More stories

  • in

    Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions

    1.Müller, F. Ituna and Thyridia: A remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879, 20–24 (1879).
    Google Scholar 
    2.Mallet, J. & Joron, M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 30, 201–233 (1999).Article 

    Google Scholar 
    3.Sherratt, T. N. The evolution of Müllerian mimicry. Naturwissenschaften 95, 681–695 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63–67 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Mallet, L. & Barton, N. H. Strong natural selection in a warning colour hybrid zone. Evolution 43, 421–431 (1989).PubMed 
    Article 

    Google Scholar 
    6.Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. USA 113, 2164–2169 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Wilson, J. S., Williams, K. A., Forister, M. L., von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272. https://doi.org/10.1038/ncomms2275 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Mullerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Bocek, M., Kusy, D., Motyka, M. & Bocak, L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 16, 38. https://doi.org/10.1186/s12983-019-0335-8 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Anzaldo, S. S., Wilson, J. S. & Franz, N. M. Phenotypic analysis of aposematic conoderine weevils (Coleoptera: Curculionidae: Conoderinae) supports the existence of three large mimicry complexes. Biol. J. Linn. Soc. 129, 728–739 (2020).Article 

    Google Scholar 
    11.Masek, M. et al. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae). Insects 9, 154. https://doi.org/10.3390/insects9040154 (2018).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    12.Kusy, D., Motyka, M., Bocek, M., Vogler, A. P. & Bocak, L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci. Rep. 8, 17084. https://doi.org/10.1038/s41598-018-35328-0 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Linsley, E. G., Eisner, T. & Klots, A. B. Mimetic assemblages of sibling species of lycid beetles. Evolution 15, 15–29 (1961).Article 

    Google Scholar 
    14.Eisner, T., Kafatos, F. C. & Linsley, E. G. Lycid predation by mimetic adult Cerambycidae (Coleoptera). Evolution 16, 316–324 (1962).Article 

    Google Scholar 
    15.Dettner, K. Chemosystematics and evolution of beetle chemical defenses. Ann. Rev. Entomol. 32, 17–48 (1987).CAS 
    Article 

    Google Scholar 
    16.Malohlava, V. & Bocak, L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 19, 4800–4811 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Kazantsev, S. V. & Telnov, D. A mimetic assemblage of net-winged beetles (Coleoptera: Lycidae) from West Papua. In Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea, Vol III (eds Telnov, D. et al.) 363–370 (The Entomological Society of Latvia, 2017).
    Google Scholar 
    18.Sklenarova, K., Chesters, D. & Bocak, L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS One 8, e67957. https://doi.org/10.1371/journal.pone.0067957 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Li, Y., Gunter, N., Pang, H. & Bocak, L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 175, 59–72 (2015).Article 

    Google Scholar 
    20.Masek, M., Palata, V., Bray, T. C. & Bocak, L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae). PLoS One 10, e0123855. https://doi.org/10.1371/journal.pone.0123855 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Bocakova, M., Bocak, L., Gimmel, M. L., Motyka, M. & Vogler, A. P. Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta). Zool. Scr. 45, 9–21 (2016).Article 

    Google Scholar 
    22.Moore, B. P. & Brown, W. V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae). Ins. Biochem. 1, 493–499 (1981).Article 

    Google Scholar 
    23.Eisner, T. et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 18, 109–119 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Kusy, D., Motyka, M., Bocek, M., Masek, M. & Bocak, L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 44, 911–925 (2019).Article 

    Google Scholar 
    25.Blum, M. S. & Sannasi, A. Reflex bleeding in the lampyrid Photinus pyralis: Defensive function. J. Insect Physiol. 20, 451–460 (1974).Article 

    Google Scholar 
    26.Xinhua, F., Ohba, N., Meyer-Rochow, V. B., Yuyong, W. & Chaoliang, L. Reflex-bleeding in the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae): Morphological basis and possible function. Coleopt. Bull. 60, 207–215 (2006).Article 

    Google Scholar 
    27.Meinwald, J., Meinwald, Y. C., Calmers, A. M. & Eisner, T. Dihydromatricaria acid: Acetylenic acid secreted by soldier beetle. Science 160, 890–892 (1968).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Moore, B. P. & Brown, W. V. Precoccinelline and related alcaloids in the Australian soldier beetle, Chauliognathus pulchellus (Coleoptera: Cantharidae). Ins. Biochem. 8, 393–395 (1978).CAS 
    Article 

    Google Scholar 
    29.Poinar, G. O. Jr., Marshall, C. J. & Buckley, R. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 33, 1663–1669 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Rowe, C. & Guilford, T. The evolution of multimodal warning displays. Evol. Ecol. 13, 655–671 (1999).Article 

    Google Scholar 
    31.Young, D. K. & Fischer, R. L. The pupation of Calopteron terminale (Say) (Coleoptera: Lycidae). Coleopt. Bull. 26, 17–18 (1972).
    Google Scholar 
    32.Bocak, L. & Matsuda, K. Review of the immature stages of the family Lycidae (Insecta: Coleoptera). J. Nat. Hist 37, 1463–1507 (2003).Article 

    Google Scholar 
    33.Hall, D. W. & Branham, M. A. Aggregation of Calopteron discrepans (Coleoptera: Lycidae) larvae prior to pupation. Flor. Entomol. 91, 124–125 (2008).Article 

    Google Scholar 
    34.Gamberale, G. & Tullberg, B. S. Aposematism and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. R. Soc. Lond. B Biol. Sci. 265, 889–894 (1998).Article 

    Google Scholar 
    35.Svadová, K., Exnerová, A. & Štys, P. Gregariousness as a defence strategy of moderately defended prey: Experiments with Pyrrhocoris apterus and avian predators. Behaviour 151, 1617–1640 (2014).Article 

    Google Scholar 
    36.Mitchell, R. F. et al. Evidence that cerambycid beetles mimic vespid wasps in odor as well as appearance. J. Chem. Ecol. 43, 75–83 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Speed, M. P. Warning signals, receiver psychology and predator memory. Anim. Behav. 60, 269–278 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Speed, M. P. Can receiver psychology explain the evolution of aposematism?. Anim. Behav. 61, 205–216 (2001).PubMed 
    Article 

    Google Scholar 
    39.Skelhorn, J., Holmes, G. G., Hossie, T. J. & Sherratt, T. N. Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behav. Ecol. 27, 141–147 (2016).Article 

    Google Scholar 
    40.Motyka, M., Kampova, L. & Bocak, L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 8, 3744. https://doi.org/10.1038/s41598-018-22155-6 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Motyka, M., Bocek, M., Kusy, D. & Bocak, L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 10, 11193. https://doi.org/10.1038/s41598-020-68027-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Bocak, L. & Yagi, T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in southeast Asia. Evolution 64, 39–52 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Bray, T. C. & Bocak, L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 6, 33579. https://doi.org/10.1038/srep33579 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Jiruskova, A., Motyka, M., Bocek, M. & Bocak, L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ 7, e6511. https://doi.org/10.7717/peerj.6511 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Endler, J. A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 31, 587–608 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Arenas, L. M., Troscianko, J. & Stevens, M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2, 1–12 (2014).Article 

    Google Scholar 
    47.Mallet, J. & Gilbert, L. E. Why are there so many mimicry rings—correlations between habitats, behavior and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 55, 159–180 (1995).
    Google Scholar 
    48.CSIRO. The Insects of Australia (Melbourne University Press, 1991).
    Google Scholar 
    49.Lingafelter, S. W. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae). ZooKeys 258, 53–83 (2013).Article 

    Google Scholar 
    50.Perger, R. & Santos-Silva, A. A new lycid-like species of Iarucanga Martins & Galileo, 1991 (Coleoptera, Cerambycidae, Lamiinae, Hemilophini) from the Bolivian Andes. J. Nat. Hist. 52, 2487–2495 (2018).Article 

    Google Scholar 
    51.Perger, R. & Santos-Silva, A. Addition to the known long-horned beetle fauna of the Bolivian Andes: A new lycid-like species of Mimolaia Bates, 1885 (Coleoptera, Cerambycidae, Lamiinae, Caliini). Zootaxa 4550, 295–300 (2019).PubMed 
    Article 

    Google Scholar 
    52.Eisner, T. et al. Antifeedant action of z-dihydromatricaria acid from soldier beetles (Chauliognathus spp.). J. Chem. Ecol. 7, 1149–1158 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Brown, W. V., Lacey, M. J. & Moore, B. P. Dihydromatricariate-based triglycerides, glyceride ethers, and waxes in the Australian soldier beetle, Chauliognathus lugubris (Coleoptera: Cantharidae). J. Chem. Ecol. 14, 411–423 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Machado, V., Araujo, A. M., Serrano, J. & Galián, J. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae) inferred from mitochondrial COI sequences. Gen. Mol. Biol. 27, 55–60 (2004).CAS 
    Article 

