More stories

  • in

    High turbidity levels alter coral reef fish movement in a foraging task

    1.Scholik, A. R. & Yan, H. Y. Effects of boat engine noise on the auditory sensitivity of the fathead minnow, Pimephales promelas. . Environ. Biol. Fish. 63, 203–209. https://doi.org/10.1023/A:1014266531390 (2002).Article 

    Google Scholar 
    2.Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544. https://doi.org/10.1038/ncomms10544 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends. Ecol. Evol. 25, 419–427. https://doi.org/10.1016/j.tree.2010.04.005 (2010).Article 
    PubMed 

    Google Scholar 
    4.Halfwerk, W. & Slabbekoorn, H. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance. Biol. Lett. 11, 20141051. https://doi.org/10.1098/rsbl.2014.1051 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Baker, C. F. & Montgomery, J. C. Sensory deficits induced by cadmium in banded kokopu, Galaxias fasciatus, juveniles. Environ. Biol. Fish. 62, 455–464. https://doi.org/10.1023/A:1012290912326 (2001).Article 

    Google Scholar 
    6.O’Connor, J. J. et al. Sediment pollution impacts sensory ability and performance of settling coral-reef fish. Oecologia 180, 11–21. https://doi.org/10.1007/s00442-015-3367-6 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    7.Tierney, K. B., Sampson, J. L., Ross, P. S., Sekela, M. A. & Kennedy, C. J. Salmon olfaction is impaired by an environmentally realistic pesticide mixture. Environ. Sci. Tech. 42, 4996–5001. https://doi.org/10.1021/es800240u (2008).CAS 
    Article 

    Google Scholar 
    8.Ward Ashley, J. W., Duff Alison, J., Horsfall Jennifer, S. & Currie, S. Scents and scents-ability: pollution disrupts chemical social recognition and shoaling in fish. Proc. R Soc. B Biol. Sci. 275, 101–105. https://doi.org/10.1098/rspb.2007.1283 (2008).CAS 
    Article 

    Google Scholar 
    9.Besson, M. et al. Exposure to agricultural pesticide impairs visual lateralization in a larval coral reef fish. Sci. Rep. 7, 9165. https://doi.org/10.1038/s41598-017-09381-0 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Vasconcelos, R. O., Amorim, M. C. P. & Ladich, F. Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J. Exp. Biol. 210, 2104–2112. https://doi.org/10.1242/jeb.004317 (2007).Article 
    PubMed 

    Google Scholar 
    11.Bruintjes, R. et al. Rapid recovery following short-term acoustic disturbance in two fish species. R. Soc. Open Sci. 3, 150686. https://doi.org/10.1098/rsos.150686 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Radford, A. N., Lèbre, L., Lecaillon, G., Nedelec, S. L. & Simpson, S. D. Repeated exposure reduces the response to impulsive noise in European seabass. Glob. Chang. Biol. 22, 3349–3360. https://doi.org/10.1111/gcb.13352 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Briffa, M., de la Haye, K. & Munday, P. L. High CO2 and marine animal behaviour: Potential mechanisms and ecological consequences. Mar. Pollut. Bull. 64, 1519–1528. https://doi.org/10.1016/j.marpolbul.2012.05.032 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Simpson, S. D. et al. Ocean acidification erodes crucial auditory behaviour in a marine fish. Biol. Lett. https://doi.org/10.1098/rsbl.2011.0293 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.van der Sluijs, I. et al. Communication in troubled waters: responses of fish communication systems to changing environments. Evol. Ecol. 25, 623–640. https://doi.org/10.1007/s10682-010-9450-x (2011).Article 

    Google Scholar 
    16.Wysocki, L. E., Dittami, J. P. & Ladich, F. Ship noise and cortisol secretion in European freshwater fishes. Biol. Conserv. 128, 501–508. https://doi.org/10.1016/j.biocon.2005.10.020 (2006).Article 

    Google Scholar 
    17.Montgomery, J. C., Jeffs, A., Simpson, S. D., Meekan, M. & Tindle, C. Sound as an orientation cue for the pelagic larvae of reef fishes and decapod crustaceans. Adv. Mar. Biol. 51, 143–196. https://doi.org/10.1016/S0065-2881(06)51003-X (2006).Article 
    PubMed 

    Google Scholar 
    18.Burke, L., Reytar, K., Spalding, M. & Perry, A. Reefs at risk revisited. 130, 1 (2011).
    Google Scholar 
    19.Collin, S. P. & Hart, N. S. Vision and photoentrainment in fishes: The effects of natural and anthropogenic perturbation. Integr. Zool. 10, 15–28. https://doi.org/10.1111/1749-4877.12093 (2015).Article 
    PubMed 

    Google Scholar 
    20.Brodie, J. E. et al. Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Mar Pollut Bull 65, 81–100. https://doi.org/10.1016/j.marpolbul.2011.12.012 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Marshall, N. J. in Animal Signals. Signalling and signal design in animal communication (eds Y. Espmark, Y. Amundsen, & G. Rosenqvist) 83–120 (Tapir Academic Press, 2000).22.Marshall, J. Vision and lack of vision in the ocean. Curr. Biol. 27, R494–R502. https://doi.org/10.1016/j.cub.2017.03.012 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Cortesi, F. et al. Visual system diversity in coral reef fishes. Semin. Cell Dev. Biol. 106, 31–42. https://doi.org/10.1016/j.semcdb.2020.06.007 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Collier, C., Waycott, M. & Ospina, A. G. Responses of four Indo-West Pacific seagrass species to shading. Mar. Pollut. Bull. 65, 342–354. https://doi.org/10.1016/j.marpolbul.2011.06.017 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.De’ath, G. & Fabricius, K. Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol. Appl. 20, 840–850. https://doi.org/10.1890/08-2023.1 (2010).Article 
    PubMed 

    Google Scholar 
    26.Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Morgan, K. M., Perry, C. T., Johnson, J. A. & Smithers, S. G. Nearshore turbid-zone corals exhibit high bleaching tolerance on the Great Barrier Reef following the 2016 ocean warming event. Front. Mar. Sci. 4, 1–13. https://doi.org/10.3389/fmars.2017.00224 (2017).Article 

    Google Scholar 
    28.Schartau, J. M., Sjögreen, B., Gagnon, Y. L. & Kröger, R. H. H. Optical plasticity in the crystalline lenses of the cichlid fish Aequidens pulcher. Curr. Biol. 19, 122–126. https://doi.org/10.1016/j.cub.2008.11.062 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Kröger, R. H. H., Braun, S. C. & Wagner, H.-J. Rearing in different photic and chromatic environments modifies spectral responses of cone horizontal cells in adult fish retina. Vis. Neuro Sci. 18, 857–864. https://doi.org/10.1017/S0952523801186025 (2001).Article 

    Google Scholar 
    30.Kröger, R. H. H., Knoblauch, B. & Wagner, H.-J. Rearing in different photic and spectral environments changes the optomotor response to chromatic stimuli in the cichlid fish Aequidens pulcher. J. Exp. Biol. 206, 1643–1648. https://doi.org/10.1242/jeb.00337 (2003).Article 
    PubMed 

    Google Scholar 
    31.Borner, K. K. et al. Turbidity affects social dynamics in Trinidadian guppies. Behav. Ecol. Sociobiol. 69, 645–651. https://doi.org/10.1007/s00265-015-1875-3 (2015).Article 

    Google Scholar 
    32.Kimbell, H. S. & Morrell, L. J. Turbidity influences individual and group level responses to predation in guppies Poecilia reticulata. . Anim. Behav. 103, 179–185. https://doi.org/10.1016/j.anbehav.2015.02.027 (2015).Article 

    Google Scholar 
    33.Johansen, J. L. & Jones, G. P. Sediment-induced turbidity impairs foraging performance and prey choice of planktivorous coral reef fishes. Ecol. Appl. 23, 1504–1517. https://doi.org/10.1890/12-0704.1 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Chamberlain, A. C. & Ioannou, C. C. Turbidity increases risk perception but constrains collective behaviour during foraging by fish shoals. Anim. Behav. 156, 129–138. https://doi.org/10.1016/j.anbehav.2019.08.012 (2019).Article 

    Google Scholar 
    35.Gregory, R. S. Effect of turbidity on the predator avoidance behaviour of juvenile Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquat. Sci. 50, 241–246. https://doi.org/10.1139/f93-027 (1993).Article 

    Google Scholar 
    36.Hess, S. et al. Enhanced fast-start performance and anti-predator behaviour in a coral reef fish in response to suspended sediment exposure. Coral Reefs 38, 103–108. https://doi.org/10.1007/s00338-018-01757-6 (2019).ADS 
    Article 

    Google Scholar 
    37.Miner, J. G. & Stein, R. A. Detection of predators and habitat choice by small Bluegills: Effects of turbidity and alternative prey. T Am. Fish. Soc. 125, 97–103. https://doi.org/10.1577/1548-8659(1996)125%3c0097:DOPAHC%3e2.3.CO;2 (1996).Article 

    Google Scholar 
    38.Utne-Palm, A. C. Visual feeding of fish in a turbid environment: Physical and behavioural aspects. Mar. Freshw. Behav. Phys. 35, 111–128. https://doi.org/10.1080/10236240290025644 (2002).Article 

    Google Scholar 
    39.Fiksen, Ø., Aksnes, D., Flyum, H. & M. & Giske, J. ,. The influence of turbidity on growth and survival of fish larvae: A numerical analysis. Hydrobiologia 484, 49–59. https://doi.org/10.1023/A:1021396719733 (2002).Article 

    Google Scholar 
    40.Gregory, R. S. & Levings, C. D. The effects of turbidity and vegetation on the risk of juvenile salmonids, Oncorhynchus spp, to predation by adult cutthroat trout, O. clarkii. Environ Biol Fish 47, 279–288. https://doi.org/10.1007/BF00000500 (1996).Article 

