Mucin O-glycans suppress quorum-sensing pathways and genetic transformation in Streptococcus mutans
1.Hansson, G. C. Mucins and the microbiome. Annu. Rev. Biochem. 89, 769–793 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
2.Cross, B. W. & Ruhl, S. Glycan recognition at the saliva—oral microbiome interface. Cell. Immunol. 333, 19–33 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
3.Tabak, L. A. In defense of the oral cavity: structure, biosynthesis, and function of salivary mucins. Annu. Rev. Physiol. 57, 547–564 (1995).CAS
PubMed
Article
PubMed Central
Google Scholar
4.Deng, L. et al. Oral streptococci utilize a Siglec-like domain of serine-rich repeat adhesins to preferentially target platelet sialoglycans in human blood. PLoS Pathog. 10, e1004540 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
5.Shanker, E. & Federle, M. J. Quorum sensing regulation of competence and bacteriocins in Streptococcus pneumoniae and mutans. Genes 8, 15 (2017).PubMed Central
Article
CAS
Google Scholar
6.Nakano, K., Nomura, R. & Ooshima, T. Streptococcus mutans and cardiovascular diseases. Jpn. Dent. Sci. Rev. 44, 29–37 (2008).Article
Google Scholar
7.Murchison, H. H., Barrett, J. F., Cardineau, G. A. & Curtiss, R. Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect. Immun. 54, 273–282 (1986).CAS
PubMed
PubMed Central
Article
Google Scholar
8.Villedieu, A. et al. Prevalence of tetracycline resistance genes in oral bacteria. Antimicrob. Agents Chemother. 47, 878–882 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
9.Chansley, P. E. & Kral, T. A. Transformation of fluoride resistance genes in Streptococcus mutans. Infect. Immun. 57, 1968–1970 (1989).CAS
PubMed
PubMed Central
Article
Google Scholar
10.Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from one health and global health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).CAS
PubMed
Article
Google Scholar
11.Villedieu, A. et al. Genetic basis of erythromycin resistance in oral bacteria. Antimicrob. Agents Chemother. 48, 2298–2301 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
12.Olsen, I., Tribble, G. D., Fiehn, N.-E. & Wang, B.-Y. Bacterial sex in dental plaque. J. Oral Microbiol. 5, 20736 (2013).Article
Google Scholar
13.Loesche, W. J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353–380 (1986).CAS
PubMed
PubMed Central
Article
Google Scholar
14.Loesche, W. J., Rowan, J., Straffon, L. H. & Loos, P. J. Association of Streptococcus mutans with human dental decay. Infect. Immun. 11, 1252–1260 (1975).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Mathews, S. A., Kurien, B. T. & Scofield, R. H. Oral manifestations of Sjögren’s syndrome. J. Dent. Res. 87, 308–318 (2008).CAS
PubMed
Article
Google Scholar
16.Pramanik, R., Osailan, S. M., Challacombe, S. J., Urquhart, D. & Proctor, G. B. Protein and mucin retention on oral mucosal surfaces in dry mouth patients. Eur. J. Oral. Sci. 118, 245–253 (2010).CAS
PubMed
Article
Google Scholar
17.Frenkel, E. S. & Ribbeck, K. Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 7, 29759 (2015).PubMed
Article
CAS
Google Scholar
18.Ahn, S.-J., Wen, Z. T. & Burne, R. A. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect. Immun. 74, 1631–1642 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
19.Ahn, S.-J., Ahn, S.-J., Wen, Z. T., Brady, L. J. & Burne, R. A. Characteristics of biofilm formation by Streptococcus mutans in the presence of saliva. Infect. Immun. 76, 4259–4268 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Duarte, S. et al. Influences of starch and sucrose on Streptococcus mutans biofilms. Oral Microbiol. Immunol. 23, 206–212 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Mitchell, T. J. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1, 219–230 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Frenkel, E. S. & Ribbeck, K. Salivary mucins protect surfaces from colonization by cariogenic bacteria. Appl. Environ. Microbiol. 81, 332–338 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
23.Frenkel, E. S. & Ribbeck, K. Salivary mucins promote the coexistence of competing oral bacterial species. ISME J. 11, 1286–1290 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