    Google Scholar 
    55.Long, S. M. et al. Firefly flashing and jumping spider predation. Anim. Behav. 83, 81–86 (2012).Article 

    Google Scholar 
    56.Eisner, T., Goetz, M. A., Hill, D. E., Smedley, S. R. & Meinwald, J. Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc. Natl. Acad. Sci USA 94, 9723–9728 (1997).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Exnerová, A. et al. Importance of color in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linn. Soc. 88, 143–153 (2006).Article 

    Google Scholar 
    58.Wuster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B Biol. Sci. 271, 2495–2499 (2004).Article 

    Google Scholar 
    59.Speed, M. P. & Ruxton, G. D. How bright and how nasty: Explaining diversity in warning signal strength. Evolution 61, 623–635 (2007).PubMed 
    Article 

    Google Scholar 
    60.Aronsson, M. & Gamberale-Stille, G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 20, 1356–1362 (2009).Article 

    Google Scholar 
    61.Endler, J. A. & Mappes, J. The current and future state of animal coloration research. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160352 (2017).Article 

    Google Scholar 
    62.Edmunds, M. Why are there good and poor mimics?. Biol. J. Linn. Soc. 70, 459–466 (2000).Article 

    Google Scholar 
    63.Speed, M. P. & Ruxton, G. D. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 176, E1–E14 (2010).PubMed 
    Article 

    Google Scholar 
    64.Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R. & Sherratt, T. N. A comparative analysis of the evolution of imperfect mimicry. Nature 483, 461–464 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Kikuchi, D. W. & Pfennig, D. W. Imperfect mimicry and the limits of natural selection. Q. Rev. Biol. 88, 297–315 (2013).PubMed 
    Article 

    Google Scholar 
    66.Briolat, E. S. et al. Diversity in warning coloration: Selective paradox or the norm?. Biol. Rev. 94, 388–414 (2019).PubMed 
    Article 

    Google Scholar 
    67.Robertson, A. R. The CIE 1976 color-difference formulae. Color Res. Appl. 2, 7–11 (1976).Article 

    Google Scholar 
    68.Bocak, L., Bocakova, M., Hunt, T. & Vogler, A. P. Multiple ancient origins of neoteny in Lycidae (Coleoptera): Consequences for ecology and macroevolution. Proc. R. Soc. B Biol. Sci. 275, 2015–2023 (2008).Article 

    Google Scholar 
    69.Bocak, L., Kundrata, R., Andújar-Fernández, C. & Vogler, A. P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): A new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B Biol. Sci. 283, 20152350 (2016).Article 
    CAS 

    Google Scholar 
    70.Bininda-Emonds, O. R. P. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 6, 156 (2005).Article 
    CAS 

    Google Scholar 
    71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Kück, P. & Longo, G. C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 81 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    Article 

    Google Scholar 
    75.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl. Acad. Sci. USA 91, 6491–6495 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The Mid-Aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Bocak, L., Li, Y. & Ellenberger, S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae). Cret. Res. 99, 149–155 (2019).Article 

    Google Scholar 
    80.Molino-Olmedo, F., Ferreira, V. S., Branham, M. A. & Ivie, M. A. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae). Cret. Res. 111, 104452 (2020).Article 

    Google Scholar 
    81.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Borges, R., Machado, J. P., Gomes, C., Rocha, A. P. & Antunes, A. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35, 1862–1869 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 57, 25–39 (2018).Article 

    Google Scholar 
    85.Kusy, D. et al. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae). Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa055 (2021).Article 

    Google Scholar 
    86.Endler, J. A. Frequency-dependent predation, crypsis and aposematic coloration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 505–523 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Guilford, T. The evolution of conspicuous coloration. Am. Nat. 131, S7–S21 (1988).Article 

    Google Scholar 
    88.Gamberalle-Stille, G. Benefit by contrast: An experiment with live aposematic prey. Behav. Ecol. 12, 768–772 (2001).Article 

    Google Scholar 
    89.Aronsson, M. & Gamberale-Stille, G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 24, 349–354 (2013).Article 

    Google Scholar 
    90.Prudic, K. L., Skemp, A. K. & Papaj, D. R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18, 41–46 (2007).Article 

    Google Scholar 
    91.van Hateren, J. H., Ruttiger, L., Sun, H. & Lee, B. B. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22, 9945–9960 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129, 215–222 (1993).Article 

    Google Scholar 
    93.Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. USA 98, 9181–9184 (2001).ADS 
    PubMed 
    Article 

    Google Scholar 
    94.Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Fabricant, S. A. & Herberstein, M. E. Hidden in plain orange: Aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 26, 38–44 (2015).Article 

    Google Scholar 
    96.Nielsen, M. E. & Mappes, J. Out in the open: Behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2013).Article 

    Google Scholar 
    98.Guilford, T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 34, 286–288 (1986).Article 

    Google Scholar 
    99.Lovell, P. G. et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. A Opt. Imaging Sci. Vis. 22, 2060–2071 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    100.Rojas, B., Rautiala, P. & Mappes, J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 109, 164–172 (2014).Article 

    Google Scholar 
    101.Fennell, J. G., Talas, L., Baddeley, R. J., Cuthill, I. C. & Scott-Samuel, N. E. Optimizing colour for camouflage and visibility using deep learning: The effects of the environment and the observer’s visual system. J. R. Soc. Interf. 16, 20190183. https://doi.org/10.1098/rsif.2019.0183 (2019).CAS 
    Article 

    Google Scholar 
    102.Marples, N. M., Roper, T. J. & Harper, D. G. C. Responses of wild birds to novel prey: Evidence of dietary conservatism. Oikos 83, 161–165 (1998).Article 

    Google Scholar 
    103.Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).PubMed 
    Article 

    Google Scholar 
    104.Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).Article 

    Google Scholar 
    105.Bocak, L. & Bocakova, M. Revision of the supergeneric classification of the family Lycidae (Coleoptera). Pol. Pism. Entomol. 59, 623–676 (1990).
    Google Scholar 
    106.Bocak, L. & Bocakova, M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera). Ann. Zool 58, 695–720 (2008).Article 

    Google Scholar 
    107.Kazantsev, S. V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron 17, 49–226 (2005).
    Google Scholar 
    108.Bocakova, M. Phylogeny and classification of the tribe Calopterini (Coleoptera, Lycidae). Inst. Syst. Evol. 35, 437–447 (2005).Article 

    Google Scholar 
    109.Eisner, T. et al. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as precopulatory “enticing” agent. Proc. Natl. Acad. Sci. USA 93, 6494–6498 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Bocak, L. & Bocakova, M. Revision of the genus Dexoris C. O. Waterhouse (Coleoptera, Lycidae). Acta Entomol. Bohemoslov. 85, 194–204 (1988).
    Google Scholar 
    111.Bocak, L., Grebennikov, V. V. & Masek, M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa 3721, 495–500 (2013).PubMed 
    Article 

    Google Scholar 
    112.True, J. R. Insect melanism: The molecules matter. Trend. Ecol. Evol. 18, 640–647 (2003).Article 

    Google Scholar 
    113.Shamim, G., Ranjan, S. K., Pandey, D. M. & Ramani, R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 111, 149–164 (2014).CAS 
    Article 

    Google Scholar 
    114.Sillén-Tullberg, B. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution 42, 293–305 (1988).PubMed 
    Article 

    Google Scholar 
    115.Gagliardo, A. & Guilford, T. Why do warning-coloured prey live gregariously?. Proc. R. Soc. Lond. B Biol. Sci. 251, 69–74 (1993).ADS 
    Article 

    Google Scholar 
    116.Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    117.Yachi, S. & Higashi, M. The evolution of warning signals. Nature 394, 882–884 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    118.Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change?. Nature 397, 249–251 (1999).ADS 
    Article 

    Google Scholar 
    119.Guilford, T., Nicol, C., Rotschild, M. & Moore, B. P. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. 31, 113–128 (1987).Article 

    Google Scholar 
    120.Arenas, L. M., Walter, D. & Stevens, M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 5, 11021. https://doi.org/10.1038/srep11021 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    121.Hämäläinen, L., Mappes, J., Rowland, H. M., Teichmann, M. & Thorogood, R. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 89, 1153–1164 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Landova, E., Hotova Svadova, K., Fuchs, R., Stys, P. & Exnerova, A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim. Cogn. 20, 855–866 (2017).PubMed 
    Article 

    Google Scholar 
    123.Leimar, O. & Tuomi, J. Synergistic selection and graded traits. Evol. Ecol. 12, 59–71 (1998).Article 

    Google Scholar 
    124.Gompert, Z., Willmott, K. R. & Elias, M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 281, 39–46 (2011).PubMed 
    Article 

    Google Scholar 
    125.Willmott, K. R., Willmott, J. C. R., Elias, M. & Jiggins, C. D. Maintaining mimicry diversity: Optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170744 (2017).Article 

    Google Scholar 
    126.Van Belleghem, S. M., Roman, P. A. A., Gutierrez, H. C., Counterman, B. A. & Papa, R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B Biol. Sci. 287, 20201267 (2020).Article 
    CAS 

