More stories

  • in

    Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

    1.Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013;15:3040–53.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bay S, Ferrari BC, Greening C. Life without water: how do bacteria generate biomass in desert ecosystems? Microbiol Austral. 2018;39:28–32.Article 

    Google Scholar 
    5.Ray A, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon and nitrogen limitation. Front Microbiol. 2020;11:1–13.Article 

    Google Scholar 
    6.Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci. 2014;111:4257–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Nessner Kavamura V, Taketani RG, Lançoni MD, Andreote FD, Mendes R, Soares de Melo I. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS ONE. 2013;8:e73606.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Serkebaeva YM, Kim Y, Liesack W, Dedysh SN. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS ONE. 2013;8:e63994.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Ward LM, Cardona T, Holland-Moritz H. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol. 2019;10:1658.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, et al. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol. 2020;22:3143–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, et al. The canine oral microbiome. PLoS ONE. 2012;7:e36067.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol. 2014;6. https://doi.org/10.3402/jom.v6.25468.16.Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, et al. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Pol Biol. 2015;39:237–49.Article 

    Google Scholar 
    18.Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. Gigascience. 2016;5:21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Polar soil bacterial and fungal biodiversity survey, Ver. 1. Australian Antarctic Data Centre; 2014. https://doi.org/10.4225/15/526F42ADA05B1. Accessed 11 Feb 2021.21.Lane D. Nucleic acid techniques in bacterial systematics. In: Stackebrandt E, Goodfellow M, editors. Chichester NY: John Wiley and Sons; 1991. p. 115–75.22.Siciliano SD, Palmer A, Winsley T, Lamb E, Bissett A, Brown M, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20.CAS 
    Article 

    Google Scholar 
    23.Archer E. R package. 2016.24.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btu170.25.Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, United States: Lawrence Berkeley National Laboratory; 2014.27.Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2014;2:e603.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    34.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    37.Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev. 2007;71:576–99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci. 2008;363:2629–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Sondergaard D, Pedersen CN, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol. 1998;64:4973–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol. 2002;4:713–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Lindahl V. Improved soil dispersion procedures for total bacterial counts, extraction of sandy clayey silt soil bacteria and cell survival. J Microbiol Meth. 1996;25:279–86.Article 

    Google Scholar 
    46.Ferrari BC, Tujula N, Stoner K, Kjelleberg S. Catalysed reporter deposition-FISH allows for enrichment independent detection of microcolony forming soil bacteria. Appl Environ Microbiol. 2006;72:918–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kim M, Lim HS, Hyun CU, Cho A, Noh HJ, Hong SG, et al. Local-scale variation of soil bacterial communities in ice-free regions of maritime Antarctica. Soil Biol Biochem. 2019;133:165–73.CAS 
    Article 

    Google Scholar 
    48.Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Tremblay PL, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol. 2014;18:30–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.English RS, Lorbach SC, Qin X, Shively JM. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol. 1994;12:647–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, et al. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep. 2016;17:1565–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Gamiz-Hernandez AP, Kaila VRI. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys. 2016;18:2802–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, van Dorst J, et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.McCrindle SL, Kappler U, McEwan AG. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Micro Physiol. 2005;50:147–98.CAS 
    Article 

    Google Scholar 
    59.Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol Microbiol. 2012;86:1452–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol. 2013;195:2518–29.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Nichols NN, Harwood CS. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol. 1997;179:5056–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep. 2015;5:8026.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 2012;12:207.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol. 2004;11:721–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28:56–63.CAS 
    Article 

    Google Scholar 
    66.Cheggour A, Fanuel L, Duez C, Joris B, Bouillenne F, Devreese B, et al. The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol. 2000;38:504–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Geueke B, Heck T, Limbach M, Nesatyy V, Seebach D, Kohler HPE. Bacterial β-peptidyl aminopeptidases with unique substrate specificities for β-oligopeptides and mixed β,α-oligopeptides. FEBS J. 2006;273:5261–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Driessen AJM, van de Vossenberg JLM, Konings WN. Membrane composition and ion-permeability in extremophiles. FEMS Microbiol Rev. 1996;18:139–48.CAS 
    Article 

    Google Scholar 
    69.Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, et al. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J. 2012;6:158–70.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, et al. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol. 2018;9:1982.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol. 2011;77:2399–405.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15:165–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Siebers A, Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988;178:131–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Milkman R. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proc Natl Acad Sci. 1994;91:3510–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Holtmann G, Bakker EP, Uozumi N, Bremer E. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol. 2003;185:1289–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol. 1999;181:3525–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Geisseler D, Horwath WR. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem. 2008;40:3040–8.CAS 
    Article 

    Google Scholar 
    78.Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, et al. Structure of cytochrome c nitrite reductase. Nature. 1999;400:476–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Simon J, Pisa R, Stein T, Eichler R, Klimmek O, Gross R. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. Eur J Biochem. 2001;268:5776–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Nair RV, Bennett GN, Papoutsakis ET. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 1994;176:871–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol. 2014;10:e1003898.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    82.Erbilgin O, McDonald KL, Kerfeld CA. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol. 2014;80:2193–205.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Srinivasan V, Morowitz HJ. The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol Bull. 2009;216:126–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science. 2018;359:559–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Bekal S, Van Beeumen J, Samyn B, Garmyn D, Henini S, Diviès C, et al. Purification of Leuconostoc mesenteroides citrate lyase and cloning and characterization of the citCDEFG gene cluster. J Bacteriol. 1998;180:647–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Dimroth P, Jockel P, Schmid M. Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump. Biochim Biophys Acta. 2001;1505:1–14.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta. 2008;1777:985–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Lewis Smith RI. Plant community dynamics in Wilkes Land, Antarctica, vol. 3. Proceedings of the NIPR Symposium on Polar Biology. 1990. p. 229–44.90.Seppelt RD. Plant communities at Wilkes Land. In: Geoecology of Antarctic ice-free coastal landscapes. Ecological studies (Analysis and synthesis), vol. 154. Springer; 2002. p. 233–48. More

