More stories

  • in

    Fungal decomposition of river organic matter accelerated by decreasing glacier cover

    1.Huss, M. et al. Towards mountains without permanent snow and ice. Earth’s Future 5, 418–435 (2017).Article 

    Google Scholar 
    2.Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019).CAS 
    Article 

    Google Scholar 
    3.Brown, L. E. et al. Functional diversity and community assembly of river invertebrates show globally consistent responses to decreasing glacier cover. Nat. Ecol. Evol. 2, 325–333 (2018).Article 

    Google Scholar 
    4.Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).Article 

    Google Scholar 
    5.Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).CAS 
    Article 

    Google Scholar 
    6.Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).Article 

    Google Scholar 
    7.Ren, Z., Gao, H., Elser, J. J. & Zhao, Q. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams. Sci. Rep. 7, 12668 (2017).Article 
    CAS 

    Google Scholar 
    8.Zhou, L. et al. Microbial production and consumption of dissolved organic matter in glacial ecosystems on the Tibetan Plateau. Water Res. 160, 18–28 (2019).CAS 
    Article 

    Google Scholar 
    9.Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    Article 

    Google Scholar 
    10.Timmis, K. et al. The urgent need for microbiology literacy in society. Environ. Microbiol. 21, 1513–1528 (2019).Article 

    Google Scholar 
    11.Hotaling, S., Hood, E. & Hamilton, T. L. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 19, 2935–2948 (2017).Article 

    Google Scholar 
    12.Aufdenkampe, A. K. et al. Riverine coupling of biogeochemical cycles between lands, oceans, and atmosphere. Front. Ecol. Environ. 9, 53–60 (2011).Article 

    Google Scholar 
    13.Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).CAS 
    Article 

    Google Scholar 
    14.Clark, D. R. et al. Streams of data from drops of water: 21st century molecular microbial ecology. WIREs Water 5, e1280 (2018).Article 

    Google Scholar 
    15.Zah, R. & Uehlinger, U. Particulate organic matter inputs to a glacial stream ecosystem in the Swiss Alps. Freshw. Biol. 46, 1597–1608 (2001).CAS 
    Article 

    Google Scholar 
    16.Singer, G. A. et al. Biogeochemically diverse organic matter in alpine glaciers and its downstream fate. Nat. Geosci. 5, 710–714 (2012).CAS 
    Article 

    Google Scholar 
    17.Uehlinger, U., Robinson, C. T., Hieber, M. & Zah, R. The physico-chemical habitat template for periphyton in alpine glacial streams under a changing climate. Hydrobiologia 657, 107–121 (2010).CAS 
    Article 

    Google Scholar 
    18.Robinson, C. T. & Gessner, M. O. Nutrient addition accelerates leaf breakdown in an alpine springbrook. Oecologia 122, 258–263 (2000).CAS 
    Article 

    Google Scholar 
    19.Robinson, C. T. & Jolidon, C. Leaf breakdown and the ecosystem functioning of alpine streams. J. North Am. Benthol. Soc. 24, 495–508 (2005).Article 

    Google Scholar 
    20.McKernan, C., Cooper, D. J. & Schweiger, E. W. Glacial loss and its effect on riparian vegetation of alpine streams. Freshw. Biol. 63, 518–529 (2018).Article 

    Google Scholar 
    21.Fellman, J. B. et al. Stream temperature response to variable glacier coverage in coastal watersheds of southeast Alaska. Hydrol. Process. 28, 2062–2073 (2014).Article 

    Google Scholar 
    22.Gessner, M. O. & Robinson, C. T. in Aquatic Ecology Series: Ecology of a Glacial Floodplain Vol. 1 (eds Ward, J. V. & Uehlinger, U.) 123–127 (Springer, 2003).23.Tiegs, S. D., Clapcott, J. E., Griffiths, N. A. & Boulton, A. J. A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecol. Indic. 32, 131–139 (2013).CAS 
    Article 

    Google Scholar 
    24.Tiegs, S. D. et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci. Adv. 5, eaav0486 (2019).Article 
    CAS 

    Google Scholar 
    25.Ward, N. D. et al. Degradation of terrestrially derived macromolecules in the Amazon River. Nat. Geosci. 6, 530–533 (2013).CAS 
    Article 

    Google Scholar 
    26.Colas, F. et al. Towards a simple global-standard bioassay for a key ecosystem process: organic-matter decomposition using cotton strips. Ecol. Indic. 106, 105466 (2019).CAS 
    Article 

    Google Scholar 
    27.Bayer, E. A., Shoham, Y. & Lamed, R. Cellulose-decomposing bacteria and their enzyme systems. Prokaryotes 2, 578–617 (2006).Article 

    Google Scholar 
    28.Lindahl, B. D. et al. Fungal community analysis by high-throughput sequencing of amplified markers—a user’s guide. N. Phytol. Trust 199, 288–299 (2013).CAS 
    Article 

    Google Scholar 
    29.Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    30.Wang, M. et al. Psychrophilic fungi from the world’s roof. Persoonia 34, 100–112 (2015).CAS 
    Article 

    Google Scholar 
    31.Zang, T. et al. Diversity and distribution of aquatic fungal communities in the Ny-Ålesund region, Svalbard (High Arctic). Microb. Ecol. 71, 543–554 (2016).Article 

    Google Scholar 
    32.Wilhelm, L., Singer, G. A., Fashing, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).CAS 
    Article 

    Google Scholar 
    33.Hotaling, S. et al. Microbial assemblages reflect environmental heterogeneity in alpine streams. Glob. Change Biol. 25, 2576–2590 (2019).Article 

    Google Scholar 
    34.Jacobsen, D. & Dangles, O. Environmental harshness and global richness patterns in glacier-fed streams. Glob. Ecol. Biogeogr. 21, 647–656 (2012).Article 

    Google Scholar 
    35.Green, J. L., Bohannan, B. J. M. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1042 (2008).CAS 
    Article 

    Google Scholar 
    36.Robinson, C. T., Gessner, M. O., Callies, K. A., Jolidon, C. & Ward, J. V. Larch needle breakdown in contrasting streams of an alpine glacial floodplain. J. North Am. Benthol. Soc. 19, 250–262 (2000).Article 

    Google Scholar 
    37.Ferreira, V., Graça, M., Pedroso de Lima, J. L. M. & Gomes, R. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Arch. fur Hydrobiol. 165, 493–513 (2006).CAS 
    Article 

    Google Scholar 
    38.Besemer, K., Singer, G., Hödl, I. & Battin, T. J. Bacterial community composition of stream biofilms in spatially variable-flow environments. Appl. Environ. Microbiol. 75, 7189–7195 (2009).CAS 
    Article 

    Google Scholar 
    39.Battin, T. J., Kaplan, L. A., Newbold, J. D., Cheng, X. & Hansen, C. Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 9, 5443–5452 (2003).Article 
    CAS 

    Google Scholar 
    40.Fell, S. C., Carrivick, J. L. & Brown, L. E. The multitrophic effects of climate change and glacier retreat in mountain rivers. BioScience 67, 897–911 (2017).Article 

    Google Scholar 
    41.Cristiano, G., Cicolani, B., Miccoli, F. P. & Di Sabatino, A. A modification of the leaf-bags method to assess spring ecosystem functioning: benthic invertebrates and leaf-litter breakdown in Vera Spring (central Italy). PeerJ 7, e6250 (2019).Article 

    Google Scholar 
    42.Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).Article 

    Google Scholar 
    43.Hood, E. & Berner, L. Effects of changing glacial coverage on the physical and biogeochemical properties of coastal streams in southeastern Alaska. J. Geophys. Res. Biogeosci. 114, G03001 (2009).Article 
    CAS 

    Google Scholar 
    44.Boix Canadell, M., Escoffier, N., Ulseth, A. J., Lane, S. N. & Battin, T. J. Alpine glacier shrinkage drives shifts in dissolved organic carbon export from quasi-chemostasis to transport limitation. Geophys. Res. Lett. 46, 8872–8881 (2019).CAS 
    Article 

    Google Scholar 
    45.Jacobsen, D., Milner, A. M., Brown, L. E. & Dangles, O. Biodiversity under threat in glacier-fed river systems. Nat. Clim. Change 2, 361–364 (2012).Article 

    Google Scholar 
    46.GLIMS Glacier Viewer (Global Land Ice Measurements from Space (GLIMS), 2018); http://www.glims.org/maps/glims47.Robinson, C. T., Gessner, M. O. & Ward, J. V. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshw. Biol. 40, 215–228 (1998).Article 

    Google Scholar 
    48.Goodman, K. J., Baker, M. & Wurtsbaugh, W. Mountain lakes increase organic matter decomposition rates in streams. J. North Am. Benthol. Soc. 29, 521–529 (2010).Article 

    Google Scholar 
    49.Pfankuch, D. J. Stream Reach Inventory and Channel Stability Evaluation (Northern Region, Montana, US Department Forest Service, 1975).50.Vizza, C., Zwart, J. A., Jones, S. E., Tiegs, S. D. & Lamberti, G. A. Landscape patterns shape wetland pond ecosystem function from glacial headwaters to ocean. Limnol. Oceanogr. 62, S207–S221 (2017).CAS 
    Article 

    Google Scholar 
    51.Tiegs, S. D. CELLDEX Protocol Part 1 https://www.researchgate.net/publication/281243407_CELLDEX_Protocol_Part_1 (2015).52.Tiegs, S. D. Protocol for Microbial DNA/RNA Sampling—CELLDEX Protocol https://www.researchgate.net/publication/281245895_Protocol_for_microbial_DNARNA_sampling_-_CELLDEX_Project (2015).53.Tiegs, S. D., Langhans, S. D., Tockner, K. & Gessner, M. O. Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. J. North Am. Benthol. Soc. 26, 70–77 (2007).Article 

    Google Scholar 
    54.Tiegs, S. D. CELLDEX Protocol Part 2 https://www.researchgate.net/publication/283645782_CELLDEX_Protocol_Part_2 (2015).55.Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).CAS 
    Article 

    Google Scholar 
    56.Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).CAS 
    Article 

    Google Scholar 
    57.Edwards, I. P., Upchurch, R. A. & Zak, D. R. Isolation of fungal Cellobiohydrolase I genes from sporocarps and forest soils by PCR. Appl. Environ. Microbiol. 74, 3481–3489 (2008).CAS 
    Article 

    Google Scholar 
    58.McKew, B. A. & Smith, C. J. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 45–64 (Springer, 2017).59.Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    Article 

    Google Scholar 
    60.Nilsson, R. H. et al. Variability in the kingdom fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol. Bioinform. Online 4, 193–201 (2008).Article 

    Google Scholar 
    61.Nilsson, R. H., Ryberg, M., Abarenkov, K., Sjökvist, E. & Kristiansson, E. The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiol. Lett. 296, 97–111 (2009).CAS 
    Article 

    Google Scholar 
    62.16S Metagenomic Sequencing Library Preparation (Illumina, 2013); https://ww.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf63.Kreader, C. A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 62, 1102–1106 (1995).Article 

    Google Scholar 
    64.Dumbrell, A. J., Ferguson, R. M. W. & Clark, D. R. in Hydrocarbon and Lipid Microbiology Protocols (eds McGenity, T. J. et al.) 155–206 (Springer, 2017).65.Maček, I. et al. Impacts of long-term elevated atmospheric CO2 concentrations on communities of arbuscular mycorrhizal fungi. Mol. Ecol. 28, 3445–3458 (2019).Article 
    CAS 

    Google Scholar 
    66.Nilsson, R. H. et al. UNITE Community: Communication and Identification of DNA Based Fungal Species (UNITE, 2018); https://unite.ut.ee/search.php#fndtn-panel167.Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2018).Article 
    CAS 

    Google Scholar 
    68.Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 2–18 (2017).Article 

    Google Scholar 
    69.McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).Article 

    Google Scholar 
    70.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).Article 

    Google Scholar 
    71.Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).Article 

    Google Scholar 
    72.Wang, Y., Maumann, U., Wright, S. & Warton, D. mvabund: Statistical methods for analysing multivariate abundance data. R package https://cran.r-project.org/package=mvabund (2018). More

  • in

    Meta-analysis reveals that animal sexual signalling behaviour is honest and resource based

    1.Andersson, M. B. Sexual Selection (Princeton Univ. Press, 1994).2.Clark, C. J. The role of power versus energy in courtship: what is the ‘energetic cost’of a courtship display? Anim. Behav. 84, 269–277 (2012).Article 

    Google Scholar 
    3.Vehrencamp, S. L., Bradbury, J. W. & Gibson, R. M. The energetic cost of display in male sage grouse. Anim. Behav. 38, 885–896 (1989).Article 

    Google Scholar 
    4.Kotiaho, J. S. Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biol. Rev. 76, 365–376 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Mappes, J., Alatalo, R. V., Kotiaho, J. & Parri, S. Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proc. R. Soc. Lond. B 263, 785–789 (1996).Article 

    Google Scholar 
    6.Zuk, M. & Kolluru, G. R. Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438 (1998).Article 

    Google Scholar 
    7.Woods, W. A. Jr, Hendrickson, H., Mason, J. & Lewis, S. M. Energy and predation costs of firefly courtship signals. Am. Nat.170, 702–708 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Cotton, S., Fowler, K. & Pomiankowski, A. Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc. R. Soc. Lond. B 271, 771–783 (2004).Article 

    Google Scholar 
    10.Tomkins, J. L., Radwan, J., Kotiaho, J. S. & Tregenza, T. Genic capture and resolving the lek paradox. Trends Ecol. Evol. 19, 323–328 (2004).PubMed 
    Article 

    Google Scholar 
    11.Grafen, A. Biological signals as handicaps. J. Theor. Biol. 144, 517–546 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Johnstone, R. A. Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biol. Rev. 70, 1–65 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Seymour, R. M. & Sozou, P. D. Duration of courtship effort as a costly signal. J. Theor. Biol. 256, 1–13 (2009).PubMed 
    Article 

    Google Scholar 
    14.Byers, J., Hebets, E. & Podos, J. Female mate choice based upon male motor performance. Anim. Behav. 79, 771–778 (2010).Article 

    Google Scholar 
    15.Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: a systematic review and meta-analysis. Biol. Rev. https://doi.org/10.1111/brv.12655 (2020).16.Cotton, S., Small, J. & Pomiankowski, A. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16, R755–R765 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Kokko, H. Evolutionarily stable strategies of age-dependent sexual advertisement. Behav. Ecol. Sociobiol. 41, 99–107 (1997).Article 

    Google Scholar 
    18.Moore, F. R., Shuker, D. M. & Dougherty, L. Stress and sexual signaling: a systematic review and meta-analysis. Behav. Ecol. 27, 363–371 (2016).Article 

    Google Scholar 
    19.Dougherty, L. R. Meta-analysis shows the evidence for context-dependent mating behaviour is inconsistent or weak across animals. Ecol. Lett. https://doi.org/10.1111/ele.13679 (2021).20.Umbers, K. D., Symonds, M. R. & Kokko, H. The mathematics of female pheromone signaling: strategies for aging virgins. Am. Nat. 185, 417–432 (2015).PubMed 
    Article 

    Google Scholar 
    21.Simmons, L. W. Sexual signalling by females: do unmated females increase their signalling effort? Biol. Lett. https://doi.org/10.1098/rsbl.2015.0298 (2015).22.Reynolds, J. D. Should attractive individuals court more? Theory and a test. Am. Nat. 141, 914–927 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Jennions, M. D. & Backwell, P. R. Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness? Behav. Ecol. 9, 605–611 (1998).Article 

    Google Scholar 
    24.Candolin, U. The relationship between signal quality and physical condition: is sexual signalling honest in the three-spined stickleback? Anim. Behav. 58, 1261–1267 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).Article 

    Google Scholar 
    26.Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Buchanan, K. L., Spencer, K. A., Goldsmith, A. & Catchpole, C. Song as an honest signal of past developmental stress in the European starling (Sturnus vulgaris). Proc. R. Soc. Lond. B 270, 1149–1156 (2003).CAS 
    Article 

    Google Scholar 
    28.Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 20150832 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Richardson, J. & Smiseth, P. T. Nutrition during sexual maturation and at the time of mating affects mating behaviour in both sexes of a burying beetle. Anim. Behav. 151, 77–85 (2019).Article 

    Google Scholar 
    30.Balsby, T. J. Song activity and variability in relation to male quality and female choice in whitethroats Sylvia communis. J. Avian Biol. 31, 56–62 (2000).Article 

    Google Scholar 
    31.Nickley, B., Saintignon, D. & Roberts, J. A. Influence of predator cues on terminal investment in courtship by male Schizocosa ocreata (Hentz, 1844) wolf spiders (Araneae: Lycosidae). J. Arachnol. 44, 176–181 (2016).Article 

    Google Scholar 
    32.Kehl, T. et al. Pheromone blend does not explain old male mating advantage in a butterfly. Ethology 120, 1137–1145 (2014).Article 

    Google Scholar 
    33.Houslay, T. M., Houslay, K. F., Rapkin, J., Hunt, J. & Bussiere, L. F. Mating opportunities and energetic constraints drive variation in age-dependent sexual signalling. Funct. Ecol. 31, 728–741 (2017).Article 

    Google Scholar 
    34.Smith, M. J. & Roberts, J. D. Call structure may affect male mating success in the quacking frog Crinia georgiana (Anura: Myobatrachidae). Behav. Ecol. Sociobiol. 53, 221–226 (2003).Article 

