More stories

  • in

    Ecosystem response persists after a prolonged marine heatwave

    1.Overland, J., Rodionov, S., Minobe, S. & Bond, N. North Pacific regime shifts: definitions, issues and recent transitions. Prog. Oceanogr. 77, 92–102. https://doi.org/10.1016/j.pocean.2008.03.016 (2008).ADS 
    Article 

    Google Scholar 
    2.Chavez, F. P., Ryan, J., Lluch-Cota, S. E. & Niquen, M. From anchovies to sardines and back: multidecadal change in the Pacific Ocean. Science 299, 217–221 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Beaugrand, G. et al. Synchronous marine pelagic regime shifts in the Northern Hemisphere. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130272. https://doi.org/10.1098/rstb.2013.0272 (2015).Article 

    Google Scholar 
    4.Anderson, P. J. & Piatt, J. F. Community reorganization in the Gulf of Alaska following ocean climate regime shift. Mar. Ecol. Prog. Ser. 189, 117–123 (1999).ADS 
    Article 

    Google Scholar 
    5.Hare, S. R. & Mantua, N. J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr. 47, 103–145. https://doi.org/10.1016/S0079-6611(00)00033-1 (2000).ADS 
    Article 

    Google Scholar 
    6.Litzow, M. A. Climate regime shifts and community reorganization in the Gulf of Alaska: how do recent shifts compare with 1976/1977?. ICES J. Mar. Sci. 63, 1386–1396 (2006).Article 

    Google Scholar 
    7.Hatch, S. A. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar. Ecol. Prog. Ser. 477, 271–284. https://doi.org/10.3354/meps10161 (2013).ADS 
    Article 

    Google Scholar 
    8.Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteor. Soc. 78, 1069–1080 (1997).ADS 
    Article 

    Google Scholar 
    9.Cane, M. A. & Zebiak, S. E. A theory for El-Nino and the Southern oscillation. Science 228, 1085–1087 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Di Lorenzo, E. et al. North Pacific Gyre oscillation links ocean climate and ecosystem change. Geophys. Res. Lett. 35, 6. https://doi.org/10.1029/2007GL032838 (2008).Article 

    Google Scholar 
    11.Bond, N. A., Overland, J. E., Spillane, M. & Stabeno, P. Recent shifts in the state of the North Pacific. Geophys. Res. Lett. 30, 1–3. https://doi.org/10.1029/2003GL018597 (2003).Article 

    Google Scholar 
    12.Litzow, M. A. et al. Non-stationary climate–salmon relationships in the Gulf of Alaska. Proc. R. Soc. B Biol. Sci. 285, 20181855. https://doi.org/10.1098/rspb.2018.1855 (2018).Article 

    Google Scholar 
    13.Litzow, M. A. et al. The changing physical and ecological meanings of North Pacific Ocean climate indices. Proc. Natl. Acad. Sci. 117, 7665–7671. https://doi.org/10.1073/pnas.1921266117 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Peterson, W. T. & Schwing, F. B. A new climate regime in northeast Pacific ecosystems. Geophys. Res. Lett. 30, 1896 (2003).ADS 
    Article 

    Google Scholar 
    15.Litzow, M. A. & Mueter, F. J. Assessing the ecological importance of climate regime shifts: An approach from the North Pacific Ocean. Prog. Oceanogr. 120, 110–119. https://doi.org/10.1016/j.pocean.2013.08.003 (2014).ADS 
    Article 

    Google Scholar 
    16.Puerta, P., Ciannelli, L., Rykaczewski, R., Opiekun, M. & Litzow, M. A. Do Gulf of Alaska fish and crustacean populations show synchronous non-stationary responses to climate?. Prog. Oceanogr. 175, 161–170. https://doi.org/10.1016/j.pocean.2019.04.002 (2019).ADS 
    Article 

    Google Scholar 
    17.IPCC. Summary for policymakers. In: IPCC special report on the ocean and cryosphere in a changing climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. Accessed on 11/5/2019. Accessed on 11/5/2019. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf, 2019.18.Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Hobday, A. et al. Categorizing and naming marine heatwaves. Oceanography 31, 162–173. https://doi.org/10.5670/oceanog.2018.205 (2018).Article 

    Google Scholar 
    20.Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS 
    Article 

    Google Scholar 
    21.Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).ADS 
    Article 

    Google Scholar 
    22.Jackson, J. M., Johnson, G. C., Dosser, H. V. & Ross, T. Warming from recent marine heatwave lingers in deep british columbia fjord. Geophys. Res. Lett. 45, 9757–9764. https://doi.org/10.1029/2018GL078971 (2018).ADS 
    Article 

    Google Scholar 
    23.Cornwall, W. A new ‘Blob’ menaces Pacific ecosystems. Science 365, 1233–1233. https://doi.org/10.1126/science.365.6459.1233 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific ocean. Ecology 99, 2397–2399. https://doi.org/10.1002/ecy.2429 (2018).Article 
    PubMed 

    Google Scholar 
    25.Batten, S. D. et al. Interannual variability in lower trophic levels on the Alaskan Shelf. Deep Sea Res. Part II 147, 58–68. https://doi.org/10.1016/j.dsr2.2017.04.023 (2018).Article 

    Google Scholar 
    26.Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212. https://doi.org/10.3389/fmars.2019.00212 (2019).Article 

    Google Scholar 
    27.Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, eaau7042, doi:https://doi.org/10.1126/sciadv.aau7042 (2019).28.Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS ONE 15, e0226087. https://doi.org/10.1371/journal.pone.0226087 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Wade, N. M. et al. Effects of an unprecedented summer heatwave on the growth performance, flesh colour and plasma biochemistry of marine cage-farmed Atlantic salmon (Salmo salar). J. Therm. Biol 80, 64–74. https://doi.org/10.1016/j.jtherbio.2018.12.021 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Peterson, C. H. et al. Long-term ecosystem response to the exxon valdez oil spill. Science 302, 2082–2086 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Esler, D. et al. Timelines and mechanisms of wildlife population recovery following the Exxon Valdez oil spill. Deep Sea Res. Part II 147, 36–42. https://doi.org/10.1016/j.dsr2.2017.04.007 (2018).Article 

    Google Scholar 
    32.Danielson, S. L. et al. A study of marine temperature variations in the northern Gulf of Alaska across years of marine heatwaves and cold spells. Deep Sea Research Part II: Topical Studies in Oceanography (In prep).33.Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol., in press. https://doi.org/10.1111/gcb.15556 (2021).34.von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the Pacific marine heatwave of 2014–2016. Mar. Ecol. Progress Ser. 613, 171–182 (2019).35.Sydeman, W. J. et al. Puffins reveal contrasting relationships between forage fish and ocean climate in the North Pacific. Fish. Oceanogr. 26, 379–395. https://doi.org/10.1111/fog.12204 (2017).Article 

    Google Scholar 
    36.Savage, K. 2018 Alaska Region marine mammal stranding summary. 14 (Protected Resources Division, National Marine Fisheries Service, Alaska Region, Juneau, Alaska 99802, 2019).37.Barbeaux, S. J., Holsman, K. & Zador, S. Marine heatwave stress test of ecosystem-based fisheries management in the Gulf of Alaska pacific cod fishery. Front. Mar. Sci. 7, 703. https://doi.org/10.3389/fmars.2020.00703 (2020).Article 

    Google Scholar 
    38.Fisher, J. L., Peterson, W. T. & Rykaczewski, R. R. The impact of El Niño events on the pelagic food chain in the northern California Current. Glob. Change Biol. 21, 4401–4414. https://doi.org/10.1111/gcb.13054 (2015).ADS 
    Article 

    Google Scholar 
    39.McKinstry, C. A. E. & Campbell, R. W. Seasonal variation of zooplankton abundance and community structure in Prince William Sound, Alaska, 2009–2016. Deep Sea Res. Part II 147, 69–78. https://doi.org/10.1016/j.dsr2.2017.08.016 (2018).Article 

    Google Scholar 
    40.Santora, J. A. et al. Spatial ecology of krill, micronekton and top predators in the central California current: implications for defining ecologically important areas. Prog. Oceanogr. 106, 154–174 (2012).ADS 
    Article 

    Google Scholar 
    41.Blake, R. E., Ward, C. L., Hunsicker, M. E., Shelton, A. O. & Hollowed, A. B. Spatial community structure of groundfish is conserved across the Gulf of Alaska. Mar. Ecol. Prog. Ser. 626, 145–160 (2019).ADS 
    Article 

    Google Scholar 
    42.McGowan, D. W., Horne, J. K. & Rogers, L. A. Effects of temperature on the distribution and density of capelin in the Gulf of Alaska. Mar. Ecol. Prog. Ser. 620, 119–138 (2019).ADS 
    Article 

    Google Scholar 
    43.Watson, J. T. & Haynie, A. C. Paths to resilience: Alaska pollock fleet uses multiple fishing strategies to buffer against environmental change in the Bering Sea. Can. J. Fish. Aquat. Sci. 75, 1977–1989. https://doi.org/10.1139/cjfas-2017-0315 (2018).Article 

    Google Scholar 
    44.Beaudreau, A. H. et al. Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and diversification in response to environmental, regulatory and economic pressures. Fish Fish. 20, 601–619. https://doi.org/10.1111/faf.12364 (2019).Article 

    Google Scholar 
    45.Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 160 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, 2018).46.Laurel, B. J. & Rogers, L. A. Loss of spawning habitat and prerecruits of Pacific cod during a Gulf of Alaska heatwave. Can. J. Fish. Aquat. Sci. 77, 644–650. https://doi.org/10.1139/cjfas-2019-0238 (2020).Article 

    Google Scholar 
    47.Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453. https://doi.org/10.1111/fog.12422 (2019).Article 

