More stories

  • in

    Coastal road mortality of land crab during spawning migration

    1.Firth, L. B. et al. Ocean sprawl: Challenges and opportunities for biodiversity management in a changing world. Oceanogr. Mar. Biol. Annu. Rev. 54, 193–269 (2016).
    Google Scholar 
    2.Forman, R. T. T. et al. Road Ecology: Science and Solutions (Island Press, 2003).
    Google Scholar 
    3.Bishop, M. J. et al. Effects of ocean sprawl on ecological connectivity: Impacts and solutions. J. Exp. Mar. Biol. Ecol. 492, 7–30. https://doi.org/10.1016/j.jembe.2017.01.021 (2017).Article 

    Google Scholar 
    4.Sobocinski, K. L., Cordell, J. R. & Simenstad, C. A. Effects of shoreline modifications on supratidal macroinvertebrate fauna on Puget Sound, Washington beaches. Estuar. Coast 33, 699–711. https://doi.org/10.1007/s12237-009-9262-9 (2010).CAS 
    Article 

    Google Scholar 
    5.Carlton, J. T. & Hodder, J. Maritime mammals: Terrestrial mammals as consumers in marine intertidal communities. Mar. Ecol. Prog. Ser. 256, 271–286. https://doi.org/10.3354/meps256271 (2003).ADS 
    Article 

    Google Scholar 
    6.Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451. https://doi.org/10.1007/s10021-001-0021-4 (2001).CAS 
    Article 

    Google Scholar 
    7.Lee, Y. Study on Changes in the Coastal Environment Due to Human Interference: A Case Study of Sand Beach Coast in Gangneung. Master’s Thesis. Korea National University of Education, Cheongju (2011).8.Son, S. et al. Analysis of Influential factors of roadkill occurrence—A case study of Seorak national park. J. Korean Inst. Landsc. Arch. 44, 1–12. https://doi.org/10.9715/KILA.2016.44.3.001 (2016).ADS 
    Article 

    Google Scholar 
    9.Carr, L. W. & Fahrig, L. Effect of road traffic on two amphibian species of differing vagility. Conserv. Biol. 15, 1071–1078. https://doi.org/10.1046/j.1523-1739.2001.0150041071.x (2001).Article 

    Google Scholar 
    10.Coffin, A. W. From roadkill to road ecology: A review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406. https://doi.org/10.1016/j.jtrangeo.2006.11.006 (2007).Article 

    Google Scholar 
    11.Zielin, S. B., Littlejohn, J., de Rivera, C. E., Smith, W. P. & Jacobson, S. L. Ecological investigations to select mitigation options to reduce vehicle-caused mortality of a threatened butterfly. J. Insect Conserv. 20, 845–854. https://doi.org/10.1007/s10841-016-9916-4 (2016).Article 

    Google Scholar 
    12.Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89, 39–50. https://doi.org/10.1016/S0006-3207(98)00140-2 (1999).Article 

    Google Scholar 
    13.Fahrig, L., Pedlar, J. H., Pope, S. E., Taylor, P. D. & Wegner, J. F. Effect of road traffic on amphibian density. Biol. Conserv. 73, 177–182. https://doi.org/10.1016/0006-3207(94)00102-V (1995).Article 

    Google Scholar 
    14.Hobday, A. J. & Minstrell, M. L. Distribution and abundance of roadkill on Tasmanian highways: Human management options. Wildl. Res. 35, 712–726. https://doi.org/10.1080/15627020.2015.1021161 (2008).Article 

    Google Scholar 
    15.Finder, R. A., Roseberry, J. L. & Woolf, A. Site and landscape conditions at white-tailed deer/vehicle collision locations in Illinois. Landsc. Urban Plan. 44, 77–85. https://doi.org/10.1016/S0169-2046(99)00006-7 (1999).Article 

    Google Scholar 
    16.Glista, D. J., DeVault, T. L. & DeWoody, J. A. Vertebrate road mortality predominantly impacts amphibians. Herpetol. Conserv. Biol. 3, 77–87 (2008).
    Google Scholar 
    17.Grilo, C., Bissonette, J. A. & Cramer, P. C. Mitigation measures to reduce impacts on biodiversity. In Highways: Construction (ed. Jones, S. R.) 73–114 (Management and Maintenance. Nova Science Publishers, 2010).
    Google Scholar 
    18.Baine, M. et al. The development of management options for the black land crab (Gecarcinus ruricola) catchery in the San Andres Archipelago, Colombia. Ocean Coast Manage. 50, 564–589. https://doi.org/10.1016/j.ocecoaman.2007.02.007 (2007).Article 

    Google Scholar 
    19.Kantola, T., Tracy, J. L., Baum, K. A., Quinn, M. A. & Coulson, R. N. Spatial risk assessment of eastern monarch butterfly road mortality during autumn migration within the southern corridor. Biol. Conserv. 231, 150–160. https://doi.org/10.1016/j.biocon.2019.01.008 (2019).Article 

    Google Scholar 
    20.Koivula, M. J. & Vermeulen, H. J. W. Highways and forest fragmentation—Effects on carabid beetles (Coleoptera, Carabidae). Landsc. Ecol. 20, 911–926. https://doi.org/10.1007/s10980-005-7301-x (2005).Article 

    Google Scholar 
    21.Costa, L. L., Mothé, N. A. & Zalmon, I. R. Light pollution and ghost crab road-kill on coastal habitats. Reg. Stud. Mar. Sci. 39, 101457. https://doi.org/10.1016/j.rsma.2020.101457 (2020).Article 

    Google Scholar 
    22.Hübner, L., Pennings, S. C. & Zimmer, M. Sex- and habitat-specific movement of an omnivorous semi-terrestrial crab controls habitat connectivity and subsidies: A multi-parameter approach. Oecologia 178, 999–1015. https://doi.org/10.1007/s00442-015-3271-0 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    23.Burggren, W. W. & McMahon, B. R. Biology of the Terrestrial Crabs (Cambridge University Press, 1988).
    Google Scholar 
    24.Micheli, F., Gherardi, F. & Vannini, M. Feeding and burrowing ecology of two East African mangrove crabs. Mar. Biol. 111, 247–254. https://doi.org/10.1007/BF01319706 (1991).Article 

    Google Scholar 
    25.Green, P. T., O’Dowd, D. J. & Lake, P. S. Recruitment dynamics in a rainforest seedling community: Context independent impact of a keystone consumer. Oecologia 156, 373–385. https://doi.org/10.1007/s00442-008-0992-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    26.Suzuki, S. The life history of Sesarma haematocheirin the Miura peninsula. Res. Crust 11, 51–65. https://doi.org/10.18353/rcustacea.11.0_51 (1981).Article 

    Google Scholar 
    27.Adamczewska, A. M. & Morris, S. Ecology and behavior of Gecarcoideanatalis, the Christmas Island red crab, during the annual breeding migration. Biol. Bull. 200, 305–320. https://doi.org/10.2307/1543512 (2001).Article 

    Google Scholar 
    28.Le Galliard, J.-F., Fitze, P. S., Ferriere, R. & Clobert, J. Sex ratio bias, male aggression, and population collapse in lizards. Proc. Natl. Acad. Sci. 102, 18231–18236. https://doi.org/10.1073/pnas.0505172102 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation (Sinauer Associates, 2001).
    Google Scholar 
    30.Aresco, M. J. The effect of sex-specific terrestrial movements and roads on the sex ratio of freshwater turtles. Biol. Conserv. 123, 37–44. https://doi.org/10.1016/j.biocon.2004.10.006 (2005).Article 

    Google Scholar 
    31.Mumme, R. L., Schoech, S. J., Woolfenden, G. E. & Fitzpatrick, J. W. Life and death in the fast lane: Demographic consequences of road mortality in the Florida scrub-jay. Conserv. Biol. 14, 501–512. https://doi.org/10.1046/j.1523-1739.2000.98370.x (2000).Article 

    Google Scholar 
    32.Kioko, J., Kiffner, C., Jenkins, N. & Collinson, W. J. Wildlife roadkill patterns on a major highway in northern Tanzania. Afr. Zool. 50, 17–22. https://doi.org/10.1080/15627020.2015.1021161 (2015).Article 

    Google Scholar 
    33.Seo, C., Thorne, J. H., Choi, T., Kwon, H. & Park, C. H. Disentangling roadkill: The influence of landscape and season on cumulative vertebrate mortality in South Korea. Landsc. Ecol. Eng. 11, 87–99. https://doi.org/10.1007/s11355-013-0239-2 (2015).Article 

    Google Scholar 
    34.Beebee, T. J. C. Effects of road mortality and mitigation measures on amphibian populations. Conserv. Biol. 27, 657–668. https://doi.org/10.1111/cobi.12063 (2013).Article 
    PubMed 

    Google Scholar 
    35.Zhang, W. et al. Daytime driving decreases amphibian roadkill. PeerJ 6, e5385. https://doi.org/10.7717/peerj.5385 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Saigusa, M. & Hidaka, T. Semilunar rhythm in the zoea-release activity of the terrestrial crabs Sesarma. Oecologia 37, 163–176. https://doi.org/10.1007/BF00344988 (1978).ADS 
    Article 
    PubMed 

