1.
FAO, ITPS. Status of the World’s Soil Resources – Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. Rome, Italy. https://www.fao.org/3/a-i5199e.pdf.
2.
UN (United Nations). Sustainable Development Goals [online]. 2015. https://www.un.org/sustainabledevelopment/sustainabledevelopment-goals/.
3.
FAO. 2019. Soil erosion: the greatest challenge for sustainable soil management. Rome: Food and Agriculture Organization of the United Nations; 2019. p. 104.
Google Scholar
4.
Pimentel D, Harvey C, Resosudarmo P, Sinclair K, Kurz D, McNair M, et al. Environmental and economic costs of soil erosion and conservation benefits. Science. 1995;267:1117–23.
CAS PubMed Article Google Scholar
5.
Borrelli P, Robinson DA, Fleischer LR, Lugato E, Ballabio C, Alewell C, et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun. 2017;8:1–13.
CAS Article Google Scholar
6.
UN (United Nations). World Soil Day [online]. 2019. https://www.un.org/en/observances/world-soil-day.
7.
Van Oost K, Bakker MM. Soil productivity and erosion. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, et al. (eds.). Soil ecology and ecosystem services. Oxford, UK: Oxford University Press; 2012. 301–14.
8.
Gregorich EG, Greer KJ, Anderson DW, Liang BC. Carbon distribution and losses: erosion and deposition effects. Soil Res. 1998;47:291–302.
Google Scholar
9.
Lal R, Pimentel D. Soil erosion: a carbon sink or source? Science. 2008;319:1040–2.
CAS PubMed Article Google Scholar
10.
Mendonça R, Müller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, et al. Organic carbon burial in global lakes and reservoirs. Nat Commun. 2017;8:1694.
PubMed PubMed Central Article CAS Google Scholar
11.
Quinton JN, Govers G, Van Oost K, Bardgett RD. The impact of agricultural soil erosion on biogeochemical cycling. Nat Geosci. 2010;3:311–4.
CAS Article Google Scholar
12.
Smith RW, Bianchi TS, Allison M, Savage C, Galy V. High rates of organic carbon burial in fjord sediments globally. Nat Geosci. 2015;8:450–U46.
CAS Article Google Scholar
13.
Van Oost K, Quine TA, Govers G, De Gryze S, Six J, Harden JW, et al. The impact of agricultural soil erosion on the global carbon cycle. Science. 2007;318:626–9.
PubMed Article CAS Google Scholar
14.
Maestre FT, Quero JL, Gotelli NJ, Escudero A, Ochoa V, Delgado-Baquerizo M, et al. Plant species richness and ecosystem multifunctionality in global drylands. Science. 2012;335:214–8.
CAS PubMed PubMed Central Article Google Scholar
15.
Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:10541.
CAS PubMed PubMed Central Article Google Scholar
16.
Fanin N, Gundale MJ, Farrell M, Ciobanu M, Baldock JA, Nilsson MC, et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat Ecol Evol. 2018;2:269–78.
PubMed Article Google Scholar
17.
Garland G, Banerjee S, Edlinger A, Oliveira EM, Herzog C, Wittwer R, et al. A closer look at the functions behind ecosystem multifunctionality: a review. J Ecol. 2020, https://doi.org/10.1111/1365-2745.13511.
18.
Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.
CAS PubMed Article Google Scholar
19.
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.
CAS PubMed Article Google Scholar
20.
Wall H, Nielsen UN, Six J. Soil biodiversity and human health. Nature. 2015;528:69–76.
CAS PubMed Article Google Scholar
21.
Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.
Article Google Scholar
22.
Crowther TW, Van Den Hoogen J, Wan J, Mayes MA, Keiser AD, Mo L, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550.
CAS PubMed Article Google Scholar
23.
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.
PubMed PubMed Central Article CAS Google Scholar
24.
Zhou J, Deng Y, Luo F, He Z, Yang Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. MBio. 2011;2:e00122–11.
PubMed PubMed Central Article Google Scholar
25.
Bragazza L, Parisod J, Buttler A, Bardgett RD. Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands. Nat Clim Change. 2013;3:273–7.
CAS Article Google Scholar
26.
Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, et al. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci USA. 2015;112:7033–8.
CAS PubMed Article Google Scholar
27.
Maestre FT, Delgado-Baquerizo M, Jeffries TC, Eldridge DJ, Ochoa V, Gozalo B, et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc Natl Acad Sci USA. 2015;112:15684–9.
CAS PubMed Article Google Scholar
28.
Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent succession of grassland microbial communities. Nat Clim Change. 2018;8:813–8.