    Google Scholar 
    48.Fissel, B. et al. Stock assessment and fishery evaluation report for the groundfish fisheries of the Gulf Of Alaska and Bering Sea/Aleutian Islands area: Economic status of the groundfish fisheries off Alaska, 2017. 385 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2019).49.Kasperski, S. & Holland, D. S. Income diversification and risk for fishermen. Proc. Natl. Acad. Sci. 110, 2076–2081. https://doi.org/10.1073/pnas.1212278110 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    50.Scyphers, S. B., Picou, J. S. & Grabowski, J. H. Chronic social disruption following a systemic fishery failure. Proc. Natl. Acad. Sci. 116, 22912–22914. https://doi.org/10.1073/pnas.1913914116 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Curnock, M. I. et al. Shifts in tourists’ sentiments and climate risk perceptions following mass coral bleaching of the Great Barrier Reef. Nat. Clim. Change 9, 535–541. https://doi.org/10.1038/s41558-019-0504-y (2019).ADS 
    Article 

    Google Scholar 
    52.Caputi, N. et al. Factors affecting the recovery of invertebrate stocks from the 2011 Western Australian extreme marine heatwave. Front. Mar. Sci. 6, 484. https://doi.org/10.3389/fmars.2019.0048 (2019).Article 

    Google Scholar 
    53.Chandrapavan, A., Caputi, N. & Kangas, M. I. The decline and recovery of a crab population from an extreme marine heatwave and a changing climate. Front. Mar. Sci. 6, 510. https://doi.org/10.3389/fmars.2019.00510 (2019).Article 

    Google Scholar 
    54.Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteor. Soc. 99, S39–S43. https://doi.org/10.1175/BAMS-D-17-0118.1 (2018).Article 

    Google Scholar 
    55.Sewall, F., Norcross, B., Vollenweider, J. & Heintz, R. Growth, energy storage, and feeding patterns reveal winter mortality risks for juvenile Pacific herring in Prince William Sound, Alaska, USA. Mar. Ecol. Prog. Ser. 623, 195–208 (2019).ADS 
    Article 

    Google Scholar 
    56.Toresen, R., Skjoldal, H. R., Vikebø, F. & Martinussen, M. B. Sudden change in long-term ocean climate fluctuations corresponds with ecosystem alterations and reduced recruitment in Norwegian spring-spawning herring (Clupea harengus, Clupeidae). Fish Fish. 20, 686–696. https://doi.org/10.1111/faf.12369 (2019).Article 

    Google Scholar 
    57.Duffy-Anderson, J. T. et al. Responses of the northern bering sea and southeastern bering sea pelagic ecosystems following record-breaking low winter sea ice. Geophys. Res. Lett. 46, 9833–9842. https://doi.org/10.1029/2019gl083396 (2019).ADS 
    Article 

    Google Scholar 
    58.Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411. https://doi.org/10.3389/fmars.2019.00411 (2019).Article 

    Google Scholar 
    59.Jacox, M., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. Predicting the evolution of the 2014–16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497. https://doi.org/10.3389/fmars.2019.00497 (2019).Article 

    Google Scholar 
    60.Francis, R. C., Hare, S. R., Hollowed, A. B. & Wooster, W. S. Effects of interdecadal climate variability on the oceanic ecosystems of the NE Pacific. Fish. Oceanogr. 7, 1–21 (1998).Article 

    Google Scholar 
    61.Rogers, L. A. & Dougherty, A. B. Effects of climate and demography on reproductive phenology of a harvested marine fish population. Glob. Change Biol. 25, 708–720. https://doi.org/10.1111/gcb.14483 (2019).ADS 
    Article 

    Google Scholar 
    62.Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Prog. Oceanogr. Accepted (2021).63.Hughes, B. B. et al. Long-term studies contribute disproportionately to ecology and policy. Bioscience 67, 271–281. https://doi.org/10.1093/biosci/biw185 (2017).Article 

    Google Scholar 
    64.Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13. https://doi.org/10.1186/s41200-019-0171-8 (2019).Article 

    Google Scholar 
    65.Vander Naald, B. P., Sergeant, C. J. & Beaudreau, A. H. Public perception and valuation of long-term ecological monitoring. Ecosphere 10, e02875. https://doi.org/10.1002/ecs2.2875 (2019).Article 

    Google Scholar 
    66.Hollowed, A. B. et al. Recent advances in understanding the effects of climate change on the world’s oceans. ICES J. Mar. Sci. 76, 1215–1220. https://doi.org/10.1093/icesjms/fsz084 (2019).Article 

    Google Scholar 
    67.R: A language and environment for statistical computing. (R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/, 2020).68.Zuur, A. F., Fryer, R. J., Jolliffe, I. T., Dekker, R. & Beukema, J. J. Estimating common trends in multivariate time series using dynamic factor analysis. Environmetrics 14, 665–685. https://doi.org/10.1002/env.611 (2003).Article 

    Google Scholar 
    69.Holmes, E., Ward, E., Scheuerell, M. & Wills, L. MARSS: multivariate autoregressive state-space modeling (Northwest Fisheries Science Center NOAA, Seattle, WA, 2018).
    Google Scholar 
    70.Holmes, E. E., Ward, E. J. & Scheuerell, M. D. Analysis of multivariate time-series using the MARSS package, v3.10.10. 284 (Northwest Fisheries Science Center, NOAA, Seattle, WA, USA, 2018).71.Zuur, A. F., Tuck, I. D. & Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 60, 542–552. https://doi.org/10.1139/f03-030 (2003).Article 

    Google Scholar 
    72.Clarke, K. R. & Gorley, R. N. Getting started with PRIMER v7 (PRIMER-E ltd, Plymouth, 2015).
    Google Scholar 
    73.Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: an approach to statistical analysis and interpretation (PRIMER-E ltd, Plymouth, 2014).
    Google Scholar 
    74.Clarke, K. R., Somerfield, P. J. & Gorley, R. N. Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366, 56–69. https://doi.org/10.1016/j.jembe.2008.07.009 (2008).Article 

    Google Scholar 
    75.Strom, S. L., Fredrickson, K. A. & Bright, K. J. Spring phytoplankton in the eastern coastal Gulf of Alaska: photosynthesis and production during high and low bloom years. Deep Sea Res. Part II 132, 107–121. https://doi.org/10.1016/j.dsr2.2015.05.003 (2016).CAS 
    Article 

    Google Scholar 
    76.Strom, S. L., Fredrickson, K. A. & Bright, K. J. Microzooplankton in the coastal Gulf of Alaska: Regional, seasonal and interannual variations. Deep Sea Res. Part II 165, 192–202. https://doi.org/10.1016/j.dsr2.2018.07.012 (2019).Article 

    Google Scholar 
    77.Mackas, D. L. Interannual variability of the zooplankton community off southern Vancouver Island. Can. Sp. Publ. Fish. Aquat. Sci. 121, 603–615 (1995).
    Google Scholar 
    78.Kimmel, D. G. & Duffy-Anderson, J. T. Zooplankton abundance trends and patterns in Shelikof Strait, western Gulf of Alaska, USA, 1990–2017. J. Plankton Res. 42, 334–354. https://doi.org/10.1093/plankt/fbaa019 (2020).Article 

    Google Scholar 
    79.Richardson, A. J. et al. Using continuous plankton recorder data. Prog. Oceanogr. 68, 27–74. https://doi.org/10.1016/j.pocean.2005.09.011 (2006).ADS 
    Article 

    Google Scholar 
    80.Von Szalay, P. G. & Raring, N. W. Data Report: 2017 Gulf of Alaska bottom trawl survey. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-374, 260 p., (2018).81.Matarese, A. C., Blood, D.M., Picquelle, S. J. & J.L., B. Vol. NOAA Prof. Paper NMFS 1, 281 p. 281 (NOAA Professional Paper NMFS 1, 2003).82.Weitzman, B. et al. Changes in rocky intertidal community structure during a marine heatwave in the northern Gulf of Alaska. Front. Mar. Sci., 8. https://www.frontiersin.org/articles/10.3389/fmars.2021.556820/full (2021).83.Bodkin, J. L. et al. Variation in abundance of Pacific Blue Mussel (Mytilus trossulus) in the Northern Gulf of Alaska, 2006–2015. Deep Sea Res. Part II 147, 87–97. https://doi.org/10.1016/j.dsr2.2017.04.008 (2018).Article 

    Google Scholar 
    84.Konar, B. et al. Wasting disease and static environmental variables drive sea star assemblages in the Northern Gulf of Alaska. J. Exp. Mar. Biol. Ecol. 520, 151209. https://doi.org/10.1016/j.jembe.2019.151209 (2019).Article 

    Google Scholar 
    85.Mudge, M. L., Pietrzak, K. W. & Rojek, N. A. Biological monitoring at Chowiet Island, Alaska in 2019. U.S. Fish and Wildl. Serv. Rep., AMNWR 2019/16. Homer, Alaska., 187 (2019).86.Suryan, R. M. & Irons, D. B. Colony and population dynamics of black-legged kittiwakes in a heterogeneous environment. Auk 118, 636–649 (2001).Article 

    Google Scholar 
    87.Harding, A. M. A. et al. Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge). Ecology 88, 2024–2033 (2007).Article 

    Google Scholar 
    88.Litzow, M. I., Piatt, J. I., Prichard, A. I. & Roby, D. I. Response of pigeon guillemots to variable abundance of high-lipid and low-lipid prey. Oecologia 132, 286–295 (2002).ADS 
    Article 

    Google Scholar 
    89.Moran, J. R., Heintz, R. A., Straley, J. M. & Vollenweider, J. J. Regional variation in the intensity of humpback whale predation on Pacific herring in the Gulf of Alaska. Deep Sea Res. Part II 147, 187–195. https://doi.org/10.1016/j.dsr2.2017.07.010 (2018).Article 

    Google Scholar 
    90.Robards, M. D., Anthony, J. A., Rose, G. A. & Piatt, J. F. Changes in proximate composition and somatic energy content for Pacific sand lance (Ammodytes hexapterus) from Kachemak Bay, Alaska relative to maturity and season. J. Exp. Mar. Biol. Ecol. 242, 245–258 (1999).Article 

