More stories

  • in

    Restoration of insect communities after land use change is shaped by plant diversity: a case study on carabid beetles (Carabidae)

    Loreau, M. et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50. https://doi.org/10.1038/nature14324 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    CAS 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32. https://doi.org/10.1016/j.cois.2014.06.004 (2014).Article 

    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., de Jong, M. & Böhning-Gaese, K. Long-term declines of European insectivorous bird populations and potential causes. Conserv. Biol. 33, 1120–1130. https://doi.org/10.1111/cobi.13307 (2019).Article 

    Google Scholar 
    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354. https://doi.org/10.1126/science.1127863 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).Article 

    Google Scholar 
    Scherber, C. et al. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468, 553–556. https://doi.org/10.1038/nature09492 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Siemann, E., Tilman, D. & Haarstad, J. Insect species diversity, abundance and body size relationships. Nature 380, 704–706. https://doi.org/10.1038/380704a0 (1996).Article 
    ADS 
    CAS 

    Google Scholar 
    Borer, E. T., Seabloom, E. W. & Tilman, D. Plant diversity controls arthropod biomass and temporal stability. Ecol. Lett. 15, 1457–1464. https://doi.org/10.1111/ele.12006 (2012).Article 

    Google Scholar 
    Ebeling, A. et al. Plant diversity effects on arthropods and arthropod-dependent ecosystem functions in a biodiversity experiment. Basic Appl. Ecol. 26, 50–63. https://doi.org/10.1016/j.baae.2017.09.014 (2018).Article 

    Google Scholar 
    Ebeling, A. et al. Plant diversity induces shifts in the functional structure and diversity across trophic levels. Oikos 127, 208–219. https://doi.org/10.1111/oik.04210 (2018).Article 

    Google Scholar 
    Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529. https://doi.org/10.1371/journal.pone.0106529 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302 (2009).Article 

    Google Scholar 
    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845. https://doi.org/10.1126/science.1060391 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033. https://doi.org/10.1371/journal.pone.0107033 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Wardle, D. A., Nicholson, K. S., Bonner, K. I. & Yeates, G. W. Effects of agricultural intensification on soil-associated arthropod population dynamics, community structure, diversity and temporal variability over a seven-year period. Soil Biol. Biochem. 31, 1691–1706 (1999).Article 
    CAS 

    Google Scholar 
    Luff, M. L. & Rushton, S. P. The ground beetle and spider fauna of managed and unimproved upland pasture. Agr. Ecosyst. Environ. 25, 195–206 (1989).Article 

    Google Scholar 
    Dennis, P., Young, M. R., Howard, C. L. & Gordon, I. J. The response of epigeal beetles (Col, Carabidae, Staphylinidae) to varied grazing regimes on upland Nardus stricta grasslands. J. Appl. Ecol. 34, 433–443 (1997).Article 

    Google Scholar 
    Murdoch, W. W., Evans, F. C. & Peterson, C. H. Diversity and pattern in plants and insects. Ecology 53, 819–829 (1972).Article 

    Google Scholar 
    Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).Article 
    CAS 

    Google Scholar 
    Joern, A. & Laws, A. N. Ecological mechanisms underlying arthropod species diversity in grasslands. Annu. Rev. Entomol. 58, 19–36. https://doi.org/10.1146/annurev-ento-120811-153540 (2013).Article 
    CAS 

    Google Scholar 
    Hunter, M. D. & Price, P. W. Playing chutes and ladders: Heterogeneity and relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).Article 

    Google Scholar 
    Knops, J. M. H. et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol. Lett. 2, 286–293 (1999).Article 
    CAS 

    Google Scholar 
    Thiele, H. U. Carabid beetles in their environment. A study on habitat selection by adaptions in physiology and behaviour. (Springer- Verlag, 1977).Harvey, J. A., van der Putten, W. H., Turin, H., Wagenaar, R. & Bezemer, T. M. Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds. Agr. Ecosyst. Environ. 127, 100–106 (2008).Article 

    Google Scholar 
    Luff, M. L. Use of Carabids as environmental indicators in grasslands and cereals. Ann. Zool. Fenn. 33, 185–195 (1996).
    Google Scholar 
    Kotze, D. J. et al. Forty years of carabid beetle research in Europe—from taxonomy, biology, ecology and population studies to bioindication, habitat assessment and conservation. ZooKeys https://doi.org/10.3897/zookeys.100.1523 (2011).Article 

    Google Scholar 
    Barnes, A. D. et al. Biodiversity enhances the multitrophic control of arthropod herbivory. Sci. Adv. 6, eabb6603. https://doi.org/10.1126/sciadv.abb6603 (2020).Article 
    ADS 

    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: A review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B: Biol. Sci. 273, 1715–1727. https://doi.org/10.1098/rspb.2006.3530 (2006).Article 
    CAS 

    Google Scholar 
    Lövei, G. L. & Magura, T. Ground beetle (Coleoptera: Carabidae) diversity is higher in narrow hedges composed of a native compared to non-native trees in a Danish agricultural landscape. Insect Conserv. Divers. 10, 141–150. https://doi.org/10.1111/icad.12210 (2017).Article 

    Google Scholar 
    Loreau, M. Consumers as maximizers of matter and energy flow in ecosystems. Am. Nat. 145, 22–42. https://doi.org/10.1086/285726 (1995).Article 

    Google Scholar 
    Mielke, L. et al. Nematode grazing increases the allocation of plant-derived carbon to soil bacteria and saprophytic fungi, and activates bacterial species of the rhizosphere. Pedobiologia 90, 150787. https://doi.org/10.1016/j.pedobi.2021.150787 (2022).Article 

    Google Scholar 
    Holland, J. M. & Luff, M. L. The effects of agricultural practices on Carabidae in temperate agroecosystems. Integr. Pest Manag. Rev. 5, 109–129. https://doi.org/10.1023/A:1009619309424 (2000).Article 

    Google Scholar 
    Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: An experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).Article 

    Google Scholar 
    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2017.06.002 (2017).Article 

    Google Scholar 
    Freude, H., Harde, K. W. & Lohse, G. A. Die Käfer Mitteleuropas Bd.1–11. (Goecke & Evers, 1965–83).Koch, K. Die Käfer Mitteleuropas. Ökologie Bd.1–6. (Goecke & Evers, 1989–95).R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110. https://doi.org/10.1093/jpe/rtw107 (2017).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, 2009).Oksanen, J. et al. vegan: Community Ecology Package v. 2.6–2 (2022).Lenth, R. et al., emmeans: Estimated Marginal Means, aka Least-Squares Means v. 1.8.1-1 (2022).Lovei, G. L. & Sunderland, K. D. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).Article 
    CAS 

    Google Scholar 
    Ravenek, J. M. et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123, 1528–1536. https://doi.org/10.1111/oik.01502 (2014).Article 

    Google Scholar 
    Root, R. Organization of a plant -arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article 

    Google Scholar 
    Duelli, P. & Obrist, M. K. Regional biodiversity in an agricultural landscape: The contribution of seminatural habitat islands. Basic Appl. Ecol. 4, 129–138 (2003).Article 

    Google Scholar 
    Perner, J. & Malt, S. Assessment of changing agricultural land use: Response of vegetation, ground-dwelling spiders and beetles to the conversion of arable land into grassland. Agr. Ecosyst. Environ. 98, 169–181 (2003).Article 

    Google Scholar 
    Purtauf, T., Dauber, J. & Wolters, V. Carabid communities in the spatio-temporal mosaic of a rural landscape. Landsc. Urban Plan. 67, 185–193 (2004).Article 

