Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions
1.Müller, F. Ituna and Thyridia: A remarkable case of mimicry in butterflies. Proc. Entomol. Soc. Lond. 1879, 20–24 (1879).
Google Scholar
2.Mallet, J. & Joron, M. Evolution of diversity in warning color and mimicry: Polymorphisms, shifting balance, and speciation. Ann. Rev. Ecol. Evol. Syst. 30, 201–233 (1999).Article
Google Scholar
3.Sherratt, T. N. The evolution of Müllerian mimicry. Naturwissenschaften 95, 681–695 (2008).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Beatty, C. D., Beirinckx, K. & Sherratt, T. N. The evolution of Müllerian mimicry in multispecies communities. Nature 431, 63–67 (2004).ADS
CAS
PubMed
Article
Google Scholar
5.Mallet, L. & Barton, N. H. Strong natural selection in a warning colour hybrid zone. Evolution 43, 421–431 (1989).PubMed
Article
Google Scholar
6.Chouteau, M., Arias, M. & Joron, M. Warning signals are under positive frequency-dependent selection in nature. Proc. Natl. Acad. Sci. USA 113, 2164–2169 (2016).ADS
CAS
PubMed
Article
Google Scholar
7.Wilson, J. S., Williams, K. A., Forister, M. L., von Dohlen, C. D. & Pitts, J. P. Repeated evolution in overlapping mimicry rings among North American velvet ants. Nat. Commun. 3, 1272. https://doi.org/10.1038/ncomms2275 (2012).ADS
CAS
Article
PubMed
Google Scholar
8.Wilson, J. S. et al. North American velvet ants form one of the world’s largest known Mullerian mimicry complexes. Curr. Biol. 25, R704–R706. https://doi.org/10.1016/j.cub.2015.06.053 (2015).CAS
Article
PubMed
Google Scholar
9.Bocek, M., Kusy, D., Motyka, M. & Bocak, L. Persistence of multiple patterns and intraspecific polymorphism in multi-species Müllerian communities of net-winged beetles. Front. Zool. 16, 38. https://doi.org/10.1186/s12983-019-0335-8 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Anzaldo, S. S., Wilson, J. S. & Franz, N. M. Phenotypic analysis of aposematic conoderine weevils (Coleoptera: Curculionidae: Conoderinae) supports the existence of three large mimicry complexes. Biol. J. Linn. Soc. 129, 728–739 (2020).Article
Google Scholar
11.Masek, M. et al. Molecular phylogeny, diversity and zoogeography of net-winged beetles (Coleoptera: Lycidae). Insects 9, 154. https://doi.org/10.3390/insects9040154 (2018).Article
PubMed Central
PubMed
Google Scholar
12.Kusy, D., Motyka, M., Bocek, M., Vogler, A. P. & Bocak, L. Genome sequences identify three families of Coleoptera as morphologically derived click beetles (Elateridae). Sci. Rep. 8, 17084. https://doi.org/10.1038/s41598-018-35328-0 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
13.Linsley, E. G., Eisner, T. & Klots, A. B. Mimetic assemblages of sibling species of lycid beetles. Evolution 15, 15–29 (1961).Article
Google Scholar
14.Eisner, T., Kafatos, F. C. & Linsley, E. G. Lycid predation by mimetic adult Cerambycidae (Coleoptera). Evolution 16, 316–324 (1962).Article
Google Scholar
15.Dettner, K. Chemosystematics and evolution of beetle chemical defenses. Ann. Rev. Entomol. 32, 17–48 (1987).CAS
Article
Google Scholar
16.Malohlava, V. & Bocak, L. Evidence of extreme habitat stability in a Southeast Asian biodiversity hotspot based on the evolutionary analysis of neotenic net-winged beetles. Mol. Ecol. 19, 4800–4811 (2010).CAS
PubMed
Article
Google Scholar
17.Kazantsev, S. V. & Telnov, D. A mimetic assemblage of net-winged beetles (Coleoptera: Lycidae) from West Papua. In Biodiversity, Biogeography and Nature Conservation in Wallacea and New Guinea, Vol III (eds Telnov, D. et al.) 363–370 (The Entomological Society of Latvia, 2017).