    Google Scholar 
    91.Muradian, M. L., Branch, T. A., Moffitt, S. D. & Hulson, P.-J.F. Bayesian stock assessment of Pacific herring in Prince William Sound Alaska. PLOS ONE 12, e0172153. https://doi.org/10.1371/journal.pone.0172153 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    92.Moffitt, S. D. Retrospective longitudinal growth history from scales of Pacific herring collected in Prince William Sound. (Exxon Valdez Long-Term Herring Research and Monitoring Program Final Report (Project 13120111-N), Exxon Valdez Oil Spill Trustee Council. Anchorage, AK, Anchorage, AK, 2017).93.Batten, S. D., Moffitt, S., Pegau, W. S. & Campbell, R. Plankton indices explain interannual variability in Prince William Sound herring first year growth. Fish. Oceanogr. 25, 420–432. https://doi.org/10.1111/fog.12162 (2016).Article 

    Google Scholar 
    94.Dorn, M. et al. Assessment of the walleye pollock stock in the Gulf of Alaska. 161 ( North Pacific Fishery Management Council, Anchorage, AK, 2019).95.Barbeaux, S. et al. Assessment of the Pacific cod stock in the Gulf of Alaska. 140 (North Pacific Fishery Management Council, Anchorage, AK, 2019).96.Spies, I., Aydin, K., Ianelli, J. N. & Palsson, N. Assessment of the arrowtooth flounder stock in the Gulf of Alaska (North Pacific Fishery Management Council, Anchorage, AK, 2019).
    Google Scholar 
    97.Hanselman, D. H. et al. Assessment of the Sablefish stock in Alaska. 263 (North Pacific Fishery Management Council, Anchorage, AK, 2019).98.Kettle, A. B. Biological monitoring at East Amatuli Island, Alaska in 2018. U.S. Fish and Wildlife Service Report, AMNWR 2019/13. Homer, Alaska., 84 (2019).99.Coletti, H. et al. Gulf Watch Alaska: Nearshore benthic systems in the Gulf of Alaska. Long-Term Monitoring Program (Gulf Watch Alaska) Final Report (Exxon Valdez Oil Spill Trustee Council Project 16120114-R), Exxon Valdez Oil Spill Trustee Council, Anchorage, Alaska., (2018).100.Bodkin, J. SOP for conducting marine bird and mammal surveys – Version 4.1: Southwest Alaska Inventory and Monitoring Network. Natural Resource Report NPS/SWAN/NRR— 2011/392. National Park Service, Fort Collins, Colorado, USA., (2011).101.Stocking, J., Bishop, M. A. & Arab, A. Spatio-temporal distributions of piscivorous birds in a subarctic sound during the nonbreeding season. Deep Sea Res. Part II 147, 138–147. https://doi.org/10.1016/j.dsr2.2017.07.017 (2018).Article 

    Google Scholar 
    102.102Kuletz, K. J. & Labunski, E. A. Seabird Distribution and Abundance in the Offshore Environment, Final Report. US Dept. of the Interior, Bureau of Ocean Energy Management, Alaska OCS Region. OCS Study BOEM 2017–004. Anchorage, Alaska, USA. 59 pp, plus 400 pages of Appendices (2017).103.Coletti, H. A., Bodkin, J. L., Monson, D. H., Ballachey, B. E. & Dean, T. A. Detecting and inferring cause of change in an Alaska nearshore marine ecosystem. Ecosphere 7, e01489. https://doi.org/10.1002/ecs2.1489 (2016).Article 

    Google Scholar 
    104.Maniscalco, J. M., Springer, A. M., Parker, P. & Adkison, M. D. A longitudinal study of steller sea lion natality rates in the Gulf of Alaska with comparisons to census data. PLoS ONE 9, e111523. https://doi.org/10.1371/journal.pone.0111523 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    105.Sweeney, K., Fritz, L. W., Towell, R. & Gelatt, T. Results of Steller Sea Lion Surveys in Alaska, June-July 2017. 17 (National Marine Fisheries Service, Alaska Fisheries Science Center, Seattle, Washington, USA, National Marine Fisheries Service, Alaska Fisheries Science Center, Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle WA 98115, https://www.fisheries.noaa.gov/resource/data/2017-results-steller-sea-lion-surveys-alaska, 2017).106.Straley, J. M. et al. Seasonal presence and potential influence of humpback whales on wintering Pacific herring populations in the Gulf of Alaska. Deep Sea Res. Part II 147, 173–186. https://doi.org/10.1016/j.dsr2.2017.08.008 (2018).Article 

    Google Scholar 
    107.Olsen, D. W., Matkin, C. O., Andrews, R. D. & Atkinson, S. Seasonal and pod-specific differences in core use areas by resident killer whales in the Northern Gulf of Alaska. Deep Sea Res. Part II 147, 196–202. https://doi.org/10.1016/j.dsr2.2017.10.009 (2018).Article 

    Google Scholar 
    108.ADFG. Alaska Department of Fish and Game Statewide electronic fish ticket database 1985 to present. 1st edition. Alaska Department of Fish and Game, Division of Commercial Fisheries. (Accessed October 2019). (2018). More

  • in

    Genomic signatures of drift and selection driven by predation and human pressure in an insular lizard

    1.Stuart, Y. E., Losos, J. B. & Algar, A. C. The island-mainland species turnover relationship. Proc. R. Soc. B Biol. Sci. 279, 4071–4077 (2012).Article 

    Google Scholar 
    2.Grant, P. R. Evolution on Islands (Oxford University Press, 1998).
    Google Scholar 
    3.Garant, D., Forde, S. E. & Hendry, A. P. The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct. Ecol. 21, 434–443 (2007).Article 

    Google Scholar 
    4.Armstrong, C. et al. Genomic associations with bill length and disease reveal drift and selection across island bird populations. Evol. Lett. 2(1), 22–36 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541 (1999).Article 

    Google Scholar 
    6.Wright, S. Isolation by distance under diverse systems of mating. Genetics 31, 39–59 (1946).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49(4), 725 (1964).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Luikart, G., England, P. R., Tallmon, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: From genotyping to genome typing. Nat. Rev. Genet. 4(12), 981–994 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Nei, M., Suzuki, Y. & Nozawa, M. The neutral theory of molecular evolution in the genomic era. Annu. Rev. Genom. Hum. Genet. 11, 265–289 (2010).CAS 
    Article 

    Google Scholar 
    10.Weigelt, P., Jetz, W. & Kreft, H. Bioclimatic and physical characterization of the world’s islands. Proc. Natl. Acad. Sci. U.S.A. 110(38), 15307–15312 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    11.Huey, R. B., Gilchrist, G. W., Carlson, M. L., Berrigan, D. & Serra, L. Rapid evolution of a geographic cline in size in an introduced fly. Science 287(5451), 308–309 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    12.Prates, I., Angilleta, M. J., Wilson, R. S., Niehaus, A. C. & Navas, C. A. Dehydration hardly slows hopping toads (Rhinella granulosa) from xeric and mesic environments. Physiol. Biochem. Zool. 86(4), 451–457 (2013).PubMed 
    Article 

    Google Scholar 
    13.Prates, I., Penna, A., Trefaut, M. & Carnaval, A. C. Local adaptation in mainland anole lizards: Integrating population history and genome-environment associations. Ecol. Evol. 8, 11932–11944 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyonlittoralis). Mol. Ecol. 25(10), 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol. 27(24), 5137–5153 (2018).PubMed 
    Article 

    Google Scholar 
    16.Bover, P., Quintana, J. & Alcover, J. A. Three islands, three worlds: Paleogeography and evolution of the vertebrate fauna from the Balearic Islands. Quatern. Int. 182, 135–144 (2008).Article 

    Google Scholar 
    17.Pérez-Mellado, V. Les sargantanes de les Balears (Edicions Quaderns de Natura de les Balears, Documenta Balear, 2009).
    Google Scholar 
    18.Pérez-Mellado, V. et al. Population density in Podarcis lilfordi (Squamata, Lacertidae), a lizard species endemic to small islets in the Balearic Islands (Spain). Amphibia-Reptilia 29(1), 49–60 (2008).Article 

    Google Scholar 
    19.Brown, R. P. et al. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards. Mol. Phylogenet. Evol. 48(1), 350–358 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    20.Terrasa, B. et al. Foundations for conservation of intraspecific genetic diversity revealed by analysis of phylogeographical structure in the endangered endemic lizard Podarcis lilfordi. Divers. Distrib. 15(2), 207–221 (2009).Article 

    Google Scholar 
    21.Terrasa, B. et al. Use of NCPA to understanding genetic sub-structuring of Podarcis lilfordi from the Balearic archipelago. Amphibia-Reptilia 30(4), 505–514 (2009).Article 

    Google Scholar 
    22.Emig, C. C. & Geistdoerfer, P. The Mediterranean deep-sea fauna: Historical evolution, bathymetric variations and geographical changes. Carnets Geol. https://doi.org/10.4267/2042/3230 (2004).Article 

    Google Scholar 
    23.Pérez-Cembranos, A. et al. Morphological and genetic diversity of the Balearic lizard, Podarcis lilfordi (Günther, 1874): Is it relevant to its conservation?. Divers. Distrib. 26, 1122–1141 (2020).Article 

    Google Scholar 
    24.Palumbi, S. R. The Evolution Explosion: How Humans Cause Rapid Evolutionary Change (W. W. Norton & Company, 2002).
    Google Scholar 
    25.Ashley, M. V. et al. Evolutionary enlightened management. Biol. Conserv. 111, 115–123 (2003).Article 

    Google Scholar 
    26.Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).Article 

    Google Scholar 
    27.Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10), e3376 (2008).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    28.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7(5), e37135 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    29.Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17(2), 81 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Brown, R. P., Paterson, S. & Risse, J. Genomic signatures of historical allopatry and ecological divergence in an island lizard. Genome Biol. Evol. 8(11), 3618–3626 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Jin, Y. & Brown, R. P. Morphological species and discordant mtDNA: A genomic analysis of Phrynocephalus lizard lineages on the Qinghai-Tibetan Plateau. Mol. Phylogenet. Evol. 139, 106523 (2019).PubMed 
    Article 

