Drivers and constraints on offshore foraging in harbour seals
1.Orians, G. H. & Pearson, N. E. On the theory of central place foraging. Analysis of ecological systems. In Analysis of ecological systems Vol. 2 (eds Horn D. J., Mitchell R. D. & Stairs G. R.) 155–177 (Ohio State Univ. Press, 1979).
Google Scholar
2.Biuw, M. et al. Variations in behavior and condition of a Southern Ocean top predator in relation to in situ oceanographic conditions. Proc. Natl. Acad. Sci. 104, 13705–13710 (2007).ADS
CAS
PubMed
Article
Google Scholar
3.Arcalís-Planas, A. et al. Limited use of sea ice by the Ross seal (Ommatophoca rossii), in Amundsen Sea, Antarctica, using telemetry and remote sensing data. Polar Biol. 38, 445–461 (2015).Article
Google Scholar
4.Staniland, I. J., Boyd, I. L. & Reid, K. An energy–distance trade-off in a central-place forager, the Antarctic fur seal (Arctocephalus gazella). Mar. Biol. 152, 233–241 (2007).Article
Google Scholar
5.Le Boeuf, B. et al. Foraging ecology of northern elephant seals. Ecol. Monogr. 70, 353–382 (2000).Article
Google Scholar
6.Adelung, D., Kierspel, M. A., Liebsch, N., Müller, G. & Wilson, R. P. Distribution of harbour seals in the German bight in relation to offshore wind power plants. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel J. & Peters, W.) 65–75 (Springer, 2006).
Google Scholar
7.Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).Article
Google Scholar
8.Wilson, R. P. et al. Options for modulating intra-specific competition in colonial pinnipeds : the case of harbour seals (Phoca vitulina) in the Wadden Sea. PeerJ 4, e957 (2015).Article
Google Scholar
9.Sharples, R. J., Moss, S. E., Patterson, T. A. & Hammond, P. S. Spatial variation in foraging behaviour of a marine top predator (Phoca vitulina) determined by a large-scale satellite tagging program. PLoS ONE 7, e37216 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Liebsch, N., Wilson, R. P. & Adelung, D. Utilisation of time and space by harbour seals (Phoca vitulina vitulina) determined by new remote-sensing methods. In Progress in Marine Conservation in Europe (eds von Nordheim, H., Boedeker, D. & Krause, J.C.) 179–188 (Springer, 2006).
Google Scholar
11.Tougaard, J., Teilmann, J. & Tougaard, S. Harbour seal spatial distribution estimated from Argos satellite telemetry: overcoming positioning errors. Endanger. Species Res. 4, 113–122 (2008).Article
Google Scholar
12.Common Wadden Sea Secretariat. Report on the State of Conservation of the World Heritage property “ The Wadden Sea ( N1314 )” (2016).13.Brasseur, S. M. J. M. et al. Echoes from the past: regional variations in recovery within a harbour seal population. PLoS ONE 13, 1–21 (2018).Article
CAS
Google Scholar
14.Wolff, W. J. Ecology of the Wadden Sea (Balkema, 1983).
Google Scholar
15.Baumann, H., Malzahn, A. M., Voss, R. & Temming, A. The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles. J. Sea Res. 61, 234–243 (2009).ADS
Article
Google Scholar
16.Tulp, I., Bolle, L. J. & Rijnsdorp, A. D. Signals from the shallows: in search of common patterns in long-term trends in Dutch estuarine and coastal fish. J. Sea Res. 60, 54–73 (2008).ADS
Article
Google Scholar
17.Dulvy, N. K. et al. Climate change and deepening of the North Sea fish assemblage: a biotic indicator of warming seas. J. Appl. Ecol. 45, 1029–1039 (2008).Article
Google Scholar
18.Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).ADS
Article
Google Scholar
19.Russell, D. J. F. et al. Intrinsic and extrinsic drivers of activity budgets in sympatric grey and harbour seals. Oikos 124, 1462–1472 (2015).Article
Google Scholar
20.Sparling, C. E., Fedak, M. A. & Thompson, D. Eat now, pay later? Evidence of deferred food-processing costs in diving seals. Biol. Lett. 3, 94–98 (2007).PubMed
Article
PubMed Central
Google Scholar
21.Ramasco, V., Biuw, M. & Nilssen, K. T. Improving time budget estimates through the behavioural interpretation of dive bouts in harbour seals. Anim. Behav. 94, 117–134 (2014).Article
Google Scholar
22.Mikkelsen, L. et al. Long-term sound and movement recording tags to study natural behavior and reaction to ship noise of seals. Ecol. Evol. 9(5), 2588–2601 (2019).Article
PubMed
PubMed Central
Google Scholar
23.Carter, M. I. D., Bennett, K. A., Embling, C. B., Hosegood, P. J. & Russell, D. J. F. Navigating uncertain waters: a critical review of inferring foraging behaviour from location and dive data in pinnipeds. Mov. Ecol. 4, 1–20 (2016).Article
Google Scholar
24.Boyd, I. L. Temporal scales of foraging in a marine predator author. Ecology 77, 426–434 (1996).Article
Google Scholar
25.Bjorge, A. et al. Habitat Use and Diving Behaviour of Harbour Seals in a Coastal Archipelage in Norway 211–223 (Elsevier, 1995).
