1.Holzner, W. Concepts, categories and characteristics of weeds. Biol. Ecol. Weeds https://doi.org/10.1007/978-94-017-0916-3_1 (1982).Article
Google Scholar
2.Randall, J. M. Weed control for the preservation of biological diversity. Weed Technol. 10, 370–383 (1996).Article
Google Scholar
3.Atkinson, I. A. E. Problem Weeds on New Zealand Islands. (Dept. of Conservation, 1997).4.Goslee, S. C., Peters, D. P. C. & Beck, K. G. Modeling invasive weeds in grasslands: the role of allelopathy in Acroptilon repens invasion. Ecological Modelling (2001). https://www.sciencedirect.com/science/article/pii/S0304380001002319. Accessed 2 Oct 2020.5.Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).Article
Google Scholar
6.Baker, H. G. The evolution of weeds, annual review of ecology, evolution, and systematics. DeepDyve (1974). https://www.deepdyve.com/lp/annual-reviews/the-evolution-of-weeds-YxSFG7LI8J. Accessed 2 Oct 2020.7.Perrins, J., Williamson, M. & Fitter, A. A survey of differing views of weed classification: Implications for regulation of introductions. Biol. Conserv. 60, 47–56 (1992).Article
Google Scholar
8.Mack, R. N. Predicting the identity and fate of plant invaders: Emergent and emerging approaches. Biol. Conserv. 78, 107–121 (1996).Article
Google Scholar
9.Sutherland, S. What Makes a Weed a Weed: Life History Traits of Native (2004). https://www.jstor.org/stable/pdf/40005745.pdf. Accessed 2 Oct 2020.10.Leather, G. R. Weed control using allelopathic crop plants. J. Chem. Ecol. 9, 983–989 (1983).CAS
PubMed
Article
PubMed Central
Google Scholar
11.Mersie, W. & Singh, M. Allelopathic effect of parthenium (Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds. J. Chem. Ecol. 13, 1739–1747 (1987).CAS
PubMed
Article
PubMed Central
Google Scholar
12.Derya, E., yildiz, O. & Nelson, E. T. (PDF) Ecology, Competitive Advantages, and Integrated (2006). https://www.researchgate.net/publication/287491753_Ecology_Competitive_Advantages_and_Integrated_Control_of_Rhododendron_An_Old_Ornamental_yet_Emerging_Invasive_Weed_Around_the_Globe. Accessed 2 Oct 2020.13.Clements, D. R. & Ditommaso, A. Climate change and weed adaptation: Can evolution of invasive plants lead to greater range expansion than forecasted?. Weed Res. 51, 227–240 (2011).Article
Google Scholar
14.Sebasky, M. E., Keller, S. R. & Taylor, D. R. Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecol. Evol. 6, 4800–4811 (2016).PubMed
PubMed Central
Article
Google Scholar
15.Hodgins, K. Unearthing the impact of human disturbance on a notorious weed. Mol. Ecol. 23, 2141–2143 (2014).PubMed
Article
PubMed Central
Google Scholar
16.Hobbs, R. J. & Huenneke, L. F. Disturbance, diversity, and invasion: Implications for conservation. Ecosyst. Manag. https://doi.org/10.1007/978-1-4612-4018-1_16 (1992).Article
Google Scholar
17.Lozon, J. D. & Macisaac, H. J. Biological invasions: Are they dependent on disturbance?. Environ. Rev. 5, 131–144 (1997).Article
Google Scholar
18.Ditomaso, J. M. Invasive weeds in rangelands: Species, impacts, and management. Weed Sci. 48, 255–265 (2000).CAS
Article
Google Scholar
19.Larson, D. L., Anderson, P. J. & Newton, W. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance. Ecol. Appl. 11, 128–141 (2001).Article
Google Scholar
20.Chiuffo, M. C., Cock, M. C., Prina, A. O. & Hierro, J. L. Response of native and non-native ruderals to natural and human disturbance. Biol. Invasions 20, 2915–2925 (2018).Article
Google Scholar
