More stories

  • in

    An ankylosaur larynx provides insights for bird-like vocalization in non-avian dinosaurs

    Reilly, S. M. & Lauder, G. V. The evolution of tetrapod feeding behavior: kinematic homologies in prey transport. Evolution 44, 1542–1557 (1990).Article 

    Google Scholar 
    Iwasaki, S. Evolution of the structure and function of the vertebrate tongue. J. Anat. 201, 1–13 (2002).Article 

    Google Scholar 
    Fitch, W. T. & Suthers, R. A. In Vertebrate Sound Production and Acoustic Communication (eds Suthers, R. A., Fitch, W. T., Fay, R. R., & Popper, A. N.) 1–18 (Springer, 2016).Carroll, R. L. The Palaeozoic ancestry of salamanders, frogs and caecilians. Zool. J. Linn. Soc. 150, 1–140 (2007).Article 

    Google Scholar 
    Schwenk, K. in Feeding: Form, Function and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 175–291 (Academic Press, 2000).Schwenk, K. & Rubega, M. In Physiological and ecological adaptations to feeding in vertebrates, (eds. Starck, M. & Wang, T.) 1–41 (Science Pub. Inc., 2005).Schumacher, G. H. In Biology of the Reptilia, 4 (ed Gans, C.) 101–200 (Academic Press, 1973).Reese, A. M. The laryngeal region of Alligator mississippiensis. Anat. Rec. 92, 273–277 (1945).Article 

    Google Scholar 
    Riede, T., Li, Z., Tokuda, I. & Farmer, C. G. Functional morphology of the Alligator mississippiensis larynx with implications for vocal production. J. Exp. Biol. 218, 991–998 (2015).Article 

    Google Scholar 
    McLelland, J. In Form and Function in Birds, 4 (eds King, A. S. & McLelland, J.) 69–103 (Academic Press, 1989).Homberger, D. G. In The Biology of the Avian Respiratory System (ed Maina, J. N.) 27–97 (Springer, 2017).Fitch, W. T. In Encyclopedia of Language & Linguistics (ed Brown, K.) 115–121 (Elsevier, 2006).Clarke, J. A. et al. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538, 502–505 (2016).Article 

    Google Scholar 
    Kingsley, E. P. et al. Identity and novelty in the avian syrinx. Proc. Natl Acad. Sci. USA 115, 10209–10217 (2018).Article 
    CAS 

    Google Scholar 
    Riede, T., Thomson, S. L., Titze, I. R. & Goller, F. The evolution of the syrinx: an acoustic theory. PLoS Biol. 17, e2006507 (2019).Nowicki, S. Vocal tract resonances in oscine bird sound production: evidence from birdsongs in a helium atmosphere. Nature 325, 53–55 (1987).Article 
    CAS 

    Google Scholar 
    Hill, R. V. et al. A complex hyobranchial apparatus in a Cretaceous dinosaur and the antiquity of avian paraglossalia. Zool. J. Linn. Soc. 175, 892–909 (2015).Article 

    Google Scholar 
    Li, Z. H., Zhou, Z. H. & Clarke, J. A. Convergent evolution of a mobile bony tongue in flighted dinosaurs and pterosaurs. PLoS One 13, e0198078 (2018).Article 

    Google Scholar 
    Bonaparte, J. F., Novas, F. E. & Coria, R. A. Carnotaurus sastrei Bonaparte, the horned, lightly built carnosaur from the Middle Cretaceous of Patagonia. Contrib. in Sci. Nat. Hist. Mus. L. A. 416, 1–42 (1990).Maryanska, T. Ankylosauridae (Dinosauria) from Mongolia. Palaeontol. Pol. 37, 85–151 (1977).
    Google Scholar 
    Mori, C. A comparative anatomical study on the laryngeal cartilages and laryngeal muscles of birds, and a developmental study on the larynx of the domestic fowl. Acta Med. 27, 2629–2678 (1957).
    Google Scholar 
    Siebenrock, F. Über den Kehlkopf und die Luftröhre der Schildkröten. Sitzungsberichte Der Kais. 108, 581–595 (1899).
    Google Scholar 
    Soley, J. T., Tivane, C. & Crole, M. R. Gross morphology and topographical relationships of the hyobranchial apparatus and laryngeal cartilages in the ostrich (Struthio camelus). Acta Zool. 96, 442–451 (2015).Article 

    Google Scholar 
    Olson, S. L. & Feduccia, A. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithson. Contrib. Zool. 323, 1–24 (1980).Soley, J. T., Tivane, C. & Crole, M. R. A Gross morphology and topographical relationships of the hyobranchial apparatus and laryngeal cartilages in the ostrich (Struthio camelus). Acta Zool. 94, 442–451 (2015).Article 

    Google Scholar 
    Hogg, D. A. Ossification of the laryngeal, tracheal and syringeal cartilages in the domestic fowl. J. Anat. 134, 57–71 (1982).CAS 

    Google Scholar 
    Gaunt, A. S., Stein, R. C. & Gaunt, S. L. Pressure and air flow during distress calls of the starling, Sturnus vulgaris (Aves; Passeriformes). J. Exp. Zool. 183, 241–261 (1973).Article 

    Google Scholar 
    Sacchi, R., Galeotti, P., Fasola, M. & Gerzeli, G. Larynx morphology and sound production in three species of Testudinidae. J. Morphol. 261, 175–183 (2004).Article 

    Google Scholar 
    Titze, I. R. The physics of small-amplitude oscillation of the vocal folds. J. Acoust. Soc. Am. 83, 1536–1552 (1988).Article 
    CAS 

    Google Scholar 
    Russell, A. P., Hood, H. A. & Bauer, A. M. Laryngotracheal and cervical muscular anatomy in the genus Uroplatus (Gekkota: Gekkonidae) in relation to distress call emission. Afr. J. Herpetol. 63, 127–151 (2014).Article 

    Google Scholar 
    Russell, A. P., Rittenhouse, D. R. & Bauer, A. M. Laryngotracheal morphology of Afro‐Madagascan Geckos: a comparative survey. J. Morphol. 245, 241–268 (2000).Article 
    CAS 

    Google Scholar 
    Gans, C. & Maderson, P. F. Sound producing mechanisms in recent reptiles: review and comment. Am. Zool. 13, 1195–1203 (1973).Article 

    Google Scholar 
    Galeotti, P., Sacchi, R., Fasola, M. & Ballasina, D. Do mounting vocalisations in tortoises have a communication function? A comparative analysis. Herpetol. J. 15, 61–71 (2005).
    Google Scholar 
    Fletcher, N. H. Bird song—a quantitative acoustic model. J. Theor. Biol. 135, 455–481 (1988).Article 

    Google Scholar 
    Vergne, A. L., Pritz, M. B. & Mathevon, N. Acoustic communication in crocodilians: from behaviour to brain. Biol. Rev. 84, 391–411 (2009).Article 
    CAS 

    Google Scholar 
    Marler, P. R. & Slabbekoorn, H. Nature’s music: The science of birdsong (Academic Press, San Diego, USA, 2004).White, S. S. In Sisson and Grossman’s The Anatomy of the Domestic Animals. 2 (ed Getty, R.) 1891–1897 (Saunders, Philadelphia, USA 975).Kirchner, J. A. The vertebrate larynx: adaptations and aberrations. Laryngoscope 103, 1197–1201 (1993).Article 
    CAS 

    Google Scholar 
    Mackelprang, R. & Goller, F. Ventilation patterns of the songbird lung/air sac system during different behaviors. J. Exp. Biol. 216, 3611–3619 (2013).
    Google Scholar 
    Brocklehurst, R. J., Schachner, E. R. & Sellers, W. I. Vertebral morphometrics and lung structure in non-avian dinosaurs. R. Soc. Open Sci. 5, 180983 (2018).Article 

    Google Scholar 
    Cerda, I. A., Salgado, L. & Powell, J. E. Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Paläontol. Z. 86, 441–449 (2012).Article 

    Google Scholar 
    Sereno, P. C. et al. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 3, e3303 (2008).Chiari, Y., Cahais, V., Galtier, N. & Delsuc, F. Phylogenomic analyses support the position of turtles as the sister group of birds and crocodiles (Archosauria). BMC Biol. 10, 65 (2012).Article 