Google Scholar
26.Lesage, V., Hammill, M. O. & Kovacs, K. M. Functional classification of harbor seal (Phoca vitulina) dives using depth profiles, swimming velocity, and an index of foraging success. Can. J. Zool. 77, 74–87 (1999).Article
Google Scholar
27.Baechler, J., Beck, C. A. & Bowen, W. Dive shapes reveal temporal changes in the foraging behaviour of different age and sex classes of harbour seals (Phoca vitulina). Can. J. Zool. Can. Zool. 80, 1569–1577 (2002).Article
Google Scholar
28.Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Comparative analysis of methods for inferring successful foraging areas from Argos and GPS tracking data. Mar. Ecol. Prog. Ser. 452, 253–267 (2012).ADS
Article
Google Scholar
29.Dragon, A. C., Bar-Hen, A., Monestiez, P. & Guinet, C. Horizontal and vertical movements as predictors of foraging success in a marine predator. Mar. Ecol. Prog. Ser. 447, 243–257 (2012).ADS
Article
Google Scholar
30.Thums, M. T., Bradshaw, C. J. A. & Hindell, M. A. In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology 92, 1258–1270 (2011).PubMed
Article
Google Scholar
31.Volpov, B. L., Hoskins, A. J., Battaile, B. C. & Viviant, M. Identification of prey captures in Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted accelerometers: Field validation with animal-borne video cameras. PLoS ONE 10, e0128789 (2015).Article
PubMed
PubMed Central
Google Scholar
32.Gallon, S. et al. Identifying foraging events in deep diving southern elephant seals, Mirounga leonina, using acceleration data loggers. Deep. Res. Part II Top. Stud. Oceanogr. 88–89, 14–22 (2013).ADS
Article
Google Scholar
33.Viviant, M., Trites, A. W., Rosen, D. A. S., Monestiez, P. & Guinet, C. Prey capture attempts can be detected in Steller sea lions and other marine predators using accelerometers. Polar Biol. 33, 713–719 (2010).Article
Google Scholar
34.Watanabe, Y. Y. & Takahashi, A. Linking animal-borne video to accelerometers reveals prey capture variability. Proc. Natl. Acad. Sci. U.S.A. 110, 2199–2204 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
35.Martín Lopez, L. M., Miller, P. J. O., Aguilar de Soto, N. & Johnson, M. Gait switches in deep-diving beaked whales: biomechanical strategies for long-duration dives. J. Exp. Biol. 218, 1325–1338 (2015).PubMed
Article
PubMed Central
Google Scholar
36.Naito, Y., Bornemann, H., Takahashi, A., McIntyre, T. & Plötz, J. Fine-scale feeding behavior of Weddell seals revealed by a mandible accelerometer. Polar Sci. 4, 309–316 (2010).ADS
Article
Google Scholar
37.Ydesen, K. S. et al. What a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina). J. Exp. Biol. 217, 2239–2243 (2014).PubMed
Article
PubMed Central
Google Scholar
38.Johnson, M., De Soto, N. A. & Madsen, P. T. Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar. Ecol. Prog. Ser. 395, 55–73 (2009).ADS
Article
Google Scholar
39.Goldbogen, J. A., Friedlaender, A. S., Calambokidis, J., McKenna, M. F. & Simon, M. Integrative approaches to the study of baleen whale diving behavior, feeding performance, and foraging ecology. Bioscience 63, 90–100 (2013).Article
Google Scholar
40.Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep. Res. Part II(54), 193–210 (2007).ADS
Article
Google Scholar
41.Baylis, A. M. M., Page, B. & Goldsworthy, S. D. Effect of seasonal changes in upwelling activity on the foraging locations of a wide-ranging central-place forager, the New Zealand fur seal. Can. J. Zool. 789, 774–789 (2008).Article
Google Scholar
42.McClintock, B. T., Russell, D. J. F., Matthiopoulos, J. & King, R. Combining individual animal movement and ancillary biotelemetry data to investigate population-level activity budgets. Ecology 94, 838–849 (2013).Article
Google Scholar
43.Siebert, U., Müller, S., Gilles, A., Sundermeyer, J. & Narberhaus, I. Chapter VII species profiles marine mammals authors: harbour porpoise red lists, conservation status and assessment. In Threatened Biodiversity in the German North and Baltic Seas-Sensitivities Towards Human Activities and the Effects of Climate Change (eds Narberhaus, I. & Krause, J.) 448–495 (Naturschutz und Biologische Vielfalt, 2012).
Google Scholar
44.Ashmole, N. P. The regulation of numbers of tropical oceanic birds. Ibis (Lond. 1859) 103, 458–473 (1963).