Google Scholar
18.Sklenarova, K., Chesters, D. & Bocak, L. Phylogeography of poorly dispersing net-winged beetles: A role of drifting India in the origin of Afrotropical and Oriental fauna. PLoS One 8, e67957. https://doi.org/10.1371/journal.pone.0067957 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
19.Li, Y., Gunter, N., Pang, H. & Bocak, L. DNA-based species delimitation separates highly divergent populations within morphologically coherent clades of poorly dispersing beetles. Zool. J. Linn. Soc. 175, 59–72 (2015).Article
Google Scholar
20.Masek, M., Palata, V., Bray, T. C. & Bocak, L. Molecular phylogeny reveals high diversity and geographic structure in Asian neotenic net-winged beetles Platerodrilus (Coleoptera: Lycidae). PLoS One 10, e0123855. https://doi.org/10.1371/journal.pone.0123855 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
21.Bocakova, M., Bocak, L., Gimmel, M. L., Motyka, M. & Vogler, A. P. Aposematism and mimicry in soft-bodied beetles of the superfamily Cleroidea (Insecta). Zool. Scr. 45, 9–21 (2016).Article
Google Scholar
22.Moore, B. P. & Brown, W. V. Identification of warning odour components, bitter principles and antifeedants in an aposematic beetle: Metriorrhynchus rhipidius (Coleoptera: Lycidae). Ins. Biochem. 1, 493–499 (1981).Article
Google Scholar
23.Eisner, T. et al. Defensive chemistry of lycid beetles and of mimetic cerambycid beetles that feed on them. Chemoecology 18, 109–119 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Kusy, D., Motyka, M., Bocek, M., Masek, M. & Bocak, L. Phylogenomic analysis resolves the relationships among net-winged beetles (Coleoptera: Lycidae) and reveals the parallel evolution of morphological traits. Syst. Entomol. 44, 911–925 (2019).Article
Google Scholar
25.Blum, M. S. & Sannasi, A. Reflex bleeding in the lampyrid Photinus pyralis: Defensive function. J. Insect Physiol. 20, 451–460 (1974).Article
Google Scholar
26.Xinhua, F., Ohba, N., Meyer-Rochow, V. B., Yuyong, W. & Chaoliang, L. Reflex-bleeding in the firefly Pyrocoelia pectoralis (Coleoptera: Lampyridae): Morphological basis and possible function. Coleopt. Bull. 60, 207–215 (2006).Article
Google Scholar
27.Meinwald, J., Meinwald, Y. C., Calmers, A. M. & Eisner, T. Dihydromatricaria acid: Acetylenic acid secreted by soldier beetle. Science 160, 890–892 (1968).ADS
CAS
PubMed
Article
Google Scholar
28.Moore, B. P. & Brown, W. V. Precoccinelline and related alcaloids in the Australian soldier beetle, Chauliognathus pulchellus (Coleoptera: Cantharidae). Ins. Biochem. 8, 393–395 (1978).CAS
Article
Google Scholar
29.Poinar, G. O. Jr., Marshall, C. J. & Buckley, R. One hundred million years of chemical warfare by insects. J. Chem. Ecol. 33, 1663–1669 (2007).CAS
PubMed
Article
Google Scholar
30.Rowe, C. & Guilford, T. The evolution of multimodal warning displays. Evol. Ecol. 13, 655–671 (1999).Article
Google Scholar
31.Young, D. K. & Fischer, R. L. The pupation of Calopteron terminale (Say) (Coleoptera: Lycidae). Coleopt. Bull. 26, 17–18 (1972).
