the May-Leonard implementation so that the total number of individuals is not conserved43. Each grid point contains at most one individual, which means that the maximum number of individuals is ({mathcal {N}}), the total number of grid points.Initially, the number of individuals is the same for all species, i.e., (I_i,=,{mathcal {N}}/5), with (i=1,2,3,4,5) (there are no empty spaces in the initial state). We prepared the initial conditions by distributing each individual at a random grid point. At each timestep, one interaction occurs, changing the spatial configuration of individuals. The possible interactions are:

    Selection: (i j rightarrow i otimes ,), with (j = i+1), where (otimes) means an empty space; every time one selection interaction occurs, the grid point occupied by the individual of species (i+1) vanishes.

    Reproduction: (i otimes rightarrow i i,); when one reproduction is realised an individual of species i fills the empty space.

    Mobility: (i odot rightarrow odot i,), where (odot) means either an individual of any species or an empty site; an individual of species i switches positions with another individual of any species or with an empty space.

    In our stochastic simulations, selection, reproduction, and mobilities interactions occur with the following probabilities: s, r and m, respectively. We assumed that individuals of all species have the same probabilities of selecting, reproducing and moving. The interactions were implemented by assuming the von Neumann neighbourhood, i.e., individuals may interact with one of their four nearest neighbours. The simulation algorithm follows three steps: i) sorting an active individual; ii) raffling one interaction to be executed; iii) drawing one of the four nearest neighbours to suffer the sorted interaction (the only exception is the directional mobility, where the neighbour is chosen according to the movement tactic). If the interaction is executed, one timestep is counted. Otherwise, the three steps are redone. Our time unit is called generation, defined as the necessary time to ({mathcal {N}}) timesteps to occur.In our model, individuals of one out of the species can move into the direction with more individuals of a target species. The choice is based on the strategy assumed by species. We assumed three sorts of directional movement tactics:

    Attack tactic: an individual of species i moves into the direction with more individuals of species (i+1);

    Anticipation tactic: an individual of species i goes towards the direction with a larger number of individuals of species (i+2);

    Safeguard tactic: an individual of species i walk into the direction with a larger concentration of individuals of species (i-2).

    In the standard model, individuals of all species move randomly.We considered that only individuals of species 1 perform the directional movement tactics, as illustrated in Fig. 1b. The solid, dashed, and dashed-dotted lines represent the Attack, Anticipation, and Safeguard tactics, respectively. The concentric circumference arcs show that individuals of species 2, 3, 4, and 5 always move randomly. For implementing a directional movement, the algorithm follows the steps: i) it is assumed a disc of radius R (the perception radius), in the active individual’s neighbourhood; ii) it is defined four circular sectors in the directions of the four nearest neighbours; iii) according to the movement tactic, the target species is defined: species 2, 3, and 4, for Attack, Anticipation, and Safeguard tactics, respectively; iv) it is counted the number of individuals of the target species within each circular sector. Individuals on the borders are assumed to be part of both circular sectors; v) the circular sector that contains more individuals of the target species is chosen. In the event of a tie, a draw between the tied directions is made; vi) the active individual switches positions with the immediate neighbour in the chosen direction. The swap is also executed in case of the neighbour grid point is empty.To observe the spatial patterns, we first performed a single simulation for the standard model, Attack, Anticipation, and Safeguard tactics. The realisations run in square lattices with (500^2) grid points, for a timespan of 5000 generations. We captured 500 snapshots of the lattice (in intervals of 10 generations), that were used to make the videos of the dynamics of the spatial patterns showed in https://youtu.be/Ndvk6Rg57m4 (standard), https://youtu.be/JGhkDAHSo74 (Attack), https://youtu.be/ZZp9QlOfv2Q (Anticipation), and https://youtu.be/eFxWdLhIOuQ (Safeguard). The final snapshots were depicted in Fig. 2a–d. Individuals of species 1, 2, 3, 4, and 5 are identified with the colours ruby, blue, pink, green, and yellow, respectively; while white dots represent empty spaces. The simulations were performed assuming selection, reproduction, and mobility probabilities: (s = r = m = 1/3). The perception radius was assumed to be (R=3).The population dynamics were studied by means of the spatial density (rho _i), defined as the fraction of the grid occupied by individuals of species i at time t, i.e., (rho _i = I_i/{mathcal {N}}), where (i=0) stands for empty spaces and (i=1,…,5) represent the species 1, 2, 3, 4, and 5. The temporal changes in spatial densities of the simulations showed in Fig. 2 were depicted in Fig. 3, where the grey, ruby, blue, pink, green, and yellow lines represent the densities of empty spaces and species 1, 2, 3, 4, and 5, respectively. We also computed how the selection risk of individuals of species i changes in time. To this purpose, the algorithm counts the total number of individuals of species i at the beginning of each generation. It is then counted the number of times that individuals of species i are killed during the generation. The ratio between the number of selected individuals and the initial amount is defined as the selection risk of species i, (zeta _i). The results were averaged for every 50 generations. Figure 4 shows (zeta _i,(%)) as a function of the time for the simulations presented in Fig. 2. The ruby, blue, pink, green, and yellow lines show the selection risks of individuals of species 1, 2, 3, 4, and 5, respectively.To quantify the spatial organisation of the species, we studied the spatial autocorrelation function. This quantity measures how individuals of a same species are spatially correlated, indicating spatial domain sizes. Following the procedure carried out in literature41,42,44,45,46, we first calculated the Fourier transform of the spectral density as (C({{vec{r^{prime}}}}) = {mathcal{F}}^{{ – 1}} { S({{vec{k}}})} /C(0)), where the spectral density (S({{vec{k}}})) is given by (S({{vec{k}}}) = sumlimits_{{k_{x} ,k_{y} }} {mkern 1mu} varphi ({{vec{kappa }}})), with (varphi ({{vec{kappa }}}) = {mathcal{F}}{mkern 1mu} { phi ({{vec{r}}}) – langle phi rangle }). The function (phi ({{vec{r}}})) represents the species in the position ({{vec{r}}}) in the lattice (we assumed 0, 1, 2, 3, 4, and 5, for empty sites, and individuals of species 1, 2, 3, 4, and 5, respectively). We then computed the spatial autocorrelation function as$$C(vec{r^{prime}}) = sumlimits_{{|{{vec{r^{prime}}}}| = x + y}} {frac{{C({{vec{r^{prime}}}})}}{{min (2N – (x + y + 1),(x + y + 1))}}}.$$Subsequently, we found the scale of the spatial domains of species i, defined for (C(l_i)=0.15), where (l_i) is the characteristic length for species i.We calculated the autocorrelation function by running 100 simulations using lattices with (500^2) grid points, assuming (s = r = m = 1/3) and (R=3). Each simulation started from different random initial conditions. We then captured each species spatial configuration after 5000 generations to calculate the autocorrelation functions. Finally, we averaged the autocorrelation function in terms of the radial coordinate r and calculated the characteristic length for each species. We also calculated the standard deviation for the autocorrelation functions and the characteristic lengths. Figure 4 shows the comparison of the results for Attack, Anticipation, and Safeguard strategies with the standard model. The ruby, blue, pink, green, and yellow circles indicate the mean values for species 1, 2, 3, 4, and 5, respectively. In the case of standard model, the mean values are represented by grey circles, which are the same for all species. The error bars show that standard deviation. The horizontal black line represents (C(l_i), =, 0.15).To further explore the numerical results, we studied how the perception radius R influences species spatial densities and selection risks. We calculated the mean value of the spatial species densities, (langle , rho _i,rangle) and the mean value of selection risks, (langle , zeta _i,rangle) from a set of 100 simulations in lattices with (500^2) grid points, starting from different initial conditions for (R=1,2,3,4,5). We used (s,=r,=,m,=1/3) and a timespan of (t=5000) generations. The mean values and standard deviation were calculated using the second half of the simulations, thus eliminating the density fluctuations inherent in the pattern formation process. The results were shown in Fig. 6, where the circles represent the mean values and error bars indicate the standard deviation. The colours are the same as in Figs. 3 and 4. Furthermore, to verify the precision of the statistical results, we calculated the variation coefficient – the ratio between the standard deviation and the mean value. Supplementary Tables S1 and S2 show statistical outcomes for species densities and selections risks, respectively.We studied a more realistic scenario where not all individuals of species 1 can perform the directional movement tactics. For this reason, we defined the conditioning factor (alpha), with (0,le ,alpha ,le ,1), representing the proportion of individuals of species 1 that moves directionally. For (alpha =0) all individuals move randomly while for (alpha =1) all individuals move directionally. This means that every time an individual of species 1 is sorted to move, there is a probability (alpha) of the algorithm implementing the directional movement tactic, instead of randomly choosing one of its four immediate neighbours to switch positions. To understand the effects of the conditioning factor, we observed how the density of species 1 changes for the entire range of (alpha), with intervals of (Delta alpha = 0.1). The simulations were implemented for (R=3) and (s,=r,=,m,=1/3). It was computed the mean value of the spatial density of species 1, (langle , rho _1,rangle), and its standard deviation from a set of 100 different random initial conditions. The results were depicted in Fig. 7, where the green, red, and blue dashed lines show (langle , rho _1,rangle) as a function of (alpha). The error bars indicate the standard deviation.Finally, we aimed to investigate how the directional movement tactics jeopardise species coexistence for a wide mobility probability range. Because of this, we run 2000 simulations in lattices with (100^2) grid points for (0.05, More

