More stories

  • in

    Social networks strongly predict the gut microbiota of wild mice

    1.Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Monachese M, Burton JP, Reid G. Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics?. Appl Environ Microbiol. 2012;78:6397–404.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Chevalier C, Stojanovi O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163:1360–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Kamada N, Kim Y-G, Sham HP, Vallance BA, Puente JL, Martens EC, et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science. 2012;336:1325–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Zhang N, He Q-S. Commensal microbiome promotes resistance to local and systemic infections. Chin Med J. 2015;128:2250–5.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature 2016;535:75–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535:65–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci USA. 2012;109:8334–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immuno l. 2019;195:74–85.Article 
    CAS 

    Google Scholar 
    11.Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336:1255–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA. 2010;107:11971–5.PubMed 
    Article 

    Google Scholar 
    13.Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lane AA, McGuire MK, McGuire MA, Williams JE, Lackey KA, Hagen EH, et al. Household composition and the infant fecal microbiome: the INSPIRE study. Am J Phys Anthropol. 2019;169:526–39.PubMed 
    Article 

    Google Scholar 
    15.Lehtimäki J, Karkman A, Laatikainen T, Paalanen L, von Hertzen L, Haahtela T, et al. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep. 2017;7:45651.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Tamburini S, Shen N, Wu H, medicine JC-N. The microbiome in early life: implications for health outcomes. Nat Med. 2016;22:713–22.CAS 
    Article 

    Google Scholar 
    17.Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ottman N, Ruokolainen L, Suomalainen A, Sinkko H, Karisola P, Lehtimäki J, et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J Allergy Clin Immunol. 2019;143:1198–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Grieneisen LE, Charpentier MJE, Alberts SC, Blekhman R, Bradburd G, Tung J, et al. Genes, geology and germs: gut microbiota across a primate hybrid zone are explained by site soil properties, not host species. Proc R Soc B Biol Sci. 2019;286:20190431.Article 

    Google Scholar 
    21.Sarkar A, Harty S, Johnson KV-A, Moeller AH, Archie EA, Schell LD, et al. Microbial transmission in animal social networks and the social microbiome. Nat Ecol Evol. 2020;4:1020–35.PubMed 
    Article 

    Google Scholar 
    22.Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Hufeldt MR, Nielsen DS, Vogensen FK, Midtvedt T, Hansen AK. Variation in the gut microbiota of laboratory mice is related to both genetic and environmental factors. Comp Med. 2010;60:336–47.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Hildebrand F, Nguyen TLA, Brinkman B, Yunta R, Cauwe B, Vandenabeele P, et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol. 2013;14:R4.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Lees H, Swann J, Poucher SM, Nicholson JK, Holmes E, Wilson ID, et al. Age and microenvironment outweigh genetic influence on the Zucker rat microbiome. PloS One. 2014;9:e100916.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Grieneisen LE, et al. Social networks predict gut microbiome composition in wild baboons. Elife. 2015;4:e05224.PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    27.Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J Anim Ecol. 2018;87:388–99.PubMed 
    Article 

    Google Scholar 
    28.Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc Biol Sci. 2017;284:20172274.PubMed 
    PubMed Central 

    Google Scholar 
    29.Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2:e1500997.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Wikberg EC, Christie D, Sicotte P, Ting N. Interactions between social groups of colobus monkeys (Colobus vellerosus) explain similarities in their gut microbiomes. Anim Behav. 2020;163:17–31.Article 

    Google Scholar 
    31.Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J Primatol. 2016;78:883–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Theis KR, Schmidt TM, Holekamp KE. Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep. 2012;2:615.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Leclaire S, Nielsen JF, Drea CM. Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol. 2014;25:996–1004.Article 

    Google Scholar 
    34.Antwis RE, Lea JMD, Unwin B, Shultz S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. Microbiome. 2018;6:207.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife. 2013;2:e00458.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr Comp Biol. 2017;57:770–85.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Dill-McFarland KA, Tang Z-Z, Kemis JH, Kerby RL, Chen G, Palloni A, et al. Close social relationships correlate with human gut microbiota composition. Sci Rep. 2019;9:703.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Wilson EO. Elementary concepts in sociobiology. In: Wilson EO, editors. Sociobiology: The New Synthesis. 25th ed. Cambridge, Massachutes, USA: Harvard University Press; 2000. p. 8.
    Google Scholar 
    39.Godsall B. Mechanisms of space use in the wood mouse, Apodemus sylvaticus. Doctoral Thesis, London: Imperial College; 2015.40.Wolton RJ. The ranging and nesting behaviour of Wood mice, Apodemus sylvaticus (Rodentia: Muridae), as revealed by radio-tracking. J Zool. 2009;206:203–22.Article 

    Google Scholar 
    41.Stopka P, Macdonald DW. The market effect in the Wood mouse, Apodemus sylvaticus: selling information on reproductive status. Ethology. 2001;105:969–82.42.Walton JB, Andrews JF. Torpor induced by food deprivation in the Wood mouse Apodemus sylvaticus. J Zool. 2009;194:260–3.Article 

    Google Scholar 
    43.Wolton RJ. A possible role for faeces in range-marking by the Wood mouse, Apodemus sylvaticus. J Zool. 2009;206:286–91.Article 

    Google Scholar 
    44.Wolton RJ. Individual recognition by olfaction in the Wood Mouse, Apodemus sylvaticus. Behaviour. 1984;88:191–9.Article 

    Google Scholar 
    45.Godsall B, Coulson T, Malo AF. From physiology to space use: energy reserves and androgenization explain home-range size variation in a woodland rodent. J Anim Ecol. 2014;83:126–35.PubMed 
    Article 

    Google Scholar 
    46.Wang J, Santure AW. Parentage and sibship inference from multilocus genotype data under polygamy. Genetics. 2009;181:1579–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Farine DR. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol Evol. 2013;4:1187–94.Article 

    Google Scholar 
    48.Csardi G, Nepusz T. The igraph software package for complex network research. Inter J Complex Syst. 2006;1695:1–9.
    Google Scholar 
    49.Firth JA, Sheldon BC. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol Lett. 2016;19:1324–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.McKnight DT, Huerlimann R, Bower DS, Schwarzkopf L, Alford RA, Zenger KR. Methods for normalizing microbiome data: an ecological perspective. Methods. Ecol Evol. 2019;10:389–400.
    Google Scholar 
    53.Hsieh TC, Ma KH, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods. Ecol Evol. 2016;7:1451–6.
    Google Scholar 
    54.Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MH, Oksanen MJ, et al. The vegan package. Community Ecol Package. 2007;10:719.
    Google Scholar 
    55.Bürkner PC. brms: an R package for Bayesian multilevel models using stan. J Stat Softw. 2017;80:1–28.Article 

    Google Scholar 
    56.Bürkner PC. Advanced Bayesian multilevel modeling with the R package brms. R J. 2018;10:395–411.Article 

    Google Scholar 
    57.Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw. 2010;33:1–22.Article 

    Google Scholar 
    58.Dekker D, Krackhardt D, Snijders TA. Sensitivity of MRQAP tests to collinearity and autocorrelation conditions. Psychometrika. 2007;72:563–81.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome. 2016;4:36.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Wieczorek AS, Schmidt O, Chatzinotas A, von Bergen M, Gorissen A, Kolb S. Ecological functions of agricultural soil bacteria and microeukaryotes in chitin degradation: a case study. Front Microbiol. 2019;10:1293.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Huang X, Liu L, Zhao J, Zhang J, Cai Z. The families Ruminococcaceae, Lachnospiraceae, and Clostridiaceae are the dominant bacterial groups during reductive soil disinfestation with incorporated plant residues. Appl Soil Ecol. 2019; 135:65–72.62.Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tew TE, Macdonald DW. Dynamics of space use and male vigour amongst wood mice, Apodemus sylvaticus, in the cereal ecosystem. Behav Ecol Sociobiol. 1994;34:337–45.Article 

    Google Scholar 
    64.Erazo D, Pedersen AB, Gallagher K, Fenton A. Who acquires infection from whom? Estimating herpesvirus transmission rates between wild rodent host groups. 2020, https://www.biorxiv.org/content/10.1101/2020.09.18.302489v1.65.Taylor SE, Klein LC, Lewis BP, Gruenewald TL, Gurung RAR, Updegraff JA. Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychol Rev. 2000;107:411–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Amato KR, Van Belle S, Di Fiore A, Estrada A, Stumpf R, White B, et al. Patterns in gut microbiota similarity associated with degree of sociality among sex classes of a neotropical primate. Micro Ecol. 2017;74:250–8.Article 

    Google Scholar 
    67.Brito IL, Gurry T, Zhao S, Huang K, Young SK, Shea TP, et al. Transmission of human-associated microbiota along family and social networks. Nat Microbiol. 2019;4:964–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Johnson KV-A. Gut microbiome composition and diversity are related to human personality traits. Hum Microbiome J. 2020;15:100069.Article 

    Google Scholar 
    69.Levin II, Zonana DM, Fosdick BK, Song SJ, Knight R, Safran RJ. Stress response, gut microbial diversity and sexual signals correlate with social interactions. Biol Lett. 2016;12:20160352.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Mouquet N, Loreau M. Community patterns in source‐sink metacommunities. Am Nat. 2003;162:544–57.PubMed 
    Article 

    Google Scholar 
    71.Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, et al. Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annu Rev Ecol Evol Syst. 2003;34:517–47.Article 

    Google Scholar 
    72.Loehle C. Social barriers to pathogen transmission in wild animal populations. Ecology. 1995;76:326–35.Article 

    Google Scholar 
    73.Moeller A, Dufva R, Allander K. Parasites and the evolution of host social behavior. Adv Study Behav. 1993;22:65–102.Article 

    Google Scholar 
    74.Reese AT, Dunn RR. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. MBio. 2018;9:4.Article 

    Google Scholar 
    75.Shade A. Diversity is the question, not the answer. ISME J. 2017;11:1–6.PubMed 
    Article 

    Google Scholar 
    76.Pallen MJ. The human microbiome and host-pathogen interactions. In: Metagenomics of the human body. New York, NY: Springer; 2011; p 43–61.77.Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Micro Ecol. 2014;69:434–43.Article 
    CAS 

    Google Scholar 
    78.Barribeau SM, Villinger J, Waldman B. Ecological immunogenetics of life-history traits in a model amphibian. Biol Lett. 2012;8:405–7.PubMed 
    Article 

    Google Scholar 
    79.Feng T, Elson CO. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 2011;4:15–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Amato KR. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution. Am J Phys Anthropol. 2016;159:196–215.Article 

    Google Scholar 
    81.Knowles SCL, Eccles RM, Baltrūnaitė L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Detecting the effects of predator-induced stress on the global metabolism of an ungulate prey using fecal metabolomic fingerprinting

    1.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    2.Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ritchie, E. G. et al. Ecosystem restoration with teeth: what role for predators?. Trends Ecol. Evol. 27(5), 265–271 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Terborgh, J. & Estes, J. A. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (Island Press, 2010).
    Google Scholar 
    5.Creel, S. & Winnie, J. A. Responses of elk herd size to fine scale spatial and temporal variation in the risk of predation by wolves. Anim. Behav. 69, 1181–1189 (2005).Article 

    Google Scholar 
    6.Fischhoff, I. R., Sundaresan, S. R., Cordingley, J. & Rubenstein, D. I. Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behav. Ecol. 18, 725–729 (2007).Article 

    Google Scholar 
    7.Latombe, G., Fortin, D. & Parrott, L. Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolves. J. Anim. Ecol. 83, 185–198 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).Article 

    Google Scholar 
    9.Creel, S., Winnie, J. A. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. PNAS 106(30), 12388–12393 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Dulude-de Broin, F., Hamel, S., Mastromonaco, G. F. & Côté, S. D. Predation risk and mountain goat reproduction: evidence for stress-induced breeding suppression in a wild ungulate. Funct. Ecol. 34(5), 1003–1014 (2020).Article 

    Google Scholar 
    11.Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI Publishing, 2000).
    Google Scholar 
    12.Boonstra, R. The ecology of stress: a marriage of disciplines. Funct. Ecol. 27, 7–10 (2013).Article 

    Google Scholar 
    13.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Kelley, K. W. Immunological consequences of changing environmental stimuli. In Animal Stress (ed. Moberg, G. P.) 193–223 (American Physiological Society, Bethesda, 1985).15.Mӧstl, E. & Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 23, 67–74 (2002).Article 

    Google Scholar 
    16.Ursin, H. & Eriksen, H. R. The cognitive activation theory of stress. Psychoneuroendocrinology 29(5), 567–592 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lovallo, W. R. Individual differences in reactivity to stress. In Stress and Health. Biological and Psychological Interactions (ed. Lovallo, W. R.) 203–225 (Sage, 2016).18.Patchev, V. K. & Patchev, A. V. Experimental models of stress. Dialogues Clin. Neurosci. 8(4), 417–432 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Mills, J. L. Scientific Principles of Stress (University of the West Indie Press, 2012).
    Google Scholar 
    20.Henry, J. P. Biological basis of the stress response. Integr. Physiol. Behav. Sci. 27, 66–83 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Wu, Y., Patchev, A. V., Daniel, G., Almeida, O. F. X. & Spengler, D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology 155(5), 1751–1762 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Novais, A., Monteiro, S., Roque, S., Correia-Neves, M. & Sousa, N. How age, sex and genotype shape the stress response. Neurob. Stress 6, 44–56 (2017).Article 

    Google Scholar 
    23.Romero, L. M. & Gormally, B. M. G. How truly conserved is the “well-conserved” vertebrate stress response?. Integr. Comp. Biol. 59(2), 273–281 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Romero, L. M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19(5), 249–255 (2004).PubMed 
    Article 

    Google Scholar 
    26.Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).PubMed 
    Article 

    Google Scholar 
    27.Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490–15496 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Mohajeri, M. H., La Fata, G., Steinert, R. E. & Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 76, 481–496 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E. & Savignac, H. M. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108(38), 16050–16055 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Beauclercq, S. et al. A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study. J Anim. Sci. Biotechnol. 10, 21 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Jianguo, L., Xueyang, J., Cui, W., Changxin, W. & Xuemei, Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    33.Valerio, A., Casadei, L., Giuliani, A. & Valerio, M. Fecal metabolomics as a novel non-invasive method for short-term stress monitoring in beef cattle. J. Proteome Res. 19(2), 845–853 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabolomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lindon, J. C., Nicholson, J. K. & Holmes, E. The Handbook of Metabonomics and Metabolomics (Elsevier, 2007).
    Google Scholar 
    37.Matysik, S., Le Roy, C. I., Liebisch, G. & Claus, S. P. Metabolomics of fecal samples: a practical consideration. Trends Food Sci. Technol. 57, 244–255 (2016).CAS 
    Article 

    Google Scholar 
    38.Nicholson, J. K. & Lindon, J. C. Metabonomics. Nature 455, 1054–1056 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Viant, M. R. Environmental metabolomics using 1H-NMR spectroscopy. Methods Mol. Biol. 410, 137–150 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. & Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9), 1243–1266 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Worley, B. & Powers, R. Multivariate analysis in metabolomics. Curr. Metabolomics 1(1), 92–107 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Rivas-Ubach, A. et al. Ecometabolomics: optimized NMR-based method. Methods Ecol. Evol. 4(5), 464–473 (2013).Article 

    Google Scholar 
    43.Chen, M. X., Wang, S. Y., Kuo, C. H. & Tsai, I. L. Metabolome analysis for investigating host-gut microbiota interactions. JFMA 118(1), S10–S22 (2019).
    Google Scholar 
    44.Emwas, A. H. M. The Strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabonomics. Methods in Molecular Biology (ed. Bjerrum, J. T.) 1277, 161–193 (Human Press, 2015).45.Emwas, A. H. M. et al. NMR spectroscopy for metabolomics research. Metabolites 9(7), 123 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Wiles, G. J., Allen, H. L. & Hayes, G. E. Wolf Conservation and Management Plan for Washington (Washington Department of Fish and Wildlife, 2011).
    Google Scholar 
    48.Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk-foraging trade-offs: toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. 12, 6–11 (2016).Article 

    Google Scholar 
    49.Brown, J. A. Mortality of Range Livestock in Wolf-Occupied Areas of Washington. Thesis. Washington State University, Pullman, WA, USA (2015).50.Fieberg, J. & Kochanny, C. O. Quantification of home range overlap: the importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).Article 

    Google Scholar 
    51.Robert, K., Garant, D. & Pelletier, F. Keep in touch: does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).Article 

    Google Scholar 
    52.Angel, S. P. et al. Climate change and cattle production: impact and adaptation. J. Vet. Med. Res. 5(4), 1134 (2018).
    Google Scholar 
    53.Brosh, A. et al. Energy cost of cows’ grazing activity: use of the heart rate method and the global positioning system for direct field estimation. J. Anim. Sci. 84, 1951–1967 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Provenza, F. D. Postingestive feed-back as an elemental determinant of food preference and intake in ruminants. J. Range Manag. 48, 2–17 (1995).Article 

    Google Scholar 
    55.Provenza, F. D. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74, 2010–2020 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Howery, L. D., Provenza, F. D., Ruyle, G. B. & Jordan, N. C. How do animals learn if rangeland plants are toxic or nutritious?. Rangelands 20, 4–9 (1998).
    Google Scholar 
    57.Davitt, B. B. & Nelson, J. R. Methodology for the determination of DAPA in feces of large ruminants. In Proceedings of the Western States and Provinces Elk Workshop (ed. Nelson, R.W.) 133–147 (Edmonton, 1984).58.Church, D. C. Digestive Physiology and Nutrition of Ruminants I (Oxford Press, 1969).
    Google Scholar 
    59.Sato, S. Leadership during actual grazing in a small herd of cattle. Appl. Anim. Ethol. 8, 53–65 (1982).Article 

    Google Scholar 
    60.Frair, J. L. et al. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos. Trans. R. Soc. B 365, 2187–2200 (2010).Article 

    Google Scholar 
    61.Deda, O., Gika, H. G., Wilson, I. D. & Theodoridis, G. A. An overview of fecal preparation for global metabolic profiling. J. Pharm. Biomed. 113, 137–150 (2015).CAS 
    Article 

    Google Scholar 
    62.Landakadurai, B. P., Nagato, E. G. & Simpson, M. J. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ. Rev. 21, 180–205 (2013).Article 
    CAS 

    Google Scholar 
    63.Wiklund, S. et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucl. Acids Res. 37, D603–D610 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Frair, J. L. et al. Scale of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc. Ecol. 20, 273–287 (2005).Article 

    Google Scholar 
    66.Valerio, A. Stress-Mediated and Habitat-Mediated Risk Effects of Free-Ranging Cattle in Washington. Dissertation. Washington State University, Pullman, WA (2019).67.Winnie, J. & Creel, S. Sex-specific behavioral responses of elk to spatial and temporal variation in the threat of wolf predation. Anim. Behav. 73, 215–225 (2007).Article 

    Google Scholar 
    68.Bundy, J. G., Davey, M. P. & Viant, M. R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Regulation of olfactomedin 4 by Porphyromonas gingivalis in a community context

    1.Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat Rev Microbiol. 2018;16:745–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From beyond the pale to the pale riders: The emerging association of bacteria with oral cancer. J Dent Res. 2020;99:604–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Al-Hebshi NN, Borgnakke WS, Johnson NW. The microbiome of oral squamous cell carcinomas: a functional perspective. Curr Oral Health Rep. 2019;6:145–60.Article 

    Google Scholar 
    4.Hajishengallis G, Lamont RJ. Dancing with the stars: how choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends Microbiol. 2016;24:477–89.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Jiao Y, Hasegawa M, Inohara N. The role of oral pathobionts in dysbiosis during periodontitis development. J Dent Res. 2014;93:539–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Daep CA, Novak EA, Lamont RJ, Demuth DR. Structural dissection and in vivo effectiveness of a peptide inhibitor of Porphyromonas gingivalis adherence to Streptococcus gordonii. Infect Immun. 2011;79:67–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Kuboniwa M, Houser JR, Hendrickson EL, Wang Q, Alghamdi SA, Sakanaka A, et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat Microbiol. 2017;2:1493–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mahmoud MY, Steinbach-Rankins JM, Demuth DR. Functional assessment of peptide-modified PLGA nanoparticles against oral biofilms in a murine model of periodontitis. J Control Release. 2019;297:3–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Mans JJ, von Lackum K, Dorsey C, Willis S, Wallet SM, Baker HV, et al. The degree of microbiome complexity influences the epithelial response to infection. BMC Genomics. 2009;10:380.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Ohshima J, Wang Q, Fitzsimonds ZR, Miller DP, Sztukowska MN, Jung YJ, et al. Streptococcus gordonii programs epithelial cells to resist Zeb2 induction by Porphyromonas gingivalis. Proc Natl Acad Sci USA. 2019;116:8544–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Miller DP, Fitzsimonds ZR, Lamont RJ. Metabolic signaling and spatial interactions in the oral polymicrobial community. J Dent Res. 2019;98:1308–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol Med. 2015;21:172–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 2001;125:279–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Team RCR: a language and environment for statistical computing. R Foundation for Statistical Computing 2019.17.Tang Y, Horikoshi M, Li W. Ggfortify: Unified interface to visualize statistical results of popular R packages. R J. 2016;8:478–89.Article 

    Google Scholar 
    18.Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H. Upset: Visualization of intersecting sets. IEEE Trans Vis Comput Graph. 2014;20:1983–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Liu W, Lee HW, Liu Y, Wang R, Rodgers GP. Olfactomedin 4 is a novel target gene of retinoic acids and 5-aza-2’-deoxycytidine involved in human myeloid leukemia cell growth, differentiation, and apoptosis. Blood. 2010;116:4938–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Liu W, Rodgers GP. Olfactomedin 4 expression and functions in innate immunity, inflammation, and cancer. Cancer Metastasis Rev. 2016;35:201–12.PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Chen T, Siddiqui H, Olsen I. In silico comparison of 19 Porphyromonas gingivalis strains in genomics, phylogenetics, phylogenomics and functional genomics. Front Cell Infect Microbiol. 2017;7:28.PubMed 
    PubMed Central 

    Google Scholar 
    23.Dashper SG, Mitchell HL, Seers CA, Gladman SL, Seemann T, Bulach DM, et al. Porphyromonas gingivalis uses specific domain rearrangements and allelic exchange to generate diversity in surface virulence factors. Front Microbiol. 2017;8:48.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.To TT, Liu Q, Watling M, Bumgarner RE, Darveau RP, McLean JS. Draft genome sequence of low-passage clinical isolate Porphyromonas gingivalis MP4-504. Genome Announc. 2016;4:e00256–16.25.Acuna-Amador L, Primot A, Cadieu E, Roulet A, Barloy-Hubler F. Genomic repeats, misassembly and reannotation: a case study with long-read resequencing of Porphyromonas gingivalis reference strains. BMC Genom. 2018;19:54.Article 
    CAS 

    Google Scholar 
    26.Ye L, Kriegl L, Reiter FP, Munker SM, Itzel T, Teufel A, et al. Prognostic significance and functional relevance of olfactomedin 4 in early-stage hepatocellular carcinoma. Clin Transl Gastroenterol. 2020;11:e00124.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Li Y, Gong Y, Ma J, Gong X. Overexpressed circ-RPL15 predicts poor survival and promotes the progression of gastric cancer via regulating mir-502-3p/OLFM4/STAT3 pathway. Biomed Pharmacother. 2020;127:110219.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Cong Z, Ye G, Bian Z, Yu M, Zhong M. Jagged-1 attenuates LPS-induced apoptosis and ROS in rat intestinal epithelial cells. Int J Clin Exp Pathol. 2018;11:3994–4003.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Ashizawa Y, Kuboki S, Nojima H, Yoshitomi H, Furukawa K, Takayashiki T, et al. OLFM4 enhances STAT3 activation and promotes tumor progression by inhibiting GRIM19 expression in human hepatocellular carcinoma. Hepatol Commun. 2019;3:954–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell. 2013;23:171–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zhou Y, Sztukowska M, Wang Q, Inaba H, Potempa J, Scott DA, et al. Noncanonical activation of β-catenin by Porphyromonas gingivalis. Infect Immun. 2015;83:3195–203.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Lasica AM, Ksiazek M, Madej M, Potempa J. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front Cell Infect Microbiol. 2017;7:215.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Bozkulak EC, Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol Cell Biol. 2009;29:5679–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Mark Welch JL, Ramirez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche. Cell Host Microbe. 2020;28:160–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proc Natl Acad Sci USA. 2016;113:E791–800.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Stacy A, McNally L, Darch SE, Brown SP, Whiteley M. The biogeography of polymicrobial infection. Nat Rev Microbiol. 2016;14:93–105.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Meuric V, Martin B, Guyodo H, Rouillon A, Tamanai-Shacoori Z, Barloy-Hubler F, et al. Treponema denticola improves adhesive capacities of Porphyromonas gingivalis. Mol Oral Microbiol. 2013;28:40–53.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol. 2018;33:337–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, Herzberg MC, et al. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community. Mol Microbiol. 2006;60:121–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Potempa J, Nguyen KA. Purification and characterization of gingipains. Curr Protoc Protein Sci. 2007; 20:1–27.41.Liu X, Ramsey MM, Chen X, Koley D, Whiteley M, Bard AJ. Real-time mapping of a hydrogen peroxide concentration profile across a polymicrobial bacterial biofilm using scanning electrochemical microscopy. Proc Natl Acad Sci USA. 2011;108:2668–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Shinozaki S, Nakamura T, Iimura M, Kato Y, Iizuka B, Kobayashi M, et al. Upregulation of Reg 1α and GW112 in the epithelium of inflamed colonic mucosa. Gut. 2001;48:623–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Liu W, Yan M, Liu Y, Wang R, Li C, Deng C, et al. Olfactomedin 4 down-regulates innate immunity against Helicobacter pylori infection. Proc Natl Acad Sci USA. 2010;107:11056–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Jauregui CE, Wang Q, Wright CJ, Takeuchi H, Uriarte SM, Lamont RJ. Suppression of T-cell chemokines by Porphyromonas gingivalis. Infect Immun. 2013;81:2288–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Takeuchi H, Hirano T, Whitmore SE, Morisaki I, Amano A, Lamont RJ. The serine phosphatase SerB of Porphyromonas gingivalis suppresses IL-8 production by dephosphorylation of NF-κB RelA/p65. PLoS Pathog. 2013;9:e1003326.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Bostanci N, Belibasakis GN. Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett. 2012;333:1–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Hajishengallis G. Porphyromonas gingivalis-host interactions: open war or intelligent guerilla tactics? Microbes Infect. 2009;11:637–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Zhang X, Huang Q, Yang Z, Li Y, Li CY. GW112, a novel antiapoptotic protein that promotes tumor growth. Cancer Res. 2004;64:2474–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Stark JE, Opoka AM, Fei L, Zang H, Davies SM, Wong HR, et al. Longitudinal characterization of olfactomedin-4 expressing neutrophils in pediatric patients undergoing bone marrow transplantation. PLoS One. 2020;15:e0233738.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Marimuthu A, Chavan S, Sathe G, Sahasrabuddhe NA, Srikanth SM, Renuse S, et al. Identification of head and neck squamous cell carcinoma biomarker candidates through proteomic analysis of cancer cell secretome. Biochim Biophys Acta. 2013;1834:2308–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Gao XZ, Wang GN, Zhao WG, Han J, Diao CY, Wang XH, et al. Blocking OLFM4/HIF-1α axis alleviates hypoxia-induced invasion, epithelial-mesenchymal transition, and chemotherapy resistance in non-small-cell lung cancer. J Cell Physiol. 2019;234:15035–43.CAS 
    Article 

    Google Scholar 
    52.Kobayashi D, Koshida S, Moriai R, Tsuji N, Watanabe N. Olfactomedin 4 promotes S-phase transition in proliferation of pancreatic cancer cells. Cancer Sci. 2007;98:334–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Xiu MX, Liu YM, Kuang BH. The oncogenic role of Jagged1/Notch signaling in cancer. Biomed Pharmacother. 2020;129:110416.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Al-Attar A, Alimova Y, Kirakodu S, Kozal A, Novak MJ, Stromberg AJ, et al. Activation of Notch-1 in oral epithelial cells by P. gingivalis triggers the expression of the antimicrobial protein PLA2-IIA. Mucosal Immunol. 2018;11:1047–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, et al. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFβ/Notch signalling pathway and increased cell proliferation. BMC Genom. 2013;14:770.CAS 
    Article 

    Google Scholar 
    56.Xing Q, Ye Q, Fan M, Zhou Y, Xu Q, Sandham A. Porphyromonas gingivalis lipopolysaccharide inhibits the osteoblastic differentiation of preosteoblasts by activating Notch1 signaling. J Cell Physiol. 2010;225:106–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Weber S, Saftig P. Ectodomain shedding and ADAMs in development. Development. 2012;139:3693–709.CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Smith TM Jr, Tharakan A, Martin RK. Targeting ADAM10 in cancer and autoimmunity. Front Immunol. 2020;11:499.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Kulicka P, Danilewicz M. Overexpression of ADAM10 in oral squamous cell carcinoma with metastases. Pol J Pathol. 2018;69:67–72.PubMed 
    Article 

    Google Scholar 
    60.Saha N, Robev D, Himanen JP, Nikolov DB. ADAM proteases: Emerging role and targeting of the non-catalytic domains. Cancer Lett. 2019;467:50–57.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hocevar K, Vizovisek M, Wong A, Koziel J, Fonovic M, Potempa B, et al. Proteolysis of gingival keratinocyte cell surface proteins by gingipains secreted from Porphyromonas gingivalis—proteomic insights into mechanisms behind tissue damage in the diseased gingiva. Front Microbiol. 2020;11:722.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Aw J, Scholz GM, Huq NL, Huynh J, O’Brien-Simpson NM, Reynolds EC. Interplay between Porphyromonas gingivalis and EGF signalling in the regulation of CXCL14. Cell Microbiol. 2018;20:e12837.PubMed 
    Article 
    CAS 

    Google Scholar 
    63.Tada H, Matsuyama T, Nishioka T, Hagiwara M, Kiyoura Y, Shimauchi H, et al. Porphyromonas gingivalis gingipain-dependently enhances IL-33 production in human gingival epithelial cells. PLoS One. 2016;11:e0152794.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Kesavalu L, Holt SC, Ebersole JL. Virulence of a polymicrobic complex, Treponema denticola and Porphyromonas gingivalis, in a murine model. Oral Microbiol Immunol. 1998;13:373–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Ebersole JL, Feuille F, Kesavalu L, Holt SC. Host modulation of tissue destruction caused by periodontopathogens: effects on a mixed microbial infection composed of Porphyromonas gingivalis and Fusobacterium nucleatum. Micro Pathog. 1997;23:23–32.CAS 
    Article 

    Google Scholar 
    66.Orth RK, O’Brien-Simpson NM, Dashper SG, Reynolds EC. Synergistic virulence of Porphyromonas gingivalis and Treponema denticola in a murine periodontitis model. Mol Oral Microbiol. 2011;26:229–40.PubMed 
    Article 

    Google Scholar 
    67.Bradshaw DJ, Marsh PD, Watson GK, Allison C. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun. 1998;66:4729–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Tan KH, Seers CA, Dashper SG, Mitchell HL, Pyke JS, Meuric V, et al. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLoS Pathog. 2014;10:e1003955.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Diaz PI, Zilm PS, Rogers AH. Fusobacterium nucleatum supports the growth of Porphyromonas gingivalis in oxygenated and carbon-dioxide-depleted environments. Microbiology. 2002;148:467–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Aruni AW, Roy F, Fletcher HM. Filifactor alocis has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by Porphyromonas gingivalis. Infect Immun. 2011;79:3872–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Aruni AW, Zhang K, Dou Y, Fletcher H. Proteome analysis of coinfection of epithelial cells with Filifactor alocis and Porphyromonas gingivalis shows modulation of pathogen and host regulatory pathways. Infect Immun. 2014;82:3261–74.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Wang Q, Wright CJ, Dingming H, Uriarte SM, Lamont RJ. Oral community interactions of Filifactor alocis in vitro. PLoS One. 2013;8:e76271.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Chioma O, Aruni AW, Milford TA, Fletcher HM. Filifactor alocis collagenase can modulate apoptosis of normal oral keratinocytes. Mol Oral Microbiol. 2017;32:166–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ishihara K. Virulence factors of Treponema denticola. Periodontol 2000. 2010;54:117–35.PubMed 
    Article 

    Google Scholar 
    75.Aruni AW, Roy F, Sandberg L, Fletcher HM. Proteome variation among Filifactor alocis strains. Proteomics. 2012;12:3343–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Umana A, Sanders BE, Yoo CC, Casasanta MA, Udayasuryan B, Verbridge SS, et al. Utilizing whole fusobacterium genomes to identify, correct, and characterize potential virulence protein families. J Bacteriol. 2019;201:e00273–19.77.Duan D, Scoffield JA, Zhou X, Wu H. Fine-tuned production of hydrogen peroxide promotes biofilm formation of Streptococcus parasanguinis by a pathogenic cohabitant Aggregatibacter actinomycetemcomitans. Environ Microbiol. 2016;18:4023–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Stacy A, Everett J, Jorth P, Trivedi U, Rumbaugh KP, Whiteley M. Bacterial fight-and-flight responses enhance virulence in a polymicrobial infection. Proc Natl Acad Sci USA. 2014;111:7819–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Stacy A, Fleming D, Lamont RJ, Rumbaugh KP, Whiteley M. A commensal bacterium promotes virulence of an opportunistic pathogen via cross-respiration. mBio 2016;7:e00782–16.80.Smalley JW, Birss AJ, Withnall R, Silver J. Interactions of Porphyromonas gingivalis with oxyhaemoglobin and deoxyhaemoglobin. Biochem J. 2002;362:239–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Brown JL, Yates EA, Bielecki M, Olczak T, Smalley JW. Potential role for Streptococcus gordonii-derived hydrogen peroxide in heme acquisition by Porphyromonas gingivalis. Mol Oral Microbiol. 2018;33:322–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015;15:30–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML, Oldenbourg R, et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci USA. 2011;108:4152–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, et al. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J. 2012;6:1176–85.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard

    1.Stuart, Y. E., Losos, J. B. & Algar, A. C. The island-mainland species turnover relationship. Proc. R. Soc. B Biol. Sci. 279, 4071–4077 (2012).Article 

    Google Scholar 
    2.Grant, P. R. Evolution on Islands (Oxford University Press, 1998).
    Google Scholar 
    3.Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).Article 

    Google Scholar 
    4.Armstrong, C. et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol. Lett. 2(1), 22–36 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541 (1999).Article 

    Google Scholar 
    6.Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49(4), 725 (1964).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: From genotyping to genome typing. Nat. Rev. Genet. 4(12), 981–994 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genom. Hum. Genet. 11, 265–289 (2010).CAS 
    Article 

    Google Scholar 
    10.Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15307–15312 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    11.Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D. & Serra, L. Rapid evolution of a geographic cline in size in an introduced fly. Science 287(5451), 308–309 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    12.Prates, I., Angilleta, M. J., Wilson, R. S., Niehaus, A. C. & Navas, C. A. Dehydration hardly slows hopping toads (Rhinella granulosa) from xeric and mesic environments. Physiol. Biochem. Zool. 86(4), 451–457 (2013).PubMed 
    Article 

    Google Scholar 
    13.Prates, I., Penna, A., Trefaut, M. & Carnaval, A. C. Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecol. Evol. 8, 11932–11944 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyonlittoralis). Mol. Ecol. 25(10), 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 27(24), 5137–5153 (2018).PubMed 
    Article 

    Google Scholar 
    16.Bover, P., Quintana, J. & Alcover, J. A. Three islands, three worlds: Paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quatern. Int. 182, 135–144 (2008).Article 

    Google Scholar 
    17.Pérez-Mellado, V. Les sargantanes de les Balears (Edicions Quaderns de Natura de les Balears, Documenta Balear, 2009).
    Google Scholar 
    18.Pérez-Mellado, V. et al. Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain). Amphibia-Reptilia 29(1), 49–60 (2008).Article 

    Google Scholar 
    19.Brown, R. P. et al. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Mol. Phylogenet. Evol. 48(1), 350–358 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Terrasa, B. et al. Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi. Divers. Distrib. 15(2), 207–221 (2009).Article 

    Google Scholar 
    21.Terrasa, B. et al. Use of NCPA to understanding genetic sub-structuring of Podarcis lilfordi from the Balearic archipelago. Amphibia-Reptilia 30(4), 505–514 (2009).Article 

    Google Scholar 
    22.Emig, C. C. & Geistdoerfer, P. The Mediterranean deep-sea fauna: Historical evolution, bathymetric variations and geographical changes. Carnets Geol. https://doi.org/10.4267/2042/3230 (2004).Article 

    Google Scholar 
    23.Pérez-Cembranos, A. et al. Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation?. Divers. Distrib. 26, 1122–1141 (2020).Article 

    Google Scholar 
    24.Palumbi, S. R. The Evolution Explosion: How Humans Cause Rapid Evolutionary Change (W. W. Norton & Company, 2002).
    Google Scholar 
    25.Ashley, M. V. et al. Evolutionary enlightened management. Biol. Conserv. 111, 115–123 (2003).Article 

    Google Scholar 
    26.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    27.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10), e3376 (2008).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    29.Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17(2), 81 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Brown, R. P., Paterson, S. & Risse, J. Genomic signatures of historical allopatry and ecological divergence in an island lizard. Genome Biol. Evol. 8(11), 3618–3626 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jin, Y. & Brown, R. P. Morphological species and discordant mtDNA: A genomic analysis of Phrynocephalus lizard lineages on the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 139, 106523 (2019).PubMed 
    Article 

    Google Scholar 
    32.Yang, W. et al. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 74(7), 1289–1300 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the catadromous roughskin sculpin Trachidermus fasciatus. Genome Biol. Evol. 11(7), 1751–1764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31(1), 139–162 (2000).Article 

    Google Scholar 
    35.Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).Article 

    Google Scholar 
    36.Perrier, C., Ferchaud, A. L., Sirois, P., Thibault, I. & Bernatchez, L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RAD seq in a northern lacustrine fish. Mol. Ecol. 26(22), 6317–6335 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Sovic, M., Fries, A., Martin, S. A. & Lisle Gibbs, H. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 12(4), 664–678 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley, Western Australia. Conserv. Genet. 21, 421–429 (2020).Article 

    Google Scholar 
    39.Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19(15), 3038–3051 (2010).PubMed 
    Article 

    Google Scholar 
    40.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11(2), e12412 (2018).Article 

    Google Scholar 
    41.Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25(20), 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    42.Campbell-Staton, S. C., Edwards, S. V. & Losos, J. B. Climate mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. J. Evol. Biol. 29(11), 2168–2180 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rodríguez, A. et al. Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. Ecol. Evol. 7(16), 6390–6403 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Can. J. Zool. 87(10), 912–919 (2009).Article 

    Google Scholar 
    45.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Influence of risk on hiding time by Balearic lizards (Podarcis lilfordi): Predator approach speed, directness, persistence, and proximity. Herpetologica 66(2), 131–141 (2010).Article 

    Google Scholar 
    46.Cooper, W. E. & Pérez-Mellado, V. Island tameness: Reduced escape responses and morphological and physiological antipredatory adaptations related to escape in lizards. In Islands and Evolution (eds Pérez-Mellado, V. & Ramon, M. M.) 231–253 (Institut Menorquí d’Estudis, 2010).
    Google Scholar 
    47.Cooper, W. E. & Pérez-Mellado, V. Historical influence of predation pressure on escape by Podarcis lizards in the Balearic Islands. Biol. J. Linn. Soc. 107, 254–268 (2012).Article 

    Google Scholar 
    48.Mayr, E. Animal Species and Evolution (The Belknap Press, Harvard University Press, 1963).
    Google Scholar 
    49.Bover, P. et al. Late Miocene/Early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): An update. Integr. Zool. 9, 183–196 (2014).PubMed 
    Article 

    Google Scholar 
    50.Vervust, B., Grbac, I. & Van Damme, R. Differences in morphology, performance and behaviour between recently diverged populations of Podarcissicula mirror differences in predation pressure. Oikos 116(8), 1343–1352 (2007).Article 

    Google Scholar 
    51.Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2(7), 1128–1138 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Stockwell, C. A. & Ashley, M. V. Rapid adaptation and conservation. Conserv. Biol. 18, 272–273 (2004).Article 

    Google Scholar 
    54.Truong, H. T. et al. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5), e37565 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    55.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22(11), 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.5-7. Available from http://github.com/jgx65/hierfstat (2015).58.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jombart, T. & Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    61.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6(11), 3461–3475 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4(8), 782–788 (2013).Article 

    Google Scholar 
    64.Nei, M. The Theory and Estimation of Genetic Distance. Genetic Structure of Populations 45–54 (University of Hawaii Press, 1973).
    Google Scholar 
    65.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180(2), 977–993 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Jin, L., Yu, J. P., Yang, Z. J., Merilä, J. & Liao, W. B. Modulation of gene expression in liver of hibernating Asiatic Toads (Bufo gargarizans). Int. J. Mol. Sci. 19(8), 2363 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Secor, S. M. & Carey, H. V. Integrative physiology of fasting. Compr. Physiol. 6(2), 773–825 (2011).
    Google Scholar 
    71.Bahudhanapati, H., Bhattacharya, S. & Wei, S. Evolution of vertebrate adam genes; duplication of testicular adams from ancient adam9/9-like loci. PLoS ONE 10(8), e0136281 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Alibardi, L. Immunolocalization of matrix metalloproteinases in regenerating lizard tail suggests that an intense remodelling activity allows for apical tail growth. Acta Zool. 101(2), 124–132 (2020).Article 

    Google Scholar 
    73.The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).Article 
    CAS 

    Google Scholar 
    74.Tosini, G., Baba, K., Hwang, C. K. & Iuvone, P. M. Melatonin: An underappreciated player in retinal physiology and pathophysiology. Exp. Eye Res. 103, 82–89 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Voronin, D. A. & Kiseleva, E. V. Functional role of proteins containing ankyrin repeats. Tsitologiia 49(12), 989–999 (2007).CAS 
    PubMed 

    Google Scholar 
    76.Yang, L. et al. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 99(2), 1199–1208 (2020).PubMed 
    Article 

    Google Scholar 
    77.Geng, X. et al. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J. Proteomics 119, 196–208 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Subramaniam, N., Petrik, J. J. & Vickaryous, M. K. VEGF, FGF-2 and TGF β expression in the normal and regenerating epidermis of geckos: Implications for epidermal homeostasis and wound healing in reptiles. J. Anat. 232(5), 768–782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pillai, A., Desai, I. & Balakrishnan, S. Pharmacological inhibition of FGFR1 signaling attenuates the progression of tail regeneration in the northern house gecko Hemidactylus flaviviridis. Int. J. Life Sci. Biotechnol. Pharma Res. 2, 263–278 (2013).
    Google Scholar 
    80.Schoettl, T., Fischer, I. P. & Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, jeb162958 (2018).PubMed 
    Article 

    Google Scholar 
    81.Wang, X. et al. Identification of a novel 43-bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. Anim. Biotechnol. 30(3), 252–259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Sun, C. et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics 16(1), 565 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Ng, C. S. et al. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16(1), 756 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4(1), 1–9 (2013).
    Google Scholar 
    85.Fischer, I., Kosik, K. S. & Sapirstein, V. S. Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain Res. 436(1), 39–48 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19(1), 939 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391), 881–888 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    88.Vitulo, N., Dalla Valle, L., Skobo, T., Valle, G. & Alibardi, L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev. Dyn. 246(2), 116–134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Carobbio, S., Guénantin, A. C., Samuelson, I., Bahri, M. & Vidal-Puig, A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864(1), 37–50 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.)

    1.Castellano, M. A., Trappe, J. M. & Luoma, D. L. Sequestrate fungi. in Biodiversity of Fungi (ed. Mueller, G.M., Bills, G.F., Foster, M.S.) 197–213 (Elsevier, 2004). https://doi.org/10.1016/B978-012509551-8/50013-1.2.Benucci, G. M. N., Bonito, G., Falini, L. B. & Bencivenga, M. Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza 22, 383–392 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bonito, G. M., Gryganskyi, A. P., Trappe, J. M. & Vilgalys, R. A global meta-analysis of Tuber ITS rDNA sequences: Species diversity, host associations and long-distance dispersal. Mol. Ecol. 19, 4994–5008 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Kirk, P. M., Cannon, P. F., Stalpers, J. & Minter, D. W. Dictionary of the Fungi 10th ed. 1–784 (CABI, 2008).5.Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. & Bonfante, P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02141.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Benucci, G. M. N., Bonito, G., Falini, L. B., Bencivenga, M. & Donnini, D. Truffles, timber, food, and fuel: Sustainable approaches for multi-cropping truffles and economically important plants. In Edible Ectomycorrhizal Mushrooms. Soil Biology Vol. 34 (eds Zambonelli, A. & Bonito, G.) 265–280 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_15.
    Google Scholar 
    7.Strojnik, L., Grebenc, T. & Ogrinc, N. Species and geographic variability in truffle aromas. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2020.111434 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bonet, J. A. et al. Cultivation methods of the Black Truffle, the most profitable Mediterranean non-wood forest product; a state of the artreview. EFI Proc. 57, 57–71 (2009).
    Google Scholar 
    9.Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 33, 1–45 (2008).
    Google Scholar 
    10.Ori, F. et al. Synthesis and ultrastructural observation of arbutoid mycorrhizae of black truffles (Tuber melanosporum and T. aestivum). Mycorrhiza 30(6), 715–723 (2020). https://doi.org/10.1007/s00572-020-00985-5.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Schneider-Maunoury, L. et al. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol. 225, 2542–2556 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Mello, A., Murat, C., Vizzini, A., Gavazza, V. & Bonfante, P. Tuber magnatum Pico, a species of limited geographical distribution: Its genetic diversity inside and outside a truffle ground. Environ. Microbiol. 7, 55–65 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hall, I., Brown, G. T. & Zambonelli, A. Taming the Truffle (The History, Lore, and Science of the Ultimate Mushroom) (Timber Press, 2007).
    Google Scholar 
    14.Shamekh, S., Grebenc, T., Leisola, M. & Turunen, O. The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol. Prog. 13, 373–380 (2014).Article 

    Google Scholar 
    15.Kinoshita, A., Obase, K. & Yamanaka, T. Ectomycorrhizae formed by three Japanese truffle species (Tuber japonicum, T. longispinosum, and T. himalayense) on indigenous oak and pine species. Mycorrhiza 28, 679–690 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sulzbacher, M. A. et al. Fungos ectomicorrízicos em plantações de nogueira-pecã e o potencial da truficultura no Brasil. Ciência Florest. 29, 975 (2019).Article 

    Google Scholar 
    17.Grupe, A. C. et al. Tuber brennemanii and Tuber floridanum: Two new Tuber species are among the most commonly detected ectomycorrhizal taxa within commercial pecan (Carya illinoinensis) orchards. Mycologia 110, 780–790 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Chevalier, G. & Frochot, H. La Truffe de Bourgogne (Tuber unicatum Chatin) (Editions Petrarque, 2002). https://doi.org/10.4267/2042/5669.
    Google Scholar 
    19.Donnini, D., Benucci, G. M. N., Bencivenga, M. & Baciarelli-Falini, L. Quality assessment of truffle-inoculated seedlings in Italy: proposing revised parameters for certification. For. Syst. 23, 385 (2014).
    Google Scholar 
    20.Reyna, S. & Garcia-Barreda, S. Black truffle cultivation: A global reality. For. Syst. 23, 317 (2014).
    Google Scholar 
    21.Wedén, C., Pettersson, L. & Danell, E. Truffle cultivation in Sweden: Results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scand. J. For. Res. 24, 37–53 (2009).Article 

    Google Scholar 
    22.Iotti, M. et al. Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol. 12, 93 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Freiberg, J.A., Sulzbacher, M.A., Santana, N.A., Fronza, D., Giachini, A., Grebenc, T., Jacques, R., A. Z. Mycorrhization of pecans with European truffles (Tuber spp., Tuberaceae) under southern subtropical conditions. Appl. Soil Ecol. (2021).24.Paolocci, F., Rubini, A., Riccioni, C. & Arcioni, S. Reevaluation of the life cycle of Tuber magnatum. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.72.4.2390-2393.2006 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Healy, R. A. et al. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol. Ecol. 22(6), 1717–1732. https://doi.org/10.1111/mec.12135 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Pattinson, G. S., Smith, S. E. & Doube, B. M. Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol. Biochem. 29, 1079–1088 (1997).CAS 
    Article 

    Google Scholar 
    27.Gange, A. C. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026 (1993).Article 

    Google Scholar 
    28.Milleret, R., Le Bayon, R. C. & Gobat, J. M. Root, mycorrhiza and earthworm interactions: Their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant Soil https://doi.org/10.1007/s11104-008-9753-7 (2009).Article 

    Google Scholar 
    29.Gormsen, D., Olsson, P. A. & Hedlund, K. The influence of collembolans and earthworms on AM fungal mycelium. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2004.06.001 (2004).Article 

    Google Scholar 
    30.Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M. & Scheu, S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. https://doi.org/10.1111/j.1469-8137.2004.01106.x (2004).Article 

    Google Scholar 
    31.Eisenhauer, N. et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2008.12.017 (2009).Article 

    Google Scholar 
    32.Stobbe, U. et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 97, 5215–5224 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jeandroz, S., Murat, C., Wang, Y., Bonfante, P. & Le Tacon, F. Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J. Biogeogr. 35, 815–829 (2008).Article 

    Google Scholar 
    34.Gardin, L. I tartufi minori in Toscana. Gli ambienti di crescita dei tartufi marzuolo e scorze (ARSIA, 2005).
    Google Scholar 
    35.Pampanini, R., Marchini, A. & Diotallevi, F. Il mercato del tartufo fresco in Italia tra performance commerciali e vincoli allo sviluppo: il contributo delle regioni italiane. Econ. Agro-Alimentare 18, 11–28 (2012).
    Google Scholar 
    36.Wolf, H. EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). Int. Plant Genet. Resour. Inst. Rome Italy https://doi.org/10.1016/j.jaci.2010.08.025 (2003).Article 

    Google Scholar 
    37.Comandini, O., Pacioni, G. & Rinaldi, A. C. Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza 7, 323–328 (1998).Article 

    Google Scholar 
    38.Ważny, R. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Ann. For. Sci. 71, 801–810 (2014).Article 

    Google Scholar 
    39.Ważny, R. & Kowalski, S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrops. Trees Struct. Funct. 31, 929–939 (2017).Article 
    CAS 