24.Levine, M. Salivary proteins may be useful for determining caries susceptibility. J. Evid. Based Dent. Pract. 13, 91–93 (2013).PubMed
Article
PubMed Central
Google Scholar
25.Thomsson, K. A., Schulz, B. L., Packer, N. H. & Karlsson, N. G. MUC5B glycosylation in human saliva reflects blood group and secretor status. Glycobiology 15, 791–804 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Ajdic, D. et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl Acad. Sci. USA 99, 14434–14439 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
27.Paik, S., Brown, A., Munro, C. L., Cornelissen, C. N. & Kitten, T. The sloABCR operon of Streptococcus mutans encodes an Mn and Fe transport system required for endocarditis virulence and its Mn-dependent repressor. J. Bacteriol. 185, 5967–5975 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
28.Nicolas, G. G. Detection of putative new mutacins by bioinformatic analysis using available web tools. BioData Min. 4, 22 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Aframian, N. & Eldar, A. A bacterial tower of Babel: quorum-sensing signaling diversity and its evolution. Annu. Rev. Microbiol. 74, 587–606 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Merritt, J., Qi, F. & Shi, W. A unique nine-gene comY operon in Streptococcus mutans. Microbiology 151, 157–166 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Underhill, S. A. M. et al. Intracellular signaling by the comRS system in Streptococcus mutans genetic competence. mSphere 3, e00444-18 (2018).PubMed
PubMed Central
Article
Google Scholar
32.Dufour, D., Cordova, M., Cvitkovitch, D. G. & Lévesque, C. M. Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. J. Bacteriol. 193, 6552–6559 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
33.Hossain, M. S. & Biswas, I. Mutacins from Streptococcus mutans UA159 are active against multiple streptococcal species. Appl. Environ. Microbiol. 77, 2428–2434 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
34.Merritt, J. & Qi, F. The mutacins of Streptococcus mutans: regulation and ecology. Mol. Oral. Microbiol 27, 57–69 (2012).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Son, M., Shields, R. C., Ahn, S. J., Burne, R. A. & Hagen, S. J. Bidirectional signaling in the competence regulatory pathway of Streptococcus mutans. FEMS Microbiol. Lett. 362, fnv159 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
36.Reck, M., Tomasch, J. & Wagner-Döbler, I. The alternative sigma factor SigX controls bacteriocin synthesis and competence, the two quorum sensing regulated traits in Streptococcus mutans. PLoS Genet. 11, e1005353 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
37.Perry, J. A., Cvitkovitch, D. G. & Lévesque, C. M. Cell death in Streptococcus mutans biofilms: a link between CSP and extracellular DNA. FEMS Microbiol. Lett. 299, 261–266 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Wenderska, I. B. et al. A novel function for the competence inducing peptide, XIP, as a cell death effector of Streptococcus mutans. FEMS Microbiol. Lett. 336, 104–112 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
39.Perry, D. & Kuramitsu, H. K. Genetic transformation of Streptococcus mutans. Infect. Immun. 32, 1295–1297 (1981).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Desai, K., Mashburn-Warren, L., Federle, M. J. & Morrison, D. A. Development of competence for genetic transformation of Streptococcus mutans in a chemically defined medium. J. Bacteriol. 194, 3774–3780 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
41.Khan, R. et al. Extracellular identification of a processed type II ComR/ComS pheromone of Streptococcus mutans. J. Bacteriol. 194, 3781–3788 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Khan, R. et al. A positive feedback loop mediated by Sigma X enhances expression of the streptococcal regulator ComR. Sci. Rep. 7, 5984 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
43.Nakano, K. et al. Streptococcus mutans clonal variation revealed by multilocus sequence typing. J. Clin. Microbiol. 45, 2616–2625 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
44.Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-019-0186-5 (2019).45.Visch, L. L., Gravenmade, E. J., Schaub, R. M., Van Putten, W. L. & Vissink, A. A double-blind crossover trial of CMC- and mucin-containing saliva substitutes. Int. J. Oral Max. Surg. 15, 395–400 (1986).CAS