  • in

    High turbidity levels alter coral reef fish movement in a foraging task

    1.Scholik, A. R. & Yan, H. Y. Effects of boat engine noise on the auditory sensitivity of the fathead minnow, Pimephales promelas. . Environ. Biol. Fish. 63, 203–209. https://doi.org/10.1023/A:1014266531390 (2002).Article 

    Google Scholar 
    2.Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544. https://doi.org/10.1038/ncomms10544 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends. Ecol. Evol. 25, 419–427. https://doi.org/10.1016/j.tree.2010.04.005 (2010).Article 
    PubMed 

    Google Scholar 
    4.Halfwerk, W. & Slabbekoorn, H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol. Lett. 11, 20141051. https://doi.org/10.1098/rsbl.2014.1051 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Baker, C. F. & Montgomery, J. C. Sensory deficits induced by cadmium in banded kokopu, Galaxias fasciatus, juveniles. Environ. Biol. Fish. 62, 455–464. https://doi.org/10.1023/A:1012290912326 (2001).Article 

    Google Scholar 
    6.O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    7.Tierney, K. B., Sampson, J. L., Ross, P. S., Sekela, M. A. & Kennedy, C. J. Salmon olfaction is impaired by an environmentally realistic pesticide mixture. Environ. Sci. Tech. 42, 4996–5001. https://doi.org/10.1021/es800240u (2008).CAS 
    Article 

    Google Scholar 
    8.Ward Ashley, J. W., Duff Alison, J., Horsfall Jennifer, S. & Currie, S. Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc. R Soc. B Biol. Sci. 275, 101–105. https://doi.org/10.1098/rspb.2007.1283 (2008).CAS 
    Article 

    Google Scholar 
    9.Besson, M. et al. Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci. Rep. 7, 9165. https://doi.org/10.1038/s41598-017-09381-0 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112. https://doi.org/10.1242/jeb.004317 (2007).Article 
    PubMed 

    Google Scholar 
    11.Bruintjes, R. et al. Rapid recovery following short-term acoustic disturbance in two fish species. R. Soc. Open Sci. 3, 150686. https://doi.org/10.1098/rsos.150686 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Chang. Biol. 22, 3349–3360. https://doi.org/10.1111/gcb.13352 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. https://doi.org/10.1098/rsbl.2011.0293 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640. https://doi.org/10.1007/s10682-010-9450-x (2011).Article 

    Google Scholar 
    16.Wysocki, L. E., Dittami, J. P. & Ladich, F. Ship noise and cortisol secretion in European freshwater fishes. Biol. Conserv. 128, 501–508. https://doi.org/10.1016/j.biocon.2005.10.020 (2006).Article 

    Google Scholar 
    17.Montgomery, J. C., Jeffs, A., Simpson, S. D., Meekan, M. & Tindle, C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv. Mar. Biol. 51, 143–196. https://doi.org/10.1016/S0065-2881(06)51003-X (2006).Article 
    PubMed 

    Google Scholar 
    18.Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited. 130, 1 (2011).
    Google Scholar 
    19.Collin, S. P. & Hart, N. S. Vision and photoentrainment in fishes: The effects of natural and anthropogenic perturbation. Integr. Zool. 10, 15–28. https://doi.org/10.1111/1749-4877.12093 (2015).Article 
    PubMed 

    Google Scholar 
    20.Brodie, J. E. et al. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Mar Pollut Bull 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Marshall, N. J. in Animal Signals. Signalling and signal design in animal communication (eds Y. Espmark, Y. Amundsen, & G. Rosenqvist) 83–120 (Tapir Academic Press, 2000).22.Marshall, J. Vision and lack of vision in the ocean. Curr. Biol. 27, R494–R502. https://doi.org/10.1016/j.cub.2017.03.012 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. 106, 31–42. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Collier, C., Waycott, M. & Ospina, A. G. Responses of four Indo-West Pacific seagrass species to shading. Mar. Pollut. Bull. 65, 342–354. https://doi.org/10.1016/j.marpolbul.2011.06.017 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.De’ath, G. & Fabricius, K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20, 840–850. https://doi.org/10.1890/08-2023.1 (2010).Article 
    PubMed 

    Google Scholar 
    26.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Morgan, K. M., Perry, C. T., Johnson, J. A. & Smithers, S. G. Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front. Mar. Sci. 4, 1–13. https://doi.org/10.3389/fmars.2017.00224 (2017).Article 

    Google Scholar 
    28.Schartau, J. M., Sjögreen, B., Gagnon, Y. L. & Kröger, R. H. H. Optical plasticity in the crystalline lenses of the cichlid fish Aequidens pulcher. Curr. Biol. 19, 122–126. https://doi.org/10.1016/j.cub.2008.11.062 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Kröger, R. H. H., Braun, S. C. & Wagner, H.-J. Rearing in different photic and chromatic environments modifies spectral responses of cone horizontal cells in adult fish retina. Vis. Neuro Sci. 18, 857–864. https://doi.org/10.1017/S0952523801186025 (2001).Article 

    Google Scholar 
    30.Kröger, R. H. H., Knoblauch, B. & Wagner, H.-J. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J. Exp. Biol. 206, 1643–1648. https://doi.org/10.1242/jeb.00337 (2003).Article 
    PubMed 

    Google Scholar 
    31.Borner, K. K. et al. Turbidity affects social dynamics in Trinidadian guppies. Behav. Ecol. Sociobiol. 69, 645–651. https://doi.org/10.1007/s00265-015-1875-3 (2015).Article 

    Google Scholar 
    32.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies Poecilia reticulata. . Anim. Behav. 103, 179–185. https://doi.org/10.1016/j.anbehav.2015.02.027 (2015).Article 

    Google Scholar 
    33.Johansen, J. L. & Jones, G. P. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes. Ecol. Appl. 23, 1504–1517. https://doi.org/10.1890/12-0704.1 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Chamberlain, A. C. & Ioannou, C. C. Turbidity increases risk perception but constrains collective behaviour during foraging by fish shoals. Anim. Behav. 156, 129–138. https://doi.org/10.1016/j.anbehav.2019.08.012 (2019).Article 

    Google Scholar 
    35.Gregory, R. S. Effect of turbidity on the predator avoidance behaviour of juvenile Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 50, 241–246. https://doi.org/10.1139/f93-027 (1993).Article 

    Google Scholar 
    36.Hess, S. et al. Enhanced fast-start performance and anti-predator behaviour in a coral reef fish in response to suspended sediment exposure. Coral Reefs 38, 103–108. https://doi.org/10.1007/s00338-018-01757-6 (2019).ADS 
    Article 

    Google Scholar 
    37.Miner, J. G. & Stein, R. A. Detection of predators and habitat choice by small Bluegills: Effects of turbidity and alternative prey. T Am. Fish. Soc. 125, 97–103. https://doi.org/10.1577/1548-8659(1996)125%3c0097:DOPAHC%3e2.3.CO;2 (1996).Article 

    Google Scholar 
    38.Utne-Palm, A. C. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. Mar. Freshw. Behav. Phys. 35, 111–128. https://doi.org/10.1080/10236240290025644 (2002).Article 

    Google Scholar 
    39.Fiksen, Ø., Aksnes, D., Flyum, H. & M. & Giske, J. ,. The influence of turbidity on growth and survival of fish larvae: A numerical analysis. Hydrobiologia 484, 49–59. https://doi.org/10.1023/A:1021396719733 (2002).Article 

    Google Scholar 
    40.Gregory, R. S. & Levings, C. D. The effects of turbidity and vegetation on the risk of juvenile salmonids, Oncorhynchus spp, to predation by adult cutthroat trout, O. clarkii. Environ Biol Fish 47, 279–288. https://doi.org/10.1007/BF00000500 (1996).Article 