    Google Scholar 
    127.Bocek, M. & Bocak, L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae). Zookeys 593, 15–35 (2016).Article 

    Google Scholar 
    128.Do Nascimento, E. A. & Bocakova, M. A revision of the Neotropical genus Eurrhacus (Coleoptera: Lycidae). Ann. Zool. 67, 689–697 (2017).Article 

    Google Scholar  More

  • in

    Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan

    1.Szolgay, J. et al. A regional comparative analysis of empirical and theoretical flood peak-volume relationships. J. Hydrol. Hydromech. 64, 367–381 (2016).Article 

    Google Scholar 
    2.Vogt, S. & Braun, M. Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data. Pesquisa Antártica Brasileira. 15, 105–118 (2004).
    Google Scholar 
    3.Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).CAS 
    Article 

    Google Scholar 
    4.Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).Article 

    Google Scholar 
    5.Yakimovich, K. M., Engstrom, C. B. & Quarmby, L. M. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front. Microbiol. 11, 1721 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hoham, R. W., Laursen, A. E., Clive, S. O. & Duval, B. Snow algae and other microbes in several alpine areas in New England. Proc 50th East. Snow Conf 165–173 (1993).7.Domine, F. Should we not further study the impact of microbial activity on snow and polar atmospheric chemistry?. Microorganisms 7, 260 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    8.Hoham, R. W. & Duval, B. Microbial ecology of snow and freshwater ice Snow Ecology (Cambridge University Press, 2001).
    Google Scholar 
    9.Fukushima, H. Studies on cryophytes in Japan. Yokohama Munic. Univ. 43, 1–146 (1963).
    Google Scholar 
    10.Muramoto, K., Kato, S., Shitara, T., Hara, Y. & Nozaki, H. Morphological and Genetic Variation in the Cosmopolitan Snow Alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese Mountainous Area. Cytologia (Tokyo) 73, 91–96 (2008).CAS 
    Article 

    Google Scholar 
    11.Muramoto, K., Nakada, T., Shitara, T., Hara, Y. & Nozaki, H. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. Nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur. J. Phycol. 45, 27–37 (2010).CAS 
    Article 

    Google Scholar 
    12.Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).Article 

    Google Scholar 
    13.Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 11968 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Hanzelová, M., Vido, J., Škvarenina, J., Nalevanková, P. & Perháčová, Z. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia (Bratisl.) 73, 1177–1186 (2018).Article 
    CAS 

    Google Scholar 
    17.Pollock, R. What colors the mountain snow?. Sierra Club. Bull. 55, 18–20 (1970).
    Google Scholar 
    18.Negoro, H. Seasonal occurrence of the apterous wintr stoneflis in the mountaine and the high mountaine areas of Toyama Prefecture in Japan. Bull. Toyama Sci. Mus. 32, 61–69 (2009).
    Google Scholar 
    19.Jordan, S. et al. Loss of genetic diversity and increased subdivision in an endemic alpine stonefly threatened by climate change. PLoS ONE 11, e0157386 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. https://doi.org/10.1111/jzo.12832 (2020).Article 

    Google Scholar 
    21.McInnes, S. J. & Pugh, P. J. A. Tardigrade Biogeography. in Water Bears: The Biology of Tardigrades (ed. Schill, R. O.) vol. 2 115–129 (2018).22.Degma, P., Bertolani, R. & Guidetti, R. Actual checklist of Tardigrada species (2009–2019).23.Segers, H. et al. Towards a List of Available Names in Zoology, partim Phylum Rotifera. Zootaxa 3179, 61 (2012).Article 

    Google Scholar 
    24.Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61 (2011).Article 

    Google Scholar 
    25.Zawierucha, K. et al. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquat. Ecol. https://doi.org/10.1007/s10452-019-09707-2 (2019).Article 

    Google Scholar 
    26.Horikawa, D. D. et al. Radiation tolerance in the tardigrade Milnesium tardigradum. Int. J. Radiat. Biol. 82, 843–848 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Ramløv, H. & Westh, P. Cryptobiosis in the Eutardigrade Adorybiotus coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool. Anz. 240, 517–523 (2001).Article 

    Google Scholar 
    28.Guidetti, R., Massa, E., Bertolani, R., Rebecchi, L. & Cesari, M. Increasing knowledge of Antarctic biodiversity: new endemic taxa of tardigrades (Eutardigrada; Ramazzottiidae) and their evolutionary relationships. Syst. Biodivers. https://doi.org/10.1080/14772000.2019.1649737 (2019).Article 

    Google Scholar 
    29.Nelson, D. R., Bartels, P. J. & Fegley, S. R. Environmental correlates of tardigrade community structure in mosses and lichens in the Great Smoky Mountains National Park (Tennessee and North Carolina, USA). Zool. J. Linn. Soc. 188, 913–924 (2020).
    Google Scholar 
    30.Zawierucha, K. et al. Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet. Limnology 19, 141–150 (2018).Article 

    Google Scholar 
    31.Zawierucha, K., Buda, J. & Nawrot, A. Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard). Ecol. Res. 34, 370–379 (2019).Article 

    Google Scholar 
    32.Hohberg, K. & Traunspurger, W. Predator–prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biol. Fertil. Soils 41, 419–427 (2005).Article 

    Google Scholar 
    33.Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M. & Elster, J. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers Svalbard. Biogeosci. Discuss. 12, 11751–11795 (2015).ADS 

    Google Scholar 
    34.Loreau, M., Naseem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives (Oxford University Press, 2002).
    Google Scholar 
    35.Jaroměřská, T. et al. Stable isotopic composition of top consumers in Arcticcryoconite holes: revealing divergent roles in a supraglacial trophic network. Biogeosci. 18, 1543–1557 (2021).36.Khoshima, S. & Hidaka, T. Life cycle and adult migration of wingless winter stonefly (Eocapnia nivalis). Biol. Inland Water 2, 39–43 (1981).
    Google Scholar 
    37.Bryndová, M., Stec, D., Schill, R. O., Michalczyk, Ł & Devetter, M. Tardigrade dietary preferences and diet effects on tardigrade life history traits. Zool. J. Linn. Soc. 188, 865–877 (2020).Article 

    Google Scholar 
    38.Hohberg, K. & Traunspurger, W. Foraging theory and partial consumption in a tardigrade–nematode system. Behav. Ecol. 20, 884–890 (2009).Article 

    Google Scholar 
    39.Fukuhara, H. et al. Vertical distribution of invertebrates in red snow (Akashibo) at Ozegahara mire Central Japan. SIL Proc. 1922–2010(30), 1487–1492 (2010).
    Google Scholar 
    40.Altiero, T. & Rebecchi, L. Rearing tardigrades: results and problems. Zool Anz 240, 217–221 (2001).Article 

    Google Scholar 
    41.Tanabe, Y., Shitara, T., Kashino, Y., Hara, Y. & Kudoh, S. Utilizing the Effective Xanthophyll Cycle for Blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the Snow Surface. PLoS ONE 6, e14690 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y. & Kawachi, M. Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. Nov.. PLoS ONE 14, e0210986 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).PubMed 
    Article 

    Google Scholar 
    44.Horikawa, D. D. et al. Establishment of a rearing system of the Extremotolerant Tardigrade Ramazzottius varieornatus : a new model animal for astrobiology. Astrobiology 8, 549–556 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775 (2016).Article 

    Google Scholar 
    46.Maruyama, I., Nakao, T., Shigeno, I., Ando, Y. & Hirayama, K. Application of unicellular algae Chlorella vulgaris for the mass culture of marine rotifer Brachionus. Hydrobiologia 358, 133–138 (1975).Article 

    Google Scholar 
    47.Serge, Y. M. & Edna, G. Environmental conditions and ecophysiological mechanisms which led to the 1988 chrysochromulina-polylepis bloom: an hypothesis. Oceanol. Acta 14, 397–413 (1991).
    Google Scholar 
    48.Kariya, Y. Holocene landscape evolution of a nivation hollow on Gassan volcano, northern Japan. CATENA 62, 57–76 (2005).Article 

    Google Scholar 
    49.Degma, P. Field and Laboratory Methods. In Water Bears: The Biology of Tardigrades Vol. 2 (ed. Schill, R. O.) 349–369 (Springer International Publishing, 2018).
    Google Scholar 
    50.Ito, M. Taxonomic Study on the Eutardigrada from the Northern Slope of Mt. Fuji, Central Japan, II. Family Hypsibiide. Proc. Jpn. Soc. Syst. Zool. 53, 18–39 (1995).
    Google Scholar 
    51.Abe, W. A new species of the genus Hypsibius (Tardigrada: Parachela: Hypsibiidae) from Sakhalin Island Far East Russia. Zoolog. Sci. 21, 957–962 (2004).PubMed 
    Article 