    Google Scholar 
    35.Lehtonen, T. K. Signal value of male courtship effort in a fish with paternal care. Anim. Behav. 83, 1153–1161 (2012).Article 

    Google Scholar 
    36.Bertram, S. M., Harrison, S. J., Thomson, I. R. & Fitzsimmons, L. P. Adaptive plasticity in wild field cricket’s acoustic signaling. PLoS ONE 8, e69247 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Rundus, A. S., Biemuller, R., DeLong, K., Fitzgerald, T. & Nyandwi, S. Age-related plasticity in male mate choice decisions by Schizocosa retrorsa wolf spiders. Anim. Behav. 107, 233–238 (2015).Article 

    Google Scholar 
    38.Koricheva, J., Gurevitch, J. & Mengeresen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).39.Harts, A. M., Booksmythe, I. & Jennions, M. D. Mate guarding and frequent copulation in birds: a meta‐analysis of their relationship to paternity and male phenotype. Evolution 70, 2789–2808 (2016).PubMed 
    Article 

    Google Scholar 
    40.Partridge, C., Boettcher, A. & Jones, A. G. The role of courtship behavior and size in mate preference in the sex-role-reversed gulf pipefish, Syngnathus scovelli. Ethology 119, 692–701 (2013).Article 

    Google Scholar 
    41.Anderson, A. P. & Jones, A. G. Choosy Gulf pipefish males ignore age but prefer active females with deeply keeled bodies. Anim. Behav. 155, 37–44 (2019).Article 

    Google Scholar 
    42.Sundin, J., Rosenqvist, G. & Berglund, A. Hypoxia delays mating in the broad-nosed pipefish. Mar. Biol. Res. 11, 747–754 (2015).Article 

    Google Scholar 
    43.McLennan, D. A. & Shires, V. L. Correlation between the level of infection with Bunodera inconstans and Neoechinorhynchus rutili and behavioral intensity in female brook sticklebacks. J. Parasitol. 81, 675–682 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Simmons, L. W. Courtship role reversal in bush-crickets—another role for parasites. Behav. Ecol. 5, 259–266 (1994).Article 

    Google Scholar 
    45.Schatral, A. Diet influences male–female interactions in the bush-cricket Requena verticalis (Orthoptera, Tettigoniidae). J. Insect Behav. 6, 379–388 (1993).Article 

    Google Scholar 
    46.Serrano, J. M. & Penna, M. Sexual monomorphism in the advertisement calls of a neotropical frog. Biol. J. Linn. Soc. 123, 388–401 (2018).Article 

    Google Scholar 
    47.Yamane, T. & Yasuda, T. The effects of mating status and time since mating on female sex pheromone levels in the rice leaf bug, Trigonotylus caelestialium. Naturwissenschaften 101, 153–156 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Poulin, R. in Advances in the Study of Behavior Vol. 41 (eds Mitani, J. et al.) 151–186 (Elsevier, 2010).51.Clancey, E. & Byers, J. A. The definition and measurement of individual condition in evolutionary studies. Ethology 120, 845–854 (2014).Article 

    Google Scholar 
    52.Wilgers, D. J. & Hebets, E. A. in Animal Signaling and Function: An Integrative Approach (eds Irschick, D. J. et al.) 229–252 (John Wiley & Sons, 2015).53.Řežucha, R. & Reichard, M. Strategic exploitation of fluctuating asymmetry in male Endler’s guppy courtship displays is modulated by social environment. J. Evol. Biol. 28, 356–367 (2015).PubMed 
    Article 

    Google Scholar 
    54.Oliveira, R. F., Taborsky, M. & Brockmann, H. J. Alternative Reproductive Tactics: An Integrative Approach (Cambridge Univ. Press, 2008).55.Gray, D. A. Female house crickets, Acheta domesticus, prefer the chirps of large males. Anim. Behav. 54, 1553–1562 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Lubanga, U., Peters, R. & Steinbauer, M. Substrate-borne vibrations of male psyllids vary with body size and age but females are indifferent. Anim. Behav. 120, 173–182 (2016).Article 

    Google Scholar 
    57.Ah‐King, M. & Gowaty, P. A. A conceptual review of mate choice: stochastic demography, within‐sex phenotypic plasticity, and individual flexibility. Ecol. Evol. 6, 4607–4642 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Ouzzani, M., Hammady, H., Fedorowicz, Z. & Elmagarmid, A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 5, 210 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Adamo, S. A., Kovalko, I., Easy, R. H. & Stoltz, D. A viral aphrodisiac in the cricket Gryllus texensis. J. Exp. Biol. 217, 1970–1976 (2014).PubMed 
    Article 

    Google Scholar 
    60.Aguilar, T. M., Maia, R., Santos, E. S. A. & Macedo, R. H. Parasite levels in blue-black grassquits correlate with male displays but not female mate preference. Behav. Ecol. 19, 292–301 (2008).Article 

    Google Scholar 
    61.Ahtiainen, J. J., Alataio, R. V., Mappes, J. & Vertainen, L. Fluctuating asymmetry and sexual performance in the drumming wolf spider Hygrolycosa rubrofasciata. Ann. Zool. Fenn. 40, 281–292 (2003).
    Google Scholar 
    62.Ahtiainen, J. J., Alatalo, R. V., Kortet, R. & Rantala, M. J. Immune function, dominance and mating success in drumming male wolf spiders Hygrolycosa rubrofasciata. Behav. Ecol. Sociobiol. 60, 826–832 (2006).Article 

    Google Scholar 
    63.Alonso, J. C., Magana, M., Martin, C. A. & Palacin, C. Sexual traits as quality indicators in lekking male great bustards. Ethology 116, 1084–1098 (2010).Article 

    Google Scholar 
    64.Alonso, J. C., Magana, M., Palacin, C. & Martin, C. A. Correlates of male mating success in great bustard leks: the effects of age, weight, and display effort. Behav. Ecol. Sociobiol. 64, 1589–1600 (2010).Article 

    Google Scholar 
    65.Amorim, M. C. P. & Almada, V. C. The outcome of male–male encounters affects subsequent sound production during courtship in the cichlid fish Oreochromis mossambicus. Anim. Behav. 69, 595–601 (2005).Article 

    Google Scholar 
    66.Amorim, M. C. P. & Neves, A. S. M. Acoustic signalling during courtship in the painted goby, Pomatoschistus pictus. J. Mar. Biol. Assoc. UK 87, 1017–1023 (2007).Article 

    Google Scholar 
    67.Amorim, M. C. P. et al. Painted gobies sing their quality out loud: acoustic rather than visual signals advertise male quality and contribute to mating success. Funct. Ecol. 27, 289–298 (2013).Article 

    Google Scholar 
    68.Amorim, M. C. P. et al. Lusitanian toadfish song reflects male quality. J. Exp. Biol. 213, 2997–3004 (2010).PubMed 
    Article 

    Google Scholar 
    69.Amundsen, T. & Forsgren, E. Male preference for colourful females affected by male size in a marine fish. Behav. Ecol. Sociobiol. 54, 55–64 (2003).Article 

    Google Scholar 
    70.An, D. & Waldman, B. Enhanced call effort in Japanese tree frogs infected by amphibian chytrid fungus. Biol. Lett. https://doi.org/10.1098/rsbl.2016.0018 (2016).71.Andersson, S. Costs of sexual advertising in the lekking Jackson’s Widowbird. Condor 96, 1–10 (1994).Article 

    Google Scholar 
    72.Andrade, M. C. B. & Mason, A. C. Male condition, female choice, and extreme variation in repeated mating in a scaly cricket, Ornebius aperta (Orthoptera: Gryllidae: Mogoplistinae). J. Insect Behav. 13, 483–497 (2000).Article 

    Google Scholar 
    73.Anichini, M., Frommolt, K. H. & Lehmann, G. U. C. To compete or not to compete: bushcricket song plasticity reveals male body condition and rival distance. Anim. Behav. 142, 59–68 (2018).Article 

    Google Scholar 
    74.Arak, A. Female mate selection in the natterjack toad: active choice or passive atraction? Behav. Ecol. Sociobiol. 22, 317–327 (1988).
    Google Scholar 
    75.Arvidsson, B. L. & Neergaard, R. Mate choice in the willow warbler—a field experiment. Behav. Ecol. Sociobiol. 29, 225–229 (1991).Article 

    Google Scholar 
    76.Atagan, Y. & Forstmeier, W. Protein supplementation decreases courtship rate in the zebra finch. Anim. Behav. 83, 69–74 (2012).Article 

    Google Scholar 
    77.Backwell, P. R. Y., Jennions, M. D., Christy, J. H. & Schober, U. Pillar building in the fiddler-crab Uca beebei—evidence for a condition dependent ornament. Behav. Ecol. Sociobiol. 36, 185–192 (1995).Article 

    Google Scholar 
    78.Bakker, T. C. M. & Milinski, M. Sequential female choice and the previous male effect in sticklebacks. Behav. Ecol. Sociobiol. 29, 205–210 (1991).Article 

    Google Scholar 
    79.Becker, L. J. S., Aspbury, A. S. & Gabor, C. R. Body size dependent male sexual behavior in a natural population of sailfin mollies (Poecilia latipinna). Am. Midl. Nat. 167, 366–372 (2012).Article 

    Google Scholar 
    80.Bee, M. A. et al. Assessing acoustic signal variability and the potential for sexual selection and social recognition in boreal chorus frogs (Pseudacris maculata). Ethology 116, 564–576 (2010).Article 

    Google Scholar 
    81.Beeler, A. E., Rauter, C. M. & Moore, A. J. Pheromonally mediated mate attraction by males of the burying beetle Nicrophorus orbicollis: alternative calling tactics conditional on both intrinsic and extrinsic factors. Behav. Ecol. 10, 578–584 (1999).Article 

    Google Scholar 
    82.Bertram, S. M. & Bowen, M. Field cricket species differences in the temporal patterns of long-distance mate attraction signals. Ethology 112, 850–857 (2006).Article 

    Google Scholar 
    83.Bertram, S. M., Whattam, E. M., Visanuvimol, L., Bennett, R. & Lauzon, C. Phosphorus availability influences cricket mate attraction displays. Anim. Behav. 77, 525–530 (2009).Article 

    Google Scholar 
    84.Birkhead, T. R., Fletcher, F. & Pellatt, E. J. Sexual selection in the zebra finch Taeniopygia guttata: condition, sex traits and immune capacity. Behav. Ecol. Sociobiol. 44, 179–191 (1998).Article 

    Google Scholar 
    85.Biro, P. A., Fanson, K. V. & Santostefano, F. Stress-induced peak (but not resting) metabolism correlates with mating display intensity in male guppies. Ecol. Evol. 6, 6537–6545 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Bolund, E., Martin, K., Kempenaers, B. & Forstmeier, W. Inbreeding depression of sexually selected traits and attractiveness in the zebra finch. Anim. Behav. 79, 947–955 (2010).Article 

    Google Scholar 
    87.Bolund, E., Schielzeth, H. & Forstmeier, W. No heightened condition dependence of zebra finch ornaments—a quantitative genetic approach. J. Evol. Biol. 23, 586–597 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Bosholn, M., Fecchio, A., Silveira, P., Braga, E. M. & Anciaes, M. Effects of avian malaria on male behaviour and female visitation in lekking blue-crowned manakins. J. Avian Biol. 47, 457–465 (2016).Article 

    Google Scholar 
    89.Brandt, L. S. E., Ludwar, B. C. & Greenfield, M. D. Co-occurrence of preference functions and acceptance thresholds in female choice: mate discrimination in the lesser wax moth. Ethology 111, 609–625 (2005).Article 

    Google Scholar 
    90.Briggs, V. S. Call trait variation in Morelett’s tree frog, Agalychnis moreletii, of Belize. Herpetologica 66, 241–249 (2010).Article 

    Google Scholar 
    91.Buchanan, K. L., Catchpole, C. K., Lewis, J. W. & Lodge, A. Song as an indicator of parasitism in the sedge warbler. Anim. Behav. 57, 307–314 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Buchinger, T. J. et al. Increased pheromone signaling by small male sea lamprey has distinct effects on female mate search and courtship. Behav. Ecol. Sociobiol. 71, 155 (2017).93.Callander, S., Jennions, M. D. & Backwell, P. R. Y. The effect of claw size and wave rate on female choice in a fiddler crab. J. Ethol. 30, 151–155 (2012).Article 

    Google Scholar 
    94.Candolin, U. & Salesto, T. Does competition allow male mate choosiness in threespine sticklebacks? Am. Nat. 173, 273–277 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Castellano, S., Rosso, A., Doglio, S. & Giacoma, C. Body size and calling variation in the green toad (Bufo viridis). J. Zool. 248, 83–90 (1999).Article 

    Google Scholar 
    96.Chiswell, R., Girard, M., Fricke, C. & Kasumovic, M. M. Prior mating success can affect allocation towards future sexual signaling in crickets. PeerJ 2, e657 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Churchill, E. R., Dytham, C. & Thom, M. D. F. Differing effects of age and starvation on reproductive performance in Drosophila melanogaster. Sci. Rep. 9, 2167 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    98.Clark, D. C., DeBano, S. J. & Moore, A. J. The influence of environmental quality on sexual selection in Nauphoeta cinerea (Dictyoptera: Blaberidae). Behav. Ecol. 8, 46–53 (1997).Article 

    Google Scholar 
    99.Clark, D. C. & Moore, A. J. Social communication in the Madagascar hissing cockroach—features of male courtship hisses and a comparison of courtship and agonistic hisses. Behaviour 132, 401–417 (1995).Article 

    Google Scholar 
    100.Clayton, D. H. Mate choice in experimentally parasitized rock doves: lousy males lose. Am. Zool. 30, 251–262 (1990).Article 

    Google Scholar 
    101.Cobb, M., Connolly, K. & Burnet, B. The relationship between locomotor activity and courtship in the melanogaster species sub-group of Drosophila. Anim. Behav. 35, 705–713 (1987).Article 

    Google Scholar 
    102.Cordes, N. et al. Larval food composition affects courtship song and sperm expenditure in a lekking moth. Ecol. Entomol. 40, 34–41 (2015).Article 

    Google Scholar 
    103.Cornuau, J. H., Schmeller, D. S., Courtois, E. A., Jolly, T. & Loyau, A. It takes two to tango: relative influence of male and female identity and morphology on complex courtship display in a newt species. Ethology 121, 218–226 (2015).Article 

    Google Scholar 
    104.Costa, F. J. V. & Macedo, R. H. Coccidian oocyst parasitism in the blue-black grassquit: influence on secondary sex ornaments and body condition. Anim. Behav. 70, 1401–1409 (2005).Article 

    Google Scholar 
    105.Crocker-Buta, S. P. & Leary, C. J. Hormonal and social correlates of courtship signal quality and behaviour in male green treefrogs. Anim. Behav. 146, 13–22 (2018).Article 

    Google Scholar 
    106.da Rocha, S. M. C., Lima, A. P. & Kaefer, I. L. Territory size as a main driver of male-mating success in an Amazonian nurse frog (Allobates paleovarzensis, Dendrobatoidea). Acta Ethol. 21, 51–57 (2018).Article 

    Google Scholar 
    107.David, M., Auclair, Y., Dall, S. R. X. & Cezilly, F. Pairing context determines condition-dependence of song rate in a monogamous passerine bird. Proc. R. Soc. B 280, 20122177 (2013).PubMed 
    Article 

    Google Scholar 
    108.Deb, R., Bhattacharya, M. & Balakrishnan, R. Females of a tree cricket prefer larger males but not the lower frequency male calls that indicate large body size. Anim. Behav. 84, 137–149 (2012).Article 

    Google Scholar 
    109.Devigili, A., Kelley, J. L., Pilastro, A. & Evans, J. P. Expression of pre- and postcopulatory traits under different dietary conditions in guppies. Behav. Ecol. 24, 740–749 (2013).Article 

    Google Scholar 
    110.Drayton, J. M., Hunt, J., Brooks, R. & Jennions, M. D. Sounds different: inbreeding depression in sexually selected traits in the cricket Teleogryllus commodus. J. Evol. Biol. 20, 1138–1147 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Drayton, J. M., Milner, R. N. C., Hunt, J. & Jennions, M. D. Inbreeding and advertisement calling in the cricket Teleogryllus commodus: laboratory and field experiments. Evolution 64, 3069–3083 (2010).PubMed 

    Google Scholar 
    112.Droney, D. C. Environmental influences on male courtship and implications for female choice in a lekking Hawaiian Drosophila. Anim. Behav. 51, 821–830 (1996).Article 

    Google Scholar 
    113.Droney, D. C. The influence of the nutritional content of the adult male diet on testis mass, body condition and courtship vigour in a Hawaiian Drosophila. Funct. Ecol. 12, 920–928 (1998).Article 

    Google Scholar 
    114.Duffield, K. R. et al. Age-dependent variation in the terminal investment threshold in male crickets. Evolution 72, 578–589 (2018).Article 

    Google Scholar 
    115.Eastwood, L. & Burnet, B. Courtship latency in male Drosophila melanogaster. Behav. Genet. 7, 359–372 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Engqvist, L. & Sauer, K. P. Influence of nutrition on courtship and mating in the scorpionfly Panorpa cognata (Mecoptera, insecta). Ethology 109, 911–928 (2003).Article 

    Google Scholar 
    117.Forrest, T. G. et al. Mate choice in ground crickets (Gryllidae, Nemoiinae). Fla. Entomol. 74, 74–80 (1991).Article 

