Ecosystem response persists after a prolonged marine heatwave
1.Overland, J., Rodionov, S., Minobe, S. & Bond, N. North Pacific regime shifts: definitions, issues and recent transitions. Prog. Oceanogr. 77, 92–102. https://doi.org/10.1016/j.pocean.2008.03.016 (2008).ADS
Article
Google Scholar
2.Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Niquen, M. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).ADS
CAS
Article
Google Scholar
3.Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130272. https://doi.org/10.1098/rstb.2013.0272 (2015).Article
Google Scholar
4.Anderson, P. J. & Piatt, J. F. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189, 117–123 (1999).ADS
Article
Google Scholar
5.Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145. https://doi.org/10.1016/S0079-6611(00)00033-1 (2000).ADS
Article
Google Scholar
6.Litzow, M. A. Climate regime shifts and community reorganization in the Gulf of Alaska: how do recent shifts compare with 1976/1977?. ICES J. Mar. Sci. 63, 1386–1396 (2006).Article
Google Scholar
7.Hatch, S. A. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar. Ecol. Prog. Ser. 477, 271–284. https://doi.org/10.3354/meps10161 (2013).ADS
Article
Google Scholar
8.Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc. 78, 1069–1080 (1997).ADS
Article
Google Scholar
9.Cane, M. A. & Zebiak, S. E. A theory for El-Nino and the Southern oscillation. Science 228, 1085–1087 (1985).ADS
CAS
Article
Google Scholar
10.Di Lorenzo, E. et al. North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, 6. https://doi.org/10.1029/2007GL032838 (2008).Article
Google Scholar
11.Bond, N. A., Overland, J. E., Spillane, M. & Stabeno, P. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 30, 1–3. https://doi.org/10.1029/2003GL018597 (2003).Article
Google Scholar
12.Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855. https://doi.org/10.1098/rspb.2018.1855 (2018).Article
Google Scholar
13.Litzow, M. A. et al. The changing physical and ecological meanings of North Pacific Ocean climate indices. Proc. Natl. Acad. Sci. 117, 7665–7671. https://doi.org/10.1073/pnas.1921266117 (2020).CAS
Article
PubMed
Google Scholar
14.Peterson, W. T. & Schwing, F. B. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30, 1896 (2003).ADS
Article
Google Scholar
15.Litzow, M. A. & Mueter, F. J. Assessing the ecological importance of climate regime shifts: An approach from the North Pacific Ocean. Prog. Oceanogr. 120, 110–119. https://doi.org/10.1016/j.pocean.2013.08.003 (2014).ADS
Article
Google Scholar
16.Puerta, P., Ciannelli, L., Rykaczewski, R., Opiekun, M. & Litzow, M. A. Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate?. Prog. Oceanogr. 175, 161–170. https://doi.org/10.1016/j.pocean.2019.04.002 (2019).ADS
Article
Google Scholar
17.IPCC. Summary for policymakers. In: IPCC special report on the ocean and cryosphere in a changing climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. Accessed on 11/5/2019. Accessed on 11/5/2019. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf, 2019.18.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
19.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173. https://doi.org/10.5670/oceanog.2018.205 (2018).Article
Google Scholar
20.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS
Article
Google Scholar
21.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).ADS
Article
Google Scholar
22.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep british columbia fjord. Geophys. Res. Lett. 45, 9757–9764. https://doi.org/10.1029/2018GL078971 (2018).ADS
Article
Google Scholar
23.Cornwall, W. A new ‘Blob’ menaces Pacific ecosystems. Science 365, 1233–1233. https://doi.org/10.1126/science.365.6459.1233 (2019).ADS
CAS
Article
PubMed
Google Scholar
24.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific ocean. Ecology 99, 2397–2399. https://doi.org/10.1002/ecy.2429 (2018).Article
PubMed
Google Scholar
25.Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II 147, 58–68. https://doi.org/10.1016/j.dsr2.2017.04.023 (2018).Article
Google Scholar