    Google Scholar 
    52.Wallace, R. L., Snell, T. W. & Smith, H. A. Phylum Rotifera. In Thorp and Covich’s Freshwater Invertebrates 4th edn (eds Thorp, J. H. & Rogers, D. C.) 225–271 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00013-9.
    Google Scholar 
    53.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Hallas, T. E. & Yeates, G. W. Tardigrada of the soil and litter of a Danish beech forest. Pedobiologia 12, 287–304 (1972).
    Google Scholar 
    55.Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15 (1965).CAS 
    Article 

    Google Scholar 
    56.Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA – Bioenerg. 975, 384–394 (1989).CAS 
    Article 

    Google Scholar 
    57.R Core Team. R: A language and environment for statistical computing. Found. Stat. Comput. Vienna Austria (2020). More

  • in

    Different environmental requirements of female and male Siberian ibex, Capra sibirica

    1.Danchin, E., Boulinier, T. & Massot, M. Conspecific reproductive success and breeding habitat selection: Implications for the study of coloniality. Ecology 79, 2415–2428 (1998).Article 

    Google Scholar 
    2.Morris, D. W. Adaptation and habitat selection in the eco-evolutionary process. Proc. R. Soc. B 278, 2401–2411 (2011).PubMed 
    Article 

    Google Scholar 
    3.Roffler, G. H., Adams, L. G. & Hebblewhite, M. Summer habitat selection by Dall’s sheep in Wrangell-St. Elias National Park and Preserve. Alaska. J. Mammal. 98, 94–105 (2017).
    Google Scholar 
    4.Ahmad, R. et al. Security, size, or sociality: What makes markhor (Capra falconeri) sexually segregate?. J. Mamml. 99, 55–63 (2018).Article 

    Google Scholar 
    5.Tadesse, S. A. & Kotler, B. P. Habitat choices of Nubian ibex (Capra nubiana) evaluated with a habitat suitability modeling and isodar analysis. Isr. J. Ecol. Evol. 56, 55–74 (2010).Article 

    Google Scholar 
    6.Alves, J. A., da Silva, A. A., Soares, A. M. V. M. & Fonseca, C. Sexual segregation in red deer: Is social behaviour more important than habitat preferences?. Anim. Behav. 85, 501–509 (2013).Article 

    Google Scholar 
    7.Bourgoin, G., Marchand, P., Hewison, A. J. K., Ruckstuhl, K. E. & Garel, M. Social behaviour as a predominant driver of sexual, age-dependent and reproductive segregation in Mediterranean mouflon. Anim. Behav. 136, 87–100 (2018).Article 

    Google Scholar 
    8.Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).ADS 
    Article 

    Google Scholar 
    9.Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).Article 

    Google Scholar 
    10.Bowyer, R. T. Sexual segregation in ruminants: Definitions, hypotheses, and implications for conservation and management. J. Mammal. 85, 1039–1052 (2004).Article 

    Google Scholar 
    11.Rucksthul, K. E. & Neuhaus, P. Sexual Segregation in Vertebrates: Ecology of the Two Sexes (Cambridge University Press, Cambridge, 2005).
    Google Scholar 
    12.Main, M. B., Weckerly, F. W. & Bleich, V. C. Sexual segregation in ungulates: New directions for research. J. Mammal. 77, 449–461 (1996).Article 

    Google Scholar 
    13.Barboza, P. S. & Bowyer, R. T. Seasonality of sexual segregation in dimorphic deer: Extending the gastrocentric model. Alces 37, 275–292 (2001).
    Google Scholar 
    14.Bleich, V. C., Bowyer, R. T. & Wehausen, J. D. Sexual segregation in mountain sheep: Resources or predation?. Wildl. Monogr. 134, 3–50 (1997).
    Google Scholar 
    15.Alonso, J. C., Salgado, I. & Palacín, C. Thermal tolerance may cause sexual segregation in sexually dimorphic species living in hot environments. Behav. Ecol. 27, 717–724 (2016).Article 

    Google Scholar 
    16.van Beest, F. M., Van Moorter, B. & Milner, J. M. Temperature-mediated habitat use and selection by a heat-sensitive northern ungulate. Anim. Behav. 84, 723–735 (2012).Article 

    Google Scholar 
    17.Shrestha, A. K. Larger antelopes are sensitive to heat stress throughout all seasons but smaller antelopes only during summer in an African semi-arid environment. Int. J. Biometeorol. 58, 41–49 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Fedosenko, A. K. & Blank, D. A. Capra sibirica. Mammal. Spec. 675, 1–13 (2001).Article 

    Google Scholar 
    19.Li, Y., Yu, Y. Q. & Shi, L. Foraging and bedding site selection by Asiatic ibex (Capra sibirica) during summer in central Tianshan Mountains. Pakistan J. Zool. 47, 1–6 (2015).CAS 

    Google Scholar 
    20.Khan, G. et al. Himalayan ibex (Capra ibex ibex) habitat suitability and range resource dynamics in the Central Karakorum National Park, Pakistan. J. King Saud Univ. Sci. 28, 245–254 (2016).Article 

    Google Scholar 
    21.Bragin, N., Amgalanbaatar, S., Wingard, G. & Reading, R. P. Creating a model of habitat suitability using vegetation and ruggedness for Ovis ammon and Capra sibirica (Artiodactyla: Bovidae) in Mongolia. J. Asia Pac. Biodiver. 10, 390–395 (2017).Article 

    Google Scholar 
    22.Bon, R., Rideau, C., Villaret, J. & Joachim, J. Segregation is not only a matter of sex in Alpine ibex. Capra ibex ibex. Anim. Behav. 62, 495–504 (2001).Article 

    Google Scholar 
    23.Han, L., Blank, D., Wang, M. Y. & Yang, W. K. Vigilance behaviour in Siberian ibex (Capra sibirica): Effect of group size, group type, sex and age. Behav. Process. 170, 104021 (2020).Article 

    Google Scholar 
    24.Han, L. et al. Diet differences between males and females in sexually dimorphic ungulates: A case study on Siberian ibex. Eur. J. Wildl. Res. 66, 55 (2020).ADS 
    Article 

    Google Scholar 
    25.Hay, C. T., Cross, P. C. & Funston, P. J. Trade-offs of predation and foraging explain sexual segregation in African buffalo. J. Anim. Ecol. 77, 850–858 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Hebblewhite, M., Merrel, E. & Mcdermid, G. A multi-scale test of the forage maturation hypothesis in a partially migratory ungulate population. Ecol Monogr 78, 141–166 (2008).Article 

    Google Scholar 
    27.Mysterud, A. et al. Partial migration in expanding red deer populations at northern latitudes-a role for density dependence?. Oikos 120, 1817–1825 (2011).Article 

    Google Scholar 
    28.Grignolio, S., Rossi, I., Bassano, B. & Apollonio, M. Predation risk as a factor affecting sexual segregation in Alpine ibex. J. Mammal. 88, 1488–1497 (2007).Article 

    Google Scholar 
    29.Gross, J. E., Alkon, P. U. & Demment, M. W. Grouping patterns and spatial segregation by Nubian ibex. J. Arid Environ. 30, 423–439 (1995).ADS 
    Article 

    Google Scholar 
    30.Ferretti, F. et al. Males are faster forager than females: Intersexual differences of foraging behaviour in the Apennone chamois. Behav. Ecol. Sociobiol. 68, 1335–1344 (2014).Article 

    Google Scholar 
    31.Blank, D. A. Vigilance, staring and escape running in antipredator behavior of goitered gazelle. Behav. Process. 157, 408–416 (2018).CAS 
    Article 

    Google Scholar 
    32.Mitchell, C. D., Chaney, R., Aho, K., Kie, J. G. & Bowyer, R. T. Population density of Dall’s sheep in Alaska: Effects of predator harvest?. Mamm. Res. 60, 21–28 (2015).Article 

    Google Scholar 
    33.Schaller, G. B. Mountain Monarchs (University of Chicago Press, Chicago, 1977).
    Google Scholar 
    34.Corti, P. & Shackleton, D. M. Relationship between predation risk factors and sexual segregation in Dall’s sheep (Ovis dalli dalli). Can. J. Zool. 80, 2108–2117 (2002).Article 

    Google Scholar 
    35.Bowyer, R. T. & Kie, J. G. Effects of foraging activity on sexual segregation in mule deer. J. Mammal. 85, 498–504 (2004).Article 

    Google Scholar 
    36.Bliss, L. M. & Weckerly, F. W. Habitat use by male and female Roosevelt elk in northwestern California. Calif. Fish Game 102, 8–16 (2016).
    Google Scholar 
    37.Hetem, R. S. et al. Body temperature, thermoregulatory behaviour and pelt characteristics of three colour morphs of springbok Antidorcas marsupialis. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 152, 379–388 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Maloney, S., Fuller, A. & Mitchell, D. Climate change: Is the dark Soay sheep endangered?. Biol. Lett. 5, 826 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Walsberg, G. E., Campbell, G. S. & King, J. R. Animal coat color and radiative heat gain: A re-evaluation. J. Comp. Physiol. B 126, 211–222 (1978).Article 