Article Google Scholar
29.
Li Z, Tian D, Wang B, Wang J, Wang S, Chen H, et al. Microbes drive global soil nitrogen mineralization and availability. Glob Change Biol. 2019;25:1078–88.
Article Google Scholar
30.
Wieder WR, Bonan GB, Allison SD. Global soil carbon projections are improved by modelling microbial processes. Nat Clim Change. 2013;3:909–12.
CAS Article Google Scholar
31.
Chen Q, Dong J, Zhu D, Hu H, Delgado-Baquerizo M, Ma Y, et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol Biochem. 2020;141:107686.
CAS Article Google Scholar
32.
Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.
PubMed Article Google Scholar
33.
Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, Van Der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.
PubMed PubMed Central Article CAS Google Scholar
34.
Van der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310.
Article Google Scholar
35.
Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.
Article CAS Google Scholar
36.
Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.
PubMed PubMed Central Article Google Scholar
37.
Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology. 2018;99:690–9.
PubMed Article Google Scholar
38.
Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.
CAS PubMed Article Google Scholar
39.
Banerjee S, Schlaeppi K, Van Der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.
CAS PubMed Article Google Scholar
40.
Herren CM, McMahon KD. Keystone taxa predict compositional change in microbial communities. Environ Microbiol. 2018;20:2207–17.
PubMed Article Google Scholar
41.
Ochoa-Hueso R, Collins SL, Delgado-Baquerizo M, Hamonts K, Pockman WT, Sinsabaugh RL, et al. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents. Glob Change Biol. 2018;24:2818–27.
Article Google Scholar
42.
Mabuhay JA, Nakagoshi N, Isagi Y. Influence of erosion on soil microbial biomass, abundance and community diversity. Land Degrad Dev. 2004;15:183–95.
Article Google Scholar
43.
Li Z, Xiao H, Tang Z, Huang J, Nie X, Huang B, et al. Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China. Eur J Soil Biol. 2015;71:37–44.
CAS Article Google Scholar
44.
Hou S, Xin M, Wang LL, Jiang H, Li N, Wang Z. The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China. Acta Ecologica Sin. 2014;34:295–301.
Article Google Scholar
45.
Zhang Y, Wu Y, Liu B, Zheng Q, Yin J. Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China. Soil Res. 2007;96:28–41.
Google Scholar
46.
Li H, Zhu H, Qiu L, Wei X, Liu B, Shao M. Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China. Agr Ecosyst Environ. 2020;302:107081.
CAS Article Google Scholar
47.
Zheng F. Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere 2006;16:420–7.
Article Google Scholar
48.
Page A, Miller R, Keeney D. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, Wisconsin, American Society of Agronomy, Inc., Soil Science Society of America, Inc, 1982.
49.
Brookes P, Landman A, Pruden G, Jenkinson D. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.
CAS Article Google Scholar
50.
Lefcheck JS, Byrnes JEK, Isbell F, Gamfeldt L, Griffin JN, Eisenhauer N, et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun. 2015;6:6936.
CAS PubMed PubMed Central Article Google Scholar
51.
Maestre FT, Castillo-Monroy AP, Bowker MA, Ochoa-Hueso R. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern. J Ecol. 2012;100:317–30.
CAS Article Google Scholar
52.
Wang Z, Zhang Q, Staley C, Gao H, Ishii S, Wei X, et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability. Biol Fertil Soils. 2019;55:121–34.
CAS Article Google Scholar
53.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
CAS PubMed PubMed Central Article Google Scholar
54.
Mueller RC, Paula FS, Mirza BS, Rodrigues JLM, Nuesslein K, Bohannan BJM. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. ISME J. 2014;8:1548–50.
CAS PubMed PubMed Central Article Google Scholar
55.
Al-Ghalith GA, Hillmann B, Ang K, Shields-Cutler R, Knights D. SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control. mSystems. 2018;3:e00202–17.
CAS PubMed PubMed Central Article Google Scholar
56.
Al-Ghalith GA, Montassier E, Ward HN, Knights D. NINJA-OPS: fast accurate marker gene alignment using concatenated ribosomes. PLoS Comput Biol. 2016;12:e1004658.
PubMed PubMed Central Article CAS Google Scholar
57.
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
CAS PubMed PubMed Central Article Google Scholar
58.
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.
CAS PubMed Article Google Scholar
59.
Bray JR, Curtis JT. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr. 1957;27:326–49.
Article Google Scholar
60.
Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
Article Google Scholar
61.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.3-1. 2015, http://CRAN.R-project.org/package=vegan.
62.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.
Article CAS Google Scholar
63.
Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.
CAS Article Google Scholar
64.
Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.
Article Google Scholar
65.
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Syst. 2006;1695:1–9.
Google Scholar
66.
Ma B, Wang HZ, Dsouza M, Lou J, He Y, Dai ZM, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.
CAS PubMed PubMed Central Article Google Scholar
67.
Berry D, Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol. 2014;5:219.
PubMed PubMed Central Article Google Scholar
68.
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM Conf. 2009;8:361–2.
Google Scholar
69.
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–7.
CAS PubMed Article PubMed Central Google Scholar
70.
Qiu L, Zhu H, Liu J, Yao Y, Wang X, Rong G, et al. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agr Ecosyst Environ. 2021;307:107232.
CAS Article Google Scholar
71.
Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, et al. Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome. 2013;1:28.
PubMed PubMed Central Article Google Scholar
72.
Tiemann LK, Billings SA. Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem. 2011;43:1837–47.
CAS Article Google Scholar
73.
Banerjee S, Misra A, Sar A, Pal S, Chaudhury S, Dam B. Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles. Appl Soil Ecol. 2020;152:103544.
Article Google Scholar
74.
Abu-Hamdeh NH, Reeder RC. Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter. Soil Sci Soc Am J. 2000;64:1285–90.
CAS Article Google Scholar
75.
Bajracharya RM, Lal R, Kimble JM. Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio. Soil Sci Soc Am J. 2000;64:286–93.
CAS Article Google Scholar
76.
Liang Y, Lal R, Guo S, Liu R, Hu Y. Impacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central Ohio. Sci Rep. 2018;8:520.
PubMed PubMed Central Article CAS Google Scholar
77.
Van Der Voort M, Kempenaar M, Van Driel M, Raaijmakers JM, Mendes R. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett. 2016;19:375–82.
PubMed Article PubMed Central Google Scholar
78.
García-Palacios P, Vandegehuchte ML, Shaw EA, Dam M, Post KH, Ramirez KS, et al. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Change Biol. 2015;21:1590–1600.
Article Google Scholar
79.
Karimi B, Terrat S, Dequiedt S, Saby NPA, Horriguel W, Lelievre M, et al. Biogeography of soil bacteria and archaea across France. Sci Adv. 2018;4:eaat1808.
PubMed PubMed Central Article Google Scholar
80.
Janssen PH. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microb. 2006;72:1719–28.
CAS Article Google Scholar
81.
Spain AM, Krumholz LR, Elshahed MS. Abundance, composition, diversity and novelty of soil Proteobacteria. ISME J. 2009;3:992–1000.
CAS PubMed Article Google Scholar
82.
Zhang C, Liu G, Xue S, Wang G. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biol Biochem. 2016;97:40–49.
CAS Article Google Scholar
83.
Wolińska A, Kuzniar A, Zielenkiewicz U, Izak D, Szafranek-Nakonieczna A, Banach A, et al. Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach. Appl Soil Ecol. 2017;119:128–37.
Article Google Scholar
84.
DeBruyn LM, Nixon LT, Fawaz MN, Johnson AM, Radosevich M. Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil. Appl Environ Microb. 2011;77:6295–6300.
CAS Article Google Scholar
85.
Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, et al. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013;7:384–94.
CAS PubMed Article Google Scholar
86.
Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 2017;11:2691–704.
PubMed PubMed Central Article Google Scholar
87.
Santos-Medellin C, Edwards J, Liechty Z, Nguyen B, Sundaresan V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio. 2017;8:e00764–17.
PubMed PubMed Central Article Google Scholar
88.
Chowdhury TR, Lee JY, Bottos EM, Brislawn CJ, White RA, Bramer LM, et al. Metaphenomic responses of a native prairie soil microbiome to moisture perturbations. mSystems. 2019;4:e00061–19.
Google Scholar
89.
Mickan BS, Abbott LK, Solaiman ZM, Mathes F, Siddique KHM, Jenkins SN. Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil. Biol Fert Soils. 2019;55:53–66.
CAS Article Google Scholar
90.
Van Horn DJ, Okie JG, Buelow HN, Gooseff MN, Barrett JE, Takacs-Vesbach CD. Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl Environ Microb. 2014;80:3034–43.
Article CAS Google Scholar
91.
Kielak A, Pijl AS, Van Veen JA, Kowalchuk GA. Phylogenetic diversity of Acidobacteria in a former agricultural soil. ISME J. 2009;3:378–82.
CAS PubMed Article Google Scholar
92.
Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.
CAS PubMed Article Google Scholar
93.