21.Kariyat, R. R., Scanlon, S. R., Mescher, M. C., De Moraes, C. M. & Stephenson, A. G. Inbreeding depression in Solanum carolinense (Solanaceae) under field conditions and implications for mating system evolution. PLoS ONE (2011). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3236180/. Accessed 2 Oct 2020.22.Li, B., Shibuya, T., Yogo, Y. & Hara, T. Effects of ramet clipping and nutrient availability on growth and biomass allocation of yellow nutsedge. Ecol. Res. 19, 603–612 (2004).Article
Google Scholar
23.Jia, X., Pan, X. Y., Li, B., Chen, J. K. & Yang, X. Z. Allometric growth, disturbance regime, and dilemmas of controlling invasive plants: A model analysis. Biol. Invasions 11, 743–752 (2008).Article
Google Scholar
24.Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22, 3163–3173 (2020).Article
Google Scholar
25.Liu, X. & Huang, B. Mowing effects on root production, growth, and mortality of creeping bentgrass. Crop Sci. 42, 1241–1250 (2002).Article
Google Scholar
26.Biazzo, J. & Milbrath, L. R. Response of pale swallowwort (Vincetoxicum rossicum) to multiple years of mowing. Invasive Plant Sci. Manag. 12, 169–175 (2019).Article
Google Scholar
27.Yong, X.-H. et al. Maternal Mowing Effect on Seed Traits of an Invasive Weed, Erigeron annus in farmland. Sains Malay. 44, 347–354 (2015).Article
Google Scholar
28.Mithöfer, A., Wanner, G. & Boland, W. Effects of feeding spodoptera littoralis on lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiol. 137, 1160–1168 (2005).PubMed
PubMed Central
Article
CAS
Google Scholar
29.Engelberth, J. & Engelberth, M. The Costs of Green Leaf Volatile-Induced Defense Priming: Temporal Diversity in Growth Responses to Mechanical Wounding and Insect Herbivory. Plants 8, 23 (2019).CAS
PubMed Central
Article
Google Scholar
30.Erfmeier, A. & Bruelheide, H. Invasive and nativeRhododendron ponticumpopulations: Is there evidence for genotypic differences in germination and growth?. Ecography 28, 417–428 (2005).Article
Google Scholar
31.Milbau, A., Nijs, I., Van Peer, L., Reheul, D. & De Cauwer, B. Disentangling invasiveness and invasibility during invasion in synthesized grassland communities. New Phytol. 159, 657–667 (2003).Article
Google Scholar
32.Etten, M. L. V., Conner, J. K., Chang, S.-M. & Baucom, R. S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 7, 2636–2642 (2017).PubMed
PubMed Central
Article
Google Scholar
33.Baker, H. G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9, 347 (1955).
Google Scholar
34.Tabassum, S. & Leishman, M. R. It doesn’t take two to tango: Increased capacity for self-fertilization towards range edges of two coastal invasive plant species in eastern Australia. Biol. Invasions 21, 2489–2501 (2019).Article
Google Scholar
35.Pannell, J. R. & Barrett, S. C. H. Baker’s law revisited: reproductive assurance in a metapopulation. Evolution 52, 657–668 (1998).PubMed
Article
PubMed Central
Google Scholar
36.Pannell, J. R. Evolution of the mating system in colonizing plants. Mol. Ecol. 24, 2018–2037 (2015).PubMed
Article
PubMed Central
Google Scholar
37.Mena-Ali, J. I., Keser, L. H. & Stephenson, A. G. Inbreeding depression in Solanum carolinense (Solanaceae), a species with a plastic self-incompatibility response. BMC Evol. Biol. 8, 10 (2008).PubMed
PubMed Central
Article
Google Scholar
38.Chauhan, B. S., Migo, T., Westerman, P. R. & Johnson, D. E. Post-dispersal predation of weed seeds in rice fields. Weed Res. 50, 553–560 (2010).Article
Google Scholar
39.Muniappan, R. & Viraktamath, C. A. Invasive alien weeds in the Western Ghats. Curr. Sci. 64, 555–558 (1993).
Google Scholar
40.Ziller S. R. A Estepe Gramineo-Lenhosa no Segundo Plan-alto do Paraná: Diagnóstico Ambiental com Enfoque à Contami-nacão Biológica (PhD Thesis). Universidade Federal doParaná (2000).41.Javaid, A. & Riaz, T. Parthenium hysterophorus L., an alien invasive weed threatening natural vegetations in Punjab, Pakistan. Pak. J. Bot. 44, 123–126 (2012).