    Google Scholar 
    Eisenhauer, N. et al. Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Res. Ideas Outcomes https://doi.org/10.3897/rio.5.e47042 (2019).Article 

    Google Scholar 
    Guerrero-Ramirez, N. R. et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 1, 1639–1642. https://doi.org/10.1038/s41559-017-0325-1 (2017).Article 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592. https://doi.org/10.1126/science.1217909 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451. https://doi.org/10.1111/j.1461-0248.2009.01299.x (2009).Article 

    Google Scholar 
    Blake, S., Foster, G. N., Fisher, G. E. J. & Ligertwood, G. L. Effects of management practices on the carabid faunas of newly established wildflower meadows in southern Scotland. Ann. Zool. Fenn. 33, 139–147 (1996).
    Google Scholar 
    Boetzl, F. A., Krimmer, E., Krauss, J. & Steffan-Dewenter, I. Agri-environmental schemes promote ground-dwelling predators in adjacent oilseed rape fields: Diversity, species traits and distance-decay functions. J. Appl. Ecol. 56, 10–20. https://doi.org/10.1111/1365-2664.13162 (2019).Article 

    Google Scholar 
    Knapp, M., Seidl, M., Knappová, J., Macek, M. & Saska, P. Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Sci. Rep. 9, 8967. https://doi.org/10.1038/s41598-019-45378-7 (2019).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Reconciling policy instruments with drivers of deforestation and forest degradation: cross-scale analysis of stakeholder perceptions in tropical countries

    Global Forest Resources Assessment 2020 (FAO, 2020).Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).ADS 
    CAS 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).ADS 

    Google Scholar 
    Foley, J. A. et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).
    Google Scholar 
    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).ADS 
    CAS 

    Google Scholar 
    Brandon, K. Ecosystem services from tropical forests: Review of current science. SSRN J. https://doi.org/10.2139/ssrn.2622749 (2014). Article 

    Google Scholar 
    Indarto, J. & Mutaqin, D. J. An overview of theoretical and empirical studies on deforestation. MPRA. Paper No. 70178 (2016).Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52, 143–150 (2002).
    Google Scholar 
    Angelsen, A. & Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economic models. World Bank Res. Obs. 14, 73–98 (1999).CAS 

    Google Scholar 
    Contreras-Hermosilla, A. The Underlying Causes of Forest Decline (Center for International Forestry Research, 2000).
    Google Scholar 
    Turner, B. L. et al. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Glob. Environ. Change 1, 14–22 (1990).
    Google Scholar 
    Meyer, W. B. & Turner, B. L. Human population growth and global land-use/cover change. Ann. Rev. Ecol. Syst. 2, 39–61 (1992).
    Google Scholar 
    Miyamoto, M., Mohd Parid, M., Noor Aini, Z. & Michinaka, T. Proximate and underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ. 44, 18–25 (2014).
    Google Scholar 
    Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).
    Google Scholar 
    Carodenuto, S. et al. A methodological framework for assessing agents, proximate drivers and underlying causes of deforestation: Field test results from southern cameroon. Forests 6, 203–224 (2015).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 

    Google Scholar 
    Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).ADS 

    Google Scholar 
    Köthke, M., Leischner, B. & Elsasser, P. Uniform global deforestation patterns—An empirical analysis. For. Policy Econ. 28, 23–37 (2013).
    Google Scholar 
    Busch, J. & Ferretti-Gallon, K. What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy 11, 3–23 (2017).
    Google Scholar 
    Ferrer Velasco, R. F., Köthke, M., Lippe, M. & Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS One 15, e0226830 (2020).CAS 

    Google Scholar 
    Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).
    Google Scholar 
    Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Ann. Rev. Resour. Econ. 12, 45–64 (2020).
    Google Scholar 
    Bemelmans-Videc, M.-L., Rist, R. C. & Vedung, E. Carrots, Sticks & Sermons: Policy Instruments and their Evaluation (Transaction Publishers, 1998).
    Google Scholar 
    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).ADS 
    CAS 

    Google Scholar 
    Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).ADS 

    Google Scholar 
    Wolff, S. & Schweinle, J. Effectiveness and economic viability of forest certification: A systematic review. Forests 13, 798 (2022).
    Google Scholar 
    Müller, R., Pistorius, T., Rohde, S., Gerold, G. & Pacheco, P. Policy options to reduce deforestation based on a systematic analysis of drivers and agents in lowland Bolivia. Land Use Policy 30, 895–907 (2013).
    Google Scholar 
    Tegegne, Y. T., Lindner, M., Fobissie, K. & Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 51, 312–324 (2016).
    Google Scholar 
    Hoffmann, C., García Márquez, J. R. & Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 77, 379–391 (2018).
    Google Scholar 
    Henders, S., Ostwald, M., Verendel, V. & Ibisch, P. Do national strategies under the UN biodiversity and climate conventions address agricultural commodity consumption as deforestation driver?. Land Use Policy 70, 580–590 (2018).
    Google Scholar 
    Salvini, G. et al. How countries link REDD+ interventions to drivers in their readiness plans: implications for monitoring systems. Environ. Res. Lett. 9, 074004 (2014).ADS 

    Google Scholar 
    Bos, A. B. et al. Integrated assessment of deforestation drivers and their alignment with subnational climate change mitigation efforts. Environ. Sci. Policy 114, 352–365 (2020).CAS 

    Google Scholar 
    Fritz, S. et al. A continental assessment of the drivers of tropical deforestation with a focus on protected areas. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2022.830248 (2022).Article 

    Google Scholar 
    Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).ADS 

    Google Scholar 
    Fedele, G., Locatelli, B., Djoudi, H. & Colloff, M. J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS One 13, e0195895 (2018).
    Google Scholar 
    Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. https://doi.org/10.5751/ES-04275-160315 (2011).Article 

    Google Scholar 
    Loran, C., Ginzler, C. & Bürgi, M. Evaluating forest transition based on a multi-scale approach: Forest area dynamics in Switzerland 1850–2000. Reg. Environ. Change 16, 1807–1818 (2016).
    Google Scholar 
    Moonen, P. C. et al. Actor-based identification of deforestation drivers paves the road to effective REDD+in DR Congo. Land Use Policy 58, 123–132 (2016).
    Google Scholar 
    Strassburg, B. The tragedy of the tropics: A dynamic, cross-scale analysis of deforestation incentives. Working Paper—Centre for Social and Economic Research on the Global Environment No. 07-02 (2007).López-Carr, D. et al. Space versus place in complex human–natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol. Model. 229, 64–75 (2012).
    Google Scholar 
    Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).
    Google Scholar 
    Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).
    Google Scholar 
    Ferrer Velasco, R. et al. Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters. Remote Sens. Environ. 274, 112997 (2022).ADS 

    Google Scholar 
    Jayathilake, H. M., Prescott, G. W., Carrasco, L. R., Rao, M. & Symes, W. S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 50, 215–228 (2021).
    Google Scholar 
    Minang, P. A. et al. REDD+Readiness progress across countries: Time for reconsideration. Clim. Policy 14, 685–708 (2014).
    Google Scholar 
    Current pledges | Bonn challenge. https://www.bonnchallenge.org/pledges. Accessed: 15th August 2022.Nansikombi, H. et al. Can de facto governance influence deforestation drivers in the Zambian Miombo?. For. Policy Econ. 120, 102309 (2020).
    Google Scholar 
    Sullivan, A., York, A., White, D., Hall, S. & Yabiku, S. D. Jure versus de facto institutions: Trust, information, and collective efforts to manage the invasive mile-a-minute weed (Mikania micrantha). Int. J. Commons 11, 171–199 (2017).
    Google Scholar 
    Busch, J. & Amarjargal, O. Authority of second-tier governments to reduce deforestation in 30 tropical countries. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00001 (2020).Article 