    Google Scholar 
    40.Dodson, R. & Marks, D. Daily air temperature interpolated at high spatial resolution over a large mountainous region. Clim. Res. 8, 1–20 (1997).Article 

    Google Scholar 
    41.Aublet, J., Festa-Bianchet, M., Bergero, D. & Bassano, B. Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159, 237–247 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    42.Marchand, P. et al. Sex-specifc adjustments in habitat selection contribute to buffer mouflon against summer conditions. Behav. Ecol. 26, 472–482 (2014).Article 

    Google Scholar 
    43.Mooring, M. S., Blumstein, D. T., Reisig, D. D., Osborne, E. R. & Niemeyer, J. M. Insect- repelling behaviour in bovids: Role of mass, tail length, and group size. Biol. J. Linn. Soc. 91, 383–392 (2007).Article 

    Google Scholar 
    44.Blank, D. A. Insect-repelling behavior in goitered gazelles: Responses to biting fly attack. Eur. J. Wildl. Res. 66, 43 (2020).Article 

    Google Scholar 
    45.Torr, S. J., Prior, A., Wilson, P. J. & Schofield, S. Is there safety in numbers? The effect of cattle herding on biting risk from tsetse flies. Med. Vet. Entomol. 21, 301–311 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Anderson, J. R., Nilssen, A. C. & Folstad, I. Mating behavior and thermoregulation of the reindeer warble fly, Hypoderma tarandi L. (Diptera: Oestridae). J. Insect. Behav. 7, 679–706 (1994).Article 

    Google Scholar 
    47.Gordon, M. Animal Physiology: Principles and Adaptations (MacMillan, New York, 1977).
    Google Scholar 
    48.Short, H. L. Nutrition and metabolism. In Mule and Black-Tailed Deer of North America Vol. 605 (ed. Wallmo, O. C.) (University of Nebraska Press, Lincoln, 1981).
    Google Scholar 
    49.Zhu, X. S. Food habits and sexual segregation of the Asiatic Ibex, Capra sibirica. Dissertation, University of Chinese Academy of Sciences (2016).50.Wang, M. Y., Alves, J., da Silva, A. A., Yang, W. K. & Ruckstuhl, K. E. The effect of male age on patterns of sexual segregation in Siberian ibex. Sci. Rep. UK 8, 13095 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    51.Abrahms, B. et al. Does wildlife resource selection accurately inform corridor conservation?. J. Appl. Ecol. 54, 412–422 (2017).Article 

    Google Scholar 
    52.Smeraldo, S. et al. Species distribution models as a tool to predict range expansion after reintroduction: A case study on Eurasian beavers (Castor fiber). J. Nat. Conser. 37, 12–20 (2017).Article 

    Google Scholar 
    53.Phillips, S. J. & Dudik, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).Article 

    Google Scholar 
    54.Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).Article 

    Google Scholar 
    55.Li, M. L. et al. Assessment of habitat suitability of Ovis ammon polii based on MaxEnt modeling in Taxkorgan Wildlife Nature Reserve. Chin. J. Ecol. 38, 594–603 (2019).
    Google Scholar 
    56.ESRI. ArcGIS Desktop. Ver. 10.3. Environmental Systems (Research Institute Inc, Redlands, 2013).
    Google Scholar 
    57.Sappington, J. M., Longshore, K. M. & Thomson, D. B. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert. J. Wildl. Manage. 71, 1419–1426 (2007).Article 

    Google Scholar 
    58.Woodward, M. Epidemiology: Study Design and Data Analysis (Chapman and Hall, London, 1999).
    Google Scholar 
    59.Swets, K. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    60.Jiménez-Valverde, A. & Lobo, J. M. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 31, 361–369 (2007).ADS 
    Article 

    Google Scholar 
    61.Llausàs, A. & Nogué, J. Indicators of landscape fragmentation: The case for combining ecological indices and the perceptive approach. Ecol. Indic. 15, 85–91 (2012).Article 

    Google Scholar  More

  • in

    Author Correction: The population sizes and global extinction risk of reef-building coral species at biogeographic scales

    AffiliationsARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, AustraliaAndreas Dietzel, Michael Bode, Sean R. Connolly & Terry P. HughesSchool of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, AustraliaMichael BodeCollege of Science and Engineering, James Cook University, Townsville, Queensland, AustraliaSean R. ConnollySmithsonian Tropical Research Institute, Balboa, Republic of PanamaSean R. ConnollyAuthorsAndreas DietzelMichael BodeSean R. ConnollyTerry P. HughesCorresponding authorCorrespondence to
    Andreas Dietzel. More

  • in

    Brucellosis in wildlife in Africa: a systematic review and meta-analysis

    1.Bengis, R. G. A revue of bovine Brucellosis in free-ranging African wildlife. in Proceedings of the ARC-Onderstepoort, OIE International Congress with WHO-Cosponsorship on anthrax, brucellosis, CBPP, clostridial and mycobacterial diseases : Berg-en-Dal, Kruger National Park, South Africa 178–183 (Onderstepoort Veterinary Inst, 1998).2.Kaliner, G., Staak, C., Kalinerj, G. & Staaklu, C. A case of orchitis caused by Brucella abortus in the African buffalo. J. Wildl. Dis. 9, 251–253 (1973).Article 

    Google Scholar 
    3.Schiemann, B. & Staak, C. Brucella melitensis in impala (Aepyceros melampus). Vet. Rec. 88, 344–344 (1971).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Ndengu, M. et al. Seroprevalence of brucellosis in cattle and selected wildlife species at selected livestock/wildlife interface areas of the Gonarezhou National Park Zimbabwe. Prev. Vet. Med. 146, 158–165 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Rollinson, D. H. L. Brucella agglutinins in East African game animals. Vet. Rec. 74, 904 (1962).
    Google Scholar 
    6.De Vos, V. & Van Niekerk, C. A. W. Brucellosis in the Kruger National Park. J. S. Afr. Vet. Assoc. 40, 331–334 (1969).
    Google Scholar 
    7.Sachs, R. & Staak, C. Evidence of brucellosis in antelope in the Serengeti. Vet. Record 79, 857–856 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.El-Tras, W. F., Tayel, A. A., Eltholth, M. M. & Guitian, J. Brucella infection in fresh water fish : Evidence for natural infection of Nile catfish, Clarias gariepinus, with Brucella melitensis. Vet. Microbiol. 141, 321–325 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Lane, E. P. et al. A systematic health assessment of Indian ocean bottlenose (Tursiops aduncus) and indo-pacific humpback (Sousa plumbea) dolphins incidentally caught in shark nets off the KwaZulu-Natal coast South Africa. PLoS ONE 9, e107038 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Salem, A. A., Hamed, O. M. & Abd-Elkarim, A. M. Studies on some Brucella carriers in Egypt. Assiut Vet Med J 1, 181–187 (1974).
    Google Scholar 
    11.Condy, J. B. The status of disease in Rhodesian wildlife. Rhod. Sci. News 2, 96–99 (1968).
    Google Scholar 
    12.Condy, J. B. & Vickers, D. B. The isolation of Brucella abortus from a waterbuck (Kobus ellipsiprymnus). Vet. Rec. 85, 200 (1969).Article 

    Google Scholar 
    13.Bell, L. M., Hayles, L. B. & Chanda, A. B. Evidence of reservoir hosts of Brucella melitensis. Med. J. Zambia 10, 152–153 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Gradwell, D. V., Schutte, A. P., van Niekerk, C. A. & Roux, D. J. The isolation of Brucella abortus biotype I from African buffalo in the Kruger National Park. J. S. Afr. Vet. Assoc. 48, 41–43 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Karesh, W. B. et al. Health evaluation of five sympatric duiker species (Cephalophus spp.). J. Zool. Wildl. Med. 26, 485–502 (1995).
    Google Scholar 
    16.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    17.Bengis, R. G. & Erasmus, J. M. Wildlife diseases in South Africa: A review. Rev. Sci. Tech. Off. Int. des Epizoot. 7, 807–821 (1988).Article 

    Google Scholar 
    18.Durrheim, D. N. et al. Safety of travel in South Africa: The Kruger National Park. J. Travel Med. 8, 176–191 (2006).Article 

    Google Scholar 
    19.Eisenberg, T. et al. Isolation of potentially novel Brucella spp. from frogs. Appl. Environ. Microbiol. 78, 3753–3755 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Hoogstral, H., Kaiser, M. N., Traylor, M. A., Guindy, E. & Gaber, S. Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa 1959–61. Bull. World Health Organ. 28, 235–262 (1963).
    Google Scholar 
    21.Michel, A. L. A. L. & Bengis, R. G. R. G. The African buffalo: A villain for inter-species spread of infectious diseases in southern Africa. Onderstepoort. J. Vet. Res. 79, 5 (2012).Article 