Google Scholar
42.Alves, M. T. & Hilker, F. M. Hunting cooperation and Allee effects in predators. J. Theor. Biol. 419, 13–22 (2017).MathSciNet
MATH
Article
Google Scholar
43.Kariyat, R. R., Mauck, K. E., Moraes, C. M. D., Stephenson, A. G. & Mescher, M. C. Inbreeding alters volatile signalling phenotypes and influences tri-trophic interactions in horsenettle (Solanum carolinense L..). Ecol. Lett. 15, 301–309 (2012).PubMed
Article
PubMed Central
Google Scholar
44.Nihranz, C. T. et al. Herbivory and inbreeding affect growth, reproduction, and resistance in the rhizomatous offshoots of Solanum carolinense (Solanaceae). Evol. Ecol. 33, 499–520 (2019).Article
Google Scholar
45.Nihranz, C. T. et al. Transgenerational impacts of herbivory and inbreeding on reproductive output in Solanum carolinense. Am. J. Bot. 107, 286–297 (2020).PubMed
PubMed Central
Article
Google Scholar
46.Wilkens, R. T., Shea, G. O., Halbreich, S. & Stamp, N. E. Resource availability and the trichome defenses of tomato plants. Oecologia 106, 181–191 (1996).ADS
PubMed
Article
PubMed Central
Google Scholar
47.Zaynab, M. et al. Role of secondary metabolites in plant defense against pathogens. Microb. Pathog. 124, 198–202 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Neilson, E. H., Goodger, J. Q., Woodrow, I. E. & Møller, B. L. Plant chemical defense: at what cost?. Trends Plant Sci. 18, 250–258 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Boyd, J. W., Murray, D. S. & Tyrl, R. J. Silverleaf nightshade, Solarium elaeagnifolium, origin, distribution, and relation to man. Econ. Bot. 38, 210–217 (1984).Article
Google Scholar
50.EPPO Global Database. Solanum elaeagnifolium (SOLEL)[Documents]| EPPO Global Database. https://gd.eppo.int/taxon/SOLEL/documents. Accessed 5th Nov 2020.51.Travlos, I. S. Responses of invasive silverleaf nightshade (Solanum elaeagnifolium) populations to varying soil water availability. Phytoparasitica 41, 41–48 (2012).Article
Google Scholar
52.Mekki, M. Biology, distribution and impacts of silverleaf nightshade (Solanum elaeagnifolium Cav.). EPPO Bull. 37, 114–118 (2007).Article
Google Scholar
53.Cuthbertson, E.G. Morphology of the underground parts of silverleaf nightshade. 5th Australian Weeds Conference (1976).54.Heap, J., Honan, I. & Smith, E. Silverleaf nigthshade: A Technical Handbook for Animal and Plant Control Boards in South Australia (Adelaide, 1997).
Google Scholar
55.Petanidou, T. et al. Self-compatibility and plant invasiveness: Comparing species in native and invasive ranges. Perspect. Plant Ecol. Evol. Syst. 14, 3–12 (2012).Article
Google Scholar
56.Kariyat, R. R. & Chavana, J. Field data on plant growth and insect damage on the noxious weed Solanum eleaegnifolium in an unexplored native range. Data Brief 19, 2348–2351 (2018).PubMed
PubMed Central
Article
Google Scholar
57.Centibas, M. & Koyuncu, F. The ripening and fruit quality of ‘Monroe’ peaches in response to pre-harvest application gibberellic acid. Akdeniz Üniv. Ziraat Fakült. Dergisi 26, 73–80 (2013).