    Google Scholar 
    41.Wenger, A. S., McCormick, M. I., McLeod, I. M. & Jones, G. P. Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32, 369–374. https://doi.org/10.1007/s00338-012-0991-z (2013).ADS 
    Article 

    Google Scholar 
    42.Asaeda, T., Kyung Park, B. & Manatunge, J. Characteristics of reaction field and the reactive distance of a planktivore, Pseudorasbora parva (Cyprinidae), in various environmental conditions. Hydrobiologia 489, 29–43. https://doi.org/10.1023/A:1023298823106 (2002).Article 

    Google Scholar 
    43.Barrett, J. C., Grossman, G. D. & Rosenfeld, J. Turbidity-induced changes in reactive distance of rainbow trout. Trans. Am. Fish. Soc. 121, 437–443. https://doi.org/10.1577/1548-8659(1992)121%3c0437:TICIRD%3e2.3.CO;2 (1992).Article 

    Google Scholar 
    44.Sweka, J. A. & Hartman, K. J. Reduction of reactive distance and foraging success in smallmouth bass, Micropterus dolomieu, exposed to elevated turbidity levels. Environ. Biol. Fish. 67, 341–347. https://doi.org/10.1023/A:1025835031366 (2003).Article 

    Google Scholar 
    45.Suriyampola, P. S., Cacéres, J. & Martins, E. P. Effects of short-term turbidity on sensory preference and behaviour of adult fish. Anim. Behav. 146, 105–111. https://doi.org/10.1016/j.anbehav.2018.10.014 (2018).Article 

    Google Scholar 
    46.De Robertis, A., Ryer, C. H., Veloza, A. & Brodeur, R. D. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can. J. Fish. Aquat. Sci. 60, 1517–1526. https://doi.org/10.1139/f03-123 (2003).Article 

    Google Scholar 
    47.Huenemann, T. W., Dibble, E. D. & Fleming, J. P. Influence of turbidity on the foraging of largemouth bass. Trans. Am. Fish. Soc. 141, 107–111. https://doi.org/10.1080/00028487.2011.651554 (2012).Article 

    Google Scholar 
    48.Sekhar, M. A., Singh, R., Bhat, A. & Jain, M. Feeding in murky waters: acclimatization and landmarks improve foraging efficiency of zebrafish (Danio rerio) in turbid waters. Biol. Lett. 15, 20190289. https://doi.org/10.1098/rsbl.2019.0289 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wenger, A. S., Johansen, J. L. & Jones, G. P. Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J. Exp. Mar. Biol. Ecol. 428, 43–48. https://doi.org/10.1016/j.jembe.2012.06.004 (2012).Article 

    Google Scholar 
    50.Wenger, A. S. et al. Suspended sediment prolongs larval development in a coral reef fish. J. Exp. Biol. 217, 1122–1128. https://doi.org/10.1242/jeb.094409 (2014).Article 
    PubMed 

    Google Scholar 
    51.Ehlman, S. M., Sandkam, B. A., Breden, F. & Sih, A. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. J. Comput. Physiol. 201, 1125–1135. https://doi.org/10.1007/s00359-015-1041-4 (2015).Article 

    Google Scholar 
    52.Hazelton, P. D. & Grossman, G. D. Turbidity, velocity and interspecific interactions affect foraging behaviour of rosyside dace (Clinostomus funduloides) and yellowfin shiners (Notropis lutippinis). Ecol. Freshw. Fish 18, 427–436. https://doi.org/10.1111/j.1600-0633.2009.00359.x (2009).Article 

    Google Scholar 
    53.Hecht, T. & van der Lingen, C. D. Turbidity-induced changes in feeding strategies of fish in estuaries. S. Afr. J. Zool. 27, 95–107. https://doi.org/10.1080/02541858.1992.11448269 (1992).Article 

    Google Scholar 
    54.Sweka, J. A. & Hartman, K. J. Effects of turbidity on prey consumption and growth in brook trout and implications for bioenergetics modeling. Can. J. Fish. Aquat. Sci. 58, 386–393. https://doi.org/10.1139/f00-260 (2001).Article 

    Google Scholar 
    55.Burt de Perera, T. & Macías Garcia, C. Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109, 341–350. https://doi.org/10.1046/j.1439-0310.2003.00876.x (2003).Article 

    Google Scholar 
    56.Warburton, K. The use of local landmarks by foraging goldfish. Anim. Behav. 40, 500–505. https://doi.org/10.1016/s0003-3472(05)80530-5 (1990).Article 

    Google Scholar 
    57.Burt de Perera, T. & Guilford, T. C. Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L. J. Fish. Biol. 72, 1386–1392. https://doi.org/10.1111/j.1095-8649.2008.01804.x (2008).Article 

    Google Scholar 
    58.Hughes, R. N. & Blight, C. M. Two intertidal fish species use visual association learning to track the status of food patches in a radial maze. Anim. Behav. 59, 613–621. https://doi.org/10.1006/anbe.1999.1351 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Huntingford, F. A. & Wright, P. J. How sticklebacks learn to avoid dangerous feeding patches. Behav. Process. 19, 181–189. https://doi.org/10.1016/0376-6357(89)90040-5 (1989).CAS 
    Article 

    Google Scholar 
    60.Reese, E. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Environ. Biol. Fish. 25, 79–86. https://doi.org/10.1007/bf00002202 (1989).Article 

    Google Scholar 
    61.Silveira, M. M., Oliveira, J. J. & Luchiari, A. C. Dusky damselfish Stegastes fuscus relational learning: evidences from associative and spatial tasks. J. Fish. Biol. 86, 1109–1120. https://doi.org/10.1111/jfb.12618 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Cyrus, D. P. & Blaber, S. J. M. Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution. Estuar. Coast Shelf. S 35, 545–563. https://doi.org/10.1016/S0272-7714(05)80038-1 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Macdonald, R. K., Ridd, P. V., Whinney, J. C., Larcombe, P. & Neil, D. T. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef. Mar. Pollut. Bull. 74, 82–94. https://doi.org/10.1016/j.marpolbul.2013.07.026 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Wenger, A. S. et al. A critical analysis of the direct effects of dredging on fish. Fish Fish 18, 967–985. https://doi.org/10.1111/faf.12218 (2017).Article 

    Google Scholar 
    65.Wenger, A. S. & McCormick, M. I. Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. Mar. Pollut. Bull. 70, 73–80. https://doi.org/10.1016/j.marpolbul.2013.02.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Gardner, M. B. Mechanisms of size selectivity by planktivorous fish: a test of hypotheses. Ecology 62, 571–578. https://doi.org/10.2307/1937723 (1981).Article 

    Google Scholar 
    67.Shoup, D. E. & Wahl, D. H. The effects of turbidity on prey selection by piscivorous largemouth bass. Trans. Am. Fish. Soc. 138, 1018–1027. https://doi.org/10.1577/T09-015.1 (2009).Article 

    Google Scholar 
    68.Cheung, A., Zhang, S., Stricker, C. & Srinivasan, M. V. Animal navigation: the difficulty of moving in a straight line. Biol. Cybern. 97, 47–61. https://doi.org/10.1007/s00422-007-0158-0 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    69.McLean, D. J. & Skowron Volpani, M. A. trajr: An R package for characterisation of animal trajectories. Ethology 124, 40–448. https://doi.org/10.1111/eth.12739 (2018).Article 

    Google Scholar 
    70.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    71.jtools: Analysis and presentation of social scientific data v. R package version 2.0.1 (2019).72.Gradall, K. S. & Swenson, W. A. Responses of brook trout and creek chubs to turbidity. Trans. Am. Fish. Soc. 111, 392–395. https://doi.org/10.1577/1548-8659(1982)111%3c392:ROBTAC%3e2.0.CO;2 (1982).Article 

    Google Scholar 
    73.Berg, L. & Northcote, T. G. Changes in territorial, gill-flaring, and feeding behavior in juvenile Coho salmon (Oncorhynchus kisutch) following short-term pulses of suspended sediment. Can. J. Fish. Aquat. Sci. 42, 1410–1417. https://doi.org/10.1139/f85-176 (1985).Article 