    Google Scholar 
    Sandström, C., Eckerberg, K. & Raitio, K. Studying conflicts, proposing solutions—Towards multi-level approaches to the analyses of forest conflicts. For. Policy Econ. 33, 123–127 (2013).
    Google Scholar 
    Hoogstra-Klein, M. A., Permadi, D. B. & Yasmi, Y. The value of cultural theory for participatory processes in natural resource management. For. Policy Econ. 20, 99–106 (2012).
    Google Scholar 
    de Jong, W., Ruiz, S. & Becker, M. Conflicts and communal forest management in northern Bolivia. For. Policy Econ. 8, 447–457 (2006).
    Google Scholar 
    Eckerberg, K. & Sandström, C. Forest conflicts: A growing research field. For. Policy Econ. 33, 3–7 (2013).
    Google Scholar 
    Sierra, R., Calva, O. & Guevara, A. La Deforestación en el Ecuador, 1990–2018. Factores promotores y tendencias recientes, 216 (2021).Wasserstrom, R. & Southgate, D. Deforestation, agrarian reform and oil development in Ecuador, 1964–1994. Nat. Resour. 04, 31 (2013).
    Google Scholar 
    Wiebe, P. C., Zhunusova, E., Lippe, M., Ferrer Velasco, R. & Günter, S. What is the contribution of forest-related income to rural livelihood strategies in the Philippines’ remaining forested landscapes?. For. Policy Econ. 135, 102658 (2022).
    Google Scholar 
    Le, H. D., Smith, C. & Herbohn, J. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Change 24, 334–348 (2014).
    Google Scholar 
    Carandang, A. P. et al. Analysis of key drivers of deforestation and forest degradation in the Philippines. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (2013).Phiri, D., Morgenroth, J. & Xu, C. Four decades of land cover and forest connectivity study in Zambia—An object-based image analysis approach. Int. J. Appl. Earth Obs. Geoinf. 79, 97–109 (2019).ADS 

    Google Scholar 
    Nansikombi, H., Fischer, R., Kabwe, G. & Günter, S. Exploring patterns of forest governance quality: Insights from forest frontier communities in Zambia’s Miombo ecoregion. Land Use Policy 99, 104866 (2020).
    Google Scholar 
    Zhang, H., Wang, P. & Wood, J. Does institutional quality matter for the nexus between environmental quality and economic growth?: A tropics perspective. In Business, Industry, and Trade in the Tropics (eds Wood, J. et al.) (Routledge, 2022).
    Google Scholar 
    Reed, J., Van Vianen, J., Deakin, E. L., Barlow, J. & Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Glob. Change Biol. 22, 2540–2554 (2016).ADS 

    Google Scholar 
    Fischer, R. et al. Interplay of governance elements and their effects on deforestation in tropical landscapes: Quantitative insights from Ecuador. World Dev. 148, 105665 (2021).
    Google Scholar 
    Torres, B., Vasco, C., Günter, S. & Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco biosphere reserve Ecuadorian Amazon. Sustainability 10, 1432 (2018).
    Google Scholar 
    Ojeda Luna, T., Zhunusova, E., Günter, S. & Dieter, M. Measuring forest and agricultural income in the Ecuadorian lowland rainforest frontiers: Do deforestation and conservation strategies matter?. For. Policy Econ. 111, 102034 (2020).
    Google Scholar 
    Kazungu, M. et al. Effects of household-level attributes and agricultural land-use on deforestation patterns along a forest transition gradient in the Miombo landscapes Zambia. Ecol. Econ. 186, 107070 (2021).
    Google Scholar 
    Kleemann, J. et al. Deforestation in continental ecuador with a focus on protected areas. Land 11, 268 (2022).
    Google Scholar 
    Mulenga, M. M. & Roos, A. Assessing the awareness and adoptability of pellet cookstoves for low-income households in Lusaka, Zambia. J. Energy South. Afr. 32, 52–61 (2021).
    Google Scholar 
    Eguiguren, P., Ojeda Luna, T., Torres, B., Lippe, M. & Günter, S. Ecosystem service multifunctionality: Decline and recovery pathways in the amazon and chocó lowland rainforests. Sustainability 12, 7786 (2020).CAS 

    Google Scholar 
    Vasco, C., Torres, B., Pacheco, P. & Griess, V. The socioeconomic determinants of legal and illegal smallholder logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 78, 133–140 (2017).
    Google Scholar 
    van der Ploeg, J., van Weerd, M., Masipiqueña, A. B. & Persoon, G. A. Illegal logging in the Northern Sierra Madre Natural Park, the Philippines. Conserv. Soc. 9, 202–215 (2011).
    Google Scholar 
    Liu, D. S., Iverson, L. R. & Brown, S. Rates and patterns of deforestation in the Philippines: Application of geographic information system analysis. For. Ecol. Manag. 57, 1–16 (1993).
    Google Scholar 
    Boquet, Y. Environmental challenges in the Philippines. In The Philippine Archipelago (ed. Boquet, Y.) 779–829 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-51926-5_22.Chapter 

    Google Scholar 
    MAGAP. ATPA: Reconversión Agro productiva Sostenible en la Amazonía Ecuatoriana (2014).Jones, K. W. et al. Forest conservation incentives and deforestation in the Ecuadorian Amazon. Environ. Conserv. 44, 56–65 (2017).
    Google Scholar 
    Lindsey, P. A. et al. Underperformance of African protected area networks and the case for new conservation models: Insights from Zambia. PLoS One 9, e94109 (2014).ADS 

    Google Scholar 
    Fischer, R. et al. Effectiveness of policy instrument mixes for forest conservation in the tropics – a stakeholder perspective from Ecuador, the Philippines and Zambia. Land Use Policy https://doi.org/10.1016/j.landusepol.2023.106546 (2022).Article 

    Google Scholar 
    Gurney, G. G. et al. Biodiversity needs every tool in the box: Use OECMs. Nature 595, 646–649 (2021).ADS 
    CAS 

    Google Scholar 
    Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).ADS 
    CAS 

    Google Scholar 
    Priebe, J. et al. Transformative change in context—Stakeholders’ understandings of leverage at the forest–climate nexus. Sustain. Sci. 17, 1921–1938 (2022).
    Google Scholar 
    Höhl, M. et al. Forest landscape restoration—What generates failure and success?. Forests 11, 938 (2020).
    Google Scholar 
    Köthke, M., Ahimbisibwe, V. & Lippe, M. The evidence base on the environmental, economic and social outcomes of agroforestry is patchy—An evidence review map. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.925477 (2022).Article 

    Google Scholar 
    Fischer, R., Giessen, L. & Günter, S. Governance effects on deforestation in the tropics: A review of the evidence. Environ. Sci. Policy 105, 84–101 (2020).
    Google Scholar 
    Bare, M., Kauffman, C. & Miller, D. C. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).ADS 

    Google Scholar 
    Vuohelainen, A. J., Coad, L., Marthews, T. R., Malhi, Y. & Killeen, T. J. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios. Peru. Environ. Manag. 50, 645–663 (2012).ADS 