Google Scholar
58.Pornaro, C., Macolino, S., Menegon, A. & Richardson, M. WinRHIZO technology for measuring morphological traits of Bermudagrass Stolons. Agron. J. 109, 3007–3010 (2017).CAS
Article
Google Scholar
59.Kariyat, R. R. et al. Inbreeding, herbivory, and the transcriptome of Solanum carolinense. Entomol. Exp. Appl. 144, 134–144 (2012).Article
Google Scholar
60.Kariyat, R. R. et al. Feeding on glandular and non-glandular leaf trichomes negatively affect growth and development in tobacco hornworm (Manduca sexta) caterpillars. Arthropod Plant Interact. 13, 321–333 (2019).Article
Google Scholar
61.Tayal, M., Chavana, J. & Kariyat, R. R. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol. 20, 1 (2020).Article
Google Scholar
62.Singh, S. & Kariyat, R. R. Exposure to polyphenol-rich purple corn pericarp extract restricts fall armyworm (Spodoptera frugiperda) growth. Plant Signal. Behav. 15, 1784545 (2020).PubMed
Article
CAS
PubMed Central
Google Scholar
63.Kariyat, R. R. et al. Constitutive and herbivore-induced structural defenses are compromised by inbreeding in Solanum carolinense (Solanaceae). Am. J. Bot. 100, 1014–1021 (2013).PubMed
Article
PubMed Central
Google Scholar
64.Paez-Garcia, A. et al. Root traits and phenotyping strategies for plant improvement. Plants 4, 334–355 (2015).PubMed
PubMed Central
Article
Google Scholar
65.Pinke, G., Pál, R. & Botta-Dukát, Z. Effects of environmental factors on weed species composition of cereal and stubble fields in western Hungary. Open Life Sci. 5, 283–292 (2010).Article
Google Scholar
66.Tremayne, M. A. & Richards, A. J. Seed weight and seed number affect subsequent fitness in outcrossing and selfing Primula species. New Phytol. 148, 127–142 (2000).Article
Google Scholar
67.Ramesh, K., Matloob, A., Aslam, F., Florentine, S. K. & Chauhan, B. S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 8, 1 (2017).CAS
Article
Google Scholar
68.Rha, E. S. & Jamil, M. Gibberellic acid (GA3) enhance seed water uptake, germination and early seedling growth in sugar beet under salt stress. Pak. J. Biol. Sci. 10, 654–658 (2007).PubMed
Article
PubMed Central
Google Scholar
69.Stoller, E. W. & Wax, L. M. Periodicity of germination and emergence of some annual weeds. Weed Sci. 21, 574–580 (1973).Article
Google Scholar
70.Meyer, S. E. & Pendleton, B. K. Factors affecting seed germination and seedling establishment of a long-lived desert shrub (Coleogyne ramosissima: Rosaceae). Plant Ecol. 178, 171–187 (2005).Article
Google Scholar
71.Milbau, A., Scheerlinck, L., Reheul, D., De Cauwer, B. & Nijs, I. Ecophysiological and morphological parameters related to survival in grass species exposed to an extreme climatic event. Physiol. Plant. 125, 500–512 (2005).CAS
Article
Google Scholar
72.Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2016).Article
Google Scholar
73.Mahmood, A. H. et al. Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: Green galenia (Galenia pubescens). Weed Sci. 64, 486–494 (2016).Article
Google Scholar
74.Mcnaughton, S. J. Grazing lawns: On domesticated and wild grazers. Am. Nat. 128, 937–939 (1986).Article
Google Scholar
75.McNaughton, S. J. Adaptation of herbivores to seasonal changes in nutrient supply. Nutr. Herb. 1, 391–408 (1987).