Article
Google Scholar
46.Silverman, H. S. et al. In vivo glycosylation of mucin tandem repeats. Glycobiology 11, 459–471 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Zalewska, A., Zwierz, K., Zółkowski, K. & Gindzieński, A. Structure and biosynthesis of human salivary mucins. Acta Biochim. Pol. 47, 1067–1079 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Wheeler, K. M. et al. Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4, 2146–2154 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
49.Werlang, C., Cárcarmo-Oyarce, G. & Ribbeck, K. Engineering mucus to study and influence the microbiome. Nat. Rev. Mater. https://doi.org/10.1038/s41578-018-0079-7 (2019).50.Wang, B. X. et al. Mucin glycans signal through the sensor kinase RetS to inhibit virulence-associated traits in Pseudomonas aeruginosa. Curr. Biol. 31, 90–102 (2021).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Huang, Y., Mechref, Y. & Novotny, M. V. Microscale nonreductive release of O-Linked glycans for subsequent analysis through MALDI mass spectrometry and capillary electrophoresis. Anal. Chem. 73, 6063–6069 (2001).CAS
PubMed
Article
Google Scholar
52.Khan, R. et al. Comprehensive transcriptome profiles of Streptococcus mutans UA159 map core streptococcal competence genes. mSystems 1, e00038 (2016).PubMed
PubMed Central
Article
Google Scholar
53.Rayment, S. A., Liu, B., Offner, G. D., Oppenheim, F. G. & Troxler, R. F. Immunoquantification of human salivary mucins MG1 and MG2 in stimulated whole saliva: factors influencing mucin levels. J. Dent. Res. 79, 1765–1772 (2000).CAS
PubMed
Article
Google Scholar
54.Son, M., Ahn, S.-J., Guo, Q., Burne, R. A. & Hagen, S. J. Microfluidic study of competence regulation in Streptococcus mutans: environmental inputs modulate bimodal and unimodal expression of comX. Mol. Microbiol. 86, 258–272 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Ricomini Filho, A. P., Khan, R., Åmdal, H. A. & Petersen, F. C. Conserved pheromone production, response and degradation by Streptococcus mutans. Front. Microbiol. 10, 2140 (2019).PubMed
PubMed Central
Article
Google Scholar
56.Hagen, S. J. & Son, M. Origins of heterogeneity in Streptococcus mutans competence: interpreting an environment-sensitive signaling pathway. Phys. Biol. 14, 015001 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
57.Hillman, J. D., Mo, J., McDonell, E., Cvitkovitch, D. & Hillman, C. H. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J. Appl. Microbiol. 102, 1209–1219 (2007).CAS
PubMed
Article
Google Scholar
58.Singla, D., Sharma, A., Sachdev, V. & Chopra, R. Distribution of Streptococcus mutans and Streptococcus sobrinus in dental plaque of indian pre-school children using PCR and SB-20M agar medium. J. Clin. Diagn. Res. 10, ZC60–ZC63 (2016).PubMed
PubMed Central
Google Scholar
59.Rodriguez, A. M. et al. Physiological and molecular characterization of genetic competence in Streptococcus sanguinis. Mol. Oral Microbiol. 26, 99–116 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Darch, S. E. et al. Spatial determinants of quorum signaling in a Pseudomonas aeruginosa infection model. Proc. Natl Acad. Sci. USA 115, 4779–4784 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Wu, C. et al. Regulation of ciaXRH operon expression and identification of the CiaR regulon in Streptococcus mutans. J. Bacteriol. 192, 4669–4679 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Qi, F., Merritt, J., Lux, R. & Shi, W. Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect. Immun. 72, 4895–4899 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
63.Biswas, S. & Biswas, I. Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans. Infect. Immun. 73, 6923–6934 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
64.Senadheera, M. D. et al. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J. Bacteriol. 187, 4064–4076 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Domenech, A. et al. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe 27, 544–555 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Merritt, J., Zheng, L., Shi, W. & Qi, F. Genetic characterization of the hdrRM operon: a novel high-cell-density-responsive regulator in Streptococcus mutans. Microbiology 153, 2765–2773 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
