Synchrony and multimodality in the timing of Atlantic salmon smolt migration in two Norwegian fjords
1.Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Change Biol. 20, 61–75 (2014).ADS
Article
Google Scholar
2.Thorstad, E. B., Whoriskey, F., Rikardsen, A. H. & Aarestrup, K. Aquatic nomads: The life and migrations of the Atlantic salmon. In Atlantic Salmon Ecology (eds Aas, Ø. et al.) 1–32 (Wiley-Blackwell, 2010) https://doi.org/10.1002/9781444327755.ch1.
Google Scholar
3.Harvey, A. C., Glover, K. A., Wennevik, V. & Skaala, Ø. Atlantic salmon and sea trout display synchronised smolt migration relative to linked environmental cues. Sci. Rep. 10, 3529 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Jensen, A. J. et al. Timing of smolt migration in sympatric populations of Atlantic salmon (Salmo salar), brown trout (Salmo trutta), and Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 69, 711–723 (2012).Article
Google Scholar
5.Hansen, L. P. & Jonsson, B. Salmon ranching experiments in the River Imsa: Effect of timing of Atlantic salmon (Salmo salar) smolt migration on survival to adults. Aquaculture 82, 367–373 (1989).Article
Google Scholar
6.Hvidsten, N. A. et al. Influence of sea temperature and initial marine feeding on survival of Atlantic salmon (Salmo salar) post-smolts from the Rivers Orkla and Hals, Norway. J. Fish Biol. 74, 1532–1548 (2009).CAS
PubMed
Article
Google Scholar
7.Hvidsten, N. A., Heggberget, T. & Jensen, A. J. Sea water temperatures at Atlantic salmon smolt enterance. Nord. J. Freshw. Res. 74, 79–86 (1998).8.Otero, J. et al. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers. PLoS ONE 6, e24005 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
9.Rikardsen, A. H. & Dempson, J. B. Dietary life-support: the food and feeding of Atlantic salmon at sea. In Atlantic Salmon Ecology (eds. Aas, Ø., Klemetsen, A., Einum, S. & Skurdal, J.) 115–143 (Wiley, 2011).10.Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS
CAS
PubMed
Article
Google Scholar
11.Piou, C. & Prévost, E. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon. Glob. Change Biol. 19, 711–723 (2013).ADS
Article
Google Scholar
12.McCormick, S. D., Hansen, L. P., Quinn, T. P. & Saunders, R. L. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55, 77–92 (1998).Article
Google Scholar
13.Thorstad, E. B. et al. A critical life stage of the Atlantic salmon (Salmo salar): Behaviour and survival during the smolt and initial post-smolt migration. J. Fish Biol. 81, 500–542 (2012).CAS
PubMed
Article
Google Scholar
14.Aldrin, M., Storvik, B., Kristoffersen, A. B. & Jansen, P. A. Space-time modelling of the spread of salmon lice between and within Norwegian marine salmon farms. PLoS ONE 8, e64039 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
15.Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).Article
Google Scholar
16.Kristoffersen, A. B. et al. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms. Epidemics 9, 31–39 (2014).PubMed
Article
Google Scholar
17.Bøhn, T. et al. Timing is everything: Survival of Atlantic salmon (Salmo salar) postsmolts during events of high salmon lice densities. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13612 (2020).Article
Google Scholar
18.Berge, Å. I. et al. Development of salinity tolerance in underyearling smolts of Atlantic salmon (Salmo salar) reared under different photoperiods. Can. J. Fish. Aquat. Sci. 52, 243–251 (1995).Article
Google Scholar
19.Hoar, W. S. 4 The physiology of smolting salmonids. In Fish Physiology Vol. 11 (eds Hoar, W. S. & Randall, D. J.) 275–343 (Academic Press, 1988).