    Google Scholar 
    41.Wenger, A. S., McCormick, M. I., McLeod, I. M. & Jones, G. P. Suspended sediment alters predator–prey interactions between two coral reef fishes. Coral Reefs 32, 369–374. https://doi.org/10.1007/s00338-012-0991-z (2013).ADS 
    Article 

    Google Scholar 
    42.Asaeda, T., Kyung Park, B. & Manatunge, J. Characteristics of reaction field and the reactive distance of a planktivore, Pseudorasbora parva (Cyprinidae), in various environmental conditions. Hydrobiologia 489, 29–43. https://doi.org/10.1023/A:1023298823106 (2002).Article 

    Google Scholar 
    43.Barrett, J. C., Grossman, G. D. & Rosenfeld, J. Turbidity-induced changes in reactive distance of rainbow trout. Trans. Am. Fish. Soc. 121, 437–443. https://doi.org/10.1577/1548-8659(1992)121%3c0437:TICIRD%3e2.3.CO;2 (1992).Article 

    Google Scholar 
    44.Sweka, J. A. & Hartman, K. J. Reduction of reactive distance and foraging success in smallmouth bass, Micropterus dolomieu, exposed to elevated turbidity levels. Environ. Biol. Fish. 67, 341–347. https://doi.org/10.1023/A:1025835031366 (2003).Article 

    Google Scholar 
    45.Suriyampola, P. S., Cacéres, J. & Martins, E. P. Effects of short-term turbidity on sensory preference and behaviour of adult fish. Anim. Behav. 146, 105–111. https://doi.org/10.1016/j.anbehav.2018.10.014 (2018).Article 

    Google Scholar 
    46.De Robertis, A., Ryer, C. H., Veloza, A. & Brodeur, R. D. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Can. J. Fish. Aquat. Sci. 60, 1517–1526. https://doi.org/10.1139/f03-123 (2003).Article 

    Google Scholar 
    47.Huenemann, T. W., Dibble, E. D. & Fleming, J. P. Influence of turbidity on the foraging of largemouth bass. Trans. Am. Fish. Soc. 141, 107–111. https://doi.org/10.1080/00028487.2011.651554 (2012).Article 

    Google Scholar 
    48.Sekhar, M. A., Singh, R., Bhat, A. & Jain, M. Feeding in murky waters: acclimatization and landmarks improve foraging efficiency of zebrafish (Danio rerio) in turbid waters. Biol. Lett. 15, 20190289. https://doi.org/10.1098/rsbl.2019.0289 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wenger, A. S., Johansen, J. L. & Jones, G. P. Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. J. Exp. Mar. Biol. Ecol. 428, 43–48. https://doi.org/10.1016/j.jembe.2012.06.004 (2012).Article 

    Google Scholar 
    50.Wenger, A. S. et al. Suspended sediment prolongs larval development in a coral reef fish. J. Exp. Biol. 217, 1122–1128. https://doi.org/10.1242/jeb.094409 (2014).Article 
    PubMed 

    Google Scholar 
    51.Ehlman, S. M., Sandkam, B. A., Breden, F. & Sih, A. Developmental plasticity in vision and behavior may help guppies overcome increased turbidity. J. Comput. Physiol. 201, 1125–1135. https://doi.org/10.1007/s00359-015-1041-4 (2015).Article 

    Google Scholar 
    52.Hazelton, P. D. & Grossman, G. D. Turbidity, velocity and interspecific interactions affect foraging behaviour of rosyside dace (Clinostomus funduloides) and yellowfin shiners (Notropis lutippinis). Ecol. Freshw. Fish 18, 427–436. https://doi.org/10.1111/j.1600-0633.2009.00359.x (2009).Article 

    Google Scholar 
    53.Hecht, T. & van der Lingen, C. D. Turbidity-induced changes in feeding strategies of fish in estuaries. S. Afr. J. Zool. 27, 95–107. https://doi.org/10.1080/02541858.1992.11448269 (1992).Article 

    Google Scholar 
    54.Sweka, J. A. & Hartman, K. J. Effects of turbidity on prey consumption and growth in brook trout and implications for bioenergetics modeling. Can. J. Fish. Aquat. Sci. 58, 386–393. https://doi.org/10.1139/f00-260 (2001).Article 

    Google Scholar 
    55.Burt de Perera, T. & Macías Garcia, C. Amarillo fish (Girardinichthys multiradiatus) use visual landmarks to orient in space. Ethology 109, 341–350. https://doi.org/10.1046/j.1439-0310.2003.00876.x (2003).Article 

    Google Scholar 
    56.Warburton, K. The use of local landmarks by foraging goldfish. Anim. Behav. 40, 500–505. https://doi.org/10.1016/s0003-3472(05)80530-5 (1990).Article 

    Google Scholar 
    57.Burt de Perera, T. & Guilford, T. C. Rapid learning of shelter position in an intertidal fish, the shanny Lipophrys pholis L. J. Fish. Biol. 72, 1386–1392. https://doi.org/10.1111/j.1095-8649.2008.01804.x (2008).Article 

    Google Scholar 
    58.Hughes, R. N. & Blight, C. M. Two intertidal fish species use visual association learning to track the status of food patches in a radial maze. Anim. Behav. 59, 613–621. https://doi.org/10.1006/anbe.1999.1351 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    59.Huntingford, F. A. & Wright, P. J. How sticklebacks learn to avoid dangerous feeding patches. Behav. Process. 19, 181–189. https://doi.org/10.1016/0376-6357(89)90040-5 (1989).CAS 
    Article 

    Google Scholar 
    60.Reese, E. Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. Environ. Biol. Fish. 25, 79–86. https://doi.org/10.1007/bf00002202 (1989).Article 

    Google Scholar 
    61.Silveira, M. M., Oliveira, J. J. & Luchiari, A. C. Dusky damselfish Stegastes fuscus relational learning: evidences from associative and spatial tasks. J. Fish. Biol. 86, 1109–1120. https://doi.org/10.1111/jfb.12618 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Cyrus, D. P. & Blaber, S. J. M. Turbidity and salinity in a tropical northern Australian estuary and their influence on fish distribution. Estuar. Coast Shelf. S 35, 545–563. https://doi.org/10.1016/S0272-7714(05)80038-1 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Macdonald, R. K., Ridd, P. V., Whinney, J. C., Larcombe, P. & Neil, D. T. Towards environmental management of water turbidity within open coastal waters of the Great Barrier Reef. Mar. Pollut. Bull. 74, 82–94. https://doi.org/10.1016/j.marpolbul.2013.07.026 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Wenger, A. S. et al. A critical analysis of the direct effects of dredging on fish. Fish Fish 18, 967–985. https://doi.org/10.1111/faf.12218 (2017).Article 

    Google Scholar 
    65.Wenger, A. S. & McCormick, M. I. Determining trigger values of suspended sediment for behavioral changes in a coral reef fish. Mar. Pollut. Bull. 70, 73–80. https://doi.org/10.1016/j.marpolbul.2013.02.014 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Gardner, M. B. Mechanisms of size selectivity by planktivorous fish: a test of hypotheses. Ecology 62, 571–578. https://doi.org/10.2307/1937723 (1981).Article 

    Google Scholar 
    67.Shoup, D. E. & Wahl, D. H. The effects of turbidity on prey selection by piscivorous largemouth bass. Trans. Am. Fish. Soc. 138, 1018–1027. https://doi.org/10.1577/T09-015.1 (2009).Article 

    Google Scholar 
    68.Cheung, A., Zhang, S., Stricker, C. & Srinivasan, M. V. Animal navigation: the difficulty of moving in a straight line. Biol. Cybern. 97, 47–61. https://doi.org/10.1007/s00422-007-0158-0 (2007).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    69.McLean, D. J. & Skowron Volpani, M. A. trajr: An R package for characterisation of animal trajectories. Ethology 124, 40–448. https://doi.org/10.1111/eth.12739 (2018).Article 

    Google Scholar 
    70.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    71.jtools: Analysis and presentation of social scientific data v. R package version 2.0.1 (2019).72.Gradall, K. S. & Swenson, W. A. Responses of brook trout and creek chubs to turbidity. Trans. Am. Fish. Soc. 111, 392–395. https://doi.org/10.1577/1548-8659(1982)111%3c392:ROBTAC%3e2.0.CO;2 (1982).Article 

    Google Scholar 
    73.Berg, L. & Northcote, T. G. Changes in territorial, gill-flaring, and feeding behavior in juvenile Coho salmon (Oncorhynchus kisutch) following short-term pulses of suspended sediment. Can. J. Fish. Aquat. Sci. 42, 1410–1417. https://doi.org/10.1139/f85-176 (1985).Article 

    Google Scholar 
    74.Paris, C. B. et al. Reef odor: A wake up call for navigation in reef fish larvae. PLoS ONE 8, e72808. https://doi.org/10.1371/journal.pone.0072808 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Siebeck, U. E., Parker, A. N., Sprenger, D., Mathger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    76.Cheney, K. L., Grutter, A. S., Blomberg, S. P. & Marshall, N. J. Blue and yellow signal cleaning behavior in Coral Reef Fishes. Curr. Biol. 19, 1283–1287. https://doi.org/10.1016/j.cub.2009.06.028 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    77.Brown, C. & Braithwaite, V. A. Size matters: a test of boldness in eight populations of the poeciliid Brachyraphis episcopi. Anim. Behav. 68, 1325–1329. https://doi.org/10.1016/j.anbehav.2004.04.004 (2004).Article 

    Google Scholar 
    78.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Annu. Rev. Mar. Sci. 9, 445–468. https://doi.org/10.1146/annurev-marine-010816-060551 (2017).ADS 
    Article 

    Google Scholar  More

  • in

    Mosquitoes of the Maculipennis complex in Northern Italy

    1.Kettle, D.S. Medical and Veterinary Entomology 2nd edn (CAB International, 1995).2.Falleroni, D. Fauna anofelica italiana e suo “habitat” (paludi, risaie, canali). Metodi di lotta contro la malaria. Riv. Malariol. 5, 553–559 (1926).
    Google Scholar 
    3.Severini, F., Toma, L., Di Luca, M. & Le, R. R. Zanzare Italiane: generalità e identificazione degli adulti (Diptera, Culicidae). Fragmenta Entomologica. 41(2), 213–372. https://doi.org/10.4081/FE.2009.92 (2009).Article 