    Google Scholar  More

  • in

    Tropical biodiversity linked to polar climate

    Wallace, A. R. Tropical Nature and Other Essays (Macmillan, 1878).
    Google Scholar 
    von Humboldt, A. Ansichten der Natur: mit wissenschaftlichen Erläuterungen (Cotta, 1808).
    Google Scholar 
    Brown, J. H. J. Biogeogr. 41, 8–22 (2014).Article 
    PubMed 

    Google Scholar 
    Fenton, I. S., Aze, T., Farnsworth, A., Valdes, P. & Saupe, E. E. Nature https://doi.org/10.1038/s41586-023-05712-6 (2023).Article 

    Google Scholar 
    Woodhouse, A., Swain, A., Fagan, W. F., Fraass, A. J. & Lowery, C. M. Nature https://doi.org/10.1038/s41586-023-05694-5 (2023).Article 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Biol. Rev. 92, 199–215 (2017).Article 
    PubMed 

    Google Scholar 
    Yasuhara, M. et al. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).Article 
    PubMed 

    Google Scholar 
    Song, H. et al. Proc. Natl Acad. Sci. USA 117, 17578–17583 (2020).Article 
    PubMed 

    Google Scholar 
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Science 362, eaat1327 (2018).Article 
    PubMed 

    Google Scholar 
    Janzen, D. H. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M. & Donohoe, A. Front. Earth Sci. 9, 710036 (2021).Article 

    Google Scholar 
    Penn, J. L. & Deutsch, C. Science 376, 524–526 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    The interplay between spatiotemporal overlap and morphology as determinants of microstructure suggests no ‘perfect fit’ in a bat-flower network

    Study siteThe study was conducted in the Brasília National Park (PNB), Federal District, Brazil (15º39′57″ S; 47º59′38″ W), a 42.355 ha Protected Area with a typical vegetation configuration found in the Cerrado of the central highlands of Brazil, i.e., a mosaic of gallery forest patches along rivers surrounded by a matrix of savannas and grasslands34. The climate in the region falls into the Aw category in the Köppen scale, categorizing a tropical wet savanna, with marked rainy (October to March) and dry (April to September) seasons.We carried out the study in eight fixed sampling sites scattered evenly throughout the PNB and separated by at least two kilometers from one another (Supplementary Fig. S1). The sites consisted of four cerrado sensu stricto sites (bushy savanna containing low stature trees); two gallery forest edges sites (ca. 5 m from forest edges, containing a transitional community), and two gallery forest interior sites. These three types reflect the overall availability of habitat types in the reserve (excluding grasslands) and are the most appropriate foraging areas to sample interactions as bat-visited plants are either bushes, trees, or epiphytes, but rarely herbs35.Bat and interaction samplingsWe sampled bat-plant interactions using pollen loads collected from bat individuals captured in the course of one phenological year, thus configuring an animal-centered sampling. We carried out monthly field campaigns to capture bats from October 2019 to February 2020, from August to September 2020, and from March to July 2021. In each month, we carried out eight sampling nights during periods of low moonlight intensity, each associated with one of the eight sites. Each night, we set 10 mist nets (2.6 × 12 m, polyester, denier 75/2, 36 mm mesh size, Avinet NET-PTX, Japan) at ground level randomly within the site, which were opened at sunset and closed after six hours. We accumulated a total sampling effort of 552 net-hours, 28,704 m2 of net area, or 172,224 m2h sensu Straube and Bianconi36.All captured bats were sampled for pollen, irrespective of family or feeding guild. We used glycerinated and stained gelatin cubes to collect pollen grains from the external body of bats (head, torso, wings, and uropatagium). Samples were stored individually, and care was taken not to cross-contaminate samples. Pollen types were identified by light microscopy, and palynomorphs were identified to the lowest-possible taxonomical level using an extensive personal reference pollen collection from plants from the PNB (details in next section). Palynomorphs were sometimes classified to the genus or family level or grouped in entities representing more than one species. Any palynomorph numbering five or fewer grains in one sample was considered contamination, alongside any anemophilous species irrespective of pollen number.Bats were identified using a specialized key37 and four ecomorphological variables were measured for each individual. (i) Forearm length and (ii) body mass were used to calculate the body condition index (BCI), a proxy of body robustness38, where higher BCI values indicate larger and heavier bats, which are less effective in interacting with flowers in general due to a lack of hovering behavior, the incapability of interacting with delicate flowers that cannot sustain them, a lower maneuverability and higher energetic requirements39. Moreover, we measured (iii) longest skull length (distance from the edge of the occipital region to the anterior edge of the lower lip) and (iv) rostrum length (distance from the anterior edge of the eye to the anterior edge of the lower lip) to calculate the rostrum-skull ratio (RSR), a proxy of morphological specialization to nectar consumption23. Higher RSR values indicate bats with proportionally longer rostra in relation to total skull length. Longer rostra in bats are associated with a weaker bite force and thus less effective in consuming harder food items such as fruits and insects, thus suggesting a higher adaptation to towards nectar40,41. Bats were then tagged with aluminum bands for individualization and released afterward. To evaluate the sampling completeness of the bat community and of the pollen types found on bats, we employed the Chao1 asymptotic species richness estimator and an individual-based sampling effort to estimate and plot rarefaction curves, calculating sampling completeness according to Chacoff et al.42.All methods were carried out in accordance with relevant guidelines and regulations. The permits to capture, handle and collect bats were granted by the Ethical Council for the Usage of Animals (CEUA) of the University of Brasília (permit 23106.119660/2019-07) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (permit: SISBIO 70268). Vouchers of each species, when the collection was possible, were deposited in the Mammal Collection of the University of Brasília.Assessment of the plant communityIn each of the eight sampling sites, we delimited a 1000 × 10 m transect, each of which was walked monthly for one phenological year (January and February 2020, August to December 2020, and March to July 2021) to build a floristic inventory of plants of interest and to estimate their monthly abundance of flowering individuals. Plant species of interest were any potential partner for bats, which included species already known to be pollinated by bats, presenting chiropterophilous traits sensu Faegri and Van Der Pijl43, or any plant that could be accessed by and reward bats, whose flowers passes all the three following criteria:(i) Nectar or pollen is presented as the primary reward to visitors. (ii) Corolla diameter of 1 cm or more. This criterion excludes small generalist and insect-pollinated flowers where the visitation by bats is mechanically unlikely. It applies to the corolla diameter in non-tubular flowers or the diameter of the tube opening. Exceptions were small and actinomorphic flowers aggregated in one larger pollination unit (pseudanthia) where the 1 cm threshold was applied to inflorescence diameter. (iii) Reward must be promptly available for bats. This criterion excludes species with selective morphological mechanisms, such as quill-shaped bee-pollinated flowers or flowers with long and narrow calcars.All flowering individuals of interest species found in the transects were registered. A variable number of flowers/inflorescences (n = 5–18) were collected per species for morphometric analysis. For each species, we calculated floral tube length (FTL), corresponding to the distance between the base of the corolla, calyx, or hypanthium (depending on the species) to its opening, and the corolla’s outermost diameter (COD), which corresponds to the diameter of the corolla opening (tubular flowers) or simply the corolla diameter (non-tubular flowers). For pseudanthia-forming species, inflorescence width was measured. Pseudanthia and non-tubular flowers received a dummy FTL value of 0.1 mm to represent low restriction and enable later calculations. Finally, we collected reference pollen samples from all species from anthers of open flowers, which were used to identify pollen types found on bats. For plant species found in pollen loads but not in the PNB, measures were taken from plants found either on the outskirts of the site (Inga spp.) or from dried material in an online database (Ceiba pentandra, in https://specieslink.net/) using the ImageJ software44. Vouchers were deposited in the Herbarium of the Botany Department, University of Brasília.Data analysisNetwork macrostructureWe built a weighted adjacency matrix i x j, where cells corresponded to the number of individuals of bat species i that interacted with plant species or morphotype j. All edges corresponding to legitimate interactions were included. With this matrix, we calculated three structural metrics to describe the network’s macrostructure. First, weighted modularity (Qw), calculated by the DIRTLPAwb + algorithm45. A modular network comprises subgroups of species in which interactions are stronger and more frequent than species out of these subgroups10, which may reveal functional groups in the network9. Qw varies from zero to one, the latter representing a perfectly modular network.Second, complementary specialization through the H2′ metric46. It quantifies how unique, on average, are the interactions made by species in the network, considering interaction weights and correcting for network size. It varies from zero to one, the latter corresponding to a specialized network where interactions perfectly complement each other because species do not share partners.Lastly, nestedness, using the weighted WNODA metric25. Nested networks are characterized by interaction asymmetries, where peripheral species are only a subset of the pool of species with which generalists interact47. The index was normalized to vary from zero to one, with one representing a perfectly nested network. Given that the network has a modular structure, we also tested for a compound topology, i.e., the existence of distinct network patterns within network modules, by calculating intra-module WNODA and between-module WNODA36. Internally nested modules appear in networks in which consumers specialize in groups of dissimilar or clustered resources and suggest the existence of distinct functional groups of consumers25,48. Metric significance (Qw, H2′, and WNODA) was assessed using a Monte Carlo procedure based on a null model. We used the vaznull model3, where random matrices are created by preserving the connectance of the observed matrix but allowing marginal totals to vary. One thousand matrices were generated and metrics were calculated for each of them. Metric significance (p) corresponded to the number of times the null model delivered a value equal to or higher than the observed metric, divided by the number of matrices. The significance threshold was considered p ≤ 0.05.Given a modular structure, we followed the framework of Phillips et al.49 that correlates network concepts (especially modularity) with the distribution of morphological variables of pollinators to unveil patterns of niche divergence in pollination networks. Given the most parsimonious module configuration suggested by the algorithm, we compared modules in terms of the distribution of morphological variables of the bat (RCR and BCI) and plant (FTL and COD) species that composed the module. Differences between modules means were tested with one-way ANOVAs.Drivers of network microstructureThe role of different ecological variables in determining pairwise interaction frequencies was assessed using a probability matrices approach3. This framework considers that an interaction matrix Y is a product of several probability matrices of the same size as Y, with each matrix representing the probability of species interacting based on an ecological mechanism. Thus, adapting it to our objectives, we have Eq. (1):$$mathrm{Y}=mathrm{f}(mathrm{A},mathrm{ M },mathrm{P},mathrm{ S})$$
    (1)
    where Y is the observed interaction matrix, and a function of interaction probability matrices based on species relative abundances (A), representing neutrality as species interact by chance; species morphological specialization (M), phenological overlap (P), and spatial overlap (S). We built models containing each of these matrices in the following ways:Relative abundance (A): matrix cells were the products of the relative abundances of bat and plant species. The relative abundances of bats were determined through capture frequencies (each species’ capture frequency divided by all captures, excluding recaptures) and the relative abundances of plants were determined by the number of flowering individuals recorded in transections (each species’ summed abundance in all transects and all months divided by the pooled abundance of all species in the network). Cell values were normalized to sum one.Morphological specialization (M): cells were the probability of species interacting based on their matching degree of morphological specialization. Morphologically specialized bats (i.e., longer rostra and smaller size) are more likely to interact with morphologically specialized flowers (i.e., longer tubes and narrower corollas), while unspecialized bats are more likely to interact with unspecialized, accessible flowers. For this purpose, we calculated a bat specialization index (BSI) as the ratio between RCR and BCI, where higher BSI values indicate overall lower body robustness and longer snout length. Likewise, the flower specialization index (FSI) was calculated for plants as the ratio between FTL and COD, where higher values indicate smaller, narrower, long-tubed flowers that require specialized morphology and behavior from bats for visitation. BSI and FTL were normalized to range between zero and one and were averaged between individuals of each species of bat or plant. Therefore, interaction probabilities were calculated as in Eq. (2):$${P}_{i,j}=1-|{BSI}_{i}-{FSI}_{j}|$$
    (2)
    where Pi,j is the interaction probability between bat species i and plant species j and |BSIi – FSIj| is the absolute difference between bat and plant specialization indexes. Similar index values (two morphologically specialized or unspecialized species interacting) lead to a low difference in specialization and thus to a high probability of interaction (Pi,j → 1), whereas the interaction between a morphologically specialized and a morphologically unspecialized species leads to a high absolute difference and thus lower probability of interaction (Pi,j → 0). Cell values of the resulting matrix were normalized to sum one.Phenological overlap (P): cells were the probability of species interacting based on temporal synchrony, calculated as the number of months that individuals of bat species i and flowering individuals of plant species j co-occurred in the research site, pooling all capture sites/transections. Cell values were normalized to sum one.Spatial overlap (S): cells were the probability of species interacting based on their co-occurrence over small-scale distances and vegetation types, calculated as the number of individuals from a bat species i captured in sampling sites where the plant species j was registered in the transection, considering all capture months. Cell values were normalized to sum one.Because more than one ecological mechanism may simultaneously drive interactions3,9, we built an additional set of seven models resultant from the element-wise multiplication of individual probability matrices:

