Characterization of the bacterial microbiome of Rhipicephalus (Boophilus) microplus collected from Pecari tajacu “Sajino” Madre de Dios, Peru
1.Bonnet, S. I., Binetruy, F., Hernández-Jarguín, A. M. & Duron, O. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 236. https://doi.org/10.3389/fcimb.2017.00236 (2017).Article
PubMed
PubMed Central
Google Scholar
2.Burgdorfer, W., Hayes, S. & Mavros, A. Non-pathogenic rickettsiae in Dermacentor andersoni: A limiting factor for the distribution of Rickettsia rickettsii. In Rickettsia and Rickettsial Disease (eds Burgdorfer, A. A. & Anacker, R. L.) 585–594 (Academic, 1981).
Google Scholar
3.Chauvin, A., Moreau, E., Bonnet, S., Plantard, O. & Malandrin, L. Babesia and its hosts: Adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet. Res. 40, 37. https://doi.org/10.1051/vetres/2009020 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
4.Ravi, A. et al. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLoS Negl. Trop. Dis. 13(1), 1–19 (2019).CAS
Article
Google Scholar
5.Greay, T. L. et al. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites Vectors 11(1), 1–14 (2018).Article
Google Scholar
6.Rar, V. et al. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia, Russia. Parasites Vectors 10(1), 1–24 (2017).Article
Google Scholar
7.Filippova, N. A. Ixodid Ticks of the Subfamily Ixodinae (Publishing House Nauka, 1977).
Google Scholar
8.Bouquet, J. et al. Metagenomic-based surveillance of pacific coast tick dermacentor occidentalis identifies two novel bunyaviruses and an emerging human Ricksettsial pathogen. Sci. Rep. 7(1), 1–10. https://doi.org/10.1038/s41598-017-12047-6 (2017).CAS
Article
Google Scholar
9.Andreotti, R. et al. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11(6), 1–11 (2011).
Google Scholar
10.Nakao, R. et al. A novel approach, based on BLSOMs (batch learning self-organizing maps), to the microbiome analysis of ticks. ISME J. 7(5), 1003–1015. https://doi.org/10.1038/ismej.2012.171 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
11.Xia, H. et al. Metagenomic profile of the viral communities in Rhipicephalus spp. ticks from Yunnan, China. PLoS ONE 10(3), 1–16. https://doi.org/10.1371/journal.pone.0121609 (2015).CAS
Article
Google Scholar
12.Barros-Battesti, D., Arzua, M. & Bechara, H. Carrapato de Importância Medico-Veterinaria da Região Neotropical: Um Guia Ilustrado para Identificação de Espécies (Ticks of Medical-Veterinary Importance in the Neotropical Region: An Illustrated Guide for Species Identification). 10ma edição 223 (Butantan Publicação, 2006).
Google Scholar
13.QIAGEN. Gentra, Puregene (QIAGEN GROUP), 2007–2010 (accessed 9 June 2017); https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-puregene-tissue-kit/#orderinginformation.14.Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 8, 453–461 (2017).Article
Google Scholar
15.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108(Supplement 1), 4516–4522 (2011).ADS
CAS
Article
Google Scholar
16.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2200 (2011).CAS
Article
Google Scholar
17.Glassing, A. et al. Changes in 16S RNA gene microbial community profiling by concentration of prokaryotic DNA. J. Microbiol. Methods 119, 239242 (2015).Article
Google Scholar
18.Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).CAS
Article
Google Scholar
19.Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. https://doi.org/10.1101/299537 (2018).Article
Google Scholar
20.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), 1–11 (2013).Article
Google Scholar
21.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72(7), 5069–5072 (2006).CAS
Article
Google Scholar
22.Obregón, D., Bard, E., Abrial, D., Estrada-Peña, A. & Cabezas-Cruz, A. Sex-specific linkages between taxonomic and functional profiles of tick gut microbiomes. Front. Cell. Infect. Microbiol. 9, 298. https://doi.org/10.3389/fcimb.2019.00298 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
23.Qiu, Y., Nakao, R., Ohnuma, A., Kawamori, F. & Sugimoto, C. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS ONE 9(8), e103961 (2014).ADS
Article
Google Scholar
24.Van Treuren, W. et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ. Microbiol. 81, 6200–6209 (2015).Article
Google Scholar
25.Carpi, G. et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE 6(10), e25604 (2011).ADS
CAS
Article
Google Scholar
26.Zhang, X.-C., Yang, Z.-N., Lu, B., Ma, X.-F. & Zhang, C.-X. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis. 5, 864–870 (2014).Article
Google Scholar
27.Menchaca, A. C. et al. Preliminary assessment of microbiome changes following blood-feeding and survivorship in the Amblyomma americanum nymph-to-adult transition using semiconductor sequencing. PLoS ONE 8, 1–10 (2013).Article
Google Scholar
28.Clayton, K. A., Gall, C. A., Mason, K. L., Scoles, G. A. & Brayton, K. A. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites Vectors 8, 1–5 (2018).CAS
Google Scholar