Google Scholar
32.Bocak, L. & Matsuda, K. Review of the immature stages of the family Lycidae (Insecta: Coleoptera). J. Nat. Hist 37, 1463–1507 (2003).Article
Google Scholar
33.Hall, D. W. & Branham, M. A. Aggregation of Calopteron discrepans (Coleoptera: Lycidae) larvae prior to pupation. Flor. Entomol. 91, 124–125 (2008).Article
Google Scholar
34.Gamberale, G. & Tullberg, B. S. Aposematism and gregariousness: The combined effect of group size and coloration on signal repellence. Proc. R. Soc. Lond. B Biol. Sci. 265, 889–894 (1998).Article
Google Scholar
35.Svadová, K., Exnerová, A. & Štys, P. Gregariousness as a defence strategy of moderately defended prey: Experiments with Pyrrhocoris apterus and avian predators. Behaviour 151, 1617–1640 (2014).Article
Google Scholar
36.Mitchell, R. F. et al. Evidence that cerambycid beetles mimic vespid wasps in odor as well as appearance. J. Chem. Ecol. 43, 75–83 (2017).CAS
PubMed
Article
Google Scholar
37.Speed, M. P. Warning signals, receiver psychology and predator memory. Anim. Behav. 60, 269–278 (2000).CAS
PubMed
Article
Google Scholar
38.Speed, M. P. Can receiver psychology explain the evolution of aposematism?. Anim. Behav. 61, 205–216 (2001).PubMed
Article
Google Scholar
39.Skelhorn, J., Holmes, G. G., Hossie, T. J. & Sherratt, T. N. Multicomponent deceptive signals reduce the speed at which predators learn that prey are profitable. Behav. Ecol. 27, 141–147 (2016).Article
Google Scholar
40.Motyka, M., Kampova, L. & Bocak, L. Phylogeny and evolution of Müllerian mimicry in aposematic Dilophotes: Evidence for advergence and size-constraints in evolution of mimetic sexual dimorphism. Sci. Rep. 8, 3744. https://doi.org/10.1038/s41598-018-22155-6 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.Motyka, M., Bocek, M., Kusy, D. & Bocak, L. Interactions in multi-pattern Mullerian communities support origins of new patterns, false structures, imperfect resemblance and mimetic sexual dimorphism. Sci. Rep. 10, 11193. https://doi.org/10.1038/s41598-020-68027-w (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
42.Bocak, L. & Yagi, T. Evolution of mimicry patterns in Metriorrhynchus (Coleoptera: Lycidae): The history of dispersal and speciation in southeast Asia. Evolution 64, 39–52 (2010).PubMed
Article
PubMed Central
Google Scholar
43.Bray, T. C. & Bocak, L. Slowly dispersing neotenic beetles can speciate on a penny coin and generate space-limited diversity in the tropical mountains. Sci. Rep. 6, 33579. https://doi.org/10.1038/srep33579 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
44.Jiruskova, A., Motyka, M., Bocek, M. & Bocak, L. The Malacca Strait separates distinct faunas of poorly-flying Cautires net-winged beetles. PeerJ 7, e6511. https://doi.org/10.7717/peerj.6511 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Endler, J. A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 31, 587–608 (1991).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Arenas, L. M., Troscianko, J. & Stevens, M. Color contrast and stability as key elements for effective warning signals. Front. Ecol. Evol. 2, 1–12 (2014).Article
Google Scholar
47.Mallet, J. & Gilbert, L. E. Why are there so many mimicry rings—correlations between habitats, behavior and mimicry in Heliconius butterflies. Biol. J. Linn. Soc. 55, 159–180 (1995).
Google Scholar
48.CSIRO. The Insects of Australia (Melbourne University Press, 1991).
Google Scholar
49.Lingafelter, S. W. Hispaniolan Hemilophini (Coleoptera, Cerambycidae, Lamiinae). ZooKeys 258, 53–83 (2013).Article
Google Scholar
50.Perger, R. & Santos-Silva, A. A new lycid-like species of Iarucanga Martins & Galileo, 1991 (Coleoptera, Cerambycidae, Lamiinae, Hemilophini) from the Bolivian Andes. J. Nat. Hist. 52, 2487–2495 (2018).Article
Google Scholar
51.Perger, R. & Santos-Silva, A. Addition to the known long-horned beetle fauna of the Bolivian Andes: A new lycid-like species of Mimolaia Bates, 1885 (Coleoptera, Cerambycidae, Lamiinae, Caliini). Zootaxa 4550, 295–300 (2019).PubMed
Article
Google Scholar
52.Eisner, T. et al. Antifeedant action of z-dihydromatricaria acid from soldier beetles (Chauliognathus spp.). J. Chem. Ecol. 7, 1149–1158 (1981).CAS
PubMed
Article
Google Scholar
53.Brown, W. V., Lacey, M. J. & Moore, B. P. Dihydromatricariate-based triglycerides, glyceride ethers, and waxes in the Australian soldier beetle, Chauliognathus lugubris (Coleoptera: Cantharidae). J. Chem. Ecol. 14, 411–423 (1988).CAS