26.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212. https://doi.org/10.3389/fmars.2019.00212 (2019).Article
Google Scholar
27.Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, eaau7042, doi:https://doi.org/10.1126/sciadv.aau7042 (2019).28.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087. https://doi.org/10.1371/journal.pone.0226087 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
29.Wade, N. M. et al. Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). J. Therm. Biol 80, 64–74. https://doi.org/10.1016/j.jtherbio.2018.12.021 (2019).CAS
Article
PubMed
Google Scholar
30.Peterson, C. H. et al. Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086 (2003).ADS
CAS
Article
Google Scholar
31.Esler, D. et al. Timelines and mechanisms of wildlife population recovery following the Exxon Valdez oil spill. Deep Sea Res. Part II 147, 36–42. https://doi.org/10.1016/j.dsr2.2017.04.007 (2018).Article
Google Scholar
32.Danielson, S. L. et al. A study of marine temperature variations in the northern Gulf of Alaska across years of marine heatwaves and cold spells. Deep Sea Research Part II: Topical Studies in Oceanography (In prep).33.Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol., in press. https://doi.org/10.1111/gcb.15556 (2021).34.von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014–2016. Mar. Ecol. Progress Ser. 613, 171–182 (2019).35.Sydeman, W. J. et al. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific. Fish. Oceanogr. 26, 379–395. https://doi.org/10.1111/fog.12204 (2017).Article
Google Scholar
36.Savage, K. 2018 Alaska Region marine mammal stranding summary. 14 (Protected Resources Division, National Marine Fisheries Service, Alaska Region, Juneau, Alaska 99802, 2019).37.Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska pacific cod fishery. Front. Mar. Sci. 7, 703. https://doi.org/10.3389/fmars.2020.00703 (2020).Article
Google Scholar
38.Fisher, J. L., Peterson, W. T. & Rykaczewski, R. R. The impact of El Niño events on the pelagic food chain in the northern California Current. Glob. Change Biol. 21, 4401–4414. https://doi.org/10.1111/gcb.13054 (2015).ADS
Article
Google Scholar
39.McKinstry, C. A. E. & Campbell, R. W. Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska, 2009–2016. Deep Sea Res. Part II 147, 69–78. https://doi.org/10.1016/j.dsr2.2017.08.016 (2018).Article
Google Scholar
40.Santora, J. A. et al. Spatial ecology of krill, micronekton and top predators in the central California current: implications for defining ecologically important areas. Prog. Oceanogr. 106, 154–174 (2012).ADS
Article
Google Scholar
41.Blake, R. E., Ward, C. L., Hunsicker, M. E., Shelton, A. O. & Hollowed, A. B. Spatial community structure of groundfish is conserved across the Gulf of Alaska. Mar. Ecol. Prog. Ser. 626, 145–160 (2019).ADS
Article
Google Scholar
42.McGowan, D. W., Horne, J. K. & Rogers, L. A. Effects of temperature on the distribution and density of capelin in the Gulf of Alaska. Mar. Ecol. Prog. Ser. 620, 119–138 (2019).ADS
Article
Google Scholar
43.Watson, J. T. & Haynie, A. C. Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea. Can. J. Fish. Aquat. Sci. 75, 1977–1989. https://doi.org/10.1139/cjfas-2017-0315 (2018).Article
Google Scholar
44.Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619. https://doi.org/10.1111/faf.12364 (2019).Article
Google Scholar
45.Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 160 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 2018).46.Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650. https://doi.org/10.1139/cjfas-2019-0238 (2020).Article
Google Scholar
47.Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453. https://doi.org/10.1111/fog.12422 (2019).Article
Google Scholar
48.Fissel, B. et al. Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf Of Alaska and Bering Sea/Aleutian Islands area: Economic status of the groundfish fisheries off Alaska, 2017. 385 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2019).49.Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. 110, 2076–2081. https://doi.org/10.1073/pnas.1212278110 (2013).ADS