    SP: The spatial and temporal distribution of species work simultaneously in driving a resource turnover in the community, driving interactions.

    AS: Abundance drives interactions between bats and plants, but within spatially clustered resources in the landscape caused by a turnover in species distributions.

    AP: Abundance drives interactions between bats and plants, but within temporally clustered resources caused by a seasonal distribution of resources.

    APS: Abundance drives interactions between bats and plants, but within resource clusters that emerge by a simultaneous temporal and spatial aggregation.

    MS: Similar to AS, but morphology drives interactions within spatial clusters.

    MP: Similar to MP, but morphology drives interactions within temporal clusters.

    MPS: Similar to APS, but morphology drives interactions within spatiotemporal clusters.

    Finally, we created a benchmark null model in which all cells in the matrix had the same probability value. All the compound matrices and the null model were also normalized to sum one.To compare the fit of these probability models with the real data, we conducted a maximum likelihood analysis3,9. We calculated the likelihood of each of these models in predicting the observed interaction matrix, assuming a multinomial distribution for the probability of interaction between species12. To compare model fit, we calculated the Akaike Information Criterion (AIC) for each model and their variation in AIC (ΔAIC) in relation to the best-fitting model. The number of species used in the probability matrices was considered the number of model parameters to penalize model complexity. Intending to assess whether nectarivorous bats and non-nectarivorous bats assembly sub-networks with different assembly rules, we created two partial networks from the observed matrix. One contained nectarivores only (subfamilies Glossophaginae and Lonchophyllinae) and their interactions, and the other contained frugivore and insectivore bats and their interactions. We repeated the likelihood procedure for these two partial networks.To conduct the likelihood analysis, we excluded plant species from the network that could not have their interaction probabilities measured, such as species found in pollen samples but not registered in the park or pollen types that could not be identified to the species level. Therefore, the interaction network Y and probability matrices did not include these species (details in Supplementary Table S1).SoftwareAnalyses were performed in R 3.6.050. Network metrics and null models were generated with the bipartite package51, and the sampling completeness analysis was performed with the vegan package52. Gephi 0.9.253 was used to draw the graph. More

  • in

    Genetic monitoring on the world’s first MSC eco-labeled common octopus (O. vulgaris) fishery in western Asturias, Spain

    FAO. El estado mundial de la pesca y la acuicultura 2020 (FAO, 2020).
    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S. & de Young, B. Cascading effects of overfishing marine systems. Trends Ecol. Evol. 20, 579–581 (2005).Article 
    PubMed 

    Google Scholar 
    Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, M. S. & Lowe, M. R. Implications of cumulative impacts to estuarine and marine habitat quality for fish and invertebrate resources. Rev. Fish. Sci. 17, 505–523 (2009).Article 

    Google Scholar 
    Claudet, J. & Fraschetti, S. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biol. Cons. 143, 2195–2206 (2010).Article 

    Google Scholar 
    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Derraik, J. G. B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44, 842–852 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    PubMed 

    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).Article 

    Google Scholar 
    Wojnarowska, M., Sołtysik, M. & Prusak, A. Impact of eco-labelling on the implementation of sustainable production and consumption. Environ. Impact Assess. Rev. 86, 106505 (2021).Article 