    Google Scholar 
    4.Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Manguin, S. et al. Biodiversity of Malaria in the World (John Libbey Eurotext, 2008).6.Linton, Y. M., Smith, L. & Harbach, E. Observations on the taxonomic status of Anopheles subalpinus Hackett & Lewis and An. melanoon Hacket. Eur. Mosq. Bull. 13, 1–7 (2002).
    Google Scholar 
    7.Boccolini, D., Di Luca, M., Marinucci, M. & Romi, R. Further molecular and morphological support for the formal synonymy of Anopheles subalpinus Hackett & Lewis with An. melanoon Hackett. Eur. Mosq. Bull. 16, 1–5 (2003).
    Google Scholar 
    8.Andreeva, I. V., Sibataev, A. K., Rusakova, A. M. & Stegniĭ, V. N. Morpho-cytogenetic characteristic of the mosquito Anopheles artemievi (Diptera: Culicidae), a malaria vector from the complex maculipennis. Parazitologiia. 41(5), 348–363 (2007).PubMed 

    Google Scholar 
    9.Artemov, G. N. et al. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi. Parasites Vectors 11(1), 211. https://doi.org/10.1186/s13071-018-2657-3 (2018).MathSciNet 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Naumenko, A. N. et al. Chromosome and genome divergence between the cryptic Eurasian malaria vector-species Anopheles messeae and Anopheles daciae. Genes (Basel) 11(2), 165. https://doi.org/10.3390/genes11020165 (2020).CAS 
    Article 

    Google Scholar 
    11.Nicolescu, G., Linton, Y. M., Vladimirescu, A., Howard, T. M. & Harbach, R. E. Mosquitoes of the Anopheles maculipennis group (Diptera: Culicidae) in Romania, with the discovery and formal recognition of a new species based on molecular and morphological evidence. Bull. Entomol. Res. 94(6), 525–535. https://doi.org/10.1079/ber2004330 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Gordeev, M. I., Zvantsov, A. B., Goriacheva, I. I., Shaĭkevich, E. V. & Ezhov, M. N. Description of the new species Anopheles artemievi sp.n. (Diptera, Culicidae). Med. Parazitol. (Mosk). 2, 4–5 (2005).
    Google Scholar 
    13.Djadid, N. D. et al. Molecular identification of Palearctic members of Anopheles maculipennis in northern Iran. Malar. J. 6, 6. https://doi.org/10.1186/1475-2875-6-6 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Bietolini, S., Candura, F. & Coluzzi, M. Spatial and long term temporal distribution of the Anopheles maculipennis complex species in Italy. Parassitologia 48(4), 581–608 (2006).CAS 
    PubMed 

    Google Scholar 
    15.Romi, R. et al. Status of malaria vectors in Italy. J. Med. Entomol. 34(3), 263–271. https://doi.org/10.1093/jmedent/34.3.263 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Zamburlini, R. & Cargnus, E. Residual mosquitoes in the northern Adriatic seacoast 50 years after the disappearance of malaria. Parassitologia 40, 431–437 (1998).CAS 
    PubMed 

    Google Scholar 
    17.Gratz, N. G. Vector- and Rodent-Borne Diseases in Europe and North America: Distribution, Public Health Burden, and Control (Cambridge University Press, 2006).18.Zahar, A. R. The WHO European region and the two Eastern Mediterranean Region. Applied field studies. In Vector Bionomics in the Epidemiology and Control of Malaria. Part II. WHO/VBC/90.1 (World Health Organization, 1990).19.NPHO Annual Epidemiological Surveillance Report Malaria in Greece, 2019. https://eody.gov.gr/wp-content/uploads/2019/01/MALARIA_ANNUAL_REPORT_2019_ENG.pdf (2019).20.Romi, R. et al. Assessment of the risk of malaria re-introduction in the Maremma plain (Central Italy) using a multi-factorial approach. Malar. J. 11, 98. https://doi.org/10.1186/1475-2875-11-98 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Baldari, M. et al. Malaria in Maremma, Italy. Lancet 351(9111), 1246–1247. https://doi.org/10.1016/S0140-6736(97)10312-9 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Romi, R., Boccolini, D., Menegon, M. & Rezza, G. Probable autochthonous introduced malaria cases in Italy in 2009–2011 and the risk of local vector-borne transmission. Euro Surveill. 17(48), 20325 (2012).PubMed 

    Google Scholar 
    23.Boccolini, D. et al. Non-imported malaria in Italy: paradigmatic approaches and public health implications following an unusual cluster of cases in 2017. BMC Public Health 20(1), 857. https://doi.org/10.1186/s12889-020-08748-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.European Centre for Disease Prevention and Control. Multiple reports of locally-acquired malaria infections in the EU—20 September 2017. (ECDC, 2017).25.Lilja, T., Eklöf, D., Jaenson, T. G. T., Lindström, A. & Terenius, O. Single nucleotide polymorphism analysis of the ITS2 region of two sympatric malaria mosquito species in Sweden: Anopheles daciae and Anopheles messeae. Med. Vet. Entomol. 34(3), 364–368. https://doi.org/10.1111/mve.12436 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Di Luca, M., Boccolini, D., Marinucci, M. & Romi, R. Intrapopulation polymorphism in Anopheles messeae (An. maculipennis complex) inferred by molecular analysis. J. Med. Entomol. 41(4), 582–586. https://doi.org/10.1603/0022-2585-41.4.582 (2004).Article 
    PubMed 

    Google Scholar 
    27.Scharlemann, J. P. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3(1), e1408. https://doi.org/10.1371/journal.pone.0001408 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    29.Batovska, J., Cogan, N. O., Lynch, S. E. & Blacket, M. J. Using Next-Generation Sequencing for DNA Barcoding: Capturing Allelic Variation in ITS2. G3 (Bethesda) 7(1), 19–29. https://doi.org/10.1534/g3.116.036145 (2017).CAS 
    Article 

    Google Scholar 
    30.Novikov, Iu. M. & Kabanova, V. M. Adaptive association of inversions in a natural population of the malaria mosquito Anopheles messeae Fall. Genetika 15(6), 1033–1045 (1979).PubMed 

    Google Scholar 
    31.Vaulin, O. V. & Novikov, Y. M. Polymorphism and interspecific variability of cytochrome oxidase subunit I (COI) gene nucleotide sequence in sibling species of A and B Anopheles messeae and An. beklemishevi (Diptera: Culicidae). Russ. J. Genet. Appl. Res. 2(6), 421–429. https://doi.org/10.1134/S2079059712060159 (2012).Article 

    Google Scholar 
    32.Bezzhonova, O. V. & Goryacheva, I. I. Intragenomic heterogeneity of rDNA internal transcribed spacer 2 in Anopheles messeae (Diptera: Culicidae). J. Med. Entomol. 45(3), 337–341. https://doi.org/10.1603/0022-2585(2008)45[337:ihorit]2.0.co;2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Novikov, Y. M. & Shevchenko, A. I. Inversion polymorphism and the divergence of two cryptic forms of Anopheles messeae (Diptera, Culicidae) at the level of genomic DNA repeats. Russ. J. Genet. 37, 754–763 (2001).CAS 
    Article 

    Google Scholar 
    34.Kitzmiller, J. B., Frizzi, G. & Baker, R. Evolution and speciation within the Maculipennis complex of the genus Anopheles. In Genetics of Insect Vectors of Disease ed. (ed. Wright, J.W. & Pal, R.) (Elsevier Publishing, 1967).35.De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56(6), 879–886. https://doi.org/10.1080/10635150701701083 (2007).Article 
    PubMed 

    Google Scholar 
    36.Alquezar, D. E., Hemmerter, S., Cooper, R. D. & Beebe, N. W. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea. BMC Evol. Biol. 10, 392. https://doi.org/10.1186/1471-2148-10-392 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Mallet, J., Besansky, N. & Hahn, M. W. How reticulated are species?. BioEssays 38(2), 140–149. https://doi.org/10.1002/bies.201500149 (2016).Article 
    PubMed 

    Google Scholar 
    38.Fouet, C., Kamdem, C., Gamez, S. & White, B. J. Genomic insights into adaptive divergence and speciation among malaria vectors of the Anopheles nili group. Evol Appl. 10(9), 897–906. https://doi.org/10.1111/eva.12492 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Pombi, M. et al. Dissecting functional components of reproductive isolation among closely related sympatric species of the Anopheles gambiae complex. Evol. Appl. 10(10), 1102–1120. https://doi.org/10.1111/eva.12517 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Cohuet, A., Harris, C., Robert, V. & Fontenille, D. Evolutionary forces on Anopheles: What makes a malaria vector?. Trends Parasitol. 26(3), 130–136. https://doi.org/10.1016/j.pt.2009.12.001 (2010).Article 
    PubMed 

    Google Scholar 
    41.Jetten, T. H., Takken, W. Anophelism Without Malaria in Europe: A Review of the Ecology and Distribution of the Genus Anopheles in Europe. (Wageningen Agricultural University, 1994).42.Becker, N. et al. Mosquitoes and Their Control 2nd edn (Springer Science & Business Media, 2010).43.Mosca, A., Balbo L., Grieco C. & Roberto P. Rice-field mosquito control in Northern Italy. In Proc. of 14th E-SOVE Int. Conf. 98 (2010).44.Daskova, N. G. & Rasnicyn, S. P. Review of data on susceptibility of mosquitoes in the USSR to imported strains of malaria parasites. Bull. World Health Organ. 60(6), 893–897 (1982).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.de Zulueta, J., Ramsdale, C. D. & Coluzzi, M. Receptivity to malaria in Europe. Bull. World Health Organ. 52(1), 109–111 (1975).PubMed 
    PubMed Central 