    Google Scholar 
    37.Hartnoll, R. G. et al. Reproduction in the land crab Johngarthialagostoma on Ascension Island. J. Crust. Biol. 30, 83–92. https://doi.org/10.1651/09-3143.1 (2010).Article 

    Google Scholar 
    38.Schmidt, A. J., Bemvenutia, C. E. & Dieleet, K. Effects of geophysical cycles on the rhythm of mass mate searching of a harvested mangrove crab. Anim. Behav. 84, 333–340. https://doi.org/10.1016/j.anbehav.2012.04.023 (2012).Article 

    Google Scholar 
    39.Saigusa, M. Ecological distribution of three species of the genus Sesarma in winter season. Zool. Mag. 87, 142–150 (1978).
    Google Scholar 
    40.Saigusa, M. Adaptive significance of a semilunar rhythm in the terrestrial crab Sesarma. Biol. Bull. 160, 311–321. https://doi.org/10.2307/1540891 (1981).Article 

    Google Scholar 
    41.Saigusa, M., Terajima, M. & Yamamoto, M. Structure, formation, mechanical properties, and disposal of the embryo attachment system of an estuarine crab, Sesarma haematocheir. Biol. Bull. 203, 289–306. https://doi.org/10.2307/1543572 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Saigusa, M. Hatching of an estuarine crab, sesarma haematochier: Factors affecting the timing of hatching in detached embryos, and enhancement of hatching synchrony by the female. J. Oceanogr. 56, 93–102. https://doi.org/10.1023/A:1011118726283 (2000).Article 

    Google Scholar 
    43.Saigusa, M. Larval release rhythm coinciding with solar day and tidal cycles in the terrestrial crab Sesarma-harmony with the semilunar timing and its adaptive significance. Biol. Bull. 162, 371–386. https://doi.org/10.2307/1540990 (1982).Article 

    Google Scholar 
    44.Forward, R. B. Larval release rhythms of decapod crustaceans: An overview. Bull. Mar. Sci. 41, 165–176 (1987).
    Google Scholar 
    45.Hicks, J. W. The breeding behaviour and migrations of the terrestrial crab Gecarcoideanatalis (Decapoda: Brachyura). Aust. J. Zool. 33, 127–142. https://doi.org/10.1071/ZO9850127 (1985).Article 

    Google Scholar 
    46.Morgan, S. G. & Christy, J. H. Adaptive significance of the timing of larval release by crabs. Am. Nat. 145, 457–479. https://doi.org/10.1086/285749 (1995).Article 

    Google Scholar 
    47.Paula, J. Rhythms of larval release of decapod crustaceans in the Mira Estuary, Portugal. Mar. Biol. 100, 309–312. https://doi.org/10.1007/BF00391144 (1989).Article 

    Google Scholar 
    48.Bergin, M. E. Hatching rhythms in Ucapugilator (Decapoda: Brachyura). Mar. Biol. 63, 151–158. https://doi.org/10.1007/BF00406823 (1981).Article 

    Google Scholar 
    49.Christy, J. H. Adaptive significance of semilunar cycles of larval release in fiddler crabs (Genus Uca): Test of a hypothesis. Biol. Bull. 163, 251–263. https://doi.org/10.2307/1541264 (1982).Article 

    Google Scholar 
    50.Quintero-Angel, A., Osorio-Dominguez, D., Vargas-Salinas, F. & Saavedra-Rodriguez, C. A. Roadkill rate of snakes in a disturbed landscape of central Andes of Columbia. Herpetol. Notes 5, 99–105 (2012).
    Google Scholar 
    51.Orłowski, G. Roadside hedgerows and trees as factors increasing road mortality of birds: Implications for management of roadside vegetation in rural landscapes. Landsc. Urban Plan. 86, 153–161. https://doi.org/10.1016/j.landurbplan.2008.02.003 (2008).Article 

    Google Scholar 
    52.Saeki, M. & Macdonald, D. W. The effects of traffic on the raccoon dog (Nyctereutes procyonoides viverrinus) and other mammals in Japan. Biol. Conserv. 118, 559–571. https://doi.org/10.1016/j.biocon.2003.10.004 (2004).Article 

    Google Scholar 
    53.Costa, L. L., Secco, H., Arueira, V. F. & Zalmon, I. R. Mortality of the Atlantic ghost crab Ocypode quadrata (Fabricius, 1787) due to vehicle traffic on sandy beaches: A road ecology approach. J. Environ. Manage. 260, 110168. https://doi.org/10.1016/j.jenvman.2020.110168 (2020).Article 
    PubMed 

    Google Scholar 
    54.Tsai, J. R., Hsieh, Y. T., Lin & H. C. The effect of dike types on terrestrial crab passage through the access road: The predicament of terrestrial crab conservation in Gaomei Wetland. In Proceedings of the 39th Oceans Engineering Conference in Taiwan Hungkuang University, November (2017)55.Bellis, M. A., Jackson, S. D., Griffin, C. R., Warren, P. S. & Thompson, A. O. Utilizing a multi-technique, multi-taxa approach to monitoring wildlife passageways in southern Vermont. Oecol. Aust. 17, 111–128. https://doi.org/10.4257/oeco.2013.1701.10 (2007).Article 

    Google Scholar 
    56.Song, J. et al. Roadkill of amphibians in the Korea national park. Korean J. Environ. Ecol. 23, 187–193 (2009).
    Google Scholar 
    57.Ryu, M. & Kim, J. G. Influence of roadkill during breeding migration on the sex ratio of land crab (Sesarma haematoche). J. Environ. Ecol. 44, 23. https://doi.org/10.1186/s41610-020-00167-6 (2020).Article 

    Google Scholar 
    58.Mizuta, T. Moonlight-related mortality: Lunar conditions and roadkill occurrence in the Amami woodcock Scolopax mira. Wilson J. Ornithol. 126, 544–552. https://doi.org/10.1676/13-159.1 (2014).Article 

    Google Scholar 
    59.Gibbs, J. P. & Steen, D. A. Trends in sex ratios of turtles in the United States: Implications of road mortality. Conserv. Biol. 19, 552–556. https://doi.org/10.1111/j.1523-1739.2005.000155.x (2005).Article 

    Google Scholar 
    60.Rytwinski, T. & Fahrig, L. Do species life history traits explain population responses to roads? A meta-analysis. Biol. Conserv. 147, 87–98. https://doi.org/10.1016/j.biocon.2011.11.023 (2012).Article 

    Google Scholar 
    61.Korea Astronomy and Space Science Institute. Korean Astronomical Almanac (Korea Astronomy and Space Science Institute, 2017).
    Google Scholar  More

  • in

    Monitoring respiratory effects of allergenic pollen

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Shortfalls and opportunities in terrestrial vertebrate species discovery

    1.Costello, M. J., May, R. M. & Stork, N. E. Can we name Earth’s species before they go extinct? Science 339, 413–416 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Mora, C., Rollo, A. & Tittensor, D. P. Comment on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.May, R. & Beverton, R. J. H. How many species? Phil. Trans. R. Soc. B 330, 293–304 (1990).Article 

    Google Scholar 
    5.Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).Article 

    Google Scholar 
    8.Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    9.Guide to the Global Taxonomy Initiative (Secretariat of the Convention on Biological Diversity, 2010).10.Costello, M. J., May, R. M. & Stork, N. E. Response to comments on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A. & Scotland, R. W. Predicting unknown species numbers using discovery curves. Proc. R. Soc. B 274, 1651–1658 (2007).PubMed 
    Article 

    Google Scholar 
    12.Edie, S. M., Smits, P. D. & Jablonski, D. Probabilistic models of species discovery and biodiversity comparisons. Proc. Natl Acad. Sci. USA 114, 3666–3671 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Guenard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Blackburn, T. M. & Gaston, K. J. What determines the probability of discovering a species – a study of South-American Oscine Passerine birds. J. Biogeogr. 22, 7–14 (1995).Article 

    Google Scholar 
    15.Costello, M. J., Lane, M., Wilson, S. & Houlding, B. Factors influencing when species are first named and estimating global species richness. Glob. Ecol. Conserv. 4, 243–254 (2015).Article 

    Google Scholar 
    16.Collen, B., Purvis, A. & Gittleman, J. L. Biological correlates of description date in carnivores and primates. Glob. Ecol. Biogeogr. 13, 459–467 (2004).Article 

    Google Scholar 
    17.Diniz-Filho, J. A. F. et al. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14, 469–477 (2005).Article 

    Google Scholar 
    18.Costello, M. J., Houlding, B. & Joppa, L. N. Further evidence of more taxonomists discovering new species, and that most species have been named: response to Bebber et al. (2014). New Phytol. 202, 739–740 (2014).PubMed 
    Article 

    Google Scholar 
    19.Meiri, S. Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, 251–261 (2016).Article 

    Google Scholar 
    20.Klein, J. P. & Moeschberger, M. L. Survival Analysis: Techniques for Censored and Truncated Data.(Springer, 2003).21.Essl, F., Rabitsch, W., Dullinger, S., Moser, D. & Milasowszky, N. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Glob. Ecol. Biogeogr. 22, 29–39 (2013).Article 

    Google Scholar 
    22.Colli, G. R. et al. In the depths of obscurity: knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae). Biol. Conserv. 204, 51–62 (2016).Article 

    Google Scholar 
    23.Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).Article 

