Detecting the effects of predator-induced stress on the global metabolism of an ungulate prey using fecal metabolomic fingerprinting
1.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article
Google Scholar
2.Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23(4), 194–201 (2008).PubMed
Article
PubMed Central
Google Scholar
3.Ritchie, E. G. et al. Ecosystem restoration with teeth: what role for predators?. Trends Ecol. Evol. 27(5), 265–271 (2012).PubMed
Article
PubMed Central
Google Scholar
4.Terborgh, J. & Estes, J. A. Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature (Island Press, 2010).
Google Scholar
5.Creel, S. & Winnie, J. A. Responses of elk herd size to fine scale spatial and temporal variation in the risk of predation by wolves. Anim. Behav. 69, 1181–1189 (2005).Article
Google Scholar
6.Fischhoff, I. R., Sundaresan, S. R., Cordingley, J. & Rubenstein, D. I. Habitat use and movements of plains zebra (Equus burchelli) in response to predation danger from lions. Behav. Ecol. 18, 725–729 (2007).Article
Google Scholar
7.Latombe, G., Fortin, D. & Parrott, L. Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolves. J. Anim. Ecol. 83, 185–198 (2014).PubMed
Article
PubMed Central
Google Scholar
8.Prugh, L. R. et al. Designing studies of predation risk for improved inference in carnivore-ungulate systems. Biol. Conserv. 232, 194–207 (2019).Article
Google Scholar
9.Creel, S., Winnie, J. A. & Christianson, D. Glucocorticoid stress hormones and the effect of predation risk on elk reproduction. PNAS 106(30), 12388–12393 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
10.Dulude-de Broin, F., Hamel, S., Mastromonaco, G. F. & Côté, S. D. Predation risk and mountain goat reproduction: evidence for stress-induced breeding suppression in a wild ungulate. Funct. Ecol. 34(5), 1003–1014 (2020).Article
Google Scholar
11.Moberg, G. P. & Mench, J. A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (CABI Publishing, 2000).
Google Scholar
12.Boonstra, R. The ecology of stress: a marriage of disciplines. Funct. Ecol. 27, 7–10 (2013).Article
Google Scholar
13.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS
PubMed
Article
PubMed Central
Google Scholar
14.Kelley, K. W. Immunological consequences of changing environmental stimuli. In Animal Stress (ed. Moberg, G. P.) 193–223 (American Physiological Society, Bethesda, 1985).15.Mӧstl, E. & Palme, R. Hormones as indicators of stress. Domest. Anim. Endocrinol. 23, 67–74 (2002).Article
Google Scholar
16.Ursin, H. & Eriksen, H. R. The cognitive activation theory of stress. Psychoneuroendocrinology 29(5), 567–592 (2004).PubMed
Article
PubMed Central
Google Scholar
17.Lovallo, W. R. Individual differences in reactivity to stress. In Stress and Health. Biological and Psychological Interactions (ed. Lovallo, W. R.) 203–225 (Sage, 2016).18.Patchev, V. K. & Patchev, A. V. Experimental models of stress. Dialogues Clin. Neurosci. 8(4), 417–432 (2006).PubMed
PubMed Central
Article
Google Scholar
19.Mills, J. L. Scientific Principles of Stress (University of the West Indie Press, 2012).
Google Scholar
20.Henry, J. P. Biological basis of the stress response. Integr. Physiol. Behav. Sci. 27, 66–83 (1992).CAS
PubMed
Article
Google Scholar
21.Wu, Y., Patchev, A. V., Daniel, G., Almeida, O. F. X. & Spengler, D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology 155(5), 1751–1762 (2014).PubMed
Article
CAS
Google Scholar
22.Novais, A., Monteiro, S., Roque, S., Correia-Neves, M. & Sousa, N. How age, sex and genotype shape the stress response. Neurob. Stress 6, 44–56 (2017).Article
Google Scholar
23.Romero, L. M. & Gormally, B. M. G. How truly conserved is the “well-conserved” vertebrate stress response?. Integr. Comp. Biol. 59(2), 273–281 (2019).CAS
PubMed
Article
Google Scholar
24.Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).CAS
PubMed
Article
Google Scholar
25.Romero, L. M. Physiological stress in ecology: lessons from biomedical research. Trends Ecol. Evol. 19(5), 249–255 (2004).PubMed
Article
Google Scholar
26.Johnstone, C. P., Reina, R. D. & Lill, A. Interpreting indices of physiological stress in free-living vertebrates. J. Comp. Physiol. B 182, 861–879 (2012).PubMed
Article
Google Scholar
27.Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. Gut microbes and the brain: paradigm shift in neuroscience. J. Neurosci. 34, 15490–15496 (2014).PubMed
PubMed Central
Article
Google Scholar
28.Sharon, G., Sampson, T. R., Geschwind, D. H. & Mazmanian, S. K. The central nervous system and the gut microbiome. Cell 167, 915–932 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Mohajeri, M. H., La Fata, G., Steinert, R. E. & Weber, P. Relationship between the gut microbiome and brain function. Nutr. Rev. 76, 481–496 (2018).PubMed
Article
PubMed Central
Google Scholar
30.Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E. & Savignac, H. M. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. PNAS 108(38), 16050–16055 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
31.Beauclercq, S. et al. A multiplatform metabolomic approach to characterize fecal signatures of negative postnatal events in chicks: a pilot study. J Anim. Sci. Biotechnol. 10, 21 (2019).PubMed
PubMed Central
Article
Google Scholar
32.Jianguo, L., Xueyang, J., Cui, W., Changxin, W. & Xuemei, Q. Altered gut metabolome contributes to depression-like behaviors in rats exposed to chronic unpredictable mild stress. Transl. Psychiatry 9, 1–14 (2019).Article
CAS
Google Scholar
33.Valerio, A., Casadei, L., Giuliani, A. & Valerio, M. Fecal metabolomics as a novel non-invasive method for short-term stress monitoring in beef cattle. J. Proteome Res. 19(2), 845–853 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Nicholson, J. K. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).ADS
CAS
Article
Google Scholar
35.Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabolomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Lindon, J. C., Nicholson, J. K. & Holmes, E. The Handbook of Metabonomics and Metabolomics (Elsevier, 2007).