PubMed
Article
Google Scholar
54.Machado, V., Araujo, A. M., Serrano, J. & Galián, J. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae) inferred from mitochondrial COI sequences. Gen. Mol. Biol. 27, 55–60 (2004).CAS
Article
Google Scholar
55.Long, S. M. et al. Firefly flashing and jumping spider predation. Anim. Behav. 83, 81–86 (2012).Article
Google Scholar
56.Eisner, T., Goetz, M. A., Hill, D. E., Smedley, S. R. & Meinwald, J. Firefly “femmes fatales” acquire defensive steroids (lucibufagins) from their firefly prey. Proc. Natl. Acad. Sci USA 94, 9723–9728 (1997).ADS
CAS
PubMed
Article
Google Scholar
57.Exnerová, A. et al. Importance of color in the reaction of passerine predators to aposematic prey: Experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linn. Soc. 88, 143–153 (2006).Article
Google Scholar
58.Wuster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B Biol. Sci. 271, 2495–2499 (2004).Article
Google Scholar
59.Speed, M. P. & Ruxton, G. D. How bright and how nasty: Explaining diversity in warning signal strength. Evolution 61, 623–635 (2007).PubMed
Article
Google Scholar
60.Aronsson, M. & Gamberale-Stille, G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 20, 1356–1362 (2009).Article
Google Scholar
61.Endler, J. A. & Mappes, J. The current and future state of animal coloration research. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160352 (2017).Article
Google Scholar
62.Edmunds, M. Why are there good and poor mimics?. Biol. J. Linn. Soc. 70, 459–466 (2000).Article
Google Scholar
63.Speed, M. P. & Ruxton, G. D. Imperfect Batesian mimicry and the conspicuousness costs of mimetic resemblance. Am. Nat. 176, E1–E14 (2010).PubMed
Article
Google Scholar
64.Penney, H. D., Hassall, C., Skevington, J. H., Abbott, K. R. & Sherratt, T. N. A comparative analysis of the evolution of imperfect mimicry. Nature 483, 461–464 (2012).ADS
CAS
PubMed
Article
Google Scholar
65.Kikuchi, D. W. & Pfennig, D. W. Imperfect mimicry and the limits of natural selection. Q. Rev. Biol. 88, 297–315 (2013).PubMed
Article
Google Scholar
66.Briolat, E. S. et al. Diversity in warning coloration: Selective paradox or the norm?. Biol. Rev. 94, 388–414 (2019).PubMed
Article
Google Scholar
67.Robertson, A. R. The CIE 1976 color-difference formulae. Color Res. Appl. 2, 7–11 (1976).Article
Google Scholar
68.Bocak, L., Bocakova, M., Hunt, T. & Vogler, A. P. Multiple ancient origins of neoteny in Lycidae (Coleoptera): Consequences for ecology and macroevolution. Proc. R. Soc. B Biol. Sci. 275, 2015–2023 (2008).Article
Google Scholar
69.Bocak, L., Kundrata, R., Andújar-Fernández, C. & Vogler, A. P. The discovery of Iberobaeniidae (Coleoptera: Elateroidea): A new family of beetles from Spain, with immatures detected by environmental DNA sequencing. Proc. R. Soc. B Biol. Sci. 283, 20152350 (2016).Article
CAS
Google Scholar
70.Bininda-Emonds, O. R. P. transAlign: Using amino acids to facilitate the multiple alignment of protein coding DNA sequences. BMC Bioinform. 6, 156 (2005).Article
CAS
Google Scholar
71.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Kück, P. & Longo, G. C. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 81 (2014).PubMed
PubMed Central
Article
Google Scholar
73.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
74.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS
Article
Google Scholar
75.Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).CAS
PubMed
Article
Google Scholar
76.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
77.Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial-DNA evolution. Proc. Natl. Acad. Sci. USA 91, 6491–6495 (1994).ADS
CAS
PubMed
Article
Google Scholar
78.Papadopoulou, A., Anastasiou, I. & Vogler, A. P. Revisiting the insect mitochondrial molecular clock: The Mid-Aegean trench calibration. Mol. Biol. Evol. 27, 1659–1672 (2010).CAS
PubMed
Article
Google Scholar
79.Bocak, L., Li, Y. & Ellenberger, S. The discovery of Burmolycus compactus gen. et sp. Nov. from the mid-Cretaceous of Myanmar provides the evidence for early diversification of net-winged beetles (Coleoptera, Lycidae). Cret. Res. 99, 149–155 (2019).Article
Google Scholar
80.Molino-Olmedo, F., Ferreira, V. S., Branham, M. A. & Ivie, M. A. The description of Prototrichalus gen. nov. and three new species from Burmese amber supports a mid-Cretaceous origin of the Metriorrhynchini (Coleoptera, Lycidae). Cret. Res. 111, 104452 (2020).Article