    Google Scholar 
    118.Galeotti, P. et al. Courtship displays and mounting calls are honest, condition-dependent signals that influence mounting success in Hermann’s tortoises. Can. J. Zool. 83, 1306–1313 (2005).Article 

    Google Scholar 
    119.Gibson, J. S. & Uetz, G. W. Effect of rearing environment and food availability on seismic signalling in male wolf spiders (Araneae: Lycosidae). Anim. Behav. 84, 85–92 (2012).Article 

    Google Scholar 
    120.Gibson, R. M. Relationships between blood parasites, mating success and phenotypic cues in male sage grouse Centrocercus urophasianus. Am. Zool. 30, 271–278 (1990).Article 

    Google Scholar 
    121.Gilbert, R., Karp, R. D. & Uetz, G. W. Effects of juvenile infection on adult immunity and secondary sexual characters in a wolf spider. Behav. Ecol. 27, 946–954 (2016).Article 

    Google Scholar 
    122.Gilbert, R. & Uetz, G. W. Courtship and male ornaments as honest indicators of immune function. Anim. Behav. 117, 97–103 (2016).Article 

    Google Scholar 
    123.Given, M. Interrelationships among calling effort, growth rate, and chorus tenure in Bufo fowleri. Copeia 2002, 979–987 (2002).Article 

    Google Scholar 
    124.Greenspan, S. E., Roznik, E. A., Schwarzkopf, L., Alford, R. A. & Pike, D. A. Robust calling performance in frogs infected by a deadly fungal pathogen. Ecol. Evol. 6, 5964–5972 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Gumulka, M. & Rozenboim, I. Effect of the age of ganders on reproductive behavior and fertility in a competitive mating structure. Ann. Anim. Sci. 17, 733–746 (2017).Article 

    Google Scholar 
    126.Hankison, S. J. & Ptacek, M. B. Within and between species variation in male mating behaviors in the Mexican sailfin mollies Poecilia velifera and P. petenensis. Ethology 113, 802–812 (2007).Article 

    Google Scholar 
    127.Harrison, S. J., Thomson, I. R., Grant, C. M. & Bertram, S. M. Calling, courtship, and condition in the fall field cricket, Gryllus pennsylvanicus. PLoS ONE 8, e60356 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Hausfater, G., Gerhardt, H. C. & Klump, G. M. Parasites and mate choice in gray treefrogs, Hyla versicolor. Am. Zool. 30, 299–311 (1990).Article 

    Google Scholar 
    129.Hay, D. E. & McPhail, J. D. Courtship behaviour of male threespine sticklebacks (Gasterosteus aculeatus) from old and new hybrid zones. Behaviour 137, 1047–1063 (2000).Article 

    Google Scholar 
    130.Head, M. L., Fox, R. J. & Barber, I. Environmental change mediates mate choice for an extended phenotype, but not for mate quality. Evolution 71, 135–144 (2017).PubMed 
    Article 

    Google Scholar 
    131.Hegde, S. N. & Krishna, M. S. Size-assortative mating in Drosophila malerkotliana. Anim. Behav. 54, 419–426 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    132.Hegyi, G. et al. Nutritional correlates and mate acquisition role of multiple sexual traits in male collared flycatchers. Naturwissenschaften 97, 567–576 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Henderson, L. J., Brazeal, K. R. & Hahn, T. P. Plumage coloration and social context influence male investment in song. Biol. Lett. 14, 20180300 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Hermann, C. M., Brudermann, V., Zimmermann, H., Vollmann, J. & Sefc, K. M. Female preferences for male traits and territory characteristics in the cichlid fish Tropheus moorii. Hydrobiologia 748, 61–74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Hoefler, C. D., Carlascio, A. L., Persons, M. H. & Rypstra, A. L. Male courtship repeatability and potential indirect genetic benefits in a wolf spider. Anim. Behav. 78, 183–188 (2009).Article 

    Google Scholar 
    136.Hoefler, C. D., Moore, J. A., Reynolds, K. T. & Rypstra, A. L. The effect of experience on male courtship and mating behaviors in a cellar spider. Am. Midl. Nat. 163, 255–268 (2010).Article 

    Google Scholar 
    137.Hoefler, C. D., Persons, M. H. & Rypstra, A. L. Evolutionarily costly courtship displays in a wolf spider: a test of viability indicator theory. Behav. Ecol. 19, 974–979 (2008).Article 

    Google Scholar 
    138.Hoileitner, M., Nechtelberger, H. & Hoi, H. Song rate as a signal for nest-site quality in blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 37, 399–405 (1995).Article 

    Google Scholar 
    139.Holzer, B., Jacot, A. & Brinkhof, M. W. G. Condition-dependent signaling affects male sexual attractiveness in field crickets, Gryllus campestris. Behav. Ecol. 14, 353–359 (2003).Article 

    Google Scholar 
    140.Honarmand, M., Riebel, K. & Naguib, M. Nutrition and peer group composition in early adolescence: impacts on male song and female preference in zebra finches. Anim. Behav. 107, 147–158 (2015).Article 

    Google Scholar 
    141.Houde, A. E. & Torio, A. J. Effect of parasitic infection on male color pattern and female choice in guppies. Behav. Ecol. 3, 346–351 (1992).Article 

    Google Scholar 
    142.Howard, R. D. & Young, J. R. Individual variation in male vocal traits and female mating preferences in Bufo americanus. Anim. Behav. 55, 1165–1179 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    143.Hughes, A. L. Male size, mating success, and mating strategy in the mosquitofish Gambusia affinis (Poeciliidae). Behav. Ecol. Sociobiol. 17, 271–278 (1985).Article 

    Google Scholar 
    144.Humfeld, S. C. Condition-dependent signaling and adoption of mating tactics in an amphibian with energetic displays. Behav. Ecol. 24, 859–870 (2013).Article 

    Google Scholar 
    145.Jacot, A., Scheuber, H. & Brinkhof, M. W. G. Costs of an induced immune response on sexual display and longevity in field crickets. Evolution 58, 2280–2286 (2004).PubMed 
    Article 

    Google Scholar 
    146.Jacot, A., Scheuber, H., Holzer, B., Otti, O. & Brinkhof, M. W. G. Diel variation in a dynamic sexual display and its association with female mate-searching behaviour. Proc. R. Soc. B 275, 579–585 (2008).PubMed 
    Article 

    Google Scholar 
    147.Jennions, M. D. Tibial coloration, fluctuating asymmetry and female choice behaviour in the damselfly Platycypha caligata. Anim. Behav. 55, 1517–1528 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    148.Jha, N. A. & Kumar, V. Protein-rich food does not affect singing behaviour and song quality in adult zebra finches, Taeniopygia guttata. Curr. Sci. 111, 1693–1696 (2016).Article 

    Google Scholar 
    149.Jiguet, F. & Bretagnolle, V. Sexy males and choosy females on exploded leks: correlates of male attractiveness in the Little Bustard. Behav. Process. 103, 246–255 (2014).Article 

    Google Scholar 
    150.Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).Article 

    Google Scholar 
    151.Joshi, A. M., Narayan, E. J. & Gramapurohit, N. P. Interrelationship among steroid hormones, energetics and vocalisation in the Bombay night frog (Nyctibatrachus humayuni). Gen. Comp. Endocrinol. 246, 142–149 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    152.Joyce, A. L., Bernal, J. S., Vinson, S. B. & Lomeli-Flores, R. Influence of adult size on mate choice in the solitary and gregarious parasitoids, Cotesia marginiventris and Cotesia flavipes. J. Insect Behav. 22, 12–28 (2009).Article 

    Google Scholar 
    153.Junca, F. A. et al. Advertisement call of species of the genus Frostius Cannatella 1986 (Anura: Bufonidae). Acta Herpetol. 7, 189–201 (2012).
    Google Scholar 
    154.Kaefer, I. L. & Lima, A. P. Sexual signals of the Amazonian frog Allobates paleovarzensis: geographic variation and stereotypy of acoustic traits. Behaviour 149, 15–33 (2012).Article 

    Google Scholar 
    155.Kahn, A. T., Dolstra, T., Jennions, M. D. & Backwell, P. R. Y. Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behav. Ecol. 24, 906–913 (2013).Article 

    Google Scholar 
    156.Karl, I., Heuskin, S. & Fischer, K. Dissecting the mechanisms underlying old male mating advantage in a butterfly. Behav. Ecol. Sociobiol. 67, 837–849 (2013).Article 

    Google Scholar 
    157.Kaspi, R., Taylor, P. W. & Yuval, B. Diet and size influence sexual advertisement and copulatory success of males in Mediterranean fruit fly leks. Ecol. Entomol. 25, 279–284 (2000).Article 

    Google Scholar 
    158.Kennedy, C. E. J., Endler, J. A., Poynton, S. L. & McMinn, H. Parasite load predicts mate choice in guppies. Behav. Ecol. Sociobiol. 21, 291–295 (1987).Article 

    Google Scholar 
    159.Ketola, T., Kortet, R. & Kotiaho, J. S. Endurance in exercise is associated with courtship call rate in decorated crickets, Gryllodes sigillatus. Evol. Ecol. Res. 11, 1131–1139 (2009).
    Google Scholar 
    160.Ketola, T. & Kotiaho, J. S. Inbreeding, energy use and sexual signaling. Evol. Ecol. 24, 761–772 (2010).Article 

    Google Scholar 
    161.Kim, T. W. & Choe, J. C. The effect of food availability on the semilunar courtship rhythm in the fiddler crab Uca lactea (de Haan) (Brachyura: Ocypodidae). Behav. Ecol. Sociobiol. 54, 210–217 (2003).Article 

    Google Scholar 
    162.Kim, T. W., Sakamoto, K., Henmi, Y. & Choe, J. C. To court or not to court: reproductive decisions by male fiddler crabs in response to fluctuating food availability. Behav. Ecol. Sociobiol. 62, 1139–1147 (2008).Article 

    Google Scholar 
    163.King, B. H., Saporito, K. B., Ellison, J. H. & Bratzke, R. M. Unattractiveness of mated females to males in the parasitoid wasp Spalangia endius. Behav. Ecol. Sociobiol. 57, 350–356 (2005).Article 

    Google Scholar 
    164.Kitsunezuka, K., Okutani-Akamatsu, Y., Watanabe, T. & Oku, K. Effects of male age on the mating behavior of both sexes in the sorghum plant bug, Stenotus rubrovittatus (Hemiptera: Miridae). Appl. Entomol. Zool. 48, 73–77 (2013).Article 

    Google Scholar 
    165.Knapp, R. A. Influence of energy reserves on the expression of a secondary sexual trait in male bicolor damselfish, Stegastes partitus. Bull. Mar. Sci. 57, 672–681 (1995).
    Google Scholar 
    166.Kodric-Brown, A. Dietary carotenoids and male mating success in the guppy: an environmental component to female choice. Behav. Ecol. Sociobiol. 25, 393–401 (1989).Article 

    Google Scholar 
    167.Kolluru, G. R., Bertram, S. M., China, E. H., Dunmeyer, C. V. & Graves, J. S. Mating behavior and its morphological correlates in two color morphs of Girardinus metallicus (Pisces: Poeciliidae), a species previously thought not to exhibit courtship display. Behav. Process. 106, 44–52 (2014).Article 

    Google Scholar 
    168.Kotiaho, J. S. Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behav. Ecol. Sociobiol. 48, 188–194 (2000).Article 

    Google Scholar 
    169.Kotiaho, J. S. Sexual selection and condition dependence of courtship display in three species of horned dung beetles. Behav. Ecol. 13, 791–799 (2002).Article 

    Google Scholar 
    170.Kotiaho, J. S., Alatalo, R. V., Mappes, J. & Parri, S. Sexual signalling and viability in a wolf spider (Hygrolycosa rubrofasciata): measurements under laboratory and field conditions. Behav. Ecol. Sociobiol. 46, 123–128 (1999).Article 

    Google Scholar 
    171.Kotiaho, J. S., Simmons, L. W. & Tomkins, J. L. Towards a resolution of the lek paradox. Nature 410, 684–686 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    172.Krishna, M. S. & Hegde, S. N. Influence of body size in mating success in three sympatric species of Drosophila. Ital. J. Zool. 70, 47–52 (2003).Article 

    Google Scholar 
    173.Kuczynski, M. C., Bello-DeOcampo, D. & Getty, T. No evidence of terminal investment in the gray treefrog (Hyla versicolor): older males do not signal at greater effort. Copeia 103, 530–535 (2015).Article 

    Google Scholar 
    174.Kuczynski, M. C., Storks, L., Gering, E. & Getty, T. Male treefrogs in low condition resume signaling faster following simulated predator attack. Behav. Ecol. Sociobiol. 70, 347–355 (2016).Article 

    Google Scholar 
    175.Kuriwada, T. Horn length is not correlated with calling efforts in the horn-headed cricket Loxoblemmus doenitzi (Orthoptera: Gryllidae). Entomol. Sci. 19, 228–232 (2016).Article 

    Google Scholar 
    176.Kuriwada, T. & Kasuya, E. Age-dependent changes in calling effort in the bell cricket Meloimorpha japonica. J. Ethol. 29, 99–105 (2011).Article 

    Google Scholar 
    177.Leary, C. J., Lippincott, J., Harris, S. & Hawkins, D. L. A test of the energetics-hormone vocalization model in the green treefrog. Gen. Comp. Endocrinol. 213, 32–39 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    178.Lehtonen, T. K., Svensson, P. A. & Wong, B. B. M. The influence of recent social experience and physical environment on courtship and male aggression. BMC Evol. Biol. 16, 18 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    179.Lehtonen, T. K., Svensson, P. A. & Wong, B. B. M. Aggressive desert goby males also court more, independent of the physiological demands of salinity. Sci. Rep. 8, 9352 (2018).180.Lode, T. & Le Jacques, D. Influence of advertisement calls on reproductive success in the male midwife toad Alytes obstetricans. Behaviour 140, 885–898 (2003).Article 

    Google Scholar 
    181.Lomborg, J. P. & Toft, S. Nutritional enrichment increases courtship intensity and improves mating success in male spiders. Behav. Ecol. 20, 700–708 (2009).Article 

    Google Scholar 
    182.Lopez, P. T. & Narins, P. M. Mate choice in the neotropical frog, Eleutherodactylus coqui. Anim. Behav. 41, 757–772 (1991).Article 

    Google Scholar 
    183.Lynn, S. E., Stamplis, T. B., Barrington, W. T., Weida, N. & Hudak, C. A. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch. Horm. Behav. 58, 214–222 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    184.Magellan, K., Pettersson, L. B. & Magurran, A. E. Quantifying male attractiveness and mating behaviour through phenotypic size manipulation in the Trinidadian guppy, Poecilia reticulata. Behav. Ecol. Sociobiol. 58, 366–374 (2005).Article 

    Google Scholar 
    185.Magoolagan, L., Mawby, P. J., Whitehead, F. A. & Sharp, S. P. The effect of early life conditions on song traits in male dippers (Cinclus cinclus). PLoS ONE 13, e0205101 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    186.Manica, L. T., Maia, R., Dias, A., Podos, J. & Macedoc, R. H. Vocal output predicts territory quality in a neotropical songbird. Behav. Process. 109, 21–26 (2014).Article 

    Google Scholar 
    187.Mariette, M., Kelley, J. L., Brooks, R. & Evans, J. P. The effects of inbreeding on male courtship behaviour and coloration in guppies. Ethology 112, 807–814 (2006).Article 

    Google Scholar 
    188.Mateos, C. & Carranza, J. Effects of male dominance and courtship display on female choice in the ring-necked pheasant. Behav. Ecol. Sociobiol. 45, 235–244 (1999).Article 

    Google Scholar 
    189.Matsuo, T. Effect of social condition on behavioral development during early adult phase in Drosophila prolongata. J. Ethol. 36, 15–22 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    190.McAuley, E. M. & Bertram, S. M. Field crickets compensate for unattractive static long-distance call components by increasing dynamic signalling effort. PLoS ONE 11, e0167311 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    191.McCullough, E. L. & Simmons, L. W. Selection on male physical performance during male–male competition and female choice. Behav. Ecol. 27, 1288–1295 (2016).Article 

    Google Scholar 
    192.McLean, M. J., Bishop, P. J., Hero, J. M. & Nakagawa, S. Assessing the information content of calls of Litoria chloris: quality signalling versus individual recognition. Aust. J. Zool. 60, 120–126 (2012).Article 

    Google Scholar 
    193.McNeil, G. V., Friesen, C. N., Gray, S. M., Aldredge, A. & Chapman, L. J. Male colour variation in a eurytopic African cichlid: the role of diet and hypoxia. Biol. J. Linn. Soc. 118, 551–568 (2016).Article 

    Google Scholar 
    194.Memmott, R. & Briffa, M. Exaggerated displays do not improve mounting success in male seaweed flies Fucellia tergina (Diptera: Anthomyiidae). Behav. Process. 120, 73–79 (2015).Article 

    Google Scholar 
    195.Milazzo, M. et al. Ocean acidification affects fish spawning but not paternity at CO2 seeps. Proc. R. Soc. B 283, 20161021 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    196.Morales, M. B., Alonso, J. C., Martin, C., Martin, E. & Alonso, J. Male sexual display and attractiveness in the great bustard Otis tarda: the role of body condition. J. Ethol. 21, 51–56 (2003).Article 