    Google Scholar 
    46.Ramsdale, C. D. & Coluzzi, M. Studies on the infectivity of tropical African strains of Plasmodium falciparum to some southern European vectors of malaria. Parassitologia 17(1–3), 39–48 (1975).CAS 
    PubMed 

    Google Scholar 
    47.Teodorescu, C., Ungureanu, E., Mihai, M. & Tudose, M. Contributions to the study of the receptivity of the vector A. labranchiae atroparvus to two strains of P. vivax. Revista Medico-Chirurgicala din Iasi 52(1), 73–75 (1978).
    Google Scholar 
    48.Sousa, C. A. G. Malaria Vectorial Capacity and Competence of Anopheles atroparvus Van Thiel, 1927 (Diptera, Culicidae): Implications for the Potential Re-emergence of Malaria in Portugal (Thesis, Universidade Nova de Lisboa, Instituto de Higiene e Medicina Tropical, 2008).49.Toty, C. et al. Malaria risk in Corsica, former hot spot of malaria in France. Malar. J. 9, 231. https://doi.org/10.1186/1475-2875-9-231 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Calzolari, M. et al. West Nile virus surveillance in 2013 via mosquito screening in Northern Italy and the influence of weather on virus circulation. PLoS ONE 10(10), e0140915. https://doi.org/10.1371/journal.pone.0140915 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Marinucci, M., Romi, R., Mancini, P., Di Luca, M. & Severini, C. Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. Insect. Mol. Biol. 8(4), 469–480. https://doi.org/10.1046/j.1365-2583.1999.00140.x (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Jalali, S., Ojha, R. & Venkatesan, T. DNA barcoding for identification of agriculturally important insects. In New Horizons in Insect Science: Towards Sustainable Pest Management (ed. Chakravarthy, A. K.) (Springer, 2015).53.Lühken, R. et al. Distribution of individual members of the mosquito Anopheles maculipennis complex in Germany identified by newly developed real-time PCR assays. Med. Vet. Entomol. 30, 144–154. https://doi.org/10.1111/mve.12161 (2016).Article 
    PubMed 

    Google Scholar 
    54.Katoh, K., Rozewicki, J. & Yamada, K. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52(5), 696–704. https://doi.org/10.1080/10635150390235520 (2003).Article 
    PubMed 

    Google Scholar 
    56.Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9(8), 772. https://doi.org/10.1038/nmeth.2109 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47(W1), W256–W259. https://doi.org/10.1093/nar/gkz239 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    59.Elith, S. J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2011).Article 

    Google Scholar 
    60.Warren, D. L., Glor, R. E. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. https://doi.org/10.1111/j.1600-0587.2009.06142.x (2010).Article 

    Google Scholar 
    61.Phillips, S., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar  More

  • in

    Social signaling via bioluminescent blinks determines nearest neighbor distance in schools of flashlight fish Anomalops katoptron

    1.Haddock, S. H. D., Moline, M. A. & Case, J. F. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2, 443–493. https://doi.org/10.1146/annurev-marine-120308-081028 (2010).ADS 
    Article 

    Google Scholar 
    2.Bessho-Uehara, M. et al. Kleptoprotein bioluminescence: parapriacanthus fish obtain luciferase from ostracod prey. Sci. Adv. 6, eaax4942. https://doi.org/10.1126/sciadv.aax4942 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Davis, M. P., Sparks, J. S. & Smith, W. L. Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE 11, e0155154. https://doi.org/10.1371/journal.pone.0155154 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Claes, J. M. & Mallefet, J. Early development of bioluminescence suggests camouflage by counter-illumination in the velvet belly lantern shark Etmopterus spinax (Squaloidea: Etmopteridae). J. Fish Biol. 73, 1337–1350. https://doi.org/10.1111/j.1095-8649.2008.02006.x (2008).Article 

    Google Scholar 
    5.Harper, R. D. & Case, J. F. Disruptive counterillumination and its anti-predatory value in the plainfish midshipman Porichthys notatus. Mar. Biol. 134, 529–540. https://doi.org/10.1007/s002270050568 (1999).Article 

    Google Scholar 
    6.Herring, P. J. Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. J. Mar. Biol. Ass. 87, 829–842. https://doi.org/10.1017/S0025315407056433 (2007).CAS 
    Article 

    Google Scholar 
    7.Widder, E. A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science (New York, NY) 328, 704–708. https://doi.org/10.1126/science.1174269 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hellinger, J. et al. The flashlight fish anomalops katoptron uses bioluminescent light to detect prey in the dark. PLoS ONE 12, e170489. https://doi.org/10.1371/journal.pone.0170489 (2017).CAS 
    Article 

    Google Scholar 
    9.Golani, D., Fricke, R. & Appelbaum-Golani, B. Review of the genus Photoblepharon (Actinopterygii: Beryciformes: Anomalopidae). Acta Ichthyol. Piscat. 49, 33–41. https://doi.org/10.3750/AIEP/02530 (2019).Article 

    Google Scholar 
    10.Ho, H.-C. & Johnson, G. D. Protoblepharon mccoskeri, a new flashlight fish from eastern Taiwan (Teleostei: Anomalopidae). Zootaxa https://doi.org/10.11646/zootaxa.3479.1.5 (2012).Article 

    Google Scholar 
    11.Morin, J. G. et al. Light for all reasons: versatility in the behavioral repertoire of the flashlight fish. Science 190, 74–76. https://doi.org/10.1126/science.190.4209.74 (1975).ADS 
    Article 

    Google Scholar 
    12.Hellinger, J. et al. Analysis of the territorial aggressive behavior of the bioluminescent flashlight fish photoblepharon steinitzi in the Red Sea. Front. Mar. Sci. 7, 431. https://doi.org/10.3389/fmars.2020.00078 (2020).ADS 
    Article 

    Google Scholar 
    13.Gruber, D. F. et al. Bioluminescent flashes drive nighttime schooling behavior and synchronized swimming dynamics in flashlight fish. PLoS ONE 14, e0219852. https://doi.org/10.1371/journal.pone.0219852 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Hendry, T. A., de Wet, J. R. & Dunlap, P. V. Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate. Environ. Microbiol. 16, 2611–2622. https://doi.org/10.1111/1462-2920.12302 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Hendry, T. A., de Wet, J. R., Dougan, K. E. & Dunlap, P. V. Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish. Genome Biol. Evol. 8, 2203–2213. https://doi.org/10.1093/gbe/evw161 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Haneda, Y. & Tsuji, F. I. Light production in the luminous fishes Photoblepharon and Anomalops from the Banda Islands. Science (New York, NY) 173, 143–145. https://doi.org/10.1126/science.173.3992.143 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Bassot, J.-M. in Bioluminescence in Progress, edited by F. H. Johnson & Y. Haneda (Princeton University Press1966), pp. 557–610.18.Watson, M., Thurston, E. L. & Nicol, J. A. C. Reflectors in the Light Organ of Anomalops (Anomalopidae, Teleostei). Proc. R. Soc. Lond. Ser. B Biol. Sci. 202, 339–351 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Mark, M. D. et al. Visual tuning in the flashlight fish Anomalops katoptron to detect blue, bioluminescent light. PLoS ONE 13, e0198765. https://doi.org/10.1371/journal.pone.0198765 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.Howland, H. C., Murphy, C. J. & McCosker, J. E. Detection of eyeshine by flashlight fishes of the family anomalopidae. Vis. Res. 32, 765–769. https://doi.org/10.1016/0042-6989(92)90191-K (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.McCosker, J. E. & Rosenblatt, R. H. Notes on the biology, taxonomy, and distribution of flashlight fishes (Beryciformes: Anomalopidae). Jpn. J. Ich. 34, 157–164. https://doi.org/10.1007/BF02912410 (1987).Article 

    Google Scholar 
    22.Parrish, J. K., Viscido, S. V. & Grünbaum, D. Self-organized fish schools: an examination of emergent properties. Biol. Bull. 202, 296–305. https://doi.org/10.2307/1543482 (2002).Article 
    PubMed 

    Google Scholar 
    23.Pitcher, T. J. (ed.) Behaviour of Teleost Fishes (Chapman & Hall, 1993).
    Google Scholar 
    24.Helfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. The Diversity of Fishes. Biology, Evolution, and Ecology 2nd edn. (Wiley-Blackwell, Oxford, 2009).
    Google Scholar 
    25.McLean, S., Persson, A., Norin, T. & Killen, S. S. Metabolic costs of feeding predictively alter the spatial distribution of individuals in fish schools. Curr. Biol. 28, 1144–1149. https://doi.org/10.1016/j.cub.2018.02.043 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Pitcher, T. J., Magurran, A. E. & Winfield, I. J. Fish in larger shoals find food faster. Behav. Ecol. Sociobiol. 10, 149–151. https://doi.org/10.1007/BF00300175 (1982).Article 

    Google Scholar 
    27.Ioannou, C. C., Guttal, V. & Couzin, I. D. Predatory fish select for coordinated collective motion in virtual prey. Science (New York, NY) 337, 1212–1215. https://doi.org/10.1126/science.1218919 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Turner, G. F. & Pitcher, T. J. Attack abatement: a model for group protection by combined avoidance and dilution. Am. Nat. 128, 228–240. https://doi.org/10.1086/284556 (1986).Article 

    Google Scholar 
    29.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380. https://doi.org/10.1016/S0003-3472(86)80208-1 (1986).Article 

    Google Scholar 
    30.Kowalko, J. E. et al. Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr. Biol. 23, 1874–1883. https://doi.org/10.1016/j.cub.2013.07.056 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Partridge, B. L. & Pitcher, T. J. The sensory basis of fish schools: Relative roles of lateral line and vision. J. Comp. Physiol. 135, 315–325. https://doi.org/10.1007/BF00657647 (1980).Article 