Article
PubMed
Google Scholar
50.Scyphers, S. B., Picou, J. S. & Grabowski, J. H. Chronic social disruption following a systemic fishery failure. Proc. Natl. Acad. Sci. 116, 22912–22914. https://doi.org/10.1073/pnas.1913914116 (2019).ADS
CAS
Article
PubMed
Google Scholar
51.Curnock, M. I. et al. Shifts in tourists’ sentiments and climate risk perceptions following mass coral bleaching of the Great Barrier Reef. Nat. Clim. Change 9, 535–541. https://doi.org/10.1038/s41558-019-0504-y (2019).ADS
Article
Google Scholar
52.Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484. https://doi.org/10.3389/fmars.2019.0048 (2019).Article
Google Scholar
53.Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510. https://doi.org/10.3389/fmars.2019.00510 (2019).Article
Google Scholar
54.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteor. Soc. 99, S39–S43. https://doi.org/10.1175/BAMS-D-17-0118.1 (2018).Article
Google Scholar
55.Sewall, F., Norcross, B., Vollenweider, J. & Heintz, R. Growth, energy storage, and feeding patterns reveal winter mortality risks for juvenile Pacific herring in Prince William Sound, Alaska, USA. Mar. Ecol. Prog. Ser. 623, 195–208 (2019).ADS
Article
Google Scholar
56.Toresen, R., Skjoldal, H. R., Vikebø, F. & Martinussen, M. B. Sudden change in long-term ocean climate fluctuations corresponds with ecosystem alterations and reduced recruitment in Norwegian spring-spawning herring (Clupea harengus, Clupeidae). Fish Fish. 20, 686–696. https://doi.org/10.1111/faf.12369 (2019).Article
Google Scholar
57.Duffy-Anderson, J. T. et al. Responses of the northern bering sea and southeastern bering sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett. 46, 9833–9842. https://doi.org/10.1029/2019gl083396 (2019).ADS
Article
Google Scholar
58.Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).Article
Google Scholar
59.Jacox, M., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. Predicting the evolution of the 2014–16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497. https://doi.org/10.3389/fmars.2019.00497 (2019).Article
Google Scholar
60.Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr. 7, 1–21 (1998).Article
Google Scholar
61.Rogers, L. A. & Dougherty, A. B. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Glob. Change Biol. 25, 708–720. https://doi.org/10.1111/gcb.14483 (2019).ADS
Article
Google Scholar
62.Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. Accepted (2021).63.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281. https://doi.org/10.1093/biosci/biw185 (2017).Article
Google Scholar
64.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13. https://doi.org/10.1186/s41200-019-0171-8 (2019).Article
Google Scholar
65.Vander Naald, B. P., Sergeant, C. J. & Beaudreau, A. H. Public perception and valuation of long-term ecological monitoring. Ecosphere 10, e02875. https://doi.org/10.1002/ecs2.2875 (2019).Article
Google Scholar
66.Hollowed, A. B. et al. Recent advances in understanding the effects of climate change on the world’s oceans. ICES J. Mar. Sci. 76, 1215–1220. https://doi.org/10.1093/icesjms/fsz084 (2019).Article
Google Scholar
67.R: A language and environment for statistical computing. (R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/, 2020).68.Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685. https://doi.org/10.1002/env.611 (2003).Article
Google Scholar
69.Holmes, E., Ward, E., Scheuerell, M. & Wills, L. MARSS: multivariate autoregressive state-space modeling (Northwest Fisheries Science Center NOAA, Seattle, WA, 2018).
Google Scholar
70.Holmes, E. E., Ward, E. J. & Scheuerell, M. D. Analysis of multivariate time-series using the MARSS package, v3.10.10. 284 (Northwest Fisheries Science Center, NOAA, Seattle, WA, USA, 2018).71.Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552. https://doi.org/10.1139/f03-030 (2003).Article
Google Scholar
72.Clarke, K. R. & Gorley, R. N. Getting started with PRIMER v7 (PRIMER-E ltd, Plymouth, 2015).
Google Scholar
73.Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation (PRIMER-E ltd, Plymouth, 2014).