Google Scholar
20.Saunders, R. L. & Henderson, E. B. Influence of photoperiod on smolt development and growth of Atlantic salmon (Salmo solar). J. Fish. Res. Board Can. 27, 1295–1311 (1970).Article
Google Scholar
21.Strand, J. E. T., Hazlerigg, D. & Jørgensen, E. H. Photoperiod revisited: Is there a critical day length for triggering a complete parr-smolt transformation in Atlantic salmon (Salmo salar)?. J. Fish Biol. 93, 440–448 (2018).CAS
PubMed
Article
Google Scholar
22.Antonsson, T. & Gudjonsson, S. Variability in timing and characteristics of Atlantic salmon smolt in Icelandic rivers. Trans. Am. Fish. Soc. 131, 643–655 (2002).Article
Google Scholar
23.Kennedy, R. & Crozier, W. Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J. Fish Biol. 76, 1786–1805 (2010).CAS
PubMed
Article
Google Scholar
24.Hvidsten, N. A., Jensen, A. J., Vivås, H. & Bakke, Ø. Downstream migration of Atlantic salmon smolts in relation to water flow, water temperature, moon phase and social interaction. Nord. J. Freshw. Res. 70, 38–48 (1995).25.Urke, H. A., Kristensen, T., Ulvund, J. B. & Alfredsen, J. A. Riverine and fjord migration of wild and hatchery-reared Atlantic salmon smolts. Fish. Manag. Ecol. 20, 544–552 (2013).Article
Google Scholar
26.Carlsen, K. T., Berg, O. K., Finstad, B. & Heggberget, T. G. Diel periodicity and environmental influence on the smolt migration of Arctic charr, Salvelinus alpinus, Atlantic salmon, Salmo salar, and Brown Trout, Salmo trutta, Northern Norway. Environ. Biol. Fishes 70, 403–413 (2004).Article
Google Scholar
27.Birnie-Gauvin, K., Larsen, M. H., Thomassen, S. T. & Aarestrup, K. Testing three common stocking methods: Differences in smolt size, migration rate and timing of two strains of stocked Atlantic salmon (Salmo salar). Aquaculture 483, 163–168 (2018).Article
Google Scholar
28.Nielsen, C., Holdensgaard, G., Petersen, H. C., Bjornsson, BTh. & Madsen, S. S. Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J. Fish Biol. 59, 28–44 (2001).CAS
Article
Google Scholar
29.Orciari, R. D. & Leonard, G. H. Length characteristics of smolts and timing of downstream migration among three strains of Atlantic salmon in a southern New England stream. N. Am. J. Fish. Manag. 16, 851–860 (1996).Article
Google Scholar
30.Skaala, Ø. et al. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol. Appl. 12, 1001–1016 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Cooke, S. J. et al. Tracking animals in freshwater with electronic tags: Past, present and future. Anim. Biotelemetry 1, 5 (2013).MathSciNet
Article
Google Scholar
32.Lennox, R. J. et al. Envisioning the future of aquatic animal tracking: Technology, science, and application. Bioscience 67, 884–896 (2017).Article
Google Scholar
33.Finstad, B., Okland, F., Thorstad, E. B., BjOrn, P. A. & McKinley, R. S. Migration of hatchery-reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. J. Fish Biol. 66, 86–96 (2005).Article
Google Scholar
34.McMichael, G. A. et al. The juvenile salmon acoustic telemetry system: A new tool. Fisheries 35, 9–22 (2010).Article
Google Scholar
35.Welch, D. W. et al. Freshwater and marine migration and survival of endangered Cultus Lake sockeye salmon (Oncorhynchus nerka) smolts using POST, a large-scale acoustic telemetry array. Can. J. Fish. Aquat. Sci. 66, 736–750 (2009).Article
Google Scholar
36.Nilsen, F. et al. Vurdering av lakselusindusert villfiskdødelighet per produksjonsområde i 2018. Rapp. Fra Ekspertgruppe Vurder. Av Lusepåvirkning Append 2, 62 (2018).
Google Scholar
37.Mulcahy, D. M. Surgical implantation of transmitters into fish. ILAR J. 44, 295–306 (2003).CAS
PubMed
Article
Google Scholar
38.Cooke, S. J. & Wagner, G. N. Training, experience, and opinions of researchers who use surgical techniques to implant telemetry devices into fish. Fisheries 29, 10–18 (2004).Article
Google Scholar
39.Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Grün, B. & Leisch, F. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw. 28, 1–35 (2008).Article
Google Scholar
41.Leisch, F. FlexMix: A general framework for finite mixture models and latent class regression in R. J. Stat. Softw. 11, 1–18 (2004).Article
Google Scholar
42.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).
Google Scholar
43.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. arXiv:1406.5823Stat (2014).44.Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article
Google Scholar
45.Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. 25 http://www.afsc.noaa.gov/Publications/ProcRpt/PR2013-01.pdf (2013).46.White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article
Google Scholar
47.Burnham, K. P. Design and analysis methods for fish survival experiments based on release-recapture. Am. Fish. Soc. Monogr. 5, 1–437 (1987).