Google Scholar
81.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Borges, R., Machado, J. P., Gomes, C., Rocha, A. P. & Antunes, A. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics 35, 1862–1869 (2019).CAS
PubMed
Article
Google Scholar
83.Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS
PubMed
Article
Google Scholar
84.Kusy, D., Sklenarova, K. & Bocak, L. The effectiveness of DNA-based delimitation in Synchonnus net-winged beetles (Coleoptera: Lycidae) assessed, and description of 11 new species. Austral. Entomol. 57, 25–39 (2018).Article
Google Scholar
85.Kusy, D. et al. Sexually dimorphic characters and shared aposematic patterns mislead the morphology-based classification of the Lycini (Coleoptera: Lycidae). Zool. J. Linn. Soc. https://doi.org/10.1093/zoolinnean/zlaa055 (2021).Article
Google Scholar
86.Endler, J. A. Frequency-dependent predation, crypsis and aposematic coloration. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 505–523 (1988).ADS
CAS
PubMed
Article
Google Scholar
87.Guilford, T. The evolution of conspicuous coloration. Am. Nat. 131, S7–S21 (1988).Article
Google Scholar
88.Gamberalle-Stille, G. Benefit by contrast: An experiment with live aposematic prey. Behav. Ecol. 12, 768–772 (2001).Article
Google Scholar
89.Aronsson, M. & Gamberale-Stille, G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 24, 349–354 (2013).Article
Google Scholar
90.Prudic, K. L., Skemp, A. K. & Papaj, D. R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18, 41–46 (2007).Article
Google Scholar
91.van Hateren, J. H., Ruttiger, L., Sun, H. & Lee, B. B. Processing of natural temporal stimuli by macaque retinal ganglion cells. J. Neurosci. 22, 9945–9960 (2002).PubMed
PubMed Central
Article
Google Scholar
92.Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat. 129, 215–222 (1993).Article
Google Scholar
93.Lindström, L., Alatalo, R. V., Lyytinen, A. & Mappes, J. Strong antiapostatic selection against novel rare aposematic prey. Proc. Natl. Acad. Sci. USA 98, 9181–9184 (2001).ADS
PubMed
Article
Google Scholar
94.Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).CAS
PubMed
Article
Google Scholar
95.Fabricant, S. A. & Herberstein, M. E. Hidden in plain orange: Aposematic coloration is cryptic to a colorblind insect predator. Behav. Ecol. 26, 38–44 (2015).Article
Google Scholar
96.Nielsen, M. E. & Mappes, J. Out in the open: Behavior’s effect on predation risk and thermoregulation by aposematic caterpillars. Behav. Ecol. 31, 1031–1039 (2020).PubMed
PubMed Central
Article
Google Scholar
97.Nokelainen, O., Valkonen, J., Lindstedt, C. & Mappes, J. Changes in predator community structure shifts the efficacy of two warning signals in Arctiid moths. J. Anim. Ecol. 83, 598–605 (2013).Article
Google Scholar
98.Guilford, T. How do “warning colours” work? conspicuousness may reduce recognition errors in experienced predators. Anim. Behav. 34, 286–288 (1986).Article
Google Scholar
99.Lovell, P. G. et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. A Opt. Imaging Sci. Vis. 22, 2060–2071 (2005).ADS
CAS
Article
Google Scholar
100.Rojas, B., Rautiala, P. & Mappes, J. Differential detectability of polymorphic warning signal under varying light environment. Behav. Proc. 109, 164–172 (2014).Article
Google Scholar
101.Fennell, J. G., Talas, L., Baddeley, R. J., Cuthill, I. C. & Scott-Samuel, N. E. Optimizing colour for camouflage and visibility using deep learning: The effects of the environment and the observer’s visual system. J. R. Soc. Interf. 16, 20190183. https://doi.org/10.1098/rsif.2019.0183 (2019).CAS
Article
Google Scholar
102.Marples, N. M., Roper, T. J. & Harper, D. G. C. Responses of wild birds to novel prey: Evidence of dietary conservatism. Oikos 83, 161–165 (1998).Article
Google Scholar
103.Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).PubMed
Article
Google Scholar
104.Endler, J. A. & Mielke, P. W. Comparing entire colour patterns as birds see them. Biol. J. Linn. Soc. 86, 405–431 (2005).Article
Google Scholar
105.Bocak, L. & Bocakova, M. Revision of the supergeneric classification of the family Lycidae (Coleoptera). Pol. Pism. Entomol. 59, 623–676 (1990).
Google Scholar
106.Bocak, L. & Bocakova, M. Phylogeny and classification of the family Lycidae (Insecta: Coleoptera). Ann. Zool 58, 695–720 (2008).Article
Google Scholar
107.Kazantsev, S. V. Morphology of Lycidae with some considerations on evolution of the Coleoptera. Elytron 17, 49–226 (2005).