    Google Scholar 
    Yan, H. F. et al. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 7, 6026 (2021).Article 
    ADS 

    Google Scholar 
    Bastardie, F. et al. Spatial planning for fisheries in the Northern Adriatic: Working toward viable and sustainable fishing. Ecosphere 8, e01696 (2017).Article 

    Google Scholar 
    Arkema, K. K. et al. Integrating fisheries management into sustainable development planning. Ecol. Soc. 24, 0201 (2019).Article 

    Google Scholar 
    Aguión, A. et al. Establishing a governance threshold in small-scale fisheries to achieve sustainability. Ambio. https://doi.org/10.1007/s13280-021-01606-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gudmundsson, E. & Wessells, C. R. Ecolabeling seafood for sustainable production: Implications for fisheries management. Mar. Resour. Econ. 15, 97–113 (2000).Article 

    Google Scholar 
    FAO. Guidelines for the Ecolabelling of Fish and Fishery Products from Marine Capture Fisheries. Revision 1 (FAO, 2009).
    Google Scholar 
    Hilborn, R. & Ovando, D. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71, 1040–1046 (2014).Article 

    Google Scholar 
    Casey, J., Jardim, E. & Martinsohn, J. T. H. The role of genetics in fisheries management under the E.U. common fisheries policy. J. Fish Biol. 89, 2755–2767 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    MSC. MSC Fisheries Standard v2.01. https://www.msc.org/docs/default-source/default-document-library/for-business/program-documents/fisheries-program-documents/msc-fisheries-standard-v2-01.pdf?sfvrsn=8ecb3272_9 (2018).Costello, C. et al. Status and solutions for the world’s unassessed fisheries. Science 338, 517–520 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. PNAS 117, 2218–2224 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).Article 
    PubMed 

    Google Scholar 
    Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020).Article 

    Google Scholar 
    Ihssen, P. E. et al. Stock identification: Materials and methods. Can. J. Fish. Aquat. Sci. 38, 1838–1855 (1981).Article 

    Google Scholar 
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer, 1995).Chapter 

    Google Scholar 
    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gough, C. L. A., Dewar, K. M., Godley, B. J., Zafindranosy, E. & Broderick, A. C. Evidence of overfishing in small-scale fisheries in Madagascar. Front. Mar. Sci. 7, 317 (2020).Article 

    Google Scholar 
    Widjaja, S. et al. Illegal, Unreported and Unregulated Fishing and Associated Drivers 60 (2020).Walters, C. & Martell, S. J. D. Stock assessment needs for sustainable fisheries management. Bull. Mar. Sci. 70, 629–638 (2002).
    Google Scholar 
    Moreira, A. A., Tomás, A. R. G. & Hilsdorf, A. W. S. Evidence for genetic differentiation of Octopus vulgaris (Mollusca, Cephalopoda) fishery populations from the southern coast of Brazil as revealed by microsatellites. J. Exp. Mar. Biol. Ecol. 407, 34–40 (2011).Article 

    Google Scholar 
    Allendorf, F. W., Ryman, N. & Utter, F. M. Genetics and fishery management. In Population Genetics and Fishery Management 1–19 (1987).Oosthuizen, A., Jiwaji, M. & Shaw, P. Genetic analysis of the Octopus vulgaris population on the coast of South Africa. S. Afr. J. Sci. 100, 603–607 (2004).CAS 

    Google Scholar 
    Botsford, L. W., Castilla, J. C. & Peterson, C. H. The management of fisheries and marine ecosystems. Science 277, 509–515 (1997).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Orensanz, J. M. & Parma, A. M. Institutions, incentives and the future of fisheries. Philos. Trans. R. Soc. B Biol. Sci. 360, 47. https://doi.org/10.1098/rstb.2004.1569 (2005).Article 

    Google Scholar 
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159 (2015).Article 

    Google Scholar 
    Aguirre-Sarabia, I. et al. Evidence of stock connectivity, hybridization, and misidentification in white anglerfish supports the need of a genetics-informed fisheries management framework. Evol. Appl. 14, 2221 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grover, A. & Sharma, P. C. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 36, 290 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valenzuela-Quiñonez, F. How fisheries management can benefit from genomics? Brief. Funct. Genom. 15, 352–357 (2016).Article 

    Google Scholar 
    Khoufi, W., Jabeur, C. & Bakhrouf, A. Stock assessment of the common octopus (Octopus vulgaris) in Monastir; the Mid-eastern Coast of Tunisia. Int. J. Mar. Sci. 2, 1 (2012).
    Google Scholar 
    Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).Article 
    CAS 

    Google Scholar 
    De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PLoS ONE 11, e0149496 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Rueda, P. & García-Flórez, L. Octopus vulgaris (Mollusca: Cephalopoda) fishery management assessment in Asturias (north-west Spain). Fish. Res. 83, 351–354 (2007).Article 

    Google Scholar 
    Gobierno del Principado de Asturias. BOPA núm. 233 de 03-XII-2021, Vol. 233 (2021).Roa-Ureta, R. H. et al. Estimation of the spawning stock and recruitment relationship of Octopus vulgaris in Asturias (Bay of Biscay) with generalized depletion models: Implications for the applicability of MSY. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab113 (2021).Article 

    Google Scholar 
    González, A. F., Macho, G., de Novoa, J. & García, M. Western Asturias Octopus Traps Fishery of Artisanal Cofradías 181 (2015).Sánchez, J. L. F., Fernández Polanco, J. M. & Llorente García, I. Evidence of price premium for MSC-certified products at fishers’ level: The case of the artisanal fleet of common octopus from Asturias (Spain). Mar. Policy 119, 104098 (2020).Article 

    Google Scholar 
    Murphy, J. M., Balguerías, E., Key, L. N. & Boyle, P. R. Microsatellite DNA markers discriminate between two Octopus vulgaris (Cephalopoda: Octopoda) fisheries along the northwest African coast. Bull. Mar. Sci. 71, 545–553 (2002).
    Google Scholar 
    Cabranes, C., Fernandez-Rueda, P. & Martínez, J. L. Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J. Mar. Sci. 65, 12–16 (2008).Article 

    Google Scholar 
    Quinteiro, J., Rodríguez-Castro, J., Rey-Méndez, M. & González-Henríquez, N. Phylogeography of the insular populations of common octopus, Octopus vulgaris Cuvier, 1797, in the Atlantic Macaronesia. PLoS ONE 15, e0230294 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greatorex, E. C. et al. Microsatellite markers for investigating population structure in Octopus vulgaris (Mollusca: Cephalopoda). Mol. Ecol. 9, 641–642 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Luca, D., Catanese, G., Fiorito, G. & Procaccini, G. A new set of pure microsatellite loci in the common octopus Octopus vulgaris Cuvier, 1797 for multiplex PCR assay and their cross-amplification in O. maya Voss & Solís Ramírez, 1966. Conserv. Genet. Resour. 7, 299–301 (2015).Article 

    Google Scholar 
    Zuo, Z., Zheng, X., Liu, C. & Li, Q. Development and characterization of 17 polymorphic microsatellite loci in Octopus vulgaris Cuvier, 1797. Conserv. Genet. Resour. 4, 367–369 (2012).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).CAS 
    PubMed 

    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nei, M. & Takezaki, N. Estimation of Genetic Distances and Phylogenetic Trees from DNA Analysis 8 (1983).Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Waples, R. S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).Article 

    Google Scholar 
    Taboada, F. G. & Anadón, R. Patterns of change in sea surface temperature in the North Atlantic during the last three decades: Beyond mean trends. Clim. Change 115, 419–431 (2012).Article 
    ADS 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sinclair, M. & Valdimarsson, G. Responsible Fisheries in the Marine Ecosystem (CABI, 2003).Book 

    Google Scholar 
    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).Article 
    PubMed 

    Google Scholar 
    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).Article 

    Google Scholar 
    Waples, R. S. Testing for Hardy-Weinberg proportions: Have we lost the plot? J. Hered. 106, 1–19 (2015).Article 
    PubMed 