    Google Scholar 
    32.Yang, W. et al. Spatial variation in gene flow across a hybrid zone reveals causes of reproductive isolation and asymmetric introgression in wall lizards. Evolution 74(7), 1289–1300 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Li, Y. L., Xue, D. X., Zhang, B. D. & Liu, J. X. Population genomic signatures of genetic structure and environmental selection in the catadromous roughskin sculpin Trachidermus fasciatus. Genome Biol. Evol. 11(7), 1751–1764 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31(1), 139–162 (2000).Article 

    Google Scholar 
    35.Willi, Y., Van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37, 433–458 (2006).Article 

    Google Scholar 
    36.Perrier, C., Ferchaud, A. L., Sirois, P., Thibault, I. & Bernatchez, L. Do genetic drift and accumulation of deleterious mutations preclude adaptation? Empirical investigation using RAD seq in a northern lacustrine fish. Mol. Ecol. 26(22), 6317–6335 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Sovic, M., Fries, A., Martin, S. A. & Lisle Gibbs, H. Genetic signatures of small effective population sizes and demographic declines in an endangered rattlesnake, Sistrurus catenatus. Evol. Appl. 12(4), 664–678 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Cao, R. et al. Genetic structure and diversity of Australian freshwater crocodiles (Crocodylus johnstoni) from the Kimberley, Western Australia. Conserv. Genet. 21, 421–429 (2020).Article 

    Google Scholar 
    39.Lowe, W. H. & Allendorf, F. W. What can genetics tell us about population connectivity?. Mol. Ecol. 19(15), 3038–3051 (2010).PubMed 
    Article 

    Google Scholar 
    40.Ralls, K. et al. Call for a paradigm shift in the genetic management of fragmented populations. Conserv. Lett. 11(2), e12412 (2018).Article 

    Google Scholar 
    41.Benestan, L. et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol. Ecol. 25(20), 5073–5092 (2016).PubMed 
    Article 

    Google Scholar 
    42.Campbell-Staton, S. C., Edwards, S. V. & Losos, J. B. Climate mediated adaptation after mainland colonization of an ancestrally subtropical island lizard, Anolis carolinensis. J. Evol. Biol. 29(11), 2168–2180 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Rodríguez, A. et al. Genomic and phenotypic signatures of climate adaptation in an Anolis lizard. Ecol. Evol. 7(16), 6390–6403 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Islet tameness: Escape behavior and refuge use in populations of the Balearic lizard (Podarcis lilfordi) exposed to differing predation pressure. Can. J. Zool. 87(10), 912–919 (2009).Article 

    Google Scholar 
    45.Cooper, W. E., Hawlena, D. & Pérez-Mellado, V. Influence of risk on hiding time by Balearic lizards (Podarcis lilfordi): Predator approach speed, directness, persistence, and proximity. Herpetologica 66(2), 131–141 (2010).Article 

    Google Scholar 
    46.Cooper, W. E. & Pérez-Mellado, V. Island tameness: Reduced escape responses and morphological and physiological antipredatory adaptations related to escape in lizards. In Islands and Evolution (eds Pérez-Mellado, V. & Ramon, M. M.) 231–253 (Institut Menorquí d’Estudis, 2010).
    Google Scholar 
    47.Cooper, W. E. & Pérez-Mellado, V. Historical influence of predation pressure on escape by Podarcis lizards in the Balearic Islands. Biol. J. Linn. Soc. 107, 254–268 (2012).Article 

    Google Scholar 
    48.Mayr, E. Animal Species and Evolution (The Belknap Press, Harvard University Press, 1963).
    Google Scholar 
    49.Bover, P. et al. Late Miocene/Early Pliocene vertebrate fauna from Mallorca (Balearic Islands, Western Mediterranean): An update. Integr. Zool. 9, 183–196 (2014).PubMed 
    Article 

    Google Scholar 
    50.Vervust, B., Grbac, I. & Van Damme, R. Differences in morphology, performance and behaviour between recently diverged populations of Podarcissicula mirror differences in predation pressure. Oikos 116(8), 1343–1352 (2007).Article 

    Google Scholar 
    51.Marques, D. A., Jones, F. C., Di Palma, F., Kingsley, D. M. & Reimchen, T. E. Experimental evidence for rapid genomic adaptation to a new niche in an adaptive radiation. Nat. Ecol. Evol. 2(7), 1128–1138 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Stockwell, C. A. & Ashley, M. V. Rapid adaptation and conservation. Conserv. Biol. 18, 272–273 (2004).Article 

    Google Scholar 
    54.Truong, H. T. et al. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5), e37565 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    55.Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22(11), 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Goudet, J. & Jombart, T. hierfstat: Estimation and tests of hierarchical F-statistics. R package version 0.5-7. Available from http://github.com/jgx65/hierfstat (2015).58.Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19(9), 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Jombart, T. & Ahmed, I. Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    61.Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Sundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P. & Kleinhans, D. Directional genetic differentiation and relative migration. Ecol. Evol. 6(11), 3461–3475 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4(8), 782–788 (2013).Article 

    Google Scholar 
    64.Nei, M. The Theory and Estimation of Genetic Distance. Genetic Structure of Populations 45–54 (University of Hawaii Press, 1973).
    Google Scholar 
    65.Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180(2), 977–993 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Frichot, E., Schoville, S. D., Bouchard, G. & François, O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol. 30(7), 1687–1699 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Rellstab, C., Gugerli, F., Eckert, A. J., Hancock, A. M. & Holderegger, R. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol. 24(17), 4348–4370 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Forester, B. R., Lasky, J. R., Wagner, H. H. & Urban, D. L. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol. Ecol. 27(9), 2215–2233 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Jin, L., Yu, J. P., Yang, Z. J., Merilä, J. & Liao, W. B. Modulation of gene expression in liver of hibernating Asiatic Toads (Bufo gargarizans). Int. J. Mol. Sci. 19(8), 2363 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Secor, S. M. & Carey, H. V. Integrative physiology of fasting. Compr. Physiol. 6(2), 773–825 (2011).
    Google Scholar 
    71.Bahudhanapati, H., Bhattacharya, S. & Wei, S. Evolution of vertebrate adam genes; duplication of testicular adams from ancient adam9/9-like loci. PLoS ONE 10(8), e0136281 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Alibardi, L. Immunolocalization of matrix metalloproteinases in regenerating lizard tail suggests that an intense remodelling activity allows for apical tail growth. Acta Zool. 101(2), 124–132 (2020).Article 

    Google Scholar 
    73.The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).Article 
    CAS 

    Google Scholar 
    74.Tosini, G., Baba, K., Hwang, C. K. & Iuvone, P. M. Melatonin: An underappreciated player in retinal physiology and pathophysiology. Exp. Eye Res. 103, 82–89 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Voronin, D. A. & Kiseleva, E. V. Functional role of proteins containing ankyrin repeats. Tsitologiia 49(12), 989–999 (2007).CAS 
    PubMed 

    Google Scholar 
    76.Yang, L. et al. Transcriptome analysis and identification of genes associated with chicken sperm storage duration. Poult. Sci. 99(2), 1199–1208 (2020).PubMed 
    Article 

    Google Scholar 
    77.Geng, X. et al. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). J. Proteomics 119, 196–208 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Subramaniam, N., Petrik, J. J. & Vickaryous, M. K. VEGF, FGF-2 and TGF β expression in the normal and regenerating epidermis of geckos: Implications for epidermal homeostasis and wound healing in reptiles. J. Anat. 232(5), 768–782 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Pillai, A., Desai, I. & Balakrishnan, S. Pharmacological inhibition of FGFR1 signaling attenuates the progression of tail regeneration in the northern house gecko Hemidactylus flaviviridis. Int. J. Life Sci. Biotechnol. Pharma Res. 2, 263–278 (2013).
    Google Scholar 
    80.Schoettl, T., Fischer, I. P. & Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol. 221, jeb162958 (2018).PubMed 
    Article 

    Google Scholar 
    81.Wang, X. et al. Identification of a novel 43-bp insertion in the heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene and its associations with growth and carcass traits in chickens. Anim. Biotechnol. 30(3), 252–259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Sun, C. et al. Genome-wide association study revealed a promising region and candidate genes for eggshell quality in an F2 resource population. BMC Genomics 16(1), 565 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Ng, C. S. et al. Transcriptomic analyses of regenerating adult feathers in chicken. BMC Genomics 16(1), 756 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Qu, Y. et al. Ground tit genome reveals avian adaptation to living at high altitudes in the Tibetan plateau. Nat. Commun. 4(1), 1–9 (2013).
    Google Scholar 
    85.Fischer, I., Kosik, K. S. & Sapirstein, V. S. Heterogeneity of microtubule-associated protein (MAP2) in vertebrate brains. Brain Res. 436(1), 39–48 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Singchat, W. et al. Chromosome map of the Siamese cobra: Did partial synteny of sex chromosomes in the amniote represent “a hypothetical ancestral super-sex chromosome” or random distribution?. BMC Genomics 19(1), 939 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Tosches, M. A. et al. Evolution of pallium, hippocampus, and cortical cell types revealed by single-cell transcriptomics in reptiles. Science 360(6391), 881–888 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    88.Vitulo, N., Dalla Valle, L., Skobo, T., Valle, G. & Alibardi, L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev. Dyn. 246(2), 116–134 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Carobbio, S., Guénantin, A. C., Samuelson, I., Bahri, M. & Vidal-Puig, A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864(1), 37–50 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Effect of earthworms on mycorrhization, root morphology and biomass of silver fir seedlings inoculated with black summer truffle (Tuber aestivum Vittad.)