    Google Scholar 
    74.Paris, C. B. et al. Reef odor: A wake up call for navigation in reef fish larvae. PLoS ONE 8, e72808. https://doi.org/10.1371/journal.pone.0072808 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Siebeck, U. E., Parker, A. N., Sprenger, D., Mathger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Cheney, K. L., Grutter, A. S., Blomberg, S. P. & Marshall, N. J. Blue and yellow signal cleaning behavior in Coral Reef Fishes. Curr. Biol. 19, 1283–1287. https://doi.org/10.1016/j.cub.2009.06.028 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Brown, C. & Braithwaite, V. A. Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Anim. Behav. 68, 1325–1329. https://doi.org/10.1016/j.anbehav.2004.04.004 (2004).Article 

    Google Scholar 
    78.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Annu. Rev. Mar. Sci. 9, 445–468. https://doi.org/10.1146/annurev-marine-010816-060551 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    Mosquitoes of the Maculipennis complex in Northern Italy

    1.Kettle, D.S. Medical and Veterinary Entomology 2nd edn (CAB International, 1995).2.Falleroni, D. Fauna anofelica italiana e suo “habitat” (paludi, risaie, canali). Metodi di lotta contro la malaria. Riv. Malariol. 5, 553–559 (1926).
    Google Scholar 
    3.Severini, F., Toma, L., Di Luca, M. & Le, R. R. Zanzare Italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragmenta Entomologica. 41(2), 213–372. https://doi.org/10.4081/FE.2009.92 (2009).Article 

    Google Scholar 
    4.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Manguin, S. et al. Biodiversity of Malaria in the World (John Libbey Eurotext, 2008).6.Linton, Y. M., Smith, L. & Harbach, E. Observations on the taxonomic status of Anopheles subalpinus Hackett & Lewis and An. melanoon Hacket. Eur. Mosq. Bull. 13, 1–7 (2002).
    Google Scholar 
    7.Boccolini, D., Di Luca, M., Marinucci, M. & Romi, R. Further molecular and morphological support for the formal synonymy of Anopheles subalpinus Hackett & Lewis with An. melanoon Hackett. Eur. Mosq. Bull. 16, 1–5 (2003).
    Google Scholar 
    8.Andreeva, I. V., Sibataev, A. K., Rusakova, A. M. & Stegniĭ, V. N. Morpho-cytogenetic characteristic of the mosquito Anopheles artemievi (Diptera: Culicidae), a malaria vector from the complex maculipennis. Parazitologiia. 41(5), 348–363 (2007).PubMed 

    Google Scholar 
    9.Artemov, G. N. et al. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi. Parasites Vectors 11(1), 211. https://doi.org/10.1186/s13071-018-2657-3 (2018).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Naumenko, A. N. et al. Chromosome and genome divergence between the cryptic Eurasian malaria vector-species Anopheles messeae and Anopheles daciae. Genes (Basel) 11(2), 165. https://doi.org/10.3390/genes11020165 (2020).CAS 
    Article 

    Google Scholar 
    11.Nicolescu, G., Linton, Y. M., Vladimirescu, A., Howard, T. M. & Harbach, R. E. Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. Bull. Entomol. Res. 94(6), 525–535. https://doi.org/10.1079/ber2004330 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Gordeev, M. I., Zvantsov, A. B., Goriacheva, I. I., Shaĭkevich, E. V. & Ezhov, M. N. Description of the new species Anopheles artemievi sp.n. (Diptera, Culicidae). Med. Parazitol. (Mosk). 2, 4–5 (2005).
    Google Scholar 
    13.Djadid, N. D. et al. Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran. Malar. J. 6, 6. https://doi.org/10.1186/1475-2875-6-6 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bietolini, S., Candura, F. & Coluzzi, M. Spatial and long term temporal distribution of the Anopheles maculipennis complex species in Italy. Parassitologia 48(4), 581–608 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Romi, R. et al. Status of malaria vectors in Italy. J. Med. Entomol. 34(3), 263–271. https://doi.org/10.1093/jmedent/34.3.263 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Zamburlini, R. & Cargnus, E. Residual mosquitoes in the northern Adriatic seacoast 50 years after the disappearance of malaria. Parassitologia 40, 431–437 (1998).CAS 
    PubMed 

    Google Scholar 
    17.Gratz, N. G. Vector- and Rodent-Borne Diseases in Europe and North America: Distribution, Public Health Burden, and Control (Cambridge University Press, 2006).18.Zahar, A. R. The WHO European region and the two Eastern Mediterranean Region. Applied field studies. In Vector Bionomics in the Epidemiology and Control of Malaria. Part II. WHO/VBC/90.1 (World Health Organization, 1990).19.NPHO Annual Epidemiological Surveillance Report Malaria in Greece, 2019. https://eody.gov.gr/wp-content/uploads/2019/01/MALARIA_ANNUAL_REPORT_2019_ENG.pdf (2019).20.Romi, R. et al. Assessment of the risk of malaria re-introduction in the Maremma plain (Central Italy) using a multi-factorial approach. Malar. J. 11, 98. https://doi.org/10.1186/1475-2875-11-98 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Baldari, M. et al. Malaria in Maremma, Italy. Lancet 351(9111), 1246–1247. https://doi.org/10.1016/S0140-6736(97)10312-9 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Romi, R., Boccolini, D., Menegon, M. & Rezza, G. Probable autochthonous introduced malaria cases in Italy in 2009–2011 and the risk of local vector-borne transmission. Euro Surveill. 17(48), 20325 (2012).PubMed 

    Google Scholar 
    23.Boccolini, D. et al. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health 20(1), 857. https://doi.org/10.1186/s12889-020-08748-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.European Centre for Disease Prevention and Control. Multiple reports of locally-acquired malaria infections in the EU—20 September 2017. (ECDC, 2017).25.Lilja, T., Eklöf, D., Jaenson, T. G. T., Lindström, A. & Terenius, O. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med. Vet. Entomol. 34(3), 364–368. https://doi.org/10.1111/mve.12436 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Di Luca, M., Boccolini, D., Marinucci, M. & Romi, R. Intrapopulation polymorphism in Anopheles messeae (An. maculipennis complex) inferred by molecular analysis. J. Med. Entomol. 41(4), 582–586. https://doi.org/10.1603/0022-2585-41.4.582 (2004).Article 
    PubMed 

    Google Scholar 
    27.Scharlemann, J. P. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3(1), e1408. https://doi.org/10.1371/journal.pone.0001408 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    29.Batovska, J., Cogan, N. O., Lynch, S. E. & Blacket, M. J. Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. G3 (Bethesda) 7(1), 19–29. https://doi.org/10.1534/g3.116.036145 (2017).CAS 
    Article 

    Google Scholar 
    30.Novikov, Iu. M. & Kabanova, V. M. Adaptive association of inversions in a natural population of the malaria mosquito Anopheles messeae Fall. Genetika 15(6), 1033–1045 (1979).PubMed 

    Google Scholar 
    31.Vaulin, O. V. & Novikov, Y. M. Polymorphism and interspecific variability of cytochrome oxidase subunit I (COI) gene nucleotide sequence in sibling species of A and B Anopheles messeae and An. beklemishevi (Diptera: Culicidae). Russ. J. Genet. Appl. Res. 2(6), 421–429. https://doi.org/10.1134/S2079059712060159 (2012).Article 

    Google Scholar 
    32.Bezzhonova, O. V. & Goryacheva, I. I. Intragenomic heterogeneity of rDNA internal transcribed spacer 2 in Anopheles messeae (Diptera: Culicidae). J. Med. Entomol. 45(3), 337–341. https://doi.org/10.1603/0022-2585(2008)45[337:ihorit]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Novikov, Y. M. & Shevchenko, A. I. Inversion polymorphism and the divergence of two cryptic forms of Anopheles messeae (Diptera, Culicidae) at the level of genomic DNA repeats. Russ. J. Genet. 37, 754–763 (2001).CAS 
    Article 

    Google Scholar 
    34.Kitzmiller, J. B., Frizzi, G. & Baker, R. Evolution and speciation within the Maculipennis complex of the genus Anopheles. In Genetics of Insect Vectors of Disease ed. (ed. Wright, J.W. & Pal, R.) (Elsevier Publishing, 1967).35.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56(6), 879–886. https://doi.org/10.1080/10635150701701083 (2007).Article 
    PubMed 

    Google Scholar 
    36.Alquezar, D. E., Hemmerter, S., Cooper, R. D. & Beebe, N. W. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol. Biol. 10, 392. https://doi.org/10.1186/1471-2148-10-392 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mallet, J., Besansky, N. & Hahn, M. W. How reticulated are species?. BioEssays 38(2), 140–149. https://doi.org/10.1002/bies.201500149 (2016).Article 
    PubMed 