Google Scholar
48.Michel, C. J. et al. Chinook salmon outmigration survival in wet and dry years in California’s Sacramento River. Can. J. Fish. Aquat. Sci. 72, 1749–1759 (2015).Article
Google Scholar
49.Persson, L., Kagervall, A., Leonardsson, K., Royan, M. & Alanärä, A. The effect of physiological and environmental conditions on smolt migration in Atlantic salmon Salmo salar. Ecol. Freshw. Fish 28, 190–199 (2019).Article
Google Scholar
50.Whalen, K. G., Parrish, D. L. & McCormick, S. D. Migration timing of Atlantic salmon smolts relative to environmental and physiological factors. Trans. Am. Fish. Soc. 128, 289–301 (1999).Article
Google Scholar
51.Haraldstad, T., Kroglund, F., Kristensen, T., Jonsson, B. & Haugen, T. O. Diel migration pattern of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) smolts: An assessment of environmental cues. Ecol. Freshw. Fish 26, 541–551 (2017).Article
Google Scholar
52.Skilbrei, O. T., Wennevik, V., Dahle, G., Barlaup, B. & Wiers, T. Delayed smolt migration of stocked Atlantic salmon parr. Fish. Manag. Ecol. 17, 493–500 (2010).Article
Google Scholar
53.Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2019).PubMed
Article
Google Scholar
54.Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).Article
Google Scholar
55.Urke, H. A., Arnekleiv, J. V., Nilsen, T. O. & Nilssen, K. J. Development of seawater tolerance and subsequent downstream migration in wild and stocked young-of-the-year derived Atlantic salmon Salmo salar smolts. J. Fish Biol. 84, 178–192 (2014).CAS
PubMed
Article
Google Scholar
56.Virtanen, E., Söderholm-Tana, L., Soivio, A., Foreman, L. & Muona, M. Effect of physiological condition and smoltification status at smolt release on subsequent catches of adult salmon. Aquaculture 97, 231–257 (1991).Article
Google Scholar
57.Björnsson, B. T., Stefansson, S. O. & McCormick, S. D. Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 170, 290–298 (2011).PubMed
Article
CAS
Google Scholar
58.Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D. Smoltification. In Fish Larval Physiology (eds. Finn, R. N. & Kapoor, B. G.) 639–681 (Science Publishers, 2008).59.McCormick, S. D., Shrimpton, J. M., Nilsen, T. O. & Ebbesson, L. O. Advances in our understanding of the parr-smolt transformation of juvenile salmon: A summary of the 10th International Workshop on Salmon Smoltification. J. Fish Biol. 93, 437–439 (2018).CAS
PubMed
Article
Google Scholar
60.Simons, A. Playing smart vs. playing safe: The joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments. J. Evol. Biol. 27, 1047–1056 (2014).CAS
PubMed
Article
Google Scholar
61.Finstad, B. & Jonsson, N. Factors influencing the yield of smolt releases in Norway. Nord. J. Freshw. Res. 75, 37–55 (2001).62.Diserud, O. H., Hindar, K., Karlsson, S., Glover, K. A. & Skaala, Ø. Genetic impact of escaped farmed Atlantic salmon on wild salmon populations—status 2017. NINA Rapp. 1337, 55 (2017).
Google Scholar
63.Vollset, K. W. et al. Can the river location within a fjord explain the density of Atlantic salmon and sea trout?. Mar. Biol. Res. 10, 268–278 (2014).Article
Google Scholar
64.Lacroix, G. L., Knox, D. & McCurdy, P. Effects of implanted dummy acoustic transmitters on juvenile Atlantic salmon. Trans. Am. Fish. Soc. 133, 211–220 (2004).Article
Google Scholar
65.Newton, M. et al. Does size matter? A test of size-specific mortality in Atlantic salmon Salmo salar smolts tagged with acoustic transmitters. J. Fish Biol. 89, 1641–1650 (2016).CAS
PubMed
Article
Google Scholar
66.Hansen, L. P., Holm, M., Hoist, J. C. & Jacobsen, J. A. The ecology of post-smolts of Atlantic salmon. In Salmon at the Edge (ed. Mills, D.) 25–39 (Blackwell Science Ltd., 2003) https://doi.org/10.1002/9780470995495.ch4.
Google Scholar
67.Gregory, S. D. et al. Atlantic salmon return rate increases with smolt length. ICES J. Mar. Sci. 76, 1702–1712 (2019).Article
Google Scholar
68.Bjørn, P. A. et al. Metodeutvikling for overvåkning og telling av lakselus på viltlevende laksefisk: Ekstrainnsats i 2010 med midler fra FKD. (2011).69.Riley, W. D. et al. Development of schooling behaviour during the downstream migration of Atlantic salmon Salmo salar smolts in a chalk stream: Development of schooling in Salmo salar smolts. J. Fish Biol. 85, 1042–1059 (2014).CAS
PubMed
Article
Google Scholar
70.Daniels, J., Sutton, S., Webber, D. & Carr, J. Extent of predation bias present in migration survival and timing of Atlantic salmon smolt (Salmo salar) as suggested by a novel acoustic tag. Anim. Biotelemetry 7, 16 (2019).Article
Google Scholar
71.Halttunen, E. et al. Migration of Atlantic salmon post-smolts in a fjord with high infestation pressure of salmon lice. Mar. Ecol. Prog. Ser. 592, 243–256 (2018).ADS
Article
Google Scholar
72.Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar More