Google Scholar
45.Gaston, A. J., Ydenberg, R. C. & Smith, G. E. J. Ashmole’s halo and population regulation in seabirds. Mar. Ornithol. 35, 119–126 (2007).
Google Scholar
46.Cronin, M., Pomeroy, P. & Jessopp, M. Size and seasonal influences on the foraging range of female grey seals in the northeast Atlantic. Mar. Biol. 160, 531–539 (2013).Article
Google Scholar
47.Dietz, R., Teilmann, J., Andersen, S. M., Rige, F. & Olsen, M. T. Movements and site fidelity of harbour seal (Phoca vitulina) in Kattegat, Denmark, with implications for the epidemiology of the phocine distemper virus. ICES J. Mar. Sci. 70, 186–195 (2013).Article
Google Scholar
48.Brasseur, S., Creuwels, J., Werf, B. & Reijnders, P. Deprivation indicates necessity for haul-out in harbor seals. Mar. Mamm. Sci. 12, 619–624 (1996).Article
Google Scholar
49.Lyamin, O. I., Mukhametov, L. M. & Siegel, J. M. Sleep in the northern fur seal. Curr. Opin. Neurobiol. 44, 144–151 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
50.Härkönen, T. et al. The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis. Aquat. Organ. 68, 115–130 (2006).PubMed
Article
PubMed Central
Google Scholar
51.Bodewes, R. et al. Avian influenza a(H10n7) virus–associated mass deaths among harbor seals. Emerg. Infect. Dis. 21, 720–722 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Galatius, A. et al. Trilateral Surveys of Harbour Seals in the Wadden Sea and Helgoland in 2019 (2019).53.Madsen, P. T., Wahlberg, M., Tougaard, J., Lucke, K. & Tyack, P. Wind turbine underwater noise and marine mammals: implications of current knowledge and data needs. Mar. Ecol. Prog. Ser. 309, 279–295 (2006).ADS
Article
Google Scholar
54.Cremer, J. et al. EG-Seals Grey Seal Surveys in the Wadden Sea and Helgoland in 2018–2019-Steady Growth (2019).55.Christensen, J. T. & Richardson, K. Stable isotope evidence of long-term changes in the North Sea food web structure. Mar. Ecol. Prog. Ser. 368, 1–8 (2008).ADS
Article
Google Scholar
56.Daan, N., Gislason, H., Pope, J. G. & Rice, J. C. Changes in the North Sea fish community: Evidence of indirect effects of fishing ?. ICES J. Mar. Sci. 62, 177–188 (2005).Article
Google Scholar
57.Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Marshall, C. T. Warming temperatures and smaller body sizes: Synchronous changes in growth of North Sea fishes. Glob. Change Biol. 20, 1023–1031 (2014).ADS
Article
Google Scholar
58.Hasselmeier, I., Fonfara, S., Driver, J. & Siebert, U. Differential hematology profiles of free-ranging, rehabilitated, and captive harbor seals (Phoca vitulina) of the German North Sea. Aquat. Mamm. 34, 149–156 (2008).Article
Google Scholar
59.Wales, B., Tarazona, L. & Bavaro, M. Snapshot positioning for low-power miniaturised spaceborne GNSS receivers. In 2010 5th ESA Work. Satell. Navig. Technol. Eur. Work. GNSS Signals Signal Process.1–6 (IEEE, 2010).60.Johnson, M. P. & Tyack, P. L. A digital acoustic recording tag for measuring the response of wild marine mammals to sound. IEEE J. Ocean. Eng. 28, 3–12 (2003).ADS
Article
Google Scholar
61.Sibly, R. M., Nott, H. M. R. & Fletcher, D. J. Splitting behaviour into bouts. Anim. Behav. 39, 63–69 (1990).Article
Google Scholar
62.Bowen, W. D., Tully, D., Boness, D. J., Bulheier, B. M. & Marshall, G. J. Prey-dependent foraging tactics and preyprofitability in a marine mammal. Mar. Ecol. Prog. Ser. 244, 235–245 (2002).ADS
Article
Google Scholar
63.Cox, S. L. et al. Processing of acceleration and dive data on-board satellite relay tags to investigate diving and foraging behaviour in free-ranging marine predators. Methods Ecol. Evol. 9, 64–77 (2018).PubMed
Article
PubMed Central
Google Scholar
64.Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).Article
Google Scholar
65.Martín López, L. M., de Soto, N. A., Miller, P. & Johnson, M. Tracking the kinematics of caudal-oscillatory swimming: a comparison of two on-animal sensing methods. J. Exp. Biol. 219, 2103–2109. https://doi.org/10.1242/jeb.136242 (2016).Article
PubMed
PubMed Central
Google Scholar
66.Sato, K. et al. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc. R. Soc. B Biol. Sci. 274, 471–477 (2007).Article
Google Scholar
67.Bartoń, K. MuMIn: Multi‐model inference. R package version 1.43.17. 75 (2020). More