Google Scholar
37.Matysik, S., Le Roy, C. I., Liebisch, G. & Claus, S. P. Metabolomics of fecal samples: a practical consideration. Trends Food Sci. Technol. 57, 244–255 (2016).CAS
Article
Google Scholar
38.Nicholson, J. K. & Lindon, J. C. Metabonomics. Nature 455, 1054–1056 (2008).ADS
CAS
PubMed
Article
Google Scholar
39.Viant, M. R. Environmental metabolomics using 1H-NMR spectroscopy. Methods Mol. Biol. 410, 137–150 (2008).CAS
PubMed
Article
Google Scholar
40.Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W. & Goodacre, R. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8(9), 1243–1266 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Worley, B. & Powers, R. Multivariate analysis in metabolomics. Curr. Metabolomics 1(1), 92–107 (2013).CAS
PubMed
PubMed Central
Google Scholar
42.Rivas-Ubach, A. et al. Ecometabolomics: optimized NMR-based method. Methods Ecol. Evol. 4(5), 464–473 (2013).Article
Google Scholar
43.Chen, M. X., Wang, S. Y., Kuo, C. H. & Tsai, I. L. Metabolome analysis for investigating host-gut microbiota interactions. JFMA 118(1), S10–S22 (2019).
Google Scholar
44.Emwas, A. H. M. The Strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabonomics. Methods in Molecular Biology (ed. Bjerrum, J. T.) 1277, 161–193 (Human Press, 2015).45.Emwas, A. H. M. et al. NMR spectroscopy for metabolomics research. Metabolites 9(7), 123 (2019).CAS
PubMed Central
Article
Google Scholar
46.Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Wiles, G. J., Allen, H. L. & Hayes, G. E. Wolf Conservation and Management Plan for Washington (Washington Department of Fish and Wildlife, 2011).
Google Scholar
48.Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk-foraging trade-offs: toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. 12, 6–11 (2016).Article
Google Scholar
49.Brown, J. A. Mortality of Range Livestock in Wolf-Occupied Areas of Washington. Thesis. Washington State University, Pullman, WA, USA (2015).50.Fieberg, J. & Kochanny, C. O. Quantification of home range overlap: the importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).Article
Google Scholar
51.Robert, K., Garant, D. & Pelletier, F. Keep in touch: does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).Article
Google Scholar
52.Angel, S. P. et al. Climate change and cattle production: impact and adaptation. J. Vet. Med. Res. 5(4), 1134 (2018).
Google Scholar
53.Brosh, A. et al. Energy cost of cows’ grazing activity: use of the heart rate method and the global positioning system for direct field estimation. J. Anim. Sci. 84, 1951–1967 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Provenza, F. D. Postingestive feed-back as an elemental determinant of food preference and intake in ruminants. J. Range Manag. 48, 2–17 (1995).Article
Google Scholar
55.Provenza, F. D. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74, 2010–2020 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Howery, L. D., Provenza, F. D., Ruyle, G. B. & Jordan, N. C. How do animals learn if rangeland plants are toxic or nutritious?. Rangelands 20, 4–9 (1998).
Google Scholar
57.Davitt, B. B. & Nelson, J. R. Methodology for the determination of DAPA in feces of large ruminants. In Proceedings of the Western States and Provinces Elk Workshop (ed. Nelson, R.W.) 133–147 (Edmonton, 1984).58.Church, D. C. Digestive Physiology and Nutrition of Ruminants I (Oxford Press, 1969).
Google Scholar
59.Sato, S. Leadership during actual grazing in a small herd of cattle. Appl. Anim. Ethol. 8, 53–65 (1982).Article
Google Scholar
60.Frair, J. L. et al. Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Philos. Trans. R. Soc. B 365, 2187–2200 (2010).Article
Google Scholar
61.Deda, O., Gika, H. G., Wilson, I. D. & Theodoridis, G. A. An overview of fecal preparation for global metabolic profiling. J. Pharm. Biomed. 113, 137–150 (2015).CAS
Article
Google Scholar
62.Landakadurai, B. P., Nagato, E. G. & Simpson, M. J. Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ. Rev. 21, 180–205 (2013).Article
CAS
Google Scholar
63.Wiklund, S. et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 80, 115–122 (2008).CAS
PubMed
Article
Google Scholar
64.Wishart, D. S. et al. HMDB: a knowledgebase for the human metabolome. Nucl. Acids Res. 37, D603–D610 (2009).CAS
PubMed
Article
Google Scholar
65.Frair, J. L. et al. Scale of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc. Ecol. 20, 273–287 (2005).Article
Google Scholar
66.Valerio, A. Stress-Mediated and Habitat-Mediated Risk Effects of Free-Ranging Cattle in Washington. Dissertation. Washington State University, Pullman, WA (2019).67.Winnie, J. & Creel, S. Sex-specific behavioral responses of elk to spatial and temporal variation in the threat of wolf predation. Anim. Behav. 73, 215–225 (2007).Article
Google Scholar
68.Bundy, J. G., Davey, M. P. & Viant, M. R. Environmental metabolomics: a critical review and future perspectives. Metabolomics 5, 3–21 (2009).CAS
Article
Google Scholar More