    Google Scholar 
    Casu, M. et al. Genetic structure of Octopus vulgaris (Mollusca, Cephalopoda) from the Mediterranean Sea as revealed by a microsatellite locus. Ital. J. Zool. 69, 295–300 (2002).Article 

    Google Scholar 
    Fadhlaoui-Zid, K. et al. Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene. C.R. Biol. 335, 625–636 (2012).Article 
    PubMed 

    Google Scholar 
    Queiroga, H. et al. Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog. Oceanogr. 74, 174–191 (2007).Article 
    ADS 

    Google Scholar 
    Mereu, M. et al. Mark–recapture investigation on Octopus vulgaris specimens in an area of the central western Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 95, 131–138 (2015).Article 
    ADS 

    Google Scholar 
    Mereu, M. et al. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. 470, 64–69 (2015).Article 

    Google Scholar 
    Roura, Á. et al. Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): Insights from zooplankton community and spatio-temporal analyses. Fish. Oceanogr. 25, 241–258 (2016).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).Article 
    ADS 

    Google Scholar 
    Chédia, J., Widien, K. & Amina, B. Role of sea surface temperature and rainfall in determining the stock and fishery of the common octopus (Octopus vulgaris, Mollusca, Cephalopoda) in Tunisia. Mar. Ecol. 31, 431–438 (2010).Article 
    ADS 

    Google Scholar 
    Otero, J. et al. Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar. Ecol. Prog. Ser. 362, 181–192 (2008).Article 
    ADS 

    Google Scholar 
    Hedgecock, D. & Pudovkin, A. I. A. I. Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary. Bull. Mar. Sci. 87, 971–1002 (2011).Article 

    Google Scholar 
    Kalinowski, S. T. & Waples, R. S. Relationship of effective to census size in fluctuating populations. Conserv. Biol. 16, 129–136 (2002).Article 
    PubMed 

    Google Scholar 
    Sonderblohm, C. P., Pereira, J. & Erzini, K. Environmental and fishery-driven dynamics of the common octopus (Octopus vulgaris) based on time-series analyses from leeward Algarve, southern Portugal. ICES J. Mar. Sci. 71, 2231–2241 (2014).Article 

    Google Scholar 
    Sonderblohm, C. P. et al. Participatory assessment of management measures for Octopus vulgaris pot and trap fishery from southern Portugal. Mar. Policy 75, 133–142 (2017).Article 

    Google Scholar 
    Arkhipkin, A. I. et al. Stock assessment and management of cephalopods: Advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 78, 714–730 (2021).Article 

    Google Scholar 
    Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. A.) 395 (Sinauer Associates, 1980).
    Google Scholar 
    Slatkin, M. Rare alleles as indicators of gene flow. Evolution 39, 53–65 (1985).Article 
    PubMed 

    Google Scholar 
    Holleley, C. E. & Geerts, P. G. Multiplex manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-STATISTICS. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223 (1989).Article 
    PubMed 

    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J.-M.M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. https://doi.org/10.1093/jhered/89.3.238 (1998).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, e70651 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05754.x (2012).Article 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 31, 1622–1624 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).Article 
    PubMed 

    Google Scholar 
    Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples, R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391 (1989).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katsanevakis, S. & Verriopoulos, G. Seasonal population dynamics of Octopus vulgaris in the eastern Mediterranean. ICES J. Mar. Sci. 63, 151–160 (2006).Article 

    Google Scholar 
    Jereb, P. et al. Cephalopod Biology and Fisheries in Europe: II Species Accounts 360 (ICES, 2015).
    Google Scholar  More

  • in

    Effects of moisture and density-dependent interactions on tropical tree diversity

    Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75, 1–34 (1988).Article 

    Google Scholar 
    Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).Article 

    Google Scholar 
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Connell, J. H. in Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) 298–312 (PUDOC, 1971).Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40, 618–629 (2017).Article 

    Google Scholar 
    Gillett, J. B. Pest pressure, an underestimated factor in evolution. Syst. Assoc. Publ. 4, 37–46 (1962).
    Google Scholar 
    Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).Article 

    Google Scholar 
    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. Responses of plant–pathogen interactions to precipitation: Implications for tropical tree richness in a changing world. J. Ecol. 108, 1800–1809 (2020).Article 

    Google Scholar 
    Mangan, S. A. et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gripenberg, S. et al. Testing for enemy-mediated density-dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos 123, 185–193 (2014).Article 

    Google Scholar 
    Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Multiple natural enemies cause distance-dependent mortality at the seed-to-seedling transition. Ecol. Lett. 17, 593–598 (2014).Article 
    PubMed 

    Google Scholar 
    Augspurger, C. K. & Kelly, C. K. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61, 211–217 (1984).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eck, J. L., Stump, S. M., Delavaux, C. S., Mangan, S. A. & Comita, L. S. Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl Acad. Sci. USA 116, 7371–7376 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol. Sci. 18, 407–419 (2015).Article 

    Google Scholar 
    Huberty, A. F. & Denno, R. F. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383–1398 (2004).Article 

    Google Scholar 
    Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Castañeda, G. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients. Glob. Ecol. Biogeogr. 22, 118–130 (2013).Article 

    Google Scholar 
    Janzen, D. H. & Schoener, T. W. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49, 96–110 (1968).Article 

    Google Scholar 
    Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol 60, 133–149 (2011).Article 

    Google Scholar 
    Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).Article 

    Google Scholar 
    Swinfield, T., Lewis, O. T., Bagchi, R. & Freckleton, R. P. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. 2, 1408–1413 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Chang. Biol. 18, 267–276 (2012).Article 
    ADS 

    Google Scholar 
    Maharjan, S. K. et al. Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica 43, 552–561 (2011).Article 

    Google Scholar 
    Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).Article 
    PubMed 

    Google Scholar 
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. The effect of intra- and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12 (2016).Article 
    PubMed 

    Google Scholar 
    Lebrija-Trejos, E., Wright, S. J., Hernández, A. & Reich, P. B. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology 95, 940–951 (2014).Article 
    PubMed 

    Google Scholar 
    Lebrija-Trejos, E., Reich, P. B., Hernández, A. & Wright, S. J. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol. Lett. 19, 1071–1080 (2016).Article 
    PubMed 

    Google Scholar 
    Green, P. T., Harms, K. E. & Connell, J. H. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc. Natl Acad. Sci. USA 111, 18649–18654 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moles, A. T. & Westoby, M. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106, 193–199 (2004).Article 

    Google Scholar 
    Paine, C. E. T., Harms, K. E., Schnitzer, S. A. & Carson, W. P. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40, 432–440 (2008).Article 

    Google Scholar 
    Weissflog, A., Markesteijn, L., Lewis, O. T., Comita, L. S. & Engelbrecht, B. M. J. Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall gradient. Biotropica 50, 302–311 (2018).Article 

    Google Scholar 
    Brenes-Arguedas, T., Coley, P. D. & Kursar, T. A. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90, 1751–1761 (2009).Article 
    PubMed 

    Google Scholar 
    Gaviria, J. & Engelbrecht, B. M. J. Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. PLoS ONE 10, e0143955 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spear, E. R., Coley, P. D. & Kursar, T. A. Do pathogens limit the distributions of tropical trees across a rainfall gradient? J. Ecol. 103, 165–174 (2015).Article 

    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).Article 
    CAS 

    Google Scholar 
    Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489 (2011).Article 

    Google Scholar 
    Krishnadas, M. & Comita, L. S. Edge effects on seedling diversity are mediated by impacts of fungi and insects on seedling recruitment but not survival. Front. Glob. Chang. 2, 76 (2019).Article 

    Google Scholar 
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).Article 
    PubMed 

    Google Scholar 
    Uriarte, M., Muscarella, R. & Zimmerman, J. K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Chang. Biol. 24, e692–e704 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bachelot, B., Kobe, R. K. & Vriesendorp, C. Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia 179, 853–861 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zhu, Y. et al. Density‐dependent survival varies with species life‐history strategy in a tropical forest. Ecol. Lett. 21, 506–515 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wright, S. J., Calderón, O., Hernandéz, A. & Muller-Landau, H. C. Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86, 848–860 (2005).Article 