    Google Scholar 
    22.Monroe, B. P. et al. Collection and utilization of animal carcasses associated with zoonotic disease in Tshuapa district, the democratic republic of the Congo, 2012. J. Wildl. Dis. 51, 734–738 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Wolhuter, J., Bengis, R. G., Reilly, B. K. & Cross, P. C. Clinical demodicosis in African buffalo (Syncerus caffer) in the Kruger National Park. J. Wildl. Dis. 45, 2 (2009).Article 

    Google Scholar 
    24.Worthington, R. W. & Bigalke, R. D. A review of the infectious diseases of African wild ruminants. Onderstepoort. J. Vet. Res. 68, 291–323 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Mühldorfer, K. et al. The role of ‘atypical’ Brucella in amphibians: are we facing novel emerging pathogens?. J. Appl. Microbiol. 122, 40–53 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Ducrotoy, M. et al. Brucellosis in Sub-Saharan Africa: Current challenges for management, diagnosis and control. Acta Trop. 165, 179–193 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Munagandu, et al. Disease constraints for utilization of the African buffalo (Syncerus caffer) on game ranches in Zambia. Jpn. J. Vet. Res. 54, 3–13 (2006).
    Google Scholar 
    28.Munyua, P. et al. Prioritization of zoonotic diseases in Kenya, 2015. PLoS ONE 11, e0161576 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Conrad, P. A., Meek, L. A. & Dumit, J. Operationalizing a One Health approach to global health challenges. Comp. Immunol. Microbiol. Infect. Dis. 36, 211–216 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Bekker, J. L., Hoffman, L. C. & Jooste, P. J. Wildlife-associated zoonotic diseases in some southern African countries in relation to game meat safety: A review. Onderstepoort. J. Vet. Res. 79, 12 (2012).Article 

    Google Scholar 
    31.Muma, J. B. et al. The contribution of veterinary medicine to public health and poverty reduction in developing countries. Vet. Ital. 50, 117–129 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    32.Mugizi, D. R. et al. Isolation and Molecular Characterization of Brucella Isolates in Cattle Milk in Uganda. 2015, (2015).33.Mathew, C. et al. First isolation, identification, phenotypic and genotypic characterization of Brucella abortus biovar 3 from dairy cattle in Tanzania. BMC Vet. Res. 11, 2 (2015).Article 

    Google Scholar 
    34.Meyer, M. E. & Morgan, W. J. B. Designation of neotype strains and of biotype reference strains for species of the genus Brucella Meyer and Shaw. Int. J. Syst. Bacteriol. 23, 135–141 (1973).Article 

    Google Scholar 
    35.National Academies of Sciences, Engineering, and M. Revisiting brucellosis in the greater yellowstone area. Revisiting Brucellosis in the Greater Yellowstone Area (National Academies Press, 2017). doi:https://doi.org/10.17226/2475036.Muma, J. B. et al. Brucella seroprevalence of the Kafue lechwe (Kobus leche kafuensis) and Black lechwe (Kobus leche smithemani): Exposure associated to contact with cattle. Prev. Vet. Med. 100, 256–260 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Gorsich, E. E., Ezenwa, V. O., Cross, P. C., Bengis, R. G. & Jolles, A. E. Context-dependent survival, fecundity and predicted population-level consequences of brucellosis in African buffalo. J. Anim. Ecol. 84, 999–1009 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hoogstraal, H., Kaiser, M. N., Traylor, M. A., Gaber, S. & Guindy, E. Ticks (Ixodoidea) on birds migrating from Africa to Europe and Asia. Bull. World Health Organ. 24, 197–212 (1961).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Alexander, K. A. et al. Buffalo, bush meat, and the zoonotic threat of brucellosis in Botswana. PLoS ONE 7, e32842 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Munn, Z., Moola, S., Riitano, D. & Lisy, K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. Int. J. Heal. Policy Manag. 3, 123–128 (2014).Article 

    Google Scholar 
    41.Madsen, M. et al. Serologic survey of Zimbabwean wildlife for brucellosis. J. Zoo. Wildl. Med. 26, 240–245 (1995).
    Google Scholar 
    42.Roberts, M. G. & Heesterbeek, J. A. P. Quantifying the dilution effect for models in ecological epidemiology. J. R. Soc. Interface 15, 2 (2018).Article 

    Google Scholar 
    43.Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Souley Kouato, B. et al. Spatio-temporal patterns of foot-and-mouth disease transmission in cattle between 2007 and 2015 and quantitative assessment of the economic impact of the disease in Niger. Transbound Emerg. Dis. 65, 1049–1066 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Godfroid, J., Nielsen, K. & Saegerman, C. Diagnosis of brucellosis in livestock and wildlife. Croat Med. J. 51, 296–305 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Hartling, L. et al. Grey literature in systematic reviews : a cross-sectional study of the contribution of non-English reports, unpublished studies and dissertations to the results of meta- analyses in child-relevant reviews. 1–11 (2017). doi:https://doi.org/10.1186/s12874-017-0347-z47.Condy, J. B. & Vickers, D. B. Brucellosis in Rhodesian wildlife. J. S. Afr. Vet. Assoc. 43, 175–179 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Erume, J. et al. Serological and molecular investigation for brucellosis in swine in selected districts of Uganda. Trop. Anim. Health Prod. 48, 1147–1155 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Godfroid, J., Beckmen, K. & Helena Nymo, I. Removal of lipid from serum increases coherence between brucellosis rapid agglutination test and enzyme-linked immunosorbent assay in bears in Alaska, USA. J. Wildl. Dis. 52, 912–915 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Matope, G., Bhebhe, E., Muma, J. B. B., Lund, A. & Skjerve, E. Herd-level factors for Brucella seropositivity in cattle reared in smallholder dairy farms of Zimbabwe. Prev. Vet. Med. 94, 213–221 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Mwebe, R., Nakavuma, J. & Moriyón, I. Brucellosis seroprevalence in livestock in Uganda from 1998 to 2008: a retrospective study. Trop. Anim. Health Prod. 43, 603–608 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Aune, K., Rhyan, J. C., Russell, R., Roffe, T. J. & Corso, B. Environmental persistence of Brucella abortus in the Greater Yellowstone Area. J. Wildl. Manag. 76, 253–261 (2012).Article 

    Google Scholar 
    53.Enström, S. et al. Brucella seroprevalence in cattle near a wildlife reserve in Kenya. BMC Res. Notes 10, 2 (2017).Article 

    Google Scholar 
    54.Godfroid, J. Brucellosis in wildlife. Rev. Sci. Tech. 21, 277–286 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Martin, C., Pastoret, P. P., Brochier, B., Humblet, M. F. & Saegerman, C. A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet. Res. 42, 70 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Godfroid, J. et al. A ‘One Health’ surveillance and control of brucellosis in developing countries: Moving away from improvisation. Comp. Immunol. Microbiol. Infect. Dis. 36, 241–248 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kamath, P. L. et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat. Commun. 7, 11448 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Michel, A. L. et al. Wildlife tuberculosis in South African conservation areas: Implications and challenges. Vet. Microbiol. 112, 91–100 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Pandey, G. S. et al. Serosurvey of brucella spp. infection in the Kafue Lechwe (Kobus leche kafuensis) of the Kafue flats in Zambia. Indian Vet. J. 76, 275–278 (1999).
    Google Scholar 
    60.Olsen, S. & Tatum, F. Swine brucellosis: Current perspectives. Vet. Med. Res. Rep. 8, 1–12 (2016).
    Google Scholar 
    61.Menshawy, A. M. S. et al. Assessment of Genetic Diversity of Zoonotic Brucella spp. Recovered from Livestock in Egypt Using Multiple Locus VNTR Analysis. (2014). doi:https://doi.org/10.1155/2014/35387662.Ibrahim, S. Studies on swine brucellosis in Egypt. J. Egypt Vet. Med. Assoc. 56, 1–12 (1996).
    Google Scholar 
    63.Ledwaba, B., Mafofo, J. & Van Heerden, H. Genome sequences of Brucella abortus and Brucella suis strains isolated from Bovine in Zimbabwe. Genome Announc. 2, 1063–1077 (2014).Article 

    Google Scholar 
    64.Fretin, D. et al. Unexpected Brucella suis biovar 2 infection in a dairy cow, Belgium. Emerging Infectious Diseases 19, 2053–2054 (Centers for Disease Control and Prevention, 2013).65.Maurin, M. Brucellosis at the dawn of the 21st century. Médecine Mal. Infect. 35, 6–16 (2005).CAS 
    Article 

    Google Scholar 
    66.Whatmore, A. M. et al. Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int. J. Syst. Evol. Microbiol. 64, 4120–4128 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Godfroid, J., Garin-Bastuji, B., Saegerman, C. & Blasco, J. M. Brucellosis in terrestrial wildlife. Rev. Sci. Tech. Off. Int. Epiz. 32, 27–42 (2013).CAS 
    Article 