    Google Scholar 
    32.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.1126 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Bierbach, D. et al. Using a robotic fish to investigate individual differences in social responsiveness in the guppy. R. Soc. Open Sci. 5, 181026. https://doi.org/10.1098/rsos.181026 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. Science (New York, NY) 339, 574–576. https://doi.org/10.1126/science.1225883(2013) (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl. Acad. Sci. USA 116, 20556–20561. https://doi.org/10.1073/pnas.1905585116 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Kunz, H. & Hemelrijk, C. K. Artificial fish schools: collective effects of school size, body size, and body form. Artif. Life 9, 237–253. https://doi.org/10.1162/106454603322392451 (2003).Article 
    PubMed 

    Google Scholar 
    37.Worm, M. et al. Evidence for mutual allocation of social attention through interactive signaling in a mormyrid weakly electric fish. Proc. Natl. Acad. Sci. USA 115, 6852–6857. https://doi.org/10.1073/pnas.1801283115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adapt. Behav. 20, 44–56. https://doi.org/10.1177/1059712311426799 (2012).Article 

    Google Scholar 
    39.Cohen, A. C. & Morin, J. G. It’s all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of caribbean ostracodes. J. Crustacean Biol. 30, 56–67. https://doi.org/10.1651/09-3170.1 (2010).Article 

    Google Scholar 
    40.Rivers, T. J. & Morin, J. G. Complex sexual courtship displays by luminescent male marine ostracods. J. Exp. Biol. 211, 2252–2262. https://doi.org/10.1242/jeb.011130 (2008).Article 
    PubMed 

    Google Scholar 
    41.Widder, E. A., Latz, M. I., Herring, P. J. & Case, J. F. Far red bioluminescence from two deep-sea fishes. Science (New York, NY) 225, 512–514. https://doi.org/10.1126/science.225.4661.512 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Mensinger, A. F. & Case, J. F. Luminescent properties of deep sea fish. J. Exp. Mar. Biol. Ecol. 144, 1–15. https://doi.org/10.1016/0022-0981(90)90015-5 (1990).Article 

    Google Scholar 
    43.Sasaki, A. et al. Field evidence for bioluminescent signaling in the Pony Fish, Leiognathus elongatus. Environ. Biol. Fishes 66, 307–311. https://doi.org/10.1023/A:1023959123422 (2003).Article 

    Google Scholar 
    44.McFall-Ngai, M. J. & Dunlap, P. V. Three new modes of luminescence in the leiognathid fish Gazza minuta: discrete projected luminescence, ventral body flash, and buccal luminescence. Mar. Biol. 73, 227–237. https://doi.org/10.1007/BF00392247 (1983).Article 

    Google Scholar 
    45.Johnson, G. D. & Rosenblatt, R. H. Mechanisms of light organ occlusion in flashlight fishes, family Anomalopidae (Teleostei: Beryciformes), and the evolution of the group. Zool. J. Linnean Soc. 94, 65–96. https://doi.org/10.1111/j.1096-3642.1988.tb00882.x (1988).Article 

    Google Scholar 
    46.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl. Acad. Sci. USA 108, 18726–18731. https://doi.org/10.1073/pnas.1109355108 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Siebeck, U. E., Parker, A. N., Sprenger, D., Mäthger, L. M. & Wallis, G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. CB 20, 407–410. https://doi.org/10.1016/j.cub.2009.12.047 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Larsch, J. & Baier, H. Biological Motion as an Innate Perceptual Mechanism Driving Social Affiliation. Curr. Biol. 28, 3523-3532.e4. https://doi.org/10.1016/j.cub.2018.09.014 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Kasumyan, A. O. Acoustic signaling in fish. J. Ichthyol. 49, 963–1020. https://doi.org/10.1134/S0032945209110010 (2009).Article 

    Google Scholar 
    50.Santon, M. et al. Redirection of ambient light improves predator detection in a diurnal fish. Proc. Biol. Sci. 287, 20192292. https://doi.org/10.1098/rspb.2019.2292 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.de Busserolles, F., Fogg, L., Cortesi, F. & Marshall, J. The exceptional diversity of visual adaptations in deep-sea teleost fishes. Semin. Cell Dev. Biol. https://doi.org/10.1016/j.semcdb.2020.05.027 (2020).Article 
    PubMed 

    Google Scholar 
    52.Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35, 109 (1958).
    Google Scholar 
    53.Videler, J. J. & Wardle, C. S. Fish swimming stride by stride: speed limits and endurance. Rev. Fish. Biol. Fish. 1, 23–40. https://doi.org/10.1007/BF00042660 (1991).Article 

    Google Scholar 
    54.Ware, D. M. Bioenergetics of pelagic fish: theoretical change in swimming speed and ration with body size. J. Fish. Res. Bd. Can. 35, 220–228. https://doi.org/10.1139/f78-036 (1978).ADS 
    Article 

    Google Scholar 
    55.Meyer-Rochow, V. B. Loss of bioluminescence inAnomalops katoptron due to starvation. Experientia 32, 1175–1176. https://doi.org/10.1007/BF01927610 (1976).Article 

    Google Scholar 
    56.Barber, I., Downey, L. C. & Braithwaite, V. A. Parasitism, oddity and the mechanism of shoal choice. J. Fish Biol. 53, 1365–1368. https://doi.org/10.1111/j.1095-8649.1998.tb00256.x (1998).Article 

    Google Scholar 
    57.Ward, A. J. W., Duff, A. J., Krause, J. & Barber, I. Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala. Environ. Biol. Fish. 72, 155–160. https://doi.org/10.1007/s10641-004-9078-1 (2005).Article 

    Google Scholar 
    58.Theodorakis, C. W. Size segregation and the effects of oddity on predation risk in minnow schools. Anim. Behav. 38, 496–502. https://doi.org/10.1016/S0003-3472(89)80042-9 (1989).Article 

    Google Scholar 
    59.Steche, O. Die Leuchtorgane von Anomalops katoptron und Photoblepharon palpebratus, zwei Oberflächenfischen aus dem malayischen Archipel: Ein Beitrag zur Anatomie und Physiologie der Leuchtorgane der Fische (Z Wiss Zool., 1909).60.Parrish, J. K. & Edelstein-Keshet, L. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science (New York, NY) 284, 99–101. https://doi.org/10.1126/science.284.5411.99 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Woodland, D. J., Cabanban, A. S., Taylor, V. M. & Taylor, R. J. A synchronized rhythmic flashing light display by schooling Leiognathus splendens (Leiognathidae : Perciformes). Mar. Freshwater Res. 53, 159. https://doi.org/10.1071/MF01157 (2002).Article 

    Google Scholar  More

  • in

    Discovering environmental management opportunities for infectious disease control

    1.Eisenberg, J. N. S., Desai, M. A., Levy, K., Bates, S. J., Liang, S., Naumoff, K. & Scott, J. C. Environmental determinants of infectious disease: A framework for tracking causal links and guiding public health research. Environ. Health Perspect. 115(8), 1216–1223. https://doi.org/10.1289/ehp.9806 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Bertuzzo, E., Azaele, S., Maritan, A., Gatto, M., Rodriguez-Iturbe, I. & Rinaldo, A. On the space-time evolution of a cholera epidemic. Water Resour. Res. 44(1), 1–8. https://doi.org/10.1029/2007WR006211 (2008).Article 

    Google Scholar 
    3.Bomblies, A., Duchemin, J. B. & Eltahir, E. A. B. Hydrology of malaria: Model development and application to a Sahelian village. Water Resour. Res. 44(12), 1–26. https://doi.org/10.1029/2008WR006917 (2008).Article 

    Google Scholar 
    4.Perez-Saez, J., Mande, T., Ceperley, N., Bertuzzo, E., Mari, L., Gatto, M. & Rinaldo, A. Hydrology and density feedbacks control the ecology of intermediate hosts of schistosomiasis across habitats in seasonal climates. Proc. Natl. Acad. Sci. USA 113(23), 6427–6432. https://doi.org/10.1073/pnas.1602251113 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.van Dijk, J., Sargison, N. D., Kenyon, F. & Skuce, P. J. Climate change and infectious disease: Helminthological challenges to farmed ruminants in temperate regions. Animal 4(3), 377–392. https://doi.org/10.1017/s1751731109990991 (2010).Article 
    PubMed 

    Google Scholar 
    6.Parham, P. E., Waldock, J., Christophides, G. K., Hemming, D., Agusto, F., Evans, K. J., … Michael, E. Climate, environmental and socio-economic change: weighing up the balance in vector- borne disease transmission. Philos. Trans. R. Soc. B 370, 1665. https://doi.org/10.1098/rstb.2013.0551 (2015).7.Cable, J., Barber, I., Boag, B., Ellison, A. R., Morgan, E. R., Murray, K., … Booth, M. Global change, parasite transmission and disease control: Lessons from ecology. Philos. Trans. R. Soc. B 372, 1719. https://doi.org/10.1098/rstb.2016.0088 (2017).8.McIntyre, K. M., Setzkorn, C., Hepworth, P. J., Morand, S., Morse, A. P. & Baylis, M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-06948-9 (2017).CAS 
    Article 

    Google Scholar 
    9.Garchitorena, A., Sokolow, S. H., Roche, B., Ngonghala, C. N., Jocque, M., Lund, A., … De Leo, G. A. Disease ecology, health and the environment: a framework to account for ecological and socio- economic drivers in the control of neglected tropical diseases. Phil. Trans. R. Soc. B, 372, 20160128. https://doi.org/10.1098/rstb.2016.0128 (2017).10.Webster, J. P., Molyneux, D. H., Hotez, P. J. & Fenwick, A. The contribution of mass drug administration to global health: Past, present and future. Philos. Trans. R. Soc. B 369(1645), 20130434. https://doi.org/10.1098/rstb.2013.0434 (2014).Article 