    Google Scholar 
    197.Morris, M. R. Female choice of large males in the treefrog Hyla ebraccata. J. Zool. 223, 371–378 (1991).Article 

    Google Scholar 
    198.Morris, M. R., Rios-Cardenas, O. & Darrah, A. Male mating tactics in the northern mountain swordtail fish (Xiphophorus nezahualcoyotl): coaxing and coercing females to mate. Ethology 114, 977–988 (2008).Article 

    Google Scholar 
    199.Muramatsu, D. The function of the four types of waving display in Uca lactea: effects of audience, sand structure, and body size. Ethology 117, 408–415 (2011).Article 

    Google Scholar 
    200.Murphy, C. G. Nightly timing of chorusing by male barking treefrogs (Hyla gratiosa): the influence of female arrival and energy. Copeia 1999, 333–347 (1999).Article 

    Google Scholar 
    201.Naguib, M., Heim, C. & Gil, D. Early developmental conditions and male attractiveness in zebra finches. Ethology 114, 255–261 (2008).Article 

    Google Scholar 
    202.O’Hanlon, J. C., Wignall, A. E. & Herberstein, M. E. Short and fast vs long and slow: age changes courtship in male orb-web spiders (Argiope keyserlingi). Sci. Nat. 105, 3 (2018).Article 
    CAS 

    Google Scholar 
    203.Ohata, M., Wada, K. & Koga, T. Waving display by male Scopimera globosa (Brachyura: Ocypodoidea) as courtship behavior. J. Crustac. Biol. 25, 637–639 (2005).Article 

    Google Scholar 
    204.Olsson, K. H., Kvarnemo, C. & Svensson, O. Relative costs of courtship behaviours in nest-building sand gobies. Anim. Behav. 77, 541–546 (2009).Article 

    Google Scholar 
    205.Ortiz-Santaliestra, M. E., Marco, A., Fernández-Benéitez, M. J. & Lizana, M. Alteration of courtship behavior because of water acidification and minor effect of ammonium nitrate in the Iberian newt (Lissotriton boscai). Environ. Toxicol. Chem. 28, 1500–1505 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    206.Papadopoulos, N. T., Katsoyannos, B. I., Kouloussis, N. A., Economopoulos, A. P. & Carrey, J. R. Effect of adult age, food, and time of day on sexual calling incidence of wild and mass-reared Ceratitis capitata males. Entomol. Exp. Appl. 89, 175–182 (1998).Article 

    Google Scholar 
    207.Pariser, E. C., Mariette, M. M. & Griffith, S. C. Artificial ornaments manipulate intrinsic male quality in wild-caught zebra finches (Taeniopygia guttata). Behav. Ecol. 21, 264–269 (2010).Article 

    Google Scholar 
    208.Partridge, L., Ewing, A. & Chandler, A. Male size and mating success in Drosophila melanogaster: the roles of male and female behaviour. Anim. Behav. 35, 555–562 (1987).Article 

    Google Scholar 
    209.Passmore, N. I., Bishop, P. J. & Caithness, N. Calling behavior influences mating success in male painted reed frogs, Hyperolius marmoratus. Ethology 92, 227–241 (1992).Article 

    Google Scholar 
    210.Pedroso, S. S., Barber, I., Svensson, O., Fonseca, P. J. & Amorim, M. C. P. Courtship sounds advertise species identity and male quality in sympatric Pomatoschistus spp. gobies. PLoS ONE 8, e64620 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    211.Pelabon, C. et al. Do microsporidian parasites affect courtship in two-spotted gobies? Mar. Biol. 148, 189–196 (2005).Article 

    Google Scholar 
    212.Pellitteri-Rosa, D., Sacchi, R., Galeotti, P., Marchesi, M. & Fasola, M. Courtship displays are condition-dependent signals that reliably reflect male quality in Greek tortoises, Testudo graeca. Chelonian Conserv. Biol. 10, 10–17 (2011).Article 

    Google Scholar 
    213.Perezlachaud, G. & Campan, M. Influence of previous sexual experience and postemergence rearing conditions on the mating-behavior of Chryseida bennetti. Entomol. Exp. Appl. 76, 163–170 (1995).Article 

    Google Scholar 
    214.Poole, K. G. & Murphy, C. G. Preferences of female barking treefrogs, Hyla gratiosa, for larger males: univariate and composite tests. Anim. Behav. 73, 513–524 (2007).Article 

    Google Scholar 
    215.Prathibha, M., Krishna, M. S. & Jayaramu, S. C. Male age influence on male reproductive success in Drosophila ananassae (Diptera: Drosophilidae). Ital. J. Zool. 78, 168–173 (2011).Article 

    Google Scholar 
    216.Pruett-jones, S. G., Pruett-jones, M. A. & Jones, H. I. Parasites and sexual selection in birds of paradise. Am. Zool. 30, 287–298 (1990).Article 

    Google Scholar 
    217.Pryke, S. R. & Andersson, S. Experimental evidence for female choice and energetic costs of male tail elongation in red-collared widowbirds. Biol. J. Linn. Soc. 86, 35–43 (2005).Article 

    Google Scholar 
    218.Ptacek, M. B. & Travis, J. Inter-population variation in male mating behaviours in the sailfin mollie, Poecilia latipinna. Anim. Behav. 52, 59–71 (1996).Article 

    Google Scholar 
    219.Ptacek, M. B. & Travis, J. Mate choice in the sailfin molly, Poecilia latipinna. Evolution 51, 1217–1231 (1997).PubMed 
    Article 

    Google Scholar 
    220.Rahman, M. M., Kelley, J. L. & Evans, J. P. Condition-dependent expression of pre- and postcopulatory sexual traits in guppies. Ecol. Evol. 3, 2197–2213 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    221.Rahman, M. M., Turchini, G. M., Gasparini, C., Norambuena, F. & Evans, J. P. The expression of pre- and postcopulatory sexually selected traits reflects levels of dietary stress in guppies. PLoS ONE 9, e105856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    222.Reifer, M. L., Harrison, S. J. & Bertram, S. M. How dietary protein and carbohydrate influence field cricket development, size and mate attraction signalling. Anim. Behav. 139, 137–146 (2018).Article 

    Google Scholar 
    223.Rezaei, A., Krishna, M. S. & Santhosh, H. T. Male age affects female mate preference, quantity of accessory gland proteins, and sperm traits and female fitness in D. melanogaster. Zool. Sci. 32, 16–24 (2015).Article 

    Google Scholar 
    224.Ritchie, M. G., Sunter, D. & Hockham, L. R. Behavioral components of sex role reversal in the tettigoniid bushcricket Ephippiger ephippiger. J. Insect Behav. 11, 481–491 (1998).Article 

    Google Scholar 
    225.Ritschard, M. & Brumm, H. Zebra finch song reflects current food availability. Evol. Ecol. 26, 801–812 (2012).Article 

    Google Scholar 
    226.Rodd, F. H. & Sokolowski, M. B. Complex origins of variation in the sexual-behavior of male Trinidadian guppies, Poecilia reticulata—interactions between social-environment, heredity, body-size and age. Anim. Behav. 49, 1139–1159 (1995).Article 

    Google Scholar 
    227.Rosenthal, M. F. & Hebets, E. A. Temporal patterns of nutrition dependence in secondary sexual traits and their varying impacts on male mating success. Anim. Behav. 103, 75–82 (2015).Article 

    Google Scholar 
    228.Sadowski, J. A., Grace, J. L. & Moore, A. J. Complex courtship behavior in the striped ground cricket, Allonemobius socius (Orthoptera: Gryllidae): does social environment affect male and female behavior? J. Insect Behav. 15, 69–84 (2002).Article 

    Google Scholar 
    229.Scheuber, H., Jacot, A. & Brinkhof, M. W. G. Condition dependence of a multicomponent sexual signal in the field cricket Gryllus campestris. Anim. Behav. 65, 721–727 (2003).Article 

    Google Scholar 
    230.Shakeel, M., He, X. Z., Martin, N. A., Hanan, A. & Wang, Q. Mating behaviour of the European leafminer Scaptomyza flava (Diptera: Drosophilidae). NZ Plant Prot. 63, 108–112 (2010).
    Google Scholar 
    231.Shelly, T. E., Edu, J. & Pahio, E. Female medflies mate selectively with young males but gain no apparent fitness benefits. J. Insect Behav. 24, 55–66 (2011).Article 

    Google Scholar 
    232.Shelly, T. E. & Kennelly, S. S. Starvation and the mating success of wild male Mediterranean fruit flies (Diptera: Tephritidae). J. Insect Behav. 16, 171–179 (2003).Article 

    Google Scholar 
    233.Shuker, D. et al. Mating behavior, sexual selection, and copulatory courtship in a promiscuous beetle. J. Insect Behav. 15, 617–631 (2002).Article 

    Google Scholar 
    234.Sikkel, P. C. Effects of nest quality on male courtship and female spawning-site choice in an algal-nesting damselfish. Bull. Mar. Sci. 57, 682–689 (1995).
    Google Scholar 
    235.Sisodia, S. & Singh, B. N. Size dependent sexual selection in Drosophila ananassae. Genetica 121, 207–217 (2004).PubMed 
    Article 

    Google Scholar 
    236.Smit, J. A. H., Loning, H., Ryan, M. J. & Halfwerk, W. Environmental constraints on size-dependent signaling affects mating and rival interactions. Behav. Ecol. 30, 724–732 (2019).Article 

    Google Scholar 
    237.Snekser, J. L., Leese, J., Ganim, A. & Itzkowitz, M. Caribbean damselfish with varying territory quality: correlated behaviors but not a syndrome. Behav. Ecol. 20, 124–130 (2009).Article 

    Google Scholar 
    238.Spencer, K. A., Buchanan, K. L., Goldsmith, A. R. & Catchpole, C. K. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 44, 132–139 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    239.Spencer, K. A. et al. Developmental stress affects the attractiveness of male song and female choice in the zebra finch (Taeniopygia guttata). Behav. Ecol. Sociobiol. 58, 423–428 (2005).Article 

    Google Scholar 
    240.Sundin, J., Vossen, L. E., Nilsson-Sköld, H. & Jutfelt, F. No effect of elevated carbon dioxide on reproductive behaviors in the three-spined stickleback. Behav. Ecol. 28, 1482–1491 (2017).Article 

    Google Scholar 
    241.Suzaki, Y., Katsuki, M., Miyatake, T. & Okada, Y. Relationships among male sexually selected traits in the bean bug, Riptortus pedestris (Heteroptera: Alydidae). Entomol. Sci. 18, 278–282 (2015).Article 

    Google Scholar 
    242.Takeshita, F., Murai, M., Matsumasa, M. & Henmi, Y. Multimodal signaling in fiddler crab: waving to attract mates is condition-dependent but other sexual signals are not. Behav. Ecol. Sociobiol. 72, 140 (2018).243.Tarano, Z. Variation in male advertisement calls in the neotropical frog Physalaemus enesefae. Copeia 2001, 1064–1072 (2001).Article 

    Google Scholar 
    244.Taylor, M. I., Turner, G. F., Robinson, R. L. & Stauffer, J. R. Sexual selection, parasites and bower height skew in a bower-building cichlid fish. Anim. Behav. 56, 379–384 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    245.Tejedo, M. Large male mating advantage in natterjack toads, Bufo calamita: sexual selection or energetic constraints? Anim. Behav. 44, 557–569 (1992).Article 

    Google Scholar 
    246.Tolle, A. E. & Wagner, W. E. Costly signals in a field cricket can indicate high- or low-quality direct benefits depending upon the environment. Evolution 65, 283–294 (2011).PubMed 
    Article 

    Google Scholar 
    247.Toth, C. A., Santure, A. W., Holwell, G. I., Pattemore, D. E. & Parsons, S. Courtship behaviour and display-site sharing appears conditional on body size in a lekking bat. Anim. Behav. 136, 13–19 (2018).Article 

    Google Scholar 
    248.Turiegano, E., Monedero, I., Pita, M., Torroja, L. & Canal, I. Effect of Drosophila melanogaster female size on male mating success. J. Insect Behav. 26, 89–100 (2013).Article 

    Google Scholar 
    249.Van Hout, A. J. M., Pinxten, R., Geens, A. & Eens, M. Non-breeding song rate reflects nutritional condition rather than body condition. PLoS ONE 7, e36547 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    250.Villarreal, A. E., Godin, J. G. J. & Bertram, S. M. Influence of the operational sex ratio on mutual mate choice in the Jamaican field cricket (Gryllus assimilis): testing the predictions of the switch point theorem. Ethology 124, 816–828 (2018).Article 

    Google Scholar 
    251.Wacker, S., de Jong, K., Forsgren, E. & Amundsen, T. Large males fight and court more across a range of social environments: an experiment on the two spotted goby Gobiusculus flavescens. J. Fish. Biol. 81, 21–34 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    252.Wagner, W. E. & Hoback, W. W. Nutritional effects on male calling behaviour in the variable field cricket. Anim. Behav. 57, 89–95 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    253.Walling, C. A., Stamper, C. E., Salisbury, C. L. & Moore, A. J. Experience does not alter alternative mating tactics in the burying beetle Nicrophorus vespilloides. Behav. Ecol. 20, 153–159 (2009).Article 

    Google Scholar 
    254.Watson, N. L. & Simmons, L. W. Mate choice in the dung beetle Onthophagus sagittarius: are female horns ornaments? Behav. Ecol. 21, 424–430 (2010).Article 

    Google Scholar 
    255.Whattam, E. M. & Bertram, S. M. Effects of juvenile and adult condition on long-distance call components in the Jamaican field cricket, Gryllus assimilis. Anim. Behav. 81, 135–144 (2011).Article 

    Google Scholar 
    256.Wilgers, D. J. & Hebets, E. A. Complex courtship displays facilitate male reproductive success and plasticity in signaling across variable environments. Curr. Zool. 57, 175–186 (2011).Article 

    Google Scholar 
    257.Wilgers, D. J. & Hebets, E. A. Age-related female mating decisions are condition dependent in wolf spiders. Behav. Ecol. Sociobiol. 66, 29–38 (2012).Article 

    Google Scholar 
    258.Wilson, A. D. M. et al. Behavioral correlations across activity, mating, exploration, aggression, and antipredator contexts in the European house cricket, Acheta domesticus. Behav. Ecol. Sociobiol. 64, 703–715 (2010).Article 

    Google Scholar 
    259.Win, A. T., Kojima, W. & Ishikawa, Y. Age-related male reproductive investment in courtship display and nuptial gifts in a moth, Ostrinia scapulalis. Ethology 119, 325–334 (2013).Article 

    Google Scholar 
    260.Woodhead, A. P. Male age: effect on mating behaviour and success in the cockroach Diploptera punctata. Anim. Behav. 34, 1874–1879 (1986).Article 

    Google Scholar 
    261.Yamada, K. & Soma, M. Diet and birdsong: short-term nutritional enrichment improves songs of adult Bengalese finch males. J. Avian Biol. 47, 865–870 (2016).Article 

    Google Scholar 
    262.Yuval, B., Kaspi, R., Shloush, S. & Warburg, M. S. Nutritional reserves regulate male participation in Mediterranean fruit fly leks. Ecol. Entomol. 23, 211–215 (1998).Article 

    Google Scholar 
    263.Zuk, M. et al. The role of male ornaments and courtship behavior in female mate choice of red jungle fowl. Am. Nat. 136, 459–473 (1990).Article 

    Google Scholar 
    264.Chargé, R., Saint Jalme, M., Lacroix, F., Cadet, A. & Sorci, G. Male health status, signalled by courtship display, reveals ejaculate quality and hatching success in a lekking species. J. Anim. Ecol. 79, 843–850 (2010).PubMed 

    Google Scholar 
    265.Lipsey, M. & Wilson, D. Practical Meta-analysis (Sage Publications, 2001).266.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 1985).267.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    268.R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).269.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    270.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    271.Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    272.Tacutu, R. et al. Human Ageing Genomic Resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 41, D1027–D1033 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    273.Carey, J. & Judge, D. Longevity Records: Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish (Odense Univ. Press, 2000).274.Höglund, J. & Alatalo, R. V. Leks (Princeton Univ. Press, 2005).275.Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar 
    276.Noble, D. W., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta‐analyses. Mol. Ecol. 26, 2410–2425 (2017).PubMed 
    Article 

    Google Scholar 
    277.Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. Introduction to Meta-analysis (John Wiley, 2009).278.Higgins, J., Thompson, S. G., Deeks, J. J. & Altman, D. G. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).Article 

    Google Scholar 
    279.Nakagawa, S. & Santos, E. S. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    280.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).PubMed 
    Article 

    Google Scholar 
    281.Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    282.Duval, S. & Tweedie, R. Trim and fill: a simple funnel-plot–based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56, 455–463 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    283.Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 315, 629–634 (1997).CAS 
    Article 

    Google Scholar  More

  • in

    Predicting spatial patterns of soil bacteria under current and future environmental conditions

    1.
    Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A. 2016;113:5970–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95:6578–83.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Singh JS, Gupta VK. Soil microbial biomass: a key soil driver in management of ecosystem functioning. Sci Total Environ. 2018;634:497–500.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    4.
    Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    5.
    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    6.
    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci U S A. 2007;104:11436–40.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Ettema CH, Wardle DA. Spatial soil ecology. Trends Ecol Evol. 2002;17:177–83.
    Article  Google Scholar 

    8.
    Terrat S, Horrigue W, Dequietd S, Saby NPA, Lelièvre M, Nowak V, et al. Mapping and predictive variations of soil bacterial richness across France. PLoS ONE. 2017;12:e0186766.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    9.
    Ladau J, Shi Y, Jing X, He J-S, Chen L, Lin X, et al. Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes. mSystems. 2018;3:e00167–18.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    10.
    IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat; 2019.
    Google Scholar 

    11.
    Guisan A, Broennimann O, Buri A, Cianfrani C, D’Amen M, Di Cola V, et al. Climate change impacts on mountain biodiversity. In: Lovejoy TE, Hannah L, editors. Biodiversity and climate change. Yale, USA: Yale University Press; 2019. p. 221–33.

