Snow algae blooms are beneficial for microinvertebrates assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan
1.Szolgay, J. et al. A regional comparative analysis of empirical and theoretical flood peak-volume relationships. J. Hydrol. Hydromech. 64, 367–381 (2016).Article
Google Scholar
2.Vogt, S. & Braun, M. Influence of glaciers and snow cover on terrestrial and marine ecosystems as revealed by remotely-sensed data. Pesquisa Antártica Brasileira. 15, 105–118 (2004).
Google Scholar
3.Groffman, P. M. et al. Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56, 135–150 (2001).CAS
Article
Google Scholar
4.Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).Article
Google Scholar
5.Yakimovich, K. M., Engstrom, C. B. & Quarmby, L. M. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front. Microbiol. 11, 1721 (2020).PubMed
PubMed Central
Article
Google Scholar
6.Hoham, R. W., Laursen, A. E., Clive, S. O. & Duval, B. Snow algae and other microbes in several alpine areas in New England. Proc 50th East. Snow Conf 165–173 (1993).7.Domine, F. Should we not further study the impact of microbial activity on snow and polar atmospheric chemistry?. Microorganisms 7, 260 (2019).CAS
PubMed Central
Article
PubMed
Google Scholar
8.Hoham, R. W. & Duval, B. Microbial ecology of snow and freshwater ice Snow Ecology (Cambridge University Press, 2001).
Google Scholar
9.Fukushima, H. Studies on cryophytes in Japan. Yokohama Munic. Univ. 43, 1–146 (1963).
Google Scholar
10.Muramoto, K., Kato, S., Shitara, T., Hara, Y. & Nozaki, H. Morphological and Genetic Variation in the Cosmopolitan Snow Alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese Mountainous Area. Cytologia (Tokyo) 73, 91–96 (2008).CAS
Article
Google Scholar
11.Muramoto, K., Nakada, T., Shitara, T., Hara, Y. & Nozaki, H. Re-examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. Nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur. J. Phycol. 45, 27–37 (2010).CAS
Article
Google Scholar
12.Hoham, R. W. & Remias, D. Snow and glacial algae: A review. J. Phycol. 56, 264–282 (2020).Article
Google Scholar
13.Lutz, S., Anesio, A. M., Jorge Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).CAS
PubMed
Article
Google Scholar
14.Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 11968 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
15.Boetius, A., Anesio, A. M., Deming, J. W., Mikucki, J. A. & Rapp, J. Z. Microbial ecology of the cryosphere: sea ice and glacial habitats. Nat. Rev. Microbiol. 13, 677–690 (2015).CAS
PubMed
Article
Google Scholar
16.Hanzelová, M., Vido, J., Škvarenina, J., Nalevanková, P. & Perháčová, Z. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia (Bratisl.) 73, 1177–1186 (2018).Article
CAS
Google Scholar
17.Pollock, R. What colors the mountain snow?. Sierra Club. Bull. 55, 18–20 (1970).
Google Scholar
18.Negoro, H. Seasonal occurrence of the apterous wintr stoneflis in the mountaine and the high mountaine areas of Toyama Prefecture in Japan. Bull. Toyama Sci. Mus. 32, 61–69 (2009).
Google Scholar
19.Jordan, S. et al. Loss of genetic diversity and increased subdivision in an endemic alpine stonefly threatened by climate change. PLoS ONE 11, e0157386 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
20.Zawierucha, K. et al. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J. Zool. https://doi.org/10.1111/jzo.12832 (2020).Article
Google Scholar
21.McInnes, S. J. & Pugh, P. J. A. Tardigrade Biogeography. in Water Bears: The Biology of Tardigrades (ed. Schill, R. O.) vol. 2 115–129 (2018).22.Degma, P., Bertolani, R. & Guidetti, R. Actual checklist of Tardigrada species (2009–2019).23.Segers, H. et al. Towards a List of Available Names in Zoology, partim Phylum Rotifera. Zootaxa 3179, 61 (2012).Article
Google Scholar
24.Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61 (2011).Article
Google Scholar
25.Zawierucha, K. et al. Water bears dominated cryoconite hole ecosystems: densities, habitat preferences and physiological adaptations of Tardigrada on an alpine glacier. Aquat. Ecol. https://doi.org/10.1007/s10452-019-09707-2 (2019).Article
Google Scholar
26.Horikawa, D. D. et al. Radiation tolerance in the tardigrade Milnesium tardigradum. Int. J. Radiat. Biol. 82, 843–848 (2006).CAS
PubMed
Article
Google Scholar
27.Ramløv, H. & Westh, P. Cryptobiosis in the Eutardigrade Adorybiotus coronifer: tolerance to alcohols, temperature and de novo protein synthesis. Zool. Anz. 240, 517–523 (2001).Article
Google Scholar
28.Guidetti, R., Massa, E., Bertolani, R., Rebecchi, L. & Cesari, M. Increasing knowledge of Antarctic biodiversity: new endemic taxa of tardigrades (Eutardigrada; Ramazzottiidae) and their evolutionary relationships. Syst. Biodivers. https://doi.org/10.1080/14772000.2019.1649737 (2019).Article
Google Scholar
29.Nelson, D. R., Bartels, P. J. & Fegley, S. R. Environmental correlates of tardigrade community structure in mosses and lichens in the Great Smoky Mountains National Park (Tennessee and North Carolina, USA). Zool. J. Linn. Soc. 188, 913–924 (2020).