    Google Scholar 
    11.Beesley, N. J., Caminade, C., Charlier, J., Flynn, R. J., Hodgkinson, J. E., Martinez-Moreno, A., … Williams, D. J. L. Fasciola and fasciolosis in ruminants in Europe: Identifying research needs. Transbound. Emerg. Dis. 65, 199–216 https://doi.org/10.1111/tbed.12682 (2018).12.Kamaludeen, J., Graham-Brown, J., Stephens, N., Miller, J., Howell, A., Beesley, N. J., … Williams, D. Lack of efficacy of triclabendazole against Fasciola hepatica is present on sheep farms in three regions of England, and Wales. Vet. Rec. 184(16), 502–502. https://doi.org/10.1136/vr.105209 (2019).13.WHO. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (2019).14.Mas-Coma, S., Valero, M. A. & Bargues, M. D. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Vet. Parasitol. 163(4), 264–280. https://doi.org/10.1016/j.vetpar.2009.03.024 (2009).Article 
    PubMed 

    Google Scholar 
    15.Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: From evidence to a predictive framework. Science 341(6145), 514–519. https://doi.org/10.1126/science.1239401 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Siraj, A. S., Santos-Vega, M., Bouma, M. J., Yadeta, D., Ruiz Carrascal, D. & Pascual, M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343(6175), 1154–1159. https://doi.org/10.1126/science.1244325 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Sokolow, S. H., Jones, I. J., Jocque, M., La, D., Cords, O., Knight, A., … De Leo, G. A. Nearly 400 million people are at higher risk of schistosomiasis because dams block the migration of snail- eating river prawns. Phiosl. Trans. R. Soc. B 372(1722), 20160127. https://doi.org/10.1098/rstb.2016.0127 (2017).18.Morgan, E. R., Charlier, J., Hendrickx, G., Biggeri, A., Catalan, D., von Samson-Himmelstjerna, G., … Vercruysse, J. Global change and helminth infections in grazing ruminants in Europe: Impacts, trends and sustainable solutions. Agriculture 3(3), 484–502. https://doi.org/10.3390/agriculture3030484. (2013).19.Prüss-Ustün, A., Wolf, J., Corvalan, C., Bos, R., & Neira, M. Preventing Disease Through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks (World Health Organisation, 2016).20.Eisenberg, J. N. S., Brookhart, M. A., Rice, G., Brown, M. & Colford, J. M. Disease transmission models for public health decision making: Analysis of epidemic and endemic conditions caused by waterborne pathogens. Environ. Health Perspect. 110(8), 783–790. https://doi.org/10.1289/ehp.02110783 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Lloyd-Smith, J. O., George, D., Pepin, K. M., Pitzer, V. E., Pulliam, J. R. C., Dobson, A. P., … Grenfell, B. T.. Epidemic dynamics at the human–animal interface. Science 326(5958), 1362–1367. https://doi.org/10.1126/science.1177345 (2009).22.Mellor, J. E., Levy, K., Zimmerman, J., Elliott, M., Bartram, J., Carlton, E., … Nelson, K.. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases. Science of the Total Environment, 548–549, 82–90. https://doi.org/10.1016/j.scitotenv.2015.12.087 (2016).23.Wu, X., Lu, Y., Zhou, S., Chen, L. & Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 86, 14–23. https://doi.org/10.1016/j.envint.2015.09.007 (2016).Article 
    PubMed 

    Google Scholar 
    24.Beltrame, L., Dunne, T., Vineer, H. R., Walker, J. G., Morgan, E. R., Vickerman, P., … Wagener, T. A mechanistic hydro-epidemiological model of liver fluke risk. Journal of the Royal Society Interface, 15(145). https://doi.org/10.1098/rsif.2018.0072 (2018).25.Rinaldo, A., Gatto, M. & Rodriguez-Iturbe, I. River networks as ecological corridors: A coherent ecohydrological perspective. Adv. Water Resour. 112, 27–58. https://doi.org/10.1016/j.advwatres.2017.10.005 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Mahmoud, M., Liu, Y., Hartmann, H., Stewart, S., Wagener, T., Semmens, D., … Winter, L. A formal framework for scenario development in support of environmental decision-making. Environ. Model. Softw. https://doi.org/10.1016/j.envsoft.2008.11.010 (2009).27.Wagener, T., Sivapalan, M., Troch, P. A., McGlynn, B. L., Harman, C. J., Gupta, H. V., … Wilson, J. S. The future of hydrology: An evolving science for a changing world. Water Resour. Research, 46, W05301. https://doi.org/10.1029/2009WR008906 (2010).28.Liang, S., Seto, E. Y. W., Remais, J. V, Zhong, B., Yang, C., Hubbard, A., … Spear, R. C. Environmental effects on parasitic disease transmission exemplified by schistosomiasis in western China. Proc. Natl. Acad. Sci. USA 104(17), 7110–7115. https://doi.org/10.1073/pnas.0701878104 (2007).29.Mari, L., Ciddio, M., Casagrandi, R., Perez-Saez, J., Bertuzzo, E., Rinaldo, A., … Gatto, M. Heterogeneity in schistosomiasis transmission dynamics. J. Theor. Biol. 432, 87–99. https://doi.org/10.1016/j.jtbi.2017.08.015 (2017).30.Knubben-Schweizer, G., Rüegg, S., Torgerson, P., Rapsch, C., Grimm, F., Hässig, M., … Braun, U. Control of bovine fasciolosis in dairy cattle in Switzerland with emphasis on pasture management. Vet. J. 186, 188–191. https://doi.org/10.1016/j.tvjl.2009.08.003 (2010).31.McCann, C. M., Baylis, M. & Williams, D. J. L. The development of linear regression models using environmental variables to explain the spatial distribution of Fasciola hepatica infection in dairy herds in England and Wales. Int. J. Parasitol. 40(9), 1021–1028. https://doi.org/10.1016/j.ijpara.2010.02.009 (2010).Article 
    PubMed 

    Google Scholar 
    32.Selemetas, N., Phelan, P., O’Kiely, P. & de Waal, T. The effects of farm management practices on liver fluke prevalence and the current internal parasite control measures employed on Irish dairy farms. Vet. Parasitol. 207(3–4), 228–240. https://doi.org/10.1016/j.vetpar.2014.12.010 (2015).Article 
    PubMed 

    Google Scholar 
    33.Ollerenshaw, C. B. The approach to forecasting the incidence of fascioliasis over England and Wales 1958–1962. Agric. Meteorol. 3(1–2), 35–53. https://doi.org/10.1016/0002-1571(66)90004-5 (1966).Article 

    Google Scholar 
    34.Fox, N. J., White, P. C. L., McClean, C. J., Marion, G., Evans, A. & Hutchings, M. R. Predicting impacts of climate change on fasciola hepatica risk. PLoS ONE 6(1), e16126. https://doi.org/10.1371/journal.pone.0016126 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Caminade, C., van Dijk, J., Baylis, M. & Williams, D. Modelling recent and future climatic suitability for fasciolosis in Europe. Geospat. Health 9(2), 301–308. https://doi.org/10.4081/gh.2015.352 (2015).Article 
    PubMed 

    Google Scholar 
    36.Lo Iacono, G., Armstrong, B., Fleming, L. E., Elson, R., Kovats, S., Vardoulakis, S. & Nichols, G. L. Challenges in developing methods for quantifying the effects of weather and climate on water-associated diseases: A systematic review. PLoS Negl. Trop. Dis. 11(6), e0005659. https://doi.org/10.1371/journal.pntd.0005659 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Lo, N. C., Gurarie, D., Yoon, N., Coulibaly, J. T., Bendavid, E., Andrews, J. R. & King, C. H. Impact and cost-effectiveness of snail control to achieve disease control targets for schistosomiasis. Proc. Natl. Acad. Sci. USA 115(4), E584–E591. https://doi.org/10.1073/pnas.1708729114 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Williams, D. J. L., Howell, A., Graham-Brown, J., Kamaludeen, J., & Smith, D. Liver fluke—An overview for practitioners. Cattle Pract. 22 (2014).39.Pritchard, G. C., Forbes, A. B., Williams, D. J. L., Salimi-Bejestani, M. R. & Daniel, R. G. Emergence of fasciolosis in cattle in East Anglia. Vet. Rec. 157, 578–582. https://doi.org/10.1136/vr.157.19.578 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Kenyon, F., Sargison, N. D., Skuce, P. J. & Jackson, F. Sheep helminth parasitic disease in south eastern Scotland arising as a possible consequence of climate change. Vet. Parasitol. 163(4), 293–297. https://doi.org/10.1016/j.vetpar.2009.03.027 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.McCann, C. M., Baylis, M. & Williams, D. J. L. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Vet. Rec. 166(20), 612–617. https://doi.org/10.1136/vr.b4836 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Ollerenshaw, C. B. & Rowlands, W. T. A method of forecasting the incidence of fascioliasis in Anglesey. Vet. Rec. 71(29), 591–598 (1959).
    Google Scholar 
    43.Fairweather, I. & Boray, J. C. Fasciolicides: Efficacy, actions, resistance and its management. Vet. J. 158, 81–112 (1999).CAS 
    Article 

    Google Scholar 
    44.Morgan, E. R., Hosking, B. C., Burston, S., Carder, K. M., Hyslop, A. C., Pritchard, L. J., … Coles, G. C. A survey of helminth control practices on sheep farms in Great Britain and Ireland. Vet. J. 192(3), 390–397. https://doi.org/10.1016/j.tvjl.2011.08.004 (2012).45.Mitchell, G. Update on Fasciolosis in cattle and sheep. Practice 24(7), 378–385 (2002).Article 

    Google Scholar 
    46.Skuce, P. J. & Zadoks, R. N. Liver fluke A growing threat to UK livestock production. Cattle Pract. 21(2), 138–149 (2013).
    Google Scholar 
    47.Scotland’s RUral College (SRUC). Technical Note 677: Treatment and Control of Liver Fluke (2016).48.National Animal Disease Information System (NADIS). https://www.nadis.org.uk/parasite-forecast.aspx (2019).49.Markus, S. B., Bailey, D. W. & Jensen, D. Comparison of electric fence and a simulated fenceless control system on cattle movements. Livestock Sci. 170, 203–209. https://doi.org/10.1016/j.livsci.2014.10.011 (2014).50.Marini, D., Llewellyn, R., Belson, S. & Lee, C. Controlling Within-Field Sheep Movement Using Virtual Fencing. Animals 8(3), 31. https://doi.org/10.3390/ani8030031 (2018).51.Marshall, E. J. P., Wade, P. M. & Clare, P. Land drainage channels in England and Wales. Geogr. J. 144(2), 254–263 (1978).Article 