Wolińska A, Kuzniar A, Zielenkiewicz U, Banach A, Blaszczyk M. Indicators of arable soils fatigue Bacterial – families and genera: a metagenomic approach. Ecol Indic. 2018;93:490–500.
Article Google Scholar
94.
Yang F, Niu KC, Collins CG, Yan XB, Ji YG, Ling N. Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow. Land Degrad Dev. 2019;30:49–59.
Article Google Scholar
95.
Vitousek PM, Menge DNL, Reed SC, Cleveland CC. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems. Philos Trans R Soc B Biol Sci. 2013;368:1621.
Article CAS Google Scholar
96.
Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Wu YY, Zhu M, et al. Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome. 2019;7:143.
PubMed PubMed Central Article Google Scholar
97.
Ryu MH, Zhang J, Toth T, Khokhani D, Geddes BA, Mus F, et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol. 2020;5:314–30.
CAS PubMed Article Google Scholar
98.
Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem. 2016;97:188–98.
CAS Article Google Scholar
99.
Guo J, Ling N, Chen Z, Xue C, Li L, Liu L, et al. Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes. N Phytol. 2020;226:232–43.
Article Google Scholar
100.
Qi G, Ma G, Chen S, Lin C, Zhao X. Microbial network and soil properties are changed in bacterial wilt-susceptible soil. Appl Environ Microb. 2019;85:e00162–19.
CAS Google Scholar
101.
Xue L, Ren H, Brodribb TJ, Wang J, Yao X, Li S. Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation. For Ecol Manag. 2020;459:117805.
Article Google Scholar
102.
Ling N, Zhu C, Xue C, Chen H, Duan YH, Peng C. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 2016;99:137–49.
CAS Article Google Scholar
103.
Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinforma. 2012;13:113.
Article Google Scholar
104.
Bai YX, She WW, Miao L, Qin SG, Zhang YQ. Soil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern China. Soil Biol Biochem. 2020;150:108013.
CAS Article Google Scholar
105.
Szoboszlay M, Dohrmann AB, Poeplau C, Don A, Tebbe CC. Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiol Ecol. 2017;93:fix146.
Article CAS Google Scholar
106.
Marcos MS, Bertiller MB, Olivera NL. Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size. Appl Soil Ecol. 2019;138:223–32.
Article Google Scholar
107.
Hamamura N, Olson SH, Ward DM, Inskeep WP. Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Appl Environ Microb. 2006;72:6316–24.
CAS Article Google Scholar
108.
Acosta‐Martínez V, Cotton J, Gardner T, Moore‐Kucera J, Zak J, Wester D, et al. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol. 2014;84:69–82.
Article Google Scholar
109.
Peng M, Jia H, Wang Q. The effect of land use on bacterial communities in Saline-Alkali soil. Curr Microbiol. 2017;74:325–33.
CAS PubMed Article Google Scholar
110.
Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol. 2015;24:2433–48.
CAS PubMed Article Google Scholar
111.
Byers AK, Condron L, Donavan T, O’Callaghan M, Patuawa T, Waipara N, et al. Soil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forest. FEMS Microbiol Ecol. 2020;96:fiaa047.
CAS PubMed PubMed Central Article Google Scholar
112.
Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, et al. Trumbore, Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–56.
CAS PubMed Article PubMed Central Google Scholar
113.
Lehmann J, Kleber M. The contentious nature of soil organic matter. Nature. 2015;528:60–68.
CAS PubMed Article PubMed Central Google Scholar
114.
Buzzard V, Michaletz ST, Deng Y, He Z, Ning D, Shen L, et al. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol. 2019;3:1298–308.
PubMed Article PubMed Central Google Scholar
115.
Wei X, Shao M, Gale W, Li L. Global pattern of soil carbon losses due to the conversion of forests to agricultural land. Sci Rep. 2014;4:4062.
PubMed PubMed Central Article CAS Google Scholar
116.
Delgado‐Baquerizo M, Reith F, Dennis PG, Hamonts K, Powell JR, Young A, et al. Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere. Ecology. 2018;99:583–96.
PubMed Article PubMed Central Google Scholar
117.
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.
CAS PubMed Article Google Scholar
118.
Nottingham AT, Fierer N, Turner BL, Whitaker J, Ostle NJ, McNamara NP, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes. Ecology. 2018;99:2455–66.
PubMed PubMed Central Article Google Scholar
119.
Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:12083.
CAS PubMed PubMed Central Article Google Scholar
120.
Allison SD, Martiny JBH, et al. Resistance resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008;105:11512–9.
CAS PubMed Article Google Scholar
121.
Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 2014;8:226–44.
CAS PubMed Article Google Scholar More