    Google Scholar 
    38.Fouet, C., Kamdem, C., Gamez, S. & White, B. J. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl. 10(9), 897–906. https://doi.org/10.1111/eva.12492 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 10(10), 1102–1120. https://doi.org/10.1111/eva.12517 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Cohuet, A., Harris, C., Robert, V. & Fontenille, D. Evolutionary forces on Anopheles: What makes a malaria vector?. Trends Parasitol. 26(3), 130–136. https://doi.org/10.1016/j.pt.2009.12.001 (2010).Article 
    PubMed 

    Google Scholar 
    41.Jetten, T. H., Takken, W. Anophelism Without Malaria in Europe: A Review of the Ecology and Distribution of the Genus Anopheles in Europe. (Wageningen Agricultural University, 1994).42.Becker, N. et al. Mosquitoes and Their Control 2nd edn (Springer Science & Business Media, 2010).43.Mosca, A., Balbo L., Grieco C. & Roberto P. Rice-field mosquito control in Northern Italy. In Proc. of 14th E-SOVE Int. Conf. 98 (2010).44.Daskova, N. G. & Rasnicyn, S. P. Review of data on susceptibility of mosquitoes in the USSR to imported strains of malaria parasites. Bull. World Health Organ. 60(6), 893–897 (1982).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.de Zulueta, J., Ramsdale, C. D. & Coluzzi, M. Receptivity to malaria in Europe. Bull. World Health Organ. 52(1), 109–111 (1975).PubMed 
    PubMed Central 

    Google Scholar 
    46.Ramsdale, C. D. & Coluzzi, M. Studies on the infectivity of tropical African strains of Plasmodium falciparum to some southern European vectors of malaria. Parassitologia 17(1–3), 39–48 (1975).CAS 
    PubMed 

    Google Scholar 
    47.Teodorescu, C., Ungureanu, E., Mihai, M. & Tudose, M. Contributions to the study of the receptivity of the vector A. labranchiae atroparvus to two strains of P. vivax. Revista Medico-Chirurgicala din Iasi 52(1), 73–75 (1978).
    Google Scholar 
    48.Sousa, C. A. G. Malaria Vectorial Capacity and Competence of Anopheles atroparvus Van Thiel, 1927 (Diptera, Culicidae): Implications for the Potential Re-emergence of Malaria in Portugal (Thesis, Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, 2008).49.Toty, C. et al. Malaria risk in Corsica, former hot spot of malaria in France. Malar. J. 9, 231. https://doi.org/10.1186/1475-2875-9-231 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Calzolari, M. et al. West Nile virus surveillance in 2013 via mosquito screening in Northern Italy and the influence of weather on virus circulation. PLoS ONE 10(10), e0140915. https://doi.org/10.1371/journal.pone.0140915 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Marinucci, M., Romi, R., Mancini, P., Di Luca, M. & Severini, C. Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. Insect. Mol. Biol. 8(4), 469–480. https://doi.org/10.1046/j.1365-2583.1999.00140.x (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Jalali, S., Ojha, R. & Venkatesan, T. DNA barcoding for identification of agriculturally important insects. In New Horizons in Insect Science: Towards Sustainable Pest Management (ed. Chakravarthy, A. K.) (Springer, 2015).53.Lühken, R. et al. Distribution of individual members of the mosquito Anopheles maculipennis complex in Germany identified by newly developed real-time PCR assays. Med. Vet. Entomol. 30, 144–154. https://doi.org/10.1111/mve.12161 (2016).Article 
    PubMed 

    Google Scholar 
    54.Katoh, K., Rozewicki, J. & Yamada, K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704. https://doi.org/10.1080/10635150390235520 (2003).Article 
    PubMed 

    Google Scholar 
    56.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772. https://doi.org/10.1038/nmeth.2109 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    59.Elith, S. J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    60.Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    61.Phillips, S., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar  More

  • in

    Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron

    1.Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493. https://doi.org/10.1146/annurev-marine-120308-081028 (2010).ADS 
    Article 

    Google Scholar 
    2.Bessho-Uehara, M. et al. Kleptoprotein bioluminescence: parapriacanthus fish obtain luciferase from ostracod prey. Sci. Adv. 6, eaax4942. https://doi.org/10.1126/sciadv.aax4942 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Davis, M. P., Sparks, J. S. & Smith, W. L. Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE 11, e0155154. https://doi.org/10.1371/journal.pone.0155154 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Claes, J. M. & Mallefet, J. Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae). J. Fish Biol. 73, 1337–1350. https://doi.org/10.1111/j.1095-8649.2008.02006.x (2008).Article 

    Google Scholar 
    5.Harper, R. D. & Case, J. F. Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus. Mar. Biol. 134, 529–540. https://doi.org/10.1007/s002270050568 (1999).Article 

    Google Scholar 
    6.Herring, P. J. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Ass. 87, 829–842. https://doi.org/10.1017/S0025315407056433 (2007).CAS 
    Article 

    Google Scholar 
    7.Widder, E. A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science (New York, NY) 328, 704–708. https://doi.org/10.1126/science.1174269 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hellinger, J. et al. The flashlight fish anomalops katoptron uses bioluminescent light to detect prey in the dark. PLoS ONE 12, e170489. https://doi.org/10.1371/journal.pone.0170489 (2017).CAS 
    Article 

    Google Scholar 
    9.Golani, D., Fricke, R. & Appelbaum-Golani, B. Review of the genus Photoblepharon (Actinopterygii: Beryciformes: Anomalopidae). Acta Ichthyol. Piscat. 49, 33–41. https://doi.org/10.3750/AIEP/02530 (2019).Article 

    Google Scholar 
    10.Ho, H.-C. & Johnson, G. D. Protoblepharon mccoskeri, a new flashlight fish from eastern Taiwan (Teleostei: Anomalopidae). Zootaxa https://doi.org/10.11646/zootaxa.3479.1.5 (2012).Article 

    Google Scholar 
    11.Morin, J. G. et al. Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science 190, 74–76. https://doi.org/10.1126/science.190.4209.74 (1975).ADS 
    Article 

    Google Scholar 
    12.Hellinger, J. et al. Analysis of the territorial aggressive behavior of the bioluminescent flashlight fish photoblepharon steinitzi in the Red Sea. Front. Mar. Sci. 7, 431. https://doi.org/10.3389/fmars.2020.00078 (2020).ADS 
    Article 

    Google Scholar 
    13.Gruber, D. F. et al. Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish. PLoS ONE 14, e0219852. https://doi.org/10.1371/journal.pone.0219852 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hendry, T. A., de Wet, J. R. & Dunlap, P. V. Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ. Microbiol. 16, 2611–2622. https://doi.org/10.1111/1462-2920.12302 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Hendry, T. A., de Wet, J. R., Dougan, K. E. & Dunlap, P. V. Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish. Genome Biol. Evol. 8, 2203–2213. https://doi.org/10.1093/gbe/evw161 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Haneda, Y. & Tsuji, F. I. Light production in the luminous fishes Photoblepharon and Anomalops from the Banda Islands. Science (New York, NY) 173, 143–145. https://doi.org/10.1126/science.173.3992.143 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Bassot, J.-M. in Bioluminescence in Progress, edited by F. H. Johnson & Y. Haneda (Princeton University Press1966), pp. 557–610.18.Watson, M., Thurston, E. L. & Nicol, J. A. C. Reflectors in the Light Organ of Anomalops (Anomalopidae, Teleostei). Proc. R. Soc. Lond. Ser. B Biol. Sci. 202, 339–351 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mark, M. D. et al. Visual tuning in the flashlight fish Anomalops katoptron to detect blue, bioluminescent light. PLoS ONE 13, e0198765. https://doi.org/10.1371/journal.pone.0198765 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Howland, H. C., Murphy, C. J. & McCosker, J. E. Detection of eyeshine by flashlight fishes of the family anomalopidae. Vis. Res. 32, 765–769. https://doi.org/10.1016/0042-6989(92)90191-K (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.McCosker, J. E. & Rosenblatt, R. H. Notes on the biology, taxonomy, and distribution of flashlight fishes (Beryciformes: Anomalopidae). Jpn. J. Ich. 34, 157–164. https://doi.org/10.1007/BF02912410 (1987).Article 

    Google Scholar 
    22.Parrish, J. K., Viscido, S. V. & Grünbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305. https://doi.org/10.2307/1543482 (2002).Article 
    PubMed 