    Google Scholar 
    52.Robinson, M. & Armstrong, A. C. The extent of agricultural field drainage in England and Wales, 1971–80. Trans. Inst. Brit. Geogr. 13(1), 19–28 (1988).Article 

    Google Scholar 
    53.Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrol. Earth Syst. Sci. 21(2), 1189–1224. https://doi.org/10.5194/hess-21-1189-2017 (2017).ADS 
    Article 

    Google Scholar 
    54.National River Flow Archive (NRFA). NERC CEH. https://nrfa.ceh.ac.uk/ (2019).55.Intermap Technologies. NEXTMap British Digital Terrain 50m resolution (DTM10) Model Data by Intermap, NERC Earth Observation Data Centre. http://catalogue.ceda.ac.uk/uuid/f5d41db1170f41819497d15dd8052ad2 (2009).56.Coxon, G., Freer, J., Lane, R., Dunne, T., Howden, N. J. K., Quinn, N., … Woods, R. DECIPHeR v1: Dynamic fluxEs and ConnectIvity for Predictions of HydRology. Geosci. Model Dev. 12, 2285–2306. https://doi.org/10.5194/gmd-2018-205 (2019).57.Beven, K., Lamb, R., Quinn, P., Romanowicz, R. & Freer, J. TOPMODEL. In Computer Models of Watershed Hydrology (ed. Sing, V. P.) 627–668 (Water Resource Publications, 1995).
    Google Scholar 
    58.Vetter, T., Huang, S., Aich, V., Yang, T., Wang, X., Krysanova, V. & Hattermann, F. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents. Earth Syst. Dyn. 6(1), 17–43. https://doi.org/10.5194/esd-6-17-2015 (2015).ADS 
    Article 

    Google Scholar 
    59.Shen, C., Niu, J. & Phanikumar, M. S. Evaluating controls on coupled hydrologic and vegetation dynamics in a humid continental climate watershed using a subsurface-land surface processes model. Water Resour. Res. 49(5), 2552–2572. https://doi.org/10.1002/wrcr.20189 (2013).ADS 
    Article 

    Google Scholar 
    60.MetOffice. https://www.metoffice.gov.uk/research/climate/maps-and-data (2017). More

  • in

    Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change

    1.Grassi, G. et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nat. Clim. Chang. 7, 220–226 (2017).ADS 
    Article 

    Google Scholar 
    2.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Song, X. P., Huang, C., Saatchi, S. S., Hansen, M. C. & Townshend, J. R. Annual carbon emissions from deforestation in the Amazon basin between 2000 and 2010. PLoS ONE 10, 1–21 (2015).
    Google Scholar 
    6.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Ministério do Meio Ambiente (MMA). REDD+ and Brazil’s Nationally Determined Contribution. http://redd.mma.gov.br/en/redd-and-brazil-s-ndc (2016).8.Bongers, F., Chazdon, R. L., Poorter, L. & Peña-Claros, M. The potential of secondary forests. Science 348, 642–643 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Almeida, C. Ade et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amaz 46, 291–302 (2016).Article 

    Google Scholar 
    10.Nunes, S. Jr., Oliveira, L., Siqueira, J., Morton, D. C. & Souza, C. M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 15, 034057 (2020).11.Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Requena Suarez, D. et al. Estimating aboveground net biomass change for tropical and subtropical forests: refinement of IPCC default rates using forest plot data. Glob. Chang. Biol. 25, 3609–3624 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).15.Aragão, L. E. O. C. et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).16.Zarin, D. J. et al. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Front. Ecol. Environ. 3, 365–369 (2005).Article 

    Google Scholar 
    17.Anderegg, W. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).18.Silva Junior, C. H. L. et al. Benchmark maps of 33 years of secondary forest age for Brazil. Sci. Data 7, 269 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Yang, Y., Saatchi, S., Xu, L., Keller, M. & Corsini, C. R. Interannual variability of carbon uptake of secondary forests in the Brazilian Amazon (2004–2014). Glob. Biogeochem. Cycles https://doi.org/10.1029/2019GB006396 (2020).20.Vieira, I. C. G., Gardner, T., Ferreira, J., Lees, A. C. & Barlow, J. Challenges of governing second-growth forests: A case study from the Brazilian Amazonian state of Pará. Forests 5, 1737–1752 (2014).Article 

    Google Scholar 
    21.Wang, Y. et al. Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nat. Sustain. https://doi.org/10.1038/s41893-019-0470-4 (2020).22.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the year 2017, v1. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/bedc59f37c9545c981a839eb552e4084 (2019).24.IPCC. Chapter 4 Forest Land. In IPCC Guidelines for National Greenhouse Gas Inventories (eds. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) vol. 4, 1–29 (IGES, 2006).25.Mapbiomas Brasil. Project MapBiomas—Collection 3.1 of Brazilian Land Cover and Use Map Series. https://mapbiomas.org/ (2018).26.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 1–12 (2018).Article 

    Google Scholar 
    27.Funk, C. et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).
    Google Scholar 
    28.Anderson, L. O. et al. Vulnerability of Amazonian forests to repeated droughts. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170411 (2018).29.Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).30.Zuquim, G. et al. Making the most of scarce data: mapping soil gradients in data-poor areas using species occurrence records. Methods Ecol. Evol. 10, 788–801 (2019).Article 

    Google Scholar 
    31.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006. (2015).32.Johnson, C. M., Vieira, I. C. G., Zarin, D. J., Frizano, J. & Johnson, A. H. Carbon and nutrient storage in primary and secondary forests in eastern Amazônia. Forest Ecol. Manag. 147, 245–252 (2001).Article 

    Google Scholar 
    33.Moran, E. F. Effects of soil fertility and land-use on forest succesion in Amazonia. Forest Ecol. Manag. 139, 93–108 (2000).ADS 
    Article 

    Google Scholar 
    34.Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. 89, 913–931 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Alves, D. S. et al. Biomass of primary and secondary vegetation in Rondônia, Western Brazilian Amazon. Glob. Chang. Biol. 3, 451–461 (1997).ADS 
    Article 

    Google Scholar 
    37.MCT. Third National Communication of Brazil to the United Nations Framework Convention on Climate Change. (2016). https://unfccc.int/documents/66129.38.Roderick, M. L., Farquhar, G. D., Berry, S. L. & Noble, I. R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 129, 21–30 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Lange, O. L., Lösch, R., Schulze, E. D. & Kappen, L. Responses of stomata to changes in humidity. Planta 100, 76–86 (1971).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Morton, D. C. et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data. Remote Sens. Environ. 115, 1706–1720 (2011).ADS 
    Article 

    Google Scholar 
    41.Baker, T. R. et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004).ADS 
    Article 

    Google Scholar 
    42.Malhi, Y. et al. The regional variation of aboveground live biomass in old-growth Amazonian forests. Glob. Chang. Biol. 12, 1107–1138 (2006).ADS 
    Article 

    Google Scholar 
    43.Saatchi, S., Houghton, R. A., Dos Santos Alvalá, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol. 13, 816–837 (2007).ADS 
    Article 

    Google Scholar 
    44.Wandelli, E. V. & Fearnside, P. M. Secondary vegetation in central Amazonia: land-use history effects on aboveground biomass. Forest Ecol. Manag. 347, 140–148 (2015).Article 

    Google Scholar 
    45.Uhl, C., Buschbacher, R. & Serrão, E. A. Abandoned pastures in Eastern Amazonia. I. Patterns of plant succession. J. Ecol. 76, 663–681 (1988).Article 

    Google Scholar 
    46.Kalamandeen, M. et al. Pervasive rise of small-scale deforestation in Amazonia. Sci. Rep. 8, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    47.Jakovac, C. C., Peña-Claros, M., Kuyper, T. W. & Bongers, F. Loss of secondary-forest resilience by land-use intensification in the Amazon. J. Ecol. 103, 67–77 (2015).Article 

    Google Scholar 
    48.Hirota, M., Holmgren, M., van Nes, E. H. & Scheffer, M. Global resilience of tropical forest. Science 334, 232–235 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).50.Elias, F. et al. Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology 101, e02954 (2020).51.Hawes, J. E. et al. A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. J. Ecol. 108, 1373–1385 (2020).Article 

    Google Scholar 
    52.Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Chang. Biol. 26, 2956–2969 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Smith, C. C. et al. Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon. Glob. Chang. Biol. https://doi.org/10.1111/gcb.15352 (2020).54.Toledo, R. M. et al. Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landsc. Ecol. 35, 1403–1416 (2020).Article 

    Google Scholar 
    55.Armenteras, D., González, T. M. & Retana, J. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biol. Conserv. 159, 73–79 (2013).Article 

    Google Scholar 
    56.Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).Article 

    Google Scholar 
    57.Alencar, A. A. C., Solórzano, L. A. & Nepstad, D. C. Modeling forest understory fires in an eastern amazonian landscape. Ecol. Appl. 14, 139–149 (2004).Article 

    Google Scholar 
    58.Esquivel-Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Chang. Biol. 25, 39–56 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl Acad. Sci. USA 113, 793–797 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).61.PRODES. TerraBrasilis—Taxas anuais de sesmatamento na Amazônia Legal Brasiliera. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (2020).62.Lennox, G. D. et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Chang. Biol. 24, 5680–5694 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Fearnside, P. M. & Guimarães, W. M. Carbon uptake By secondary forests in Brazilian Amazonia. Forest Ecology and Management 80, 35–46 (1996).64.Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    65.Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    66.Campanharo, W. & Silva Junior, C. H. L. Maximun Cumulative Water Deficit—MCWD: a R language script. https://doi.org/10.5281/zenodo.2652629 (2019).67.Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 10, 290–301 (1959).Article 