    1.Castellano, M. A., Trappe, J. M. & Luoma, D. L. Sequestrate fungi. in Biodiversity of Fungi (ed. Mueller, G.M., Bills, G.F., Foster, M.S.) 197–213 (Elsevier, 2004). https://doi.org/10.1016/B978-012509551-8/50013-1.2.Benucci, G. M. N., Bonito, G., Falini, L. B. & Bencivenga, M. Mycorrhization of Pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum Vittad. and Tuber borchii Vittad. Mycorrhiza 22, 383–392 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bonito, G. M., Gryganskyi, A. P., Trappe, J. M. & Vilgalys, R. A global meta-analysis of Tuber ITS rDNA sequences: Species diversity, host associations and long-distance dispersal. Mol. Ecol. 19, 4994–5008 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Kirk, P. M., Cannon, P. F., Stalpers, J. & Minter, D. W. Dictionary of the Fungi 10th ed. 1–784 (CABI, 2008).5.Splivallo, R., Novero, M., Bertea, C. M., Bossi, S. & Bonfante, P. Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana. New Phytol. https://doi.org/10.1111/j.1469-8137.2007.02141.x (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Benucci, G. M. N., Bonito, G., Falini, L. B., Bencivenga, M. & Donnini, D. Truffles, timber, food, and fuel: Sustainable approaches for multi-cropping truffles and economically important plants. In Edible Ectomycorrhizal Mushrooms. Soil Biology Vol. 34 (eds Zambonelli, A. & Bonito, G.) 265–280 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_15.
    Google Scholar 
    7.Strojnik, L., Grebenc, T. & Ogrinc, N. Species and geographic variability in truffle aromas. Food Chem. Toxicol. https://doi.org/10.1016/j.fct.2020.111434 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Bonet, J. A. et al. Cultivation methods of the Black Truffle, the most profitable Mediterranean non-wood forest product; a state of the artreview. EFI Proc. 57, 57–71 (2009).
    Google Scholar 
    9.Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: Separating the wheat from the chaff. Fungal Divers. 33, 1–45 (2008).
    Google Scholar 
    10.Ori, F. et al. Synthesis and ultrastructural observation of arbutoid mycorrhizae of black truffles (Tuber melanosporum and T. aestivum). Mycorrhiza 30(6), 715–723 (2020). https://doi.org/10.1007/s00572-020-00985-5.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Schneider-Maunoury, L. et al. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytol. 225, 2542–2556 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Mello, A., Murat, C., Vizzini, A., Gavazza, V. & Bonfante, P. Tuber magnatum Pico, a species of limited geographical distribution: Its genetic diversity inside and outside a truffle ground. Environ. Microbiol. 7, 55–65 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hall, I., Brown, G. T. & Zambonelli, A. Taming the Truffle (The History, Lore, and Science of the Ultimate Mushroom) (Timber Press, 2007).
    Google Scholar 
    14.Shamekh, S., Grebenc, T., Leisola, M. & Turunen, O. The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol. Prog. 13, 373–380 (2014).Article 

    Google Scholar 
    15.Kinoshita, A., Obase, K. & Yamanaka, T. Ectomycorrhizae formed by three Japanese truffle species (Tuber japonicum, T. longispinosum, and T. himalayense) on indigenous oak and pine species. Mycorrhiza 28, 679–690 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sulzbacher, M. A. et al. Fungos ectomicorrízicos em plantações de nogueira-pecã e o potencial da truficultura no Brasil. Ciência Florest. 29, 975 (2019).Article 

    Google Scholar 
    17.Grupe, A. C. et al. Tuber brennemanii and Tuber floridanum: Two new Tuber species are among the most commonly detected ectomycorrhizal taxa within commercial pecan (Carya illinoinensis) orchards. Mycologia 110, 780–790 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Chevalier, G. & Frochot, H. La Truffe de Bourgogne (Tuber unicatum Chatin) (Editions Petrarque, 2002). https://doi.org/10.4267/2042/5669.
    Google Scholar 
    19.Donnini, D., Benucci, G. M. N., Bencivenga, M. & Baciarelli-Falini, L. Quality assessment of truffle-inoculated seedlings in Italy: proposing revised parameters for certification. For. Syst. 23, 385 (2014).
    Google Scholar 
    20.Reyna, S. & Garcia-Barreda, S. Black truffle cultivation: A global reality. For. Syst. 23, 317 (2014).
    Google Scholar 
    21.Wedén, C., Pettersson, L. & Danell, E. Truffle cultivation in Sweden: Results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scand. J. For. Res. 24, 37–53 (2009).Article 

    Google Scholar 
    22.Iotti, M. et al. Development and validation of a real-time PCR assay for detection and quantification of Tuber magnatum in soil. BMC Microbiol. 12, 93 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Freiberg, J.A., Sulzbacher, M.A., Santana, N.A., Fronza, D., Giachini, A., Grebenc, T., Jacques, R., A. Z. Mycorrhization of pecans with European truffles (Tuber spp., Tuberaceae) under southern subtropical conditions. Appl. Soil Ecol. (2021).24.Paolocci, F., Rubini, A., Riccioni, C. & Arcioni, S. Reevaluation of the life cycle of Tuber magnatum. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.72.4.2390-2393.2006 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Healy, R. A. et al. High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal Pezizales. Mol. Ecol. 22(6), 1717–1732. https://doi.org/10.1111/mec.12135 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Pattinson, G. S., Smith, S. E. & Doube, B. M. Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol. Biochem. 29, 1079–1088 (1997).CAS 
    Article 

    Google Scholar 
    27.Gange, A. C. Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol. Biochem. 25, 1021–1026 (1993).Article 

    Google Scholar 
    28.Milleret, R., Le Bayon, R. C. & Gobat, J. M. Root, mycorrhiza and earthworm interactions: Their effects on soil structuring processes, plant and soil nutrient concentration and plant biomass. Plant Soil https://doi.org/10.1007/s11104-008-9753-7 (2009).Article 

    Google Scholar 
    29.Gormsen, D., Olsson, P. A. & Hedlund, K. The influence of collembolans and earthworms on AM fungal mycelium. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2004.06.001 (2004).Article 

    Google Scholar 
    30.Wurst, S., Dugassa-Gobena, D., Langel, R., Bonkowski, M. & Scheu, S. Combined effects of earthworms and vesicular-arbuscular mycorrhizas on plant and aphid performance. New Phytol. https://doi.org/10.1111/j.1469-8137.2004.01106.x (2004).Article 

    Google Scholar 
    31.Eisenhauer, N. et al. Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2008.12.017 (2009).Article 

    Google Scholar 
    32.Stobbe, U. et al. Potential and limitations of Burgundy truffle cultivation. Appl. Microbiol. Biotechnol. 97, 5215–5224 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jeandroz, S., Murat, C., Wang, Y., Bonfante, P. & Le Tacon, F. Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J. Biogeogr. 35, 815–829 (2008).Article 

    Google Scholar 
    34.Gardin, L. I tartufi minori in Toscana. Gli ambienti di crescita dei tartufi marzuolo e scorze (ARSIA, 2005).
    Google Scholar 
    35.Pampanini, R., Marchini, A. & Diotallevi, F. Il mercato del tartufo fresco in Italia tra performance commerciali e vincoli allo sviluppo: il contributo delle regioni italiane. Econ. Agro-Alimentare 18, 11–28 (2012).
    Google Scholar 
    36.Wolf, H. EUFORGEN technical guidelines for genetic conservation and use for silver fir (Abies alba). Int. Plant Genet. Resour. Inst. Rome Italy https://doi.org/10.1016/j.jaci.2010.08.025 (2003).Article 

    Google Scholar 
    37.Comandini, O., Pacioni, G. & Rinaldi, A. C. Fungi in ectomycorrhizal associations of silver fir (Abies alba Miller) in Central Italy. Mycorrhiza 7, 323–328 (1998).Article 

    Google Scholar 
    38.Ważny, R. Ectomycorrhizal communities associated with silver fir seedlings (Abies alba Mill.) differ largely in mature silver fir stands and in Scots pine forecrops. Ann. For. Sci. 71, 801–810 (2014).Article 

    Google Scholar 
    39.Ważny, R. & Kowalski, S. Ectomycorrhizal fungal communities of silver-fir seedlings regenerating in fir stands and larch forecrops. Trees Struct. Funct. 31, 929–939 (2017).Article 
    CAS 

    Google Scholar 
    40.Rudawska, M., Pietras, M., Smutek, I., Strzeliński, P. & Leski, T. Ectomycorrhizal fungal assemblages of Abies alba Mill. outside its native range in Poland. Mycorrhiza 26, 57–65 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Iotti, M., Piattoni, F. & Zambonelli, A. Techniques for host plant inoculation with truffles and other edible ectomycorrhizal mushrooms. in Edible Ectomycorrhizal Mushrooms (eds. Zambonelli, A., Bonito, G.M.) 145–161 (Springer, 2012). https://doi.org/10.1007/978-3-642-33823-6_942.Finér, L. et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 141, 394–405 (2007).
    Google Scholar 
    43.Železnik, P. et al. CASIROZ: Root parameters and types of ectomycorrhiza of young beech plants exposed to different ozone and light regimes. Plant Biol. 9, 298–308 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Agerer, R. Colour Atlas of Ectomycorrhizae (Einhorn-Verlag, 1987).
    Google Scholar 
    45.Agerer, R. Characterization of ectomycorrhiza. Methods Microbiol. https://doi.org/10.1016/S0580-9517(08)70172-7 (1991).Article 

    Google Scholar 
    46.Agerer, R. & Rambold, G. 2004–2018 [first posted on 2004–06–01; most recent update: 2011-01-10]. DEEMY—An Information System for Characterization and Determination of Ectomycorrhizae. München, Germany (2004).47.Fischer, C. & Colinas, C. Methology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. in First International Conference on Mycorrhiza (1996).48.Reyna, S., Boronat, J. & Palomar, E. Quality control of plants mycorrhized with Tuber melanosporum Vitt. edible mycorrhizal mushrooms and their cultivation. Proc. Second Int. Conf. Edible Mycorrhizal Mushrooms, Crop Food Res. Christchurch 1–9 (eds. Wang Y., Danell, E., Zambonelli, A.) CD-ROM (New Zealand Institute for Crop & Food Research Limited, Christchurch, 2002).49.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. in PCR Protocols: A Guide to Methods and Applications (eds. Innis, M.A., Gelfond, D.H., Sninsky, J.J., White, T.J.) 315–322 (Academic Press, Inc., 1990). https://doi.org/10.1016/B978-0-12-372180-8.50042-1.50.Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Bertini, L. A new pair of primers designed for amplification of the ITS region in Tuber species. FEMS Microbiol. Lett. 173, 239–245 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Grebenc, T. & Kraigher, H. Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone concentration. Plant Biol. 9, 279–287 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Team, R. C. R: A language and environment for statistical computing. (2016).55.KothariI, S. K., Marschner, H. & George, E. Effect of VA mycorrhizal fungi and rhizosphere microorganisms on root and shoot morphology, growth and water relations in maize. New Phytol. https://doi.org/10.1111/j.1469-8137.1990.tb04718.x (1990).Article 