    Google Scholar 
    23.Pitcher, T. J. (ed.) Behaviour of Teleost Fishes (Chapman & Hall, 1993).
    Google Scholar 
    24.Helfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. The Diversity of Fishes. Biology, Evolution, and Ecology 2nd edn. (Wiley-Blackwell, Oxford, 2009).
    Google Scholar 
    25.McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149. https://doi.org/10.1016/j.cub.2018.02.043 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Pitcher, T. J., Magurran, A. E. & Winfield, I. J. Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151. https://doi.org/10.1007/BF00300175 (1982).Article 

    Google Scholar 
    27.Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science (New York, NY) 337, 1212–1215. https://doi.org/10.1126/science.1218919 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Turner, G. F. & Pitcher, T. J. Attack abatement: a model for group protection by combined avoidance and dilution. Am. Nat. 128, 228–240. https://doi.org/10.1086/284556 (1986).Article 

    Google Scholar 
    29.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380. https://doi.org/10.1016/S0003-3472(86)80208-1 (1986).Article 

    Google Scholar 
    30.Kowalko, J. E. et al. Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr. Biol. 23, 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Partridge, B. L. & Pitcher, T. J. The sensory basis of fish schools: Relative roles of lateral line and vision. J. Comp. Physiol. 135, 315–325. https://doi.org/10.1007/BF00657647 (1980).Article 

    Google Scholar 
    32.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.1126 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bierbach, D. et al. Using a robotic fish to investigate individual differences in social responsiveness in the guppy. R. Soc. Open Sci. 5, 181026. https://doi.org/10.1098/rsos.181026 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science (New York, NY) 339, 574–576. https://doi.org/10.1126/science.1225883(2013) (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl. Acad. Sci. USA 116, 20556–20561. https://doi.org/10.1073/pnas.1905585116 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Kunz, H. & Hemelrijk, C. K. Artificial fish schools: collective effects of school size, body size, and body form. Artif. Life 9, 237–253. https://doi.org/10.1162/106454603322392451 (2003).Article 
    PubMed 

    Google Scholar 
    37.Worm, M. et al. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc. Natl. Acad. Sci. USA 115, 6852–6857. https://doi.org/10.1073/pnas.1801283115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adapt. Behav. 20, 44–56. https://doi.org/10.1177/1059712311426799 (2012).Article 

    Google Scholar 
    39.Cohen, A. C. & Morin, J. G. It’s all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of caribbean ostracodes. J. Crustacean Biol. 30, 56–67. https://doi.org/10.1651/09-3170.1 (2010).Article 

    Google Scholar 
    40.Rivers, T. J. & Morin, J. G. Complex sexual courtship displays by luminescent male marine ostracods. J. Exp. Biol. 211, 2252–2262. https://doi.org/10.1242/jeb.011130 (2008).Article 
    PubMed 

    Google Scholar 
    41.Widder, E. A., Latz, M. I., Herring, P. J. & Case, J. F. Far red bioluminescence from two deep-sea fishes. Science (New York, NY) 225, 512–514. https://doi.org/10.1126/science.225.4661.512 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Mensinger, A. F. & Case, J. F. Luminescent properties of deep sea fish. J. Exp. Mar. Biol. Ecol. 144, 1–15. https://doi.org/10.1016/0022-0981(90)90015-5 (1990).Article 

    Google Scholar 
    43.Sasaki, A. et al. Field evidence for bioluminescent signaling in the Pony Fish, Leiognathus elongatus. Environ. Biol. Fishes 66, 307–311. https://doi.org/10.1023/A:1023959123422 (2003).Article 

    Google Scholar 
    44.McFall-Ngai, M. J. & Dunlap, P. V. Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73, 227–237. https://doi.org/10.1007/BF00392247 (1983).Article 

    Google Scholar 
    45.Johnson, G. D. & Rosenblatt, R. H. Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group. Zool. J. Linnean Soc. 94, 65–96. https://doi.org/10.1111/j.1096-3642.1988.tb00882.x (1988).Article 

    Google Scholar 
    46.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci. USA 108, 18726–18731. https://doi.org/10.1073/pnas.1109355108 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Siebeck, U. E., Parker, A. N., Sprenger, D., Mäthger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. CB 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Larsch, J. & Baier, H. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation. Curr. Biol. 28, 3523-3532.e4. https://doi.org/10.1016/j.cub.2018.09.014 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Kasumyan, A. O. Acoustic signaling in fish. J. Ichthyol. 49, 963–1020. https://doi.org/10.1134/S0032945209110010 (2009).Article 

    Google Scholar 
    50.Santon, M. et al. Redirection of ambient light improves predator detection in a diurnal fish. Proc. Biol. Sci. 287, 20192292. https://doi.org/10.1098/rspb.2019.2292 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).Article 
    PubMed 

    Google Scholar 
    52.Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35, 109 (1958).
    Google Scholar 
    53.Videler, J. J. & Wardle, C. S. Fish swimming stride by stride: speed limits and endurance. Rev. Fish. Biol. Fish. 1, 23–40. https://doi.org/10.1007/BF00042660 (1991).Article 

    Google Scholar 
    54.Ware, D. M. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. J. Fish. Res. Bd. Can. 35, 220–228. https://doi.org/10.1139/f78-036 (1978).ADS 
    Article 

    Google Scholar 
    55.Meyer-Rochow, V. B. Loss of bioluminescence inAnomalops katoptron due to starvation. Experientia 32, 1175–1176. https://doi.org/10.1007/BF01927610 (1976).Article 

    Google Scholar 
    56.Barber, I., Downey, L. C. & Braithwaite, V. A. Parasitism, oddity and the mechanism of shoal choice. J. Fish Biol. 53, 1365–1368. https://doi.org/10.1111/j.1095-8649.1998.tb00256.x (1998).Article 

    Google Scholar 
    57.Ward, A. J. W., Duff, A. J., Krause, J. & Barber, I. Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala. Environ. Biol. Fish. 72, 155–160. https://doi.org/10.1007/s10641-004-9078-1 (2005).Article 

    Google Scholar 
    58.Theodorakis, C. W. Size segregation and the effects of oddity on predation risk in minnow schools. Anim. Behav. 38, 496–502. https://doi.org/10.1016/S0003-3472(89)80042-9 (1989).Article 

    Google Scholar 
    59.Steche, O. Die Leuchtorgane von Anomalops katoptron und Photoblepharon palpebratus, zwei Oberflächenfischen aus dem malayischen Archipel: Ein Beitrag zur Anatomie und Physiologie der Leuchtorgane der Fische (Z Wiss Zool., 1909).60.Parrish, J. K. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science (New York, NY) 284, 99–101. https://doi.org/10.1126/science.284.5411.99 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Woodland, D. J., Cabanban, A. S., Taylor, V. M. & Taylor, R. J. A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae : Perciformes). Mar. Freshwater Res. 53, 159. https://doi.org/10.1071/MF01157 (2002).Article 

    Google Scholar  More

  • in

    Discovering environmental management opportunities for infectious disease control

    1.Eisenberg, J. N. S., Desai, M. A., Levy, K., Bates, S. J., Liang, S., Naumoff, K. & Scott, J. C. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect. 115(8), 1216–1223. https://doi.org/10.1289/ehp.9806 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I. & Rinaldo, A. On the space-time evolution of a cholera epidemic. Water Resour. Res. 44(1), 1–8. https://doi.org/10.1029/2007WR006211 (2008).Article 

    Google Scholar 
    3.Bomblies, A., Duchemin, J. B. & Eltahir, E. A. B. Hydrology of malaria: Model development and application to a Sahelian village. Water Resour. Res. 44(12), 1–26. https://doi.org/10.1029/2008WR006917 (2008).Article 

    Google Scholar 
    4.Perez-Saez, J., Mande, T., Ceperley, N., Bertuzzo, E., Mari, L., Gatto, M. & Rinaldo, A. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proc. Natl. Acad. Sci. USA 113(23), 6427–6432. https://doi.org/10.1073/pnas.1602251113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.van Dijk, J., Sargison, N. D., Kenyon, F. & Skuce, P. J. Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animal 4(3), 377–392. https://doi.org/10.1017/s1751731109990991 (2010).Article 
    PubMed 

    Google Scholar 
    6.Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., … Michael, E. Climate, environmental and socio-economic change: weighing up the balance in vector- borne disease transmission. Philos. Trans. R. Soc. B 370, 1665. https://doi.org/10.1098/rstb.2013.0551 (2015).7.Cable, J., Barber, I., Boag, B., Ellison, A. R., Morgan, E. R., Murray, K., … Booth, M. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. B 372, 1719. https://doi.org/10.1098/rstb.2016.0088 (2017).8.McIntyre, K. M., Setzkorn, C., Hepworth, P. J., Morand, S., Morse, A. P. & Baylis, M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-06948-9 (2017).CAS 
    Article 