Google Scholar
108.Bocakova, M. Phylogeny and classification of the tribe Calopterini (Coleoptera, Lycidae). Inst. Syst. Evol. 35, 437–447 (2005).Article
Google Scholar
109.Eisner, T. et al. Chemical basis of courtship in a beetle (Neopyrochroa flabellata): Cantharidin as precopulatory “enticing” agent. Proc. Natl. Acad. Sci. USA 93, 6494–6498 (1996).ADS
CAS
PubMed
Article
Google Scholar
110.Bocak, L. & Bocakova, M. Revision of the genus Dexoris C. O. Waterhouse (Coleoptera, Lycidae). Acta Entomol. Bohemoslov. 85, 194–204 (1988).
Google Scholar
111.Bocak, L., Grebennikov, V. V. & Masek, M. A new species of Dexoris (Coleoptera: Lycidae) and parallel evolution of brachyptery in the soft-bodied elateroid beetles. Zootaxa 3721, 495–500 (2013).PubMed
Article
Google Scholar
112.True, J. R. Insect melanism: The molecules matter. Trend. Ecol. Evol. 18, 640–647 (2003).Article
Google Scholar
113.Shamim, G., Ranjan, S. K., Pandey, D. M. & Ramani, R. Biochemistry and biosynthesis of insect pigments. Eur. J. Entomol. 111, 149–164 (2014).CAS
Article
Google Scholar
114.Sillén-Tullberg, B. Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis. Evolution 42, 293–305 (1988).PubMed
Article
Google Scholar
115.Gagliardo, A. & Guilford, T. Why do warning-coloured prey live gregariously?. Proc. R. Soc. Lond. B Biol. Sci. 251, 69–74 (1993).ADS
Article
Google Scholar
116.Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996).ADS
CAS
Article
Google Scholar
117.Yachi, S. & Higashi, M. The evolution of warning signals. Nature 394, 882–884 (1998).ADS
CAS
Article
Google Scholar
118.Lindström, L., Alatalo, R. V., Mappes, J., Riipi, M. & Vertainen, L. Can aposematic signals evolve by gradual change?. Nature 397, 249–251 (1999).ADS
Article
Google Scholar
119.Guilford, T., Nicol, C., Rotschild, M. & Moore, B. P. The biological roles of pyrazines: Evidence for a warning odour function. Biol. J. Linn. Soc. 31, 113–128 (1987).Article
Google Scholar
120.Arenas, L. M., Walter, D. & Stevens, M. Signal honesty and predation risk among a closely related group of aposematic species. Sci. Rep. 5, 11021. https://doi.org/10.1038/srep11021 (2015).ADS
CAS
Article
Google Scholar
121.Hämäläinen, L., Mappes, J., Rowland, H. M., Teichmann, M. & Thorogood, R. Social learning within and across predator species reduces attacks on novel aposematic prey. J. Anim. Ecol. 89, 1153–1164 (2020).PubMed
PubMed Central
Article
Google Scholar
122.Landova, E., Hotova Svadova, K., Fuchs, R., Stys, P. & Exnerova, A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim. Cogn. 20, 855–866 (2017).PubMed
Article
Google Scholar
123.Leimar, O. & Tuomi, J. Synergistic selection and graded traits. Evol. Ecol. 12, 59–71 (1998).Article
Google Scholar
124.Gompert, Z., Willmott, K. R. & Elias, M. Heterogeneity in predator micro-habitat use and the maintenance of Müllerian mimetic diversity. J. Theor. Biol. 281, 39–46 (2011).PubMed
Article
Google Scholar
125.Willmott, K. R., Willmott, J. C. R., Elias, M. & Jiggins, C. D. Maintaining mimicry diversity: Optimal warning colour patterns differ among microhabitats in Amazonian clearwing butterflies. Proc. R. Soc. B Biol. Sci. 284, 20170744 (2017).Article
Google Scholar
126.Van Belleghem, S. M., Roman, P. A. A., Gutierrez, H. C., Counterman, B. A. & Papa, R. Perfect mimicry between Heliconius butterflies is constrained by genetics and development. Proc. R. Soc. B Biol. Sci. 287, 20201267 (2020).Article
CAS
Google Scholar
127.Bocek, M. & Bocak, L. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae). Zookeys 593, 15–35 (2016).Article
Google Scholar
128.Do Nascimento, E. A. & Bocakova, M. A revision of the Neotropical genus Eurrhacus (Coleoptera: Lycidae). Ann. Zool. 67, 689–697 (2017).Article
Google Scholar More