    Google Scholar 
    Hull, V. & Liu, J. Telecoupling: A new frontier for global sustainability. Ecol. Soc. 23, 41 (2018).
    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. Roy. Stat. Soc. 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 15, 625–632 (2010).
    Google Scholar 
    Day, M., Gumbo, D., Moombe, K. B., Wijaya, A. & Sunderland, T. Zambia Country Profile: Monitoring, Reporting and Verification for REDD+ Vol. 113 (CIFOR, 2014).
    Google Scholar 
    Piotrowski, M. Nearing the tipping point. Drivers of Deforestation in the Amazon Region (2019).Sarker, P. K., Fischer, R., Tamayo, F., Navarrete, B. T. & Günter, S. Analyzing forest policy mixes based on the coherence of policies and the consistency of legislative policy instruments: A case study from Ecuador. For. Policy Econ. 144, 102838 (2022).
    Google Scholar 
    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22(140), 55–55 (1932).
    Google Scholar 
    Altinsoy, M. et al. Ambulatory ECG monitoring for syncope and collapse in United States, Europe, and Japan: The patients’ viewpoint. J. Arrhythm. 37, 1023–1030 (2021).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, Austria, 2022).Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.0 (2021).Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020).Komsta, L. & Novometsky, F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14.1 (2022).Zhang, Y., Zhou, M. & Shao, Y. mvnormalTest: Powerful tests for multivariate normality. R package version 1.0.0 (2020).Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).Wickham, H. et al. Welcome to the Tidyverse. JOSS 4, 1686 (2019).ADS 

    Google Scholar 
    Bache, S. M. & Wickham, H. magrittr: A Forward-Pipe Operator for R. R package version 2.0.3 (2022).Ushey, K., Allaire, J., Wickham, H. & Ritchie, G. rstudioapi: Safely Access the RStudio API. R package version 0.13 (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.Book 
    MATH 

    Google Scholar 
    Wilkins, D. treemapify: Draw Treemaps in ‘ggplot2’. R package version 2.5.5 (2021).Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 

    Google Scholar 
    Mardia, K. V. Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970).MathSciNet 
    MATH 

    Google Scholar 
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).MATH 

    Google Scholar 
    Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).
    Google Scholar 
    Conover, W. J. & Iman, R. L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 35, 124–129 (1981).MATH 

    Google Scholar 
    Student,. The probable error of a mean. Biometrika 6, 1–25 (1908).MATH 

    Google Scholar 
    Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949).MathSciNet 
    CAS 

    Google Scholar 
    Jolliffe, I. T. Principal Component Analysis (Springer, 2002).MATH 

    Google Scholar  More

  • in

    Co-cultivation of Mortierellaceae with Pseudomonas helmanticensis affects both their growth and volatilome

    The growth behaviour of Linnemannia is strain-specificMost strains showed comparable morphological characteristics on both media as well as in pure and co-culture. However, Linnemannia solitaria and Entomortierella galaxiae produced more aerial mycelium on PDA compared to LcA. There was more/less aerial mycelium in co-cultures with P. helmanticensis compared to pure cultures depending on the strain (Fig. 1, SI Fig. S3).The comparison of Linnemannia and E. galaxiae daily radial growth rates did not support a difference between these genera (p ≥ 0.3). The overall linear model indicated that the fungal daily growth rates mainly differed among species (Table 1). In addition, the effect of strains highlighted the heterogeneity among strains within species (Fig. 2, SI Figs. S4, S5). Although there was no relevant main effect of medium on the daily radial growth rate of the fungi, the medium did affect the fungi in a strain-specific manner (Table 1, Fig. 2, SI Figs. S4, S5). On nutrient poor LcA, the fungal daily radial growth rates were reduced for all species, except for L. solitaria, which grew better on LcA (SI Figs. S3, S4).Table 1 The effect of experimental factors on the fungal daily radial growth rate.Full size tableFigure 2Daily radial growth rate of pure Linnemannia and Entomortierella cultures as well as co-cultures with P. helmanticensis on nutrient rich PDA medium. (a) L. exigua, (b) L. gamsii, (c) L. hyalina, (d) L. sclerotiella, (e) L. solitaria, (f) E. galaxiae.Full size imageThe main effect of co-plating P. helmanticensis on radial growth rate was small, yet significant (0.7%, p  More

  • in

    Integrative taxonomy reveals new, widely distributed tardigrade species of the genus Paramacrobiotus (Eutardigrada: Macrobiotidae)

    Guidetti, R. & Bertolani, R. B. Tardigrade taxonomy: An updated check list of the taxa and a list of characters for their identification. Zootaxa 845, 1–46. https://doi.org/10.11646/zootaxa.845.1.1 (2005).Article 

    Google Scholar 
    Degma, P. & Guidetti, R. Notes to the current checklist of Tardigrada. Zootaxa 1579, 41–53. https://doi.org/10.11646/zootaxa.1579.1.2 (2007)Article 

    Google Scholar 
    Vicente, F. & Bertolani, R. Considerations on the taxonomy of the phylum Tardigrada. Zootaxa 3626, 245–248. https://doi.org/10.11646/zootaxa.3626.2.2 (2013).Article 

    Google Scholar 
    Degma, P. & Guidetti, R. Actual checklist of Tardigrada species. (Version 41: Edition: 16-05-2022). (2009–2022).Ramazzotti, G. & Maucci, W. Il phylum Tardigrada. III edizione riveduta e aggiornata. Mem. Ist. Ital. Idrobiol. 41, 1–1012 (1983).
    Google Scholar 
    Beasley, C. W. The phylum Tardigrada. in English Translation P. 3rd edn (eds Ramazzotti, G. & Maucci, W.) 1–1014 (Abilene, USA, 1995).Nelson, D. R., Guidetti, R., Rebecchi, L., Kaczmarek, Ł. & McInnes, S. Phylum Tardigrada. in Thorp and Covich’s Freshwater Invertebrates 505–522 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-804225-0.00015-0.Da Cunha, A. X. & do Nascimento-Ribeiro, F. A fauna de Tardígrados da Ilha da Madeira. Mem. Estud. Mus. Zool. Univ. Coimbra 1–24 (1962).Fontoura, P., Pilato, G. & Lisi, O. Tardigrada from Santo Antão Island (Archipelago of Cape Verde, West Africa) with the description of a new species. Zootaxa 2838, 30–40. https://doi.org/10.11646/zootaxa.2838.1.2 (2011).Article 

    Google Scholar 
    Gąsiorek, P., Vončina, K. & Michalczyk, Ł. Echiniscus testudo (Doyère, 1840) in New Zealand: Anthropogenic dispersal or evidence for the ‘Everything is Everywhere’ hypothesis?. N. Z. J. Zool. 46, 174–181. https://doi.org/10.1080/03014223.2018.1503607 (2019).Article 

    Google Scholar 
    Guidetti, R., Schill, R. O., Bertolani, R., Dandekar, T. & Wolf, M. New molecular data for tardigrade phylogeny, with the erection of Paramacrobiotus gen. nov. J. Zool. Syst. Evol. 47, 315–321. https://doi.org/10.1111/j.1439-0469.2009.00526.x (2009).Article 

    Google Scholar 
    Kaczmarek, Ł, Gawlak, M., Bartels, P. J., Nelson, D. R. & Roszkowska, M. Revision of the genus Paramacrobiotus Guidetti et al., 2009 with the description of a new species, re-descriptions and a key. Ann. Zool. 67, 627–656. https://doi.org/10.3161/00034541ANZ2017.67.4.001 (2017).Article 