    Google Scholar 
    24.Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).Article 

    Google Scholar 
    26.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Joppa, L. N., Roberts, D. L. & Pimm, S. L. How many species of flowering plants are there? Proc. R. Soc. B 278, 554–559 (2011).PubMed 
    Article 

    Google Scholar 
    28.Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).PubMed 
    Article 

    Google Scholar 
    29.Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. Forest structure drives global diversity of primates. J. Anim. Ecol. 83, 1523–1530 (2014).PubMed 
    Article 

    Google Scholar 
    31.Oliveira, B. F. & Scheffers, B. R. Vertical stratification influences global patterns of biodiversity. Ecography 42, 249–249 (2019).Article 

    Google Scholar 
    32.Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).33.Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).PubMed 
    Article 

    Google Scholar 
    34.Garnett, S. T. & Christidis, L. Taxonomy anarchy hampers conservation. Nature 546, 25–27 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).PubMed 
    Article 

    Google Scholar 
    36.Bremer, K., Bremer, B., Karis, P. & Källersjö, M. Time for change in taxonomy. Nature 343, 202 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Raposo, M. A. et al. What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa 4317, 179–184 (2017).Article 

    Google Scholar 
    38.Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).Article 

    Google Scholar 
    39.Tedesco, P. A. et al. Estimating how many undescribed species have gone extinct. Conserv. Biol. 28, 1360–1370 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 
    Article 

    Google Scholar 
    41.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).PubMed 
    Article 

    Google Scholar 
    43.Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563.e3 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Moura, M. R. et al. Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biol. Conserv. 220, 237–244 (2018).Article 

    Google Scholar 
    46.Gaston, K. J., Blackburn, T. M. & Loder, N. Which species are described first? The case of North-American butterflies. Biodivers. Conserv. 4, 119–127 (1995).Article 

    Google Scholar 
    47.Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).Article 

    Google Scholar 
    49.Hallmann, K. & Griebeler, E. M. An exploration of differences in the scaling of life history traits with body mass within reptiles and between amniotes. Ecol. Evol. 8, 5480–5494 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Slavenko, A., Itescu, Y., Ihlow, F. & Meiri, S. Home is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114 (2016).PubMed 
    Article 

    Google Scholar 
    51.Regis, K. W. & Meik, J. M. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 5, e2914 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).Article 

    Google Scholar 
    53.Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).PubMed 
    Article 

    Google Scholar 
    54.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    55.Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204A, 23–31 (2016).56.Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).Article 

    Google Scholar 
    57.Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance–range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).Article 

    Google Scholar 
    58.Borregaard, M. K. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).PubMed 
    Article 

    Google Scholar 
    59.IUCN Red List of Threatened Species. Version 2018 (IUCN, 2018).60.Freitag, S., Hobson, C., Biggs, H. C. & Jaarsveld, A. S. Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set. Anim. Conserv. 1, 119–127 (1998).Article 

    Google Scholar 
    61.Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 10, 1513–1529 (2001).Article 

    Google Scholar 
    62.Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).Article 

    Google Scholar 
    63.Papavero, N. Essays on the History of Neotropical Dipterology: With Special Reference to Collectors: 1750–1905: Vol. I (Museu de Zoologia da Universidade de São Paulo, 1971).64.Baselga, A., Lobo, J. M., Hortal, J., Jiménez-Valverde, A. & Gómez, J. F. Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. J. Zool. Syst. Evol. Res. 48, 40–49 (2010).Article 

    Google Scholar 
    65.Yang, W., Ma, K. & Kreft, H. Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob. Ecol. Biogeogr. 23, 1284–1292 (2014).Article 

    Google Scholar 
    66.Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.R Core Team R: A Language and Environment for Statistical Computing Version 3.5.3 (R Foundation for Statistical Computing, 2019).68.Hijmans, R. J. raster: Geographic Data Analysis and Modeling https://cran.r-project.org/package=raster (2015).69.Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).Article 

    Google Scholar 
    71.Joppa, L. N., Roberts, D. L. & Pimm, S. L. The population ecology and social behaviour of taxonomists. Trends Ecol. Evol. 26, 551–553 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.1 http://stringr.tidyverse.org (2018).73.Mahto, A. splitstackshape: Stack and Reshape Datasets After Splitting Concatenated Values. R package version 1.4.6 http://github.com/mrdwab/splitstackshape (2018).74.Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models (McGraw-Hill, 2004).
    Google Scholar 
    76.Naimi, B. usdm: Uncertainty Analysis for Species Distribution Models https://cran.r-project.org/package=usdm (2017).77.von Linné, C. Systema Naturae https://doi.org/10.5962/bhl.title.542 (Impensis Direct Laurentii Salvii, 1758).78.Harrell, F. E. Regression Modeling Strategies (Springer, 2001).79.George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Jackson, C. flexsurv: a platform for parametric survival modeling in R. J. Stat. Softw. 70, 1–33 (2016).Article 

    Google Scholar 
    81.Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).82.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    83.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.6 https://cran.r-project.org/package=MuMIn (2019).84.Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).PubMed 
    Article 

    Google Scholar 
    85.Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Fisher, D. O. & Blomberg, S. P. Correlates of rediscovery and the detectability of extinction in mammals. Proc. R. Soc. B 278, 1090–1097 (2011).PubMed 
    Article 

    Google Scholar 
    87.Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303 (2008).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    88.Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.4 https://cran.r-project.org/package=data.table (2019).91.Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).Article 

    Google Scholar 
    92.Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Database of Global Administrative Areas Version 3.6 (GADM, 2019); http://www.gadm.org More

  • in

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    1.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013;15:3040–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bay S, Ferrari BC, Greening C. Life without water: how do bacteria generate biomass in desert ecosystems? Microbiol Austral. 2018;39:28–32.Article 

    Google Scholar 
    5.Ray A, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon and nitrogen limitation. Front Microbiol. 2020;11:1–13.Article 

    Google Scholar 
    6.Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci. 2014;111:4257–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nessner Kavamura V, Taketani RG, Lançoni MD, Andreote FD, Mendes R, Soares de Melo I. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS ONE. 2013;8:e73606.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Serkebaeva YM, Kim Y, Liesack W, Dedysh SN. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS ONE. 2013;8:e63994.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ward LM, Cardona T, Holland-Moritz H. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol. 2019;10:1658.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, et al. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol. 2020;22:3143–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, et al. The canine oral microbiome. PLoS ONE. 2012;7:e36067.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol. 2014;6. https://doi.org/10.3402/jom.v6.25468.16.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, et al. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Pol Biol. 2015;39:237–49.Article 

    Google Scholar 
    18.Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. Gigascience. 2016;5:21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Polar soil bacterial and fungal biodiversity survey, Ver. 1. Australian Antarctic Data Centre; 2014. https://doi.org/10.4225/15/526F42ADA05B1. Accessed 11 Feb 2021.21.Lane D. Nucleic acid techniques in bacterial systematics. In: Stackebrandt E, Goodfellow M, editors. Chichester NY: John Wiley and Sons; 1991. p. 115–75.22.Siciliano SD, Palmer A, Winsley T, Lamb E, Bissett A, Brown M, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20.CAS 
    Article 

    Google Scholar 
    23.Archer E. R package. 2016.24.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btu170.25.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, United States: Lawrence Berkeley National Laboratory; 2014.27.Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2014;2:e603.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    34.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    37.Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev. 2007;71:576–99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci. 2008;363:2629–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Sondergaard D, Pedersen CN, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol. 1998;64:4973–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol. 2002;4:713–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Lindahl V. Improved soil dispersion procedures for total bacterial counts, extraction of sandy clayey silt soil bacteria and cell survival. J Microbiol Meth. 1996;25:279–86.Article 

    Google Scholar 
    46.Ferrari BC, Tujula N, Stoner K, Kjelleberg S. Catalysed reporter deposition-FISH allows for enrichment independent detection of microcolony forming soil bacteria. Appl Environ Microbiol. 2006;72:918–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kim M, Lim HS, Hyun CU, Cho A, Noh HJ, Hong SG, et al. Local-scale variation of soil bacterial communities in ice-free regions of maritime Antarctica. Soil Biol Biochem. 2019;133:165–73.CAS 
    Article 

    Google Scholar 
    48.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tremblay PL, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol. 2014;18:30–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.English RS, Lorbach SC, Qin X, Shively JM. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol. 1994;12:647–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, et al. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep. 2016;17:1565–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Gamiz-Hernandez AP, Kaila VRI. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys. 2016;18:2802–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, van Dorst J, et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.McCrindle SL, Kappler U, McEwan AG. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Micro Physiol. 2005;50:147–98.CAS 
    Article 

    Google Scholar 
    59.Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol Microbiol. 2012;86:1452–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol. 2013;195:2518–29.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Nichols NN, Harwood CS. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol. 1997;179:5056–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep. 2015;5:8026.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 2012;12:207.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol. 2004;11:721–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28:56–63.CAS 
    Article 

    Google Scholar 
    66.Cheggour A, Fanuel L, Duez C, Joris B, Bouillenne F, Devreese B, et al. The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol. 2000;38:504–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Geueke B, Heck T, Limbach M, Nesatyy V, Seebach D, Kohler HPE. Bacterial β-peptidyl aminopeptidases with unique substrate specificities for β-oligopeptides and mixed β,α-oligopeptides. FEBS J. 2006;273:5261–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Driessen AJM, van de Vossenberg JLM, Konings WN. Membrane composition and ion-permeability in extremophiles. FEMS Microbiol Rev. 1996;18:139–48.CAS 
    Article 