    12.
    Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T, Niculita-Hirzel H, et al. Local environmental factors drive divergent grassland soil bacterial communities in the western Swiss Alps. Appl Environ Microbiol. 2016;82:6303–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Karimi B, Terrat S, Dequiedt S, Saby NPA, Horrigue W, Lelièvre M, et al. Biogeography of soil bacteria and archaea across France. Sci Adv. 2018;4:eaat1808.
    PubMed  PubMed Central  Article  Google Scholar 

    14.
    King AJ, Freeman KR, McCormick KF, Lynch RC, Lozupone C, Knight R, et al. Biogeography and habitat modelling of high-alpine bacteria. Nat Commun. 2010;1:53.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    15.
    Fierer N, Jackson RB. The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A. 2006;103:626–31.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    16.
    Trumbore SE, Czimczik CI. An uncertain future for soil carbon. Science. 2008;321:1455–6.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    17.
    Hettelingh JP, Posch M, Slootweg J, Reinds GJ, Spranger T, Tarrason L. Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. In: Brimblecombe P, Hara H, Houle D, Novak M, editors. Acid rain—deposition to recovery. Dordrecht: Springer; 2007. p. 379–84.
    Google Scholar 

    18.
    IPCC (2014). Climate Change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri RK, Meyer LA, editors. Geneva, Switzerland: IPCC. p. 151.

    19.
    Hagedorn F, Gavazov K, Alexander JM. Above- and belowground linkages shape responses of mountain vegetation to climate change. Science. 2019;365:1119–23.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    20.
    Monteith DT, Evans CD. The United Kingdom Acid Waters Monitoring Network: a review of the first 15 years and introduction to the special issue. Environ Pollut. 2005;137:3–13.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    21.
    Augustin S, Achermann B. Deposition von Luftschadstoffen in der Schweiz: Entwicklung, aktueller Stand und Bewertung. Schweizerische Z fur Forstwes. 2012;163:323–30.
    Article  Google Scholar 

    22.
    Blaser P, Zysset M, Zimmermann S, Luster J. Soil acidification in southern Switzerland between 1987 and 1997: A case study based on the critical load concept. Environ Sci Technol. 1999;33:2383–9.
    CAS  Article  Google Scholar 

    23.
    McGovern ST, Evans CD, Dennis P, Walmsley CA, Turner A, McDonald MA. Resilience of upland soils to long term environmental changes. Geoderma. 2013;197-198:36–42.
    CAS  Article  Google Scholar 

    24.
    Kirk GJD, Bellamy PH, Lark RM. Changes in soil pH across England and Wales in response to decreased acid deposition. Glob Change Biol. 2010;16:3111–9.
    Google Scholar 

    25.
    Kosonen Z, Schnyder E, Hiltbrunner E, Thimonier A, Schmitt M, Seitler E, et al. Current atmospheric nitrogen deposition still exceeds critical loads for sensitive, semi-natural ecosystems in Switzerland. Atmos Environ. 2019;211:214–25.
    CAS  Article  Google Scholar 

    26.
    Tipping E, Davies JAC, Henrys PA, Kirk GJD, Lilly A, Dragosits U, et al. Long-term increases in soil carbon due to ecosystem fertilization by atmospheric nitrogen deposition demonstrated by regional-scale modelling and observations. Sci Rep. 2017;7:1890.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    27.
    Bond-Lamberty B, Bailey VL, Chen M, Gough CM, Vargas R. Globally rising soil heterotrophic respiration over recent decades. Nature. 2018;560:80–83.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    28.
    Walker TWN, Kaiser C, Strasser F, Herbold CW, Leblans NIW, Woebken D, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat Clim Change. 2018;8:885–9.
    CAS  Article  Google Scholar 

    29.
    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.
    CAS  Article  Google Scholar 

    30.
    Streit K, Hagedorn F, Hiltbrunner D, Portmann M, Saurer M, Buchmann N, et al. Soil warming alters microbial substrate use in alpine soils. Glob Change Biol. 2014;20:1327–38.
    Article  Google Scholar 

    31.
    Lettens S, Van Orshoven J, Van Wesemael B, Muys B, Perrin D. Soil organic carbon changes in landscape units of Belgium between 1960 and 2000 with reference to 1990. Glob Change Biol. 2005;11:2128–40.
    Article  Google Scholar 

    32.
    Yang Y, Fang J, Smith P, Tang Y, Chen A, Ji C, et al. Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004. Glob Change Biol. 2009;15:2723–9.
    Article  Google Scholar 

    33.
    Yang Y, Li P, Ding J, Zhao X, Ma W, Ji C, et al. Increased topsoil carbon stock across China’s forests. Glob Change Biol. 2014;20:2687–96.
    Article  Google Scholar 

    34.
    Smith P. Soils and climate change. Curr Opin Environ Sustain. 2012;4:539–44.
    Article  Google Scholar 

    35.
    Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 2006;440:165–73.
    CAS  PubMed  Article  Google Scholar 

    36.
    Glenn AR, Dilworth MJ. Soil acidity and the microbial population: survival and growth of bacteria in low pH. In: Wright RJ, Baligar VC, Murrmann RP, editors. Developments in plant and soil sciences. Dordrecht: Springer; 1991. p. 567–79.
    Google Scholar 

    37.
    Xue P-P, Carrillo Y, Pino V, Minasny B, McBratney AB. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci Rep. 2018;8:11725.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    38.
    Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol. 2010;76:999–1007.
    CAS  PubMed  Article  Google Scholar 

    39.
    Fierer N, Ladau J, Clemente JC, Leff JW, Owens SM, Pollard KS, et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science. 2013;342:621–4.
    CAS  PubMed  Article  Google Scholar 

    40.
    Evans SE, Wallenstein MD. Climate change alters ecological strategies of soil bacteria. Ecol Lett. 2014;17:155–64.
    PubMed  Article  Google Scholar 

    41.
    Zhang X, Zhang G, Chen Q, Han X. Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE. 2013;8:e78616.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    42.
    Guisan A, Thuiller W, Zimmermann NE. Habitat suitability and distribution models: with applications in R. Cambridge, UK: Cambridge University Press; 2017.

    43.
    D’Amen M, Rahbek C, Zimmermann NE, Guisan A. Spatial predictions at the community level: from current approaches to future frameworks. Biol Rev Camb Philos Soc. 2017;92:169–87.
    PubMed  Article  Google Scholar 

    44.
    Guisan A, Rahbek C. SESAM—a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages. J Biogeogr. 2011;38:1433–44.
    Article  Google Scholar 

    45.
    Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat J-P, Guisan A. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib. 2011;17:1122–31.
    Article  Google Scholar 

    46.
    Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A. Are niche-based species distribution models transferable in space? J Biogeogr. 2006;33:1689–703.
    Article  Google Scholar 

    47.
    Buri A, Grand S, Yashiro E, Adatte T, Spangenberg JE, Pinto‐Figueroa E, et al. What are the most crucial soil variables for predicting the distribution of mountain plant species? A comprehensive study in the Swiss Alps. J Biogeogr. 2020;47:1143–53.
    Article  Google Scholar 

    48.
    Bouët M. Climat et météorologie de la Suisse romande. Lausanne: Payot edn; 1985.
    Google Scholar 

    49.
    Zingg B. Modélisation de la réserve hydrique des sols dans les Alpes vaudoises méridionales. Master thesis. Lausanne, Switzerland: University of Lausanne; 2015.
    Google Scholar 

    50.
    Swisstopo. Geological map of Switzerland. 2019.

    51.
    Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol Model. 2002;157:331–41.
    Article  Google Scholar 

    52.
    Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Østerås M, et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods. 2009;79:266–71.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    53.
    Yashiro E, Pinto-Figueroa E, Buri A, Spangenberg JE, Adatte T, Niculita-Hirzel H, et al. Meta-scale mountain grassland observatories uncover commonalities as well as specific interactions among plant and non-rhizosphere soil bacterial communities. Sci Rep. 2018;8:5758.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    54.
    Edgar RC. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics. 2018;34:2371–5.
    CAS  PubMed  Article  Google Scholar 

    55.
    Myers EW, Miller W. Optimal alignments in linear space. Bioinformatics. 1988;4:11–17.
    CAS  Article  Google Scholar 

    56.
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.
    CAS  Article  Google Scholar 

    57.
    Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
    CAS  Article  Google Scholar 

    58.
    McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    59.
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    60.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    61.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    62.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22.
    CAS  Article  Google Scholar 

    63.
    Dubuis A, Giovanettina S, Pellissier L, Pottier J, Vittoz P, Guisan A. Improving the prediction of plant species distribution and community composition by adding edaphic to topo-climatic variables. J Veg Sci. 2013;24:593–606.
    Article  Google Scholar 

    64.
    Zubler EM, Fischer AM, Liniger MA, Croci-Maspoli M, Scherrer SC, Appenzeller C. Localized climate change scenarios of mean temperature and precipitation over Switzerland. Clim Change. 2014;125:237–52.
    Article  Google Scholar 

    65.
    Buri A. Above- and belowground biogeography: spatial modelling of a hidden system. PhD thesis. Lausanne: University of Lausanne; 2019.
    Google Scholar 

    66.
    Guisan A, Theurillat J-P. Assessing alpine plant vulnerability to climate change: a modeling perspective. Integr Assess. 2000;1:307–20.
    Article  Google Scholar 

    67.
    Wood SN. Generalized additive models: an introduction with R. Boca Raton, USA: Chapman and Hall/CRC; 2017.

    68.
    Greenwell B, Boehmke B, Cunningham J, Developers G. gbm: Generalized boosted regression models, 2.1.5. edn. 2019.

    69.
    Ver Hoef JM, Boveng PL. Quasi-Poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology. 2007;88:2766–72.
    PubMed  Article  Google Scholar 

    70.
    Hartig F. DHARMa: residual diagnostics for hierarchical (Multi-Level/Mixed) regression models. R package, 0.2.4 edn. 2019.

    71.
    Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat. 2001;29:1189–232.
    Article  Google Scholar 

    72.
    Scherrer D, D’Amen M, Fernandes RF, Mateo RG, Guisan A. How to best threshold and validate stacked species assemblages? Community optimisation might hold the answer. Methods Ecol Evol. 2018;9:2155–66.
    Article  Google Scholar 

    73.
    Evans JD. Straightforward statistics for the behavioral sciences. Pacific Grove, USA: Thomson Brooks/Cole Publishing Co; 1996.

    74.
    Elith J, Ferrier S, Huettmann F, Leathwick J. The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model. 2005;186:280–9.
    Article  Google Scholar 

    75.
    Bradie J, Leung B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J Biogeogr. 2017;44:1344–61.
    Article  Google Scholar 

    76.
    Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat Clim Change. 2015;5:215.
    Article  Google Scholar 

    77.
    Fierer N, Schimel JP, Holden PA. Influence of drying–rewetting frequency on soil bacterial community structure. Micro Ecol. 2003;45:63–71.
    CAS  Article  Google Scholar 

    78.
    Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4:1340.
    Article  Google Scholar 

    79.
    Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol. 2009;75:5111–20.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    80.
    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.
    PubMed  Article  PubMed Central  Google Scholar 

    81.
    Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr. Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology. 2012;93:1867–79.
    PubMed  Article  PubMed Central  Google Scholar 

    82.
    Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett. 2010;13:1310–24.
    PubMed  Article  PubMed Central  Google Scholar 

    83.
    Pearman PB, Guisan A, Broennimann O, Randin CF. Niche dynamics in space and time. Trends Ecol Evol. 2008;23:149–58.
    PubMed  Article  PubMed Central  Google Scholar 

    84.
    Bååth E, Anderson TH. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem. 2003;35:955–63.
    Article  CAS  Google Scholar 

    85.
    Nottingham AT, Baath E, Reischke S, Salinas N, Meir P. Adaptation of soil microbial growth to temperature: using a tropical elevation gradient to predict future changes. Glob Change Biol. 2019;25:827–38.
    Article  Google Scholar 

    86.
    Li L, Xu M, Eyakub Ali M, Zhang W, Duan Y, Li D. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE. 2018;13:e0203812.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    87.
    Eilers KG, Debenport S, Anderson S, Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem. 2012;50:58–65.
    CAS  Article  Google Scholar 

    88.
    Galloway JN. Acid deposition: perspectives in time and space. Water Air Soil Pollut. 1995;85:15–24.
    CAS  Article  Google Scholar 

    89.
    Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10:024019.
    Article  CAS  Google Scholar 

    90.
    Falkengren-Grerup U, Brink D-Jt, Brunet J. Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils. For Ecol Manage. 2006;225:74–81.
    Article  Google Scholar 

    91.
    Saby NPA, Arrouays D, Antoni V, Lemercier B, Follain S, Walter C, et al. Changes in soil organic carbon in a mountainous French region, 1990–2004. Soil Use Manage. 2008;24:254–62.
    Article  Google Scholar 

    92.
    Cianfrani C, Buri A, Verrecchia E, Guisan A. Generalizing soil properties in geographic space: approaches used and ways forward. PLoS ONE. 2018;13:e0208823.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    93.
    Ren B, Hu Y, Chen B, Zhang Y, Thiele J, Shi R, et al. Soil pH and plant diversity shape soil bacterial community structure in the active layer across the latitudinal gradients in continuous permafrost region of Northeastern China. Sci Rep. 2018;8:5619.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    94.
    Lembrechts JJ, Nijs I, Lenoir J. Incorporating microclimate into species distribution models. Ecography. 2019;42:1267–79.
    Article  Google Scholar 

    95.
    Schink B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek. 2002;81:257–61.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    96.
    Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci U S A. 2015;112:7033–8.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    97.
    Schröder B. Challenges of species distribution modeling belowground. J Plant Nutr Soil Sci. 2008;171:325–37.
    Article  CAS  Google Scholar 

    98.
    Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci U S A. 2012;109:21390–5.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    99.
    Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dormann CF, Early R, et al. Standards for distribution models in biodiversity assessments. Sci Adv. 2019;5:eaat4858.
    PubMed  PubMed Central  Article  Google Scholar 

    100.
    Pinto-Figueroa EA, Seddon E, Yashiro E, Buri A, Niculita-Hirzel H, van der Meer JR, et al. Archaeorhizomycetes spatial distribution in soils along wide elevational and environmental gradients reveal co-abundance patterns with other fungal saprobes and potential weathering capacities. Front Microbiol. 2019;10:656.
    PubMed  PubMed Central  Article  Google Scholar 

    101.
    Smith AB, Godsoe W, Rodriguez-Sanchez F, Wang HH, Warren D. Niche estimation above and below the species level. Trends Ecol Evol. 2019;34:260–73.
    PubMed  Article  PubMed Central  Google Scholar 

    102.
    Hadly EA, Spaeth PA, Li C. Niche conservatism above the species level. Proc Natl Acad Sci U S A. 2009;106 Suppl 2:19707–14.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    103.
    Peterson AT. Ecological niche conservatism: a time-structured review of evidence. J Biogeogr. 2011;38:817–27.
    Article  Google Scholar 

    104.
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N, et al. is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
    PubMed  Article  CAS  PubMed Central  Google Scholar 

    105.
    Gardner W, Mulvey EP, Shaw EC. Regression analyses of counts and rates: Poisson, overdispersed Poisson, and negative binomial models. Psychol Bull. 1995;118:392–404.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    106.
    Guisan A, Lehmann A, Ferrier S, Austin M, Overton JMC, Aspinall R, et al. Making better biogeographical predictions of species’ distributions. J Appl Ecol. 2006;43:386–92.
    Article  Google Scholar 

    107.
    Elith J, Graham CH. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. Ecography. 2009;32:66–77.
    Article  Google Scholar 

    108.
    Sites JW, Marshall JC. Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol. 2003;18:462–70.
    Article  Google Scholar 

    109.
    Ward DM. A macrobiological perspective on microbial species. Microbe. 2006;1:269.
    Google Scholar 

    110.
    Ward DM, Cohan FM, Bhaya D, Heidelberg JF, Kühl M, Grossman A. Genomics, environmental genomics and the issue of microbial species. Heredity. 2008;100:207–19.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    111.
    Vandermeer J. Niche theory. Annu Rev Ecol Syst. 1972;3:107–32.
    Article  Google Scholar 

    112.
    Koeppel A, Perry EB, Sikorski J, Krizanc D, Warner A, Ward DM, et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc Natl Acad Sci U S A. 2008;105:2504–9.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    113.
    Song H-K, Shi Y, Yang T, Chu H, He J-S, Kim H, et al. Environmental filtering of bacterial functional diversity along an aridity gradient. Sci Rep. 2019;9:866.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    114.
    Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.
    CAS  PubMed  Article  PubMed Central  Google Scholar 