Google Scholar
74.Clarke, K. R., Somerfield, P. J. & Gorley, R. N. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366, 56–69. https://doi.org/10.1016/j.jembe.2008.07.009 (2008).Article
Google Scholar
75.Strom, S. L., Fredrickson, K. A. & Bright, K. J. Spring phytoplankton in the eastern coastal Gulf of Alaska: photosynthesis and production during high and low bloom years. Deep Sea Res. Part II 132, 107–121. https://doi.org/10.1016/j.dsr2.2015.05.003 (2016).CAS
Article
Google Scholar
76.Strom, S. L., Fredrickson, K. A. & Bright, K. J. Microzooplankton in the coastal Gulf of Alaska: Regional, seasonal and interannual variations. Deep Sea Res. Part II 165, 192–202. https://doi.org/10.1016/j.dsr2.2018.07.012 (2019).Article
Google Scholar
77.Mackas, D. L. Interannual variability of the zooplankton community off southern Vancouver Island. Can. Sp. Publ. Fish. Aquat. Sci. 121, 603–615 (1995).
Google Scholar
78.Kimmel, D. G. & Duffy-Anderson, J. T. Zooplankton abundance trends and patterns in Shelikof Strait, western Gulf of Alaska, USA, 1990–2017. J. Plankton Res. 42, 334–354. https://doi.org/10.1093/plankt/fbaa019 (2020).Article
Google Scholar
79.Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74. https://doi.org/10.1016/j.pocean.2005.09.011 (2006).ADS
Article
Google Scholar
80.Von Szalay, P. G. & Raring, N. W. Data Report: 2017 Gulf of Alaska bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-374, 260 p., (2018).81.Matarese, A. C., Blood, D.M., Picquelle, S. J. & J.L., B. Vol. NOAA Prof. Paper NMFS 1, 281 p. 281 (NOAA Professional Paper NMFS 1, 2003).82.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the northern Gulf of Alaska. Front. Mar. Sci., 8. https://www.frontiersin.org/articles/10.3389/fmars.2021.556820/full (2021).83.Bodkin, J. L. et al. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015. Deep Sea Res. Part II 147, 87–97. https://doi.org/10.1016/j.dsr2.2017.04.008 (2018).Article
Google Scholar
84.Konar, B. et al. Wasting disease and static environmental variables drive sea star assemblages in the Northern Gulf of Alaska. J. Exp. Mar. Biol. Ecol. 520, 151209. https://doi.org/10.1016/j.jembe.2019.151209 (2019).Article
Google Scholar
85.Mudge, M. L., Pietrzak, K. W. & Rojek, N. A. Biological monitoring at Chowiet Island, Alaska in 2019. U.S. Fish and Wildl. Serv. Rep., AMNWR 2019/16. Homer, Alaska., 187 (2019).86.Suryan, R. M. & Irons, D. B. Colony and population dynamics of black-legged kittiwakes in a heterogeneous environment. Auk 118, 636–649 (2001).Article
Google Scholar
87.Harding, A. M. A. et al. Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge). Ecology 88, 2024–2033 (2007).Article
Google Scholar
88.Litzow, M. I., Piatt, J. I., Prichard, A. I. & Roby, D. I. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey. Oecologia 132, 286–295 (2002).ADS
Article
Google Scholar
89.Moran, J. R., Heintz, R. A., Straley, J. M. & Vollenweider, J. J. Regional variation in the intensity of humpback whale predation on Pacific herring in the Gulf of Alaska. Deep Sea Res. Part II 147, 187–195. https://doi.org/10.1016/j.dsr2.2017.07.010 (2018).Article
Google Scholar
90.Robards, M. D., Anthony, J. A., Rose, G. A. & Piatt, J. F. Changes in proximate composition and somatic energy content for Pacific sand lance (Ammodytes hexapterus) from Kachemak Bay, Alaska relative to maturity and season. J. Exp. Mar. Biol. Ecol. 242, 245–258 (1999).Article
Google Scholar
91.Muradian, M. L., Branch, T. A., Moffitt, S. D. & Hulson, P.-J.F. Bayesian stock assessment of Pacific herring in Prince William Sound Alaska. PLOS ONE 12, e0172153. https://doi.org/10.1371/journal.pone.0172153 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
92.Moffitt, S. D. Retrospective longitudinal growth history from scales of Pacific herring collected in Prince William Sound. (Exxon Valdez Long-Term Herring Research and Monitoring Program Final Report (Project 13120111-N), Exxon Valdez Oil Spill Trustee Council. Anchorage, AK, Anchorage, AK, 2017).93.Batten, S. D., Moffitt, S., Pegau, W. S. & Campbell, R. Plankton indices explain interannual variability in Prince William Sound herring first year growth. Fish. Oceanogr. 25, 420–432. https://doi.org/10.1111/fog.12162 (2016).Article
Google Scholar
94.Dorn, M. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. 161 ( North Pacific Fishery Management Council, Anchorage, AK, 2019).95.Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 140 (North Pacific Fishery Management Council, Anchorage, AK, 2019).96.Spies, I., Aydin, K., Ianelli, J. N. & Palsson, N. Assessment of the arrowtooth flounder stock in the Gulf of Alaska (North Pacific Fishery Management Council, Anchorage, AK, 2019).