    Google Scholar 
    56.Ludwig-Müller, J. Hormonal responses in host plants triggered by arbuscular mycorrhizal fungi. Arbuscular Mycorrhizas Physiol. Funct. https://doi.org/10.1007/978-90-481-9489-6_8 (2010).Article 

    Google Scholar 
    57.Hanlon, M. T. & Coenen, C. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189, 701–709 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Sukumar, P. et al. Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant. Cell Environ. 36, 909–919 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Maherali, H. Is there an association between root architecture and mycorrhizal growth response?. New Phytol. https://doi.org/10.1111/nph.12927 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. 113, 8741–8746 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Syers, J. K. & Springett, J. A. Earthworms and soil fertility. Plant Soil 76, 93–104 (1984).CAS 
    Article 

    Google Scholar 
    62.Mamoun, M. & Oliver, J. M. Mycorrhizal inoculation of cloned hazels by Tuber melanosporum: Effect of soil disinfestation and co-culture with Festuca ovina. Plant Soil 188, 221–262 (1997).CAS 
    Article 

    Google Scholar 
    63.Santelices, R. & Palfner, G. Controlled rhizogenesis and mycorrhization of hazelnut (Corylus avellana L.) cuttings with Black truffle (Tuber melanosporum Vitt.). Chil. J. Agric. Res. 70, 204–212 (2010).Article 

    Google Scholar 
    64.Martin, F. M. & Hilbert, J. L. Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47, 321–331 (1991).CAS 
    Article 

    Google Scholar 
    65.Zaller, J. G. et al. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS ONE 6, e29293 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Robakowski, P., Wyka, T., Samardakiewicz, S. & Kierzkowski, D. Growth, photosynthesis, and needle structure of silver fir (Abies alba Mill.) seedlings under different canopies. For. Ecol. Manage. 201, 211–227 (2004).Article 

    Google Scholar 
    67.Mrak, T. & Gričar, J. Atlas of Woody Plant Roots: Morphology and Anatomy with Special Emphasis on Fine Roots (Slovenian Forestry Institute, The Silva Slovenica Publishing Centre, 2016). https://doi.org/10.20315/SFS.147.
    Google Scholar 
    68.Montecchi, A. & Sarasini, M. Funghi ipogei d’Europa. Vicenza: Fondazione Centro Studi (Micologica dell” A.M.B., 2000).
    Google Scholar 
    69.Benucci, G. M. N. et al. Ectomycorrhizal communities in a productive Tuber aestivum Vittad. orchard: Composition, host influence and species replacement. FEMS Microbiol. Ecol. 76, 170–184 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Marjanović, Ž, Grebenc, T., Marković, M., Glišić, A. & Milenković, M. Ecological specificities and molecular diversity of truffles (genus Tuber) originating from mid-west of the Balkan Peninsula. Sydowia 1, 273–291 (2010).
    Google Scholar 
    71.Grebenc, T., Bajc, M. & Kraigher, H. Post-glacial migrations of mycorrhizal plants and ectomycorrhizal partners: An example of the genus Tuber. Les 62, 149–154 (2010).
    Google Scholar 
    72.Chavdarova, S., Kajevska, I. K. R., Grebenc, T. & Karadelev, M. Distribution and ecology of hypogenous fungi (excluding Tuber) in the Republic of Macedonia. Biol. Maced. 62, 37–48 (2011).
    Google Scholar 
    73.Milenković, M., Grebenc, T., Marković, M. & Ivančević, B. Tuber petrophilum, a new truffle species from Serbia. Mycotaxon 130, 1141–1152 (2016).Article 

    Google Scholar 
    74.Brown, G. G., Edwards, C. A. & Brussaard, L. How earthworms affect plant growth: Burrowing into the mechanisms. in Earthworm Ecology (ed. Edwards, C.A.) 13–49 (Boca Raton : CRC Press, 2004). https://doi.org/10.1201/9781420039719.75.Pattinson, G. S. Trapezoides had no effect on the dispersal of a Vesicular-Arbuscular Mycorrhizal fungi. Can. J. Bot. 29, 1079–1088 (1997).CAS 

    Google Scholar 
    76.Lawrence, B., Fisk, M. C., Fahey, T. J. & Suarez, E. R. Influence of nonnative earthworms on mycorrhizal colonization of sugar maple (Acer saccharum). New Phytol. 157, 145–153 (2003).Article 

    Google Scholar 
    77.Ortiz-Ceballos, A. I., Peña-Cabriales, J. J., Fragoso, C. & Brown, G. G. Mycorrhizal colonization and nitrogen uptake by maize: Combined effect of tropical earthworms and velvetbean mulch. Biol. Fertil. Soils 44, 181–186 (2007).Article 

    Google Scholar 
    78.Reddell, P. & Spain, A. V. Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol. Biochem. 23, 767–774 (1991).Article 

    Google Scholar  More

  • in

    Ant social foraging strategies along a Neotropical gradient of urbanization

    1.Fischer, J. & Lindenmayer, D. B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 16, 265–280 (2007).Article 

    Google Scholar 
    2.McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    3.McDonnell, M. J. & MacGregor-Fors, I. The ecological future of cities. Science 352, 936–938 (2016).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    4.McKinney, M. L. Urbanizartion, biodiversity, and conservation. Bioscience 52, 883–890 (2002).Article 

    Google Scholar 
    5.Santos, M. N. Research on urban ants: Approaches and gaps. Insectes Soc. 63, 359–371 (2016).Article 
    ADS 

    Google Scholar 
    6.Hölldobler, B. & Wilson, E. O. The Ants (Harvard University Press, Harvard, 1990).
    Google Scholar 
    7.Angilletta, M. J. et al. Urban physiology: City ants possess high heat yolerance. PLoS ONE 2, e258 (2007).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D. & Case, T. J. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33, 181–233 (2002).Article 

    Google Scholar 
    9.McIntyre, N. E., Rango, J., Fagan, W. F. & Faeth, S. H. Ground arthropod community structure in a heterogeneous urban environment. Landsc. Urban Plan. 52, 257–274 (2001).Article 

    Google Scholar 
    10.Lessard, J. P. & Buddle, C. M. The effects of urbanization on ant assemblages (Hymenoptera: Formicidae) associated with the Molson Nature Reserve Quebec. Can. Entomol. 137, 215–225 (2005).Article 

    Google Scholar 
    11.Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: A temporal examination of factors affecting biodiversity. PLoS ONE 7, e41729 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    12.McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    13.Morini, M. S. C., Munhae, C. B., Leung, R., Candiani, D. F. & Voltolini, J. C. Comunidades de formigas (Hymenoptera, Formicidae) em fragmentos de Mata Atlântica situados em áreas urbanizadas. Iheringia 97, 246–252 (2007).Article 

    Google Scholar 
    14.MacGregor-Fors, I. & Schondube, J. E. Gray vs. green urbanization: Relative importance of urban features for urban bird communities. Basic Appl. Ecol. 12, 372–381 (2011).Article 

    Google Scholar 
    15.Uno, S., Cotton, J. & Philpott, S. M. Diversity, abundance, and species composition of ants in urban green spaces. Urban Ecosyst. 13, 425–441 (2010).Article 

    Google Scholar 
    16.Rocha-Ortega, M. & Castaño-Meneses, G. Effects of urbanization on the diversity of ant assemblages in tropical dry forests, Mexico. Urban Ecosyst. 18, 1373–1388 (2015).Article 

    Google Scholar 
    17.Sol, D., Lapiedra, O. & González-Lagos, C. Behavioural adjustments for a life in the city. Anim. Behav. 85, 1101–1112 (2013).Article 

    Google Scholar 
    18.Fellers, J. H. Interference and exploitation in a guild of woodland ants. Ecology 68, 1466–1478 (1987).Article 

    Google Scholar 
    19.Parr, C. L. & Gibb, H. The discovery–dominance trade-off is the exception, rather than the rule. J. Anim. Ecol. 81, 233–241 (2012).PubMed 
    Article 

    Google Scholar 
    20.Davidson, D. W. Resource discovery versus resource domination in ants: A functional mechanism for breaking the trade-off. Ecol. Entomol. 23, 484–490 (1998).Article 

    Google Scholar 
    21.Camarota, F., Vasconcelos, H. L., Koch, E. B. & Powell, S. Discovery and defense define the social foraging strategy of Neotropical arboreal ants. Behav. Ecol. Sociobiol. 72, id110 (2018).Article 

    Google Scholar 
    22.Parr, C. L. & Gibb, H. Competition and the role of dominant ants. In Book: Ant Ecology (eds Lach, L. et al.) 77–96 (Oxford University Press, Oxford, 2010).
    Google Scholar 
    23.Instituto Nacional de Estadística, Geografía e Informática (INEGI). Compendio de Información Geográfica Municipal. http://www.inegi.org.mx/geo/contenidos/topografia/compendio.aspx. (2009).24.Falfán, I., Muñoz-Robles, C. A., Bonilla-Moheno, M. & MacGregor-Fors, I. Can you really see ‘green’? Assessing physical and self-reported measurements of urban greenery. Urban For. Urban Green. 36, 13–21 (2018).Article 

    Google Scholar 
    25.Davidson, D. W. The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol. J. Linn. Soc. 61, 153–181 (1997).Article 