    Google Scholar 
    Marley, N. J. et al. A clarification for the subgenera of Paramacrobiotus Guidetti, Schill, Bertolani, Dandekar and Wolf, 2009, with respect to the International Code of Zoological Nomenclature. Zootaxa 4407, 130–134. https://doi.org/10.11646/zootaxa.4407.1.9 (2018).Article 
    CAS 

    Google Scholar 
    Guidetti, R., Cesari, M., Bertolani, R., Altiero, T. & Rebecchi, L. High diversity in species, reproductive modes and distribution within the Paramacrobiotus richtersi complex (Eutardigrada, Macrobiotidae). Zool. Lett. 5, 1–28. https://doi.org/10.1186/s40851-018-0113-z (2019).Article 

    Google Scholar 
    Stec, D., Krzywański, Ł, Zawierucha, K. & Michalczyk, Ł. Untangling systematics of the Paramacrobiotus areolatus species complex by an integrative redescription of the nominal species for the group, with multilocus phylogeny and species delineation in the genus Paramacrobiotus. Zool. J. Linn. Soc. 188, 694–716. https://doi.org/10.1093/zoolinnean/zlz163 (2020).Article 

    Google Scholar 
    Murray, J. Scottish Tardigrada, a review of our present knowledge. Ann. Scot. Nat. Hist. 78, 88–95 (1911).
    Google Scholar 
    Murray, J. XXV.—Arctic Tardigrada, collected by Wm. S. Bruce. Trans. R. Soc. Edinb. 45, 669–681 (1907).Article 

    Google Scholar 
    Ramazzotti, G. Tre nouve specie di Tardigradi ed altre specie poco comuni. Atti Soc. Nat. Milano 10, 284–291 (1956).
    Google Scholar 
    Schill, R. O., Förster, F., Dandekar, T. & Wolf, M. Using compensatory base change analysis of internal transcribed spacer 2 secondary structures to identify three new species in Paramacrobiotus (Tardigrada). Org. Divers. Evol. 10, 287–296. https://doi.org/10.1007/s13127-010-0025-z (2010).Article 

    Google Scholar 
    Kaczmarek, Ł et al. Integrative description of bisexual Paramacrobiotus experimentalis sp. Nov. (Macrobiotidae) from republic of Madagascar (Africa) with microbiome analysis. Mol. Phylogenet. Evol. 145, 106730. https://doi.org/10.1016/j.ympev.2019.106730 (2020).Article 

    Google Scholar 
    Bertolani, R. Partenogenesi geografica triploide in un Tardigrado (Macrobiotus richtersi). Rend. Acc. Naz. Lincei. Ser. 8, 487–489 (1971).
    Google Scholar 
    Bertolani, R. Sex ratio and geographic parthenogenesis in Macrobioutus (Tardigrada). Experientia 28, 94–95. https://doi.org/10.1007/BF01928285 (1972).Article 

    Google Scholar 
    Bertolani, R. L. partenogenesi nei Tardigradi. Boll. Zool. 39, 577–581. https://doi.org/10.1080/11250007209431414 (1972).Article 

    Google Scholar 
    Bertolani, R. Cytology and Reproductive Mechanisms in Tardigrades. I. 93–114 (East Tennesse State University Press, Johnson City, 1982).
    Google Scholar 
    Lemloh, M., Brümmer, F. & Schill, R. O. Life-history traits of the bisexual tardigrades Paramacrobiotus tonollii and Macrobiotus sapiens. J. Zool. Syst. Evol. Res. 49, 58–61. https://doi.org/10.1111/j.1439-0469.2010.00599.x (2011).Article 

    Google Scholar 
    Guil, N. & Giribet, G. A comprehensive molecular phylogeny of tardigrades-adding genes and taxa to a poorly resolved phylum-level phylogeny. Cladistics 28, 21–49. https://doi.org/10.1111/j.1096-0031.2011.00364.x (2012).Article 

    Google Scholar 
    Kosztyła, P. et al. Experimental taxonomy confirms the environmental stability of morphometric traits in a taxonomically challenging group of microinvertebrates. Zool. J. Linn. Soc. 178, 765–775. https://doi.org/10.1111/zoj.12409 (2016).Article 

    Google Scholar 
    Kaczmarek, Ł et al. New records of Antarctic Tardigrada with comments on iterpopulation variability of the Paramacrobiotus fairbanksi Schill, Förster, Dandekar and Wolf, 2010. Diversity 12, 108. https://doi.org/10.3390/d12030108 (2020).Article 

    Google Scholar 
    Stec, D., Vecchi, M., Calhim, S. & Michalczyk, Ł. New multilocus phylogeny reorganises the family Macrobiotidae (Eutardigrada) and unveils complex morphological evolution of the Macrobiotus hufelandi group. Mol. Phylogenet. Evol. 160, 106987. https://doi.org/10.1016/j.ympev.2020.106987 (2021).Article 

    Google Scholar 
    Stec, D., Smolak, R., Kaczmarek, Ł & Michalczyk, Ł. An integrative description of Macrobiotus paulinae sp. Nov. (Tardigrada: Eutardigrada: Macrobiotidae: hufelandi group) from Kenya. Zootaxa 4052, 501–526. https://doi.org/10.11646/zootaxa.4052.5.1 (2015).Article 

    Google Scholar 
    Bryce, D. On some moss-dwelling Cathypnadae; with descriptions of five new species. Sci. Gossip Lond. 28, 271–275 (1892).
    Google Scholar 
    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).Article 
    CAS 

    Google Scholar 
    Stec, D., Kristensen, R. M. & Michalczyk, Ł. An integrative description of Minibiotus ioculator sp. nov. from the Republic of South Africa with notes on Minibiotus pentannulatus Londoño et al., 2017 (Tardigrada: Macrobiotidae). Zool. Anz. 286, 117–134. https://doi.org/10.1016/j.jcz.2020.03.007 (2020).Article 

    Google Scholar 
    Stec, D., Zawierucha, K. & Michalczyk, Ł. An integrative description of Ramazzottius subanomalus (Biserov, 1985 (Tardigrada) from Poland. Zootaxa 4300, 403–420. https://doi.org/10.11646/zootaxa.4300.3.4 (2017).Article 

    Google Scholar 
    Mironov, S. V., Dabert, J. & Dabert, M. A new feather mite species of the genus Proctophyllodes Robin, 1877 (Astigmata: Proctophyllodidae) from the Long-tailed Tit Aegithalos caudatus (Passeriformes: Aegithalidae)—Morphological description with DNA barcode data. Zootaxa 3253, 54–61. https://doi.org/10.11646/zootaxa.3253.1.2 (2012).Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. PCR Protocols: A Guide to Methods and Application 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 (Academic Press, 1990).Book 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. Phylogenetic uncertainty. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 

    Google Scholar 
    Vecchi, M. & Stec, D. Integrative descriptions of two new Macrobiotus species (Tardigrada, Eutardigrada, Macrobiotidae) from Mississippi (USA) and Crete (Greece). ZSE 97, 281–306. https://doi.org/10.3897/zse.97.65280 (2021).Article 

    Google Scholar 
    Thulin, G. Über die phylogenie und das system der. Hereditas 11, 207–266. https://doi.org/10.1111/j.1601-5223.1928.tb02488.x (1928).Article 

    Google Scholar 
    Stec, D. Mesobiotus datanlanicus sp. nov., a new tardigrade species (Macrobiotidae: Mesobiotus harmsworthi group) from Lâm Đồng Province in Vietnam. Zootaxa 4679, 164–180. https://doi.org/10.11646/zootaxa.4679.1.10 (2019).Article 