    Google Scholar 
    Condit, R. Tropical Forest Census Plots https://doi.org/10.1007/978-3-662-03664-8 (Springer, 1998).Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry season soil water potential maps of a 50 hectare tropical forest plot on Barro Colorado Island, Panama. Sci. Data 6, 63 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garwood, N. C. in The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes (eds Leigh, E. G., Rand, A. S. & Windsor, D. M.) 173–185 (Smithsonian Institution Press, 1982).Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference https://doi.org/10.1007/b97636 (Springer, 2004).Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).Article 
    PubMed 

    Google Scholar 
    Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).Article 
    PubMed 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 
    PubMed 

    Google Scholar 
    Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bates, D. et al. Package ‘lme4’ Reference Manual https://cran.r-project.org/web/packages/lme4/lme4.pdf (2021).Wilkinson, G. N. & Rogers, C. E. Symbolic description of factorial models for analysis of variance. Appl. Stat. 22, 392 (1973).Article 

    Google Scholar 
    Afshartous, D. & Preston, R. A. Key results of interaction models with centering. J. Stat. Educ. https://doi.org/10.1080/10691898.2011.11889620 (2011).Cohen, J. Statistical Power Analysis for the Behavioral Sciences https://doi.org/10.1016/C2013-0-10517-X (Elsevier, 1977).Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (2016).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models https://CRAN.R-project.org/package=nlme (2020).Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models https://CRAN.R-project.org/package=DHARMa (2021).Lebrija-Trejos, E., Wright, S. J. & Hernández, A. Moisture, Density-dependent Interactions, and Tropical Tree Diversity https://figshare.com/s/a4d2dbb2a73b3eb09f9f (2022).Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry Season Soil Water Potential Maps of a 50 Hectare Tropical Forest Plot on Barro Colorado Island, Panama https://doi.org/10.6084/m9.figshare.7611005.v1 (2019).Paton, S. Barro Colorado Island, Lutz Catchment, Soil Moisture, Manual https://doi.org/10.25573/data.10042517.v1 (2019). More

  • in

    Harnessing soil biodiversity to promote human health in cities

    UNDESA. World urbanization prospects. Demographic Research 12, 1–103 (2018).Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 11 (2021).Article 

    Google Scholar 
    World Bank. A catalogue of nature-based solutions for urban resilience. www.worldbank.org (2021).Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Reyes-Riveros, R. et al. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green 61, 127105 (2021).Article 

    Google Scholar 
    Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).Article 
    CAS 

    Google Scholar 
    Mehring, A. S. & Levin, L. A. Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. J. Appl. Ecol. 52, 1445–1454 (2015).Article 

    Google Scholar 
    Brevik, E. C. et al. Soil and human health: current status and future needs. Air, Soil Water Res. 13, 1–23 (2020).Article 

    Google Scholar 
    Silver, W. L., Perez, T., Mayer, A. & Jones, A. R. The role of soil in the contribution of food and feed. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200181 (2021).Article 
    CAS 

    Google Scholar 
    De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200170 (2021).Article 

    Google Scholar 
    Samaddar, S. et al. Role of soil in the regulation of human and plant pathogens: Soils’ contributions to people. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200179 (2021).Article 

    Google Scholar 
    Thiele-Bruhn, S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200183 (2021).Article 
    CAS 

    Google Scholar 
    O’Riordan, R., Davies, J., Stevens, C., Quinton, J. N. & Boyko, C. The ecosystem services of urban soils: A review. Geoderma 395, 115076 (2021).Article 

    Google Scholar 
    Banerjee, S. & Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00779-w (2022).Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).Article 

    Google Scholar 
    Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).Article 
    CAS 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Guilland, C., Maron, P. A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).Article 
    CAS 

    Google Scholar 
    Milano, V. et al. The effect of urban park landscapes on soil Collembola diversity: A Mediterranean case study. Landsc. Urban Plan. 180, 135–147 (2018).Article 

    Google Scholar 
    Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. Science 371, 239–241 (2021).Article 
    CAS 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B Biol. Sci. 281, 20141988 (2014).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).Article 
    CAS 

    Google Scholar 
    Braaker, S., Ghazoul, J., Obrist, M. K. & Moretti, M. Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95, 1010–1021 (2014).Article 
    CAS 

    Google Scholar 
    Lin, B. B., Philpott, S. M. & Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 16, 189–201 (2015).Article 

    Google Scholar 
    Baruch, Z. et al. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ. Res. 196, 110425 (2021).Article 
    CAS 

    Google Scholar 
    Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article 

    Google Scholar 
    Robinson, J. M. et al. Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Sci. Rep. 11, 9516 (2021).Article 
    CAS 

    Google Scholar 
    Nugent, A. & Allison, S. D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 13, 1–20 (2022).Article 

    Google Scholar 
    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Chang. Biol. 22, 228–236 (2016).Article 

    Google Scholar 
    Li, X. et al. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J. Anim. Ecol. 91, 1770–1780 (2022).Article 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).Article 

    Google Scholar 
    Joimel, S. et al. Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosyst. 22, 553–566 (2019).Article 

    Google Scholar 
    Ge, B., Mehring, A. S. & Levin, L. A. Urbanization alters belowground invertebrate community structure in semi-arid regions: A comparison of lawns, biofilters and sage scrub. Landsc. Urban Plan. 192, 103664 (2019).Article 

    Google Scholar 
    Tóth, Z. & Hornung, E. Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects 11, 25 (2020).Article 

    Google Scholar 
    Selhorst, A. & Lal, R. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States. Environ. Manage. 51, 198–208 (2013).Article 

    Google Scholar 
    Cividini, S. & Montesanto, G. Aggregative behavior and intraspecific communication mediated by substrate-borne vibrations in terrestrial arthropods: An exploratory study in two species of woodlice. Behav. Process. 157, 422–430 (2018).Article 

    Google Scholar 
    Bray, N., Thompson, G. L., Fahey, T., Kao-Kniffin, J. & Wickings, K. Soil macroinvertebrates alter the fate of root and rhizosphere carbon and nitrogen in a turfgrass lawn. Soil Biol. Biochem. 148, 107903 (2020).Article 
    CAS 

    Google Scholar 
    Barthod, J., Dignac, M. F. & Rumpel, C. Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biol. Biochem. 160, 108308 (2021).Article 
    CAS 

    Google Scholar 
    Aquino, R. S. S. et al. Filamentous fungi vectored by ants (Hymenoptera: Formicidae) in a public hospital in north-eastern Brazil. J. Hosp. Infect. 83, 200–204 (2013).Article 
    CAS 

    Google Scholar 
    Hodges, M. N. & McKinney, M. L. Urbanization impacts on land snail community composition. Urban Ecosyst. 21, 721–735 (2018).Article 

    Google Scholar 
    Saeki, I., Niwa, S., Osada, N., Azuma, W. & Hiura, T. Contrasting effects of urbanization on arboreal and ground-dwelling land snails: role of trophic interactions and habitat fragmentation. Urban Ecosyst. 23, 603–614 (2020).Article 

    Google Scholar 
    Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: A global perspective. Ecol. Evol. 7, 974–985 (2017).Article 

    Google Scholar 
    Ford, A. E. S., Graham, H. & White, P. C. L. Integrating human and ecosystem health through ecosystem services frameworks. Ecohealth 12, 660–671 (2015).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Article 
    CAS 

    Google Scholar 
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).Article 

    Google Scholar 
    Song, C., Jin, K. & Raaijmakers, J. M. Designing a home for beneficial plant microbiomes. Curr. Opin. Plant Biol. 62, 102025 (2021).Article 
    CAS 

    Google Scholar 
    Neiderud, C. J. How urbanization affects the epidemiology of emerging infectious diseases. African J. Disabil. 5, 27060 (2015).
    Google Scholar 
    Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health? Environ. Int. 129, 105–117 (2019).Article 

    Google Scholar 
    Baumgardner, D. J. Soil-related bacterial and fungal infections. J. Am. Board Fam. Med. 25, 734–744 (2012).Article 

    Google Scholar 
    Khan, N. A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 30, 564–595 (2006).Article 

    Google Scholar 
    Lindsay, R. G., Watters, G., Johnson, R., Ormonde, S. E. & Snibson, G. R. Acanthamoeba keratitis and contact lens wear. Clin. Exp. Optom. 90, 351–360 (2007).Article 