    Google Scholar 
    9.Garchitorena, A., Sokolow, S. H., Roche, B., Ngonghala, C. N., Jocque, M., Lund, A., … De Leo, G. A. Disease ecology, health and the environment: a framework to account for ecological and socio- economic drivers in the control of neglected tropical diseases. Phil. Trans. R. Soc. B, 372, 20160128. https://doi.org/10.1098/rstb.2016.0128 (2017).10.Webster, J. P., Molyneux, D. H., Hotez, P. J. & Fenwick, A. The contribution of mass drug administration to global health: Past, present and future. Philos. Trans. R. Soc. B 369(1645), 20130434. https://doi.org/10.1098/rstb.2013.0434 (2014).Article 

    Google Scholar 
    11.Beesley, N. J., Caminade, C., Charlier, J., Flynn, R. J., Hodgkinson, J. E., Martinez-Moreno, A., … Williams, D. J. L. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis. 65, 199–216 https://doi.org/10.1111/tbed.12682 (2018).12.Kamaludeen, J., Graham-Brown, J., Stephens, N., Miller, J., Howell, A., Beesley, N. J., … Williams, D. Lack of efficacy of triclabendazole against Fasciola hepatica is present on sheep farms in three regions of England, and Wales. Vet. Rec. 184(16), 502–502. https://doi.org/10.1136/vr.105209 (2019).13.WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2019).14.Mas-Coma, S., Valero, M. A. & Bargues, M. D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 163(4), 264–280. https://doi.org/10.1016/j.vetpar.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    15.Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 341(6145), 514–519. https://doi.org/10.1126/science.1239401 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Ruiz Carrascal, D. & Pascual, M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343(6175), 1154–1159. https://doi.org/10.1126/science.1244325 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Sokolow, S. H., Jones, I. J., Jocque, M., La, D., Cords, O., Knight, A., … De Leo, G. A. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail- eating river prawns. Phiosl. Trans. R. Soc. B 372(1722), 20160127. https://doi.org/10.1098/rstb.2016.0127 (2017).18.Morgan, E. R., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., von Samson-Himmelstjerna, G., … Vercruysse, J. Global change and helminth infections in grazing ruminants in Europe: Impacts, trends and sustainable solutions. Agriculture 3(3), 484–502. https://doi.org/10.3390/agriculture3030484. (2013).19.Prüss-Ustün, A., Wolf, J., Corvalan, C., Bos, R., & Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks (World Health Organisation, 2016).20.Eisenberg, J. N. S., Brookhart, M. A., Rice, G., Brown, M. & Colford, J. M. Disease transmission models for public health decision making: Analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ. Health Perspect. 110(8), 783–790. https://doi.org/10.1289/ehp.02110783 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., … Grenfell, B. T.. Epidemic dynamics at the human–animal interface. Science 326(5958), 1362–1367. https://doi.org/10.1126/science.1177345 (2009).22.Mellor, J. E., Levy, K., Zimmerman, J., Elliott, M., Bartram, J., Carlton, E., … Nelson, K.. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases. Science of the Total Environment, 548–549, 82–90. https://doi.org/10.1016/j.scitotenv.2015.12.087 (2016).23.Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23. https://doi.org/10.1016/j.envint.2015.09.007 (2016).Article 
    PubMed 

    Google Scholar 
    24.Beltrame, L., Dunne, T., Vineer, H. R., Walker, J. G., Morgan, E. R., Vickerman, P., … Wagener, T. A mechanistic hydro-epidemiological model of liver fluke risk. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0072 (2018).25.Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., … Winter, L. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Softw. https://doi.org/10.1016/j.envsoft.2008.11.010 (2009).27.Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., … Wilson, J. S. The future of hydrology: An evolving science for a changing world. Water Resour. Research, 46, W05301. https://doi.org/10.1029/2009WR008906 (2010).28.Liang, S., Seto, E. Y. W., Remais, J. V, Zhong, B., Yang, C., Hubbard, A., … Spear, R. C. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc. Natl. Acad. Sci. USA 104(17), 7110–7115. https://doi.org/10.1073/pnas.0701878104 (2007).29.Mari, L., Ciddio, M., Casagrandi, R., Perez-Saez, J., Bertuzzo, E., Rinaldo, A., … Gatto, M. Heterogeneity in schistosomiasis transmission dynamics. J. Theor. Biol. 432, 87–99. https://doi.org/10.1016/j.jtbi.2017.08.015 (2017).30.Knubben-Schweizer, G., Rüegg, S., Torgerson, P., Rapsch, C., Grimm, F., Hässig, M., … Braun, U. Control of bovine fasciolosis in dairy cattle in Switzerland with emphasis on pasture management. Vet. J. 186, 188–191. https://doi.org/10.1016/j.tvjl.2009.08.003 (2010).31.McCann, C. M., Baylis, M. & Williams, D. J. L. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int. J. Parasitol. 40(9), 1021–1028. https://doi.org/10.1016/j.ijpara.2010.02.009 (2010).Article 
    PubMed 

    Google Scholar 
    32.Selemetas, N., Phelan, P., O’Kiely, P. & de Waal, T. The effects of farm management practices on liver fluke prevalence and the current internal parasite control measures employed on Irish dairy farms. Vet. Parasitol. 207(3–4), 228–240. https://doi.org/10.1016/j.vetpar.2014.12.010 (2015).Article 
    PubMed 

    Google Scholar 
    33.Ollerenshaw, C. B. The approach to forecasting the incidence of fascioliasis over England and Wales 1958–1962. Agric. Meteorol. 3(1–2), 35–53. https://doi.org/10.1016/0002-1571(66)90004-5 (1966).Article 

    Google Scholar 
    34.Fox, N. J., White, P. C. L., McClean, C. J., Marion, G., Evans, A. & Hutchings, M. R. Predicting impacts of climate change on fasciola hepatica risk. PLoS ONE 6(1), e16126. https://doi.org/10.1371/journal.pone.0016126 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Caminade, C., van Dijk, J., Baylis, M. & Williams, D. Modelling recent and future climatic suitability for fasciolosis in Europe. Geospat. Health 9(2), 301–308. https://doi.org/10.4081/gh.2015.352 (2015).Article 
    PubMed 

    Google Scholar 
    36.Lo Iacono, G., Armstrong, B., Fleming, L. E., Elson, R., Kovats, S., Vardoulakis, S. & Nichols, G. L. Challenges in developing methods for quantifying the effects of weather and climate on water-associated diseases: A systematic review. PLoS Negl. Trop. Dis. 11(6), e0005659. https://doi.org/10.1371/journal.pntd.0005659 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lo, N. C., Gurarie, D., Yoon, N., Coulibaly, J. T., Bendavid, E., Andrews, J. R. & King, C. H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc. Natl. Acad. Sci. USA 115(4), E584–E591. https://doi.org/10.1073/pnas.1708729114 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Williams, D. J. L., Howell, A., Graham-Brown, J., Kamaludeen, J., & Smith, D. Liver fluke—An overview for practitioners. Cattle Pract. 22 (2014).39.Pritchard, G. C., Forbes, A. B., Williams, D. J. L., Salimi-Bejestani, M. R. & Daniel, R. G. Emergence of fasciolosis in cattle in East Anglia. Vet. Rec. 157, 578–582. https://doi.org/10.1136/vr.157.19.578 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Kenyon, F., Sargison, N. D., Skuce, P. J. & Jackson, F. Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 163(4), 293–297. https://doi.org/10.1016/j.vetpar.2009.03.027 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.McCann, C. M., Baylis, M. & Williams, D. J. L. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Vet. Rec. 166(20), 612–617. https://doi.org/10.1136/vr.b4836 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Ollerenshaw, C. B. & Rowlands, W. T. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Rec. 71(29), 591–598 (1959).
    Google Scholar 
    43.Fairweather, I. & Boray, J. C. Fasciolicides: Efficacy, actions, resistance and its management. Vet. J. 158, 81–112 (1999).CAS 
    Article 

    Google Scholar 
    44.Morgan, E. R., Hosking, B. C., Burston, S., Carder, K. M., Hyslop, A. C., Pritchard, L. J., … Coles, G. C. A survey of helminth control practices on sheep farms in Great Britain and Ireland. Vet. J. 192(3), 390–397. https://doi.org/10.1016/j.tvjl.2011.08.004 (2012).45.Mitchell, G. Update on Fasciolosis in cattle and sheep. Practice 24(7), 378–385 (2002).Article 