    Google Scholar 
    Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. NAR 30, 3059–3066. https://doi.org/10.1093/nar/gkf436 (2002).Article 
    CAS 

    Google Scholar 
    Katoh, K. & Toh, H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298. https://doi.org/10.1093/bib/bbn013 (2008).Article 
    CAS 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x (2011).Article 

    Google Scholar 
    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29(6), 1695–1701. https://doi.org/10.1093/molbev/mss020 (2012).Article 
    CAS 

    Google Scholar 
    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogenet. Evol. 26, 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3 (2003).Article 
    CAS 

    Google Scholar 
    Xia, X. & Lemey, P. Assessing substitution saturation with DAMBE. In The Phylogenetic Handbook (eds Lemey, P. et al.) 615–630. https://doi.org/10.1017/CBO9780511819049.022 (Cambridge University Press, 2009).Chapter 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180 (2003).Article 
    CAS 

    Google Scholar 
    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v1. 6. 2014. (2015).Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).Article 
    CAS 

    Google Scholar 
    Bandelt, H., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 (1999).Article 
    CAS 

    Google Scholar 
    Ehrenberg, C. G. Beitrag zur Bestimmung des Stationären Mikroskopischen Lebens in bis 20,000 Fuss Alpenhöhe. (1859).Guil, N. & Guidetti, R. A new species of Tardigrada (Eutardigrada: Macrobiotidae) from Iberian Peninsula and Canary Islands (Spain). Zootaxa 889, 1–11. https://doi.org/10.11646/zootaxa.889.1.1 (2005).Article 

    Google Scholar 
    Plate, L. H. Beiträge zur Naturgeschichte der Tardigraden. Zool. Jahrb. Abteilung Anat. Ontog. Tiere 3, 487–550. https://doi.org/10.5962/bhl.part.1265 (1889).Article 

    Google Scholar 
    Kaczmarek, Ł, Kayastha, P., Roszkowska, M., Gawlak, M. & Mioduchowska, M. Integrative redescription of the Minibiotus intermedius (Plate, 1888)—The type species of the genus Minibiotus R.O. Schuster, 1980. Diversity 14, 356. https://doi.org/10.3390/d14050356 (2022).Article 
    CAS 

    Google Scholar 
    Londoño, R., Daza, A., Lisi, O. & Quiroga, S. New species of waterbear Minibiotus pentannulatus (Tardigrada: Macrobiotidae) from Colombia. Rev. Mex. Biodivers. 88, 807–814. https://doi.org/10.1016/j.rmb.2017.10.040 (2017).Article 

    Google Scholar 
    Vecchi, M. et al. Macrobiotus naginae sp. nov., a new Xerophilous Tardigrade species from Rokua Sand Dunes (Finland). Zool. Stud. 61, e22 (2022).
    Google Scholar 
    Stec, D., Dudziak, M. & Michalczyk, Ł. Integrative descriptions of two new Macrobiotidae species (Tardigrada: Eutardigrada: Macrobiotoidea) from French Guiana and Malaysian Borneo. Zool. Stud. 59, e23 (2020).
    Google Scholar 
    Stec, D., Roszkowska, M., Kaczmarek, Ł & Michalczyk, Ł. Paramacrobiotus lachowskae, a new species of Tardigrada from Colombia (Eutardigrada: Parachela: Macrobiotidae). N. Z. J. Zool. 45, 43–60. https://doi.org/10.1080/03014223.2017.1354896 (2018).Article 

    Google Scholar 
    Sugiura, K., Matsumoto, M. & Kunieda, T. Description of a model tardigrade Paramacrobiotus metropolitanus sp. nov. (Eutardigrada) from Japan with a summary of its life history, reproduction and genomics. Zootaxa 5134, 92–112. https://doi.org/10.11646/zootaxa.5134.1.4 (2022).Article 

    Google Scholar 
    Tumanov, D. V. Three new species of Macrobiotus (Eutardigrada, Macrobiotidae, tenuis-group) from Tien Shan (Kirghizia) and Spitsbergen. J. Limnol. 66, 40. https://doi.org/10.4081/jlimnol.2007.s1.40 (2007).Article 

    Google Scholar 
    Zawierucha, K., Kolicka, M. & Kaczmarek, Ł. Re-description of the Arctic tardigrade Tenuibiotus voronkovi (Tumanov, 2007 (Eutardigrada; Macrobiotidea), with the first molecular data for the genus. Zootaxa 4196, 498. https://doi.org/10.11646/zootaxa.4196.4.2 (2016).Article 

    Google Scholar 
    Stec, D., Tumanov, D. T. & Kristensen, R. M. Integrative taxonomy identifies two new tardigrade species (Eutardigrada: Macrobiotidae) from Greenland. EJT 614, 1–40. https://doi.org/10.5852/ejt.2020.614 (2020).Article 

    Google Scholar 
    Fontaneto, D., Flot, J.-F. & Tang, C. Q. Guidelines for DNA taxonomy, with a focus on the meiofauna. Mar. Biodiv. 45, 433–451. https://doi.org/10.1007/s12526-015-0319-7 (2015).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499 (2013).Article 
    CAS 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34(3), 772–773. https://doi.org/10.1093/molbev/msw260 (2017).Article 
    CAS 

    Google Scholar 
    Roszkowska, M., Stec, D., Gawlak, M. & Kaczmarek, Ł. An integrative description of a new tardigrade species Mesobiotus romani sp. nov. (Macrobiotidae: harmsworthi group) from the Ecuadorian Pacific coast. Zootaxa 4450, 550–564. https://doi.org/10.11646/zootaxa.4450.5.2 (2018).Article 

    Google Scholar 
    Pilato, G. & Binda, M. G. Definition of families, subfamilies, genera and subgenera of the Eutardigrada, and keys to their identification. Zootaxa 2404, 1–54. https://doi.org/10.11646/zootaxa.2404.1.1 (2010).Article 

    Google Scholar 
    Kaczmarek, Ł & Michalczyk, Ł. The Macrobiotus hufelandi group (Tardigrada) revisited. Zootaxa 4363, 101–123. https://doi.org/10.11646/zootaxa.4363.1.4 (2017).Article 

    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. A description of the new tardigrade Macrobiotus reinhardti (Eutardigrada: Macrobiotidae, harmsworthi group) with some remarks on the oral cavity armature within the genus Macrobiotus Schultze. Zootaxa 331, 1–24. https://doi.org/10.11646/zootaxa.331.1.1 (2003).Article 

    Google Scholar 
    Kaczmarek, Ł, Cytan, J., Zawierucha, K., Diduszko, D. & Michalczyk, Ł. Tardigrades from Peru (South America), with descriptions of three new species of Parachela. Zootaxa 3790, 357–379. https://doi.org/10.11646/zootaxa.3790.2.5 (2014).Article 

    Google Scholar 
    Kiosya, Y., Pogwizd, J., Matsko, Y., Vecchi, M. & Stec, D. Phylogenetic position of two Macrobiotus species with a revisional note on Macrobiotus sottilei Pilato, Kiosya, Lisi & Sabella, 2012 (Tardigrada: Eutardigrada: Macrobiotidae). Zootaxa 4933, 113–135. https://doi.org/10.11646/zootaxa.4933.1.5 (2021).Article 

    Google Scholar 
    Pilato, G. Analisi di nuovi caratteri nello studio degli Eutardigradi. Animalia 8, 51–57 (1981).
    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. The Tardigrada Register: a comprehensive online data repository for tardigrade taxonomy. J. Limnol. 72, e22. https://doi.org/10.4081/jlimnol.2013.s1.e22 (2013).Article 