    Google Scholar 
    69.Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, et al. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J. 2012;6:158–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, et al. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol. 2018;9:1982.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol. 2011;77:2399–405.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15:165–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Siebers A, Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988;178:131–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Milkman R. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proc Natl Acad Sci. 1994;91:3510–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Holtmann G, Bakker EP, Uozumi N, Bremer E. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol. 2003;185:1289–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol. 1999;181:3525–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Geisseler D, Horwath WR. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem. 2008;40:3040–8.CAS 
    Article 

    Google Scholar 
    78.Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, et al. Structure of cytochrome c nitrite reductase. Nature. 1999;400:476–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Simon J, Pisa R, Stein T, Eichler R, Klimmek O, Gross R. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. Eur J Biochem. 2001;268:5776–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Nair RV, Bennett GN, Papoutsakis ET. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 1994;176:871–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol. 2014;10:e1003898.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Erbilgin O, McDonald KL, Kerfeld CA. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol. 2014;80:2193–205.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Srinivasan V, Morowitz HJ. The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol Bull. 2009;216:126–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science. 2018;359:559–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bekal S, Van Beeumen J, Samyn B, Garmyn D, Henini S, Diviès C, et al. Purification of Leuconostoc mesenteroides citrate lyase and cloning and characterization of the citCDEFG gene cluster. J Bacteriol. 1998;180:647–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Dimroth P, Jockel P, Schmid M. Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump. Biochim Biophys Acta. 2001;1505:1–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta. 2008;1777:985–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Lewis Smith RI. Plant community dynamics in Wilkes Land, Antarctica, vol. 3. Proceedings of the NIPR Symposium on Polar Biology. 1990. p. 229–44.90.Seppelt RD. Plant communities at Wilkes Land. In: Geoecology of Antarctic ice-free coastal landscapes. Ecological studies (Analysis and synthesis), vol. 154. Springer; 2002. p. 233–48. More

  • in

    Vibrational communication and mating behavior of the greenhouse whitefly Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae)

    In this study, we gave a comprehensive description of the mating behavior of the greenhouse whitefly, T. vaporariorum. In particular, we defined the strict association between vibrational signals and behavioral steps of the pair formation process, from the male call to the final mating. We also described some social interactions between two or more individuals of both sexes, confined to a small portion of leaf, thus simulating a natural occurring aggregation. In this regard, we found that males tend to modify the quality of their vibrational signals, by changing some spectral features, according to either the social context or the behavioral step. For example, they tend to increase the fundamental frequency of their signals (i.e., chirps and PT) when in the presence of potential rivals. A possible explanation of this behavior could be associated with the male competition for food and/or mating. In fact, species that live in high population densities are subjected to strong male-male competitions and a male needs to show his quality to females but also to be clearly recognizable from the others24. The higher quality can be witnessed by the emission of specific aggressive calls which are characterized by lower frequencies, like in some anurans25 or in Chiropteran where the relative frequency of the social calls increases when more individuals compete for a food source. An example of individual recognition behavior is the change of frequency of the calling song to avoid signal overlapping thus allowing an individual to perceive the presence of more potential partners. Frequency overlapping, in general, can be noxious to animal communication, and male responsiveness can be reduced when background noise from conspecific signals obscure the species-specific temporal pattern of a female song26. In the southern green stink bug, Nezara viridula (Heteroptera, Pentatomidae), females were found to change their calling song frequency to let the males recognize them when exposed to a disturbance stimulus27. Even if small variations of the frequency pattern may potentially affect the partner responsiveness to a call28, overlapping frequencies can seriously compromise the signal reception29. In this way, the change to a different value of frequency in presence of other calling males seems to be a more desirable solution.Another signal variation that we observed in GW males, in the presence of another male (i.e., male duos trials), regarded the chirp duration. By increasing the duration of a mating signal, some species also increase the chances to elicit the female response at the earliest stage of the mating behavior30. In various acoustic insects, females prefer longer calls and males can vary their length by adding or subtracting call elements31. However, a limit of our study was that we could not associate the signal emissions to specific individuals, therefore we did not determine not only if one or both the males were actually singing but also whether this change of chirp duration involved one or both the individuals. A definitive explanation about male-male calling interactions and how males regulate their calling activities should be provided with additional experiments with the use of playbacks to stimulate single specimens.In general, we need to consider that the alteration of the signal features is a common strategy in animals with a complex mating behavior in which different stages can alternate in a non-linear sequence29,32,33. Such an intricate behavior is on the one hand, at the basis of a species-specific mate recognition system, on the other hand, is a result of the sexual selection that worked to shape signals with certain characteristics that are able to elicit the female acceptance to mate34. Despite the considerable knowledge about vibrational signal production in the family Aleyrodidae19, we still have little information about the importance of the courtship and of the female choice in driving the reproductive isolation and speciation in this family. Aleyrodid species are known to be morphologically similar and to form a species complex (i.e. Bemisia tabaci) with several biotypes35, where the characterization of the mating behavior can be an important tool to discriminate among them. For instance, variations in the courtship behavior between different B. tabaci biotypes demonstrated the presence of pre-copulation barriers36,37. Moreover, the analysis of male vibrational signals during the courtship, combined with genetic and morphological analysis, allowed to discriminate between the camellia spiny whitefly Aleurocanthus camelliae and the citrus spiny whitefly Aleurocanthus spiniferus18. In such a context, knowing the characteristics of the mating ritual may lead to distinguish, not only among different species, but also among different populations. For example, before this study, the GW mating behavior was described only from Japanese populations where the pair formation process started with the male approaching a female before emitting any vibrational signal (i.e. courtship stage)17. Instead, in our study with European populations of GW, we observed that the male, before starting the approach, emits calling signals which can elicit the female response from a certain distance. Such a difference between geographically distant GW populations seems to suggest a different strategies of mating behavior, likely associated to distinct populations or biotypes. On this regard, it would be interesting to test them with crossed mating trials (Japanese vs Europeans) to assess the effects of the observed differences on the mating success rate.In our study, we also measured a difference of male signal parameters between different behavioral phases of the pair formation process and in particular between the courtship stage and the call and alternated duet stages. We found a significant increase of signal duration, fundamental frequency and pulse repetition rate. The duration of the courtship stage was very variable in our trials, from zero (it was skipped when females replied immediately to the male signals) up to 78 min. This means, in first instance, that the role of the courtship is to elicit the female response and thus promoting her acceptance to mate. Indeed any single behavioral step is functional to elicit the female’s acceptance and in fact, whenever females showed high responsiveness since the early stage of the mating process, males could skip whole stages and even go directly from the call to the final precopula stage, the alternated duet. It also indicates that males are available to spend a remarkable amount of energy to perform the courtship38. The use of elaborated and energetic signals during the courtship is rather common in animals34. For example, the leafhopper S. titanus and the glassy-winged sharpshooter Homalodisca vitripennis have a mating strategy that reminds the GW’s, starting with a call which is followed by the location of the partner and by the courtship. While during call and location males make use of extremely simplified signals, during the courtship they emit the most elaborated (and energetically demanding) signals, through which they try to convince the female to accept the mating21,39. A study of Las (1980) demonstrated that the GW courtship persistence (i.e., duration) is an important trigger to address the female choice. A fast and prolonged male “cycling rate” (alternation of wing flicking and antennation) during the courtship is preferred by females who become even more selective after the first mating. On the other hand, in our tests, males showed a remarkable perseverance in courting the females. The ethogram showed that after a failed mating attempt, a male always restarted from the courtship. This means that the courtship phase is the key part of the mating process but also that the female choice drives the selection in favor of “stubborn” males that persist in courting the potential partner, performing a prolonged courtship, even if the first mating attempt fails. Stubbornness affects male’s survival for its energetic cost and risk of eavesdropping. Such character fits the handicap theory model, in which condition dependent and costly traits are honest indicators of male quality40,41. On the other hand, the option of an easy surrender, and the search for another available female, after investing so many energies in courting the first one, seems to be not convenient for the male in that it would mean to spend more energy in searching for/courting a new partner also risking the possibility of dealing with competitors42.In the GW, the male courtship can be considered successful when the mating moves to the overlapped duet stage in which the female emits the Female Responding Signal (FRS). The FRS is produced in synchronous with the courtship chirp and PT and, for this reason, it requires high degree of coordination between male and female. The presence of female acceptance signals synchronized with the male’s is known for the whitefly species Aleurothrixus floccosus (Maskell)43, in which the female signal can partially overlap the male’s one, but it was unknown in the GW, until now.Another signal that we found for the first time in the GW is the male rivalry signal (MRS). Males exhibit aggressiveness towards other males. A random encounter on the leaf is enough to trigger the expression of rivalry behavior in presence of a female. Such interaction has never been observed in duos, but only in groups with responsive females, thus suggesting that the presence of receptive/active females is required to trigger the MRS production and thus provoking a context of aggressiveness and competition between males. Another male rivalry behavior that we observed in the presence of a receptive female is the silent approach (satellite behavior) to intercept a female while duetting with another male44. This behavior is known in other aleyrodids like in B. tabaci. In this species, rival males interrupt the ongoing courtship of the duetting male by approaching the female from the opposite side. In response to the competitor, the first male spreads the wings and beats the rival on the head45. In GW, the rivalry behavior is associated with the continuous production of the MRS, which is the male signal at highest frequency. Such finding strengthens the hypothesis that the frequency shift has a role in competitor’s deterrence. The rivalry behavior of GW seems to be extraordinarily strong, as much to push females to abandon the interaction with both males. In our experiments, none of the females, even those that had already established a duet with a male, eventually mated. On the contrary, they left the arena before the end of the trial. Our findings are consistent with previous observations of GW behavior, in which the contended female always walked away when two males were competing15. Therefore, we can speculate that the adaptive advantage of the male rivalry behavior in GW is not immediate and the disruption of another male’s attempt could provide more chances in the future to the intruder, by leaving a receptive female unmated. Beside the effects of the male’s rivalry, we also observed females that refused to mate and rejected approaching males with the emission of specific vibrational signals. There are several reasons to refuse mating: immature females are not yet available to mate, and recently mated females must undergo to a refractory period before they accomplish other copulations15. On the other hand, a mature female can choose whether to accept or not a courting male depending on the level of his fitness which is, very likely, testified by the courtship performance. Females can evaluate the male’s quality based on the courtship persistence, so that they need to let males perform the whole ritual before choosing whether to mate or not46. In fact, we observed both females that rejected approaching males and females that rejected them at the end of the courtship performance. The latter, in particular, was associated to wing flicking and/or male’s aedeagus parrying with the legs. Similar behaviors were also observed in B. tabaci, in which the female can either walk or fly away from approaching males, flap the wings or push the male’s abdomen away with the middle pair of legs45. What seems to be a peculiar treat of GW is the use of a specific rejective signal (FRjS). The emission of FRjS seems to reinforce the motivation of the female to reject the male. However, it is not clear to us why the FRjS signal has been observed only in the group (males and females together) trials and never in pairs (one male and one female). Our hypothesis is that in case of groups, males can approach the “wrong” female, who was close the receptive one. This implies that males are not capable of precisely locating the responding female and that the emission of FRjS by an unreceptive female would help the males to not waste too much time (and energy) with them.To conclude, this study unveiled many aspects of the mating behavior of the GW that were previously overlooked and thus it contributes to fill several gaps of knowledge that will be important to start a program in the field of applied biotremology10. The question, from which originally arose this research study, was whether the use of vibrational signals could be suitable to manipulate the mating behavior of the GW. We can say that the vibrational communication is fundamental to accomplish mating and, in our trials, with pairs and groups, we never observed mating without the exchange of vibrational signals between male and female. This means that the interruption or the disruption of this communication could be potentially useful to reduce the rate of mating success. Manipulation of intraspecific communication by means of vibrational signals has been already developed for other insect species both in the lab and in the field10. For example, the male rivalry signal has been exploited for the development of a vibrational mating disruption strategy against the grapevine leafhopper Scaphoideus titanus29, while the female playback has been used to attract and trap males in the brown marmorated stink bug Halyomorpha halys47. The use of playbacks that cover the fundamental frequencies of the male and female signals could be used to mask their communication2. Another possible approach could be to use signals that mimic the natural signals of the species48. In the case of the GW, the FRS could be employed to disrupt males and induce them in courting unreceptive females. This would lead to a substantial reduction of the mating success rate but also to a considerable increase of wasted energy caused by the male persistence in courting unreceptive females. Another possible outcome could be a change of the gender balance in the population. GW females reproduce by arrhenotokous parthenogenesis in which unfertilized eggs develop into males49. Delays in mating could lead to a sex bias that could eventually mine the population structure. Another option is the use of the MRS to generate an aggressive and stressful environment. The transmission of MRS into the plant tissues in loop could eventually negatively affect the development of GW populations. All these approaches are potentially effective and could be in the future considered as tools for IPM and/or organic protection programs. Further applied research will provide a final answer to our question and will test the effectiveness of behavioural manipulation strategies for the control of the GW. Finally, considering that the GW uses a short range sexual pheromone emitted by females50 olfactory and vibratory cues could be potentially integrated to develop new pest control technologies10. More