    Google Scholar 
    Fields, Barry, Robert, Benson & Besser, R. Legionella and Legionnaires’ Disease: 25 Years of Investigation – Comparative study of selective media for isolation of Legionella pneumophila from potable water. Clin. Microbiol. Rev. 15, 506 (2002).Article 

    Google Scholar 
    Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109, 1159–1164 (2012).Article 

    Google Scholar 
    Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2019).Article 

    Google Scholar 
    Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).Article 
    CAS 

    Google Scholar 
    Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).Article 
    CAS 

    Google Scholar 
    Cave, R., Cole, J. & Mkrtchyan, H. V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 157, 106836 (2021).Article 
    CAS 

    Google Scholar 
    Alharbi, J. S., Alawadhi, Q. & Leather, S. R. Monomorium ant is a carrier for pathogenic and potentially pathogenic bacteria. BMC Res. Notes 12, 230 (2019).Article 

    Google Scholar 
    Guimaraes, A. J., Gomes, K. X., Cortines, J. R., Peralta, J. M. & Peralta, R. H. S. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 193, 30–38 (2016).Article 

    Google Scholar 
    Vieira, A., Ramesh, A., Seddon, A. M. & Karlyshev, A. V. CmeABC multidrug efflux pump promotes Campylobacter jejuni survival and multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Wyres, K. L. & Holt, K. E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 45, 131–139 (2018).Article 
    CAS 

    Google Scholar 
    Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 112, E3574–E3581 (2015).Article 
    CAS 

    Google Scholar 
    Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil-transmitted helminth infections in 2010. Parasites and Vectors 7, 1–19 (2014).Article 

    Google Scholar 
    Kemp, S. F. et al. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immunol. 105, 683–691 (2000).Article 
    CAS 

    Google Scholar 
    Estrada-Peña, A. & Jongejan, F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission Climate, niche, ticks, and models: what they are and how we should interpret them. Exp. Appl. Acarol. 23, 685–715 (1999).Article 

    Google Scholar 
    Nasir, S., Akram, W., Khan, R. R., Arshad, M. & Nasir, I. Paederusbeetles: The agent of human dermatitis. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 1–6 (2015).Article 

    Google Scholar 
    Santos, M. N. Research on termites in urban areas: approaches and gaps. https://doi.org/10.1007/s11252-020-00944-0 (2020).National Academies of Sciences, Engineering, and M. Advancing urban sustainability in China and the United States. (The National Academies Press, https://doi.org/10.17226/25794 2020).Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).Article 
    CAS 

    Google Scholar 
    Velasco, E., Segovia, E., Choong, A. M. F., Lim, B. K. Y. & Vargas, R. Carbon dioxide dynamics in a residential lawn of a tropical city. J. Environ. Manage. 280, 111752 (2021).Article 
    CAS 

    Google Scholar 
    Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article 

    Google Scholar 
    Jiao, S., Lu, Y. & Wei, G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Chang. Biol. 28, 140–153 (2022).Article 
    CAS 

    Google Scholar 
    Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018 (2020).Article 

    Google Scholar 
    Jayaraman, S. et al. Disease-suppressive soils—beyond food production: a critical review. J. Soil Sci. Plant Nutr. 21, 1437–1465 (2021).Article 

    Google Scholar 
    Chen, Q. L. et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol. Lett. 1, 3–13 (2019).Article 

    Google Scholar 
    Innocenti, G. & Sabatini, M. A. Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review. Bull. Insectology 71, 71–76 (2018).
    Google Scholar 
    Jones, M. S. et al. Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens. Biol. Control 137, 104020 (2019).Huang, K. et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol. 297, 122451 (2020).Article 
    CAS 

    Google Scholar 
    Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).Article 

    Google Scholar 
    Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F. & Duarte, A. C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 430, 184–192 (2012).Article 
    CAS 

    Google Scholar 
    Chen, M. et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols, and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755 (2015).Article 
    CAS 

    Google Scholar 
    González Henao, S. & Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated With the plant microbiome. Front. Environ. Sci. 9, 1–17 (2021).Article 

    Google Scholar 
    Meynet, P. et al. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 46, 5057–5066 (2012).Article 
    CAS 

    Google Scholar 
    Xiong, W., Delgado-Baquerizo, M., Shen, Q. & Geisen, S. Pedogenesis shapes predator-prey relationships within soil microbiomes. Sci. Total Environ. 828, 154405 (2022).Article 
    CAS 

    Google Scholar 
    Duan, G. et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Shengwu Gongcheng Xuebao/Chinese J. Biotechnol. 36, 455–470 (2020).CAS 

    Google Scholar 
    Beesley, L. & Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following green waste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 43, 188–196 (2011).Article 
    CAS 

    Google Scholar 
    Zhu, D. et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ. Sci. Technol. 55, 7445–7455 (2021).Article 
    CAS 

    Google Scholar 
    Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).Article 
    CAS 

    Google Scholar 
    Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).Article 

    Google Scholar 
    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).Article 
    CAS 

    Google Scholar 
    Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 157, 106811 (2021).Article 

    Google Scholar 
    Roslund, M. I. et al. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol. Environ. Saf. 242, 113900 (2022).Rook, G., Bäckhed, F., Levin, B. R., McFall-Ngai, M. J. & McLean, A. R. Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521–530 (2017).Article 

    Google Scholar 
    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).Article 
    CAS 

    Google Scholar 
    Reber, S. O. et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. USA 113, E3130–E3139 (2016).Article 
    CAS 

    Google Scholar 
    Ege, M. J. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–9 (2011).Article 
    CAS 

    Google Scholar 
    Stein, M. M. et al. Innate immunity and asthma risk in amish and hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).Article 
    CAS 

    Google Scholar 
    Roslund, M. I. et al. Environmental Studies biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, eaba2578 (2020).Article 
    CAS 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 109, 8334–8339 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, P. J. Indoor air quality and respiratory health of children. Paediatr. Respir. Rev. 8, 281–286 (2007).Article 

    Google Scholar 
    Adams, R. I. et al. Microbial exposures in moisture-damaged schools and associations with respiratory symptoms in students: A multi-country environmental exposure study. Indoor Air 31, 1952–1966 (2021).Article 
    CAS 

    Google Scholar 
    Dunn, R. R., Reese, A. T. & Eisenhauer, N. Biodiversity–ecosystem function relationships on bodies and in buildings. Nat. Ecol. Evol. 3, 7–9 (2019).Article 

    Google Scholar 
    Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).Article 
    CAS 

    Google Scholar 
    Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urbanisation reduces the abundance and diversity of airborne microbes – but what does that mean for our health? A systematic review. Sci. Total Environ. 738, 140337 (2020).Article 
    CAS 

    Google Scholar 
    Berg, G., Mahnert, A. & Moissl-Eichinger, C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front. Microbiol. 5, 1–5 (2014).Article 

    Google Scholar 
    Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 1–13 (2018).Article 

    Google Scholar 
    Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).Article 
    CAS 

    Google Scholar 
    Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).Article 
    CAS 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Article 
    CAS 

    Google Scholar 
    Blum, W. E. H., Zechmeister-Boltenstern, S. & Keiblinger, K. M. Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).Article 

    Google Scholar 
    Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).Article 
    CAS 

    Google Scholar 
    Tun, H. M. et al. Exposure to household furry pets influences the gut microbiota of infants at 3-4 months following various birth scenarios. Microbiome 5, 1–14 (2017).Article 

    Google Scholar 
    Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ. 777, 146063 (2021).Article 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. https://doi.org/10.1007/978-94-007-7088-1_23 (2013).Breed, M. F. et al. Ecosystem Restoration: A Public Health Intervention. Ecohealth 18, 269–271 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Contos, P., Wood, J. L., Murphy, N. P. & Gibb, H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol. Evol. 11, 7187–7200 (2021).Article 

    Google Scholar 
    Auclerc, A. et al. Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 424, 116019 (2022).Article 

    Google Scholar 
    Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 28, S322–S334 (2020).Article 

    Google Scholar  More

  • in

    Geographical variability of bacterial communities of cryoconite holes of Andean glaciers