    Google Scholar 
    Bertolani, R. et al. Phylogeny of Eutardigrada: New molecular data and their morphological support lead to the identification of new evolutionary lineages. Mol. Phylogenet. Evol. 76, 110–126. https://doi.org/10.1016/j.ympev.2014.03.006 (2014).Article 

    Google Scholar 
    Perry, E., Miller, W. R. & Kaczmarek, Ł. Recommended abbreviations for the names of genera of the phylum Tardigrada. Zootaxa 4608, 145. https://doi.org/10.11646/zootaxa.4608.1.8 (2019).Article 

    Google Scholar 
    Degma, P., Michalczyk, Ł & Kaczmarek, Ł. Macrobiotus derkai, a new species of Tardigrada (Eutardigrada, Macrobiotidae, huziori group) from the Colombian Andes (South America). Zootaxa 1731, 1–23. https://doi.org/10.11646/zootaxa.1731.1.1 (2008).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & Diduszko, D. Some tardigrades from Siberia (Russia, Baikal region) with a description of Macrobiotus garynahi sp. nov. (Eutardigrada: Macrobiotidae: richtersi group). Zootaxa 1053, 35–45. https://doi.org/10.11646/zootaxa.1053.1.3 (2005).Article 

    Google Scholar 
    Michalczyk, Ł & Kaczmarek, Ł. Macrobiotus huziori, a new species of Tardigrada (Eutardigrada: Macrobiotidae) from Costa Rica (Central America). Zootaxa 1169, 47–59. https://doi.org/10.11646/zootaxa.1169.1.3 (2006).Article 

    Google Scholar 
    Michalczyk, L. & Kaczmarek, L. A new species Macrobiotus magdalenae (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Costa Rican rain forest (Central America). N. Z. J. Zool. 33, 189–196. https://doi.org/10.1080/03014223.2006.9518444 (2006).Article 

    Google Scholar 
    Michalczyk, Ł, Kaczmarek, Ł & Węglarska, B. Macrobiotus sklodowskae sp. nov. (Tardigrada: Eutardigrada: Macrobiotidae, richtersi group) from Cyprus. Zootaxa 1371, 45–56. https://doi.org/10.11646/zootaxa.1371.1.4 (2006).Article 

    Google Scholar 
    Tumanov, D. V. Notes on the Tardigrada of Thailand, with a description of Macrobiotus alekseevi sp. nov. (Eutardigrada, Macrobiotidae). Zootaxa 999, 1–6. https://doi.org/10.11646/zootaxa.999.1.1 (2005).Article 

    Google Scholar 
    Doyère, M. Memoire sur les tardigrades. Ann. Sci. Nat Zool. Ser. 2, 269–362 (1840).
    Google Scholar 
    Richters, F. Tardigrada. In Handbuch der Zoologie Vol. 3 (eds Kükenthal, W. & Krumbach, T.) 58–61 (Walter de Gruyter & Co., Berlin and Leipzig, 1926).
    Google Scholar 
    Stec, D., Cancellario, T. & Fontaneto, D. Diversification rates in Tardigrada indicate a decreasing tempo of lineage splitting regardless of reproductive mode. Org. Divers. Evol. 22(4), 965–974. https://doi.org/10.1007/s13127-022-00578-4 (2022).Article 

    Google Scholar 
    Dellicour, S. & Flot, J.-F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246. https://doi.org/10.1111/1755-0998.12908 (2018).Article 

    Google Scholar 
    Magoga, G., Fontaneto, D. & Montagna, M. Factors affecting the efficiency of molecular species delimitation in a species-rich insect family. Mol. Ecol. Resour. 21, 1475–1489. https://doi.org/10.1111/1755-0998.13352 (2021).Article 
    CAS 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & McInnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part I: Central America. Zootaxa 3763, 1–62. https://doi.org/10.11646/zootaxa.3763.1.1 (2014).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & McInnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part II: South America. Zootaxa 3923, 1–107. https://doi.org/10.11646/zootaxa.3923.1.1 (2015).Article 

    Google Scholar 
    Kaczmarek, Ł, Michalczyk, Ł & Mcinnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part III: North America and Greenland. Zootaxa 4203, 1–249. https://doi.org/10.11646/zootaxa.4203.1.1 (2016).Article 

    Google Scholar 
    Mcinnes, S. J., Michalczyk, Ł & Kaczmarek, Ł. Annotated zoogeography of non-marine Tardigrada. Part IV: Africa. Zootaxa 4284, 1. https://doi.org/10.11646/zootaxa.4284.1.1 (2017).Article 

    Google Scholar 
    Michalczyk, Ł, Kaczmarek, Ł & Mcinnes, S. J. Annotated zoogeography of non-marine Tardigrada. Part V: Australasia. Zootaxa 5107, 1–119. https://doi.org/10.11646/zootaxa.5107.1.1 (2022).Article 

    Google Scholar 
    Pilato, G., Claxton, S. & Binda, M. G. Tardigrades from Australia. III. Echiniscus marcusi and Macrobiotus peteri, new species of tardigrades from New South Wales. Animalia 16, 43–48 (1989).
    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Eutardigrada from New Zealand, with descriptions of two new species. N. Z. J. Zool. 33, 49–63. https://doi.org/10.1080/03014223.2006.9518430 (2006).Article 

    Google Scholar 
    Bartels, P. J., Pilato, G., Lisi, O. & Nelson, D. R. Macrobiotus (Eutardigrada, Macrobiotidae) from the Great Smoky Mountains National Park, Tennessee/North Carolina, USA (North America): Two new species and six new records. Zootaxa 2022, 45–57. https://doi.org/10.11646/zootaxa.2022.1.4 (2009).Article 

    Google Scholar 
    Binda, M. G., Pilato, G., Moncada, E. & Napolitano, A. Some tardigrades from Central Africa with the description of two new species: Macrobiotus ragonesei and M. priviterae (Eutardigrada Macrobiotidae). Trop. Zool. 14, 233–242. https://doi.org/10.1080/03946975.2001.10531155 (2001).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lissi, O. Notes on tardigrades of the Seychelles with the description of two new species. Ital. J. Zool. 71, 171–178 (2004).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Three new species of eutardigrades from the Seychelles. N. Z. J. Zool. 33, 39–48. https://doi.org/10.1080/03014223.2006.9518429 (2006).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Lisi, O. Notes on tardigrades of the Seychelles with the description of three new species. Ital. J. Zool. 71, 171–178. https://doi.org/10.1080/11250000409356569 (2004).Article 

    Google Scholar 
    Pilato, G., Binda, M. G. & Catanzaro, R. Remarks on some tardigrades of the African fauna with the description of three new species of Macrobiotus Schultze 1834. Trop. Zool. 4, 167–178. https://doi.org/10.1080/03946975.1991.10539487 (1991).Article 

    Google Scholar 
    Maucci, W. & Durante Pasa, M. V. Tardigradi muscicoli delle Isole Andamane. Boll. Mus. Civ. St. Nat. Verona 7, 281–291 (1980).
    Google Scholar 
    Iharos, G. Neuere Daten zur Kenntnis der Tardigraden-Fauna von Neuguinea. Opusc. Zool. Bp. 11, 65–73 (1973).
    Google Scholar 
    Binda, M. G. & Pilato, G. Macrobiotus savai and Macrobiotus humilis, two new species of tardigrades from Sri Lanka. Boll. Accad. Gioenia Sci. Nat. Catania 34, 101–111 (2001).
    Google Scholar 
    Pilato, G. Macrobiotus centesimus, new species of eutardigrade from the South America. Boll. Accad. Gioenia Sci. Nat. Catania 33, 97–101 (2000).
    Google Scholar 
    Daza, A., Caicedo, M., Lisi, O. & Quiroga, S. New records of tardigrades from Colombia with the description of Paramacrobiotus sagani sp. nov. and Doryphoribius rosanae sp. nov. Zootaxa 4362, 29–50. https://doi.org/10.11646/zootaxa.4362.1.2 (2017).Article 