    Google Scholar 
    68.Barendregt, J. J., Doi, S. A., Lee, Y. Y., Norman, R. E. & Vos, T. Meta-analysis of prevalence. J. Epidemiol. Community Health 67, 974–978 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.EpiGear. EpiGear International. Available at: http://www.epigear.com/. (Accessed: 8th February 2018)70.Doi, S. A. R. R., Barendregt, J. J., Khan, S., Thalib, L. & Williams, G. M. Advances in the meta-analysis of heterogeneous clinical trials I: The inverse variance heterogeneity model. Contemp. Clin. Trials 45, 130–138 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Higgins, J. P. T., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. BMJ 327, 557–560 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Heisch, R. B., Cooke, E. R., Harvey, A. E. & De Souz, F. The isolation of Brucella suis from rodents in Kenya. East Afr. Med. J. 40, 132–133 (1963).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Motsi, T. R., Tichiwangana, S. C., Matope, G., Mukarati, N. L. & Studies, V. A serological survey of brucellosis in wild ungulate species from five game parks in Zimbabwe. Onderstepoort. J. Vet. Res. 80, 586 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Roth, H. H. A survey of brucellosis in game animals in Rhodesia. Bull. Epizoot. Dis. Afr. Bull. des Epizoot en Afrique 15, 133–142 (1967).CAS 

    Google Scholar 
    75.Condy, J. B. & Vickers, D. B. Brucellosis in buffalo in Wankie National Park. Rhod. Vet. J. 8, 58–60 (1976).
    Google Scholar 
    76.Caron, A. et al. Relationship between burden of infection in ungulate populations and wildlife/livestock interfaces. Epidemiol. Infect. 141, 1522–1535 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Gomo, C. et al. Detection of Brucella abortus in Chiredzi district in Zimbabwe. Onderstepoort. J. Vet. Res. 79, 1–5 (2012).Article 

    Google Scholar 
    78.Chaparro, F., Lawrence, J. V., Bengis, R. & Myburgh, J. G. A serological survey for brucellosis in buffalo (Syncerus caffer) in the Kruger National Park. J. S. Afr. Vet. Assoc. 61, 110–111 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    79.Fischer-Tenhagen, C., Hamblin, C., Quandt, S., Frö;lich, K. & Frö Lich, K. Serosurvey for selected infectious disease agents in free-ranging black and white rhinoceros in Africa. Journal of Wildlife Diseases 36, 316–323 (2000).80.Caron, A. et al. African buffalo movement and zoonotic disease risk across transfrontier conservation areas Southern Africa. Emerg. Infect. Dis. 22, 277–280 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Herr, S. & Marshall, C. Brucellosis in free-living African buffalo (Syncerus caffer): A serological survey. Onderstepoort. J. Vet. Res. 48, 133–134 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    82.De Vos, V., Van Niekerk, G. A. W. J. & McConell, E. E. A survey of selected bacteriological infections of the Chacma Baboon Papio Ursinus from the Kruger National Park. Koedoe 16, 1–10 (1973).
    Google Scholar 
    83.Hamblin, C., Anderson, C. E., Jago, M., Mlengeya, T. & Hirji, K. Antibodies to some pathogenic agents in free-living wild species in Tanzania. Epidemiol. Infect. 105, 585–594 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Assenga, J. A., Matemba, L. E., Muller, S. K., Malakalinga, J. J. & Kazwala, R. R. Epidemiology of Brucella infection in the human, livestock and wildlife interface in the Katavi-Rukwa ecosystem, Tanzania. BMC Vet. Res. 11, 8 (2015).Article 

    Google Scholar 
    85.Sachs, R., Staak, C. & Groocock, C. M. Serological investigation of brucellosis in game animals in Tanzania. Bull. Epizoo. Dis. Afr. 16, 93–100 (1968).CAS 

    Google Scholar 
    86.Fyumagwa, R. D., Wambura, P. N., Mellau, L. S. B. & Hoare, R. Seroprevalence of Brucella abortus in buffaloes and wildebeests in the Serengeti ecosystem: A threat to humans and domestic ruminants. Tanzania Vet. J. 26, 2 (2010).
    Google Scholar 
    87.Matope, G. et al. Evaluation of sensitivity and specificity of RBT, c-ELISA and fluorescence polarisation assay for diagnosis of brucellosis in cattle using latent class analysis. Vet. Immunol. Immunopathol. 141, 58–63 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Muma, J. B. et al. Serosurvey of Brucella Spp Infection in the Kafue Lechwe (Kobus Leche Kafuensis) of the Kafue Flats in Zambia. J. Wildl. Dis. 46, 1063–1069 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Waghela, S. Animal brucellosis in Kenya: A review. Bull. Anim. Heal. Prod. Afr. 24, 53–59 (1976).CAS 

    Google Scholar 
    90.Waghela, S., Karstad, L., Waghela, A. S. & Karstad, L. Antibodies to Brucella Spp among blue wildebeest and African Buffalo in Kenya. J. Wildl. Dis. 22, 189–192 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Magwedere, K. et al. Brucellae through the food chain: the role of sheep, goats and springbok (Antidorcus marsupialis) as sources of human infections in Namibia. J. South Afr. Vet. Assoc. Van Die Suid-Afrikaanse Veterinere Ver 82, 205–212 (2011).CAS 

    Google Scholar 
    92.Karesh, W. B. et al. Health evaluation of black-faced impala (Aepyceros melampus petersi) using blood chemistry and serology. J. Zoo. Wildl. Med. 28, 361–367 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    93.Cooper, A. C. D. & Carmichael, I. H. The incidence of brucellosis in game in Botswana. Bull. Epizoot. Dis. Afr. 22, 119–124 (1974).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Thimm, B. Brucellosis in Uganda.pdf. Bull Epizoot Dis Africa 20, 43–56 (1972).95.Tanner, M. et al. Bovine tuberculosis and brucellosis in cattle and african buffalo in the limpopo national park mozambique. Transbound Emerg. Dis. 62, 632–638 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Gomo, C., de Garine-Wichatitsky, M., Caron, A. & Pfukenyi, D. M. Survey of brucellosis at the wildlife-livestock interface on the Zimbabwean side of the Great Limpopo Transfrontier Conservation Area. Trop. Anim. Health Prod. 44, 77–85 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    97.Herr, S. & Marshall, C. Brucellosis in Free-Living African Buffalo (Syncerus-Caffer)—a Serological Survey. Onderstepoort. J. Vet. Res. 48, 133–134 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Integrative analysis of the microbiome and metabolome in understanding the causes of sugarcane bitterness

    Soil microbial diversity and community structureIn total, 1,334,381 reads were obtained for the bacterial 16S rRNA genes by high-throughput sequencing. After screening these gene sequences with strict criteria (described in “Materials and methods”), 1,061,916 valid sequences were obtained, accounting for 79.6% of the raw reads. Figure 1A shows that the observed richness, Chao1, and Shannon index in the SS (sweet sugarcane) group supported significantly higher richness (P  More

  • in

    Vaccinate in biodiversity hotspots to protect people and wildlife from each other

    Rural areas of low-to-middle-income countries host most biodiversity hotspots, where interactions between people and wildlife are frequent. These regions have less access to vaccines than do urban centres (Local Burden of Disease Vaccine Coverage Collaborators Nature 589, 415–419; 2021).Given the broad potential range of hosts for SARS-CoV-2, we suggest that vaccinating often-neglected populations around protected areas will reduce the risk of people infecting wildlife and creating secondary reservoirs of disease, and thence risking potential reinfection of humans with new variants. This should be considered after vaccination of priority groups, such as older people and health workers.Vaccinating people who live near felids, non-human primates, bats and other animals protects wildlife and limits ‘reverse spillovers’. Such events have been documented for various human respiratory viruses, for instance in wild great apes in west Africa (S. Köndgen et al. Curr. Biol. 18, 260–264; 2008).Non-standard actors, such as national park authorities or conservation organizations, could help vaccination to reach remote regions. This is called a One Health approach: it protects the health of people, animals and the environment. More

  • in

    Contaminant organisms recorded on plant product imports to South Africa 1994–2019

    Sample collection and handlingSource of samples to be screenedSouth Africa currently has 72 official points of entry—8 seaports, 10 airports and 54 land border posts10. The DALRRD has border inspectors at most of these points (although staffing levels have varied considerably). DALRRD border inspectors inspect goods and travellers entering the country for plant contaminants. As part of DALRRD’s biosecurity protocol, three types of samples are collected and sent to DALRRD laboratories in Stellenbosch or Pretoria for further investigation (Fig. 1).

    1.

    Intervention samples. If the border inspector finds or suspects a pest or pathogen in a consignment, he/she will take a sample and send it to one of DALRRD’s diagnostic laboratories. A suspicion of contamination is often the result of quarantine organisms being detected on previous consignments of the same commodity. The imported consignment is detained at the border until laboratory results are completed. Due to the time-sensitivity of such imports, the samples are usually only inspected or tested for the taxa of concern.

    2.

    Audit samples. As above, these samples are drawn from consignments of plant products for immediate use. However, they are drawn on an ad hoc (haphazard) basis from consignments that show no signs of contamination during border inspections. In the laboratory, these samples are often inspected or tested for multiple taxa.