    115.
    Lenoir J, Svenning J-C. Climate-related range shifts—a global multidimensional synthesis and new research directions. Ecography. 2015;38:15–28.
    Article  Google Scholar 

    116.
    Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–85.
    CAS  PubMed  Article  PubMed Central  Google Scholar  More

  • in

    Fungi and insects compensate for lost vertebrate seed predation in an experimentally defaunated tropical forest

    1.
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 
    2.
    Harrison, R. D. et al. Impacts of hunting on tropical forests in Southeast Asia. Conserv. Biol. 30, 972–981 (2016).
    PubMed  Article  PubMed Central  Google Scholar 

    3.
    Brodie, J. F. & Aslan, C. E. Halting regime shifts in floristically intact tropical forests deprived of their frugivores. Restor. Ecol. 20, 153–157 (2012).
    Article  Google Scholar 

    4.
    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    5.
    Gardner, C. J., Bicknell, J. E., Baldwin-Cantello, W., Struebig, M. J. & Davies, Z. G. Quantifying the impacts of defaunation on natural forest regeneration in a global meta-analysis. Nat. Commun. 10, 1–7 (2019).
    Article  CAS  Google Scholar 

    6.
    Osuri, A. M. et al. Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nat. Commun. 7, 11351 (2016).
    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

    7.
    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl Acad. Sci. USA 113, 892–897 (2016).
    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

    8.
    Dantas de Paula, M. et al. Defaunation impacts on seed survival and its effect on the biomass of future tropical forests. Oikos 127, 1526–1538 (2018).
    Article  Google Scholar 

    9.
    Chanthorn, W. et al. Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast Asia. Sci. Rep. 9, 1–9 (2019).
    CAS  Article  Google Scholar 

    10.
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).
    PubMed  PubMed Central  Article  Google Scholar 

    11.
    Song, X., Lim, J. Y., Yang, J. & Luskin, M. S. When do Janzen–Connell effects matter? A phylogenetic meta‐analysis of conspecific negative distance and density dependence experiments. Ecol. Lett. https://doi.org/10.1111/ele.13665 (2020).
    Article  PubMed  Google Scholar 

    12.
    Muller-Landau, H. C. Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39, 372–384 (2007).
    Article  Google Scholar 

    13.
    Asquith, N. M., Wright, S. J. & Clauss, M. J. Does mammal community composition control recruitment in neotropical forests? Evidence from Panama. Ecology 78, 941–946 (1997).
    Article  Google Scholar 

    14.
    DeMattia, E. A., Curran, L. M. & Rathcke, B. J. Effects of small rodents and large mammals on neotropical seeds. Ecology 85, 2161–2170 (2004).
    Article  Google Scholar 

    15.
    Paine, C. E. T., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree community structure. Ecology 97, 3326–3336 (2016).
    PubMed  Article  Google Scholar 

    16.
    Wirth, R., Meyer, S. T., Leal, I. R. & Tabarelli, M. Plant herbivore interactions at the forest edge. in Progress in Botany (eds. Lüttge, U., Beyschlag, W. & Murata, J.). 69, 423–448 (Springer, Berlin, Heidelberg, 2008).

    17.
    Paine, C. E. T. & Beck, H. Seed predation by Neotropical rain forest mammals increases diversity in seedling recruitment. Ecology 88, 3076–3087 (2007).
    PubMed  Article  Google Scholar 

    18.
    Jia, S. et al. Global signal of top-down control of terrestrial plant communities by herbivores. Proc. Natl Acad. Sci. USA 115, 6237–6242 (2018).
    CAS  PubMed  Article  Google Scholar 

    19.
    Wright, S. J. & Duber, H. C. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyraceae, with implications for tropical tree diversity. Biotropica 33, 583–595 (2001).
    Article  Google Scholar 

    20.
    Dracxler, C. M., Pires, A. S. & Fernandez, F. A. S. Invertebrate seed predators are not all the same: Seed predation by bruchine and scolytine beetles affects palm recruitment in different ways. Biotropica 43, 8–11 (2011).
    Article  Google Scholar 

    21.
    Sarmiento, C. et al. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proc. Natl Acad. Sci. 114, 11458–11463 (2017).
    CAS  PubMed  Article  Google Scholar 

    22.
    Kluger, C. G. et al. Host generalists dominate fungal communities associated with seeds of four Neotropical pioneer species. J. Trop. Ecol. 24, 351–354 (2008).
    Article  Google Scholar 

    23.
    Velho, N., Isvaran, K. & Datta, A. Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees. Oecologia 169, 995–1004 (2012).
    ADS  PubMed  Article  Google Scholar 

    24.
    Curran, L. M. & Webb, C. O. Experimental tests of the spatiotemporal scale of seed predation in mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 129–148 (2000).
    Article  Google Scholar 

    25.
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).
    Article  Google Scholar 

    26.
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dyn. Popul 298, 312 (1971).
    Google Scholar 

    27.
    Levi, T. et al. Tropical forests can maintain hyperdiversity because of enemies. PNAS 116, 581–586 (2019).
    CAS  PubMed  Article  Google Scholar 

    28.
    Terborgh, J. Enemies maintain hyperdiverse tropical forests. Am. Nat. 179, 303–314 (2012).
    PubMed  Article  Google Scholar 

    29.
    Nathan, R. & Casagrandi, R. A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond. J. Ecol. 92, 733–746 (2004).
    Article  Google Scholar 

    30.
    Owen-Smith, R. N. Megaherbivores: The influence of very large body size on ecology. (Cambridge University Press, 1988).

    31.
    Kurten, E. L. Cascading effects of contemporaneous defaunation on tropical forest communities. Biol. Conserv. 163, 22–32 (2013).
    Article  Google Scholar 

    32.
    Mendoza, E. & Dirzo, R. Seed-size variation determines interspecific differential predation by mammals in a Neotropical rain forest. Oikos 116, 1841–1852 (2007).
    Article  Google Scholar 

    33.
    Wright, S. J. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspect. Plant Ecol. Evol. Syst. 6, 73–86 (2003).
    Article  Google Scholar 

    34.
    Casula, P., Wilby, A. & Thomas, M. B. Understanding biodiversity effects on prey in multi-enemy systems. Ecol. Lett. 9, 995–1004 (2006).
    PubMed  Article  PubMed Central  Google Scholar 

    35.
    Wright, S. J. et al. Poachers alter mammal abundance, seed dispersal, and seed predation in a Neotropical forest. Conserv. Biol. 14, 227–239 (2000).
    Article  Google Scholar 

    36.
    Beckman, N. G. & Muller-landau, H. C. Differential effects of hunting on pre-dispersal seed predation and primary and secondary seed removal of two Neotropical tree species. Biotropica 39, 328–339 (2007).
    Article  Google Scholar 

    37.
    Harrison, R. D. et al. Consequences of defaunation for a tropical tree community. Ecol. Lett. 16, 687–694 (2013).
    PubMed  Article  PubMed Central  Google Scholar 

    38.
    Galetti, M., Bovendorp, R. S. & Guevara, R. Defaunation of large mammals leads to an increase in seed predation in the Atlantic forests. Glob. Ecol. Conserv 3, 824–830 (2015).
    Article  Google Scholar 

    39.
    Culot, L., Bello, C., Batista, J. L. F., do Couto, H. T. Z. & Galetti, M. Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Sci. Rep. 7, 1–8 (2017).
    CAS  Article  Google Scholar 

    40.
    Rosin, C. & Poulsen, J. R. Hunting-induced defaunation drives increased seed predation and decreased seedling establishment of commercially important tree species in an Afrotropical forest. Ecol. Manag. 382, 206–213 (2016).
    Article  Google Scholar 

    41.
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
    CAS  PubMed  Article  Google Scholar 

    42.
    Terborgh, J. Using Janzen-Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol. Conserv. 163, 7–12 (2013).
    Article  Google Scholar 

    43.
    Brodie, J. F., Helmy, O. E., Brockelman, W. Y. & Maron, J. L. Bushmeat poaching reduces the seed dispersal and population growth rate of a mammal-dispersed tree. Ecol. Appl. 19, 854–863 (2009).
    PubMed  Article  PubMed Central  Google Scholar 

    44.
    Dylewski, L., Ortega, Y. K., Bogdziewicz, M. & Pearson, D. E. Seed size predicts global effects of small mammal seed predation on plant recruitment. Ecol. Lett. 23, 1024–1033 (2020).
    PubMed  Article  PubMed Central  Google Scholar 

    45.
    Bodmer, R. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica 23, 255–261 (1991).
    Article  Google Scholar 

    46.
    Galetti, M. et al. Defaunation affect population and diet of rodents in Neotropical rainforests. Biol. Conserv. 190, 2–7 (2015).
    Article  Google Scholar 

    47.
    Dirzo, R., Mendoza, E. & Ortíz, P. Size-related differential seed predation in a heavily defaunated neotropical rain forest. Biotropica 39, 355–362 (2007).
    Article  Google Scholar 

    48.
    Luskin, M. S. et al. Cross-boundary subsidy cascades from oil palm degrade distant tropical forests. Nat. Commun. 8, 1–8 (2017).
    Article  CAS  Google Scholar 

    49.
    Vázquez-Yanes, C. & Orozco-Segovia, A. Patterns of seed longevity and germination in the tropical rainforest. Annu. Rev. Ecol. Syst. 24, 69–87 (1993).
    Article  Google Scholar 

    50.
    Hulme, P. E. Post-dispersal seed predation and seed bank persistence. Seed Sci. Res. 8, 513–519 (1998).
    ADS  Article  Google Scholar 

    51.
    Franco, M. & Silvertown, J. A comparative demography of plants based upon elasticities of vital rates. Ecology 85, 531–538 (2004).
    Article  Google Scholar 

    52.
    Howe, H. F. & Miriti, M. N. When seed dispersal matters. Bioscience 54, 651–660 (2004).
    Article  Google Scholar 

    53.
    Cannon, P. G., O’Brien, M. J., Yusah, K. M., Edwards, D. P. & Freckleton, R. P. Limited contributions of plant pathogens to density-dependent seedling mortality of mast fruiting Bornean trees. Ecol. Evol. 10, 13154–13164 (2020).
    PubMed  PubMed Central  Article  Google Scholar 

    54.
    Lamperty, T., Zhu, K., Poulsen, J. R. & Dunham, A. E. Defaunation of large mammals alters understory vegetation and functional importance of invertebrates in an Afrotropical forest. Biol. Conserv. 241, 10829 (2020).
    Article  Google Scholar 

    55.
    Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 1–7 (2015).
    Article  CAS  Google Scholar 

    56.
    Peguero, G., Muller-Landau, H. C., Jansen, P. A. & Wright, S. J. Cascading effects of defaunation on the coexistence of two specialized insect seed predators. J. Anim. Ecol. 86, 136–146 (2017).
    PubMed  Article  Google Scholar 

    57.
    Marsh, C. W. & Greer, A. G. Forest land-use in Sabah, Malaysia: an introduction to danum valley. Philos. Trans. R. Soc. B Biol. Sci. 335, 331–339 (1992).
    ADS  Article  Google Scholar 

    58.
    Dial, R., Bloodworth, B., Lee, A., Boyne, P. & Heys, J. The distribution of free space and its relation to canopy composition at six forest sites. Science 50, 312–325 (2004).
    Google Scholar 

    59.
    Sakai, S. General flowering in lowland mixed dipterocarp forests of South-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).
    Article  Google Scholar 

    60.
    Blate, G. M., Peart, D. R. & Leighton, M. Post-dispersal predation on isolated seeds: a comparative study of 40 tree species in a Southeast Asian rainforest. Oikos 82, 522–538 (1998).
    Article  Google Scholar 

    61.
    Wong, S. T. E., Servheen, C., Ambu, L. & Norhayati, A. Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. J. Trop. Ecol. 21, 627–639 (2005).
    Article  Google Scholar 

    62.
    Curran, L. M. & Leighton, M. Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecol. Monogr. 70, 101–128 (2000).
    Article  Google Scholar 

    63.
    Corlett, R. T. Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: an update. Glob. Ecol. Conserv. 11, 1–22 (2017).
    Article  Google Scholar 

    64.
    Fern, K. Tropical Plants Database. (2014). Available at: tropical.theferns.info. (Accessed: 4th June 2020)

    65.
    O’Brien, M. J., Philipson, C. D., Tay, J. & Hector, A. The influence of variable rainfall frequency on germination and early growth of shade-tolerant dipterocarp seedlings in Borneo. PLoS ONE 8, e70287 (2013).
    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

    66.
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 

    67.
    Sowa, S., Roos, E. E. & Zee, F. Anesthetic storage of recalcitrant seed: nitrous oxide prolongs longevity of lychee and longan. HortScience 26, 597–599 (1991).
    CAS  Article  Google Scholar 

    68.
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Article  Google Scholar 

    69.
    R Core Team. R: A language and environment for statistical computing. (2018).

    70.
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biometrical J. 50, 346–363 (2008).
    MathSciNet  MATH  Article  Google Scholar  More

  • in

    Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome

    1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci. 2013;110:3229–36.
    CAS  PubMed  Article  Google Scholar 
    2.
    Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    3.
    Feldhaar H, Gross R. Insects as hosts for mutualistic bacteria. Int J Med Microbiol. 2009;299:1–8.
    PubMed  Article  Google Scholar 

    4.
    Hosokawa T, Ishii Y, Nikoh N, Fujie M, Satoh N, Fukatsu T. Obligate bacterial mutualists evolving from environmental bacteria in natural insect populations. Nat Microbiol. 2016;1:15011.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    5.
    de Bekker C, Merrow M, Hughes DP. From behavior to mechanisms: an integrative approach to the manipulation by a parasitic fungus (Ophiocordyceps unilateralis s.l.) of its host ants (Camponotus spp.). Integr Comp Biol. 2014;54:166–76.
    PubMed  Article  Google Scholar 

    6.
    Koskella B, Meaden S, Crowther WJ, Leimu R, Metcalf CJE. A signature of tree health? Shifts in the microbiome and the ecological drivers of horse chestnut bleeding canker disease. N. Phytol. 2017;215:737–46.
    CAS  Article  Google Scholar 

    7.
    Smee MR, Baltrus DA, Hendry TA. Entomopathogenicity to two Hemipteran insects is common but variable across epiphytic Pseudomonas syringae strains. Front Plant Sci. 2017;8:2149.
    PubMed  PubMed Central  Article  Google Scholar 

    8.
    Oliver KM, Degnan PH, Burke GR, Moran NA. Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol. 2010;55:247–66.
    CAS  PubMed  Article  Google Scholar 

    9.
    McLean AH. Cascading effects of defensive endosymbionts. Curr Opin Insect Sci. 2019;32:42–46.
    PubMed  Article  Google Scholar 

    10.
    Adair KL, Douglas AE. Making a microbiome: the many determinants of host-associated microbial community composition. Curr Opin Microbiol. 2017;35:23–29.
    PubMed  Article  Google Scholar 

    11.
    Wedin M, Maier S, Fernandez-Brime S, Cronholm B, Westberg M, Grube M. Microbiome change by symbiotic invasion in lichens. Environ Microbiol. 2015;18:1428–39.
    PubMed  Article  CAS  Google Scholar 

    12.
    King KC, Brockhurst MA, Vasieva O, Paterson S, Betts A, Ford SA, et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 2016;10:1915–24.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    13.
    Ford SA, Williams D, Paterson S, King KC. Co-evolutionary dynamics between a defensive microbe and a pathogen driven by fluctuating selection. Mol Ecol. 2017;26:1778–89.
    CAS  PubMed  Article  Google Scholar 

    14.
    Weldon SR, Russell JA, Oliver KM. More is not always better: coinfections with defensive symbionts generate highly variable outcomes. Appl Environ Microbiol. 2020;86:e02537-19.
    CAS  PubMed  PubMed Central  Google Scholar 

    15.
    Bongrand C, Ruby EG. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J 2019;13:698-706.
    PubMed  Article  Google Scholar 

    16.
    Doremus MR, Oliver KM. Aphid heritable symbiont exploits defensive mutualism. Appl Environ Microbiol. 2017;83:e03276–16.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    17.
    McLean AHC, Parker BJ, Hrček J, Kavanagh JC, Wellham PAD, Godfray HCJ. Consequences of symbiont co-infections for insect host phenotypes. J Anim Ecol 2018;87:478-488.
    PubMed  Article  Google Scholar 

    18.
    Oliver KM, Moran NA, Hunter MS. Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc B-Biol Sci. 2006;273:1273–80.
    Article  Google Scholar 

    19.
    Greenblum S, Carr R, Borenstein E. Extensive strain-level copy-number variation across human gut microbiome species. Cell. 2015;160:583–94.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    20.
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded human microbiome project. Nature. 2017;550:61–66.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    21.
    Des Roches S, Post DM, Turley NE, Bailey JK, Hendry AP, Kinnison MT, et al. The ecological importance of intraspecific variation. Nat Ecol Evol. 2018;2:57–64.
    PubMed  Article  Google Scholar 

    22.
    Barbour MA, Fortuna MA, Bascompte J, Nicholson JR, Julkunen-Tiitto R, Jules ES, et al. Genetic specificity of a plant–insect food web: implications for linking genetic variation to network complexity. Proc Natl Acad Sci. 2016;113:2128–33.
    CAS  PubMed  Article  Google Scholar 

    23.
    Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett. 2019;22:233–44.
    PubMed  Article  Google Scholar 

    24.
    Koskella B, Bergelson J. The study of host–microbiome (co)evolution across levels of selection. Philos Trans R Soc B Biol Sci. 2020;375:20190604.
    Article  Google Scholar 

    25.
    Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. Annu Rev Ecol Evol Syst. 2020;51:587–612.
    Article  Google Scholar 

    26.
    Ferrari J, West JA, Via S, Godfray HCJ. Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution. 2012;66:375–90.
    PubMed  Article  Google Scholar 

    27.
    Henry LM, Peccoud J, Simon J-C, Hadfield JD, Maiden MJC, Ferrari J, et al. Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol. 2013;23:1713–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    28.
    Reuter M, Keller L. High levels of multiple Wolbachia infection and recombination in the ant Formica exsecta. Mol Biol Evol. 2003;20:748–53.
    CAS  PubMed  Article  Google Scholar 

    29.
    Gauthier J-P, Outreman Y, Mieuzet L, Simon J-C. Bacterial communities associated with host-adapted populations of pea aphids revealed by deep sequencing of 16S ribosomal DNA. PloS One. 2015;10:e0120664.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    30.
    Douglas AE. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43:17–37.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    31.
    Douglas AE. The nutritional physiology of aphids. Advances in Insect Physiology. Oxford, UK: Academic Press; 2003. pp 73–140.