  • in

    Mutability of demographic noise in microbial range expansions

    Strains and growth conditionsSingle gene deletion strains were taken from the Keio collection [34] (Supplementary Table 1), which consists of all non-essential single gene deletions in E. coli K-12 strain BW25113. MreB and mrdA point mutant strains were from Ref. [35] (Supplementary Table 2). Plasmids pQY10 and pQY11 were created by Gibson assembly of Venus YFP A206K (for pQY10) or Venus CFP A206K (for pQY11) [31], and SpecR from pKDsgRNA-ack (gift from Kristala Prather, Addgene plasmid # 62654, http://n2t.net/addgene:62654; RRID:Addgene_62654) [36]. Plasmids pQY12 and pQY13 were created similarly but additionally with CmR from pACYC184.All E. coli experiments were performed in LB (Merck 110285, Kenilworth, New Jersey) with the appropriate antibiotics and experiments with S. cerevisae were performed in YPD [37]. All agar plates were prepared in OmniTrays (Nunc 242811, Roskilde, Denmark, 12.8 cm × 8.6 cm) or 12 cm × 12 cm square petri dishes (Greiner 688102, Kremsmuenster, Austria) filled with 70 mL media solidified with 2% Bacto Agar (BD 214010, Franklin Lakes, New Jersey). After solidifying, the plates were dried upside-down in the dark for 2 days and stored wrapped at 4 °C in the dark for 7–20 days before using.Tracking lineages with fluorescent tracer beadsIn order to track lineages, we spread fluorescent tracer beads with a similar size to the cells on the surface of an agar plate, allowed them to dry, then inoculated and grew a colony on top of the agar plate and imaged the tracer beads to track lineages. In this way, we are able to track lineages without genetic labels at low density (i.e. sparsely) in the colony so that we can distinguish individual lineages without needing high-resolution microscopy. We find that the bead trajectories track cell lineages over the course of one hour both at the colony front and behind the front (Figs. 1c, S1c, d, and S2). We chose to spread fluorescent tracer beads on the surface of the agar so that they could continue to be incorporated into the colony as it grew, which would allow us to track lineages even as existing beads and lineages get lost from the front. Even though behind the front many cells will be piled up on top of other cells rather than in contact with the agar, we don’t expect this to affect the ability of the beads to measure demographic noise, since lineages at the front (where cells are in a monolayer) are the most likely to contribute offspring to future generations [26].Fig. 1: Label-free method of measuring demographic noise in microbial colonies.a Schematic of bead-based sparse lineage tracing method for measuring demographic noise. b Schematic of existing method for measuring fraction of diversity preserved [26]. c (Top) The trajectory of a single bead (black) and the lineages of the cells neighboring it in the final-timepoint (colors) traced backwards in time in the Keio collection wild type strain. (Bottom) The deviation of the distance between the cell lineages and the bead from the final distance, backwards in time. Colors are the same as in the time series images. The gray shaded region shows a single cell width away or towards the bead. All cells that neighbor the bead in the final timepoint, except for one (orange), are neighbors of the bead in the first timepoint and stay within a single cell width of the final distance to the bead. d Example neutral mixtures of YFP and CFP tagged strains grown for 1 day and bead trajectories for strains highlighted in e. Black lines show the colony front at 12 and 23 hours. e Comparison of MSD at window size L = 50 µm to the fraction of diversity preserved for 3 E. coli strain backgrounds and 6 single gene deletions on the Keio collection wild type background (BW25113). Error bars in MSD represent the standard error of the weighted mean (N = 7–8, see Methods) and error bars in the fraction of diversity preserved represent the standard error of the weighted mean (N = 8) where weights come from uncertainties in counting the number of sectors.Full size imageFluorescent tracer beadsFor experiments with E. coli, 1 µm red fluorescent polystyrene beads from Magsphere (PSF-001UM, Pasadena, CA, USA) were diluted to 3 µg/mL in molecular grade water and 920 µL was spread on the surface of the prepared OmniTray agar plates with sterile glass beads. Excess bead solution was poured out, and the plates were dried under the flow of a class II biosafety cabinet (Nuaire, NU-425-300ES, Plymouth, MN, USA) for 45 min. The bead density was chosen to achieve ~250 beads in a 56x field of view. For experiments with S. cerervisiae, 2 µm dragon green fluorescent polystyrene beads from Bang’s labs (FSDG005, Fishers, IN, USA) were used at a similar surface density.Measurement of the distribution of demographic noiseWe randomly selected 352 single gene deletion strains from the Keio collection. For each experiment, cells were thawed from glycerol stock (see Supplementary Methods), mixed, and 5 µL was transferred into a 96-well flat bottom plate with 100 µL LB and the appropriate antibiotics. Plates were covered with Breathe-Easy sealing membrane (Diversified Biotech BEM-1, Doylestown, PA, USA) and grown for 12 h at 37 °C without shaking. A floating pin replicator (V&P Scientific, FP12, 2.36 mm pin diameter, San Diego, CA, USA) was used to inoculate a 2–3 mm droplet from each well of the liquid culture onto a prepared OmniTray covered with fluorescent tracer beads. Droplets were dried and the plates were incubated upside down at 37 °C for 12 h before timelapse imaging.To account for systematic differences between plates, we also put 8 wild type BW25113 wells in each 96-well plate in different positions on each plate. The mean squared displacement (MSD, see below) of each gene deletion colony was normalized to the weighted average MSD of the wild type BW25113 colonies on that plate, 〈MSD〉WT, and this “relative MSD” is reported. We performed three biological replicates for each strain (grown from the same glycerol stock, Fig. S3), and their measurements were averaged together weighted by the inverse of the square of their individual error in relative MSD. The reported error for the strain is the standard error of the mean. During the experiment, several experimental challenges impede our ability to measure demographic noise, including the appearance of beneficial sectors (identified as diverging bead trajectories that correspond to bulges at the colony front) either due to de novo beneficial mutations or standing variation from glycerol stock (see Supplementary Section 2.4, Figs. S4 and S5), slow growth rate leading to bead tracks that were too short for analysis, no cells transferred during inoculation with our pinning tool, inaccurate particle tracking due to beads being too close together, or out of focus images. In order to keep only the highest quality data points, we focused on the 191 strains that had at least 2 replicates free of such issues.Timelapse imaging of fluorescent beadsPlates were transferred to an ibidi stagetop incubator (Catalog number 10918, Gräfelfing, Germany) set to 37 °C for imaging. Evaporation was minimized by putting wet Kim wipes in the chamber and sealing the chamber with tape. The fluorescent tracer beads at the front of the colony were imaged with a Zeiss Axio Zoom.V16 (Oberkochen, Germany) at 56x magnification. A custom macro program written using the Open Application Development for Zen software was used to find the initial focal position for each colony and adjust for deterministic focus drift over time due to slight evaporation. Timelapse imaging was performed at an interval of 10 min for 12 h, during which time the colony grew about halfway across the field of view. Two z slices were taken for each colony and postprocessed to find the most in-focus image to adjust for additional focus drift. Subpixel-resolution particle tracking of the bead trajectory was achieved using a combination of particle image velocimetry and single particle tracking [38] and is described in detail in the Supplementary Methods.Measurement of bead trajectory mean squared displacementThe measurement of mean squared displacement (MSD) is adapted from [31] and is illustrated in Figs. 1a and S1a. Points in a trajectory that fall within a window of length L are fit to a line of best fit. The MSD is given by$$MSDleft( L right) = leftlangle {leftlangle {frac{1}{L}mathop {int}nolimits_l^{l + L} {left( {{Delta}wleft( {L^prime } right)} right)^2dL^prime } } rightrangle _{windows}} rightrangle _{trajectories}$$where Δw(L’) is the displacement of the bead trajectory from the line of best fit at each point, 〈〉windows is an average over all possible definitions of a window with length L along the trajectory (window definitions are overlapping), and 〈〉trajectories is a weighted average over all trajectories in a field of view, where the weight is the inverse squared standard error of the mean for each trajectory’s MSD(L) (Fig. S1a). We use 200 linearly spaced window sizes from L = 6 to 1152 μm. Window sizes that fit in fewer than 5 trajectories are dropped due to the noisiness in calculating the averaged MSD(L). The combined MSD(L) for all trajectories reflects that of bead trajectories at the colony front, which will have the largest contribution to the strength of demographic noise [26] (Fig. S6). Because we expect the trajectories to follow an anomalous random walk [31], the combined MSD(L) for all trajectories across the field of view is fit using weighted least squares to a power law, where the weight is the inverse square of the propagated standard error of the mean. Colonies with data in fewer than 5 window sizes are dropped due to the noisiness in fitting to a power law. The fit is extrapolated or interpolated to L = 50 µm to give a single summary statistic for each colony, and this quantity is reported as MSD(L = 50 µm) (see Supplementary Section 2.2, Figs. S7 and S8), and the error is calculated as half the difference in MSD (L = 50 µm) from using the upper and lower bounded coefficients to the fit. For calculating the distribution of demographic noise effects, only MSD values where the error is less than half of the value are kept.Measurement of phenotypic traitsFor the phenotypic trait measurements, in addition to the 191 single gene deletions, we also measured 41 additional strains of E. coli which included 4 strain backgrounds, 1 mreB knockout in the MC1000 background, 2 adhesin mutants, and 34 single gene knockouts from the Keio collection that we predicted may have large changes to demographic noise because of an altered biofilm forming ability in liquid culture [39] or altered cell shape from the wild type (using the classification on the Keio website, https://shigen.nig.ac.jp/ecoli/strain/resource/keioCollection/list). We normalized all phenotypic trait values to the average value measured from the wild type colonies on the same plate. The reported values for each strain are averages across 2–3 replicate colonies on different plates and the errors are the standard error of the mean. See the Supplementary Methods for more details of the specific phenotypic trait measurements.Measurement of neutral fraction of diversity preservedNeutral fluorescent pairs were created by transforming background strains with plasmids pQY10 (YFP, SpecR) or pQY11 (CFP, SpecR). Cells were streaked from glycerol stock and a single colony of each strain was inoculated into a 96 well plate with 600 µL LB and 120 µg/mL spectinomycin for plasmid retention. Plates were covered with Breathe-Easy sealing membrane and grown for 12 h at 37 °C without shaking. 50 µL of culture from each strain in a neutral pair were mixed and a floating pin replicator was used to inoculate a 2–3 mm droplet from the liquid culture onto a prepared OmniTray covered with fluorescent tracer beads. Droplets were dried and the plates were incubated at 37 °C.Colonies were imaged after 24 h with fluorescence microscopy using a Zeiss Axio Zoom.V16 and the number of sectors of each color was manually counted. The fraction of diversity preserved was calculated as in Ref. [26] by dividing the number of neutral sectors by one-half times the estimated initial number of cells at the inoculum front (see Fig. 1b). The factor of one-half accounts for the probability that two neighboring cells at the inoculum front share the same color label. The initial number of cells is estimated by measuring the inoculum size of each colony (manually measured by fitting a circle to a brightfield backlight image at the time of inoculation) divided by the effective cell size for E. coli (sqrt(length*width) taken to be 1.7 µm, Ref. [26]).Colony fitnessThe colony fitness coefficient between two strains was measured using a colony collision assay as described in Refs. [26, 40] by growing colonies next to one another and measuring the curvature of the intersecting arc upon collision. Cells were streaked from glycerol stock and a single colony for each strain was inoculated into LB with 120 µg/mL spectinomycin for plasmid retention and incubated at 37 °C for 15 h. The culture was back diluted 1:500 in 1 mL fresh LB with 120 µg/mL spectinomycin and grown at 37 °C for 4 h. 1 µL of the culture was then inoculated onto the prepared 12cmx12cm square petri dishes containing LB with different concentrations of chloramphenicol (0 µg/mL, 1 µg/mL, 2 µg/mL, 3 µg/mL) in pairs that were 5 mm apart, with 32 pairs per plate, then the colonies were incubated at 37 °C. After half of a day, bright field backlight images are taken and were used to fit circles to each colony to determine the distance between the two colonies. After 6 days, the colonies were imaged with fluorescence microscopy using a Zeiss Axio Zoom.V16. The radius of curvature of the intersecting arc between the two colonies was determined with image segmentation and was used to calculate the fitness coefficient between the two strains (Fig. S9a).Measurement of non-neutral establishment probabilityWe transformed 9 gene deletion strains from the Keio collection (gpmI, recB, pgm, tolQ, ychJ, lpcA, dsbA, rfaF, tatB) and 3 strain backgrounds (BW25113, MG1655, DH5α) with pQY11 (CFP, SpecR) or pQY12 (YFP, SpecR, CmR). Cells were streaked from glycerol stock and a single colony of each strain was inoculated into media with 120 µg/mL spectinomycin for plasmid retention, then incubated at 37 °C for 16 h. The culture was back-diluted 1:1000 in 1 mL fresh media with 120 µg/mL spectinomycin and grown at 37 °C for 4 h. YFP chloramphenicol-resistant and CFP chloramphenicol-sensitive cells from the same strain background were mixed respectively at approximately 1:500, 1:200, and 1:50 and distributed in a 96-well plate. A floating pin replicator was used to inoculate a 2–3 mm droplet from the liquid culture onto prepared OmniTrays with varying concentrations of chloramphenicol (0 µg/mL, 1 µg/mL, 2 µg/mL, 3 µg/mL). Droplets were dried and the plates were incubated at 37 °C for 3 days, then imaged by fluorescence microscopy using a Zeiss Axio Zoom.V16.The establishment probability of the resistant strain can be measured by counting the number of established resistant sectors normalized by the initial number of resistant cells at the inoculum front [26], which gives the probability that any given resistant cell in the inoculum escaped genetic drift and grew to a large enough size to create a sector. Briefly,$$p_{est} = N_{sectors}/N_0$$
    (1)
    where Nsectors is the number of resistant sectors after 3 days (counted by eye) and N0 is the estimated initial number of cells of the resistant type at the inoculum front. Because the establishment probability can only be accurately measured when the initial number of resistant cells is low enough that the resistant sectors do not interact with one another, we only keep colonies where neighboring resistant sectors are distinguishable at the colony front. In cases where we could see that a sector had coalesced from multiple sectors, we counted the number of sectors pre-coalescence. We also did not find a clear downward bias in the establishment probability as a function of initial mutant fraction (Fig. S10), suggesting that the probability of sector coalescence is low in the regime of these experimental parameters. The initial number N0 of cells of the resistant type is estimated by multiplying the initial number of cells at the inoculum front (see measurement of neutral fraction of diversity preserved) by the fraction of resistant cells in the inoculum (measured by plating and counting CFUs). More