29.Crump, J. A., Sjölund-Karlsson, M., Gordon, M. A. & Parry, C. M. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin. Microbiol. Rev. 1, 901–937. https://doi.org/10.1128/CMR.00002-15 (2015).Article
Google Scholar
30.Jesser, K. J. & Noble, R. T. Vibrio ecology in the Neuse River Estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 84, 1–21. https://doi.org/10.1128/AEM.00333-18 (2018).Article
Google Scholar
31.Payne, S. M., Mey, A. R. & Wyckoff, E. E. Vibrio iron transport: Evolutionary adaptation to life in multiple environments. Microbiol. Mol. Biol. Rev. 80, 69–90. https://doi.org/10.1128/MMBR.00046-15 (2016).CAS
Article
PubMed
Google Scholar
32.Boyd, E. F. et al. Post genomic analysis of the evolutionary history and innovations of the family Vibrionaceae. Microbiol. Spectr. 3(5), 1–43. https://doi.org/10.1128/microbiolspec.VE-0009-2014 (2015).ADS
CAS
Article
Google Scholar
33.Maj, A. et al. Plasmids of carotenoid-producing Paracoccus spp. (Alphaproteobacteria)—Structure, diversity and evolution. PLoS ONE 8(11), 1–27. https://doi.org/10.1371/journal.pone.0080258 (2013).CAS
Article
Google Scholar
34.Patro, L. P. P. & Rathinavelan, T. Targeting the sugary armor of Klebsiella species. Front. Cell. Infect. Microbiol. 9, 1–23. https://doi.org/10.3389/fcimb.2019.00367 (2019).CAS
Article
Google Scholar
35.Folkesson, A. et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: An evolutionary perspective. Nat. Rev. Microbiol. 10, 841–851. https://doi.org/10.1038/nrmicro2907 (2019).CAS
Article
Google Scholar
36.Wong, J. S. J. et al. Corynebacterium accolens-associated pelvic osteomyelitis. J. Clin. Microbiol. 48(2), 654–655 (2010).Article
Google Scholar
37.Gay, N. R., Fleming, E. & Oh, J. Draft genome sequence of Cloacibacterium normanense NRS-1 isolated from municipal wastewater. Genome Announc. 4(6), 1–2. https://doi.org/10.1128/genomeA.01397-16 (2016).Article
Google Scholar
38.Kurilshikov, A. et al. Comparative metagenomic profiling of symbiotic bacterial communities associated with ixodes persulcatus, ixodes pavlovskyi and dermacentor reticulatus ticks. PLoS ONE 10(7), 1–13 (2015).CAS
Article
Google Scholar
39.Martínez, M. A. Retrato microbiológico. J. Microbiol. Immunol. Infect. 44(1), 289–295 (2011).
Google Scholar
40.Moreno-Forero, S. K. & Van-Der-Meer, J. R. Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand. ISME J. 9(1), 150–165 (2015).CAS
Article
Google Scholar
41.Giron, S. Diversidad bacteriana de la garrapata Rhipicephalus (Boophilus) microplus en el ganado bovino del estado de Tamaulipas (Bacterial diversity of Rhipicephalus (Boophilus) microplus tick in cattle of the state of Tamaulipas). (2015). [Thesis]. Thesis to obtain the title of Master of Science in Genomic Biotechnology viable (accessed 14 October 2019); https://tesis.ipn.mx/handle/123456789/24552.42.Jimemez, M., Gasper, M., Carmona, M. & Terio, K. Suidae and Tayassuidae. Pathol. Wildl. Zoo Anim. 1, 207–228 (2018).
Google Scholar
43.Sutherland-Smith, M. Suidae and Tayassuidae (Wild Pigs, Peccaries). Fowler’s Zoo Wild Anim. Med. 1(8), 568–584 (2015).Article
Google Scholar
44.Bermúdez, S., Meyer, N., Moreno, R. & Artavia, A. NOTAS SOBRE Pecari tajacu (L., Y Tayassu peccari (LINK, 1795) (ARTIODACTYLA: TAYASSUIDAE) COMO HOSPEDEROS DE GARRAPATAS DURAS (ACARI: IXODIDAE) EN PANAMÁ. Tecnociencia 20(1), 61–70 (2008).
Google Scholar
45.Rodríguez-Vivas, R. I., Quiñones, A. F. & Fragoso, S. H. Epidemiología y control de la garrapata Boophilus en México (Epidemiology and control of Boophilus tick in Mexico). In Enfermedades de Importancia Económica en Producción Animal (Diseases of Economic Importance in Animal Production) (ed. Rodríguez-Vivas, R. I.) 571–592 (McGraw-Hill-UADY, 2005).
Google Scholar
46.Duron, O. et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921. https://doi.org/10.1111/mec.14094 (2017).CAS
Article
PubMed
Google Scholar
47.Zhong, J., Jasinskas, A. & Barbour, A. G. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE 2, 1–7. https://doi.org/10.1371/journal.pone.0000405 (2017).CAS
Article
Google Scholar
48.Gottlieb, Y., Lalzar, I. & Klasson, L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol. Evol. 7, 1779–1796. https://doi.org/10.1093/gbe/evv108 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
49.Gerhart, J. G., Moses, A. S. & Raghavan, R. A. Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 6, 1–6. https://doi.org/10.1038/srep33670 (2016).CAS
Article
Google Scholar
50.Sjodin, A. et al. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics 13, 1–13. https://doi.org/10.1186/1471-2164-13-268 (2012).Article
Google Scholar
51.Machado-Ferreira, E. et al. Coxiella symbionts are widespread into hard ticks. Parasitol. Res. 115(12), 4691–4699. https://doi.org/10.1007/s00436-016-5230-z (2016).Article
PubMed
Google Scholar
52.Duron, O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol. Lett. 362(17), 1–8. https://doi.org/10.1093/femsle/fnv132 (2015).CAS
Article
Google Scholar More