    32.
    Zytynska SE, Weisser WW. The natural occurrence of secondary bacterial symbionts in aphids. Ecol Entomol. 2016;41:13–26.
    Article  Google Scholar 

    33.
    Smith AH, Łukasik P, O’Connor MP, Lee A, Mayo G, Drott MT, et al. Patterns, causes, and consequences of defensive microbiome dynamics across multiple scales. Mol Ecol. 2015;24:1135–49.
    PubMed  Article  Google Scholar 

    34.
    Oliver KM, Russell JA, Moran NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA. 2003;100:1803–7.
    CAS  PubMed  Article  Google Scholar 

    35.
    Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. Science. 2005;310:1781–1781.
    CAS  PubMed  Article  Google Scholar 

    36.
    Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol. 2002;27:189–95.
    Article  Google Scholar 

    37.
    Hrček J, McLean AHC, Godfray HCJ. Symbionts modify interactions between insects and natural enemies in the field. J Anim Ecol. 2016;85:1605–12.
    PubMed  PubMed Central  Article  Google Scholar 

    38.
    Rock DI, Smith AH, Joffe J, Albertus A, Wong N, O’Connor M, et al. Context-dependent vertical transmission shapes strong endosymbiont community structure in the pea aphid, Acyrthosiphon pisum. Mol Ecol. 2018;27:2039–56.
    PubMed  Article  PubMed Central  Google Scholar 

    39.
    Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71:3302–10.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    40.
    Manzano-Marín A, Szabó G, Simon J-C, Horn M, Latorre A. Happens in the best of subfamilies: establishment and repeated replacements of co-obligate secondary endosymbionts within Lachninae aphids. Environ Microbiol. 2017;19:393–408.
    PubMed  Article  CAS  Google Scholar 

    41.
    Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ. Insect life history and the evolution of bacterial mutualism. Ecol Lett. 2015;18:516–25.
    PubMed  Article  Google Scholar 

    42.
    Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA. 2005;102:12795–12800.
    CAS  PubMed  Article  Google Scholar 

    43.
    Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science. 2009;325:992–4.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    44.
    Degnan PH, Moran NA. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol. 2008;17:916–29.
    CAS  PubMed  Article  Google Scholar 

    45.
    Chevignon G, Boyd BM, Brandt JW, Oliver KM, Strand MR. Culture-facilitated comparative genomics of the facultative symbiont Hamiltonella defensa. Genome Biol Evol. 2018;10:786–802.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Heyworth ER, Ferrari J. A facultative endosymbiont in aphids can provide diverse ecological benefits. J Evol Biol. 2015;28:1753–60.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    47.
    Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA. 2005;102:16919–26.
    CAS  PubMed  Article  Google Scholar 

    48.
    Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1–7.
    PubMed  Article  Google Scholar 

    49.
    Martinez AJ, Doremus MR, Kraft LJ, Kim KL, Oliver KM. Multi-modal defences in aphids offer redundant protection and increased costs likely impeding a protective mutualism. J Anim Ecol. 2018;87:464–77.
    PubMed  Article  Google Scholar 

    50.
    Łukasik P, van Asch M, Guo H, Ferrari J, Charles J, Godfray H. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett. 2013;16:214–8.
    PubMed  Article  Google Scholar 

    51.
    Parker BJ, Hrček J, McLean AHC, Godfray HCJ. Genotype specificity among hosts, pathogens, and beneficial microbes influences the strength of symbiont-mediated protection. Evolution. 2017;71:1222–31.
    PubMed  PubMed Central  Article  Google Scholar 

    52.
    Vorburger C. The evolutionary ecology of symbiont-conferred resistance to parasitoids in aphids. Insect Sci. 2014;21:251–64.
    PubMed  Google Scholar 

    53.
    Ferrari J, Via S, Godfray HCJ. Population differentiation and genetic variation in performance on eight hosts in the pea aphid complex. Evolution. 2008;62:2508–24.
    PubMed  Article  Google Scholar 

    54.
    McLean AHC, van Asch M, Ferrari J, Godfray HCJ. Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B-Biol Sci. 2011;278:760–6.
    CAS  Article  Google Scholar 

    55.
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

    56.
    Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
    Article  Google Scholar 

    57.
    Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, et al. Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol. 2013;22:2045–59.
    PubMed  Article  Google Scholar 

    58.
    Jayakar SD. A mathematical model for interaction of gene frequencies in a parasite and its host. Theor Popul Biol. 1970;1:140–64.
    CAS  PubMed  Article  Google Scholar 

    59.
    Tellier A, Brown JKM. Stability of genetic polymorphism in host–parasite interactions. Proc R Soc B Biol Sci. 2007;274:809–17.
    Article  Google Scholar 

    60.
    Eren AM, Sogin ML, Morrison HG, Vineis JH, Fisher JC, Newton RJ, et al. A single genus in the gut microbiome reflects host preference and specificity. ISME J. 2015;9:90–100.
    CAS  PubMed  Article  Google Scholar 

    61.
    Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M, et al. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME J. 2013;7:615–21.
    CAS  PubMed  Article  Google Scholar 

    62.
    Parker BJ, McLean AHC, Hrček J, Gerardo NM, Godfray HCJ. Establishment and maintenance of aphid endosymbionts after horizontal transfer is dependent on host genotype. Biol Lett. 2017;13:20170016.
    PubMed  PubMed Central  Article  Google Scholar 

    63.
    Nyabuga FN, Outreman Y, Simon J-C, Heckel DG, Weisser WW. Effects of pea aphid secondary endosymbionts on aphid resistance and development of the aphid parasitoid Aphidius ervi: a correlative study. Entomol Exp Appl. 2010;136:243–53.
    Google Scholar 

    64.
    Leclair M, Polin S, Jousseaume T, Simon J-C, Sugio A, Morlière S, et al. Consequences of coinfection with protective symbionts on the host phenotype and symbiont titres in the pea aphid system. Insect Sci. 2016;24:798–808.
    PubMed  Article  Google Scholar 

    65.
    Zhao D, Hoffmann AA, Zhang Z, Niu H, Guo H. Interactions between facultative symbionts Hamiltonella and Cardinium in Bemisia tabaci (Hemiptera: Aleyrodoidea): cooperation or conflict? J Econ Entomol. 2018;111:2660-2666.
    PubMed  Article  CAS  Google Scholar 

    66.
    Vorburger C, Gehrer L, Rodriguez P. A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett. 2010;6:109–11.
    PubMed  Article  Google Scholar 

    67.
    McLean AHC, Godfray HCJ. Evidence for specificity in symbiont-conferred protection against parasitoids. Proc R Soc B. 2015;282:20150977.
    Article  Google Scholar 

    68.
    Patel V, Chevignon G, Manzano-Marín A, Brandt JW, Strand MR, Russell JA, et al. Cultivation-assisted genome of Candidatus Fukatsuia symbiotica; the enigmatic ‘X-type’ symbiont of aphids. Genome Biol Evol. 2019;11:3510-3522.
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Rouchet R, Vorburger C. Strong specificity in the interaction between parasitoids and symbiont-protected hosts. J Evol Biol. 2012;25:2369–75.
    PubMed  Article  Google Scholar 

    70.
    Sanders D, Kehoe R, Veen FF, van, McLean A, Godfray HCJ, Dicke M, et al. Defensive insect symbiont leads to cascading extinctions and community collapse. Ecol Lett. 2016;19:789–99.
    PubMed  PubMed Central  Article  Google Scholar  More

  • in

    Wild whale faecal samples as a proxy of anthropogenic impact

    Fin and sperm whales residing or circulating in the Mediterranean Sea are exposed to biological and chemical hazard due to the increasing anthropogenic impact. In particular, most of the coastal areas bordering with the Sanctuary is heavily populated and full of commercial, touristic and military ports and industrial areas. As a consequence, a range of diverse human activities exerts several actual and potential threats to cetacean populations in the Sanctuary, including habitat degradation, urban, tourist, industrial, and agricultural development, intense maritime traffic, military exercises and oil and gas exploration, just to mention the most important ones.
    This study provides background information on the occurrence and concentration of parasites and bacterial infections/communities as well a first investigation of heavy metals and organic pollutants in faecal samples from fin and sperm whale Mediterranean subpopulations within the Pelagos Sanctuary.
    Here, a modified MINI-FLOTAC technique in combination with FILL-FLOTAC were used for parasitological detection of the cysts in the faecal samples of fin and sperm whales. Although this technique has never been used before for whale faecal samples, it has successfully been used in previous coprological surveys for the detection of gastrointestinal parasites in other marine animals as the loggerhead sea turtles (Caretta caretta)23,24. The MINI-FLOTAC can be considered as one of the most accurate methods for coprological diagnosis of endoparasite infections and cysts/eggs counting nowadays available in veterinary medicine25. It allowed an accurate and reliable detection of Blastocystis cysts in both fin and sperm faecal samples. Molecular analysis, sequencing and phylogenetic analysis confirmed the obtained results.
    Blastocystis is a common intestinal protozoan parasite reported in several animals, e.g., humans, livestock, dogs, amphibians, reptiles, birds and even insects26,27,28. Although it possesses pathogenic potential, its virulence mechanisms in humans are still not well understood29. Blastocystis seems to be linked to Irritable Bowel Syndrome, i.e., a functional disorder mainly consisting in chronic or recurrent abdominal pain due to altered intestinal habits30. Studying the small subunit ribosomal RNA (SSU-rDNA) gene, several authors identified at least 22 different Blastocystis subtypes (ST) in a variety of animals, humans included, i.e., from ST1 to ST17, ST21, and ST23 to ST26 (Ref.26). To date, human Blastocystis isolates are classified into 10 ST (i.e., ST1-ST9 and ST12) that, with the only exception of ST9, have been identified also in other animals31. According to Parkar et al.32, Blastocystis has the potential to spread through human-to-human, animal-to-human, and human-to-animal contact.
    Few similar parasitological investigations have been conducted in the past and are currently available in the literature. Hermosilla et al.33 detected three protozoan parasites (i.e., Giardia sp., Balantidium sp., Entamoeba sp.) and helminth parasites in individual faecal samples from wild fin (n. 10), sperm (n. 4), blue (Balaenoptera musculus; n. 2) and sei (Balaenoptera borealis; n. 1) Atlantic whale subpopulations from the Azores Islands, Portugal. Protozoan parasites (Giardia sp., Balantidium sp., Cistoisospora-like indet.) and helminth parasites were also found in individual faecal samples of wild sperm whales inhabiting Mediterranean Sea waters surrounding the Balearic Archipelago, Spain34. Out of these, three of herein detected parasites clearly bear anthropozoonotic potential, i.e., Anisakis, Balantidium and Giardia34.
    In the present work, Blastocystis has been found in fin and sperm whale samples and, to the best of our knowledge, this is the first time that this protozoan genus is reported for any cetacean species. Therefore, this finding represents the first new host record for fin and sperm whales. Blastocystis ST3 was the only subtype found in fin and sperm whales. Molecular studies in human samples showed the occurrence of ST1–ST9, with ST3 as the most prevalent subtype35,36. Indeed, ST3 is the Blastocystis subtype with the highest prevalence in humans worldwide and probably represents the human species-specific ST (Ref.37). Consequently, animals harbouring ST3 may thus mirror environmental contamination by humans, confirming the zoonotic potential of animals for Blastocystis human infections. Unlike33,34, no eggs of helminths were found in our faecal samples.
    Variations in parasites composition and prevalence might be related to several factors such as dietary differences, the parasite life cycle, the availability of hosts necessary to complete their life cycle, the interactions between parasite species, the host immune response, and the host population density23. Moreover, parasites can also spread in different way in animal populations in the wild, particularly when they act together with ecological, biological, and anthropogenic factors38.
    The occurrence in whales of parasites with a zoonotic potential like Giardia or Balantidium, most probably due to coastal waters contaminated by sewage, agricultural and urban run-off, has been already reported elsewhere39,40,41,42,43. Furthermore, human excretions from increasing number of pleasure boats, fishing and whale watching boats could be an additional form of contamination. Finally, the intense maritime traffic in the Mediterranean Sea, the percentage of which is higher than in other oceans44, represents another source of contamination. In all cases, results highlight that human activities play an important role for the widespread of these pathogens.
    No bacterial pathogen of human or terrestrial animal origin has been detected both by targeted PCR and by Illumina high throughput sequencing. This difference could be due to the lower survival rate of bacteria in the sea environment, compared to protozoan parasites45.
    Previous works reported the occurrence of human pathogens in stranded common minke whale (Balaenoptera acutorostrata) from Philippines46 and killer whale respiratory microbiome in North Pacific47. Although the relatively low number of samples cannot exclude potential risk of transmission of human and zoonotic pathogenic bacteria to cetaceans in the surveyed area, our results suggest to focus on microbiological analyses to track potential internal waterborne pathogens to the ones able to form cysts (like parasites) or other forms of resistance (like spore-forming bacteria) that are more likely to survive for longer period in the seawater.
    The dominance of Bacterioidetes and Firmicutes (common with other terrestrial mammals), the baleen-specific higher number of Spirochaetes and the lower of Proteobacteria characterized both species, as also reported elsewhere21. Moreover, differences of some taxa related with the diverse diet were confirmed: in the case of sperm whale, whose nutrition is based on cephalopods, a higher proportion of Synergistetes was observed in faecal samples, whereas faecal samples from fin whales had a higher level of Spirochaetes compared those from sperm whales. These findings are in agreement with Erwin et al.13. The Synergistetes phylum includes gram negative, anaerobic, rod-shaped bacteria, widely distributed in terrestrial and aquatic environments, including host-associated with mammals48. Within this phylum, Synergistaceae family and Pyramidobacter genus OTUs were particularly dominant among sperm whale microbiome (Fig. 4). However, no correlation with potential pathogenicity could be drawn from the presence of these specific OTUs, considering their ubiquity in oral and gut mucosa of marine and terrestrial animals, despite some of the genus belonging to Synergistaceae family (e.g. Cloacibacillus spp.) are considered opportunistic pathogens49. About potential health implication of Spirochaetes, similar conclusion than for Synergistetes could be drawn: Treponema sp., found as dominant genus in fin whales, were found in healthy baleen whales by Sanders et al.21 so as among more dynamical OTU in stranded right whales50Sphaerochaeta spp. associated with healthy cetacean monitored oral cavity microbiome14. Moreover, fin whale faeces also showed a higher proportion of taxa that are also enriched in terrestrial herbivores, like Lentisphaere, Verrucomicrobia, Actinobacteria and Tenericutes, as also reported elsewhere21. Although differences in species sampled and habitats compared to previous studies, we found confirmation of both species and diet-influenced gut microbiota composition. Notably Akkermansia (one of the dominant Verrucomicrobia OTUs) and Coriobacteriaceae (dominant family among Actinobacteria phylum) includes typical holobiont of terrestrial and marine mammals, but also some pathobiont, so far confirmed only for humans51. Due to the wide distribution of some of Synergistetes and Spirochaetes phyla, it is not possible to establish if their presence could be ascribed exclusively to an anthropogenic impact; however, it is worth of interest that some of the genus found in both whale species and belonging to these phyla include opportunistic pathogens whose virulence for marine mammals still need to be confirmed. Interestingly, some archaeal sequences related to the Thermoplasmatales order were also found. This confirms what already reported by Sanders et al.21, i.e., that archaea belonging to this order may have a role as methane producer from methylated amines in baleen gut, differently from methanogenic archaea belonging to other orders that typically colonize the gut of terrestrial mammals, including humans.
    Therefore, the two sampled species harboured typical gut microbiome belonging to fin whale and sperm whale groups. These data extend the spectrum of surveyed whales gut microbiome to previously unsampled species and confirms that NGS analyses could be a useful tool to retrieve information on the health status of wild whales.
    While the concentration of 16 U.S. EPA priority PAHs and of 29 PCBs, being always  More

  • in

    Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates

    1.
    Sakschewski B, von Bloh W, Boit A, Poorter L, Peña-Claros M, Heinke J, et al. Resilience of Amazon forests emerges from plant trait diversity. Nat Clim Change. 2016;6:1032–6.
    Article  Google Scholar 
    2.
    Gruber N, Galloway JN. An Earth-system perspective of the global nitrogen cycle. Nature. 2008;451:293–6.
    CAS  PubMed  Article  Google Scholar 