  • in

    Light exposure mediates circadian rhythms of rhizosphere microbial communities

    1.Sharma VK. Adaptive significance of circadian clocks. Chronobiol Int. 2003;20:901–19.PubMed 
    Article 

    Google Scholar 
    2.Paranjpe DA, Kumar Sharma V. Evolution of temporal order in living organisms. J Circadian Rhythms. 2005;3:1–13.Article 
    CAS 

    Google Scholar 
    3.Nobs SP, Tuganbaev T, Elinav E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep. 2019;20:e47129.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Sartor F, Eelderink-Chen Z, Aronson B, Bosman J, Hibbert LE, Dodd AN, et al. Are there circadian clocks in non-photosynthetic bacteria? Biology. 2019;8:41.CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    5.Soriano M, Roibas B, Garcia A, Espinosa-Urgel M. Evidence of circadian rhythms in non-photosynthetic bacteria? J Circadian Rhythms. 2010;8:1–4.Article 

    Google Scholar 
    6.Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159:514–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, et al. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998;281:1519–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Aylward FO, Boeuf D, Mende DR, Wood-Charlson EM, Vislova A, Eppley JM, et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci USA. 2017;114:11446–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Dvornyk V, Vinogradova O, Nevo E. Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci USA. 2003;100:2495–500.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Maniscalco M, Nannen J, Sodi V, Silver G, Lowrey PL, Bidle KA. Light-dependent expression of four cryptic archaeal circadian gene homologs. Front Microbiol. 2014;5:79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Bernal P, Allsopp LP, Filloux A, Llamas MA. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J. 2017;11:972–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Schmelling NM, Lehmann R, Chaudhury P, Beck C, Albers S-V, Axmann IM, et al. Minimal tool set for a prokaryotic circadian clock. BMC Evol Biol. 2017;17:1–20.Article 
    CAS 

    Google Scholar 
    13.Hong L, Vani BP, Thiede EH, Rust MJ, Dinner AR. Molecular dynamics simulations of nucleotide release from the circadian clock protein KaiC reveal atomic-resolution functional insights. Proc Natl Acad Sci USA. 2018;115:11475–84.Article 
    CAS 

    Google Scholar 
    14.Edgar RS, Green EW, Zhao Y, Ooijen Gvan, Olmedo M, Qin X, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science. 2000;290:2110–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Farré EM, Weise SE. The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol. 2012;15:293–300.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    17.Harmer SL. The circadian system in higher plants. Annu Rev Plant Biol. 2009;60:357–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Haydon MJ, Mielczarek O, Robertson FC, Hubbard KE, Webb AAR. Photosynthetic entrainment of the Arabidopsis circadian clock. Nature. 2013;502:689–92.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK. Selective progressive response of soil microbial community to wild oat roots. ISME J. 2009;3:168–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 2018;3:470–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Wu G, Tang W, He Y, Hu J, Gong S, He Z, et al. Light exposure influences the diurnal oscillation of gut microbiota in mice. Biochem Biophys Res Commun. 2018;501:16–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Teichman EM, O’Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When rhythms meet the blues: circadian interactions with the microbiota-gut-brain axis. Cell Metab. 2020;31:448–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014;20:1006–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe. 2015;17:681–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Liang X, Bushman FD, FitzGerald GA. Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci USA. 2015;112:10479–84.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Kaczmarek JL, Musaad SM, Holscher HD. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota. Am J Clin Nutr. 2017;106:1220–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Deaver JA, Eum SY, Toborek M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol. 2018;9:737.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Hubbard CJ, Brock MT, van Diepen LT, Maignien L, Ewers BE, Weinig C. The plant circadian clock influences rhizosphere community structure and function. ISME J. 2018;12:400–10.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Staley C, Ferrieri AP, Tfaily MM, Cui Y, Chu RK, Wang P, et al. Diurnal cycling of rhizosphere bacterial communities is associated with shifts in carbon metabolism. Microbiome. 2017;5:1–13.Article 

    Google Scholar 
    31.Feng J, Xu Y, Ma B, Tang C, Brookes PC, He Y, et al. Assembly of root-associated microbiomes of typical rice cultivars in response to lindane pollution. Environ Int. 2019;131:104975.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Gremion F, Chatzinotas A, Harms H. Comparative 16S rDNA and 16S rRNA sequence analysis indicates that Actinobacteria might be a dominant part of the metabolically active bacteria in heavy metal-contaminated bulk and rhizosphere soil. Environ Microbiol. 2003;5:896–907.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lavecchia A, Curci M, Jangid K, Whitman WB, Ricciuti P, Pascazio S, et al. Microbial 16S gene-based composition of a sorghum cropped rhizosphere soil under different fertilization managements. Biol Fertil Soils. 2015;51:661–72.CAS 
    Article 

    Google Scholar 
    34.Wang B, Zhao J, Guo Z, Ma J, Xu H, Jia Z. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J. 2015;9:1062–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:633–42.Article 
    CAS 

    Google Scholar 
    37.Edgar RC. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. 2016. https://www.biorxiv.org/content/10.1101/074161v1.38.Deng Y, Ruan Y, Ma B, Timmons MB, Lu H, Xu X, et al. Multi-omics analysis reveals niche and fitness differences in typical denitrification microbial aggregations. Environ Int. 2019;132:105085.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Yu M, Meng J, Yu L, Su W, Afzal M, Li Y, et al. Changes in nitrogen related functional genes along soil pH, C and nutrient gradients in the charosphere. Sci Total Environ. 2019;650:626–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–12.Article 
    CAS 

    Google Scholar 
    41.Hamady M, Lozupone C, Knight R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J. 2010;4:17–27.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Zhang J, Zhang N, Liu Y-X, Zhang X, Hu B, Qin Y, et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci China Life Sci. 2018;61:613–21.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Liaw A, Wiener M. Classification and regression by random Forest. R News. 2002;2:18–22.
    Google Scholar 
    44.Breiman L. Random forests. Mach Learn. 2001;45:5–32.Article 

    Google Scholar 
    45.Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Wang B, Pourshafeie A, Zitnik M, Zhu J, Bustamante CD, Batzoglou S, et al. Network enhancement as a general method to denoise weighted biological networks. Nat Commun. 2018;9:1–8.Article 
    CAS 

    Google Scholar 
    47.Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.CAS 
    Article 

    Google Scholar 
    48.Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Syst. 2006;1695:1–9.
    Google Scholar 
    49.Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Icwsm. 2009;8:361–2.
    Google Scholar 
    50.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    51.Li H, Su J-Q, Yang X-R, Zhu Y-G. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci Total Environ. 2019;649:422–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 2019; 1–13.53.Yerushalmi S, Green RM. Evidence for the adaptive significance of circadian rhythms. Ecol Lett. 2009;12:970–81.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Pedersen O, Sand‐Jensen K, Revsbech NP. Diel pulses of O2 and CO2 in sandy lake sediments inhabited by Lobelia dortmanna. Ecology. 1995;76:1536–45.Article 