    3.

    Post-entry quarantine (PEQ) samples. Plant products for propagation purposes or nursery material (e.g. in vitro plantlets, seedlings, budwood) are shipped in sealed packages and transported directly to DALRRD’s agricultural quarantine facilities. For small consignments (under 50 units), all units in the consignment are tested and inspected by laboratory officials. For larger consignments, random samples are drawn and inspected following a hypergeometric sampling protocol11. Inspection for arthropods and initial examination for micro-organisms takes place in a biosecurity containment facility (see Saccaggi & Pieterse12 for further details). The material is then grown in a dedicated quarantine facility and further testing for pathogens takes place when the plants are in active growth.

    Fig. 1Summary of border and laboratory processes associated with each of the three import sample sources included in this dataset, namely post-entry quarantine (PEQ), intervention and audit samples. Solid lines indicate that these processes are always followed, while dashed lines indicate that the process is sometimes followed. PEQ samples are received from plant propagation or nursery material that needs to be quarantined upon arrival. Intervention samples are received from consignments in which the border inspector finds or suspects a pest or pathogen. Audit samples are ad hoc samples drawn from consignments that show no sign of contamination. These sample sources are explained in more detail in the text.Full size imageTaxa inspection, testing and identification methodsAll inspections, testing and identifications are carried out by DALRRD laboratory officials specialised in each taxonomic group. Taxonomic identifications are routinely done by DALRRD officials, taxonomists at the Biosystematics Division of the South African Agricultural Research Council (ARC) or higher education institutions, depending on the expertise available at the time. All recorded identifications in the dataset were retained, regardless of level of identification or biosecurity status of the organism. It should, however, be noted that all organisms found were not always recorded (see below for further explanation).Arthropods (mostly insects and mites) and Molluscs are detected via visual inspection using a stereo-microscope. For these taxa, all organisms detected are recorded. Organisms are most commonly identified morphologically, with molecular identification being performed for certain groups. Identification is performed to the point at which a reasonable phytosanitary decision can be made (i.e. sometimes taxonomic precision is sacrificed for time and/or resource efficiency and logistic reasons). Thus specimens from predatory or saprophytic groups are often only identified to family or genus, while specimens within plant-feeding groups are identified to species where possible.Nematodes are detected by extraction from samples using relevant extraction methods. Saprophytic and predatory nematodes are sometimes noted, but often ignored as they are not considered to be of phytosanitary concern. Plant-feeding nematodes are identified morphologically to species where possible.Fungi and Bacteria are detected visually in the growing plant, as well as by conventional isolation and plating techniques, followed by biochemical tests and/or morphological identification. Some targeted pathogens are detected and identified by molecular techniques such as PCR and DNA sequencing. Saprophytic or secondary fungi or bacteria are sometimes noted, but often not recorded as part of the sample record.Viruses are screened for by immunological techniques, notably ELISA and hardwood and herbaceous indexing. ELISA techniques detect a target virus of concern and give no information as to the presence or absence of other viruses in the sample. Hardwood and herbaceous indexing are used to determine if any graft- or mechanically-transmissible viruses are present in the sample, although these methods cannot be used to determine the viruses’ identity.Phytoplasma screening is done by nested PCR designed to detect any phytoplasma. On specific crops, phytoplasma groups are detected by using targeted PCR methods. If necessary, sequencing of PCR products is used for more specific identification.Data collection and handlingMetadata for samples were recorded by the border inspector before submission to DALRRD’s laboratories. Ideally, he/she recorded geographic origin of the commodity, crop and sample type, date of collection, details of importer and exporter, organisms to test for and any additional observations. However, in practice, this information was not always recorded in full. See Tables 1, 2 and 3 for more details on information included in the dataset. Due to the sensitivity of this kind of trade data, some of the data in the current dataset are grouped or anonymised to protect confidentiality. In particular, import date is only listed as month and year and the names of importers and exporters are removed.Table 1 A summary of information fields and descriptions for each imported sample recorded in the South African plant import dataset used in the datasheet “List of contaminants on SA plant imports 1994–2019.csv”23.Full size tableTable 2 Information fields and descriptions for taxa information associated with contaminant organisms detected on import samples received by South Africa used in the datasheet “Metadata of contaminants on SA plant imports 1994–2019.csv”23.Full size tableTable 3 List of import commodity types used in the datasheet “List of contamiants on SA plant imports 1994–2019.csv”23. The original categories listed by the inspectors were expanded to 30 commodity types based on additional laboratory information and expert experience.Full size tableElectronic databases of samples received by the DALRRD laboratories were maintained by the laboratory staff. These databases were not official departmental databases and therefore did not need to include information relevant to other sections involved in biosecurity. For instance, total number of imports, total size of each consignment, observations of the inspector, details of phytosanitary certificates and release or detention of the consignment were never recorded. The databases also included samples processed by the laboratory for export or for national pest surveys. Partly due to their unofficial status, the databases were transient, with new databases started once software became outdated, the old one became too big or when new categories or information were to be included. For this study, we collated, curated and cross-checked information from nine of these databases, spanning 26 years from 1994 to 2019.Recorded laboratory data varied between taxa and over time and as priorities and understanding of biosecurity changed. In the initial years considered here (ca. 1994–2000), the focus was on pests or pathogens of quarantine importance, i.e. those on the prohibited list. Other organisms found on samples were not consistently recorded and, when they were, they were often recorded in broad groupings (e.g. “saprophytic nematodes”). More recently, there has been a shift towards recording all organisms detected, but this has still not been done consistently [although from ~2005 onwards the officials responsible for arthropods and molluscs have tried to record everything found (DS, MA personal observations)]. Thus prohibited (i.e. quarantine organisms) were always recorded, but the recording of other contaminants was inconsistent.Data clean-up started with collation of all data from the nine databases. Initially, these contained 99,023 records, with 50,655 recorded as imports, 31,163 as exports, 11,004 as surveys with the remaining 6,201 falling into other categories or uncategorised. Only imports were retained, as this was the only category of interest for this study. For some imports, sample information was recorded in one database, while results of inspections/tests for different taxa were recorded in other databases. Thus a single sample could have up to four duplicate records. Each of these was checked individually and collated into one record for the sample. Spelling mistakes, incorrectly recorded information (e.g. information recorded in the wrong field) and missing information were traced back through paper records and corrected wherever possible. If the original data could not be found, these ambiguous records were excluded. After this data clean-up, the dataset comprised a list of 26,291 import records, of which 2,572 resulted from intervention samples (sample source 1 above, Fig. 1), 10,629 were audit samples (sample source 2 above, Fig. 1) and 13,090 were PEQ samples (sample source 3 above, Fig. 1). Data clean-up then continued for the organisms found on the imported samples.Taxon names were extracted and spelling and classification were corrected and/or added by hand. The list of taxa was checked against the Global Biodiversity Information Facility (GBIF)13 using the software package ‘rgbif’14 in Rstudio version 1.3.95915 running R version 4.0.216. This highlighted additional spelling mistakes and provided a taxonomic backbone to work from. The classification of a number of taxa had changed over the years and thus using a common taxonomic backbone was needed for consistency. Some taxa, most notably some mite species, could not be found on GBIF. In these cases, the taxonomy provided by the taxonomist who initially identified the organism was retained. Virus taxonomic information was also not available on GBIF and the database of the International Committee on Taxonomy of Viruses (ICTV) was used17.Species occurrence in South Africa was determined by consulting published species distribution lists. The following data sources were consulted: GBIF13 (accessed 29 July and 03 Aug 2020); CABI Crop Pest Compendiums and Invasive Species Compendium18,19,20; the Catalogue of Life21; animal species checklists published by the South African Biodiversity Institute (SANBI)22; and for any remaining species internet searches were conducted for literature citing distributions (listed in Table 2).In South Africa, lists of organisms prohibited from entering the country have been compiled by DALRRD and the Department of Forestry, Fisheries and the Environment (DFFtE). DFFtE’s list of prohibited species focussed mostly on organisms of environmental concern, although some prohibited organisms were also of agricultural concern, while DALRRD is only concerned with agricultural pests. DALRRD issues import permits for each unique crop, commodity and country combination from which plant products originate. Thus there is no single consolidated quarantine list for South Africa. Furthermore, any quarantine list is not static, but needs to change as species’ distributions, taxonomic revisions or pest status changes. Thus it is very difficult to provide a list of which detected organisms are of quarantine status to South Africa at any given time and particularly in a dataset spanning 26 years. As far as possible, we have indicated the regulatory status of the species in the datasheet “Metadata of contaminants on SA plant imports 1994–2019.csv”23. This regulatory status would have been of critical importance to inform contemporary phytosanitary decisions. However, given that such lists are dynamic and a core aim of presenting these data is to facilitate analyses of future invaders9, it is important to present information on all organisms detected. Moreover, this allows a more comprehensive assessment of the role of different pathways and will facilitate comparisons with other countries. More