67.Okinaga, T., Niu, G., Xie, Z., Qi, F. & Merritt, J. The hdrRM operon of Streptococcus mutans encodes a novel regulatory system for coordinated competence development and bacteriocin production. J. Bacteriol. 192, 1844–1852 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
68.Alves, L. A. et al. PepO is a target of the two-component systems VicRK and CovR required for systemic virulence of Streptococcus mutans. Virulence 11, 521–536 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Underhill, S. A. M., Shields, R. C., Burne, R. A. & Hagen, S. J. Carbohydrate and PepO control bimodality in competence development by Streptococcus mutans. Mol. Microbiol. 112, 1388–1402 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
70.Kaspar, J. R., Lee, K., Richard, B., Walker, A. R. & Burne, R. A. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. ISME J. https://doi.org/10.1038/s41396-020-00789-7 (2020).71.Idone, V. et al. Effect of an orphan response regulator on Streptococcus mutans sucrose-dependent adherence and cariogenesis. Infect. Immun. 71, 4351–4360 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Nagasawa, R., Sato, T. & Senpuku, H. Raffinose induces biofilm formation by Streptococcus mutans in low concentrations of sucrose by increasing production of extracellular DNA and fructan. Appl. Environ. Microbiol. 83, e00869 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Suzuki, Y., Nagasawa, R. & Senpuku, H. Inhibiting effects of fructanase on competence-stimulating peptide-dependent quorum sensing system in Streptococcus mutans. J. Infect. Chemother. 23, 634–641 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Yoshida, A., Ansai, T., Takehara, T. & Kuramitsu, H. K. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl. Environ. Microbiol. 71, 2372–2380 (2005).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Son, M., Ghoreishi, D., Ahn, S.-J., Burne, R. A. & Hagen, S. J. Sharply tuned pH response of genetic competence regulation in Streptococcus mutans: a microfluidic study of the environmental sensitivity of comX. Appl. Environ. Microbiol. 81, 5622–5631 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Nielsen, S. S. in Food Analysis Laboratory Manual 137–141 (Springer, 2017).77.Aoki, K. et al. The diversity of O-linked glycans expressed during Drosophila melanogaster development reflects stage- and tissue-specific requirements for cell signaling. J. Biol. Chem. 283, 30385–30400 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
78.Kumagai, T., Katoh, T., Nix, D. B., Tiemeyer, M. & Aoki, K. In-gel β-elimination and aqueous-organic partition for improved O- and sulfoglycomics. Anal. Chem. 85, 8692–8699 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
79.Anumula, K. R. & Taylor, P. B. A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203, 101–108 (1992).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Liu, Y. et al. The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data. Glycobiology 27, 280–284 (2017).CAS
PubMed
Google Scholar
81.Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS
PubMed
Article
Google Scholar
82.O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).Article
CAS
Google Scholar
83.Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
84.Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
85.Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
86.Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).CAS
Article
Google Scholar
87.Thissen, D., Steinberg, L. & Kuang, D. Quick and easy implementation of the Benjamini–Hochberg procedure for controlling the false positive rate in multiple comparisons. J. Educ. Behav. Stat. 27, 77–83 (2002).Article
Google Scholar
88.Aymanns, S., Mauerer, S., Zandbergen, G., Wolz, C. & Spellerberg, B. High-level fluorescence labeling of Gram-positive pathogens. PLoS ONE 6, e19822 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Takehara, S., Yanagishita, M., Podyma-Inoue, K. A. & Kawaguchi, Y. Degradation of MUC7 and MUC5B in human saliva. PLoS ONE 8, e69059 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar More