More stories

  • in

    Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China

    1.Berthrong, S. T. et al. Nitrogen fertilization has a stronger effect on soil nitrogen-fixing bacterial communities than elevated atmospheric CO2. Appl. Environ. Microb. 80, 3103–3112. https://doi.org/10.1128/AEM.04034-13 (2014).CAS 
    Article 

    Google Scholar 
    2.Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J. & Hoben, J. P. Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: An emissions reduction protocol for US Midwest agriculture. Mitig. Adapt. Strat. Gl. 15, 185–204. https://doi.org/10.1007/s11027-010-9212-7 (2010).Article 

    Google Scholar 
    3.Zhou, J. et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 90, 42–51. https://doi.org/10.1016/j.soilbio.2015.07.005 (2015).CAS 
    Article 

    Google Scholar 
    4.Ding, J. et al. Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols. Appl. Soil Ecol. 111, 114–122. https://doi.org/10.1016/j.apsoil.2016.12.003 (2017).ADS 
    Article 

    Google Scholar 
    5.Zhou, J. et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China. Soil Biol. Biochem. 95, 135–143. https://doi.org/10.1016/j.soilbio.2015.12.012 (2016).CAS 
    Article 

    Google Scholar 
    6.Liu, J. et al. Diversity and distribution patterns of acidobacterial communities in the black soil zone of northeast China. Soil Biol. Biochem. 95, 212–222. https://doi.org/10.1016/j.soilbio.2015.12.021 (2016).CAS 
    Article 

    Google Scholar 
    7.Pan, H. et al. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Till. Res. 198, 104540. https://doi.org/10.1016/j.still.2019.104540 (2020).Article 

    Google Scholar 
    8.Ma, M. et al. Chronic fertilization of 37 years alters the phylogenetic structure of soil arbuscular mycorrhizal fungi in Chinese Mollisols. AMB Express 8, 57. https://doi.org/10.1186/s13568-018-0587-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Hu, X. et al. Long-term manure addition reduces diversity and changes community structure of diazotrophs in a neutral black soil of northeast China. J. Soils Sediments 18, 2053–2062. https://doi.org/10.1007/s11368-018-1975-6 (2018).CAS 
    Article 

    Google Scholar 
    10.Liu, J. et al. Ammonia-oxidizing archaea show more distinct biogeographic distribution patterns than ammonia-oxidizing bacteria across the black soil zone of northeast China. Front. Microbial. 9, 171. https://doi.org/10.3389/fmicb.2019.00023 (2018).Article 

    Google Scholar 
    11.Fan, K., Delgado-Baquerizo, M., Guo, X., Wang, D. & Chu, H. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome 7, 143. https://doi.org/10.1186/s40168-019-0757-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Kumar, U. et al. Long-term aromatic rice cultivation effect on frequency and diversity of diazotrophs in its rhizosphere. Ecol. Eng. 101, 227–236. https://doi.org/10.1016/j.ecoleng.2017.02.010 (2017).Article 

    Google Scholar 
    13.Gaby, J. C., Rishishwar, L., Valderrama-Aguirre, L. C., Green, S. J. & Kostka, J. E. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Appl. Environ. Microbiol. 84, 01512–01517. https://doi.org/10.1128/AEM.01512-17 (2018).Article 

    Google Scholar 
    14.Wang, J. et al. Temporal variation of diazotrophic community abundance and structure in surface and subsoil under four fertilization regimes during a wheat growing season. Agric. Ecosyst. Environ. 216, 116–124. https://doi.org/10.1016/j.agee.2015.09.039 (2016).CAS 
    Article 

    Google Scholar 
    15.Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181. https://doi.org/10.1016/S0378-4290(99)00085-4 (2000).Article 

    Google Scholar 
    16.Wang, C. et al. Impact of 25 years of inorganic fertilization on diazotrophic abundance and community structure in an acidic soil in southern China. Soil Biol. Biochem. 113, 240–249. https://doi.org/10.1016/j.soilbio.2017.06.019 (2017).CAS 
    Article 

    Google Scholar 
    17.Feng, M. et al. Long-term fertilization influences community assembly processes of soil diazotrophs. Soil Biol. Biochem. 126, 151–158. https://doi.org/10.1016/j.soilbio.2018.08.021 (2018).CAS 
    Article 

    Google Scholar 
    18.Fan, L. Response of diazotrophic microbial community to nitrogen input and glyphosate application in soils cropped to soybean. (2013).19.Cheng, F. et al. Isolation and application of effective nitrogen fixation rhizobial strains on low-phosphorus acid soils in South China. Chin. Sci. Bull. 54, 412–420. https://doi.org/10.1007/s11434-008-0521-0 (2009).CAS 
    Article 

    Google Scholar 
    20.Qiao, Y. et al. The effect of fertilizer practices on N balance and global warming potential of maize–soybean–wheat rotations in Northeastern China. Field Crops Res. 161, 98–106. https://doi.org/10.1016/j.fcr.2014.03.005 (2014).Article 

    Google Scholar 
    21.Hsu, S. F. & Buckley, D. H. Evidence for the functional significance of diazotroph community structure in soil. ISME J. 3, 124–136. https://doi.org/10.1038/ismej.2008.82 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Chen, J., Shen, W., Xu, H., Li, Y. & Luo, T. The composition of nitrogen-fixing microorganisms correlates with soil nitrogen content during reforestation: A comparison between legume and non-legume plantations. Front. Microbiol. 10, 508. https://doi.org/10.3389/fmicb.2019.00508 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Saleem, M., Law, A. D., Sahib, M. R., Pervaiz, Z. H. & Zhang, Q. Impact of root system architecture on rhizosphere and root microbiome. Rhizosphere 6, 47–51. https://doi.org/10.1016/j.rhisph.2018.02.003 (2018).Article 

    Google Scholar 
    24.Zhang, X. et al. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS ONE 8, e76500. https://doi.org/10.1371/journal.pone.0076500 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Coelho, M. et al. Molecular detection and quantification of nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor) sown with two levels of nitrogen fertilizer. Appl. Soil Ecol. 42, 48–53. https://doi.org/10.1016/j.apsoil.2009.01.010 (2009).Article 

    Google Scholar 
    26.Wakelin, S. A. et al. The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. Fems Microbiol. Ecol. 59, 661–670. https://doi.org/10.1111/j.1574-6941.2006.00235.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Shirani, H., Hajabbasi, M. A., Afyuni, M. & Hemmat, A. Effects of farmyard manure and tillage systems on soil physical properties and corn yield in central Iran. Soil Till. Res. 68, 101–108. https://doi.org/10.1016/S0167-1987(02)00110-1 (2002).Article 

    Google Scholar 
    28.Sheffer, E., Batterman, S. A., Levin, S. A. & Hedin, L. O. Biome-scale nitrogen fixation strategies selected by climatic constraints on nitrogen cycle. Nat. Plants 1, 15182. https://doi.org/10.1038/nplants.2015.182 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Guo, J. H. et al. Significant acidification in major Chinese croplands. Science 327, 1008–1010. https://doi.org/10.1126/science.1182570 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Ding, J. et al. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of northeast China. Appl. Soil Ecol. 105, 187–195. https://doi.org/10.1016/j.apsoil.2016.04.010 (2016).Article 

    Google Scholar 
    31.Soman, C., Keymer, D. P. & Kent, A. D. Edaphic correlates of feedstock-associated diazotroph communities. GCB Bioenergy 10, 343–352. https://doi.org/10.1111/gcbb.12502 (2018).CAS 
    Article 

    Google Scholar 
    32.He, D. et al. Evolvement of structure and abundance of soil nitrogen-fixing bacterial community in Phyllostachys edulis plantations with age of time. Acta Pedol. Sin. 52, 934–942. https://doi.org/10.11766/trxb201408070397 (2015).Article 

    Google Scholar 
    33.Ning, Q. et al. Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. J. Soils Sediments 15, 694–704. https://doi.org/10.1007/s11368-015-1061-2 (2015).CAS 
    Article 

    Google Scholar 
    34.Huang, J. et al. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Sci. Rep. 6, 20384. https://doi.org/10.1038/srep20384 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Zhu, C. et al. N-fertilizer-driven association between the arbuscular mycorrhizal fungal community and diazotrophic community impacts wheat yield. Agric. Ecosyst. Environ. 254, 191–201. https://doi.org/10.1016/j.agee.2017.11.029 (2018).Article 

    Google Scholar 
    36.Coelho, M. et al. Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol. Lett. 111, 114–122. https://doi.org/10.1111/j.1574-6968.2007.00975.x (2007).CAS 
    Article 

    Google Scholar 
    37.Velagaleti, R. R. & Marsh, S. Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119, 133–138. https://doi.org/10.1007/BF02370277 (1989).Article 

    Google Scholar 
    38.Appunu, C. & Dhar, B. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. Afr. J. Biotechnol. https://doi.org/10.5897/AJB06.131 (2006).Article 

    Google Scholar 
    39.Kunert, K. J. et al. Drought stress responses in soybean roots and nodules. Front. Plant Sci. 7, 1015. https://doi.org/10.3389/fpls.2016.01015 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Ahemad, M. & Khan, M. S. Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. (vigna) improves the growth and yield of greengram [Vigna radiata (L.) Wilczek] in insecticide-stressed soils. Symbiosis 54, 17–27. https://doi.org/10.1007/s13199-011-0122-6 (2011).CAS 
    Article 

    Google Scholar 
    41.Chen, J., Zhou, Z. & Gu, J. Occurrence and diversity of nitrite-dependent anaerobic methane oxidation bacteria in the sediments of the South China Sea revealed by amplification of both 16S rRNA and pmoAgenes. Appl. Microbiol. Biotechnol. 98, 5685–5696. https://doi.org/10.1007/s00253-014-5733-4 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Santoscaton, I. R., Caton, T. M. & Schneegurt, M. A. Nitrogen-fixation activity and the abundance and taxonomy of nifH genes in agricultural, pristine, and urban prairie stream sediments chronically exposed to different levels of nitrogen loading. Arch. Microbiol. https://doi.org/10.1007/s00203-018-1475-5 (2018).Article 

    Google Scholar 
    43.Zhou, J. et al. Effects of long term application of urea on ammonia oxidizing archaea community in black soil in Northeast China. Sci. Agric. Sin. 49, 294–304. https://doi.org/10.3864/j.issn.0578-1752.2016.02.010 (2016).CAS 
    Article 

    Google Scholar 
    44.Zhou, J. et al. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci. Rep. 7, 3267. https://doi.org/10.1038/s41598-017-03539-6 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Diedrick, K. A. Field Investigations of Nitrogen Fertility on Corn and Soybeans and Foliar Manganese-Glyphosate Interactions on Glyphosate-Tolerant Soybeans in Ohio (The Ohio State University, 2010).
    Google Scholar 
    46.Salamone, I., Bereiner, J., Urquiaga, S. & Boddey, R. Biological nitrogen fixation in Azospirillumstrain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol. Fertil. Soils 23, 249–256. https://doi.org/10.1007/BF00335952 (1996).Article 

    Google Scholar 
    47.Carelli, M. et al. Genetic diversity and dynamics of sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italiansoils. Appl. Environ. Microbiol. 66, 4785–4789. https://doi.org/10.1128/AEM.66.11.4785-4789.2000 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Coelho, M. R. et al. Diversity of Paenibacillus spp. in the rhizosphere of four sorghum (Sorghum bicolor) cultivars sown with two contrasting levels of nitrogen fertilizer assessed by rpoB-based PCR-DGGE and sequencing analysis. J. Microbiol. Biotechnol. 17, 753–760. https://doi.org/10.1007/s10295-007-0209-5 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Cao, Y., Wang, E., Zhao, L., Chen, W. & Wei, G. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol. Biochem. 78, 128–137. https://doi.org/10.1016/j.soilbio.2014.07.026 (2014).CAS 
    Article 

    Google Scholar 
    50.Ahmed, I. H., Francina, L. B., Isabella, H. R. & Galaletsang, S. Nodulation efficacy of Bradyrhizobium japonicum inoculant strain WB74 on soybean (Glycine max L. Merrill) is affected by several limiting factors. Afr. J. Microbiol. Res. 8, 2069–2076. https://doi.org/10.5897/ajmr2014.6709 (2014).Article 

    Google Scholar 
    51.Yan, J. et al. Effects of long-term fertilization strategies on soil productivity and rhizobial diversity in Chinese mollisol. Pedosphere 29, 784–793. https://doi.org/10.1016/S1002-0160(17)60470-3 (2019).Article 

    Google Scholar 
    52.Riffkin, P. A., Quigley, P. E., Kearney, G. A., Cameron, F. J. & Thies, J. E. Factors associated with biological nitrogen fixation in dairy pastures in south-western Victoria. Aust. J. Agric. Res. 50, 261–272. https://doi.org/10.1071/a98035 (1999).Article 

    Google Scholar 
    53.Yang, L. et al. Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation. Appl. Soil Ecol. 136, 11–20. https://doi.org/10.1016/j.apsoil.2018.12.015 (2019).Article 

    Google Scholar 
    54.Zou, Y. et al. Effects of different land use patterns on nifH genetic diversity of soil nitrogen-fixing microbial communities in Leymus Chinensis steppe. Acta Ecol. Sin. 31, 150–156 (2011).Article 

    Google Scholar 
    55.Zahran, H. H. Rhizobium-Legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. R 63, 968–989. https://doi.org/10.1016/j.chnaes.2011.03.004 (1999).CAS 
    Article 

    Google Scholar 
    56.Tang, Y. et al. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil. Agriculture, Ecosystems & Environment: An International Journal for Scientific Research on the Relationship of Agriculture and Food Production to the Biosphere (2017).57.Gao, P., Li, Y., Tan, L., Guo, F. & Ma, T. Composition of bacterial and archaeal communities in an alkali-surfactant-polyacrylamide-flooded oil reservoir and the responses of microcosms to nutrients. Front. Microbiol. 10, 2197. https://doi.org/10.3389/fmicb.2019.02197 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Rösch, C., Mergel, A. & Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Enviro. Microbiol. 68, 3818–3829. https://doi.org/10.1128/AEM.68.8.3818-3829.2002 (2002).CAS 
    Article 

    Google Scholar 
    59.Wei, G. et al. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol. Biochem. 144, 107759. https://doi.org/10.1016/j.soilbio.2020.107759 (2020).CAS 
    Article 

    Google Scholar 
    60.Sun, R., Guo, X., Wang, D. & Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 95, 171–178. https://doi.org/10.1016/j.apsoil.2015.06.010 (2015).Article 

    Google Scholar 
    61.Asnicar, F., Weingart, G., Tickle, T. L., Huttenhower, C. & Segata, N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 3, 1029. https://doi.org/10.7717/peerj.1029 (2015).Article 

    Google Scholar 
    62.Gao, P. et al. Spatial isolation and environmental factors drive distinct bacterial and archaeal communities in different types of petroleum reservoirs in China. Sci. Rep. 6, 20174. https://doi.org/10.1038/srep20174 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ecosystem response persists after a prolonged marine heatwave

    1.Overland, J., Rodionov, S., Minobe, S. & Bond, N. North Pacific regime shifts: definitions, issues and recent transitions. Prog. Oceanogr. 77, 92–102. https://doi.org/10.1016/j.pocean.2008.03.016 (2008).ADS 
    Article 

    Google Scholar 
    2.Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Niquen, M. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130272. https://doi.org/10.1098/rstb.2013.0272 (2015).Article 

    Google Scholar 
    4.Anderson, P. J. & Piatt, J. F. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189, 117–123 (1999).ADS 
    Article 

    Google Scholar 
    5.Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145. https://doi.org/10.1016/S0079-6611(00)00033-1 (2000).ADS 
    Article 

    Google Scholar 
    6.Litzow, M. A. Climate regime shifts and community reorganization in the Gulf of Alaska: how do recent shifts compare with 1976/1977?. ICES J. Mar. Sci. 63, 1386–1396 (2006).Article 

    Google Scholar 
    7.Hatch, S. A. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar. Ecol. Prog. Ser. 477, 271–284. https://doi.org/10.3354/meps10161 (2013).ADS 
    Article 

    Google Scholar 
    8.Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc. 78, 1069–1080 (1997).ADS 
    Article 

    Google Scholar 
    9.Cane, M. A. & Zebiak, S. E. A theory for El-Nino and the Southern oscillation. Science 228, 1085–1087 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Di Lorenzo, E. et al. North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, 6. https://doi.org/10.1029/2007GL032838 (2008).Article 

    Google Scholar 
    11.Bond, N. A., Overland, J. E., Spillane, M. & Stabeno, P. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 30, 1–3. https://doi.org/10.1029/2003GL018597 (2003).Article 

    Google Scholar 
    12.Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855. https://doi.org/10.1098/rspb.2018.1855 (2018).Article 

    Google Scholar 
    13.Litzow, M. A. et al. The changing physical and ecological meanings of North Pacific Ocean climate indices. Proc. Natl. Acad. Sci. 117, 7665–7671. https://doi.org/10.1073/pnas.1921266117 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Peterson, W. T. & Schwing, F. B. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30, 1896 (2003).ADS 
    Article 

    Google Scholar 
    15.Litzow, M. A. & Mueter, F. J. Assessing the ecological importance of climate regime shifts: An approach from the North Pacific Ocean. Prog. Oceanogr. 120, 110–119. https://doi.org/10.1016/j.pocean.2013.08.003 (2014).ADS 
    Article 

    Google Scholar 
    16.Puerta, P., Ciannelli, L., Rykaczewski, R., Opiekun, M. & Litzow, M. A. Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate?. Prog. Oceanogr. 175, 161–170. https://doi.org/10.1016/j.pocean.2019.04.002 (2019).ADS 
    Article 

    Google Scholar 
    17.IPCC. Summary for policymakers. In: IPCC special report on the ocean and cryosphere in a changing climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. Accessed on 11/5/2019. Accessed on 11/5/2019. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf, 2019.18.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173. https://doi.org/10.5670/oceanog.2018.205 (2018).Article 

    Google Scholar 
    20.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS 
    Article 

    Google Scholar 
    21.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).ADS 
    Article 

    Google Scholar 
    22.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep british columbia fjord. Geophys. Res. Lett. 45, 9757–9764. https://doi.org/10.1029/2018GL078971 (2018).ADS 
    Article 

    Google Scholar 
    23.Cornwall, W. A new ‘Blob’ menaces Pacific ecosystems. Science 365, 1233–1233. https://doi.org/10.1126/science.365.6459.1233 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific ocean. Ecology 99, 2397–2399. https://doi.org/10.1002/ecy.2429 (2018).Article 
    PubMed 

    Google Scholar 
    25.Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II 147, 58–68. https://doi.org/10.1016/j.dsr2.2017.04.023 (2018).Article 

    Google Scholar 
    26.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212. https://doi.org/10.3389/fmars.2019.00212 (2019).Article 

    Google Scholar 
    27.Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, eaau7042, doi:https://doi.org/10.1126/sciadv.aau7042 (2019).28.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087. https://doi.org/10.1371/journal.pone.0226087 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Wade, N. M. et al. Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). J. Therm. Biol 80, 64–74. https://doi.org/10.1016/j.jtherbio.2018.12.021 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Peterson, C. H. et al. Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Esler, D. et al. Timelines and mechanisms of wildlife population recovery following the Exxon Valdez oil spill. Deep Sea Res. Part II 147, 36–42. https://doi.org/10.1016/j.dsr2.2017.04.007 (2018).Article 

    Google Scholar 
    32.Danielson, S. L. et al. A study of marine temperature variations in the northern Gulf of Alaska across years of marine heatwaves and cold spells. Deep Sea Research Part II: Topical Studies in Oceanography (In prep).33.Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol., in press. https://doi.org/10.1111/gcb.15556 (2021).34.von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014–2016. Mar. Ecol. Progress Ser. 613, 171–182 (2019).35.Sydeman, W. J. et al. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific. Fish. Oceanogr. 26, 379–395. https://doi.org/10.1111/fog.12204 (2017).Article 

    Google Scholar 
    36.Savage, K. 2018 Alaska Region marine mammal stranding summary. 14 (Protected Resources Division, National Marine Fisheries Service, Alaska Region, Juneau, Alaska 99802, 2019).37.Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska pacific cod fishery. Front. Mar. Sci. 7, 703. https://doi.org/10.3389/fmars.2020.00703 (2020).Article 

    Google Scholar 
    38.Fisher, J. L., Peterson, W. T. & Rykaczewski, R. R. The impact of El Niño events on the pelagic food chain in the northern California Current. Glob. Change Biol. 21, 4401–4414. https://doi.org/10.1111/gcb.13054 (2015).ADS 
    Article 

    Google Scholar 
    39.McKinstry, C. A. E. & Campbell, R. W. Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska, 2009–2016. Deep Sea Res. Part II 147, 69–78. https://doi.org/10.1016/j.dsr2.2017.08.016 (2018).Article 

    Google Scholar 
    40.Santora, J. A. et al. Spatial ecology of krill, micronekton and top predators in the central California current: implications for defining ecologically important areas. Prog. Oceanogr. 106, 154–174 (2012).ADS 
    Article 

    Google Scholar 
    41.Blake, R. E., Ward, C. L., Hunsicker, M. E., Shelton, A. O. & Hollowed, A. B. Spatial community structure of groundfish is conserved across the Gulf of Alaska. Mar. Ecol. Prog. Ser. 626, 145–160 (2019).ADS 
    Article 

    Google Scholar 
    42.McGowan, D. W., Horne, J. K. & Rogers, L. A. Effects of temperature on the distribution and density of capelin in the Gulf of Alaska. Mar. Ecol. Prog. Ser. 620, 119–138 (2019).ADS 
    Article 

    Google Scholar 
    43.Watson, J. T. & Haynie, A. C. Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea. Can. J. Fish. Aquat. Sci. 75, 1977–1989. https://doi.org/10.1139/cjfas-2017-0315 (2018).Article 

    Google Scholar 
    44.Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619. https://doi.org/10.1111/faf.12364 (2019).Article 

    Google Scholar 
    45.Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 160 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 2018).46.Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650. https://doi.org/10.1139/cjfas-2019-0238 (2020).Article 

    Google Scholar 
    47.Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453. https://doi.org/10.1111/fog.12422 (2019).Article 

    Google Scholar 
    48.Fissel, B. et al. Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf Of Alaska and Bering Sea/Aleutian Islands area: Economic status of the groundfish fisheries off Alaska, 2017. 385 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2019).49.Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. 110, 2076–2081. https://doi.org/10.1073/pnas.1212278110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    50.Scyphers, S. B., Picou, J. S. & Grabowski, J. H. Chronic social disruption following a systemic fishery failure. Proc. Natl. Acad. Sci. 116, 22912–22914. https://doi.org/10.1073/pnas.1913914116 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Curnock, M. I. et al. Shifts in tourists’ sentiments and climate risk perceptions following mass coral bleaching of the Great Barrier Reef. Nat. Clim. Change 9, 535–541. https://doi.org/10.1038/s41558-019-0504-y (2019).ADS 
    Article 

    Google Scholar 
    52.Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484. https://doi.org/10.3389/fmars.2019.0048 (2019).Article 

    Google Scholar 
    53.Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510. https://doi.org/10.3389/fmars.2019.00510 (2019).Article 

    Google Scholar 
    54.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteor. Soc. 99, S39–S43. https://doi.org/10.1175/BAMS-D-17-0118.1 (2018).Article 

    Google Scholar 
    55.Sewall, F., Norcross, B., Vollenweider, J. & Heintz, R. Growth, energy storage, and feeding patterns reveal winter mortality risks for juvenile Pacific herring in Prince William Sound, Alaska, USA. Mar. Ecol. Prog. Ser. 623, 195–208 (2019).ADS 
    Article 

    Google Scholar 
    56.Toresen, R., Skjoldal, H. R., Vikebø, F. & Martinussen, M. B. Sudden change in long-term ocean climate fluctuations corresponds with ecosystem alterations and reduced recruitment in Norwegian spring-spawning herring (Clupea harengus, Clupeidae). Fish Fish. 20, 686–696. https://doi.org/10.1111/faf.12369 (2019).Article 

    Google Scholar 
    57.Duffy-Anderson, J. T. et al. Responses of the northern bering sea and southeastern bering sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett. 46, 9833–9842. https://doi.org/10.1029/2019gl083396 (2019).ADS 
    Article 

    Google Scholar 
    58.Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).Article 

    Google Scholar 
    59.Jacox, M., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. Predicting the evolution of the 2014–16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497. https://doi.org/10.3389/fmars.2019.00497 (2019).Article 

    Google Scholar 
    60.Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr. 7, 1–21 (1998).Article 

    Google Scholar 
    61.Rogers, L. A. & Dougherty, A. B. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Glob. Change Biol. 25, 708–720. https://doi.org/10.1111/gcb.14483 (2019).ADS 
    Article 

    Google Scholar 
    62.Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. Accepted (2021).63.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281. https://doi.org/10.1093/biosci/biw185 (2017).Article 

    Google Scholar 
    64.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13. https://doi.org/10.1186/s41200-019-0171-8 (2019).Article 

    Google Scholar 
    65.Vander Naald, B. P., Sergeant, C. J. & Beaudreau, A. H. Public perception and valuation of long-term ecological monitoring. Ecosphere 10, e02875. https://doi.org/10.1002/ecs2.2875 (2019).Article 

    Google Scholar 
    66.Hollowed, A. B. et al. Recent advances in understanding the effects of climate change on the world’s oceans. ICES J. Mar. Sci. 76, 1215–1220. https://doi.org/10.1093/icesjms/fsz084 (2019).Article 

    Google Scholar 
    67.R: A language and environment for statistical computing. (R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/, 2020).68.Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685. https://doi.org/10.1002/env.611 (2003).Article 

    Google Scholar 
    69.Holmes, E., Ward, E., Scheuerell, M. & Wills, L. MARSS: multivariate autoregressive state-space modeling (Northwest Fisheries Science Center NOAA, Seattle, WA, 2018).
    Google Scholar 
    70.Holmes, E. E., Ward, E. J. & Scheuerell, M. D. Analysis of multivariate time-series using the MARSS package, v3.10.10. 284 (Northwest Fisheries Science Center, NOAA, Seattle, WA, USA, 2018).71.Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552. https://doi.org/10.1139/f03-030 (2003).Article 

    Google Scholar 
    72.Clarke, K. R. & Gorley, R. N. Getting started with PRIMER v7 (PRIMER-E ltd, Plymouth, 2015).
    Google Scholar 
    73.Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation (PRIMER-E ltd, Plymouth, 2014).
    Google Scholar 
    74.Clarke, K. R., Somerfield, P. J. & Gorley, R. N. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366, 56–69. https://doi.org/10.1016/j.jembe.2008.07.009 (2008).Article 

    Google Scholar 
    75.Strom, S. L., Fredrickson, K. A. & Bright, K. J. Spring phytoplankton in the eastern coastal Gulf of Alaska: photosynthesis and production during high and low bloom years. Deep Sea Res. Part II 132, 107–121. https://doi.org/10.1016/j.dsr2.2015.05.003 (2016).CAS 
    Article 

    Google Scholar 
    76.Strom, S. L., Fredrickson, K. A. & Bright, K. J. Microzooplankton in the coastal Gulf of Alaska: Regional, seasonal and interannual variations. Deep Sea Res. Part II 165, 192–202. https://doi.org/10.1016/j.dsr2.2018.07.012 (2019).Article 

    Google Scholar 
    77.Mackas, D. L. Interannual variability of the zooplankton community off southern Vancouver Island. Can. Sp. Publ. Fish. Aquat. Sci. 121, 603–615 (1995).
    Google Scholar 
    78.Kimmel, D. G. & Duffy-Anderson, J. T. Zooplankton abundance trends and patterns in Shelikof Strait, western Gulf of Alaska, USA, 1990–2017. J. Plankton Res. 42, 334–354. https://doi.org/10.1093/plankt/fbaa019 (2020).Article 

    Google Scholar 
    79.Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74. https://doi.org/10.1016/j.pocean.2005.09.011 (2006).ADS 
    Article 

    Google Scholar 
    80.Von Szalay, P. G. & Raring, N. W. Data Report: 2017 Gulf of Alaska bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-374, 260 p., (2018).81.Matarese, A. C., Blood, D.M., Picquelle, S. J. & J.L., B. Vol. NOAA Prof. Paper NMFS 1, 281 p. 281 (NOAA Professional Paper NMFS 1, 2003).82.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the northern Gulf of Alaska. Front. Mar. Sci., 8. https://www.frontiersin.org/articles/10.3389/fmars.2021.556820/full (2021).83.Bodkin, J. L. et al. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015. Deep Sea Res. Part II 147, 87–97. https://doi.org/10.1016/j.dsr2.2017.04.008 (2018).Article 

    Google Scholar 
    84.Konar, B. et al. Wasting disease and static environmental variables drive sea star assemblages in the Northern Gulf of Alaska. J. Exp. Mar. Biol. Ecol. 520, 151209. https://doi.org/10.1016/j.jembe.2019.151209 (2019).Article 

    Google Scholar 
    85.Mudge, M. L., Pietrzak, K. W. & Rojek, N. A. Biological monitoring at Chowiet Island, Alaska in 2019. U.S. Fish and Wildl. Serv. Rep., AMNWR 2019/16. Homer, Alaska., 187 (2019).86.Suryan, R. M. & Irons, D. B. Colony and population dynamics of black-legged kittiwakes in a heterogeneous environment. Auk 118, 636–649 (2001).Article 

    Google Scholar 
    87.Harding, A. M. A. et al. Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge). Ecology 88, 2024–2033 (2007).Article 

    Google Scholar 
    88.Litzow, M. I., Piatt, J. I., Prichard, A. I. & Roby, D. I. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey. Oecologia 132, 286–295 (2002).ADS 
    Article 

    Google Scholar 
    89.Moran, J. R., Heintz, R. A., Straley, J. M. & Vollenweider, J. J. Regional variation in the intensity of humpback whale predation on Pacific herring in the Gulf of Alaska. Deep Sea Res. Part II 147, 187–195. https://doi.org/10.1016/j.dsr2.2017.07.010 (2018).Article 

    Google Scholar 
    90.Robards, M. D., Anthony, J. A., Rose, G. A. & Piatt, J. F. Changes in proximate composition and somatic energy content for Pacific sand lance (Ammodytes hexapterus) from Kachemak Bay, Alaska relative to maturity and season. J. Exp. Mar. Biol. Ecol. 242, 245–258 (1999).Article 

    Google Scholar 
    91.Muradian, M. L., Branch, T. A., Moffitt, S. D. & Hulson, P.-J.F. Bayesian stock assessment of Pacific herring in Prince William Sound Alaska. PLOS ONE 12, e0172153. https://doi.org/10.1371/journal.pone.0172153 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Moffitt, S. D. Retrospective longitudinal growth history from scales of Pacific herring collected in Prince William Sound. (Exxon Valdez Long-Term Herring Research and Monitoring Program Final Report (Project 13120111-N), Exxon Valdez Oil Spill Trustee Council. Anchorage, AK, Anchorage, AK, 2017).93.Batten, S. D., Moffitt, S., Pegau, W. S. & Campbell, R. Plankton indices explain interannual variability in Prince William Sound herring first year growth. Fish. Oceanogr. 25, 420–432. https://doi.org/10.1111/fog.12162 (2016).Article 

    Google Scholar 
    94.Dorn, M. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. 161 ( North Pacific Fishery Management Council, Anchorage, AK, 2019).95.Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 140 (North Pacific Fishery Management Council, Anchorage, AK, 2019).96.Spies, I., Aydin, K., Ianelli, J. N. & Palsson, N. Assessment of the arrowtooth flounder stock in the Gulf of Alaska (North Pacific Fishery Management Council, Anchorage, AK, 2019).
    Google Scholar 
    97.Hanselman, D. H. et al. Assessment of the Sablefish stock in Alaska. 263 (North Pacific Fishery Management Council, Anchorage, AK, 2019).98.Kettle, A. B. Biological monitoring at East Amatuli Island, Alaska in 2018. U.S. Fish and Wildlife Service Report, AMNWR 2019/13. Homer, Alaska., 84 (2019).99.Coletti, H. et al. Gulf Watch Alaska: Nearshore benthic systems in the Gulf of Alaska. Long-Term Monitoring Program (Gulf Watch Alaska) Final Report (Exxon Valdez Oil Spill Trustee Council Project 16120114-R), Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska., (2018).100.Bodkin, J. SOP for conducting marine bird and mammal surveys – Version 4.1: Southwest Alaska Inventory and Monitoring Network. Natural Resource Report NPS/SWAN/NRR— 2011/392. National Park Service, Fort Collins, Colorado, USA., (2011).101.Stocking, J., Bishop, M. A. & Arab, A. Spatio-temporal distributions of piscivorous birds in a subarctic sound during the nonbreeding season. Deep Sea Res. Part II 147, 138–147. https://doi.org/10.1016/j.dsr2.2017.07.017 (2018).Article 

    Google Scholar 
    102.102Kuletz, K. J. & Labunski, E. A. Seabird Distribution and Abundance in the Offshore Environment, Final Report. US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2017–004. Anchorage, Alaska, USA. 59 pp, plus 400 pages of Appendices (2017).103.Coletti, H. A., Bodkin, J. L., Monson, D. H., Ballachey, B. E. & Dean, T. A. Detecting and inferring cause of change in an Alaska nearshore marine ecosystem. Ecosphere 7, e01489. https://doi.org/10.1002/ecs2.1489 (2016).Article 

    Google Scholar 
    104.Maniscalco, J. M., Springer, A. M., Parker, P. & Adkison, M. D. A longitudinal study of steller sea lion natality rates in the Gulf of Alaska with comparisons to census data. PLoS ONE 9, e111523. https://doi.org/10.1371/journal.pone.0111523 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Sweeney, K., Fritz, L. W., Towell, R. & Gelatt, T. Results of Steller Sea Lion Surveys in Alaska, June-July 2017. 17 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, National Marine Fisheries Service, Alaska Fisheries Science Center, Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle WA 98115, https://www.fisheries.noaa.gov/resource/data/2017-results-steller-sea-lion-surveys-alaska, 2017).106.Straley, J. M. et al. Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska. Deep Sea Res. Part II 147, 173–186. https://doi.org/10.1016/j.dsr2.2017.08.008 (2018).Article 

    Google Scholar 
    107.Olsen, D. W., Matkin, C. O., Andrews, R. D. & Atkinson, S. Seasonal and pod-specific differences in core use areas by resident killer whales in the Northern Gulf of Alaska. Deep Sea Res. Part II 147, 196–202. https://doi.org/10.1016/j.dsr2.2017.10.009 (2018).Article 

    Google Scholar 
    108.ADFG. Alaska Department of Fish and Game Statewide electronic fish ticket database 1985 to present. 1st edition. Alaska Department of Fish and Game, Division of Commercial Fisheries. (Accessed October 2019). (2018). More

  • in

    First description of deep benthic habitats and communities of oceanic islands and seamounts of the Nazca Desventuradas Marine Park, Chile

    1.Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep. Res. Part I Oceanogr. Res. Pap. 58, 442–453 (2011).ADS 
    Article 

    Google Scholar 
    2.Preez, CDu., Curtis, J. M. R. & Clarke, M. E. The structure and distribution of benthic communities on a shallow seamount (Cobb Seamount, Northeast Pacific Ocean). PLoS ONE 11, 1–29 (2016).Article 
    CAS 

    Google Scholar 
    3.Auster, P. J. et al. Definition and detection of vulnerable marine ecosystems on the high seas: problems with the ‘move-on’ rule. ICES J. Mar. Sci. 68, 254–264 (2011).Article 

    Google Scholar 
    4.Watling, L. & Auster, P. J. Seamounts on the high seas should be managed as vulnerable marine ecosystems. Front. Mar. Sci. 4, 1–4 (2017).Article 

    Google Scholar 
    5.Cho, W. W. Faunal Biogeography, Community Structure, and Genetic Connectivity of North Atlantic Seamounts (Massachusetts Institute of Technology & Woods Hole Oceanographic Institution, 2008).6.Rogers, A. D. The Biology of Seamounts: 25 Years on. Advances in Marine Biology vol. 79 (Elsevie, 2018).7.Wagner, D. et al. The Salas y Gómez and Nazca ridges: a global diversity hotspot in need of protection. 28 (2020).8.Kvile, K. O., Taranto, G. H., Pitcher, T. J. & Morato, T. A global assessment of seamount ecosystems knowledge using an ecosystem evaluation framework. Biol. Conserv. 173, 108–120 (2014).Article 

    Google Scholar 
    9.Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    10.Yesson, C. et al. Improved bathymetry leads to 4000 new seamount predictions in the global ocean. UCL Open Environ. Preprint, 1–12 (2020).11.Gálvez Larach, M. Montes submarinos de Nazca y Salas y Gómez: una revisión para el manejo y conservación. Lat. Am. J. Aquat. Res. 37, 479–500 (2009).Article 

    Google Scholar 
    12.Jarrard, R. D. & Clague, D. A. Implications of Pacific Island and seamount ages for the origin of volcanic chains. Rev. Geophys. 15, 57–76 (1977).ADS 
    Article 

    Google Scholar 
    13.Chave, E. H. & Jones, A. T. Deep-water megafauna of the Kohala and Haleakala slopes, Alenuihaha Channel Hawaii. Deep Sea Res. Part A Oceanogr. Res. Pap. 38, 781–803 (1991).ADS 
    Article 

    Google Scholar 
    14.Kitchingman, A., Lai, S., Morato, T. & Pauly, D. How many seamounts are there and where are they located? In Seamounts: Ecology, Fisheries & Conservation, Series 12 (eds Pitcher, T. J. et al.) 26–40 (Blackwell Publishing, 2008). https://doi.org/10.1002/9780470691953.ch2.
    Google Scholar 
    15.Parin, N. V., Mironov, A. N. & Nesis, K. M. Biology of the Nazca and Sala y Gómez submarine ridges, an outpost of the Indo-West Pacific fauna in the eastern Pacific ocean: composition and distribution of the fauna, its communities and history. Advances in Marine Biology vol. 32 (1997).16.Samadi, S., Schlacher, T. & Richer de Forges, B. Seamount benthos. In Seamounts: Ecology, Fisheries and Conservation (eds Pitcher, T. et al.) 119–140 (Wiley-Blackwell, 2007).
    Google Scholar 
    17.Mironov, A. N., Molodtsova, T. N. & Parin., N. V. Soviet and Russian studies on seamount biology. (2006).18.Fernández, M., Pappalardo, P., Rodríguez-Ruiz, M. C. & Castilla, J. C. Síntesis del estado del conocimiento sobre la riqueza de especies de macroalgas, macroinvertebrados y peces en aguas costeras y oceánicas de Isla de Pascua e Isla Salas y Gómez. Lat. Am. J. Aquat. Res. 42, 760–802 (2014).Article 

    Google Scholar 
    19.Easton, E. E. et al. Chile and the Salas y Gómez Ridge. In Mesophotic Coral Ecosystems 477–490 (Springer, 2019). https://doi.org/10.1007/978-3-319-92735-0_27.20.Friedlander, A. M. et al. Marine biodiversity in Juan Fernández and Desventuradas islands, Chile: global endemism hotspots. PLoS ONE 11, e0145059 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Sellanes, J., Salisbury, R. A., Tapia, J. M. & Asorey, C. M. A new species of Atrimitra Dall, 1918 (Gastropoda: Mitridae) from seamounts of the recently created Nazca-Desventuradas Marine Park Chile. PeerJ 2019, 1–16 (2019).
    Google Scholar 
    22.Gaymer, C. F. et al. Plan General de Administración y su Valoración Económica. Informe final proyecto FIPA 2016–31 ‘Bases técnicas para la gestión del Parque Marino Nazca-Desventuradas y propuesta de Plan General de Administración’ (2018).23.Clark, M. R. et al. The ecology of seamounts: structure, function, and human impacts. Ann. Rev. Mar. Sci. 2, 253–278 (2010).PubMed 
    Article 

    Google Scholar 
    24.Henry, L. A. et al. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Sci. Rep. 4, 1–10 (2014).
    Google Scholar 
    25.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373 (1994).Article 

    Google Scholar 
    26.Morgan, N. B., Goode, S., Roark, E. B. & Baco, A. R. Fine scale assemblage structure of benthic invertebrate megafauna on the North Pacific Seamount Mokumanamana. Front. Mar. Sci. 6, 1–21 (2019).Article 

    Google Scholar 
    27.Davies, J. S. et al. Benthic assemblages of the Anton Dohrn Seamount (NE Atlantic): defining deep-sea biotopes to support habitat mapping and management efforts with a focus on vulnerable marine ecosystems. PLoS ONE 10, 33 (2015).
    Google Scholar 
    28.Auster, P. J., Malatesta, R. J. & Larosa, S. C. Patterns of microhabitat utilization by mobile megafauna on the southern New England (USA) continental shelf and slope. Mar. Ecol. Prog. Ser. 127, 77–85 (1995).ADS 
    Article 

    Google Scholar 
    29.Uzmann, J. R., Cooper, R. A., Theroux, R. B. & Wigley, R. L. Synoptic comparison of three sampling techniques for estimating abundance and distribution of selected megafauna: submersible vs. camera sled vs. otter trawl. Mar. Fish. Rev. 39, 11–19 (1977).
    Google Scholar 
    30.Valentine, J. P. & Edgar, G. J. Impacts of a population outbreak of the urchin Tripneustes gratilla amongst Lord Howe Island coral communities. Coral Reefs 29, 399–410 (2010).ADS 
    Article 

    Google Scholar 
    31.Greene, H. et al. A classification scheme for deep seafloor habitats. Oceanol. Acta 22, 663–678 (1999).Article 

    Google Scholar 
    32.Greene, H., O’Connell, V., Brylinsky, C. & Reynolds, J. Marine Benthic Habitat classification: What’s Best for Alaska? In Marine Habitat Mapping Technology for Alaska (eds Reynolds, J. & Greene, H. G.) 169–184 (Alaska Sea Grant College Program University of Alaska Fairbanks, 2008). https://doi.org/10.4027/mhmta.2008.12.
    Google Scholar 
    33.Naar, D. F., Johnson, K. P., Wessel, D., Duncan, P. & Mahoney, J. Rapa Nui. 2001: Cruise report for Leg 6 of the Drift expedition aboard the R/V Revelle (2001).34.Haase, K. M., Stoffers, P. & Garbe-Schönberg, C. D. The petrogenetic evolution of lavas from Easter Island and neighbouring seamounts, near-ridge hotspot volcanoes in the SE pacific. J. Petrol. 38, 785–813 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Woods, M. T. & Okal, E. A. The structure of the Nazca Ridge and Sala y Gomez seamount chain from the dispersion of Rayleigh waves. Geophys. J. Int. 117, 205–222 (1994).ADS 
    Article 

    Google Scholar 
    36.Rodrigo, C., Foucher, N., Philippi, N. & Lara, L. E. Morfoestructuras volcánicas y sedimentarias de los montes submarinos de la región de las islas Desventuradas, basadas en el análisis de datos acústicos. 110–115 (2017).37.Mecho, A. et al. Environmental drivers of mesophotic echinoderm assemblages of the Southeastern Pacific Ocean. Front Mar. Sci. 8, 1–15 (2021).Article 

    Google Scholar 
    38.VLC media player – Open Source Multimedia Framework and Player.39.Dyer, B. S. & Westneat, M. W. Taxonomía y biogeografía de los peces costeros del Archipiélago de Juan Fernández y de las islas Desventuradas Chile. Rev. Biol. Mar. Oceanogr. 45, 589–617 (2010).Article 

    Google Scholar 
    40.Pequeño, G. & Lamilla, J. The Littoral Fish Assemblage of the Desventuradas Islands (Chile) Has Zoogeographical Affinities with the Western Pacific. Glob. Ecol. Biogeogr. 9, 431–437 (2000).Article 

    Google Scholar 
    41.Raines, B. & Huber, M. Biodiversity Quadrupled-Revision of Easter Island and Salas y Gómez Bivalves. Zootaxa 106 (2012).42.Retamal, M. A. & Moyano, H. I. Zoogeografía de los crustáceos decápodos chilenos marinos y dulceacuícolas. Lat. Am. J. Aquat. Res. 38, 302–328 (2010).
    Google Scholar 
    43.Sysoev, A. B. Gastropods of the family Turridae (Gastropoda:Toxoglosa) of the Nasca and Sala y Gómez underwater ridges. 124, 245–260 (1990).44.Zarenkov, N. A. Crabs of the familiy Leucosiidae (subfamilies Ebalinae an Iliinae) collected in tropical water of Indian and Pacific oceans waters of Indian and Pacific oceans. Bol. Nauk. 10, 16–26 (1969).
    Google Scholar 
    45.Zarenkov, N. A. Decapods (Stenopodidea, Brachyura, Anomura) of the underwater Nazca and Salas y Gómez Ridges. Tr. Instituta Okeanol. AN USSR 124, 218–244 (1990).
    Google Scholar 
    46.Barriga, E., Salazar, C., Palacios, J., Romero, M. & Rodriguez, A. Distribucion, abundancia y estructura poblacional del langostino rojo de profundidad Haliporoides diomedeae (Crustacea: Decapoda: Solenoceridae). Lat. Am. J. Aquat. Res. 37, 371–380 (2009).
    Google Scholar 
    47.R Core Team. R Core Team (2020). R: A language and environment for statistical computing. version 4.0.3. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2019).48.Oksanen J et al. vegan: Community Ecology Package.R package version 2.5-7. https://cran.r-project.org/package=vegan (2020).49.Jones, D. & Frid, C. L. J. Altering intertidal sediment topography: effects on biodiversity and ecosystem functioning. Mar. Ecol. 30, 83–96 (2009).ADS 
    Article 

    Google Scholar 
    50.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
    Google Scholar 
    51.National Geographic & Oceana. Islas Desventuradas. Biodiversidad marina y propuesta de conservación. 58 (2013).52.Levin, L. A. & Nittrouer, C. A. Textural characteristics of sediment on deep seamounts in the eastern Pacific Ocean between 10°N and 30°N. In Seamounts, Islands and Atolls, 43 (eds Keating, B. et al.) 187–203 (Geophysical Monograph, 1987).
    Google Scholar 
    53.Lourido, A., Parra, S. & Serrano, A. Preliminary Results on the Composition and Structure of Soft-Bottom Macrobenthic Communities of a Seamount: the Galicia Bank (NE Atlantic Ocean). Thalassas 35, 1–9 (2019).Article 

    Google Scholar 
    54.Flach, E., Muthumbi, A. & Heip, C. Meiofauna and macrofauna community structure in relation to sediment composition at the iberian margin compared to the goban spur (NE atlantic). Prog. Oceanogr. 52, 433–457 (2002).ADS 
    Article 

    Google Scholar 
    55.Levin, L. A. & Gooday, A. The deep Atlantic Ocean floor. In Ecosystems of the Deep Oceans (ed. Tyler, P.) 187–203 (Elsevier, 2003).
    Google Scholar 
    56.Thistle, D. The deep-sea floor: an overview. In Ecosystems of the World, Ecosystems of the Deep Sea (ed. Tyler, P. A.) 5–37 (Elsevier, 2003).
    Google Scholar 
    57.Louzao, M. et al. Historical macrobenthic community assemblages in the Avilés Canyon, N Iberian Shelf: Baseline biodiversity information for a marine protected area. J. Mar. Syst. 80, 47–56 (2010).Article 

    Google Scholar 
    58.Kon, K., Tsuchiya, Y., Sato, T., Shinagawa, H. & Yamada, Y. Role of microhabitat heterogeneity in benthic faunal communities in sandy bottom sediments of Oura Bay, Shimoda Japan. Reg. Stud. Mar. Sci. 2, 71–76 (2015).Article 

    Google Scholar 
    59.Clark, M. R., Schlacher, T. A., Rowden, A. A., Stocks, K. I. & Consalvey, M. Science priorities for Seamounts: research links to conservation and management. PLoS ONE 7, e29232 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Zeppilli, D., Pusceddu, A., Trincardi, F. & Danovaro, R. Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea. Sci. Rep. 6, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    61.de la Torriente, A. et al. Benthic habitat modelling and mapping as a conservation tool for marine protected areas: a seamount in the western Mediterranean. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 732–750 (2019).Article 

    Google Scholar 
    62.Gallardo, M., Macpherson, E., Tapia-Guerra, J. M., Asorey, C. M. & Sellanes, J. A new species of Munida Leach, 1820 (Crustacea: Decapoda: Anomura: Munididae) from seamounts of the Nazca-Desventuradas Marine Park. PeerJ https://doi.org/10.7717/peerj.10531 (2021).Article 

    Google Scholar 
    63.Castilla, J. C. Islas oceánicas chilenas: conocimiento científico y necesidades de investigación (Ediciones Universidad Católica de Chile, 1987).64.Bahamonde, N. San Félix y San Ambrosio, las islas llamadas Desventuradas 85–99 (1987).65.Díaz-Díaz, O., Bone, D., Rodríguez, C. T. & Delgado-Blas, V. H. Poliquetos de Sudamérica. Especial d, 149 (2017).66.Díaz-Díaz, O. F., Rozbaczylo, N., Sellanes, J. & Tapia-Guerra, J. M. A new species of Eunice Cuvier, 1817 (Polychaeta: Eunicidae) from the slope of the Desventuradas Islands and seamounts of the Nazca Ridge, southeastern Pacific Ocean. A New Species Cuscus 4860, 211–226 (2020).
    Google Scholar 
    67.Kantor, Y. & Sysoev, A. Latiaxis (Babelomurex) naskensis, a new species of Coralliophilidae (Gastropoda) from South-Eastern Pacific. Ruthenica 2, 163–167 (1992).
    Google Scholar 
    68.Sepulveda, J. I. Peces de las Islas Oceánicas Chilenas. In Islas Oceánicas Chilenas: Conocimiento científico y necesidades de Investigaciones. (ed. Castilla, J.) 225–246 (Ediciones Universidad Católica de Chile, 1987).69.Mironov, A. & Detinova., N. Bottom fauna of the Nazca and Sala y Gomez ridges. Plankton and benthos from the Nazca and Sala y Gomez Submarine Ridges 269–278 (1990).70.Lundsten, L. et al. Benthic invertebrate communities on three seamounts off southern and central California USA. Mar. Ecol. Prog. Ser. 374, 23–32 (2009).ADS 
    Article 

    Google Scholar 
    71.Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).ADS 
    Article 

    Google Scholar 
    72.QGIS.org. QGIS Geographic Information System.QGIS Association. Version 3.10. https://www.qgis.org (2020). More

  • in

    Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China

    1.Sharrow, S. H. & Ismail, S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor. Syst. 60(2), 123–130 (2004).Article 

    Google Scholar 
    2.Yang, L. L. et al. Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, Northwestern China. Acta. Ecol. Sin. 35(15), 5215–5227 (2015).
    Google Scholar 
    3.Watson, R. T. et al. Land use, land-use change, and forestry. In: Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 308 (2000).4.Zhao, M. M. et al. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. For. Ecol. Manag. 448, 528–534 (2019).Article 

    Google Scholar 
    5.Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).Article 

    Google Scholar 
    6.Gunderson, P. Carbon—Nitrogen Interactions in Forest Ecosystems—Final Report. Danish Centre for Forest, Landscape and Planning, Denmark (2006).7.Hook, P. B. & Burke, I. C. Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81, 2686–2703 (2000).Article 

    Google Scholar 
    8.Vourlitis, G. L., Zorba, G., Pasquini, S. C. & Mustard, R. Carbon and nitrogen storage in soil and litter of southern Californian semi-arid shrublands. J. Arid Environ. 70, 164–173 (2007).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Liu, G. H., Fu, B. & Fang, J. Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta. Ecol. Sin. 20(5), 733–740 (2000).
    Google Scholar 
    11.IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007).12.Phillips, J. et al. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manag. 374, 119–128 (2016).Article 

    Google Scholar 
    13.Gibbs, H. K., Brown, B., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2(4), 1–13 (2007).
    Google Scholar 
    14.Aragão, L. et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).ADS 
    Article 

    Google Scholar 
    15.Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang. Biol. 15, 1255–1274 (2009).ADS 
    Article 

    Google Scholar 
    16.Post, W. M. & Kwon, K. C. Soil carbon sequestration and land use change: processes and potential. Glob. Chang. Biol. 6, 317–327 (2000).ADS 
    Article 

    Google Scholar 
    17.Ma, J. et al. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China. Ecol. Eng. 81, 353–362 (2015).Article 

    Google Scholar 
    18.Davidson, E. A., Trumbore, S. E. & Amundson, R. Biogeochemistry—soil warming and organic carbon content. Nature 408, 789–790 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Chaturvedi, R. K. & Raghubanshi, A. S. Aboveground biomass estimation of small diameter woody species of tropical dry forest. New For. 44, 509–519 (2013).Article 

    Google Scholar 
    20.Wen, D. & He, N. P. Forest carbon storage along the north-south transect of eastern china: spatial patterns, allocation, and influencing factors. Ecol. Indic. 61, 960–967 (2016).CAS 
    Article 

    Google Scholar 
    21.Fan, S. et al. A large terrestrial carbon sink in North America implied by atmospheric andoceanic carbon dioxide data and models. Science 282, 442–446 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Gough, C. M., Vogel, C. S., Schmid, H. P. & Curtis, P. S. Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58, 609–622 (2008).Article 

    Google Scholar 
    23.Van Deusen, P. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation. Biomass Bioenerg. 34, 1687–1694 (2010).Article 

    Google Scholar 
    24.Bradford, J. B., Jensen, N. R., Domke, G. M. & D’Amato, A. W. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. For. Ecol. Manag. 308, 178–187 (2013).Article 

    Google Scholar 
    25.Park, A. Carbon storage and stand conversion in a pine-dominated boreal forest landscape. For. Ecol. Manag. 340, 70–81 (2015).Article 

    Google Scholar 
    26.Wang, S. J., Zhao, J. X. & Chen, Q. B. Controlling factors of soil CO2 efflux in Pinusyunnanensis across different stand ages. PLoS ONE 10(5), e0127274. https://doi.org/10.1371/journal.pone.0127274 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Liu, J. et al. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 119, 407–416 (2017).Article 

    Google Scholar 
    28.Kavvadias, V. A. et al. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol. Manag. 144, 113–127 (2001).Article 

    Google Scholar 
    29.Dai, W. et al. Spatial pattern of carbon stocks in forest ecosystems of a typical subtropical region of Southeastern China. For. Ecol. Manag. 409, 288–297 (2018).Article 

    Google Scholar 
    30.Liu, S. et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta. Ecol. Sin. 37(4), 1074–1083 (2017).CAS 
    Article 

    Google Scholar 
    31.Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration?. CATENA 172, 104–112 (2019).CAS 
    Article 

    Google Scholar 
    32.Zhang, Z. H., Wang, L. C., Luo, J. X. & Zheng, D. R. Study on tree biomass models of Pinus Yunnanensis Faranch in Northwest Yunnan Province. J. Shandong For. Sci. Technol. 4, 4–6 (2011) ((in Chinese)).ADS 

    Google Scholar 
    33.Chen, C. Biomass and production of the Arbor-Layers in Pinus armandii forests. J. Northwestern Coll. For. 1, 1–18 (1984) ((in Chinese)).
    Google Scholar 
    34.Liu, S. R., Su, Y. M., Cai, X. H. & Ma, Q. Y. Aboveground biomass of quercus aquifolioides shrub community and its responses to altitudinal gradients in balangshan mountain, Shichuan province. Sci. Silvae. Sin. 42, 1–7 (2006) ((in Chinese)).
    Google Scholar 
    35.Li, J. L., Liang, S. C. & Chen, S. Z. A preliminary study on the biomass models of keteleeria davidiana var chien-peii colony in qingyan town of Guizhou province. J. Guizhou Normal Univ. 15, 7–12 (1997) ((in Chinese)).CAS 

    Google Scholar 
    36.Yang, L. L. et al. Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, northwestern China. Acta. Ecol. Sin. 35, 5215–5227 (2015) ((in Chinese)).
    Google Scholar 
    37.Xie, S. C., Liu, W. Y., Li, S. C. & Yang, G. P. Preliminary studies on the biomass of middle-mountain moist evergreen broadleaved forests in Ailao Mountain, Yunnan. Acta Phytoecol. Sin. 20, 167–176 (1996) ((in Chinese)).
    Google Scholar 
    38.Shen, Y., Tian, D. L., Yan, W. D. & Xiao, Y. Biomass and its distribution of natural secondary quercus fabri + sassafras tsumu+ cunninghamia lanceolata community in Yuanling county, Hunan province. J. Cent. South Univ. For. Technol. 31, 44–51 (2011) ((in Chinese)).CAS 

    Google Scholar 
    39.Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345–360 (2002).ADS 
    Article 

    Google Scholar 
    40.Zhou, Y. R., Yu, Z. L. & Zhao, S. D. Carbon storage and budget of major Chinese forest types. Acta. Phytoecol. Sin. 24, 518–522 (2000) ((in Chinese)).
    Google Scholar 
    41.Eslamdoust, J. & Sohrabi, H. Carbon storage in biomass, litter, and soil of different native and introduced fast-growing tree plantations in the South Caspian Sea. J. For. Res. 29, 449–457 (2018).CAS 
    Article 

    Google Scholar 
    42.He, Y. J. et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 295, 193–198 (2013).Article 

    Google Scholar 
    43.Ren, H. et al. Spatial and temporal patterns of carbon storage from 1992 to 2002 in forest ecosystems in Guangdong, Southern China. Plant Soil 363, 123–138 (2013).CAS 
    Article 

    Google Scholar 
    44.Ali, F., Khan, N., Ahmad, A. & Khan, A. A. Structure and biomass carbon of Olea ferruginea forests in the foot hills of Malakand division, Hindukush range mountains of Pakistan. Acta. Ecol. Sin. 39, 261–266 (2019).Article 

    Google Scholar 
    45.Ren, Y. et al. Potential for forest vegetation carbon storage in Fujian Province, China, determined from forest inventories. Plant Soil 345, 125–140 (2011).CAS 
    Article 

    Google Scholar 
    46.Fu, W. J. et al. Spatial variation of biomass carbon density in a subtropical region of Southeastern China. Forests 6, 1966–1981 (2015).Article 

    Google Scholar 
    47.Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New For. 43, 197–211 (2012).Article 

    Google Scholar 
    48.Nelson, A., Saunders, M., Wagner, R. & Weiskittel, A. Early stand production of hybrid poplar and white spruce in mixed and monospecific plantations in eastern Maine. New For. 43, 519–534 (2012).Article 

    Google Scholar 
    49.Gao, Y., Cheng, J., Ma, Z., Zhao, Y. & Su, J. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Ann. For. Sci. 71, 427–435 (2014).Article 

    Google Scholar 
    50.Fortier, J., Gagnon, D., Truax, B. & Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenerg. 34, 1028–1040 (2010).Article 

    Google Scholar 
    51.González-Rodríguez, H. et al. Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. Plant Ecol. 212, 1747–1757 (2011).Article 

    Google Scholar 
    52.Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science https://doi.org/10.1126/science.1201609 (2011).Article 
    PubMed 

    Google Scholar 
    53.Bradford, J. B., Birdsey, R. A., Joyce, L. A. & Ryan, M. G. Tree age, disturbance history and carbon stocks and fluxes in subalpine rocky mountain forests. Global Change Biol. 14, 2882–2897 (2008).ADS 
    Article 

    Google Scholar 
    54.Zhang, C. N., Yan, X. D. & Yang, J. H. Estimation of nitrogen reserves in forest soils of China. J. Southwest Agric. Univ. 26, 572-575+579 (2004) ((in Chinese)).
    Google Scholar 
    55.Lee, K. L., Ong, K. H., King, P. J. H., Chubo, J. K. & Su, D. S. A. Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turk. J. Agric. For. 39, 154–161 (2015).CAS 
    Article 

    Google Scholar 
    56.Cao, B., Domke, G. M., Russell, M. B. & Walters, B. F. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 654, 94–106 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).CAS 
    Article 

    Google Scholar 
    58.Zhu, B. et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 123, 439–452 (2010).PubMed 
    Article 

    Google Scholar 
    59.Xie, X. L., Sun, B., Zhou, H. Z. & Li, A. B. Soil organic carbon storage in China. Pedosphere 14, 491–500 (2004).CAS 

    Google Scholar 
    60.Leuschner, C., Moser, G., Bertsch, C., Röderstein, M. & Hertel, D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 8, 219–230 (2007).Article 

    Google Scholar 
    61.Singh, S. P., Adhikari, B. S. & Zobel, D. B. Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. Ecol. Monog. 64, 401–421 (1994).Article 

    Google Scholar 
    62.Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?. Biogeochemistry 27, 753–760 (2000).Article 

    Google Scholar 
    63.Raich, J. W., Russel, A. E., Kitayama, K., Parton, W. J. & Vitousek, P. M. Temperature influences carbon accumulation in moist tropical forests. Ecology 87, 76–87 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Simulations with Australian dragon lizards suggest movement-based signal effectiveness is dependent on display structure and environmental conditions

    1.Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article 

    Google Scholar 
    2.Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 340, 215–225 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Fleishman, L. J. The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. Am. Nat. 139, S36–S61 (1992).Article 

    Google Scholar 
    4.Lythgoe, J. N. The Ecology of vision (Oxford University Press, 1979).
    Google Scholar 
    5.Bradbury, J. W. & Vehrencamp, S. L. Principles of Animal Communication 2nd edn. (Sinauer Associates, 1998).
    Google Scholar 
    6.Morton, E. S. Ecological sources of selection on avian sounds. Am. Nat. 109, 17–34 (1975).ADS 
    Article 

    Google Scholar 
    7.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Linn. Soc. Lond. 41, 315–352 (1990).Article 

    Google Scholar 
    8.Wiley, R. H. & Richards, D. G. Adaptations for acoustic communication in birds: Sound transmission and signal detection. In Ecology and Evolution of Acoustic Communication in Birds (eds Kroodsma, D. E. & Miller, E. H.) 131–181 (Academic Press, 1983).
    Google Scholar 
    9.Bernard, G. D. & Remington, C. L. Color vision in Lycaena butterflies: Spectral tuning of receptor arrays in relation to behavioral ecology. Proc. Natl. Acad. Sci. USA 88, 2783–2787 (1991).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Peters, R. A., Clifford, C. W. G. & Evans, C. S. Measuring the structure of dynamic visual signals. Anim. Behav. 64, 131–146 (2002).Article 

    Google Scholar 
    11.Narins, P. M. Seismic communication in anuran amphibians. Bioscience 40, 268–274 (1990).Article 

    Google Scholar 
    12.Fleishman, L. & Persons, M. The influence of stimulus and background colour on signal visibility in the lizard Anolis cristatellus. J. Exp. Biol. 204, 1559–1575 (2001).CAS 
    PubMed 

    Google Scholar 
    13.Brumm, H. & Slabbekoorn, H. Acoustic communication in noise. Adv. Study Behav. 35, 151–209 (2005).Article 

    Google Scholar 
    14.Peters, R. A., Hemmi, J. M. & Zeil, J. Signaling against the wind: modifying motion-signal structure in response to increased noise. Curr. Biol. 17, 1231–1234 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Ord, T. J. & Stamps, J. A. Alert signals enhance animal communication in “noisy” environments. Proc. Natl. Acad. Sci. USA 105, 18830–18835 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Komers, P. E. Behavioural plasticity in variable environments. Can. J. Zool. 75, 161–169 (1997).Article 

    Google Scholar 
    17.Ord, T. J., Charles, G. K., Palmer, M. & Stamps, J. A. Plasticity in social communication and its implications for the colonization of novel habitats. Behav. Ecol. 27b, 341–351 (2015).
    Google Scholar 
    18.Marten, K. & Marler, P. Sound transmission and its significance for animal vocalization. Behav. Ecol. Sociobiol. 2, 271–290 (1977).Article 

    Google Scholar 
    19.Ryan, M. J., Cocroft, R. B. & Wilczynski, W. The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44, 1869–1872 (1990).PubMed 
    Article 

    Google Scholar 
    20.Leal, M. & Fleishman, L. J. Differences in visual signal design and detectability between allopatric populations of Anolis lizards. Am. Nat. 163, 26–39 (2004).PubMed 
    Article 

    Google Scholar 
    21.McNett, G. D. & Cocroft, R. B. Host shifts favor vibrational signal divergence in Enchenopa binotata treehoppers. Behav. Ecol. 19, 650–656 (2008).Article 

    Google Scholar 
    22.Ferguson, G. W. Variation and evolution of the push-up displays of the side-blotched lizard genus Uta (Iguanidae). Syst. Zool. 20, 79–101 (1971).Article 

    Google Scholar 
    23.Martins, E. P., Bissell, A. N. & Morgan, K. K. Population differences in a lizard communicative display: evidence for rapid change in structure and function. Anim. Behav. 56, 1113–1119 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Martins, E. P. & Lamont, J. Estimating ancestral states of a communicative display: A comparative study of Cyclurarock iguanas. Anim. Behav. 55, 1685–1706 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Bloch, N. & Irschick, D. An analysis of inter-population divergence in visual display behavior of the green anole lizard (Anolis carolinensis). Ethology 112, 370–378 (2006).Article 

    Google Scholar 
    26.Barquero, M. D., Peters, R. & Whiting, M. Geographic variation in aggressive signalling behaviour of the Jacky dragon. Behav. Ecol. Sociobiol. 69, 1501–1510 (2015).Article 

    Google Scholar 
    27.Bian, X., Chandler, T., Laird, W., Pinilla, A. & Peters, R. Integrating evolutionary biology with digital arts to quantify ecological constraints on vision-based behaviour. Methods Ecol. Evol. 9, 544–559 (2018).Article 

    Google Scholar 
    28.Fleishman, L. J. Motion detection in the presence and absence of background motion in an Anolis lizard. J. Comp. Physiol. A 159, 711–720 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Fleishman, L. J. Sensory and environmental influences on display form in Anolis auratus, a grass anole from Panama. Behav. Ecol. Sociobiol. 22, 309–316 (1988).
    Google Scholar 
    30.Eckert, M. P. & Zeil, J. Towards an ecology of motion vision. In Motion Vision (eds Zanker, J. M. & Zeil, J.) 333–369 (Springer, 2001).
    Google Scholar 
    31.Peters, R. A. & Evans, C. S. Design of the Jacky dragon visual display: Signal and noise characteristics in a complex moving environment. J. Comp. Physiol. A 189, 447–459 (2003).CAS 
    Article 

    Google Scholar 
    32.Peters, R. A. Noise in visual communication: Motion from wind-blown plants. In Animal Communication and Noise. Animal Signals and Communication (ed. Brumm, H.) 311–330 (Springer, 2013).
    Google Scholar 
    33.Ramos, J. A. & Peters, R. A. Motion-based signaling in sympatric species of Australian agamid lizards. J. Comp. Physiol. A 203, 661–671 (2017).CAS 
    Article 

    Google Scholar 
    34.Ramos, J. A. & Peters, R. A. Habitat-dependent variation in motion signal structure between allopatric populations of lizards. Anim. Behav. 126, 69–78 (2017).Article 

    Google Scholar 
    35.Ramos, J. A. & Peters, R. A. Quantifying ecological constraints on motion signaling. Front. Ecol. Evol. 5, 9 (2017).Article 

    Google Scholar 
    36.Bian, X., Chandler, T., Pinilla, A. & Peters, R. Now you see me, now you don’t: Environmental conditions, signaler behavior, and receiver response thresholds interact to determine the efficacy of a movement-based animal signal. Front. Ecol. Evol. 7, 130 (2019).Article 

    Google Scholar 
    37.Posner, M. I., Snyder, C. R. & Davidson, B. J. Attention and the detection of signals. J. Exp. Psychol. 109, 160–174 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Zeil, J. & Zanker, J. M. A glimpse into crabworld. Vis. Res. 37, 3417–3426 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Koch, C. & Ullman, S. Shifts in selective visual attention: Towards the underlying neural circuitry. in Matters of Intelligence. Conceptual Structures in Cognitie Neuroscience (ed. Vaina, L. M.) 115–142 (Springer, 1987).40.Itti, L., Koch, C. & Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20, 1254–1259 (1998).Article 

    Google Scholar 
    41.Harel, J., Koch, C. & Perona, P. Graph-based visual saliency. Adv. Neural Inf. Proc. Sys. 19, 545–552 (2006).
    Google Scholar 
    42.Koch, C. Biophysics of Computation: Information Processing in Single Neurons (Oxford University Press, 1998).
    Google Scholar 
    43.Tatler, B. W., Hayhoe, M. M., Land, M. F. & Ballard, D. H. Eye guidance in natural vision: Reinterpreting salience. J. Vis. 11, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Wilson, S. & Swan, G. A Complete Guide to Reptiles of Australia 2nd edn. (Reed New Holland, 2013).
    Google Scholar 
    45.Heatwole, H. & Firth, B. T. Voluntary maximum temperature of the jacky lizard, Amphibolurus muricatus. Copeia 1982, 824–829 (1982).Article 

    Google Scholar 
    46.Harlow, P. S. & Taylor, J. E. Reproductive ecology of the jacky dragon (Amphibolurus muricatus): An agamid lizard with temperature-dependent sex determination. Aust. Ecol. 25, 640–652 (2000).Article 

    Google Scholar 
    47.Ord, T. J. & Evans, C. S. Display rate and opponent assessment in the Jacky dragon (Amphibolurus muricatus): An experimental analysis. Behaviour 140, 1495–1508 (2003).Article 

    Google Scholar 
    48.Warner, D. A. & Shine, R. Interactions among thermal parameters determine offspring sex under temperature-dependent sex determination. Proc. R. Soc. Lond. B. Biol. Sci. 278, 256–265 (2010).
    Google Scholar 
    49.Carpenter, C. C., Badham, J. A. & Kimble, B. Behavior patterns of three species of Amphibolurus (Agamidae). Copeia 1970, 497–505 (1970).Article 

    Google Scholar 
    50.Peters, R. A. & Ord, T. J. Display response of the Jacky Dragon, Amphibolurus muricatus (Lacertilia : Agamidae), to intruders: A semi-Markovian process. Aust. Ecol. 28, 499–506 (2003).Article 

    Google Scholar 
    51.Peters, R. A. & Evans, C. S. Introductory tail-flick of the Jacky dragon visual display: Signal efficacy depends upon duration. J. Exp. Biol. 206, 4293–4307 (2003).PubMed 
    Article 

    Google Scholar 
    52.Carpenter, C. C. A comparison of the patterns of display of Urosaurus, Uta, and Streptosaurus. Herpetologica 18, 145–152 (1962).
    Google Scholar 
    53.Cogger, H. Reproductive cycles, fat body cycles and socio-sexual behaviour in the mallee dragon, Amphibolurus fordi (Lacertilia: Agamidae). Aust. J. Zool. 26, 653–672 (1978).Article 

    Google Scholar 
    54.Garcia, J. E., Rohr, D. & Dyer, A. G. Trade-off between camouflage and sexual dimorphism revealed by UV digital imaging: The case of Australian Mallee dragons (Ctenophorus fordi). J. Exp. Biol. 216, 4290–4298 (2013).PubMed 
    Article 

    Google Scholar 
    55.Ramos, J. A. & Peters, R. A. Dragon wars: Movement-based signalling by Australian agamid lizards in relation to species ecology. Aust. Ecol. 41, 302–315 (2016).Article 

    Google Scholar 
    56.Gibbons, J. R. H. Comparative ecology and behaviour of lizards of the Amphibolurus decresii species complex. PhD dissertation, University of Adelaide, Adelaide, South Australia (1977).57.McLean, C. A., Moussalli, A., Sass, S. & Stuart-Fox, D. Taxonomic assessment of the Ctenophorus decresii complex (Reptilia: Agamidae) reveals a new species of dragon lizard from western New South Wales. Rec. Aust. Mus. 65, 51–63 (2013).Article 

    Google Scholar 
    58.Osborne, L. Information content of male agonistic displays in the territorial tawny dragon (Ctenophorus decresii). J. Ethol. 23, 189–197 (2005).Article 

    Google Scholar 
    59.Gibbons, J. R. The hind leg pushup display of the Amphibolurus decresii species complex (Lacertilia: Agamidae). Copeia 1979, 29–40 (1979).Article 

    Google Scholar 
    60.Chouinard-Thuly, L. et al. Technical and conceptual considerations for using animated stimuli in studies of animal behavior. Curr. Zool. 63, 5–19 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Akagi, Y. & Kitajima, K. Computer animation of swaying trees based on physical simulation. Comput. Graph. 30, 529–539 (2006).Article 

    Google Scholar 
    62.Itti, L., Dhavale, N. & Pighin, F. Realistic avatar eye and head animation using a neurobiological model of visual attention. In Proc. SPIE 48th Annual International Symposium on Optical Science and Technology Vol. 5200 (eds Bosacchi, B. et al.) 64–78 (SPIE Press, Bellingham, 2003).
    Google Scholar 
    63.Fleishman, L. J. & Pallus, A. C. Motion perception and visual signal design in Anolis lizards. Proc. R. Soc. B. 277, 3547–3554 (2010).PubMed 
    Article 

    Google Scholar 
    64.Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E. & Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5-4. https://CRAN.R-project.org/package=vegan65.R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.66.Blamires, S. Circumduction and head bobbing in the agamid lizard Lophognathus temporalis. Herpetofauna 28, 51–52 (1998).
    Google Scholar 
    67.Carpenter, C. C. Aggression and social structure in iguanid lizards. In Lizard Ecology: A Symposium (ed. Milstead, W. W.) (University of Missouri Press Columbia, 1967).
    Google Scholar 
    68.Carpenter, C. Ritualistic social behaviors in lizards. in Behavior and Neurology of Lizards, An Interdisciplinary Colloquium, 253–267. (National Institute of Mental Health, 1978).69.Peters, R. A., Hemmi, J. & Zeil, J. Image motion environments: Background noise for movement-based animal signals. J. Comp. Physiol. A 194, 441–456 (2008).Article 

    Google Scholar 
    70.Hunter, M. L. & Krebs, J. R. Geographical variation in the song of the great tit (Parus major) in relation to ecological factors. J. Anim. Ecol 48, 759–785 (1979).Article 

    Google Scholar 
    71.Harmon, L. J., Kolbe, J. J., Cheverud, J. M. & Losos, J. B. Convergence and the multidimensional niche. Evolution 59, 409–421 (2005).PubMed 
    Article 

    Google Scholar 
    72.Fleishman, L. J. Sensory influences on physical design of a visual display. Anim. Behav. 36, 1420–1424 (1988).Article 

    Google Scholar 
    73.Ord, T. J., Peters, R. A., Clucas, B. & Stamps, J. A. Lizards speed up visual displays in noisy motion habitats. Proc. R. Soc. Lond. B. Biol. Sci. 274, 1057–1062 (2007).
    Google Scholar 
    74.Hasson, O. Pursuit-deterrent signals: Communication between prey and predator. Trends Ecol. Evol. 6, 325–329 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Hebets, E. A. & Uetz, G. W. Female responses to isolated signals from multimodal male courtship displays in the wolf spider genus Schizocosa (Araneae: Lycosidae). Anim. Behav. 57, 865–872 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    The influence of male dominance in female Anastrepha curvicauda mate selection

    1.Drews, C. The concept and definition of dominance in animal behaviour. Behaviour 125, 283–313. https://doi.org/10.1163/156853993X00290 (1993).Article 

    Google Scholar 
    2.Darwin, C.D. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 140 (Murray, 1859) http://darwin-online.org.uk/content/frameset?itemID=F373&viewtype=text&pageseq=1 (Accessed 10 Feb 2021).3.Wilson, E. O. Sociobiology: The New Synthesis (Harvard University Press, 1975).
    Google Scholar 
    4.Jennions, M. D. & Petrie, M. Variation in mate choice and mating preferences: A review of causes and consequences. Biol. Rev. 72, 283–327. https://doi.org/10.1111/j.1469-185X.1997.tb00015.x (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Wong, B. B. M. & Candolin, U. How is female mate choice affected by male competition?. Biol. Rev. 80, 559–571. https://doi.org/10.1017/S1464793105006809 (2005).Article 
    PubMed 

    Google Scholar 
    6.Johnstone, R. A. Sexual selection, honest advertisement and the handicap principle: Reviewing the evidence. Biol Rev. 70, 1–65. https://doi.org/10.1111/j.1469-185x.1995.tb01439.x (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Fedorka, K. M. & Mousseau, T. A. Material and genetic benefits of female multiple mating and polyandry. Anim. Behav. 64, 361–367. https://doi.org/10.1006/anbe.2002.3052 (2002).Article 

    Google Scholar 
    8.Kirkpatrick, M. & Ryan, M. The evolution of mating preferences and the paradox of the lek. Nature 350, 33–38. https://doi.org/10.1038/350033a0 (1991).ADS 
    Article 

    Google Scholar 
    9.Bachmann, G. E. et al. Mate choice confers direct benefits to females of Anastrepha fraterculus (Diptera: Tephritidae). PLoS ONE 14, e0214698. https://doi.org/10.1371/journal.pone.0214698 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Gabor, C. R. & Halliday, T. R. Sequential mate choice by multiply mating smooth newts: Females become more choosy. Behav. Ecol. 8, 162–166. https://doi.org/10.1093/beheco/8.2.162 (1977).Article 

    Google Scholar 
    11.Clutton-Brock, T. Sexual selection in male and females. Science 318, 1882–1885. https://doi.org/10.1126/science.1133311 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Clutton-Brock, T. Sexual selection in females. Anim. Behav. 77, 3–11. https://doi.org/10.1016/j.anbehav.2008.08.026 (2008).Article 

    Google Scholar 
    13.Bleu, J., Bessa-Gomes, C. & Laloi, D. Evolution of female choosiness and mating frequency: Effects of mating cost, density and sex ratio. Anim. Behav. 83, 131–136. https://doi.org/10.1016/j.anbehav.2011.10.017 (2012).Article 

    Google Scholar 
    14.Koyama, J. Mating pheromones: tropical dacines. In Fruit Flies: Their Biology, Natural Enemies and Control (eds Robinson, A. S. & Hooper, G.) 165–168 (Elsevier, 1989).
    Google Scholar 
    15.Malte, A. & Simmons, L. W. Sexual selection and mate choice. Tree. 21, 296–302. https://doi.org/10.1016/j.tree.2006.03.015 (2006).Article 

    Google Scholar 
    16.Benelli, G. et al. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for integrated pest management. J. Pest Sci. 87, 385–405. https://doi.org/10.1007/s10340-014-0577-3 (2014).Article 

    Google Scholar 
    17.Prokopy, R. J. Mating behavior of frugivorous Tephritidae in nature. In Proc. Symp. Fruit Fly Problems. XVI Int. Congr. Entomol. Kyoto, Japan, 37–46 (1980).18.Sivinski, J. M. & Burk, T. Reproductive and mating behaviour. In Fruit Flies: Their Biology, Natural Enemies and Control (eds Robinson, A. S. & Hooper, G.) 343–351 (Elsevier, 1989).
    Google Scholar 
    19.Benelli, G., Giunti, G., Canale, A. & Messing, R. Lek dynamics and cues evoking mating behavior in tephritid flies infesting soft fruits: Implications for behavior-based control tools. Appl. Entomol. Zool. 49, 363–373. https://doi.org/10.1007/s13355-014-0276-9 (2014).Article 

    Google Scholar 
    20.Arita, L. H. & Kaneshiro, K. Y. Sexual selection and lek behavior in the mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pac. Sci. 43, 135–143 (1989).
    Google Scholar 
    21.Benelli, G. Aggression in Tephritidae flies: Where, when, why? Future directions for research in integrated pest management. Insects 6, 38–53. https://doi.org/10.3390/insects6010038 (2015).Article 

    Google Scholar 
    22.Landolt, P. J. & Hendrichs, J. Reproductive behavior of the papaya fruit fly, Toxotrypana curvicauda Gerstaecker (Diptera:Tephritidae). Ann. Entomol. Soc. Am. 76, 413–417. https://doi.org/10.1093/aesa/76.3.413 (1983).Article 

    Google Scholar 
    23.Robledo, N. R. & Arzuffi, R. Influence of host fruit and conspecifics on the release of sex pheromone by Toxotrypana curvicauda males (Diptera: Tephritidae). Environ. Entomol. 41, 387–391. https://doi.org/10.1603/EN11037 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Aluja, M. et al. Daily activity patterns and within-field distribution of papaya fruit flies (Diptera: Tephritidae) in Morelos and Veracruz, Mexico. Ann. Entomol. Soc. Am. 90, 505–520. https://doi.org/10.1093/aesa/90.4.505 (1997).Article 

    Google Scholar 
    25.Landolt, P. J. Behavior of flies in the genus Toxotrypana (Trypetinae: Toxotrypanini). In Fruit Flies (Tephritidae): Phylogeny and Evolution of Behavior (eds Aluja, M. & Norrbom, A.) 363–373 (CRC Press, 2000).
    Google Scholar 
    26.Jiménez-Pérez, A. & Villa-Ayala, P. Size, fecundity and gonadic maturation of Toxotrypana curvicauda (Diptera: Tephritidae). Fla. Entomol. 89, 194–198. https://doi.org/10.1653/0015-4040 (2006).Article 

    Google Scholar 
    27.Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1997).ADS 
    Article 

    Google Scholar 
    28.Landolt, P. J., Heath, R. R. & King, J. R. Behavioral responses of female papaya fruit flies, Toxotrypana curvicauda Gerstaecker (Diptera:Tephritidae), to male-produced sex pheromones. Ann. Entomol. Soc. Am. 78, 751–755. https://doi.org/10.1093/aesa/78.6.751 (1985).Article 

    Google Scholar 
    29.Sivinski, J. M. & Webb, J. C. The form and function of acoustic courtship signals of the papaya fruit fly, Toxotrypana curvicauda (Tephritidae). Fla. Entomol. 68, 634–664 (1985).Article 

    Google Scholar 
    30.Landolt, P. J. Chemical ecology of papaya fruit fly. In Fruit Flies: Biology and Management 1st edn (eds Aluja, M. & Liedo, P.) 207–210 (Springer-Verlag, 1990).
    Google Scholar 
    31.Castrejón, A.F. Aspectos de la biología y hábitos de Toxotrypana curvicauda Gerst. (Diptera:Tephritidae) en condiciones de laboratorio y su distribución en una plantación de Carica papaya L. en Yautepec, Morelos. Bachelors’ dissertation, Instituto Politécnico Nacional. Mexico (1987).32.Robacker, C., Mangan, R. L., Moreno, D. S. & Tarshis, A. M. Mating behavior and male mating success in wild Anastrepha ludens (Diptera: Tephritidae) on a field-caged host tree. J. Insect Behav. 4, 471–487. https://doi.org/10.1007/BF01049332 (1991).Article 

    Google Scholar 
    33.Taylor, P. W. & Yuval, B. Postcopulatory sexual selection in Mediterranean fruit flies: Advantages for large and protein-fed males. Anim. Behav. 58, 247–254. https://doi.org/10.1006/anbe.1999.1137 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Abraham, S. et al. Remating behavior in Anastrepha fraterculus (Diptera: Tephritidae) females is affected by male juvenile hormone analog treatment but not by male sterilization. Bull. Entomol. Res. 103, 310–317. https://doi.org/10.1017/S0007485312000727 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Sánchez-Rosario, M., Pérez-Staples, D., Toledo, J., Valle-Mora, J. & Liedo, P. Artificial selection on mating competitiveness of Anastrepha ludens for sterile insect technique application. Entomol. Exp. Appl. 162, 133–147. https://doi.org/10.1111/eea.12540 (2017).Article 

    Google Scholar 
    36.Colwell, A. E. & Shorey, H. H. The courtship behavior of the house fly, Musca domestica (Diptera: Muscidae). Ann. Entomol. Soc. Am. 68, 152–156. https://doi.org/10.1093/aesa/68.1.152 (1975).Article 

    Google Scholar 
    37.Yeh, S. D., Liou, S. R. & True, J. Genetics of divergence in male wing pigmentation and courtship behavior between Drosophila elegans and D. gunungcola. Heredity 96, 383–395. https://doi.org/10.1038/sj.hdy.6800814 (2006).Article 
    PubMed 

    Google Scholar 
    38.Benelli, G. & Romano, D. Looking for the right mate—What do we really know on the courtship and mating of Lucilia sericata (Meigen)?. Acta Trop. https://doi.org/10.1016/j.actatropica.2018.08.013 (2019).Article 
    PubMed 

    Google Scholar 
    39.Wicker-Thomas, C. Pheromonal communication involved in courtship behavior in Diptera. J. Insect Physiol. 53, 1089–1100. https://doi.org/10.1016/j.jinsphys.2007.07.003 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Tadeo, E., Aluja, M. & Rull, J. Alternative mating tactics as potential prezygotic barriers to gene flow between two sister species of frugivorous fruit flies. J. Insect Behav. 26, 708–720. https://doi.org/10.1007/s10905-013-9383-7 (2013).Article 

    Google Scholar 
    41.Burk, T. & Webb, J. C. Effect of male size on calling propensity, song parameters, and mating success in Caribean fruit flies (Anastrepha suspensa (Loew)). Ann. Entomol. Soc. Am. 76, 678–682. https://doi.org/10.1093/aesa/76.4.678 (1983).Article 

    Google Scholar 
    42.Briceño, R. D. & Eberhard, W. G. Possible Fisherian changes in female mate-choice criteria in a mass-reared strain of Ceratitis capitata (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 93, 343–345. https://doi.org/10.1603/0013-8746(2000)093[0343:PFCIFM]2.0.CO;2 (2000).Article 

    Google Scholar 
    43.Poramarcom, R. & Boake, C. R. B. Behavioural influences on male mating success in the Oriental fruit fly, Dacus dorsalis Hendel. Anim. Behav. 42, 453–460. https://doi.org/10.1016/S0003-3472(05)80044-2 (1991).Article 

    Google Scholar 
    44.Dukas, R. & Scott, A. Fruit fly courtship: The female perspective. Curr. Zool. 61, 1008–1014. https://doi.org/10.1093/czoolo/61.6.1008 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Benelli, G. et al. Contest experience enhances aggressive behaviour in a fly: When losers learn to win. Sci. Rep. 5, 9347. https://doi.org/10.1038/srep09347 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Landolt, P. J. Reproductive maturation and premating period of the papaya fruit fly Toxotrypana curvicauda (Diptera: Tephritidae). Fla. Entomol. 67, 240–244 (1984).Article 

    Google Scholar 
    47.Martínez Rogelio. Comportamiento agonista de Toxotrypana curvicauda Gerstaecker (Diptera:Tephritidae). Bachelors dissertation, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico, (2016)48.Arzuffi, A. Factores determinantes del orden jerárquico en el acocil Cambarellus zempoalensis (Crustacea: Cambaridae). Doctorate dissertation, Instituto Politécnico Nacional. Mexico City (1997).49.Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide (Cambridge University Press, 2007). https://doi.org/10.1002/ajpa.1330740314.
    Google Scholar 
    50.Markow, T. Behavioral and sensory basis of courtship success in Drosophila melanogaster. PNAS 84, 6200–6204. https://doi.org/10.1073/pnas.84.17.6200 (1987).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Arzuffi, B.A., Salazar-Marcial, L. & Robledo, Q.N. Cortejo y apareamiento de Toxotrypana curvicauda (Diptera:Tephritidae): análisis cuantitativo y efecto de la edad. Primer Congreso Internacional de Agronomía Tropical y Segundo Simposio Nacional Agroalimentario. Villahermosa, Tabasco, México (2009).52.Salazar-Marcial, L., Arzuffi, B. R. & Robledo, Q. N. Efecto de la edad sobre el cortejo y el apareamiento en Toxotrypana curvicauda (Diptera:Tephritidae). Entomol. Mex. 9, 328–329 (2010).
    Google Scholar  More

  • in

    Model-based projections for COVID-19 outbreak size and student-days lost to closure in Ontario childcare centres and primary schools

    Population structureThere are N households in the population, and a single educational institution (either a school or a school, dependent on scenarios to be introduced later) with M rooms and a maximum capacity dependent on the scenario being tested. Effective contacts between individuals occur within each household, as well as rooms and common areas (entrances, bathrooms, hallways, etc.) of the institution. All groups of individuals (households and rooms) in the model are assumed to be well-mixed.Each individual (agent) in the model is assigned an age, household, room in the childcare facility and an epidemiological status. Age is categorical, so that every individual is either considered a child (C) or an adult (A). Epidemiological status is divided into stages in the progression of the disease; agents can either be susceptible (S), exposed to the disease (E), presymptomatic (an initial asymptomatic infections period P), symptomatically infected (I), asymptomatically infected (A) or removed/recovered (R), as shown in Fig. 1b.In the model, some children in the population are enrolled as students in the institution and assigned a classroom based on assumed scenarios of classroom occupancy while some adults are assigned educator/caretaker roles in these classroom (again dependent on the occupancy scenario being tested). Assignments are made such that there is only one educator per household and that children do not attend the same institution as a educator in the household (if there is one), and vice versa.Interaction and disease progressionThe basic unit of time of the model is a single day, over which each attendee (of the institution) spends time at both home and at the institution. The first interactions of each day are established within each household, where all members of the household interact with each other. An asymptomatically infectious individual of age i will transmit the disease to a susceptible housemate with the age j with probability (beta ^H_{i,j}), while symptomatically infectious members will self-isolate (not interact with housemates) for a period of 14 days.The second set of interpersonal interactions occur within the institution. Individuals (both students and educators) in each room interact with each other, where an infectious individual of age i transmits the disease to some susceptible individual of age j with probability (beta ^C_{i,j}). To signify common areas within the building (such as hallways, bathrooms and entrances), each individual will then interact with every other individual in the institution. There, an infectious individual of age j will infect a susceptible individual of age i with probability (beta ^O_{i,j}).To simulate community transmission (for example, public transport, coffee shops and other sources of infection not explicitly modelled here), each susceptible attendee is infected with probability (lambda _S). Susceptible individuals not attending the institution in some capacity are infected at rate (lambda _N), where (lambda _N >lambda _S) to compensate for those consistent effective interactions outside of the institution that are neglected by the model (such as workplace interactions among essential workers and members of the public).Figure 1b shows the progression of the illness experienced by each individual in the model. In each day, susceptible (S) individuals exposed to the disease via community spread or interaction with infectious individuals (those with disease statuses P, A and I) become exposed (E), while previously exposed agents become presymptomatic (P) with probability (delta). Presymptomatic agents develop an infection in each day with probability (delta), where they can either become symptomatically infected (I) with probability (eta) or asymptomatically infected (A) with probability (1-eta).The capacity of the sole educational institution in the model is divided evenly between 5 rooms, with class size and student-educator ratio governed by one of three basic scenarios: seven students and three educators per room (7 : 3), eight students and two educators per room (8 : 2), and fifteen students and two educators per room (15 : 2). Classroom assignments for children can be either randomized or grouped by household (siblings are put in the same class).Symptomatically infected agents (I) are removed from the simulation after 1 day (status R) with probability (gamma _I), upon which they self-isolate for 14 days, and therefore no longer pose a risk to susceptible individuals. Asymptomatically infected agents (A) remain infectious but are presumed able to maintain regular effective contact with other individuals in the population due to their lack of noticeable symptoms; they recover during this period (status R) with probability (gamma _A). Disease statuses are updated at the end of each day, after which the cycles of interaction and infection reoccur the next day.The actions of symptomatic (status I) agents depend on age and role. Individuals that become symptomatic maintain a regular schedule for 1 day following initial infection (including effective interaction within the institution, if attending), after which they serve a mandatory 14-day isolation period at home during which they interaction with no one (including other members of their household). On the second day after the individual’s development of symptoms, their infection is considered a disease outbreak centred in their assigned room, triggering the closure of that room for 14 days. All individuals assigned to that room are sent home, where they self-isolate for 14 days due to presumed exposure to the disease. Symptomatically infected children are not replaced, and simply return to their assigned classroom upon recovery. At the time of classroom reopening, any symptomatic educator is replaced by a substitute for the duration of their recovery, upon which they reprise their previous role in the institution; the selection of a substitute is made under previous constraints on educator selection (one educator per household. with no one chosen from households hosting any children currently enrolled in the institution).ParameterisationThe parameter values are given in Supplementary Table S4. The sizes of households in the simulation was determined from 2016 Statistics Canada census data on the distribution of family sizes42. We note that Statistics Canada data only report family sizes of 1, 2 or 3 children: the relative proportions for 3+ children were obtained by assuming that (65 %) of families of 3+ children had 3 children, (25%) had 4 children, (10%) had 5 children, and none had more than 5 children. Each educator was assumed to be a member of a household that did not have children attending the school. Again using census data, we assumed that (36%) of educators live in homes with no children, where an individual lives alone with probability 0.282, while households hosting 3, 4, 5, 6, and seven adults occur with probability 0.345, 0.152, 0.138, 0.055, 0.021 and 0.009 respectively. Others live with (ge 1) children in households following the size and composition distribution depending on the number of adults in the household. For single-parent households, a household with a single child occurs with probability 0.169, and households with 2, 3, 4 and 5 children occur with probabilities 0.079, 0.019, 0.007 and 0.003 respectively. With two-parent households, those probabilities become 0.284, 0.307, 0.086, 0.033 and 0.012.The age-specific transmission rates in households are given by the matrix:$$begin{aligned} begin{bmatrix} beta ^H_{1,1} &{} beta ^H_{1,2} \ beta ^H_{2,1} &{} beta ^H_{2,2} \ end{bmatrix} equiv beta ^H begin{bmatrix} c^H_{1,1} &{} c^H_{1,2} \ c^H_{2,1} &{} c^H_{2,2} \ end{bmatrix}, end{aligned}$$
    (1)
    where (c^H_{i,j}) gives the number of contacts per day reported between individuals of ages i and j estimated from data28 and the baseline transmission rate (beta ^H) is calibrated. To estimate (c^H_{i,j}) from the data in Ref.28, we used the non-physical contacts of age class 0–9 years and 25–44 years of age with themselves and one another in Canadian households. Based on a meta-analysis, the secondary attack rate of SARS-CoV-2 appears to be approximately (15 %) on average in both Asian and Western households43. Hence, we calibrated (beta ^H) such that a given susceptible person had a (15 %) chance of being infected by a single infected person in their own household over the duration of their infection averaged across all scenarios tested. As such, age specific transmission is given by the matrix$$begin{aligned} beta ^Hcdot begin{bmatrix} 0.5378 &{} 0.3916 \ 0.3632 &{} 0.3335 end{bmatrix}. end{aligned}$$
    (2)
    To determine (lambda _S) we used case notification data from Ontario during lockdown, when schools, workplaces, and schools were closed44. During this period, Ontario reported approximately 200 cases per day. The Ontario population size is 14.6 million, so this corresponds to a daily infection probability of (1.37 times 10^{-5}) per person. However, cases are under-ascertained by a significant factor in many countries. We assumed an under-ascertainment factor of 8.45 based on an empirical estimate of under-reporting45, meaning there are actually 8.45 times more cases than reported in Ontario, giving rise to (lambda _S = 1.16 times 10^{-4}) per day; (lambda _N) was set to (2cdot lambda _S). We emphasize that this number may fall later in the pandemic as testing capacity increases, although some individuals may still never get tested–especially schoolchildren, who are often asymptomatic.The age-specific transmission rates in the school rooms is given by the matrix$$begin{aligned} begin{bmatrix} beta ^C_{1,1} &{} beta ^C_{1,2} \ beta ^C_{2,1} &{} beta ^C_{2,2} \ end{bmatrix} equiv beta ^C begin{bmatrix} c^C_{1,1} &{} c^C_{1,2} \ c^C_{2,1} &{} c^C_{2,2} \ end{bmatrix} equiv beta ^C begin{bmatrix} 1.2356 &{} 0.0588 \ 0.1176 &{} 0.0451 end{bmatrix}, end{aligned}$$
    (3)
    where (c^C_{i,j}) is the number of contacts per day reported between age i and j estimated from data28. To estimate (c^C_{i,j}) from the data in Ref.28, we used the non-physical contacts of age class 0–9 years and 20–54 years of age, with themselves and one another, in Canadian schools. Epidemiological data on secondary attack rates in educational institutions are rare, since childcare centres and schools were closed early in the outbreak in most areas. We note that contacts in families are qualitatively similar in nature and duration to contacts in schools with small group sizes, although these contacts are generally more dispersed among the larger groups in rooms than among the smaller groups in households. On the other hand, rooms may represent equally favourable conditions for aerosol transmission, as opposed to close contact. Hence, we assumed that (beta ^C = alpha _C beta ^H), with a baseline value of (alpha _C = 0.75) based on more dispersed contacts expected in the larger room group, although we varied this assumption in sensitivity analysis.To determine (beta ^O) we assumed that (beta ^O = alpha _O beta ^C) where (alpha _O ll 1) to account for the fact that students spend less time in common areas than in their rooms. To estimate (alpha _O), we note that (beta ^O) is the probability that a given infected person transmits the infection to a given susceptible person. If students and staff have a probability p per hour of visiting a common area, then their chance of meeting a given other student/staff in the same area in that area is (p^2). We assumed that (p=0.05) and thus (alpha _O = 0.0025). The age-specific contact matrix for (beta ^O) was the same as that used for (beta ^C) (Eq. 3).Model initializationUpon population generation, each agent is initially susceptible (S). Individuals are assigned to households as described in the “Parameterisation” section, and children are assigned to rooms either randomly or by household. We assume that parents in households with more than one child will decide to enroll their children in the same institution for convenience with probability (xi =80%), so that each additional child in multi-child households will have probability (1-xi) of not being assigned to the institution being modelled.Households hosting educators are generated separately. As in the “Parameterisation” section, we assume that (36%) of educators live in adult-only houses, while the other educators live in houses with children, both household sizes following the distributions outlined in the “Parameterisation” section. The number of educator households is twice that required to fully supply the school due to the replacement process for symptomatic educators outlined in the “Disease Progression” section.Initially, a proportion of all susceptible agents (R_{init}) is marked as removed/recovered (R) to account for immunity caused by previous infection moving through the population. A single randomly chosen school attendee is chosen as a primary case and is made presymptomatic (P) to introduce a source of infection to the model. All simulations are run until there are no more potentially infectious (E, P, I, A) individuals left in the population and the institution is at full capacity. All results were averaged over 2000 trials.Estimating β
    H
    Agents in the simulation were divided into two classes: “children” (ages 0–9) and “adults” (ages 25–44). Available data on contact rates28 was stratified into age categories of width 5 years starting at age 0 (0–5, 5–9, 10–14, etc.). The mean number of contacts per day (c_{i,j}^H) for each class we considered (shown in Eq. 2) was estimated by taking the mean of the contact rates of all age classes fitting within our presumed age ranges for children and adults.For (beta ^H) calibration, we created populations by generating a sufficient number of households to fill the institution in each of the three tested scenarios; 15 : 2, 8 : 2 and 7 : 3. In each household, a single randomly chosen individual was infected (each member with equal probability) by assigning them a presymptomatic disease status P; all other members were marked as susceptible (disease status S). In each day of the simulation, each member of each household was allowed to interact with the infected member, becoming exposed to the disease with probability given in Eq. 2. Upon exposure, they were assigned disease status E. At the beginning of each subsequent day, presymptomatic individuals proceeded to infected statuses I and A, and infected agents were allowed to recover as dictated by Fig. 1b and Supplementary Table S4. This cycle of interaction and recovery within each household was allowed to continue until all infected individuals were recovered from illness.We did not allow exposed agents (status E) to progress to an infectious stage (I or A) since we were interested in finding out how many infections within the household would result from a single infected household member, as opposed to added secondary infections in later days. At the end of each trial, the specific probability of infection ((pi _n)) in each household (H_n) was calculated by dividing the number of exposed agents in the household ((E_n)) by the size of the household (|H_n|) less 1 (accounting for the member initially infected). Single occupant households ((|H_n|=1)) were excluded from the calculation. The total probability of infection (pi) was then taken as the mean of all (pi _n), so that$$begin{aligned} pi =frac{1}{D}sum _{n}pi _n=frac{1}{D}sum _{|H_n|ge 2}frac{E_n}{|H_n|-1}, end{aligned}$$
    (4)
    where D represents the total number of multiple occupancy households in the simulation. This modified disease simulation was run for 2000 trials each of different prospective values of (beta ^H) ranging from 0 to 0.21. The means of all corresponding final estimates of the infection rate were taken per value of (beta ^H), and the value corresponding to a infection rate of (15%) was interpolated.Simplifying assumptionsOur model makes simplifying assumptions that may influence its predictions. For instance, we assume that classrooms are homogeneously mixing and did not take social structure into account. Social structure might slow the spread of COVID-19 in classrooms. We also assumed that public health authorities will respond to a confirmed case by closing the classroom, although in practice, they may keep the class running if they think the case does not represent an infection risk to children or adults. This would reduce the number of student-days lost to closure. Similarly, we did not account for potential contacts between school children outside of classes, although students of a classroom that has been closed may still interact with their classmates outside of school. Other simplifying assumptions are mentioned in the “Discussion” section. More

  • in

    Quantification of Phytophthora infestans population densities and their changes in potato field soil using real-time PCR

    We modified the reported DNA extraction methods using a commercial DNA extraction kit: the cetyl trimethylammonium bromide (CTAB) method13 with the addition of skim milk to prevent the absorption of DNA and a bead beating method14. In this report, this method is named the modified CTAB-bead method. The proposed real-time PCR assay may be suitable for the quantification of P. infestans population densities, at least in Japanese upland soils, because P. infestans DNA from various kinds of upland soils was well quantified, and there were no false positives in the negative control plots. Thus, we conclude that the P. infestans population density can be represented by the quantity of DNA determined using real-time PCR. One udifluvent and udult soil quantified slightly small amounts of DNA, and there were small differences among soil types at the same population densities. However, this should not be of great consequence because the differences compared with the other upland soils are within tenfold; thus, these small differences are likely due to the soil characteristics. A previous study reported that no single method of cell lysis or purification is appropriate for all soils15. Thus, the proposed real-time PCR assay is available to quantify the pathogen densities in soils such that most soil samples containing 4–400 zoosporangia/g soil plots except decomposed granite soil and sea sand were quantified as approximately 1–100 pg/g soil. Although this method can be used to quantify P. infestans DNA levels in soil, not all soil samples containing the same number of zoosporangia yielded similar results, as the amount of DNA absorbed was dependent on the soil type. Thus, a calibration curve may be required when a new soil type is tested in which a zoosporangia suspension or P. infestans DNA is added to nondiseased soil. Regarding decomposed granite soil and sea sand, which are not upland soils and not suitable for potato cultivation, the reason for the small DNA quantities may be that a large amount of DNA is absorbed onto silica under Na+- or Ca2+-rich conditions16. If the soil type is sandy or clayey, the DNA quantities may be smaller than those in other soil types. For further development of this method, the addition of an internal control, such as GFP-induced plasmid DNA17, to correct the raw data might be effective. Additionally, changing the glass beads used in this method to zirconia or iron beads may also be effective due to the powerful homogenization and lower amount of DNA absorption achieved with the latter two bead types. However, these improvements may be unnecessary because the proposed assay has a small detection limit such that samples containing only 4 zoosporangia/g soil were detected and quantified. Ristaino et al.18 reported that real-time LAMP and droplet digital PCR can be used to quantify P. infestans DNA from plant tissue. Compared with these tools, the proposed real-time PCR assay has some advantages, such as a wide dynamic range. For this reason, this assay may be widely applied to upland soils.This is the first report of the quantification of P. infestans population densities in naturally infested soil samples, and changes in the population densities were analysed using real-time PCR. These results also showed that this quantitative method provides reproducible results, because changes in P. infestans DNA were correlated with symptom development throughout the growth periods. DNA quantities during the epidemics (5 and 18 August 2017 and 2018, respectively) were converted into P. infestans population densities in zoosporangia equivalents based on the results obtained for udant B (experimental field, HARC), as shown in Fig. 1; thus, there were approximately 104–105 and 103–104 zoosporangia in the ridgetop soils. These results indicate that a large amount of P. infestans existed in the field ridgetop soils where the plants were blighted. Quantified DNA may be from zoosporangia, mycelia, or small residue or free DNA but not from oospores. Because the A1 mating type has been dominant in Japan since 200519, sexual reproduction rarely occurs, at least in potato fields. We have not verified the availability of soils containing oospores. In future studies, inoculated soil containing oospores should be tested. However, soils containing P. infestans oospores might be quantified using the proposed assay because previous studies reported that soils containing three potato pathogens and oospores of Pythium spp. have been quantified using CTAB and bead beating methods20,21. If the proposed assay can quantify P. infestans DNA from oospores in soil, we might apply this assay to soil diagnosis before planting.A previous study reported that the inoculum potentials of soil decreased as foliage lesions became less abundant2. Our study corresponds to this previous study because the quantities of P. infestans DNA in soil were consistent with foliage symptom development (in 2017 and 2018) and the number of lesions per plant (in 2018). Hence, the proposed real-time PCR method can be an alternative to bioassays and used as a method to quantify the P. infestans population density. Bioassays require special knowledge and techniques of plant pathology because researchers have to judge whether inoculated tubers were rotted due to P. infestans. On the other hand, real-time PCR assays are easy and require only minimal knowledge and techniques of molecular biology. In 2018, symptom development stopped from late July to early August due to a heat wave. The DNA quantities were reflected in foliage symptoms, with small quantities of DNA estimated during this period. These results imply that this method is highly sensitive for estimating even weekly population changes. The quantities of DNA were decreased to one-tenth of their former numbers in a week after the desiccation of the foliage. As indicated by the decrease, most P. infestans zoospores or zoosporangia cannot survive in/on the soil and quickly die and are degraded by microorganisms and DNase6,22,23. However, if new A2 strains migrated into Japan and oospores were found in field soil, DNA would be detected for a long time even in the noncultivation period. Surprisingly, an infinitesimal quantity of DNA was detected one month after the foliage had disappeared in 2017. This DNA may have been from another plant out of experimental fields or DNA absorbed to some kind of soil material and may persist against DNase24.Figure 5 shows a positive correlation between the quantity of P. infestans DNA and the inoculum potential. Thus, the proposed real-time PCR method is suitable for indirect estimation of P. infestans inoculum potential. In this analysis, two data sets containing zero values were eliminated as outliers because a zero value in this experiment signifies “below the detection limit”; we cannot determine the exact value. Thus, data sets containing zero values cannot be included in the analysis to evaluate the applicability of the proposed real-time PCR assay instead of the bioassay for estimating inoculum potential. Previous estimation methods, such as bioassays, require an incubation period of approximately 2–3 weeks, expert knowledge of P. infestans and incubation space. On the other hand, real-time PCR requires several hours to estimate the population densities, minimal knowledge of molecular biology and no incubation space. For these reasons, we can more easily estimate P. infestans inoculum potential with real-time PCR than with bioassays. In the experiments using commercial potato fields, a larger amount of DNA was quantified from ridge bottom soils than from any other location. This result agrees with a previous report that most rainwater was deposited at the bottoms of ridges, and the rainwater contained fewer than 500 zoosporangia when blight was present on the crop25. According to this result, soils sampled from the bottom of a ridge are suitable for whole field estimation of P. infestans population densities.In this study, the quantities of DNA and inoculum potentials were larger in field A than in fields B and C. This result suggests that the proposed real-time PCR assay may be suitable for comparison among potato fields. In field A, late blight occurred because farmers could not conduct chemical control due to heavy rain. Field B was a non-controlled commercial field, and incomplete chemical spraying gave rise to a non-controlled spot in field C. Fields B and C were not perfectly managed for preventing late blight; however, some control, such as cultural or chemical control, was performed in some part. On the other hand, field A did not receive control measures at all. This might be why field A had larger DNA quantities and inoculum potentials than fields B and C.For the results from non-controlled fields, P. infestans did not percolate through the soil but instead remained at the surface because most soil samples from ridgetops contained larger amounts of DNA than those from the tuber periphery. A previous study reported that more than half of the tubers in the top 5.1 cm of soil were blighted, and the population of blighted tubers decreased with increasing depth26. We can show the same conclusions using real-time PCR. However, in commercial fields, all soils sampled from the tuber periphery contained larger amounts of DNA and had a lower inoculum potential than those from the ridge surfaces. Rainy and cold conditions (approximately at 13 °C) continued from 14 to 18 August 2018, several days before sampling27. The weather might have sustained indirect germination, and many zoospores were released and percolated through the soil. However, zoospores are motile for only a short time28 and cannot survive for a long time. Thus, much of the quantified DNA was from dead P. infestans or free DNA, and less inoculum potential was found near tubers. Soil samples from ridgetops showed larger inoculum potential than those from the tuber periphery. This may be because ridgetop samples contain a large amount of fresh P. infestans from foliage lesions.In this study, we successfully developed a real-time PCR assay to estimate the P. infestans densities in upland soils, and the proposed assay is available not only for the estimation of population density but also inoculum potential. In the future, this research can provide to a new decision support system for predicting and preventing potato storage rot. The P. infestans soil population density is the most important factor influencing potato storage rot. The possibilities or severities of potato storage rot may be predicted by estimating the P. infestans population density in soil before harvesting. Previous storage planning suggested that potato storage rot might occur if many foliage lesions occur during the growing season. In this study, most P. infestans DNA from foliage lesions degraded within one week. Thus, the possibility and severity of storage rot may be low if the quantity of P. infestans DNA immediately before harvesting is small, even if many foliage lesions occur during the growing season. Additionally, the previous quantitative method (bioassay) requires an incubation period of approximately one week or more2,7. On the other hand, the real-time PCR assay does not require an incubation period, and it takes only several hours to quantify the P. infestans population density in the sample soil. Potato storage rot may be reduced because the storage plan can be selected accurately and rapidly by using real-time PCR compared with previous methods. For example, tubers harvested from fields harbouring high levels of P. infestans DNA can be shipped as soon as possible to prevent potato storage rot. However, many other factors may be involved in the spread of this disease, such as surface injury5. A decision support system would allow potato storage companies to evaluate and address factors associated with potato storage rot and establish appropriate countermeasures to prevent economic losses. More