Google Scholar
76.Laliberté, E., Lambers, H., Burgess, T. I. & Wright, S. J. Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytol. 206, 507–521 (2014).PubMed
Article
CAS
PubMed Central
Google Scholar
77.Kramer-Walter, K. R. et al. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 104, 1299–1310 (2016).Article
Google Scholar
78.Losapio, G. et al. An invasive plant species enhances biodiversity in overgrazed pastures but inhibits its recovery in protected areas. J. Ecol. https://doi.org/10.1101/2020.08.16.227066 (2020).Article
Google Scholar
79.Onen, H., Farooq, S., Gunal, H., Ozaslan, C. & Erdem, H. Higher tolerance to abiotic stresses and soil types may accelerate common ragweed (Ambrosia artemisiifolia) invasion. Weed Sci. 65, 115–127 (2016).Article
Google Scholar
80.Wittstock, U. & Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 5, 300–307 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
81.Mooney, E. H., Tiedeken, E. J., Muth, N. Z. & Niesenbaum, R. A. Differential induced response to generalist and specialist herbivores by Lindera benzoin (Lauraceae) in sun and shade. Oikos 118, 1181–1189 (2009).Article
Google Scholar
82.Baldwin, I. T. Plant volatiles. Curr. Biol. 20, 392–397 (2011).Article
CAS
Google Scholar
83.Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
84.Fine, P. V. A. Herbivores promote habitat specialization by trees in amazonian forests. Science 305, 663–665 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
85.Zandt, P. A. V. Plant defense, growth, and habitat: A comparative assessment of constitutive and induced resistance. Ecology 88, 1984–1993 (2007).PubMed
Article
PubMed Central
Google Scholar
86.Salminen, S. O. & Grewal, P. S. Does decreased mowing frequency enhance alkaloid production in endophytic tall fescue and perennial ryegrass?. J. Chem. Ecol. 28, 939–950 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
87.Freeman. An Overview of Plant Defenses against Pathogens and Herbivores. The Plant Health Instructor (2008). https://doi.org/10.1094/phi-i-2008-0226-01.88.Davis, H. N. et al. Review of Major Crop and Animal Arthropod Pests of South Texas. Subtropical Agriculture and Environments (2020).89.Traw, M. B., Kim, J., Enright, S., Cipollini, D. F. & Bergelson, J. Negative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana. Mol. Ecol. 12, 1125–1135 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
90.Bostock, R. M. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545–580 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
91.Lefoe, G. et al. Assessing the fundamental host-range of Leptinotarsa texana Schaeffer as an essential precursor to biological control risk analysis. Biol. Control 143, 104165 (2020).CAS
Article
Google Scholar
92.Chung, S. H. & Felton, G. W. Specificity of induced resistance in tomato against specialist lepidopteran and coleopteran species. J. Chem. Ecol. 37, 378–386 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
93.Korpita, T., Gómez, S. & Orians, C. M. Cues from a specialist herbivore increase tolerance to defoliation in tomato. Funct. Ecol. 28, 395–401 (2013).Article
Google Scholar
94.Yang, Q. et al. Plant–soil biota interactions of an invasive species in its native and introduced ranges: Implications for invasion success. Soil Biol. Biochem. 65, 78–85 (2013).CAS
Article
Google Scholar
95.Blair, A. C. & Wolfe, L. M. The evolution of an invasive plant: An experimental study with Silene latifolia. Ecology 85, 3035–3042 (2004).Article
Google Scholar
96.Kariyat, R. R., Smith, J. D., Stephenson, A. G., Moraes, C. M. D. & Mescher, M. C. Non-glandular trichomes of Solanum carolinense deter feeding by Manduca sexta caterpillars and cause damage to the gut peritrophic matrix. Proc. R. Soc. B 284, 20162323 (2017).PubMed
Article
PubMed Central
Google Scholar
97.Kariyat, R. R. et al. Leaf trichomes affect caterpillar feeding in an instar-specific manner. Commun. Integr. Biol. 11, 1–6 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
98.Karabourniotis, G., Liakopoulos, G., Nikolopoulos, D. & Bresta, P. Protective and defensive roles of non-glandular trichomes against multiple stresses: Structure–function coordination. J. For. Res. 31, 1–12 (2019).Article
CAS
Google Scholar
99.Kang, J.-H., Shi, F., Jones, A. D., Marks, M. D. & Howe, G. A. Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J. Exp. Bot. 61, 1053–1064 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
100.Tian, D., Tooker, J., Peiffer, M., Chung, S. H. & Felton, G. W. Role of trichomes in defense against herbivores: Comparison of herbivore response to woolly and hairless trichome mutants in tomato (Solanum lycopersicum). Planta 236, 1053–1066 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
101.An, F. et al. Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 binding F-Box 1 and 2 That requires EIN2 in arabidopsis. Plant Cell 22, 2384–2401 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
102.Lämke, J. & Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18, 1 (2017).Article
CAS
Google Scholar
103.Weinhold, A. Transgenerational stress-adaption: an opportunity for ecological epigenetics. Plant Cell Rep. 37, 3–9 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
104.Miryeganeh, M. & Saze, H. Epigenetic inheritance and plant evolution. Popul. Ecol. 62, 17–27 (2019).Article
Google Scholar More