    Google Scholar 
    68.Kuhn, M. et al. Caret: 6.0-71., Classification and Regression Training. R package version. (2016). https://rdrr.io/cran/caret/.69.R Development Core Team. R: A Language and Environment for Statistical Computing. (2020). https://www.r-project.org/.70.Strobl, C., Boulesteix, A. L., Zeileis, A. & Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics 8, 25 (2007).71.Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinformatics 9, 1–11 (2008).Article 
    CAS 

    Google Scholar 
    72.Strobl, C., Hothorn, T. & Zeileis, A. Party on! A new, conditional variable importance measure available in the party package. R J. 1, 14–17 (2009).73.Behnamian, A. et al. A systematic approach for variable selection with random forests: achieving stable variable importance values. IEEE Geosci. Remote Sens. Lett. 14, 1988–1992 (2017).ADS 
    Article 

    Google Scholar 
    74.Congalton Russell, G. & Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. vol. 25 (CRC Press, 2009).75.Heinrich, V. et al. Data from paper: Large carbon sink potential of Secondary Forests in Brazilian Amazon to mitigate climate change. Zenodo https://zenodo.org/record/4479234#.YBVdBHNxdPY (2021).76.Heinrich, V. et al. Code from paper: Large carbon sink potential of Secondary Forests in the Brazilian Amazon to mitigate climate change. GitHub https://github.com/heinrichTrees/secondary-forest-regrowth-amazon-public (2021). More

  • in

    Modelling incremental uncertainty for stock management

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Wild meat on and off the table

    The COVID-19 pandemic prompted calls for cessation of wild meat trade and consumption to protect public health and biodiversity. High-quality data on wild meat consumption at a global scale is limited, but in many regions wild meat forms an important component of human nutrition — complete cessation of wild meat consumption could create unforeseen shocks to wider food systems through reduced protein intake and land use change for livestock production. Therefore, Hollie Booth, from the University of Oxford, and colleagues identified wild meat-consuming regions across 83 countries and estimated the potential magnitude of halting wild meat consumption on food systems.Using available global datasets on nutrient supply and land demand, Booth and colleagues identified 15 countries where wild meat accounted for more than 5% of total animal protein — and all ranked in the bottom 50% of the global food security index. Of these 15 countries, Madagascar, Republic of Congo, Guinea, Rwanda, Central African Republic, Zimbabwe, Botswana and Côte d’Ivoire would fall below WHO protein intake recommendations — the latter two countries derive 61% and 73% (respectively) of animal protein from wild meat. Estimates indicated that globally 123,980 km2 of additional agricultural land, predominantly in South and Central America, and sub-Saharan Africa, would be needed to replace wild meat protein with livestock-derived protein — placing up to 267 species at risk of extinction. Madagascar, rural Gabon, the East Region of Cameroon, Malawi, and the Brazilian Amazon would likely struggle with food system adaptation due to a lack of viable protein alternatives, food security trade-offs and social factors such as limited ban enforcement capacities and illicit trading.Booth and colleagues note that the ability of countries’ food systems to absorb these shocks are unequally distributed, with protein shortfalls in some of the world’s most food-insecure countries and potential loss of livelihoods, rights and social values. Forest regions with high mammalian biodiversity may also suffer under increased risk of emerging infectious diseases — with epidemic or pandemic potential. Thus, the authors call for risk-based regulation preventing the use and trade of slowly reproducing, endangered species, or those with high zoonotic potential while permitting use and trade of more sustainable species. Despite the limited data available, Booth and colleagues demonstrate that political and social debates around wild meat urgently require further research — and holistic policy responses guided by food systems thinking. More

  • in

    Substitution of inland fisheries with aquaculture and chicken undermines human nutrition in the Peruvian Amazon

    1.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    3.SOFIA 2020—State of Fisheries and Aquaculture in the World 2020 (FAO, 2020).4.Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).Article 

    Google Scholar 
    6.Belton, B. & Thilsted, S. H. Fisheries in transition: food and nutrition security implications for the global South. Glob. Food Sec. 3, 59–66 (2014).Article 

    Google Scholar 
    7.Hilborn, R., Banobi, J., Hall, S. J., Pucylowski, T. & Walsworth, T. E. The environmental cost of animal source foods. Front. Ecol. Environ. 16, 329–335 (2018).Article 

    Google Scholar 
    8.Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).CAS 
    Article 

    Google Scholar 
    9.Heilpern, S. Integrating Food Webs and Food Security to Understand the Impact of Biodiversity Loss on Ecosystem Functions and Services. PhD thesis, Columbia Univ. (2020).10.Ministerio de Desarrollo Agrario y Riego (Midagri); https://www.gob.pe/midagri11.Ministerio de la Producción (Produce); https://www.gob.pe/produce12.OECD-FAO Agricultural Outlook, 2019 edn (OECD/FAO, 2020).13.Peru—National Program for Innovation in Fisheries and Aquaculture Project (World Bank, 2017).14.DeFries, R. et al. Metrics for land-scarce agriculture. Science 349, 238–240 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Loreto: Resultados Definitivos de la Población Economicamnte Activa 2017 (Instituto Nacional de Estadistica e Informática, 2018).16.McIntyre, P. B., Liermann, C. A. R. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).CAS 
    Article 

    Google Scholar 
    17.Youn, S.-J. et al. Inland capture fishery contributions to global food security and threats to their future. Glob. Food Sec. 3, 142–148 (2014).Article 

    Google Scholar 
    18.Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).Article 

    Google Scholar 
    19.Bogard, J. R. et al. Nutrient composition of important fish species in Bangladesh and potential contribution to recommended nutrient intakes. J. Food Compos. Anal. 42, 120–133 (2015).CAS 
    Article 

    Google Scholar 
    20.Vaitla, B. et al. Predicting nutrient content of ray-finned fishes using phylogenetic information. Nat. Commun. 9, 1–10 (2018).CAS 
    Article 

    Google Scholar 
    21.Popkin, B. M. Nutrition, agriculture and the global food system in low and middle income countries. Food Policy 47, 91–96 (2014).Article 

    Google Scholar 
    22.Bogard, J. R. et al. Higher fish but lower micronutrient intakes: temporal changes in fish consumption from capture fisheries and aquaculture in Bangladesh. PLoS ONE 12, e0175098 (2017).Article 

    Google Scholar 
    23.Golden, C. D., Fernald, L. C. H., Brashares, J. S., Rasolofoniaina, B. J. R. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl Acad. Sci. USA 108, 19653–19656 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Davis, K. F. et al. Meeting future food demand with current agricultural resources. Global Environ. Change 39, 125–132 (2016).Article 

    Google Scholar 
    25.Parker, R. W. R. & Tyedmers, P. H. Fuel consumption of global fishing fleets: current understanding and knowledge gaps. Fish Fish. 16, 684–696 (2015).Article 

    Google Scholar 
    26.Parker, R. W. R. et al. Fuel use and greenhouse gas emissions of world fisheries. Nat. Clim. Change 8, 333–337 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Avadí, A. et al. Comparative environmental performance of artisanal and commercial feed use in Peruvian freshwater aquaculture. Aquaculture 435, 52–66 (2015).Article 

    Google Scholar 
    28.Fry, J. P., Mailloux, N. A., Love, D. C., Milli, M. C. & Cao, L. Feed conversion efficiency in aquaculture: do we measure it correctly? Environ. Res. Lett. 13, 024017 (2018).ADS 
    Article 

    Google Scholar 
    29.Prudêncio da Silva, V., van der Werf, H. M. G., Soares, S. R. & Corson, M. S. Environmental impacts of French and Brazilian broiler chicken production scenarios: an LCA approach. J. Environ. Manage. 133, 222–231 (2014).Article 

    Google Scholar 
    30.Seto, K. & Fiorella, K. J. From sea to plate: the role of fish in a sustainable diet. Front. Mar. Sci. 4, 74 (2017).Article 

    Google Scholar 
    31.Lynch, A. J. et al. Inland fish and fisheries integral to achieving the Sustainable Development Goals. Nature Sustain. 3, 579–587 (2020).32.Nardoto, G. B. et al. Frozen chicken for wild fish: nutritional transition in the Brazilian Amazon region determined by carbon and nitrogen stable isotope ratios in fingernails. Am. J. Hum. Biol. 23, 642–650 (2011).Article 

    Google Scholar 
    33.Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Kearney, J. Food consumption trends and drivers. Philos. Trans. R. Soc. Lond B Biol. Sci. 365, 2793–2807 (2010).Article 

    Google Scholar 
    35.Pinnegar, J. K., Hutton, T. P. & Placenti, V. What relative seafood prices can tell us about the status of stocks. Fish Fish. 7, 219–226 (2006).Article 

    Google Scholar 
    36.Wong, J. T. et al. Small-scale poultry and food security in resource-poor settings: a review. Global Food Sec. 15, 43–52 (2017).Article 

    Google Scholar 
    37.Tabela Brasileira de Composição de Alimentos—TACO (Núcleo de Estudos e Pesquisas em Alimentação—NEPA/UNICAMP, 2011).38.Cahu, C., Salen, P. & de Lorgeril, M. Farmed and wild fish in the prevention of cardiovascular diseases: assessing possible differences in lipid nutritional values. Nutr. Metab. Cardiovasc. Dis. 14, 34–41 (2004).CAS 
    Article 

    Google Scholar 
    39.Vitamin and Mineral Requirements in Human Nutrition (WHO/FAO, 2004).40.Fats and Fatty Acids in Human Nutrition: Report of an Expert Consultation (FAO, 2010).41.Heilpern, S. A., Weeks, B. C. & Naeem, S. Predicting ecosystem vulnerability to biodiversity loss from community composition. Ecology 99, 1099–1107 (2018).Article 

    Google Scholar 
    42.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More