    Google Scholar 
    26.Flores-Flores, R. V. et al. Food source quality and ant dominance hierarchy influence the outcomes of ant-plant interactions in an arid environment. Acta Oecol. 87, 13–19 (2018).Article 
    ADS 

    Google Scholar 
    27.Wittman, S. E., O’Dowd, D. J. & Green, P. T. Carbohydrate supply drives colony size, aggression, and impacts of an invasive ant. Ecosphere 9, e02403 (2018).Article 

    Google Scholar 
    28.O’Dowd, D. J., Green, P. T. & Lake, P. S. Invasional ‘meltdown’ on an oceanic island. Ecol. Lett. 6, 812–817 (2003).Article 

    Google Scholar 
    29.Abbott, K. L. & Green, P. T. Collapse of an ant–scale mutualism in a rainforest on Christmas Island. Oikos 116, 1238–1246 (2007).Article 

    Google Scholar 
    30.Dáttilo, W. et al. Mexico ants: Incidence and abundance along the Nearctic-Neotropical interface. Ecology 101, e02944 (2020).PubMed 
    Article 

    Google Scholar 
    31.MacGregor-Fors, I. Misconceptions or misunderstandings? On the standardization of basic terms and definitions in urban ecology. Landsc. Urban Plan. 100, 347–349 (2011).Article 

    Google Scholar 
    32.Oksanen, J. et al. Vegan: Community Ecology Package. (2017).33.Dáttilo, W., Díaz-Castelazo, C. & Rico-Gray, V. Ant dominance hierarchy determines the nested pattern in ant–plant networks. Biol. J. Linn. Soc. 113, 405–414 (2014).Article 

    Google Scholar 
    34.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).35.Yamaguchi, T. Influence of urbanization on ant distribution in parks of Tokyo and Chiba City, Japan I. Analysis of ant species richness. Ecol. Res. 19, 209–216 (2004).36.Pacheco, R. & Vasconcelos, H. L. Invertebrate conservation in urban areas: Ants in the Brazilian Cerrado. Landsc. Urban Plan. 81, 193–199 (2007).Article 

    Google Scholar 
    37.Dáttilo, W., Sibinel, N., Falcão, J. C. F. & Nunes, R. V. Mirmecofauna em um fragmento de Floresta Atlântica urbana no município de Marília, Brasil. Biosci. J. 27, 494–504 (2011).
    Google Scholar 
    38.Thompson, B. & McLachlan, S. The effects of urbanization on ant communities and myrmecochory in Manitoba, Canada. Urban Ecosyst. 10, 43–52 (2007).Article 

    Google Scholar 
    39.Ribeiro, F. M., Sibinel, N., Ciocheti, G. & Campos, A. E. C. Analysis of ant communities comparing two methods for sampling ants in an urban park in the city of São Paulo, Brazil. Sociobiology 59, 971–984 (2012).
    Google Scholar 
    40.Sanford, M. P., Manley, P. N. & Murphy, D. D. Effects of urban development on ant communities: Implications for ecosystem services and management. Conserv. Biol. 23, 131–141 (2009).PubMed 
    Article 

    Google Scholar 
    41.Holway, D. A. & Suarez, A. V. Homogenization of ant communities in mediterranean California: The effects of urbanization and invasion. Biol. Conserv. 127, 319–326 (2006).Article 

    Google Scholar 
    42.Albrecht, M. & Gotelli, N. J. Spatial and temporal niche partitioning in grassland ants. Oecologia 126, 134–141 (2001).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    43.Campos, R. B. & Schoereder, J. H. Dominance and resource temporal partitioning in pasture ants (Hymenoptera: Formicidae). Sociobiology 38, 539–550 (2001).
    Google Scholar 
    44.Santini, G., Tucci, L., Ottonetti, L. & Frizzi, F. Competition trade-offs in the organisation of a Mediterranean ant assemblage. Ecol. Entomol. 32, 319–326 (2007).Article 

    Google Scholar 
    45.MacGregor-Fors, I. et al. Multi-taxonomic diversity patterns in a neotropical green city: A rapid biological assessment. Urban Ecosyst. 18, 633–647 (2015).Article 

    Google Scholar 
    46.Wetterer, J. K. Worldwide spread of the longhorn crazy ant, Paratrechina longicornis (Hymenoptera: Formicidae). Myrmecol. News 11, 137–149 (2008).
    Google Scholar 
    47.Wetterer, J. K. Worldwide spread of the tropical fire ant, Solenopsis geminata (Hymenoptera: Formicidae). Myrmecol. News 14, 21–35 (2011).
    Google Scholar  More

  • in

    Author Correction: Genomic evidence of past and future climate-linked loss in a migratory Arctic fish

    Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, CanadaK. K. S. Layton & P. V. R. SnelgroveFisheries and Oceans Canada, St. John’s, Newfoundland and Labrador, CanadaK. K. S. Layton, J. B. Dempson, T. Kess, S. J. Lehnert, S. J. Duffy, A. M. Messmer, R. R. E. Stanley, C. DiBacco & I. R. BradburyUniversity of Aberdeen, Aberdeen, UKK. K. S. LaytonDalhousie University, Halifax, Nova Scotia, CanadaP. Bentzen, S. J. Salisbury & D. E. RuzzanteUniversity of Guelph, Guelph, Ontario, CanadaC. M. Nugent & M. M. FergusonUniversity of Victoria, Victoria, British Columbia, CanadaJ. S. Leong & B. F. Koop More

  • in

    Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations

    The polysaccharide xylan limits the growth of C. crescentus cells compared to the monomer xylose in well-mixed environmentsWe first tested our hypothesis that in well-mixed conditions the polymer xylan would limit the productivity of microbial populations relative to the monomer xylose. To determine if this was the case, we grew C. crescentus cells in the same concentration (weight/volume) of either the polymer xylan or its monomeric constituent xylose, both provided as the sole carbon source (Fig. 1a). We then compared the maximum growth rate and the maximal population size over the course of a 54 h growth cycle (Fig. 1b). In line with expectations, populations growing on the monomer xylose achieved higher growth rates and a higher maximum population size (Fig. 1b–d). This was true for all concentrations (0.01–0.1%) of monomer and polymer tested (Supplementary Fig. 2). These findings suggest that in well-mixed environments of equal carbon concentration, the complexity of the growth substrate governs the growth of C. crescentus populations.Cells engage in colonial behaviors on xylan whereas they exhibit solitary behaviors on xyloseGroup formation could be a key mechanism through which cells could overcome polymer-induced growth limitations that exist in well-mixed environments. Collective behavior would allow cells to increase their local cell density, which leads to higher local concentrations of the monomeric products of polymer degradation. To test this prediction, we tested whether xylose and xylan elicit different behavioral responses in C. crescentus. We used microfluidic growth chambers in which cells were forced to grow as a monolayer. Our expectation was that growth within these devices would provide the spatial structure to overcome the growth limitations observed in well-mixed conditions (Supplementary Fig. 1). We tracked and quantified movement, and growth of individual cells using time-lapse microscopy and image analysis. Chambers were constantly replenished with minimal medium containing either xylose or xylan through a main nutrient feeding channel, as described elsewhere [20, 23, 24].We found that C. crescentus displayed strikingly disparate behaviors in xylan and xylose: cells formed microcolonies on the polymer xylan (Fig. 2a, Supplementary Video 1), whereas on the monomer xylose they did not (Fig. 2b, Supplementary Video 2). We analyzed the temporal dynamics of cell growth and movement in the two carbon sources by following individual cells using cell segmentation and tracking. Mapping the lineages based on division events for all the cells in a chamber revealed that the microcolonies on the polymer xylan originated from a single progenitor cell (Fig. 2d, Supplementary Fig. 3a–c; Supplementary Video 3). This finding indicates that microcolonies were a result of swarmer cells not dispersing after division, rather than a product of secondary aggregation by planktonic cells. In contrast, in the monomer xylose only the stalked cells remained in the same position after cell division, whereas the presumably flagellated swarmer cells moved away (Fig. 2e, Supplementary Fig. 4a–c). As a consequence of this difference in behavior, the number of sessile cells increased much more rapidly in xylan. The number of cells in a growth chamber doubled on average every 3.6 ± 0.54 h in xylan (mean ± 95% CI, Fig. 2c) but took 15.50 ± 7.55 h to double in xylose (mean ± 95% CI, Fig. 2c). These differences occurred despite a similar propensity to produce offspring per sessile cell in the two substrates (Supplementary Fig. 5), and thus were driven by the reduced rate at which cells dispersed in xylan.Fig. 2: Cells display solitary behavior on xylose and aggregative behavior on xylan.Representative images of C. crescentus CB15 cells (labeled with constitutively expressed mKate2, false colored as magenta) at different time points within the microfluidic growth chambers supplied with either xylan (a) or xylose (b) as the sole source of carbon. c On xylan (yellow), the number of sessile cells in the growth chamber increases with time, whereas on xylose (blue) it remains nearly constant. Squares indicate the number of cells present at a given time point in each chamber (nchambers = 9), with a linear or exponential regression line for each chamber (xylose, linear regression model, R2 = 0.69–0.92, slope = 1.22–3.27, P  More

  • in

    African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning

    A 2-scale ensemble machine learningPredictions of soil nutrients are based on a fully automated and fully optimized 2-scale Ensemble Machine Learning (EML) framework as implemented in the mlr package for Machine Learning (https://mlr.mlr-org.com/). The entire process can be summarized in the following eight steps (Fig. 7):

    1.

    Prepare point data, quality control all values and remove any artifacts or types.

    2.

    Upload to Google Earth Engine, overlay the point data with the key covariates of interest and test fitting random forest or similar to get an initial estimate of relative variable importance and pre-select features of interest.

    3.

    Decide on a final list of all covariates to use in predictions, prepare covariates for predictive modeling—either using Amazon AWS or similar. Quality control all 250 m and 30 m resolution covariates and prepare Analysis-Ready data in a tiling system to speed up overlay and prediction.

    4.

    Run spatial overlay using 250 m and 30 m resolution covariates and generate regression matrices.