  • in

    Drivers and constraints on offshore foraging in harbour seals

    1.Orians, G. H. & Pearson, N. E. On the theory of central place foraging. Analysis of ecological systems. In Analysis of ecological systems Vol. 2 (eds Horn D. J., Mitchell R. D. & Stairs G. R.) 155–177 (Ohio State Univ. Press, 1979).
    Google Scholar 
    2.Biuw, M. et al. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc. Natl. Acad. Sci. 104, 13705–13710 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Arcalís-Planas, A. et al. Limited use of sea ice by the Ross seal (Ommatophoca rossii), in Amundsen Sea, Antarctica, using telemetry and remote sensing data. Polar Biol. 38, 445–461 (2015).Article 

    Google Scholar 
    4.Staniland, I. J., Boyd, I. L. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar. Biol. 152, 233–241 (2007).Article 

    Google Scholar 
    5.Le Boeuf, B. et al. Foraging ecology of northern elephant seals. Ecol. Monogr. 70, 353–382 (2000).Article 

    Google Scholar 
    6.Adelung, D., Kierspel, M. A., Liebsch, N., Müller, G. & Wilson, R. P. Distribution of harbour seals in the German bight in relation to offshore wind power plants. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel J. & Peters, W.) 65–75 (Springer, 2006).
    Google Scholar 
    7.Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).Article 

    Google Scholar 
    8.Wilson, R. P. et al. Options for modulating intra-specific competition in colonial pinnipeds : the case of harbour seals (Phoca vitulina) in the Wadden Sea. PeerJ 4, e957 (2015).Article 

    Google Scholar 
    9.Sharples, R. J., Moss, S. E., Patterson, T. A. & Hammond, P. S. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina) determined by a large-scale satellite tagging program. PLoS ONE 7, e37216 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Liebsch, N., Wilson, R. P. & Adelung, D. Utilisation of time and space by harbour seals (Phoca vitulina vitulina) determined by new remote-sensing methods. In Progress in Marine Conservation in Europe (eds von Nordheim, H., Boedeker, D. & Krause, J.C.) 179–188 (Springer, 2006).
    Google Scholar 
    11.Tougaard, J., Teilmann, J. & Tougaard, S. Harbour seal spatial distribution estimated from Argos satellite telemetry: overcoming positioning errors. Endanger. Species Res. 4, 113–122 (2008).Article 

    Google Scholar 
    12.Common Wadden Sea Secretariat. Report on the State of Conservation of the World Heritage property “ The Wadden Sea ( N1314 )” (2016).13.Brasseur, S. M. J. M. et al. Echoes from the past: regional variations in recovery within a harbour seal population. PLoS ONE 13, 1–21 (2018).Article 
    CAS 

    Google Scholar 
    14.Wolff, W. J. Ecology of the Wadden Sea (Balkema, 1983).
    Google Scholar 
    15.Baumann, H., Malzahn, A. M., Voss, R. & Temming, A. The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles. J. Sea Res. 61, 234–243 (2009).ADS 
    Article 

    Google Scholar 
    16.Tulp, I., Bolle, L. J. & Rijnsdorp, A. D. Signals from the shallows: in search of common patterns in long-term trends in Dutch estuarine and coastal fish. J. Sea Res. 60, 54–73 (2008).ADS 
    Article 

    Google Scholar 
    17.Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article 

    Google Scholar 
    18.Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).ADS 
    Article 

    Google Scholar 
    19.Russell, D. J. F. et al. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos 124, 1462–1472 (2015).Article 

    Google Scholar 
    20.Sparling, C. E., Fedak, M. A. & Thompson, D. Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol. Lett. 3, 94–98 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ramasco, V., Biuw, M. & Nilssen, K. T. Improving time budget estimates through the behavioural interpretation of dive bouts in harbour seals. Anim. Behav. 94, 117–134 (2014).Article 

    Google Scholar 
    22.Mikkelsen, L. et al. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol. Evol. 9(5), 2588–2601 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov. Ecol. 4, 1–20 (2016).Article 

    Google Scholar 
    24.Boyd, I. L. Temporal scales of foraging in a marine predator author. Ecology 77, 426–434 (1996).Article 

    Google Scholar 
    25.Bjorge, A. et al. Habitat Use and Diving Behaviour of Harbour Seals in a Coastal Archipelage in Norway 211–223 (Elsevier, 1995).
    Google Scholar 
    26.Lesage, V., Hammill, M. O. & Kovacs, K. M. Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Can. J. Zool. 77, 74–87 (1999).Article 

    Google Scholar 
    27.Baechler, J., Beck, C. A. & Bowen, W. Dive shapes reveal temporal changes in the foraging behaviour of different age and sex classes of harbour seals (Phoca vitulina). Can. J. Zool. Can. Zool. 80, 1569–1577 (2002).Article 

    Google Scholar 
    28.Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar. Ecol. Prog. Ser. 452, 253–267 (2012).ADS 
    Article 

    Google Scholar 
    29.Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Horizontal and vertical movements as predictors of foraging success in a marine predator. Mar. Ecol. Prog. Ser. 447, 243–257 (2012).ADS 
    Article 