    Google Scholar 
    40.Rudawska, M., Pietras, M., Smutek, I., Strzeliński, P. & Leski, T. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 26, 57–65 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Iotti, M., Piattoni, F. & Zambonelli, A. Techniques for host plant inoculation with truffles and other edible ectomycorrhizal mushrooms. in Edible Ectomycorrhizal Mushrooms (eds. Zambonelli, A., Bonito, G.M.) 145–161 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_942.Finér, L. et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 141, 394–405 (2007).
    Google Scholar 
    43.Železnik, P. et al. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol. 9, 298–308 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Agerer, R. Colour Atlas of Ectomycorrhizae (Einhorn-Verlag, 1987).
    Google Scholar 
    45.Agerer, R. Characterization of ectomycorrhiza. Methods Microbiol. https://doi.org/10.1016/S0580-9517(08)70172-7 (1991).Article 

    Google Scholar 
    46.Agerer, R. & Rambold, G. 2004–2018 [first posted on 2004–06–01; most recent update: 2011-01-10]. DEEMY—An Information System for Characterization and Determination of Ectomycorrhizae. München, Germany (2004).47.Fischer, C. & Colinas, C. Methology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. in First International Conference on Mycorrhiza (1996).48.Reyna, S., Boronat, J. & Palomar, E. Quality control of plants mycorrhized with Tuber melanosporum Vitt. edible mycorrhizal mushrooms and their cultivation. Proc. Second Int. Conf. Edible Mycorrhizal Mushrooms, Crop Food Res. Christchurch 1–9 (eds. Wang Y., Danell, E., Zambonelli, A.) CD-ROM (New Zealand Institute for Crop & Food Research Limited, Christchurch, 2002).49.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M.A., Gelfond, D.H., Sninsky, J.J., White, T.J.) 315–322 (Academic Press, Inc., 1990). https://doi.org/10.1016/B978-0-12-372180-8.50042-1.50.Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bertini, L. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiol. Lett. 173, 239–245 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Grebenc, T. & Kraigher, H. Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol. 9, 279–287 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Team, R. C. R: A language and environment for statistical computing. (2016).55.KothariI, S. K., Marschner, H. & George, E. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. https://doi.org/10.1111/j.1469-8137.1990.tb04718.x (1990).Article 

    Google Scholar 
    56.Ludwig-Müller, J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. Arbuscular Mycorrhizas Physiol. Funct. https://doi.org/10.1007/978-90-481-9489-6_8 (2010).Article 

    Google Scholar 
    57.Hanlon, M. T. & Coenen, C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701–709 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant. Cell Environ. 36, 909–919 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Maherali, H. Is there an association between root architecture and mycorrhizal growth response?. New Phytol. https://doi.org/10.1111/nph.12927 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. 113, 8741–8746 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Syers, J. K. & Springett, J. A. Earthworms and soil fertility. Plant Soil 76, 93–104 (1984).CAS 
    Article 

    Google Scholar 
    62.Mamoun, M. & Oliver, J. M. Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: Effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188, 221–262 (1997).CAS 
    Article 

    Google Scholar 
    63.Santelices, R. & Palfner, G. Controlled rhizogenesis and mycorrhization of hazelnut (Corylus avellana L.) cuttings with Black truffle (Tuber melanosporum Vitt.). Chil. J. Agric. Res. 70, 204–212 (2010).Article 

    Google Scholar 
    64.Martin, F. M. & Hilbert, J. L. Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47, 321–331 (1991).CAS 
    Article 

    Google Scholar 
    65.Zaller, J. G. et al. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS ONE 6, e29293 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies. For. Ecol. Manage. 201, 211–227 (2004).Article 

    Google Scholar 
    67.Mrak, T. & Gričar, J. Atlas of Woody Plant Roots: Morphology and Anatomy with Special Emphasis on Fine Roots (Slovenian Forestry Institute, The Silva Slovenica Publishing Centre, 2016). https://doi.org/10.20315/SFS.147.
    Google Scholar 
    68.Montecchi, A. & Sarasini, M. Funghi ipogei d’Europa. Vicenza: Fondazione Centro Studi (Micologica dell” A.M.B., 2000).
    Google Scholar 
    69.Benucci, G. M. N. et al. Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: Composition, host influence and species replacement. FEMS Microbiol. Ecol. 76, 170–184 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Marjanović, Ž, Grebenc, T., Marković, M., Glišić, A. & Milenković, M. Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia 1, 273–291 (2010).
    Google Scholar 
    71.Grebenc, T., Bajc, M. & Kraigher, H. Post-glacial migrations of mycorrhizal plants and ectomycorrhizal partners: An example of the genus Tuber. Les 62, 149–154 (2010).
    Google Scholar 
    72.Chavdarova, S., Kajevska, I. K. R., Grebenc, T. & Karadelev, M. Distribution and ecology of hypogenous fungi (excluding Tuber) in the Republic of Macedonia. Biol. Maced. 62, 37–48 (2011).
    Google Scholar 
    73.Milenković, M., Grebenc, T., Marković, M. & Ivančević, B. Tuber petrophilum, a new truffle species from Serbia. Mycotaxon 130, 1141–1152 (2016).Article 

    Google Scholar 
    74.Brown, G. G., Edwards, C. A. & Brussaard, L. How earthworms affect plant growth: Burrowing into the mechanisms. in Earthworm Ecology (ed. Edwards, C.A.) 13–49 (Boca Raton : CRC Press, 2004). https://doi.org/10.1201/9781420039719.75.Pattinson, G. S. Trapezoides had no effect on the dispersal of a Vesicular-Arbuscular Mycorrhizal fungi. Can. J. Bot. 29, 1079–1088 (1997).CAS 

    Google Scholar 
    76.Lawrence, B., Fisk, M. C., Fahey, T. J. & Suarez, E. R. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol. 157, 145–153 (2003).Article 

    Google Scholar 
    77.Ortiz-Ceballos, A. I., Peña-Cabriales, J. J., Fragoso, C. & Brown, G. G. Mycorrhizal colonization and nitrogen uptake by maize: Combined effect of tropical earthworms and velvetbean mulch. Biol. Fertil. Soils 44, 181–186 (2007).Article 

    Google Scholar 
    78.Reddell, P. & Spain, A. V. Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem. 23, 767–774 (1991).Article 

    Google Scholar  More

  • in

    Ant social foraging strategies along a Neotropical gradient of urbanization

    1.Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 16, 265–280 (2007).Article 

    Google Scholar 
    2.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    3.McDonnell, M. J. & MacGregor-Fors, I. The ecological future of cities. Science 352, 936–938 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    4.McKinney, M. L. Urbanizartion, biodiversity, and conservation. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    5.Santos, M. N. Research on urban ants: Approaches and gaps. Insectes Soc. 63, 359–371 (2016).Article 
    ADS 

    Google Scholar 
    6.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Harvard, 1990).
    Google Scholar 
    7.Angilletta, M. J. et al. Urban physiology: City ants possess high heat yolerance. PLoS ONE 2, e258 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    9.McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274 (2001).Article 

    Google Scholar 
    10.Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    11.Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    12.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    13.Morini, M. S. C., Munhae, C. B., Leung, R., Candiani, D. F. & Voltolini, J. C. Comunidades de formigas (Hymenoptera, Formicidae) em fragmentos de Mata Atlântica situados em áreas urbanizadas. Iheringia 97, 246–252 (2007).Article 

    Google Scholar 
    14.MacGregor-Fors, I. & Schondube, J. E. Gray vs. green urbanization: Relative importance of urban features for urban bird communities. Basic Appl. Ecol. 12, 372–381 (2011).Article 

    Google Scholar 
    15.Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    16.Rocha-Ortega, M. & Castaño-Meneses, G. Effects of urbanization on the diversity of ant assemblages in tropical dry forests, Mexico. Urban Ecosyst. 18, 1373–1388 (2015).Article 

    Google Scholar 
    17.Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).Article 

    Google Scholar 
    18.Fellers, J. H. Interference and exploitation in a guild of woodland ants. Ecology 68, 1466–1478 (1987).Article 

    Google Scholar 
    19.Parr, C. L. & Gibb, H. The discovery–dominance trade-off is the exception, rather than the rule. J. Anim. Ecol. 81, 233–241 (2012).PubMed 
    Article 

    Google Scholar 
    20.Davidson, D. W. Resource discovery versus resource domination in ants: A functional mechanism for breaking the trade-off. Ecol. Entomol. 23, 484–490 (1998).Article 

    Google Scholar 
    21.Camarota, F., Vasconcelos, H. L., Koch, E. B. & Powell, S. Discovery and defense define the social foraging strategy of Neotropical arboreal ants. Behav. Ecol. Sociobiol. 72, id110 (2018).Article 

    Google Scholar 
    22.Parr, C. L. & Gibb, H. Competition and the role of dominant ants. In Book: Ant Ecology (eds Lach, L. et al.) 77–96 (Oxford University Press, Oxford, 2010).
    Google Scholar 
    23.Instituto Nacional de Estadística, Geografía e Informática (INEGI). Compendio de Información Geográfica Municipal. http://www.inegi.org.mx/geo/contenidos/topografia/compendio.aspx. (2009).24.Falfán, I., Muñoz-Robles, C. A., Bonilla-Moheno, M. & MacGregor-Fors, I. Can you really see ‘green’? Assessing physical and self-reported measurements of urban greenery. Urban For. Urban Green. 36, 13–21 (2018).Article 