    5.

    Fit 250 m and 30 m resolution Ensemble Machine Learning models independently per soil property using spatial blocks of 30–100 km. Run sequentially: model fine-tuning, feature selection and stacking. Generate summary accuracy assessment, variable importance, and revise if necessary.

    6.

    Predict 250 m and 30 m resolution tiles independently using the optimized models. Downscale the 250 m predictions to 30 m resolution using Cubicsplines (GDAL).

    7.

    Combine predictions using Eq. (3) and generate pooled variance/s.d. using Eq. (4).

    8.

    Generate all final predictions as Cloud-Optimized GeoTIFFs. Upload to the server and share through API/Geoserver.

    Figure 7Scheme: a two-scale framework for Predictive Soil Mapping based on Ensemble Machine Learning (as implemented in the mlr and mlr3 frameworks for Machine Learning28 and based on the SuperLearner algorithm). This process is applied for a bulk of soil samples, the individual models per soil variable are then fitted using automated fine-tuning, feature selection and stacking. The map is showing distribution of training points used in this work. Part of the training points that are publicly available are available for use from https://gitlab.com/openlandmap/compiled-ess-point-data-sets/.Full size imageFor the majority of soil properties, excluding depth to bedrock, we also use soil depth as one of the covariates so that the final models for the two scales are in the form5:$$begin{aligned} y(phi ,theta ,d) = d + x_1 (phi ,theta ) + x_2 (phi ,theta ) + cdots + X_p (phi ,theta ) end{aligned}$$
    (1)
    where y is the target variable, d is the soil sampling depth, (phi theta) are geographical coordinates (northing and easting), and (X_p) are the covariates. Adding soil depth as a covariate allows for directly producing 3D predictions35, which is our preferred approach as prediction can be then produced at any depth within the standard depth interval (e.g. 0–50 cm).Ensemble machine learningEnsembles are predictive models that combine predictions from two or more learners36. We implement ensembling within the mlr package by fitting a ‘meta-learner’ i.e. a learner that combines all individual learners. mlr has extensive functionality, especially for model ‘stacking’ i.e. to generate ensemble predictions, and also incorporates spatial Cross-Validation37. It also provides wrapper functions to automate hyper-parameter fine-tuning and feature selection, which can all be combined into fully-automated functions to fit and optimize models and produce predictions. Parallelisation can be initiated by using the parallelMap package, which automatically determines available resources and cleans-up all temporary sessions38.For stacking multiple base learners we use the SuperLearner method39, which is the most computational method but allows for an independent assessment of all individual learners through k-fold cross validation with refitting. To speed up computing we typically use a linear model (predict.lm) as the meta-learner, so that in fact the final formula to derive the final ensemble prediction can be directly interpreted by printing the model summary.The predictions in the Ensemble models described in Fig. 7 are in principle based on using the following five Machine Learning libraries common for many soil mapping projects5.

    1.

    Ranger: fully scalable implementation of Random Forest23.

    2.

    XGboost: extreme gradient boosting40.

    3.

    Deepnet: the Open Source implementation of deep learning26.

    4.

    Cubist: the Open Source implementation of Cubist regression trees41.

    5.

    Glmnet: GLM with Lasso or Elasticnet Regularization24.

    These Open source libraries, with the exception of the Cubist, are available through a variety of programming environments including R, Python and also as standalone C++ libraries.Merging coarse and fine-scale predictionsThe idea of modeling soil spatial variation at different scales can be traced back to the work of McBratney42. In a multiscale model, soil variation can be considered a composite signal (Fig. 8):$$begin{aligned} y({mathbf{s}}_{mathtt {B}}) = S_4({mathbf{s}}_{mathtt {B}}) + S_3({mathbf{s}}_{mathtt {B}}) + S_2({mathbf{s}}_{mathtt {B}}) + S_1({mathbf{s}}_{mathtt {B}}) + varepsilon end{aligned}$$
    (2)
    where (S_4) is the value of the target variable estimated at the coarsest scale, (S_3), (S_2) and (S_1) are the higher order components, ({mathbf{s}}_{mathtt {B}}) is the location or block of land, and (varepsilon) is the residual soil variation i.e. pure noise.Figure 8Decomposition of a signal of spatial variation into four components plus noise. Based on McBratney42. See also Fig. 13 in Hengl et al.21.Full size imageIn this work we used a somewhat simplified version of Eq. (2) with only two scale-components: coarse ((S_2); 250 m) and fine ((S_1); 30 m). We produce the coarse-scale and fine-scale predictions independently, then merge using a weighted average43:$$begin{aligned} {hat{y}}({mathbf{s}}_{mathtt {B}}) = frac{sum _{i=1}^{2}{ w_i cdot S_i({mathbf{s}}_{mathtt {B}})}}{sum _{i=1}^{2}{ w_i }}, ; ; w_i = frac{1}{sigma _{i,mathrm{CV}}^2} end{aligned}$$
    (3)
    where ({hat{y}}({mathbf{s}}_{mathtt {B}})) is the ensemble prediction, (w_i) is the model weight and (sigma _{i,mathrm{CV}}^2) is the model squared prediction error obtained using cross-validation. This is an example of Ensemble Models fitted for coarse-scale model for soil pH:and the fine-scale model for soil pH:Note that in this case the coarse-scale model is somewhat more accurate with (mathrm {RMSE}=0.463), while the 30 m covariates achieve at best (mathrm {RMSE}=0.661), hence the weights for 250 m model are about 2(times) higher than for the 30 m resolution models. A step-by-step procedure explaining in detail how the 2-scale predictions are derived and merged is available at https://gitlab.com/openlandmap/spatial-predictions-using-eml. An R package landmap44 that implements the procedure in a few lines of code is also available.Transformation of log-normally distributed nutrients and propertiesFor the majority of log-normal distributed (right-skewed) variables we model and predict the ln-transformed values ((log _e(x+1))), then provide back-transformed predictions ((e^{x}-1)) to users via iSDAsoil. Note that also pH is a log-transformed variable of the hydrogen ion concentrations.Although ln-transformation is not required for non-linear models such as Random Forest or Gradient Boosting, we decided to apply it to give proportionally higher weights to lower values. This is, in principle, a biased decision by us the modelers as our interest is in improving predictions of critical values for agriculture i.e. producing maps of nutrient deficiencies and similar (hence focus on smaller values). If the objective of mapping was to produce soil organic carbon of peatlands or similar, then the ln-transformation could have decreased the overall accuracy, although with Machine Learning models sometimes it is impossible to predict effects as they are highly non-linear.Derivation of prediction errorsWe also provide per-pixel uncertainty in terms of prediction errors or prediction intervals (e.g. 50%, 68% and/or 90% probability intervals)45. Because stacking of learners is based on repeated resampling, the prediction errors (per pixel) can be determined using either:

    1.

    Quantile Regression Random Forest46, in our case by using the 4–5 base learners,

    2.

    Simplified procedure using Bootstraping, then deriving prediction errors as standard deviation from multiple independently fitted learners1.

    Both are non-parametric techniques and the prediction errors do not require any assumptions or initial parameters, but come at a cost of extra computing. By default, we provide prediction errors with a probability of 67%, which is the 1 standard deviation upper and lower prediction interval. Prediction errors indicate extrapolation areas and should help users minimize risks of taking decisions.For derivation of prediction interval via either Quantile Regression RF or bootstrapping, it is important to note that the individual learners must be derived using randomized subsets of data (e.g. fivefold) which are spatially separated using block Cross-Validation or similar, otherwise the results might be over-optimistic and prediction errors too narrow.Figure 9Schematic example of the derivation of a pooled variance ((sigma _{mathtt {250m+30m}})) using the 250 m and 30 m predictions and predictions errors with (a) larger and (b) smaller differences in independent predictions.Full size imageFurther, the pooled variance (({hat{sigma }}_E)) from the two independent models (250 m and 100 m scales in Fig. 7) can be derived using47:$$begin{aligned} {hat{sigma }}_E = sqrt{sum _{j=1}^{s}{w_j cdot (hat{sigma }_j^2+{hat{mu }}_j^2 )} – left( sum _{j=1}^{s}{w_j cdot {hat{mu }}_j} right) ^2 }, ; ; sum _{j=1}^{s}{w_j} = 1 end{aligned}$$
    (4)
    where (sigma _j^2) is the prediction error for the independent components, ({hat{mu }}_j) is the predicted value, and w are the weights per predicted component (need to sum up to 1). If the two independent models (250 m and 30 m) produce very similar predictions so that ({hat{mu }}_{mathtt {250}} approx {hat{mu }}_{mathtt {30}}), then the pooled variance approaches the geometric mean of the two variances; if the independent predictions are different (({hat{mu }}_{mathtt {250}} – {hat{mu }}_{mathtt {30}} > 0)) than the pooled variances increase proportionally to this additional difference (Fig. 9).Accuracy assessment of final mapsWe report overall average accuracy in Table 1 and Fig. 4 using spatial fivefold Cross-Validation with model refitting1,48. For each variable we then compute the following three metrics: (1) Root Mean Square Error, (2) R-square from the meta-learner, and (3) Concordance Correlation Coefficient (Fig. 4), which is derived using49:$$begin{aligned} rho _c = frac{2 cdot rho cdot sigma _{{{hat{y}}}} cdot sigma _y }{ sigma _{{{hat{y}}}}^2 + sigma _y^2 + (mu _{{{hat{y}}}} – mu _y)^2} end{aligned}$$
    (5)
    where ({{hat{y}}}) are the predicted values and y are actual values at cross-validation points, (mu _{{{hat{y}}}}) and (mu _y) are predicted and observed means and (rho) is the correlation coefficient between predicted and observed values. CCC is the most appropriate performance criteria when it comes to measuring agreement between predictions and observations.For Cross-validation we use the spatial tile ID produced in the equal-area projection system for Africa (Lambert Azimuthal EPSG:42106) as the blocking parameter in the training function in mlr. This ensures that points falling in close proximity ( More

  • in

    Satellite remote sensing of deforestation for oil palm

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More