    Google Scholar 
    30.Thums, M. T., Bradshaw, C. J. A. & Hindell, M. A. In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology 92, 1258–1270 (2011).PubMed 
    Article 

    Google Scholar 
    31.Volpov, B. L., Hoskins, A. J., Battaile, B. C. & Viviant, M. Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: Field validation with animal-borne video cameras. PLoS ONE 10, e0128789 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Gallon, S. et al. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers. Deep. Res. Part II Top. Stud. Oceanogr. 88–89, 14–22 (2013).ADS 
    Article 

    Google Scholar 
    33.Viviant, M., Trites, A. W., Rosen, D. A. S., Monestiez, P. & Guinet, C. Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol. 33, 713–719 (2010).Article 

    Google Scholar 
    34.Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci. U.S.A. 110, 2199–2204 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Martín Lopez, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol. 218, 1325–1338 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Naito, Y., Bornemann, H., Takahashi, A., McIntyre, T. & Plötz, J. Fine-scale feeding behavior of Weddell seals revealed by a mandible accelerometer. Polar Sci. 4, 309–316 (2010).ADS 
    Article 

    Google Scholar 
    37.Ydesen, K. S. et al. What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina). J. Exp. Biol. 217, 2239–2243 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Johnson, M., De Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).ADS 
    Article 

    Google Scholar 
    39.Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., McKenna, M. F. & Simon, M. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).Article 

    Google Scholar 
    40.Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep. Res. Part II(54), 193–210 (2007).ADS 
    Article 

    Google Scholar 
    41.Baylis, A. M. M., Page, B. & Goldsworthy, S. D. Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can. J. Zool. 789, 774–789 (2008).Article 

    Google Scholar 
    42.McClintock, B. T., Russell, D. J. F., Matthiopoulos, J. & King, R. Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets. Ecology 94, 838–849 (2013).Article 

    Google Scholar 
    43.Siebert, U., Müller, S., Gilles, A., Sundermeyer, J. & Narberhaus, I. Chapter VII species profiles marine mammals authors: harbour porpoise red lists, conservation status and assessment. In Threatened Biodiversity in the German North and Baltic Seas-Sensitivities Towards Human Activities and the Effects of Climate Change (eds Narberhaus, I. & Krause, J.) 448–495 (Naturschutz und Biologische Vielfalt, 2012).
    Google Scholar 
    44.Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis (Lond. 1859) 103, 458–473 (1963).
    Google Scholar 
    45.Gaston, A. J., Ydenberg, R. C. & Smith, G. E. J. Ashmole’s halo and population regulation in seabirds. Mar. Ornithol. 35, 119–126 (2007).
    Google Scholar 
    46.Cronin, M., Pomeroy, P. & Jessopp, M. Size and seasonal influences on the foraging range of female grey seals in the northeast Atlantic. Mar. Biol. 160, 531–539 (2013).Article 

    Google Scholar 
    47.Dietz, R., Teilmann, J., Andersen, S. M., Rige, F. & Olsen, M. T. Movements and site fidelity of harbour seal (Phoca vitulina) in Kattegat, Denmark, with implications for the epidemiology of the phocine distemper virus. ICES J. Mar. Sci. 70, 186–195 (2013).Article 

    Google Scholar 
    48.Brasseur, S., Creuwels, J., Werf, B. & Reijnders, P. Deprivation indicates necessity for haul-out in harbor seals. Mar. Mamm. Sci. 12, 619–624 (1996).Article 

    Google Scholar 
    49.Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Sleep in the northern fur seal. Curr. Opin. Neurobiol. 44, 144–151 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Härkönen, T. et al. The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Organ. 68, 115–130 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bodewes, R. et al. Avian influenza a(H10n7) virus–associated mass deaths among harbor seals. Emerg. Infect. Dis. 21, 720–722 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Galatius, A. et al. Trilateral Surveys of Harbour Seals in the Wadden Sea and Helgoland in 2019 (2019).53.Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS 
    Article 

    Google Scholar 
    54.Cremer, J. et al. EG-Seals Grey Seal Surveys in the Wadden Sea and Helgoland in 2018–2019-Steady Growth (2019).55.Christensen, J. T. & Richardson, K. Stable isotope evidence of long-term changes in the North Sea food web structure. Mar. Ecol. Prog. Ser. 368, 1–8 (2008).ADS 
    Article 

    Google Scholar 
    56.Daan, N., Gislason, H., Pope, J. G. & Rice, J. C. Changes in the North Sea fish community: Evidence of indirect effects of fishing ?. ICES J. Mar. Sci. 62, 177–188 (2005).Article 

    Google Scholar 
    57.Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Change Biol. 20, 1023–1031 (2014).ADS 
    Article 

    Google Scholar 
    58.Hasselmeier, I., Fonfara, S., Driver, J. & Siebert, U. Differential hematology profiles of free-ranging, rehabilitated, and captive harbor seals (Phoca vitulina) of the German North Sea. Aquat. Mamm. 34, 149–156 (2008).Article 

    Google Scholar 
    59.Wales, B., Tarazona, L. & Bavaro, M. Snapshot positioning for low-power miniaturised spaceborne GNSS receivers. In 2010 5th ESA Work. Satell. Navig. Technol. Eur. Work. GNSS Signals Signal Process.1–6 (IEEE, 2010).60.Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).ADS 
    Article 

    Google Scholar 
    61.Sibly, R. M., Nott, H. M. R. & Fletcher, D. J. Splitting behaviour into bouts. Anim. Behav. 39, 63–69 (1990).Article 

    Google Scholar 
    62.Bowen, W. D., Tully, D., Boness, D. J., Bulheier, B. M. & Marshall, G. J. Prey-dependent foraging tactics and preyprofitability in a marine mammal. Mar. Ecol. Prog. Ser. 244, 235–245 (2002).ADS 
    Article 

    Google Scholar 
    63.Cox, S. L. et al. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol. Evol. 9, 64–77 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).Article 

    Google Scholar 
    65.Martín López, L. M., de Soto, N. A., Miller, P. & Johnson, M. Tracking the kinematics of caudal-oscillatory swimming: a comparison of two on-animal sensing methods. J. Exp. Biol. 219, 2103–2109. https://doi.org/10.1242/jeb.136242 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc. R. Soc. B Biol. Sci. 274, 471–477 (2007).Article 

    Google Scholar 
    67.Bartoń, K. MuMIn: Multi‐model inference. R package version 1.43.17. 75 (2020). More

  • in

    Synchrony and multimodality in the timing of Atlantic salmon smolt migration in two Norwegian fjords

    1.Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Change Biol. 20, 61–75 (2014).ADS 
    Article 

    Google Scholar 
    2.Thorstad, E. B., Whoriskey, F., Rikardsen, A. H. & Aarestrup, K. Aquatic nomads: The life and migrations of the Atlantic salmon. In Atlantic Salmon Ecology (eds Aas, Ø. et al.) 1–32 (Wiley-Blackwell, 2010) https://doi.org/10.1002/9781444327755.ch1.
    Google Scholar 
    3.Harvey, A. C., Glover, K. A., Wennevik, V. & Skaala, Ø. Atlantic salmon and sea trout display synchronised smolt migration relative to linked environmental cues. Sci. Rep. 10, 3529 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Jensen, A. J. et al. Timing of smolt migration in sympatric populations of Atlantic salmon (Salmo salar), brown trout (Salmo trutta), and Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 69, 711–723 (2012).Article 

    Google Scholar 
    5.Hansen, L. P. & Jonsson, B. Salmon ranching experiments in the River Imsa: Effect of timing of Atlantic salmon (Salmo salar) smolt migration on survival to adults. Aquaculture 82, 367–373 (1989).Article 

    Google Scholar 
    6.Hvidsten, N. A. et al. Influence of sea temperature and initial marine feeding on survival of Atlantic salmon (Salmo salar) post-smolts from the Rivers Orkla and Hals, Norway. J. Fish Biol. 74, 1532–1548 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Hvidsten, N. A., Heggberget, T. & Jensen, A. J. Sea water temperatures at Atlantic salmon smolt enterance. Nord. J. Freshw. Res. 74, 79–86 (1998).8.Otero, J. et al. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers. PLoS ONE 6, e24005 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Rikardsen, A. H. & Dempson, J. B. Dietary life-support: the food and feeding of Atlantic salmon at sea. In Atlantic Salmon Ecology (eds. Aas, Ø., Klemetsen, A., Einum, S. & Skurdal, J.) 115–143 (Wiley, 2011).10.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Piou, C. & Prévost, E. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon. Glob. Change Biol. 19, 711–723 (2013).ADS 
    Article 

    Google Scholar 
    12.McCormick, S. D., Hansen, L. P., Quinn, T. P. & Saunders, R. L. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55, 77–92 (1998).Article 

    Google Scholar 
    13.Thorstad, E. B. et al. A critical life stage of the Atlantic salmon (Salmo salar): Behaviour and survival during the smolt and initial post-smolt migration. J. Fish Biol. 81, 500–542 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Aldrin, M., Storvik, B., Kristoffersen, A. B. & Jansen, P. A. Space-time modelling of the spread of salmon lice between and within Norwegian marine salmon farms. PLoS ONE 8, e64039 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).Article 