    Google Scholar 
    46.Skuce, P. J. & Zadoks, R. N. Liver fluke A growing threat to UK livestock production. Cattle Pract. 21(2), 138–149 (2013).
    Google Scholar 
    47.Scotland’s RUral College (SRUC). Technical Note 677: Treatment and Control of Liver Fluke (2016).48.National Animal Disease Information System (NADIS). https://www.nadis.org.uk/parasite-forecast.aspx (2019).49.Markus, S. B., Bailey, D. W. & Jensen, D. Comparison of electric fence and a simulated fenceless control system on cattle movements. Livestock Sci. 170, 203–209. https://doi.org/10.1016/j.livsci.2014.10.011 (2014).50.Marini, D., Llewellyn, R., Belson, S. & Lee, C. Controlling Within-Field Sheep Movement Using Virtual Fencing. Animals 8(3), 31. https://doi.org/10.3390/ani8030031 (2018).51.Marshall, E. J. P., Wade, P. M. & Clare, P. Land drainage channels in England and Wales. Geogr. J. 144(2), 254–263 (1978).Article 

    Google Scholar 
    52.Robinson, M. & Armstrong, A. C. The extent of agricultural field drainage in England and Wales, 1971–80. Trans. Inst. Brit. Geogr. 13(1), 19–28 (1988).Article 

    Google Scholar 
    53.Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrol. Earth Syst. Sci. 21(2), 1189–1224. https://doi.org/10.5194/hess-21-1189-2017 (2017).ADS 
    Article 

    Google Scholar 
    54.National River Flow Archive (NRFA). NERC CEH. https://nrfa.ceh.ac.uk/ (2019).55.Intermap Technologies. NEXTMap British Digital Terrain 50m resolution (DTM10) Model Data by Intermap, NERC Earth Observation Data Centre. http://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2 (2009).56.Coxon, G., Freer, J., Lane, R., Dunne, T., Howden, N. J. K., Quinn, N., … Woods, R. DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geosci. Model Dev. 12, 2285–2306. https://doi.org/10.5194/gmd-2018-205 (2019).57.Beven, K., Lamb, R., Quinn, P., Romanowicz, R. & Freer, J. TOPMODEL. In Computer Models of Watershed Hydrology (ed. Sing, V. P.) 627–668 (Water Resource Publications, 1995).
    Google Scholar 
    58.Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V. & Hattermann, F. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dyn. 6(1), 17–43. https://doi.org/10.5194/esd-6-17-2015 (2015).ADS 
    Article 

    Google Scholar 
    59.Shen, C., Niu, J. & Phanikumar, M. S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour. Res. 49(5), 2552–2572. https://doi.org/10.1002/wrcr.20189 (2013).ADS 
    Article 

    Google Scholar 
    60.MetOffice. https://www.metoffice.gov.uk/research/climate/maps-and-data (2017). More

  • in

    Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

    1.Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).ADS 
    Article 

    Google Scholar 
    2.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Song, X. P., Huang, C., Saatchi, S. S., Hansen, M. C. & Townshend, J. R. Annual carbon emissions from deforestation in the Amazon basin between 2000 and 2010. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    6.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Ministério do Meio Ambiente (MMA). REDD+ and Brazil’s Nationally Determined Contribution. http://redd.mma.gov.br/en/redd-and-brazil-s-ndc (2016).8.Bongers, F., Chazdon, R. L., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Almeida, C. Ade et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz 46, 291–302 (2016).Article 

    Google Scholar 
    10.Nunes, S. Jr., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).11.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).15.Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).16.Zarin, D. J. et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005).Article 

    Google Scholar 
    17.Anderegg, W. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).18.Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Yang, Y., Saatchi, S., Xu, L., Keller, M. & Corsini, C. R. Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004–2014). Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006396 (2020).20.Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: A case study from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).Article 

    Google Scholar 
    21.Wang, Y. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. https://doi.org/10.1038/s41893-019-0470-4 (2020).22.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084 (2019).24.IPCC. Chapter 4 Forest Land. In IPCC Guidelines for National Greenhouse Gas Inventories (eds. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) vol. 4, 1–29 (IGES, 2006).25.Mapbiomas Brasil. Project MapBiomas—Collection 3.1 of Brazilian Land Cover and Use Map Series. https://mapbiomas.org/ (2018).26.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    27.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Google Scholar 
    28.Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170411 (2018).29.Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).30.Zuquim, G. et al. Making the most of scarce data: mapping soil gradients in data-poor areas using species occurrence records. Methods Ecol. Evol. 10, 788–801 (2019).Article 

    Google Scholar 
    31.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006. (2015).32.Johnson, C. M., Vieira, I. C. G., Zarin, D. J., Frizano, J. & Johnson, A. H. Carbon and nutrient storage in primary and secondary forests in eastern Amazônia. Forest Ecol. Manag. 147, 245–252 (2001).Article 

    Google Scholar 
    33.Moran, E. F. Effects of soil fertility and land-use on forest succesion in Amazonia. Forest Ecol. Manag. 139, 93–108 (2000).ADS 
    Article 

    Google Scholar 
    34.Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Alves, D. S. et al. Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Glob. Chang. Biol. 3, 451–461 (1997).ADS 
    Article 

    Google Scholar 
    37.MCT. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change. (2016). https://unfccc.int/documents/66129.38.Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Morton, D. C. et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 115, 1706–1720 (2011).ADS 
    Article 

    Google Scholar 
    41.Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004).ADS 
    Article 

    Google Scholar 
    42.Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 12, 1107–1138 (2006).ADS 
    Article 

    Google Scholar 
    43.Saatchi, S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).ADS 
    Article 

    Google Scholar 
    44.Wandelli, E. V. & Fearnside, P. M. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. Forest Ecol. Manag. 347, 140–148 (2015).Article 

    Google Scholar 
    45.Uhl, C., Buschbacher, R. & Serrão, E. A. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J. Ecol. 76, 663–681 (1988).Article 

    Google Scholar 
    46.Kalamandeen, M. et al. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 8, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    47.Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).Article 

    Google Scholar 
    48.Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest. Science 334, 232–235 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).50.Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).51.Hawes, J. E. et al. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).Article 

    Google Scholar 
    52.Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 26, 2956–2969 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15352 (2020).54.Toledo, R. M. et al. Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landsc. Ecol. 35, 1403–1416 (2020).Article 

    Google Scholar 
    55.Armenteras, D., González, T. M. & Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 159, 73–79 (2013).Article 

    Google Scholar 
    56.Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).Article 

    Google Scholar 
    57.Alencar, A. A. C., Solórzano, L. A. & Nepstad, D. C. Modeling forest understory fires in an eastern amazonian landscape. Ecol. Appl. 14, 139–149 (2004).Article 

    Google Scholar 
    58.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 25, 39–56 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).61.PRODES. TerraBrasilis—Taxas anuais de sesmatamento na Amazônia Legal Brasiliera. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (2020).62.Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Chang. Biol. 24, 5680–5694 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Fearnside, P. M. & Guimarães, W. M. Carbon uptake By secondary forests in Brazilian Amazonia. Forest Ecology and Management 80, 35–46 (1996).64.Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    65.Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    66.Campanharo, W. & Silva Junior, C. H. L. Maximun Cumulative Water Deficit—MCWD: a R language script. https://doi.org/10.5281/zenodo.2652629 (2019).67.Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301 (1959).Article 

    Google Scholar 
    68.Kuhn, M. et al. Caret: 6.0-71., Classification and Regression Training. R package version. (2016). https://rdrr.io/cran/caret/.69.R Development Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.r-project.org/.70.Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).71.Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 1–11 (2008).Article 
    CAS 

    Google Scholar 
    72.Strobl, C., Hothorn, T. & Zeileis, A. Party on! A new, conditional variable importance measure available in the party package. R J. 1, 14–17 (2009).73.Behnamian, A. et al. A systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci. Remote Sens. Lett. 14, 1988–1992 (2017).ADS 
    Article 

    Google Scholar 
    74.Congalton Russell, G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. vol. 25 (CRC Press, 2009).75.Heinrich, V. et al. Data from paper: Large carbon sink potential of Secondary Forests in Brazilian Amazon to mitigate climate change. Zenodo https://zenodo.org/record/4479234#.YBVdBHNxdPY (2021).76.Heinrich, V. et al. Code from paper: Large carbon sink potential of Secondary Forests in the Brazilian Amazon to mitigate climate change. GitHub https://github.com/heinrichTrees/secondary-forest-regrowth-amazon-public (2021). More

  • in

    Modelling incremental uncertainty for stock management

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More