Google Scholar
30.Zawierucha, K. et al. Snapshot of micro-animals and associated biotic and abiotic environmental variables on the edge of the south-west Greenland ice sheet. Limnology 19, 141–150 (2018).Article
Google Scholar
31.Zawierucha, K., Buda, J. & Nawrot, A. Extreme weather event results in the removal of invertebrates from cryoconite holes on an Arctic valley glacier (Longyearbreen, Svalbard). Ecol. Res. 34, 370–379 (2019).Article
Google Scholar
32.Hohberg, K. & Traunspurger, W. Predator–prey interaction in soil food web: functional response, size-dependent foraging efficiency, and the influence of soil texture. Biol. Fertil. Soils 41, 419–427 (2005).Article
Google Scholar
33.Vonnahme, T. R., Devetter, M., Žárský, J. D., Šabacká, M. & Elster, J. Controls on microalgal community structures in cryoconite holes upon high Arctic glaciers Svalbard. Biogeosci. Discuss. 12, 11751–11795 (2015).ADS
Google Scholar
34.Loreau, M., Naseem, S. & Inchausti, P. Biodiversity and ecosystem functioning: synthesis and perspectives (Oxford University Press, 2002).
Google Scholar
35.Jaroměřská, T. et al. Stable isotopic composition of top consumers in Arcticcryoconite holes: revealing divergent roles in a supraglacial trophic network. Biogeosci. 18, 1543–1557 (2021).36.Khoshima, S. & Hidaka, T. Life cycle and adult migration of wingless winter stonefly (Eocapnia nivalis). Biol. Inland Water 2, 39–43 (1981).
Google Scholar
37.Bryndová, M., Stec, D., Schill, R. O., Michalczyk, Ł & Devetter, M. Tardigrade dietary preferences and diet effects on tardigrade life history traits. Zool. J. Linn. Soc. 188, 865–877 (2020).Article
Google Scholar
38.Hohberg, K. & Traunspurger, W. Foraging theory and partial consumption in a tardigrade–nematode system. Behav. Ecol. 20, 884–890 (2009).Article
Google Scholar
39.Fukuhara, H. et al. Vertical distribution of invertebrates in red snow (Akashibo) at Ozegahara mire Central Japan. SIL Proc. 1922–2010(30), 1487–1492 (2010).
Google Scholar
40.Altiero, T. & Rebecchi, L. Rearing tardigrades: results and problems. Zool Anz 240, 217–221 (2001).Article
Google Scholar
41.Tanabe, Y., Shitara, T., Kashino, Y., Hara, Y. & Kudoh, S. Utilizing the Effective Xanthophyll Cycle for Blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the Snow Surface. PLoS ONE 6, e14690 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
42.Matsuzaki, R., Nozaki, H., Takeuchi, N., Hara, Y. & Kawachi, M. Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. Nov.. PLoS ONE 14, e0210986 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Remias, D., Karsten, U., Lütz, C. & Leya, T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86 (2010).PubMed
Article
Google Scholar
44.Horikawa, D. D. et al. Establishment of a rearing system of the Extremotolerant Tardigrade Ramazzottius varieornatus : a new model animal for astrobiology. Astrobiology 8, 549–556 (2008).ADS
CAS
PubMed
Article
Google Scholar
45.Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775 (2016).Article
Google Scholar
46.Maruyama, I., Nakao, T., Shigeno, I., Ando, Y. & Hirayama, K. Application of unicellular algae Chlorella vulgaris for the mass culture of marine rotifer Brachionus. Hydrobiologia 358, 133–138 (1975).Article
Google Scholar
47.Serge, Y. M. & Edna, G. Environmental conditions and ecophysiological mechanisms which led to the 1988 chrysochromulina-polylepis bloom: an hypothesis. Oceanol. Acta 14, 397–413 (1991).
Google Scholar
48.Kariya, Y. Holocene landscape evolution of a nivation hollow on Gassan volcano, northern Japan. CATENA 62, 57–76 (2005).Article
Google Scholar
49.Degma, P. Field and Laboratory Methods. In Water Bears: The Biology of Tardigrades Vol. 2 (ed. Schill, R. O.) 349–369 (Springer International Publishing, 2018).
Google Scholar
50.Ito, M. Taxonomic Study on the Eutardigrada from the Northern Slope of Mt. Fuji, Central Japan, II. Family Hypsibiide. Proc. Jpn. Soc. Syst. Zool. 53, 18–39 (1995).
Google Scholar
51.Abe, W. A new species of the genus Hypsibius (Tardigrada: Parachela: Hypsibiidae) from Sakhalin Island Far East Russia. Zoolog. Sci. 21, 957–962 (2004).PubMed
Article
Google Scholar
52.Wallace, R. L., Snell, T. W. & Smith, H. A. Phylum Rotifera. In Thorp and Covich’s Freshwater Invertebrates 4th edn (eds Thorp, J. H. & Rogers, D. C.) 225–271 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-385026-3.00013-9.
Google Scholar
53.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
54.Hallas, T. E. & Yeates, G. W. Tardigrada of the soil and litter of a Danish beech forest. Pedobiologia 12, 287–304 (1972).
Google Scholar
55.Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. & Strickland, J. D. H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 30, 3–15 (1965).CAS
Article
Google Scholar
56.Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA – Bioenerg. 975, 384–394 (1989).CAS
Article
Google Scholar
57.R Core Team. R: A language and environment for statistical computing. Found. Stat. Comput. Vienna Austria (2020). More