    Google Scholar 
    16.Kristoffersen, A. B. et al. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms. Epidemics 9, 31–39 (2014).PubMed 
    Article 

    Google Scholar 
    17.Bøhn, T. et al. Timing is everything: Survival of Atlantic salmon (Salmo salar) postsmolts during events of high salmon lice densities. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13612 (2020).Article 

    Google Scholar 
    18.Berge, Å. I. et al. Development of salinity tolerance in underyearling smolts of Atlantic salmon (Salmo salar) reared under different photoperiods. Can. J. Fish. Aquat. Sci. 52, 243–251 (1995).Article 

    Google Scholar 
    19.Hoar, W. S. 4 The physiology of smolting salmonids. In Fish Physiology Vol. 11 (eds Hoar, W. S. & Randall, D. J.) 275–343 (Academic Press, 1988).
    Google Scholar 
    20.Saunders, R. L. & Henderson, E. B. Influence of photoperiod on smolt development and growth of Atlantic salmon (Salmo solar). J. Fish. Res. Board Can. 27, 1295–1311 (1970).Article 

    Google Scholar 
    21.Strand, J. E. T., Hazlerigg, D. & Jørgensen, E. H. Photoperiod revisited: Is there a critical day length for triggering a complete parr-smolt transformation in Atlantic salmon (Salmo salar)?. J. Fish Biol. 93, 440–448 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Antonsson, T. & Gudjonsson, S. Variability in timing and characteristics of Atlantic salmon smolt in Icelandic rivers. Trans. Am. Fish. Soc. 131, 643–655 (2002).Article 

    Google Scholar 
    23.Kennedy, R. & Crozier, W. Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J. Fish Biol. 76, 1786–1805 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Hvidsten, N. A., Jensen, A. J., Vivås, H. & Bakke, Ø. Downstream migration of Atlantic salmon smolts in relation to water flow, water temperature, moon phase and social interaction. Nord. J. Freshw. Res. 70, 38–48 (1995).25.Urke, H. A., Kristensen, T., Ulvund, J. B. & Alfredsen, J. A. Riverine and fjord migration of wild and hatchery-reared Atlantic salmon smolts. Fish. Manag. Ecol. 20, 544–552 (2013).Article 

    Google Scholar 
    26.Carlsen, K. T., Berg, O. K., Finstad, B. & Heggberget, T. G. Diel periodicity and environmental influence on the smolt migration of Arctic charr, Salvelinus alpinus, Atlantic salmon, Salmo salar, and Brown Trout, Salmo trutta, Northern Norway. Environ. Biol. Fishes 70, 403–413 (2004).Article 

    Google Scholar 
    27.Birnie-Gauvin, K., Larsen, M. H., Thomassen, S. T. & Aarestrup, K. Testing three common stocking methods: Differences in smolt size, migration rate and timing of two strains of stocked Atlantic salmon (Salmo salar). Aquaculture 483, 163–168 (2018).Article 

    Google Scholar 
    28.Nielsen, C., Holdensgaard, G., Petersen, H. C., Bjornsson, BTh. & Madsen, S. S. Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J. Fish Biol. 59, 28–44 (2001).CAS 
    Article 

    Google Scholar 
    29.Orciari, R. D. & Leonard, G. H. Length characteristics of smolts and timing of downstream migration among three strains of Atlantic salmon in a southern New England stream. N. Am. J. Fish. Manag. 16, 851–860 (1996).Article 

    Google Scholar 
    30.Skaala, Ø. et al. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol. Appl. 12, 1001–1016 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Cooke, S. J. et al. Tracking animals in freshwater with electronic tags: Past, present and future. Anim. Biotelemetry 1, 5 (2013).MathSciNet 
    Article 

    Google Scholar 
    32.Lennox, R. J. et al. Envisioning the future of aquatic animal tracking: Technology, science, and application. Bioscience 67, 884–896 (2017).Article 

    Google Scholar 
    33.Finstad, B., Okland, F., Thorstad, E. B., BjOrn, P. A. & McKinley, R. S. Migration of hatchery-reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. J. Fish Biol. 66, 86–96 (2005).Article 

    Google Scholar 
    34.McMichael, G. A. et al. The juvenile salmon acoustic telemetry system: A new tool. Fisheries 35, 9–22 (2010).Article 

    Google Scholar 
    35.Welch, D. W. et al. Freshwater and marine migration and survival of endangered Cultus Lake sockeye salmon (Oncorhynchus nerka) smolts using POST, a large-scale acoustic telemetry array. Can. J. Fish. Aquat. Sci. 66, 736–750 (2009).Article 

    Google Scholar 
    36.Nilsen, F. et al. Vurdering av lakselusindusert villfiskdødelighet per produksjonsområde i 2018. Rapp. Fra Ekspertgruppe Vurder. Av Lusepåvirkning Append 2, 62 (2018).
    Google Scholar 
    37.Mulcahy, D. M. Surgical implantation of transmitters into fish. ILAR J. 44, 295–306 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Cooke, S. J. & Wagner, G. N. Training, experience, and opinions of researchers who use surgical techniques to implant telemetry devices into fish. Fisheries 29, 10–18 (2004).Article 

    Google Scholar 
    39.Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Grün, B. & Leisch, F. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw. 28, 1–35 (2008).Article 

    Google Scholar 
    41.Leisch, F. FlexMix: A general framework for finite mixture models and latent class regression in R. J. Stat. Softw. 11, 1–18 (2004).Article 

    Google Scholar 
    42.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).
    Google Scholar 
    43.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. arXiv:1406.5823Stat (2014).44.Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    45.Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. 25 http://www.afsc.noaa.gov/Publications/ProcRpt/PR2013-01.pdf (2013).46.White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    47.Burnham, K. P. Design and analysis methods for fish survival experiments based on release-recapture. Am. Fish. Soc. Monogr. 5, 1–437 (1987).
    Google Scholar 
    48.Michel, C. J. et al. Chinook salmon outmigration survival in wet and dry years in California’s Sacramento River. Can. J. Fish. Aquat. Sci. 72, 1749–1759 (2015).Article 

    Google Scholar 
    49.Persson, L., Kagervall, A., Leonardsson, K., Royan, M. & Alanärä, A. The effect of physiological and environmental conditions on smolt migration in Atlantic salmon Salmo salar. Ecol. Freshw. Fish 28, 190–199 (2019).Article 

    Google Scholar 
    50.Whalen, K. G., Parrish, D. L. & McCormick, S. D. Migration timing of Atlantic salmon smolts relative to environmental and physiological factors. Trans. Am. Fish. Soc. 128, 289–301 (1999).Article 

    Google Scholar 
    51.Haraldstad, T., Kroglund, F., Kristensen, T., Jonsson, B. & Haugen, T. O. Diel migration pattern of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) smolts: An assessment of environmental cues. Ecol. Freshw. Fish 26, 541–551 (2017).Article 

    Google Scholar 
    52.Skilbrei, O. T., Wennevik, V., Dahle, G., Barlaup, B. & Wiers, T. Delayed smolt migration of stocked Atlantic salmon parr. Fish. Manag. Ecol. 17, 493–500 (2010).Article 

    Google Scholar 
    53.Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2019).PubMed 
    Article 

    Google Scholar 
    54.Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).Article 

    Google Scholar 
    55.Urke, H. A., Arnekleiv, J. V., Nilsen, T. O. & Nilssen, K. J. Development of seawater tolerance and subsequent downstream migration in wild and stocked young-of-the-year derived Atlantic salmon Salmo salar smolts. J. Fish Biol. 84, 178–192 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Virtanen, E., Söderholm-Tana, L., Soivio, A., Foreman, L. & Muona, M. Effect of physiological condition and smoltification status at smolt release on subsequent catches of adult salmon. Aquaculture 97, 231–257 (1991).Article 

    Google Scholar 
    57.Björnsson, B. T., Stefansson, S. O. & McCormick, S. D. Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 170, 290–298 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    58.Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D. Smoltification. In Fish Larval Physiology (eds. Finn, R. N. & Kapoor, B. G.) 639–681 (Science Publishers, 2008).59.McCormick, S. D., Shrimpton, J. M., Nilsen, T. O. & Ebbesson, L. O. Advances in our understanding of the parr-smolt transformation of juvenile salmon: A summary of the 10th International Workshop on Salmon Smoltification. J. Fish Biol. 93, 437–439 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Simons, A. Playing smart vs. playing safe: The joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments. J. Evol. Biol. 27, 1047–1056 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Finstad, B. & Jonsson, N. Factors influencing the yield of smolt releases in Norway. Nord. J. Freshw. Res. 75, 37–55 (2001).62.Diserud, O. H., Hindar, K., Karlsson, S., Glover, K. A. & Skaala, Ø. Genetic impact of escaped farmed Atlantic salmon on wild salmon populations—status 2017. NINA Rapp. 1337, 55 (2017).
    Google Scholar 
    63.Vollset, K. W. et al. Can the river location within a fjord explain the density of Atlantic salmon and sea trout?. Mar. Biol. Res. 10, 268–278 (2014).Article 

    Google Scholar 
    64.Lacroix, G. L., Knox, D. & McCurdy, P. Effects of implanted dummy acoustic transmitters on juvenile Atlantic salmon. Trans. Am. Fish. Soc. 133, 211–220 (2004).Article 

    Google Scholar 
    65.Newton, M. et al. Does size matter? A test of size-specific mortality in Atlantic salmon Salmo salar smolts tagged with acoustic transmitters. J. Fish Biol. 89, 1641–1650 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Hansen, L. P., Holm, M., Hoist, J. C. & Jacobsen, J. A. The ecology of post-smolts of Atlantic salmon. In Salmon at the Edge (ed. Mills, D.) 25–39 (Blackwell Science Ltd., 2003) https://doi.org/10.1002/9780470995495.ch4.
    Google Scholar 
    67.Gregory, S. D. et al. Atlantic salmon return rate increases with smolt length. ICES J. Mar. Sci. 76, 1702–1712 (2019).Article 

    Google Scholar 
    68.Bjørn, P. A. et al. Metodeutvikling for overvåkning og telling av lakselus på viltlevende laksefisk: Ekstrainnsats i 2010 med midler fra FKD. (2011).69.Riley, W. D. et al. Development of schooling behaviour during the downstream migration of Atlantic salmon Salmo salar smolts in a chalk stream: Development of schooling in Salmo salar smolts. J. Fish Biol. 85, 1042–1059 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Daniels, J., Sutton, S., Webber, D. & Carr, J. Extent of predation bias present in migration survival and timing of Atlantic salmon smolt (Salmo salar) as suggested by a novel acoustic tag. Anim. Biotelemetry 7, 16 (2019).Article 

    Google Scholar 
    71.Halttunen, E. et al. Migration of Atlantic salmon post-smolts in a fjord with high infestation pressure of salmon lice. Mar. Ecol. Prog. Ser. 592, 243–256 (2018).ADS 
    Article 

    Google Scholar 
    72.Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Monitoring the variation in the gut microbiota of captive woolly monkeys related to changes in diet during a reintroduction process

    1.Amato, K. R. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am. J. Phys. Anthropol. 159, S196–S215 (2016).PubMed 
    Article 

    Google Scholar 
    2.Ley, R., Hamady, M. & Lozupone, C. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: Implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.O’Callaghan, A. & van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol. 7, 925 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    5.Redford, K. H., Segre, J. A., Salafsky, N., Del Rio, C. M. & Mcaloose, D. Conservation and the microbiome. Conserv. Biol. 26, 195–197 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. & Relman, D. A. The application of ecological theory towards an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kohl, K. D., Skopec, M. M. & Dearing, M. D. Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv. Physiol. 2, cou009 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Myers, S. P. & Hawrelak, J. A. The causes of intestinal dysbiosis: a review. Altern. Med. Rev. 9, 180–197 (2004).PubMed 

    Google Scholar 
    13.Knights, D. et al. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6, 107 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Perofsky, A. C., Lewis, R. J., Abondano, L. A., Fiore, A. D. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux ’ s sifaka. Proc. R. Soc. B Biol. Sci. 248, 20172274 (2017).Article 

    Google Scholar 
    15.Phillips, C. D. et al. Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol. Ecol. 21, 2617–2627 (2012).PubMed 
    Article 

    Google Scholar 
    16.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    17.Delsuc, F. et al. Convergence of gut microbiomes in myrmecophagous mammals. Mol. Ecol. 23, 1301–1317 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Lambert, J. E. Primate Nutritional Ecology: Feeding Biology and Diet at Ecological and Evolutionary Scales: Primates in Perspective (Oxford University Press, 2010).
    Google Scholar 
    19.Gomez, A. et al. Temporal variation selects for diet-microbe co-metabolic traits in the gut of Gorilla spp. ISME J. 10, 514–526 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol. 8, 3–10 (2010).Article 
    CAS 

    Google Scholar 
    22.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kohl, K. D. & Dearing, M. D. Wild-caught rodents retain a majority of their natural gut microbiota upon entrance into captivity. Environ. Microbiol. Rep. 6, 191–195 (2014).PubMed 
    Article 

    Google Scholar 
    25.Xiao, Y. et al. Captivity causes taxonomic and functional convergence of gut microbial communities in bats. PeerJ 7, e6844 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Prabhu, V. R., Wasimuddin, V. R., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: a comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Chaves, Ó. M., Stoner, K. E. & Arroyo-Rodríguez, V. Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica 44, 105–113 (2012).Article 

    Google Scholar 
    28.Nakagawa, N. Determinants of the dramatic seasonal changes in the intake of energy and protein by Japanese monkeys in a cool temperate forest. Am. J. Primatol. 41, 267–288 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Chen, T., Li, Y., Liang, J., Li, Y. & Huang, Z. Gut microbiota of provisioned and wild rhesus macaques (Macaca mulatta) living in a limestone forest in southwest Guangxi China. Microbiologyopen 9, e981 (2020).PubMed 

    Google Scholar 
    31.Mackie, R. I., Sghir, A. & Gaskins, H. R. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69, 1035s–1045s (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Donnet-hughes, A. et al. Potential role of the intestinal microbiota of the mother in neonatal immune education. Proc. Nutr. Soc. 69, 407–415 (2010).PubMed 
    Article 

    Google Scholar 
    33.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2015).ADS 
    Article 

    Google Scholar 
    35.Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A. 102, 11070–11075 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. U. S. A. 104, 13780–13785 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Jang, H. B., Choi, M. K., Kang, J. H., Park, S. I. & Lee, H. J. Association of dietary patterns with the fecal microbiota in Korean adolescents. BMC Nutr. 3, 1–11 (2017).Article 

    Google Scholar 
    39.Wang, B. et al. Comparison of the fecal microbiomes of healthy and diarrheic captive wild boar. Microb. Pathog. 147, 104377 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Tang, J. et al. Gut microbiota in reintroduction of giant panda. Ecol. Evol. 10, 1012–1028 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).PubMed 
    Article 

    Google Scholar 
    42.Martínez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets promote retention of the native gut microbiota in captive rodents. ISME J. 14, 67–78 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Kilkenny, C. et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    44.Vargas, S. A., León, J., Ramírez, M., Galvis, N., Cifuentes, E., & Stevenson, P. R. Population density and ecological traits of highland woolly monkeys at Cueva de los Guácharos National Park, Colombia. In High altitude primates Springer, New York. 85–102 (2014)45.Stevenson, P. R. Seed dispersal by woolly monkeys (Lagothrix lagothricha) at Tinigua National Park, Colombia: dispersal distance, germination rates, and dispersal quantity. Am. J. Primatol. Off. J. Am. Soc. Primatol. 50, 275–289 (2000).CAS 

    Google Scholar 
    46.Botero, S., Rengifo, L. Y., Bueno, M. L. & Stevenson, P. R. How many species of woolly monkeys inhabit Colombian forests?. Am. J. Primatol. 72, 1131–1140 (2020).Article 

    Google Scholar 
    47.Di Fiore, A. et al. The rise and fall of a genus: Complete mtDNA genomes shed light on the phylogenetic position of yellow-tailed woolly monkeys, Lagothrix flavicauda, and on the evolutionary history of the family Atelidae (Primates: Platyrrhini). Mol. Phylogenet. Evol. 82, 495–510 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    48.Fooden, D. A revision of the woolly monkeys (genus Lagothrix). J. Mammal. 44, 213–247 (1963).Article 

    Google Scholar 
    49.Botero, S. & Stevenson, P. R. Coat color is not an indicator of subspecies identity in colombian woolly monkeys. The Woolly Monkey https://doi.org/10.1007/978-1-4939-0697-0 (2014).Article 

    Google Scholar 
    50.Stevenson, P. R. Activity and ranging patterns of Colombian woolly monkeys in north-western Amazonia. Primates https://doi.org/10.1007/s10329-005-0172-6 (2006).Article 
    PubMed 

    Google Scholar 
    51.Altmann, J. Observational study of behavior: sampling methods. Behaviuor. 49, 227–266 (1974).CAS 
    Article 

    Google Scholar 
    52.Caporaso, J. G. et al. Correspondence QIIME allows analysis of high-throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat. Publ. Gr 7, 335–336 (2010).CAS 

    Google Scholar 
    53.Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D. & Knight, R. Short pyrosequencing reads suffice for accurate microbial community analysis. Nucl. Acids Res. 35, e120 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    54.Liu, Z., Desantis, T. Z., Andersen, G. L. & Knight, R. Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucl. Acids Res. 36, 1–11 (2008).Article 
    CAS 

    Google Scholar 
    55.Yang, B., Wang, Y. & Qian, P. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinform. 17, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    56.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).Article 

    Google Scholar 
    57.Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).58.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Amir, A. et al. Deblur rapidly resolves single-. Am. Soc. Microbiol. 2, 1–7 (2017).
    Google Scholar 
    62.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Douglas, G. M., Maffei, V. J., Zaneveld, J., Yurgel, S. N., Brown, J. R., Taylor, C. M., & Langille, M. G. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 672295 (2020).64.McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 
    Article 

    Google Scholar 
    66.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    67.Barton, K. MuMIn: multi-model inference. (2009). http://r-forge.R-project.org/projects/mumin/.68.Richards, S. A., Whittingham, M. J. & Stephens, P. A. Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. Behav. Ecol. Sociobiol. 65, 77–89 (2011).Article 

    Google Scholar  More