    Google Scholar 
    55.Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L. Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ. 2015;3:e801.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.CAS 
    Article 

    Google Scholar 
    57.Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article 

    Google Scholar 
    59.Cozzi G, Broekhuis F, McNutt JW, Turnbull LA, Macdonald DW, Schmid B. Fear of the dark or dinner by moonlight? Reduced temporal partitioning among Africa’s large carnivores. Ecology. 2012;93:2590–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Kohl MT, Ruth TK, Metz MC, Stahler DR, Smith DW, White PJ, et al. Do prey select for vacant hunting domains to minimize a multi-predator threat? Ecol Lett. 2019;22:1724–33.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:1–12.Article 
    CAS 

    Google Scholar 
    62.Schmidt JE, Kent AD, Brisson VL, Gaudin ACM. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome. 2019;7:1–18.Article 

    Google Scholar 
    63.DeCoursey PJ, Walker JK, Smith SA. A circadian pacemaker in free-living chipmunks: essential for survival? J Comp Physiol A. 2000;186:169–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Worden BD, Skemp AK, Papaj DR. Learning in two contexts: the effects of interference and body size in bumblebees. J Exp Biol. 2005;208:2045–53.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Yerushalmi S, Bodenhaimer S, Bloch G. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J Exp Biol. 2006;209:1044–51.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Lone SR, Sharma VK. Exposure to light enhances pre-adult fitness in two dark-dwelling sympatric species of ants. BMC Dev Biol. 2008;8:1–11.Article 

    Google Scholar 
    67.Yadav P, Choudhury D, Sadanandappa MK, Sharma VK. Extent of mismatch between the period of circadian clocks and light/dark cycles determines time-to-emergence in fruit flies. Insect Sci. 2015;22:569–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Yadav P, Thandapani M, Sharma VK. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev Biol. 2014;14:1–12.Article 
    CAS 

    Google Scholar 
    69.Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 2004;14:1481–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lambert G, Chew J, Rust MJ. Costs of clock-environment misalignment in individual cyanobacterial cells. Biophys J. 2016;111:883–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Lai AG, Doherty CJ, Mueller-Roeber B, Kay SA, Schippers JHM, Dijkwel PP. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc Natl Acad Sci USA. 2012;109:17129–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Tanaka K, Ishikawa M, Kaneko M, Kamiya K, Kato S, Nakanishi S. The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942. Photosynth Res. 2019;142:203–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Tanaka K, Nakanishi S Time-of-day dependent responses of cyanobacterial cellular viability against oxidative stress. 2019. https://www.biorxiv.org/content/10.1101/851774v2.74.Krittika S, Yadav P. Circadian clocks: an overview on its adaptive significance. Biol Rhythm Res 2019;0:1–24.CAS 

    Google Scholar 
    75.Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int. 2000;17:757–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Roenneberg T, Merrow M. Life before the clock: modeling circadian evolution. J Biol Rhythms. 2002;17:495–505.PubMed 
    Article 

    Google Scholar 
    77.Espinasa L, Jeffery WR. Conservation of retinal circadian rhythms during cavefish eye degeneration. Evol Dev. 2006;8:16–22.PubMed 
    Article 

    Google Scholar 
    78.Hubbard CJ, McMinn RL, Weinig C. Rhizosphere microbes influence host circadian clock function. 2018. https://www.biorxiv.org/content/10.1101/444539v1. More

  • in

    Mosquitoes of the Maculipennis complex in Northern Italy

    1.Kettle, D.S. Medical and Veterinary Entomology 2nd edn (CAB International, 1995).2.Falleroni, D. Fauna anofelica italiana e suo “habitat” (paludi, risaie, canali). Metodi di lotta contro la malaria. Riv. Malariol. 5, 553–559 (1926).
    Google Scholar 
    3.Severini, F., Toma, L., Di Luca, M. & Le, R. R. Zanzare Italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragmenta Entomologica. 41(2), 213–372. https://doi.org/10.4081/FE.2009.92 (2009).Article 

    Google Scholar 
    4.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Manguin, S. et al. Biodiversity of Malaria in the World (John Libbey Eurotext, 2008).6.Linton, Y. M., Smith, L. & Harbach, E. Observations on the taxonomic status of Anopheles subalpinus Hackett & Lewis and An. melanoon Hacket. Eur. Mosq. Bull. 13, 1–7 (2002).
    Google Scholar 
    7.Boccolini, D., Di Luca, M., Marinucci, M. & Romi, R. Further molecular and morphological support for the formal synonymy of Anopheles subalpinus Hackett & Lewis with An. melanoon Hackett. Eur. Mosq. Bull. 16, 1–5 (2003).
    Google Scholar 
    8.Andreeva, I. V., Sibataev, A. K., Rusakova, A. M. & Stegniĭ, V. N. Morpho-cytogenetic characteristic of the mosquito Anopheles artemievi (Diptera: Culicidae), a malaria vector from the complex maculipennis. Parazitologiia. 41(5), 348–363 (2007).PubMed 

    Google Scholar 
    9.Artemov, G. N. et al. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi. Parasites Vectors 11(1), 211. https://doi.org/10.1186/s13071-018-2657-3 (2018).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Naumenko, A. N. et al. Chromosome and genome divergence between the cryptic Eurasian malaria vector-species Anopheles messeae and Anopheles daciae. Genes (Basel) 11(2), 165. https://doi.org/10.3390/genes11020165 (2020).CAS 
    Article 

    Google Scholar 
    11.Nicolescu, G., Linton, Y. M., Vladimirescu, A., Howard, T. M. & Harbach, R. E. Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. Bull. Entomol. Res. 94(6), 525–535. https://doi.org/10.1079/ber2004330 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Gordeev, M. I., Zvantsov, A. B., Goriacheva, I. I., Shaĭkevich, E. V. & Ezhov, M. N. Description of the new species Anopheles artemievi sp.n. (Diptera, Culicidae). Med. Parazitol. (Mosk). 2, 4–5 (2005).
    Google Scholar 
    13.Djadid, N. D. et al. Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran. Malar. J. 6, 6. https://doi.org/10.1186/1475-2875-6-6 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bietolini, S., Candura, F. & Coluzzi, M. Spatial and long term temporal distribution of the Anopheles maculipennis complex species in Italy. Parassitologia 48(4), 581–608 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Romi, R. et al. Status of malaria vectors in Italy. J. Med. Entomol. 34(3), 263–271. https://doi.org/10.1093/jmedent/34.3.263 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Zamburlini, R. & Cargnus, E. Residual mosquitoes in the northern Adriatic seacoast 50 years after the disappearance of malaria. Parassitologia 40, 431–437 (1998).CAS 
    PubMed 

    Google Scholar 
    17.Gratz, N. G. Vector- and Rodent-Borne Diseases in Europe and North America: Distribution, Public Health Burden, and Control (Cambridge University Press, 2006).18.Zahar, A. R. The WHO European region and the two Eastern Mediterranean Region. Applied field studies. In Vector Bionomics in the Epidemiology and Control of Malaria. Part II. WHO/VBC/90.1 (World Health Organization, 1990).19.NPHO Annual Epidemiological Surveillance Report Malaria in Greece, 2019. https://eody.gov.gr/wp-content/uploads/2019/01/MALARIA_ANNUAL_REPORT_2019_ENG.pdf (2019).20.Romi, R. et al. Assessment of the risk of malaria re-introduction in the Maremma plain (Central Italy) using a multi-factorial approach. Malar. J. 11, 98. https://doi.org/10.1186/1475-2875-11-98 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Baldari, M. et al. Malaria in Maremma, Italy. Lancet 351(9111), 1246–1247. https://doi.org/10.1016/S0140-6736(97)10312-9 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Romi, R., Boccolini, D., Menegon, M. & Rezza, G. Probable autochthonous introduced malaria cases in Italy in 2009–2011 and the risk of local vector-borne transmission. Euro Surveill. 17(48), 20325 (2012).PubMed 

    Google Scholar 
    23.Boccolini, D. et al. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health 20(1), 857. https://doi.org/10.1186/s12889-020-08748-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.European Centre for Disease Prevention and Control. Multiple reports of locally-acquired malaria infections in the EU—20 September 2017. (ECDC, 2017).25.Lilja, T., Eklöf, D., Jaenson, T. G. T., Lindström, A. & Terenius, O. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med. Vet. Entomol. 34(3), 364–368. https://doi.org/10.1111/mve.12436 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Di Luca, M., Boccolini, D., Marinucci, M. & Romi, R. Intrapopulation polymorphism in Anopheles messeae (An. maculipennis complex) inferred by molecular analysis. J. Med. Entomol. 41(4), 582–586. https://doi.org/10.1603/0022-2585-41.4.582 (2004).Article 
    PubMed 

    Google Scholar 
    27.Scharlemann, J. P. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3(1), e1408. https://doi.org/10.1371/journal.pone.0001408 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    29.Batovska, J., Cogan, N. O., Lynch, S. E. & Blacket, M. J. Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. G3 (Bethesda) 7(1), 19–29. https://doi.org/10.1534/g3.116.036145 (2017).CAS 
    Article 

    Google Scholar 
    30.Novikov, Iu. M. & Kabanova, V. M. Adaptive association of inversions in a natural population of the malaria mosquito Anopheles messeae Fall. Genetika 15(6), 1033–1045 (1979).PubMed 

    Google Scholar 
    31.Vaulin, O. V. & Novikov, Y. M. Polymorphism and interspecific variability of cytochrome oxidase subunit I (COI) gene nucleotide sequence in sibling species of A and B Anopheles messeae and An. beklemishevi (Diptera: Culicidae). Russ. J. Genet. Appl. Res. 2(6), 421–429. https://doi.org/10.1134/S2079059712060159 (2012).Article 

    Google Scholar 
    32.Bezzhonova, O. V. & Goryacheva, I. I. Intragenomic heterogeneity of rDNA internal transcribed spacer 2 in Anopheles messeae (Diptera: Culicidae). J. Med. Entomol. 45(3), 337–341. https://doi.org/10.1603/0022-2585(2008)45[337:ihorit]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Novikov, Y. M. & Shevchenko, A. I. Inversion polymorphism and the divergence of two cryptic forms of Anopheles messeae (Diptera, Culicidae) at the level of genomic DNA repeats. Russ. J. Genet. 37, 754–763 (2001).CAS 
    Article 

    Google Scholar 
    34.Kitzmiller, J. B., Frizzi, G. & Baker, R. Evolution and speciation within the Maculipennis complex of the genus Anopheles. In Genetics of Insect Vectors of Disease ed. (ed. Wright, J.W. & Pal, R.) (Elsevier Publishing, 1967).35.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56(6), 879–886. https://doi.org/10.1080/10635150701701083 (2007).Article 
    PubMed 

    Google Scholar 
    36.Alquezar, D. E., Hemmerter, S., Cooper, R. D. & Beebe, N. W. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol. Biol. 10, 392. https://doi.org/10.1186/1471-2148-10-392 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mallet, J., Besansky, N. & Hahn, M. W. How reticulated are species?. BioEssays 38(2), 140–149. https://doi.org/10.1002/bies.201500149 (2016).Article 
    PubMed 

    Google Scholar 
    38.Fouet, C., Kamdem, C., Gamez, S. & White, B. J. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl. 10(9), 897–906. https://doi.org/10.1111/eva.12492 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 10(10), 1102–1120. https://doi.org/10.1111/eva.12517 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Cohuet, A., Harris, C., Robert, V. & Fontenille, D. Evolutionary forces on Anopheles: What makes a malaria vector?. Trends Parasitol. 26(3), 130–136. https://doi.org/10.1016/j.pt.2009.12.001 (2010).Article 
    PubMed 

    Google Scholar 
    41.Jetten, T. H., Takken, W. Anophelism Without Malaria in Europe: A Review of the Ecology and Distribution of the Genus Anopheles in Europe. (Wageningen Agricultural University, 1994).42.Becker, N. et al. Mosquitoes and Their Control 2nd edn (Springer Science & Business Media, 2010).43.Mosca, A., Balbo L., Grieco C. & Roberto P. Rice-field mosquito control in Northern Italy. In Proc. of 14th E-SOVE Int. Conf. 98 (2010).44.Daskova, N. G. & Rasnicyn, S. P. Review of data on susceptibility of mosquitoes in the USSR to imported strains of malaria parasites. Bull. World Health Organ. 60(6), 893–897 (1982).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.de Zulueta, J., Ramsdale, C. D. & Coluzzi, M. Receptivity to malaria in Europe. Bull. World Health Organ. 52(1), 109–111 (1975).PubMed 
    PubMed Central 

    Google Scholar 
    46.Ramsdale, C. D. & Coluzzi, M. Studies on the infectivity of tropical African strains of Plasmodium falciparum to some southern European vectors of malaria. Parassitologia 17(1–3), 39–48 (1975).CAS 
    PubMed 

    Google Scholar 
    47.Teodorescu, C., Ungureanu, E., Mihai, M. & Tudose, M. Contributions to the study of the receptivity of the vector A. labranchiae atroparvus to two strains of P. vivax. Revista Medico-Chirurgicala din Iasi 52(1), 73–75 (1978).
    Google Scholar 
    48.Sousa, C. A. G. Malaria Vectorial Capacity and Competence of Anopheles atroparvus Van Thiel, 1927 (Diptera, Culicidae): Implications for the Potential Re-emergence of Malaria in Portugal (Thesis, Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, 2008).49.Toty, C. et al. Malaria risk in Corsica, former hot spot of malaria in France. Malar. J. 9, 231. https://doi.org/10.1186/1475-2875-9-231 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Calzolari, M. et al. West Nile virus surveillance in 2013 via mosquito screening in Northern Italy and the influence of weather on virus circulation. PLoS ONE 10(10), e0140915. https://doi.org/10.1371/journal.pone.0140915 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Marinucci, M., Romi, R., Mancini, P., Di Luca, M. & Severini, C. Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. Insect. Mol. Biol. 8(4), 469–480. https://doi.org/10.1046/j.1365-2583.1999.00140.x (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Jalali, S., Ojha, R. & Venkatesan, T. DNA barcoding for identification of agriculturally important insects. In New Horizons in Insect Science: Towards Sustainable Pest Management (ed. Chakravarthy, A. K.) (Springer, 2015).53.Lühken, R. et al. Distribution of individual members of the mosquito Anopheles maculipennis complex in Germany identified by newly developed real-time PCR assays. Med. Vet. Entomol. 30, 144–154. https://doi.org/10.1111/mve.12161 (2016).Article 
    PubMed 

    Google Scholar 
    54.Katoh, K., Rozewicki, J. & Yamada, K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704. https://doi.org/10.1080/10635150390235520 (2003).Article 
    PubMed 

    Google Scholar 
    56.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772. https://doi.org/10.1038/nmeth.2109 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    59.Elith, S. J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    60.Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    61.Phillips, S., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar  More

  • in

    Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron

    1.Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493. https://doi.org/10.1146/annurev-marine-120308-081028 (2010).ADS 
    Article 

    Google Scholar 
    2.Bessho-Uehara, M. et al. Kleptoprotein bioluminescence: parapriacanthus fish obtain luciferase from ostracod prey. Sci. Adv. 6, eaax4942. https://doi.org/10.1126/sciadv.aax4942 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Davis, M. P., Sparks, J. S. & Smith, W. L. Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE 11, e0155154. https://doi.org/10.1371/journal.pone.0155154 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Claes, J. M. & Mallefet, J. Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae). J. Fish Biol. 73, 1337–1350. https://doi.org/10.1111/j.1095-8649.2008.02006.x (2008).Article 

    Google Scholar 
    5.Harper, R. D. & Case, J. F. Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus. Mar. Biol. 134, 529–540. https://doi.org/10.1007/s002270050568 (1999).Article 

    Google Scholar 
    6.Herring, P. J. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Ass. 87, 829–842. https://doi.org/10.1017/S0025315407056433 (2007).CAS 
    Article 

    Google Scholar 
    7.Widder, E. A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science (New York, NY) 328, 704–708. https://doi.org/10.1126/science.1174269 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hellinger, J. et al. The flashlight fish anomalops katoptron uses bioluminescent light to detect prey in the dark. PLoS ONE 12, e170489. https://doi.org/10.1371/journal.pone.0170489 (2017).CAS 
    Article 

    Google Scholar 
    9.Golani, D., Fricke, R. & Appelbaum-Golani, B. Review of the genus Photoblepharon (Actinopterygii: Beryciformes: Anomalopidae). Acta Ichthyol. Piscat. 49, 33–41. https://doi.org/10.3750/AIEP/02530 (2019).Article 

    Google Scholar 
    10.Ho, H.-C. & Johnson, G. D. Protoblepharon mccoskeri, a new flashlight fish from eastern Taiwan (Teleostei: Anomalopidae). Zootaxa https://doi.org/10.11646/zootaxa.3479.1.5 (2012).Article 

    Google Scholar 
    11.Morin, J. G. et al. Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science 190, 74–76. https://doi.org/10.1126/science.190.4209.74 (1975).ADS 
    Article 

    Google Scholar 
    12.Hellinger, J. et al. Analysis of the territorial aggressive behavior of the bioluminescent flashlight fish photoblepharon steinitzi in the Red Sea. Front. Mar. Sci. 7, 431. https://doi.org/10.3389/fmars.2020.00078 (2020).ADS 
    Article 