Google Scholar
97.Hanselman, D. H. et al. Assessment of the Sablefish stock in Alaska. 263 (North Pacific Fishery Management Council, Anchorage, AK, 2019).98.Kettle, A. B. Biological monitoring at East Amatuli Island, Alaska in 2018. U.S. Fish and Wildlife Service Report, AMNWR 2019/13. Homer, Alaska., 84 (2019).99.Coletti, H. et al. Gulf Watch Alaska: Nearshore benthic systems in the Gulf of Alaska. Long-Term Monitoring Program (Gulf Watch Alaska) Final Report (Exxon Valdez Oil Spill Trustee Council Project 16120114-R), Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska., (2018).100.Bodkin, J. SOP for conducting marine bird and mammal surveys – Version 4.1: Southwest Alaska Inventory and Monitoring Network. Natural Resource Report NPS/SWAN/NRR— 2011/392. National Park Service, Fort Collins, Colorado, USA., (2011).101.Stocking, J., Bishop, M. A. & Arab, A. Spatio-temporal distributions of piscivorous birds in a subarctic sound during the nonbreeding season. Deep Sea Res. Part II 147, 138–147. https://doi.org/10.1016/j.dsr2.2017.07.017 (2018).Article
Google Scholar
102.102Kuletz, K. J. & Labunski, E. A. Seabird Distribution and Abundance in the Offshore Environment, Final Report. US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2017–004. Anchorage, Alaska, USA. 59 pp, plus 400 pages of Appendices (2017).103.Coletti, H. A., Bodkin, J. L., Monson, D. H., Ballachey, B. E. & Dean, T. A. Detecting and inferring cause of change in an Alaska nearshore marine ecosystem. Ecosphere 7, e01489. https://doi.org/10.1002/ecs2.1489 (2016).Article
Google Scholar
104.Maniscalco, J. M., Springer, A. M., Parker, P. & Adkison, M. D. A longitudinal study of steller sea lion natality rates in the Gulf of Alaska with comparisons to census data. PLoS ONE 9, e111523. https://doi.org/10.1371/journal.pone.0111523 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
105.Sweeney, K., Fritz, L. W., Towell, R. & Gelatt, T. Results of Steller Sea Lion Surveys in Alaska, June-July 2017. 17 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, National Marine Fisheries Service, Alaska Fisheries Science Center, Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle WA 98115, https://www.fisheries.noaa.gov/resource/data/2017-results-steller-sea-lion-surveys-alaska, 2017).106.Straley, J. M. et al. Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska. Deep Sea Res. Part II 147, 173–186. https://doi.org/10.1016/j.dsr2.2017.08.008 (2018).Article
Google Scholar
107.Olsen, D. W., Matkin, C. O., Andrews, R. D. & Atkinson, S. Seasonal and pod-specific differences in core use areas by resident killer whales in the Northern Gulf of Alaska. Deep Sea Res. Part II 147, 196–202. https://doi.org/10.1016/j.dsr2.2017.10.009 (2018).Article
Google Scholar
108.ADFG. Alaska Department of Fish and Game Statewide electronic fish ticket database 1985 to present. 1st edition. Alaska Department of Fish and Game, Division of Commercial Fisheries. (Accessed October 2019). (2018). More