    Google Scholar 
    25.Davidson, D. W. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc. 61, 153–181 (1997).Article 

    Google Scholar 
    26.Flores-Flores, R. V. et al. Food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions in an arid environment. Acta Oecol. 87, 13–19 (2018).Article 
    ADS 

    Google Scholar 
    27.Wittman, S. E., O’Dowd, D. J. & Green, P. T. Carbohydrate supply drives colony size, aggression, and impacts of an invasive ant. Ecosphere 9, e02403 (2018).Article 

    Google Scholar 
    28.O’Dowd, D. J., Green, P. T. & Lake, P. S. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6, 812–817 (2003).Article 

    Google Scholar 
    29.Abbott, K. L. & Green, P. T. Collapse of an ant–scale mutualism in a rainforest on Christmas Island. Oikos 116, 1238–1246 (2007).Article 

    Google Scholar 
    30.Dáttilo, W. et al. Mexico ants: Incidence and abundance along the Nearctic-Neotropical interface. Ecology 101, e02944 (2020).PubMed 
    Article 

    Google Scholar 
    31.MacGregor-Fors, I. Misconceptions or misunderstandings? On the standardization of basic terms and definitions in urban ecology. Landsc. Urban Plan. 100, 347–349 (2011).Article 

    Google Scholar 
    32.Oksanen, J. et al. Vegan: Community Ecology Package. (2017).33.Dáttilo, W., Díaz-Castelazo, C. & Rico-Gray, V. Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biol. J. Linn. Soc. 113, 405–414 (2014).Article 

    Google Scholar 
    34.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).35.Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).36.Pacheco, R. & Vasconcelos, H. L. Invertebrate conservation in urban areas: Ants in the Brazilian Cerrado. Landsc. Urban Plan. 81, 193–199 (2007).Article 

    Google Scholar 
    37.Dáttilo, W., Sibinel, N., Falcão, J. C. F. & Nunes, R. V. Mirmecofauna em um fragmento de Floresta Atlântica urbana no município de Marília, Brasil. Biosci. J. 27, 494–504 (2011).
    Google Scholar 
    38.Thompson, B. & McLachlan, S. The effects of urbanization on ant communities and myrmecochory in Manitoba, Canada. Urban Ecosyst. 10, 43–52 (2007).Article 

    Google Scholar 
    39.Ribeiro, F. M., Sibinel, N., Ciocheti, G. & Campos, A. E. C. Analysis of ant communities comparing two methods for sampling ants in an urban park in the city of São Paulo, Brazil. Sociobiology 59, 971–984 (2012).
    Google Scholar 
    40.Sanford, M. P., Manley, P. N. & Murphy, D. D. Effects of urban development on ant communities: Implications for ecosystem services and management. Conserv. Biol. 23, 131–141 (2009).PubMed 
    Article 

    Google Scholar 
    41.Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).Article 

    Google Scholar 
    42.Albrecht, M. & Gotelli, N. J. Spatial and temporal niche partitioning in grassland ants. Oecologia 126, 134–141 (2001).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    43.Campos, R. B. & Schoereder, J. H. Dominance and resource temporal partitioning in pasture ants (Hymenoptera: Formicidae). Sociobiology 38, 539–550 (2001).
    Google Scholar 
    44.Santini, G., Tucci, L., Ottonetti, L. & Frizzi, F. Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol. Entomol. 32, 319–326 (2007).Article 

    Google Scholar 
    45.MacGregor-Fors, I. et al. Multi-taxonomic diversity patterns in a neotropical green city: A rapid biological assessment. Urban Ecosyst. 18, 633–647 (2015).Article 

    Google Scholar 
    46.Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).
    Google Scholar 
    47.Wetterer, J. K. Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecol. News 14, 21–35 (2011).
    Google Scholar  More

  • in

    Author Correction: Genomic evidence of past and future climate-linked loss in a migratory Arctic fish

    Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, CanadaK. K. S. Layton & P. V. R. SnelgroveFisheries and Oceans Canada, St. John’s, Newfoundland and Labrador, CanadaK. K. S. Layton, J. B. Dempson, T. Kess, S. J. Lehnert, S. J. Duffy, A. M. Messmer, R. R. E. Stanley, C. DiBacco & I. R. BradburyUniversity of Aberdeen, Aberdeen, UKK. K. S. LaytonDalhousie University, Halifax, Nova Scotia, CanadaP. Bentzen, S. J. Salisbury & D. E. RuzzanteUniversity of Guelph, Guelph, Ontario, CanadaC. M. Nugent & M. M. FergusonUniversity of Victoria, Victoria, British Columbia, CanadaJ. S. Leong & B. F. Koop More

  • in

    Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations

    The polysaccharide xylan limits the growth of C. crescentus cells compared to the monomer xylose in well-mixed environmentsWe first tested our hypothesis that in well-mixed conditions the polymer xylan would limit the productivity of microbial populations relative to the monomer xylose. To determine if this was the case, we grew C. crescentus cells in the same concentration (weight/volume) of either the polymer xylan or its monomeric constituent xylose, both provided as the sole carbon source (Fig. 1a). We then compared the maximum growth rate and the maximal population size over the course of a 54 h growth cycle (Fig. 1b). In line with expectations, populations growing on the monomer xylose achieved higher growth rates and a higher maximum population size (Fig. 1b–d). This was true for all concentrations (0.01–0.1%) of monomer and polymer tested (Supplementary Fig. 2). These findings suggest that in well-mixed environments of equal carbon concentration, the complexity of the growth substrate governs the growth of C. crescentus populations.Cells engage in colonial behaviors on xylan whereas they exhibit solitary behaviors on xyloseGroup formation could be a key mechanism through which cells could overcome polymer-induced growth limitations that exist in well-mixed environments. Collective behavior would allow cells to increase their local cell density, which leads to higher local concentrations of the monomeric products of polymer degradation. To test this prediction, we tested whether xylose and xylan elicit different behavioral responses in C. crescentus. We used microfluidic growth chambers in which cells were forced to grow as a monolayer. Our expectation was that growth within these devices would provide the spatial structure to overcome the growth limitations observed in well-mixed conditions (Supplementary Fig. 1). We tracked and quantified movement, and growth of individual cells using time-lapse microscopy and image analysis. Chambers were constantly replenished with minimal medium containing either xylose or xylan through a main nutrient feeding channel, as described elsewhere [20, 23, 24].We found that C. crescentus displayed strikingly disparate behaviors in xylan and xylose: cells formed microcolonies on the polymer xylan (Fig. 2a, Supplementary Video 1), whereas on the monomer xylose they did not (Fig. 2b, Supplementary Video 2). We analyzed the temporal dynamics of cell growth and movement in the two carbon sources by following individual cells using cell segmentation and tracking. Mapping the lineages based on division events for all the cells in a chamber revealed that the microcolonies on the polymer xylan originated from a single progenitor cell (Fig. 2d, Supplementary Fig. 3a–c; Supplementary Video 3). This finding indicates that microcolonies were a result of swarmer cells not dispersing after division, rather than a product of secondary aggregation by planktonic cells. In contrast, in the monomer xylose only the stalked cells remained in the same position after cell division, whereas the presumably flagellated swarmer cells moved away (Fig. 2e, Supplementary Fig. 4a–c). As a consequence of this difference in behavior, the number of sessile cells increased much more rapidly in xylan. The number of cells in a growth chamber doubled on average every 3.6 ± 0.54 h in xylan (mean ± 95% CI, Fig. 2c) but took 15.50 ± 7.55 h to double in xylose (mean ± 95% CI, Fig. 2c). These differences occurred despite a similar propensity to produce offspring per sessile cell in the two substrates (Supplementary Fig. 5), and thus were driven by the reduced rate at which cells dispersed in xylan.Fig. 2: Cells display solitary behavior on xylose and aggregative behavior on xylan.Representative images of C. crescentus CB15 cells (labeled with constitutively expressed mKate2, false colored as magenta) at different time points within the microfluidic growth chambers supplied with either xylan (a) or xylose (b) as the sole source of carbon. c On xylan (yellow), the number of sessile cells in the growth chamber increases with time, whereas on xylose (blue) it remains nearly constant. Squares indicate the number of cells present at a given time point in each chamber (nchambers = 9), with a linear or exponential regression line for each chamber (xylose, linear regression model, R2 = 0.69–0.92, slope = 1.22–3.27, P  More