    Google Scholar 
    13.Gruber, D. F. et al. Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish. PLoS ONE 14, e0219852. https://doi.org/10.1371/journal.pone.0219852 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hendry, T. A., de Wet, J. R. & Dunlap, P. V. Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ. Microbiol. 16, 2611–2622. https://doi.org/10.1111/1462-2920.12302 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Hendry, T. A., de Wet, J. R., Dougan, K. E. & Dunlap, P. V. Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish. Genome Biol. Evol. 8, 2203–2213. https://doi.org/10.1093/gbe/evw161 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Haneda, Y. & Tsuji, F. I. Light production in the luminous fishes Photoblepharon and Anomalops from the Banda Islands. Science (New York, NY) 173, 143–145. https://doi.org/10.1126/science.173.3992.143 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Bassot, J.-M. in Bioluminescence in Progress, edited by F. H. Johnson & Y. Haneda (Princeton University Press1966), pp. 557–610.18.Watson, M., Thurston, E. L. & Nicol, J. A. C. Reflectors in the Light Organ of Anomalops (Anomalopidae, Teleostei). Proc. R. Soc. Lond. Ser. B Biol. Sci. 202, 339–351 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mark, M. D. et al. Visual tuning in the flashlight fish Anomalops katoptron to detect blue, bioluminescent light. PLoS ONE 13, e0198765. https://doi.org/10.1371/journal.pone.0198765 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Howland, H. C., Murphy, C. J. & McCosker, J. E. Detection of eyeshine by flashlight fishes of the family anomalopidae. Vis. Res. 32, 765–769. https://doi.org/10.1016/0042-6989(92)90191-K (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.McCosker, J. E. & Rosenblatt, R. H. Notes on the biology, taxonomy, and distribution of flashlight fishes (Beryciformes: Anomalopidae). Jpn. J. Ich. 34, 157–164. https://doi.org/10.1007/BF02912410 (1987).Article 

    Google Scholar 
    22.Parrish, J. K., Viscido, S. V. & Grünbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305. https://doi.org/10.2307/1543482 (2002).Article 
    PubMed 

    Google Scholar 
    23.Pitcher, T. J. (ed.) Behaviour of Teleost Fishes (Chapman & Hall, 1993).
    Google Scholar 
    24.Helfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. The Diversity of Fishes. Biology, Evolution, and Ecology 2nd edn. (Wiley-Blackwell, Oxford, 2009).
    Google Scholar 
    25.McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149. https://doi.org/10.1016/j.cub.2018.02.043 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Pitcher, T. J., Magurran, A. E. & Winfield, I. J. Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151. https://doi.org/10.1007/BF00300175 (1982).Article 

    Google Scholar 
    27.Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science (New York, NY) 337, 1212–1215. https://doi.org/10.1126/science.1218919 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Turner, G. F. & Pitcher, T. J. Attack abatement: a model for group protection by combined avoidance and dilution. Am. Nat. 128, 228–240. https://doi.org/10.1086/284556 (1986).Article 

    Google Scholar 
    29.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380. https://doi.org/10.1016/S0003-3472(86)80208-1 (1986).Article 

    Google Scholar 
    30.Kowalko, J. E. et al. Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr. Biol. 23, 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Partridge, B. L. & Pitcher, T. J. The sensory basis of fish schools: Relative roles of lateral line and vision. J. Comp. Physiol. 135, 315–325. https://doi.org/10.1007/BF00657647 (1980).Article 

    Google Scholar 
    32.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.1126 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bierbach, D. et al. Using a robotic fish to investigate individual differences in social responsiveness in the guppy. R. Soc. Open Sci. 5, 181026. https://doi.org/10.1098/rsos.181026 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science (New York, NY) 339, 574–576. https://doi.org/10.1126/science.1225883(2013) (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl. Acad. Sci. USA 116, 20556–20561. https://doi.org/10.1073/pnas.1905585116 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Kunz, H. & Hemelrijk, C. K. Artificial fish schools: collective effects of school size, body size, and body form. Artif. Life 9, 237–253. https://doi.org/10.1162/106454603322392451 (2003).Article 
    PubMed 

    Google Scholar 
    37.Worm, M. et al. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc. Natl. Acad. Sci. USA 115, 6852–6857. https://doi.org/10.1073/pnas.1801283115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adapt. Behav. 20, 44–56. https://doi.org/10.1177/1059712311426799 (2012).Article 

    Google Scholar 
    39.Cohen, A. C. & Morin, J. G. It’s all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of caribbean ostracodes. J. Crustacean Biol. 30, 56–67. https://doi.org/10.1651/09-3170.1 (2010).Article 

    Google Scholar 
    40.Rivers, T. J. & Morin, J. G. Complex sexual courtship displays by luminescent male marine ostracods. J. Exp. Biol. 211, 2252–2262. https://doi.org/10.1242/jeb.011130 (2008).Article 
    PubMed 

    Google Scholar 
    41.Widder, E. A., Latz, M. I., Herring, P. J. & Case, J. F. Far red bioluminescence from two deep-sea fishes. Science (New York, NY) 225, 512–514. https://doi.org/10.1126/science.225.4661.512 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Mensinger, A. F. & Case, J. F. Luminescent properties of deep sea fish. J. Exp. Mar. Biol. Ecol. 144, 1–15. https://doi.org/10.1016/0022-0981(90)90015-5 (1990).Article 

    Google Scholar 
    43.Sasaki, A. et al. Field evidence for bioluminescent signaling in the Pony Fish, Leiognathus elongatus. Environ. Biol. Fishes 66, 307–311. https://doi.org/10.1023/A:1023959123422 (2003).Article 

    Google Scholar 
    44.McFall-Ngai, M. J. & Dunlap, P. V. Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73, 227–237. https://doi.org/10.1007/BF00392247 (1983).Article 

    Google Scholar 
    45.Johnson, G. D. & Rosenblatt, R. H. Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group. Zool. J. Linnean Soc. 94, 65–96. https://doi.org/10.1111/j.1096-3642.1988.tb00882.x (1988).Article 

    Google Scholar 
    46.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci. USA 108, 18726–18731. https://doi.org/10.1073/pnas.1109355108 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Siebeck, U. E., Parker, A. N., Sprenger, D., Mäthger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. CB 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Larsch, J. & Baier, H. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation. Curr. Biol. 28, 3523-3532.e4. https://doi.org/10.1016/j.cub.2018.09.014 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Kasumyan, A. O. Acoustic signaling in fish. J. Ichthyol. 49, 963–1020. https://doi.org/10.1134/S0032945209110010 (2009).Article 

    Google Scholar 
    50.Santon, M. et al. Redirection of ambient light improves predator detection in a diurnal fish. Proc. Biol. Sci. 287, 20192292. https://doi.org/10.1098/rspb.2019.2292 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).Article 
    PubMed 

    Google Scholar 
    52.Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35, 109 (1958).
    Google Scholar 
    53.Videler, J. J. & Wardle, C. S. Fish swimming stride by stride: speed limits and endurance. Rev. Fish. Biol. Fish. 1, 23–40. https://doi.org/10.1007/BF00042660 (1991).Article 

    Google Scholar 
    54.Ware, D. M. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. J. Fish. Res. Bd. Can. 35, 220–228. https://doi.org/10.1139/f78-036 (1978).ADS 
    Article 

    Google Scholar 
    55.Meyer-Rochow, V. B. Loss of bioluminescence inAnomalops katoptron due to starvation. Experientia 32, 1175–1176. https://doi.org/10.1007/BF01927610 (1976).Article 

    Google Scholar 
    56.Barber, I., Downey, L. C. & Braithwaite, V. A. Parasitism, oddity and the mechanism of shoal choice. J. Fish Biol. 53, 1365–1368. https://doi.org/10.1111/j.1095-8649.1998.tb00256.x (1998).Article 

    Google Scholar 
    57.Ward, A. J. W., Duff, A. J., Krause, J. & Barber, I. Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala. Environ. Biol. Fish. 72, 155–160. https://doi.org/10.1007/s10641-004-9078-1 (2005).Article 

    Google Scholar 
    58.Theodorakis, C. W. Size segregation and the effects of oddity on predation risk in minnow schools. Anim. Behav. 38, 496–502. https://doi.org/10.1016/S0003-3472(89)80042-9 (1989).Article 

    Google Scholar 
    59.Steche, O. Die Leuchtorgane von Anomalops katoptron und Photoblepharon palpebratus, zwei Oberflächenfischen aus dem malayischen Archipel: Ein Beitrag zur Anatomie und Physiologie der Leuchtorgane der Fische (Z Wiss Zool., 1909).60.Parrish, J. K. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science (New York, NY) 284, 99–101. https://doi.org/10.1126/science.284.5411.99 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Woodland, D. J., Cabanban, A. S., Taylor, V. M. & Taylor, R. J. A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae : Perciformes). Mar. Freshwater Res. 53, 159. https://doi.org/10.1071/MF01157 (2002).Article 

    Google Scholar  More

  • in

    Discovering environmental management opportunities for infectious disease control

    1.Eisenberg, J. N. S., Desai, M. A., Levy, K., Bates, S. J., Liang, S., Naumoff, K. & Scott, J. C. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect. 115(8), 1216–1223. https://doi.org/10.1289/ehp.9806 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I. & Rinaldo, A. On the space-time evolution of a cholera epidemic. Water Resour. Res. 44(1), 1–8. https://doi.org/10.1029/2007WR006211 (2008).Article 

    Google Scholar 
    3.Bomblies, A., Duchemin, J. B. & Eltahir, E. A. B. Hydrology of malaria: Model development and application to a Sahelian village. Water Resour. Res. 44(12), 1–26. https://doi.org/10.1029/2008WR006917 (2008).Article 

    Google Scholar 
    4.Perez-Saez, J., Mande, T., Ceperley, N., Bertuzzo, E., Mari, L., Gatto, M. & Rinaldo, A. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proc. Natl. Acad. Sci. USA 113(23), 6427–6432. https://doi.org/10.1073/pnas.1602251113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.van Dijk, J., Sargison, N. D., Kenyon, F. & Skuce, P. J. Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animal 4(3), 377–392. https://doi.org/10.1017/s1751731109990991 (2010).Article 
    PubMed 

    Google Scholar 
    6.Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., … Michael, E. Climate, environmental and socio-economic change: weighing up the balance in vector- borne disease transmission. Philos. Trans. R. Soc. B 370, 1665. https://doi.org/10.1098/rstb.2013.0551 (2015).7.Cable, J., Barber, I., Boag, B., Ellison, A. R., Morgan, E. R., Murray, K., … Booth, M. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. B 372, 1719. https://doi.org/10.1098/rstb.2016.0088 (2017).8.McIntyre, K. M., Setzkorn, C., Hepworth, P. J., Morand, S., Morse, A. P. & Baylis, M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-06948-9 (2017).CAS 
    Article 

    Google Scholar 
    9.Garchitorena, A., Sokolow, S. H., Roche, B., Ngonghala, C. N., Jocque, M., Lund, A., … De Leo, G. A. Disease ecology, health and the environment: a framework to account for ecological and socio- economic drivers in the control of neglected tropical diseases. Phil. Trans. R. Soc. B, 372, 20160128. https://doi.org/10.1098/rstb.2016.0128 (2017).10.Webster, J. P., Molyneux, D. H., Hotez, P. J. & Fenwick, A. The contribution of mass drug administration to global health: Past, present and future. Philos. Trans. R. Soc. B 369(1645), 20130434. https://doi.org/10.1098/rstb.2013.0434 (2014).Article 

    Google Scholar 
    11.Beesley, N. J., Caminade, C., Charlier, J., Flynn, R. J., Hodgkinson, J. E., Martinez-Moreno, A., … Williams, D. J. L. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis. 65, 199–216 https://doi.org/10.1111/tbed.12682 (2018).12.Kamaludeen, J., Graham-Brown, J., Stephens, N., Miller, J., Howell, A., Beesley, N. J., … Williams, D. Lack of efficacy of triclabendazole against Fasciola hepatica is present on sheep farms in three regions of England, and Wales. Vet. Rec. 184(16), 502–502. https://doi.org/10.1136/vr.105209 (2019).13.WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2019).14.Mas-Coma, S., Valero, M. A. & Bargues, M. D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 163(4), 264–280. https://doi.org/10.1016/j.vetpar.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    15.Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 341(6145), 514–519. https://doi.org/10.1126/science.1239401 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Ruiz Carrascal, D. & Pascual, M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343(6175), 1154–1159. https://doi.org/10.1126/science.1244325 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Sokolow, S. H., Jones, I. J., Jocque, M., La, D., Cords, O., Knight, A., … De Leo, G. A. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail- eating river prawns. Phiosl. Trans. R. Soc. B 372(1722), 20160127. https://doi.org/10.1098/rstb.2016.0127 (2017).18.Morgan, E. R., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., von Samson-Himmelstjerna, G., … Vercruysse, J. Global change and helminth infections in grazing ruminants in Europe: Impacts, trends and sustainable solutions. Agriculture 3(3), 484–502. https://doi.org/10.3390/agriculture3030484. (2013).19.Prüss-Ustün, A., Wolf, J., Corvalan, C., Bos, R., & Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks (World Health Organisation, 2016).20.Eisenberg, J. N. S., Brookhart, M. A., Rice, G., Brown, M. & Colford, J. M. Disease transmission models for public health decision making: Analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ. Health Perspect. 110(8), 783–790. https://doi.org/10.1289/ehp.02110783 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., … Grenfell, B. T.. Epidemic dynamics at the human–animal interface. Science 326(5958), 1362–1367. https://doi.org/10.1126/science.1177345 (2009).22.Mellor, J. E., Levy, K., Zimmerman, J., Elliott, M., Bartram, J., Carlton, E., … Nelson, K.. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases. Science of the Total Environment, 548–549, 82–90. https://doi.org/10.1016/j.scitotenv.2015.12.087 (2016).23.Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23. https://doi.org/10.1016/j.envint.2015.09.007 (2016).Article 
    PubMed 

    Google Scholar 
    24.Beltrame, L., Dunne, T., Vineer, H. R., Walker, J. G., Morgan, E. R., Vickerman, P., … Wagener, T. A mechanistic hydro-epidemiological model of liver fluke risk. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0072 (2018).25.Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., … Winter, L. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Softw. https://doi.org/10.1016/j.envsoft.2008.11.010 (2009).27.Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., … Wilson, J. S. The future of hydrology: An evolving science for a changing world. Water Resour. Research, 46, W05301. https://doi.org/10.1029/2009WR008906 (2010).28.Liang, S., Seto, E. Y. W., Remais, J. V, Zhong, B., Yang, C., Hubbard, A., … Spear, R. C. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc. Natl. Acad. Sci. USA 104(17), 7110–7115. https://doi.org/10.1073/pnas.0701878104 (2007).29.Mari, L., Ciddio, M., Casagrandi, R., Perez-Saez, J., Bertuzzo, E., Rinaldo, A., … Gatto, M. Heterogeneity in schistosomiasis transmission dynamics. J. Theor. Biol. 432, 87–99. https://doi.org/10.1016/j.jtbi.2017.08.015 (2017).30.Knubben-Schweizer, G., Rüegg, S., Torgerson, P., Rapsch, C., Grimm, F., Hässig, M., … Braun, U. Control of bovine fasciolosis in dairy cattle in Switzerland with emphasis on pasture management. Vet. J. 186, 188–191. https://doi.org/10.1016/j.tvjl.2009.08.003 (2010).31.McCann, C. M., Baylis, M. & Williams, D. J. L. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int. J. Parasitol. 40(9), 1021–1028. https://doi.org/10.1016/j.ijpara.2010.02.009 (2010).Article 
    PubMed 

    Google Scholar 
    32.Selemetas, N., Phelan, P., O’Kiely, P. & de Waal, T. The effects of farm management practices on liver fluke prevalence and the current internal parasite control measures employed on Irish dairy farms. Vet. Parasitol. 207(3–4), 228–240. https://doi.org/10.1016/j.vetpar.2014.12.010 (2015).Article 
    PubMed 

    Google Scholar 
    33.Ollerenshaw, C. B. The approach to forecasting the incidence of fascioliasis over England and Wales 1958–1962. Agric. Meteorol. 3(1–2), 35–53. https://doi.org/10.1016/0002-1571(66)90004-5 (1966).Article 

    Google Scholar 
    34.Fox, N. J., White, P. C. L., McClean, C. J., Marion, G., Evans, A. & Hutchings, M. R. Predicting impacts of climate change on fasciola hepatica risk. PLoS ONE 6(1), e16126. https://doi.org/10.1371/journal.pone.0016126 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Caminade, C., van Dijk, J., Baylis, M. & Williams, D. Modelling recent and future climatic suitability for fasciolosis in Europe. Geospat. Health 9(2), 301–308. https://doi.org/10.4081/gh.2015.352 (2015).Article 
    PubMed 

    Google Scholar 
    36.Lo Iacono, G., Armstrong, B., Fleming, L. E., Elson, R., Kovats, S., Vardoulakis, S. & Nichols, G. L. Challenges in developing methods for quantifying the effects of weather and climate on water-associated diseases: A systematic review. PLoS Negl. Trop. Dis. 11(6), e0005659. https://doi.org/10.1371/journal.pntd.0005659 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lo, N. C., Gurarie, D., Yoon, N., Coulibaly, J. T., Bendavid, E., Andrews, J. R. & King, C. H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc. Natl. Acad. Sci. USA 115(4), E584–E591. https://doi.org/10.1073/pnas.1708729114 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Williams, D. J. L., Howell, A., Graham-Brown, J., Kamaludeen, J., & Smith, D. Liver fluke—An overview for practitioners. Cattle Pract. 22 (2014).39.Pritchard, G. C., Forbes, A. B., Williams, D. J. L., Salimi-Bejestani, M. R. & Daniel, R. G. Emergence of fasciolosis in cattle in East Anglia. Vet. Rec. 157, 578–582. https://doi.org/10.1136/vr.157.19.578 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Kenyon, F., Sargison, N. D., Skuce, P. J. & Jackson, F. Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 163(4), 293–297. https://doi.org/10.1016/j.vetpar.2009.03.027 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.McCann, C. M., Baylis, M. & Williams, D. J. L. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Vet. Rec. 166(20), 612–617. https://doi.org/10.1136/vr.b4836 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Ollerenshaw, C. B. & Rowlands, W. T. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Rec. 71(29), 591–598 (1959).
    Google Scholar 
    43.Fairweather, I. & Boray, J. C. Fasciolicides: Efficacy, actions, resistance and its management. Vet. J. 158, 81–112 (1999).CAS 
    Article 

    Google Scholar 
    44.Morgan, E. R., Hosking, B. C., Burston, S., Carder, K. M., Hyslop, A. C., Pritchard, L. J., … Coles, G. C. A survey of helminth control practices on sheep farms in Great Britain and Ireland. Vet. J. 192(3), 390–397. https://doi.org/10.1016/j.tvjl.2011.08.004 (2012).45.Mitchell, G. Update on Fasciolosis in cattle and sheep. Practice 24(7), 378–385 (2002).Article 

    Google Scholar 
    46.Skuce, P. J. & Zadoks, R. N. Liver fluke A growing threat to UK livestock production. Cattle Pract. 21(2), 138–149 (2013).
    Google Scholar 
    47.Scotland’s RUral College (SRUC). Technical Note 677: Treatment and Control of Liver Fluke (2016).48.National Animal Disease Information System (NADIS). https://www.nadis.org.uk/parasite-forecast.aspx (2019).49.Markus, S. B., Bailey, D. W. & Jensen, D. Comparison of electric fence and a simulated fenceless control system on cattle movements. Livestock Sci. 170, 203–209. https://doi.org/10.1016/j.livsci.2014.10.011 (2014).50.Marini, D., Llewellyn, R., Belson, S. & Lee, C. Controlling Within-Field Sheep Movement Using Virtual Fencing. Animals 8(3), 31. https://doi.org/10.3390/ani8030031 (2018).51.Marshall, E. J. P., Wade, P. M. & Clare, P. Land drainage channels in England and Wales. Geogr. J. 144(2), 254–263 (1978).Article 

    Google Scholar 
    52.Robinson, M. & Armstrong, A. C. The extent of agricultural field drainage in England and Wales, 1971–80. Trans. Inst. Brit. Geogr. 13(1), 19–28 (1988).Article 

    Google Scholar 
    53.Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrol. Earth Syst. Sci. 21(2), 1189–1224. https://doi.org/10.5194/hess-21-1189-2017 (2017).ADS 
    Article 

    Google Scholar 
    54.National River Flow Archive (NRFA). NERC CEH. https://nrfa.ceh.ac.uk/ (2019).55.Intermap Technologies. NEXTMap British Digital Terrain 50m resolution (DTM10) Model Data by Intermap, NERC Earth Observation Data Centre. http://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2 (2009).56.Coxon, G., Freer, J., Lane, R., Dunne, T., Howden, N. J. K., Quinn, N., … Woods, R. DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geosci. Model Dev. 12, 2285–2306. https://doi.org/10.5194/gmd-2018-205 (2019).57.Beven, K., Lamb, R., Quinn, P., Romanowicz, R. & Freer, J. TOPMODEL. In Computer Models of Watershed Hydrology (ed. Sing, V. P.) 627–668 (Water Resource Publications, 1995).
    Google Scholar 
    58.Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V. & Hattermann, F. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dyn. 6(1), 17–43. https://doi.org/10.5194/esd-6-17-2015 (2015).ADS 
    Article 

    Google Scholar 
    59.Shen, C., Niu, J. & Phanikumar, M. S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour. Res. 49(5), 2552–2572. https://doi.org/10.1002/wrcr.20189 (2013).ADS 
    Article 

    Google Scholar 
    60.MetOffice. https://www.metoffice.gov.uk/research/climate/maps-and-data (2017). More

  • in

    Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

    1.Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).ADS 
    Article 

    Google Scholar 
    2.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Song, X. P., Huang, C., Saatchi, S. S., Hansen, M. C. & Townshend, J. R. Annual carbon emissions from deforestation in the Amazon basin between 2000 and 2010. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    6.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Ministério do Meio Ambiente (MMA). REDD+ and Brazil’s Nationally Determined Contribution. http://redd.mma.gov.br/en/redd-and-brazil-s-ndc (2016).8.Bongers, F., Chazdon, R. L., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Almeida, C. Ade et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz 46, 291–302 (2016).Article 

    Google Scholar 
    10.Nunes, S. Jr., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).11.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).15.Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).16.Zarin, D. J. et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005).Article 

    Google Scholar 
    17.Anderegg, W. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).18.Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Yang, Y., Saatchi, S., Xu, L., Keller, M. & Corsini, C. R. Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004–2014). Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006396 (2020).20.Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: A case study from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).Article 

    Google Scholar 
    21.Wang, Y. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. https://doi.org/10.1038/s41893-019-0470-4 (2020).22.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084 (2019).24.IPCC. Chapter 4 Forest Land. In IPCC Guidelines for National Greenhouse Gas Inventories (eds. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) vol. 4, 1–29 (IGES, 2006).25.Mapbiomas Brasil. Project MapBiomas—Collection 3.1 of Brazilian Land Cover and Use Map Series. https://mapbiomas.org/ (2018).26.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    27.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Google Scholar 
    28.Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170411 (2018).29.Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).30.Zuquim, G. et al. Making the most of scarce data: mapping soil gradients in data-poor areas using species occurrence records. Methods Ecol. Evol. 10, 788–801 (2019).Article 

    Google Scholar 
    31.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006. (2015).32.Johnson, C. M., Vieira, I. C. G., Zarin, D. J., Frizano, J. & Johnson, A. H. Carbon and nutrient storage in primary and secondary forests in eastern Amazônia. Forest Ecol. Manag. 147, 245–252 (2001).Article 

    Google Scholar 
    33.Moran, E. F. Effects of soil fertility and land-use on forest succesion in Amazonia. Forest Ecol. Manag. 139, 93–108 (2000).ADS 
    Article 

    Google Scholar 
    34.Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Alves, D. S. et al. Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Glob. Chang. Biol. 3, 451–461 (1997).ADS 
    Article 

    Google Scholar 
    37.MCT. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change. (2016). https://unfccc.int/documents/66129.38.Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Morton, D. C. et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 115, 1706–1720 (2011).ADS 
    Article 

    Google Scholar 
    41.Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004).ADS 
    Article 

    Google Scholar 
    42.Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 12, 1107–1138 (2006).ADS 
    Article 

    Google Scholar 
    43.Saatchi, S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).ADS 
    Article 

    Google Scholar 
    44.Wandelli, E. V. & Fearnside, P. M. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. Forest Ecol. Manag. 347, 140–148 (2015).Article 

    Google Scholar 
    45.Uhl, C., Buschbacher, R. & Serrão, E. A. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J. Ecol. 76, 663–681 (1988).Article 

    Google Scholar 
    46.Kalamandeen, M. et al. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 8, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    47.Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).Article 

    Google Scholar 
    48.Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest. Science 334, 232–235 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).50.Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).51.Hawes, J. E. et al. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).Article 

    Google Scholar 
    52.Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 26, 2956–2969 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15352 (2020).54.Toledo, R. M. et al. Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landsc. Ecol. 35, 1403–1416 (2020).Article 

    Google Scholar 
    55.Armenteras, D., González, T. M. & Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 159, 73–79 (2013).Article 

    Google Scholar 
    56.Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).Article 

    Google Scholar 
    57.Alencar, A. A. C., Solórzano, L. A. & Nepstad, D. C. Modeling forest understory fires in an eastern amazonian landscape. Ecol. Appl. 14, 139–149 (2004).Article 

    Google Scholar 
    58.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 25, 39–56 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).61.PRODES. TerraBrasilis—Taxas anuais de sesmatamento na Amazônia Legal Brasiliera. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (2020).62.Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Chang. Biol. 24, 5680–5694 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Fearnside, P. M. & Guimarães, W. M. Carbon uptake By secondary forests in Brazilian Amazonia. Forest Ecology and Management 80, 35–46 (1996).64.Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    65.Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    66.Campanharo, W. & Silva Junior, C. H. L. Maximun Cumulative Water Deficit—MCWD: a R language script. https://doi.org/10.5281/zenodo.2652629 (2019).67.Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301 (1959).Article 

    Google Scholar 
    68.Kuhn, M. et al. Caret: 6.0-71., Classification and Regression Training. R package version. (2016). https://rdrr.io/cran/caret/.69.R Development Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.r-project.org/.70.Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).71.Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 1–11 (2008).Article 
    CAS 

    Google Scholar 
    72.Strobl, C., Hothorn, T. & Zeileis, A. Party on! A new, conditional variable importance measure available in the party package. R J. 1, 14–17 (2009).73.Behnamian, A. et al. A systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci. Remote Sens. Lett. 14, 1988–1992 (2017).ADS 
    Article 

    Google Scholar 
    74.Congalton Russell, G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. vol. 25 (CRC Press, 2009).75.Heinrich, V. et al. Data from paper: Large carbon sink potential of Secondary Forests in Brazilian Amazon to mitigate climate change. Zenodo https://zenodo.org/record/4479234#.YBVdBHNxdPY (2021).76.Heinrich, V. et al. Code from paper: Large carbon sink potential of Secondary Forests in the Brazilian Amazon to mitigate climate change. GitHub https://github.com/heinrichTrees/secondary-forest-regrowth-amazon-public (2021). More

  • in

    Modelling incremental uncertainty for stock management

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More