    3.
    Kicklighter DW, Melillo JM, Monier E, Sokolov AP, Zhuang Q. Future nitrogen availability and its effect on carbon sequestration in Northern Eurasia. Nat Commun. 2019;10:1–19.
    CAS  Article  Google Scholar 

    4.
    Liu L, Greaver TL. A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol Lett. 2010;13:819–28.
    PubMed  Article  Google Scholar 

    5.
    Maaroufi NI, Nordin A, Hasselquist NJ, Bach LH, Palmqvist K, Gundale MJ. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils. Glob Chang. Glob Change Biol. 2015;21:3169–80.
    Article  Google Scholar 

    6.
    Lu M, Zhou X, Luo Y, Yang Y, Fang C, Chen J, et al. Minor stimulation of soil carbon storage by nitrogen addition: a meta-analysis. Agr Ecosyst Environ. 2011;140:234–44.
    CAS  Article  Google Scholar 

    7.
    Chen J, Luo Y, van Groenigen KJ, Hungate BA, Cao J, Zhou X, et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci Adv. 2018;4:q1689.
    Article  CAS  Google Scholar 

    8.
    Cusack DF, Torn MS, Mcdowell WH, Silver WL. The response of heterotrophic activity and carbon cycling to nitrogen additions and warming in two tropical soils. Glob Change Biol. 2010;16:2555–72.
    Google Scholar 

    9.
    Zhang J, Balkovic J, Azevedo LB, Skalsky R, Bouwman AF, Xu G, et al. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China. Sci Total Environ. 2018;627:361–72.
    CAS  PubMed  Article  Google Scholar 

    10.
    Bending GD, Putland C, Rayns F. Changes in microbial community metabolism and labile organic matter fractions as early indicators of the impact of management on soil biological quality. Biol Fertil Soils. 2000;31:78–84.
    CAS  Article  Google Scholar 

    11.
    Kallenbach CM, Frey SD, Grandy AS. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat Commun. 2016;7:13630.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    12.
    Leinweber P, Jandl G, Baum C, Eckhardt K, Kandeler E. Stability and composition of soil organic matter control respiration and soil enzyme activities. Soil Biol Biochem. 2008;40:1496–505.
    CAS  Article  Google Scholar 

    13.
    Roth V, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat Geosci. 2019;12:755–61.
    CAS  Article  Google Scholar 

    14.
    Kallenbach CM, Grandy AS, Frey SD, Diefendorf AF. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol Biochem. 2015;91:279–90.
    CAS  Article  Google Scholar 

    15.
    Chen L, Liu L, Qin S, Yang G, Fang K, Zhu B, et al. Regulation of priming effect by soil organic matter stability over a broad geographic scale. Nat Commun. 2019;10:5112.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    16.
    Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, et al. Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry. 2009;96:209–31.
    CAS  Article  Google Scholar 

    17.
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.
    CAS  PubMed  Article  Google Scholar 

    18.
    Ding X, Chen S, Zhang B, Liang C, He H, Horwath WR. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol Biochem. 2019;135:13–9.
    CAS  Article  Google Scholar 

    19.
    Ni X, Liao S, Tan S, Peng Y, Wang D, Yue K, et al. The vertical distribution and control of microbial necromass carbon in forest soils. Glob Ecol Biogeogr. 2020;29:1829–39.
    Article  Google Scholar 

    20.
    Shao P, Lynch L, Xie H, Bao X, Liang C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol Biochem. 2021;153:108112.
    CAS  Article  Google Scholar 

    21.
    Ma T, Zhu S, Wang Z, Chen D, Dai G, Feng B, et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat Commun. 2018;9:3480.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    22.
    Malik AA, Puissant J, Buckeridge KM, Goodall T, Jehmlich N, Chowdhury S, et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat Commun. 2018;9:3591.
    PubMed  PubMed Central  Article  CAS  Google Scholar 

    23.
    Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007;73:5111–7.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    24.
    Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community responses to multiple experimental climate change drivers. Appl Environ Microbiol. 2010;76:999–1007.
    CAS  PubMed  Article  Google Scholar 

    25.
    Rinnan R, MichelsenI A, Bååth E, Jonasson S. Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem. Glob Change Biol. 2007;13:28–39.
    Article  Google Scholar 

    26.
    Liang Y, Xiao X, Nuccio EE, Yuan M, Zhang N, Xue K, et al. Differentiation strategies of soil rare and abundant microbial taxa in response to changing climatic regimes. Environ Microbiol. 2020;22:1327–40.
    CAS  PubMed  Article  Google Scholar 

    27.
    Wang M, Ding J, Sun B, Zhang J, Wyckoff KN, Yue H, et al. Microbial responses to inorganic nutrient amendment overridden by warming: consequences on soil carbon stability. Environ Microbiol. 2018;20:2509–22.
    CAS  PubMed  Article  Google Scholar 

    28.
    Zhao M, Xue K, Wang F, Liu S, Bai S, Sun B, et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J. 2014;8:2045–55.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    29.
    Liang Y, Jiang Y, Wang F, Wen C, Deng Y, Xue K, et al. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME J. 2015;9:2561–72.
    PubMed  PubMed Central  Article  Google Scholar 

    30.
    Sun B, Wang F, Jiang Y, Li Y, Dong Z, Li Z, et al. A long-term field experiment of soil transplantation demonstrating the role of contemporary geographic separation in shaping soil microbial community structure. Ecol Evol. 2014;4:1073–87.
    PubMed  PubMed Central  Article  Google Scholar 

    31.
    Fernandez I, Álvarez-González JG, Carrasco B, Ruíz-González AD, Cabaneiro A. Post-thinning soil organic matter evolution and soil CO2 effluxes in temperate radiata pine plantations: impacts of moderate thinning regimes on the forest C cycle. Can J Res. 2012;42:1953–64.
    CAS  Article  Google Scholar 

    32.
    Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry. 1992;16:1–42.
    CAS  Article  Google Scholar 

    33.
    Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature. 2005;433:53–7.
    CAS  PubMed  Article  Google Scholar 

    34.
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N, et al. is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.
    PubMed  Article  CAS  Google Scholar 

    35.
    Li H, Bi Q, Yang K, Zheng B, Pu Q, Cui L. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell raman spectroscopy. Anal Chem. 2019;91:2239–46.
    CAS  PubMed  Article  Google Scholar 

    36.
    Cui L, Butler HJ, Martin-Hirsch PL, Martin FL. Aluminium foil as a potential substrate for ATR-FTIR, transflection FTIR or Raman spectrochemical analysis of biological specimens. Anal Methods. 2016;8:481–7.
    CAS  Article  Google Scholar 

    37.
    Bååth E, Pettersson M, Söderberg KH. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol Biochem. 2001;33:1571–4.
    Article  Google Scholar 

    38.
    Trivedi P, Delgado-Baquerizo M, Trivedi C, Hu H, Anderson IC, Jeffries TC, et al. Microbial regulation of the soil carbon cycle: evidence from gene-enzyme relationships. ISME J. 2016;10:2593–604.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    39.
    Zhang X, Amelung W. Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biol Biochem. 1996;28:1201–6.
    CAS  Article  Google Scholar 

    40.
    Schermelleh-Engel K, Moosbrugger H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychological Res Online. 2003;8:23–74.
    Google Scholar 

    41.
    Clarke KR. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 1993;18:117–43.
    Article  Google Scholar 

    42.
    Kruskal JB. Nonmetric multidimensional scaling: a numerical method. Psychometrika. 1964;29:115–29.
    Article  Google Scholar 

    43.
    Legendre P, Legendre L. Numerical Ecology, 3rd English Edition. Oxford, UK: Elsevier; 2012.

    44.
    Liaw A, Wiener M. Classification and regression by randomForest. R N. 2002;2:18–22.
    Google Scholar 

    45.
    Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8:e1002606.
    CAS  PubMed  PubMed Central  Article  Google Scholar 

    46.
    Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat Microbiol. 2019;4:1183–95.
    CAS  PubMed  Article  Google Scholar 

    47.
    Crowther TW, Todd-Brown KEO, Rowe CW, Wieder WR, Carey JC, Machmuller MB, et al. Quantifying global soil carbon losses in response to warming. Nature. 2016;540:104–8.
    CAS  PubMed  Article  Google Scholar 

    48.
    Hicks Pries CE, Castanha C, Porras RC, Torn MS. The whole-soil carbon flux in response to warming. Science. 2017;355:1420–3.
    CAS  PubMed  Article  Google Scholar 

    49.
    Peñuelas J, Ciais P, Canadell JG, Janssens IA, Fernández-Martínez M, Carnicer J, et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat Ecol Evol. 2017;1:1438–45.
    PubMed  Article  Google Scholar 

    50.
    Sokol NW, Bradford MA. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat Geosci. 2019;12:46–53.
    CAS  Article  Google Scholar 

    51.
    Trumbore SE, Chadwick OA, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science. 1996;272:393–6.
    CAS  Article  Google Scholar 

    52.
    Liang C, Cheng G, Wixon DL, Balser TC. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry. 2011;106:303–9.
    Article  Google Scholar 

    53.
    Liang C, Amelung W, Lehmann J, Kästner M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob Change Biol. 2019;00:1–13.
    Google Scholar 

    54.
    Tian J, Zong N, Hartley IP. Microbial metabolic response to winter warming stabilizes soil carbon. Glob Change Biol. 2021;00:1–18.
    Google Scholar 

    55.
    Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature. 2005;433:53–7.
    CAS  PubMed  Article  Google Scholar 

    56.
    Ding X, Chen S, Zhang B, He H, Filley TR, Horwath WR. Warming yields distinct accumulation patterns of microbial residues in dry and wet alpine grasslands on the Qinghai-Tibetan Plateau. Biol Fertil Soils. 2020;56:881–92.
    CAS  Article  Google Scholar 

    57.
    Jia J, Feng X, He J, He H, Lin L, Liu Z. Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland. Soil Biol Biochem. 2017;104:141–51.
    CAS  Article  Google Scholar 

    58.
    Zhou X, Chen C, Wang Y, Xu Z, Duan J, Hao Y, et al. Soil extractable carbon and nitrogen, microbial biomass and microbial metabolic activity in response to warming and increased precipitation in a semiarid Inner Mongolian grassland. Geoderma. 2013;206:24–31.
    CAS  Article  Google Scholar 

    59.
    Chen J, Ji C, Fang J, He H, Zhu B. Dynamics of microbial residues control the responses of mineral-associated soil organic carbon to N addition in two temperate forests. Sci Total Environ. 2020;748:141318.
    CAS  PubMed  Article  Google Scholar 

    60.
    Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277–80.
    CAS  PubMed  Article  Google Scholar 

    61.
    Wang C, Wang X, Pei G, Xia Z, Peng B, Sun L, et al. Stabilization of microbial residues in soil organic matter after two years of decomposition. Soil Biol Biochem. 2020;141:107687.
    CAS  Article  Google Scholar 

    62.
    Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Change. 2011;2:106–10.
    Article  CAS  Google Scholar 

    63.
    Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Change Biol. 2014;20:2356–67.
    Article  Google Scholar 

    64.
    Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biol Biochem. 2011;43:86–96.
    CAS  Article  Google Scholar 

    65.
    Jones DL, Nguyen C, Finlay RD. Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil. 2009;321:5–33.
    CAS  Article  Google Scholar 

    66.
    Zang H, Wang J, Kuzyakov Y. N fertilization decreases soil organic matter decomposition in the rhizosphere. Appl Soil Ecol. 2016;108:47–53.
    Article  Google Scholar 

    67.
    Mason-Jones K, Schmücker N, Kuzyakov Y. Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming. Soil Biol Biochem. 2018;124:38–46.
    CAS  Article  Google Scholar 

    68.
    Carreiro MM, Sinsabaugh RL, Repert DA, Parkhurst DF. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition. Ecology. 2000;81:2359–65.
    Article  Google Scholar 

    69.
    Sinsabaugh RL, Hill BH, Follstad Shah JJ. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature. 2009;462:795–98.
    CAS  PubMed  Article  Google Scholar 

    70.
    Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem. 2013;58:216–34.
    CAS  Article  Google Scholar 

    71.
    Tian D, Niu S. A global analysis of soil acidification caused by nitrogen addition. Environ Res Lett. 2015;10:24019.
    Article  CAS  Google Scholar 

    72.
    Zhou Z, Wang C, Zheng M, Jiang L, Luo Y. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biol Biochem. 2017;115:433–41.
    CAS  Article  Google Scholar  More

  • in

    Vulnerabilities of protected lands in the face of climate and human footprint changes

    Spatial map of Chinese protected areas
    The database of protected areas (PA) distribution in China and a digitized spatial map thereof were compiled from Zhao et al.40 and Zhang et al.41. In total, we obtained the information of 2622 protected areas in China, which also included marine reserves. In order to evaluate the representation of terrestrial protected areas, we excluded marine reserves from our analyses. We also excluded Taiwan because we did not have the spatial distribution data for nature reserves in Taiwan. Finally, we had the boundary information of 2572 protected areas covering about 15.2% land area in China.
    Species’ range maps
    Range maps of threatened vertebrates (birds, mammals, amphibians and reptiles) were obtained from the IUCN’s Red List42. Distribution data of threatened plants were compiled from Flora of China, Atlas of woody plants in China, provincial and local floras, checklists of nature reserves, various inventory reports across China and peer-reviewed papers. We obtained the information for critically endangered (CR), endangered (EN) and vulnerable (VU) species. The conservation status of vertebrates was obtained from IUCN Red List42, while that of plants was obtained from Qin et al.43. In total, we obtained the distribution information of 103 birds, 86 mammals, 134 amphibians, 50 reptiles, and 2983 plants in China (see Supplementary Data 1). We estimated the number of species in each PA by overlaying the map of PA with the species’ range maps in ArcGIS 10.2 (ESRI, Redlands, CA). In order to validate the distribution of species, we further verified the presence of species in respective PA by checking their inventory reports.
    Human footprint data
    In order to measure the extent of human pressure on the protected areas, we obtained the most comprehensive global map of human pressure i.e., human footprint (HFP) from https://wcshumanfootprint.org. The human footprint measures the cumulative impact of direct pressures on environment from human activities and is based on data from built environments, agricultural lands, pasture lands, human population density, night-time lights, railways, roads and navigable waterways44. It is one of the most complete and finest terrestrial datasets on cumulative human pressure on the environment. The human footprint maps of two time periods (1993 and 2009) are available at present. We downloaded the maps of both time periods at the spatial resolution of 1 km × 1 km to quantify the change in human pressure within Chinese protected areas over a 16-year period. It should, however, be noted that any point estimate of the change in HFP might include errors due to the resolution and reliability of the component layers. For example, one of the components of HFP is the night-time lights, which changed over time from incandescent to mercury vapor to light emitting diode. This means that the change in night light is due to more than development. As a result, the systemic bias in regional economy could likely cause low HFP in wealthy as compared to rural areas. While this issue does not invalidate our analyses, such comparisons should be applied with caution.
    Climate data
    In order to represent the climatic conditions of the past and the present, we obtained 20 years climate data comprising monthly minimum temperature, monthly maximum temperature and monthly precipitation for two time periods (past: 1961–1970 and present: 2010–2019). We used 10 years window for each time period to capture the variability in climatic conditions in order to prevent over- or underestimation of the past and present climate. In total, we obtained 12 months × 10 years × 3 variables × 2 time periods = 720 global raster layers from the Climate Research Unit (CRU TS v. 4.04) database (http://www.cru.uea.ac.uk/data) at the spatial resolution of 0.5° × 0.5°45. We then calculated the monthly mean values for the three variables for each time period separately. From these monthly mean values, we estimated mean annual temperature (MAT), mean temperature of warmest quarter (MTWQ), mean temperature of coldest quarter (MTCQ), mean annual precipitation (MAP), precipitation of driest quarter (PDQ) and precipitation of wettest quarter (PWQ) for each time period using biovars function in the R package ‘dismo’46. We then estimated the average value of climate variables in each PA using zonal.stats function in the R package ‘spatialEco’47. In order to reduce dimensionality and collinearity of the 6 climate variables, we performed principal component analysis (PCA) using prcomp function in R v4.0.248. Following Carroll et al.37, we used climate data for both past and present based on the first 2 PCA axes, which explained 89.4–89.8 % of the variance (Supplementary Tables 1-2). Additionally, we also estimated the change in mean annual temperature to identify PAs that have experienced climate warming higher than the Paris Agreement threshold of 1.5 °C. All the analyses were performed in R version 4.0.248.
    Vulnerability mapping
    We calculated three indices of vulnerability within each protected area: (i) species vulnerability, (ii) anthropogenic vulnerability, and (iii) climate vulnerability. In order to measure species vulnerability, we first assigned numerical value to each IUCN threat category using a geometric progression49,50. We gave scores of 2, 4, and 8 to species belonging to categories VU, EN, and CR, respectively. We, then, summed the score of all species in each PA and standardized the value to the range of 0–1 using minimum–maximum normalization. We performed these steps separately for birds, mammals, amphibians, reptiles and plants to calculate the vulnerability score of each group. We also calculated the cumulative score by combining the total scores of all five groups. Values close to 0 indicated low species vulnerability and values close to 1 indicated high species vulnerability. Although species diversity is highly correlated with the species vulnerability metric used herein (Pearson’s correlation coefficient = 0.94 − 0.99, p  More