    In this study, we provide the first description of the bacterial communities of cryoconite holes from South American glaciers, in particular from both small high-elevation glaciers of the Central Andes in the Santiago Metropolitan Region (Chile), and from the tongues of two large glaciers in Patagonian Andes that reach low altitudes. These pieces of information fill a large geographical gap in our knowledge of glacier environments because this is the first description of the microbial communities of supraglacial environments in South America, a continent with about 30,000 km2 covered by ice29. Results showed that the large Patagonian glaciers (Exploradores and Perito Moreno) had the highest oxygen concentrations, while Iver and East Iver had the lowest ones and Morado an intermediate value. This pattern could be related to the different altitudes of the glaciers. Indeed, since water temperature in cryoconite holes is always quite low and stable at all altitudes, oxygen solubility in these environments is related to the atmospheric partial pressure of oxygen that decreases at increasing altitude30. This result is consistent with [O2] values we found in our samples. Indeed, Exploradores and Perito Moreno are located in Patagonia at low altitudes ( 40%), whereas mining is also an additional important black carbon source50. Their similarity can therefore derive also from being exposed to the same general ecological conditions, including high UV radiation, oxidative stress, anthropic pressures, and probably, also from similar sources of bacteria. These results therefore highlight that correlative studies like the present ones can hardly disentangle the effects of geographical positions and ecological conditions on the structure of cryoconite hole bacterial communities, and further studies should be designed to add insight into this still open question.Analyses of alpha diversity indices indicated that cryoconite holes on Exploradores glacier showed the highest richness and evenness. Samples on the Exploradores were collected close to the glacier terminus, surrounded by a rich evergreen broadleaf vegetation, and in an area with abundant supraglacial debris and frequented by tourists. The higher biodiversity of this large, low-altitude glacier, compared to that of the small, high-altitude Iver and East Iver glaciers is not surprising, as the rich evergreen broadleaf forest that surrounds the tongue of the first glacier can be the source of a richer and more diverse bacterial community than the bare ground surrounding the other ones. However, it is more surprising that the alpha biodiversity of the large, low-altitude Perito Moreno was intermediate and similar to that of the Morado glacier. Interestingly, Perito Moreno was the southernmost glacier among those we collected, and was surrounded by a less diverse forest, dominated by southern beeches, Nothofagus ssp. than that of Exploradores, while Morado was the glacier where samples were collected at the lowest altitude among the three glaciers near Santiago. We may therefore speculate that a broad gradient related to altitude and general climate conditions of the area surrounding the glacier may somehow affect its biodiversity. For instance, among the most abundant orders, Cytophagales were more abundant on high than on low-elevation glaciers (Fig. 5b). A similar pattern was observed for the Micrococcales and Chitinophagales (Fig. 5c–k) with the only exception of Iver.In summary, we provide the first-ever description of the bacterial communities of cryoconite holes of glaciers in South America, specifically in the Southern Andes. This study thus fills an important gap of knowledge as almost no information was previously available on the cryoconite holes of this continent, and opens the possibility of future biogeography analyses including samples from almost every important glacial area of the world. The five glaciers we investigated are still a too small sample for thoroughly assessing the ecological processes that control cryoconite hole bacterial communities, and a larger set of environmental variables should also be considered, but we hope this study can be the basis for further investigations aiming at a deeper understanding of these extreme environments. More

  • in

    Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. System. 2007, 1–25 (2007).Article 

    Google Scholar 
    Way, M., Hopkins, B. & Smith, P. Photoperiodism and diapause in insects. Nature 164, 615–615 (1949).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bromage, N., Porter, M. & Randall, C. Reproductive Biotechnology in Finfish Aquaculture 63–98 (Elsevier, 2001).Book 

    Google Scholar 
    Weil, Z. M. & Crews, D. Photoperiodism in Amphibians and Reptiles (ed. Nelson, R. J. et al.) 399–419 (Oxford University Press, 2010).Vera, L., Davie, A., Taylor, J. & Migaud, H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen. Comp. Endocrinol. 165, 25–33 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, K. A., Schoen, M. W. & Czeisler, C. A. Adaptation of human pineal melatonin suppression by recent photic history. J. Clin. Endocrinol. Metabol. 89, 3610–3614 (2004).Article 
    CAS 

    Google Scholar 
    Refinetti, R. Enhanced circadian photoresponsiveness after prolonged dark adaptation in seven species of diurnal and nocturnal rodents. Physiol. Behav. 90, 431–437 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, A.-M., Scheer, F. A. & Czeisler, C. A. The human circadian system adapts to prior photic history. J. Physiol. 589, 1095–1102 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aschoff, J. & Daan, S. Human time perception in temporal isolation: Effects of illumination intensity. Chronobiol. Int. 14, 585–596 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tast, A. et al. The photophase light intensity does not affect the scotophase melatonin response in the domestic pig. Anim. Reprod. Sci. 65, 283–290 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Migaud, H. et al. A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. J. Pineal Res. 41, 42–52 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nisembaum, L. G., Martin, P., Lecomte, F. & Falcón, J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J. Neuroendocrinol. 33, e12955 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M. et al. Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154, 91–97 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M., Azuma, T. & Iwata, M. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro. Zool. Sci. 24, 67–70 (2007).Article 
    CAS 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol. Int. 27, 1697–1714 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fjelldal, P. G., Hansen, T. & Huang, T. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321, 93–100 (2011).Article 

    Google Scholar 
    Leclercq, E., Taylor, J., Sprague, M. & Migaud, H. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult. Eng. 44, 35–47 (2011).Article 

    Google Scholar 
    Fjelldal, P. G. et al. Development of supermale and all-male Atlantic salmon to research the vgll3 allele-puberty link. BMC Genet. 21, 1–13 (2020).Article 

    Google Scholar 
    Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fisher. Res. 191, 1–382 (1975).
    Google Scholar 
    Fjelldal, P. G. et al. Sexual maturation and smoltification in domesticated Atlantic salmon (Salmo salar L.)-is there a developmental conflict?. Physiol. Rep. 6, e13809 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1. 4. 3. 01 (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in Atlantic salmon postsmolts. Chronobiol. Int. 27, 1715–1734 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davie, A., Minghetti, M. & Migaud, H. Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26, 379–395 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Max, M. & Menaker, M. Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J. Comp. Physiol. Part A 170, 479–489 (1992).CAS 

    Google Scholar 
    Randall, C. & Bromage, N. Photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. J. Comp. Physiol. Part A 183, 651–660 (1998).Article 

    Google Scholar 
    Randall, C., Bromage, N., Duston, J. & Symes, J. Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: A circannual phase-response curve. Reproduction 112, 399–405 (1998).Article 
    CAS 

    Google Scholar 
    Duston, J. & Bromage, N. Photoperiodic mechanisms and rhythms of reproduction in the female rainbow trout. Fish Physiol. Biochem. 2, 35–51 (1986).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duston, J. & Bromage, N. Circannual rhythms of gonadal maturation in female rainbow trout (Oncorhynchus mykiss). J. Biol. Rhythms 6, 49–53 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taranger, G. L. et al. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162, 85–98 (1998).Article 

    Google Scholar 
    Melo, M. C. et al. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J. Endocrinol. 220, 319–332 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, T. J., Fjelldal, P. G., Folkedal, O., Vågseth, T. & Oppedal, F. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages. Aquac. Environ. Interact. 9, 193–204 (2017).Article 

    Google Scholar 
    Oppedal, F., Taranger, G. L., Juell, J.-E., Fosseidengen, J. E. & Hansen, T. Light intensity affects growth and sexual maturation of Atlantic salmon (Salmo salar) postsmolts in sea cages. Aquat. Living Resour. 10, 351–357 (1997).Article 

    Google Scholar 
    Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Model. 264, 83–97 (2013).Article 

    Google Scholar 
    Ljungstrӧm, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).Article 
    ADS 

    Google Scholar 
    Naish, K. A. & Hard, J. J. Bridging the gap between the genotype and the phenotype: Linking genetic variation, selection and adaptation in fishes. Fish Fish. 9, 396–422 (2008).Article 

    Google Scholar 
    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar  More