    Google Scholar 
    Claps, M. C. & Rossi, G. C. Tardígrados de Uruguay, con descripción de dos nuevas especies (Echiniscidae, Macrobiotidae). Iheringia Sér. Zool. 83, 17–22 (1997).
    Google Scholar 
    Iharos, G. Neue tardigraden-arten aus ungarn (neuere beitrage zur kenntnis der tardigraden-fauna ungarns. 6.). Acta Zool. Acad. Sci. Hung. 12(1–2), 111 (1966).
    Google Scholar 
    Pilato, G., Kiosya, Y., Lisi, O. & Sabella, G. New records of Eutardigrada from Belarus with the description of three new species. Zootaxa 3179, 39–60. https://doi.org/10.11646/zootaxa.3179.1.2 (2012).Article 

    Google Scholar 
    Pasa, D. & Maucci, W. Moss Tardigrada from the Scandinavian Peninsula. in Second International Symposium on Tardigrada, Vol. 79(25). 47–85 (1979).Lisi, O., Binda, M. G. & Pilato, G. Eremobiotus ginevrae sp. nov. and Paramacrobiotus pius sp. nov., two new species of Eutardigrada. Zootaxa 4103, 344–360. https://doi.org/10.11646/zootaxa.4103.4.3 (2016).Article 

    Google Scholar 
    Biserov, V. I. Macrobiotus lorenae sp. n., a new species of Tardigrada (Eutardigrada Macrobiotidae) from the Russian Far East. Arthr Sel. 5, 145–149 (1996).
    Google Scholar 
    Biserov, V. I. Tardigrades of the Caucasus with a taxonomic analysis of genus Ramazzottius. Zool. Anz. 236, 139–159 (1997).
    Google Scholar 
    Morek, W. et al. Redescription of Milnesium alpigenum Ehrenberg, 1853 (Tardigrada: Apochela) and a description of Milnesium inceptum sp. nov., a tardigrade laboratory model. Zootaxa 4586(1), 35. https://doi.org/10.11646/zootaxa.4586.1.2 (2019).Article 

    Google Scholar 
    Morek, W., Surmacz, B., López-López, A. & Michalczyk, Ł. “Everything is not everywhere”: Time-calibrated phylogeography of the genus Milnesium (Tardigrada). Mol. Ecol. 30, 3590–3609. https://doi.org/10.1111/mec.15951 (2021).Article 

    Google Scholar 
    Mogle, M. J., Kimball, S. A., Miller, W. R. & McKown, R. D. Evidence of avian-mediated long-distance dispersal in American tardigrades. PeerJ 6, e5035. https://doi.org/10.7717/peerj.5035 (2018).Article 

    Google Scholar 
    Vuori, T., Calhim, S. & Vecchi, M. A lift in snail’s gut provides an efficient colonization route for tardigrades. Ecology 103, e3702. https://doi.org/10.1002/ecy.3702 (2022).Article 

    Google Scholar 
    Książkiewicz, Z. & Roszkowska, M. Experimental evidence for snails dispersing tardigrades based on Milnesium inceptum and Cepaea nemoralis species. Sci. Rep. 12(4421), 1–10. https://doi.org/10.1038/s41598-022-08265-2 (2022).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Globally invariant metabolism but density-diversity mismatch in springtails

    Data reportingThe data underpinning this study is a compilation of existing datasets and therefore, no statistical methods were used to predetermine sample size, the experiments were not randomized and the investigators were not blinded to allocation during experiments and outcome assessment. The measurements were taken from distinct samples, repeated measurements from the same sites were averaged in the main analysis.Inclusion & ethicsData were primarily collected from individual archives of contributing co-authors. The data collection initiative was openly announced via the mailing list of the 10th International Seminar on Apterygota and via social media (Twitter, Researchgate). In addition, colleagues from less explored regions (Africa, South America) were contacted via personal networks of the initial authors group and literature search. All direct data providers who collected and standardised the data were invited as co-authors with defined minimum role (data provision and cleaning, manuscript editing and approval). For unpublished data, people who were directly involved in sorting and identification of springtails, including all local researchers, were invited as co-authors. Principal investigators were normally not included as co-authors, unless they contributed to conceptualisation and writing of the manuscript. All co-authors were informed and invited to contribute throughout the research process—from the study design and analysis to writing and editing. The study provided an inclusive platform for researchers around the globe to network, share and test their research ideas.Data acquisitionBoth published and unpublished data were collected, using raw data whenever possible entered into a common template. In addition, data available from Edaphobase47 was included. The following minimum set of variables was collected: collectors, collection method (including sampling area and depth), extraction method, identification precision and resources, collection date, latitude and longitude, vegetation type (generalized as grassland, scrub, woodland, agriculture and other for the analysis), and abundances of springtail taxa found in each soil sample (or sampling site). Underrepresented geographical areas (Africa, South America, Australia and Southeast Asia) were specifically targeted by a literature search in the Web of Science database using the keywords ‘springtail’ or ‘Collembola’, ‘density’ or ‘abundance’ or ‘diversity’, and the region of interest; data were acquired from all found papers if the minimum information listed above was provided. All collected datasets were cleaned using OpenRefine v3.3 (https://openrefine.org) to remove inconsistencies and typos. Geographical coordinates were checked by comparing the dataset descriptions with the geographical coordinates. In total, 363 datasets comprising 2783 sites were collected and collated into a single dataset (Supplementary Fig. 1).Calculation of community parametersCommunity parameters were calculated at the site level. Here, we defined a site as a locality that hosts a defined springtail community, is covered by a certain vegetation type, with a certain management, and is usually represented by a sampling area of up to a hundred metres in diameter, making species co-occurrence and interactions plausible. To calculate density, numerical abundance in all samples was averaged and recalculated per square metre using the sampling area. Springtail communities were assessed predominantly during active vegetation periods (i.e., spring, summer and autumn in temperate and boreal biomes, and summer in polar biomes). Our estimations of community parameters therefore refer to the most favourable conditions (peak yearly densities). This seasonal sampling bias is likely to have little effect on our conclusions, since most springtails survive during cold periods38,48. Finally, we used mean annual soil temperatures49 to estimate the seasonal mean community metabolism (described below) and tested for the seasonal bias in additional analysis (see Linear mixed-effects models).All data analyses were conducted in R v. 4.0.250 with RStudio interface v. 1.4.1103 (RStudio, PBC). Data was transformed and visualised with tidyverse packages51,52, unless otherwise mentioned. Background for the global maps was acquired via the maps package53,54. To calculate local species richness, we used data identified to species or morphospecies level (validated by the expert team). Since the sampling effort varied among studies, we extrapolated species richness using rarefaction curves based on individual samples with the Chao estimator51,52 in the vegan package53. For some sites, sample-level data were not available in the original publications, but site-level averages were provided, and an extensive sampling effort was made. In such cases, we predicted extrapolated species richness based on the completeness (ratio of observed to extrapolated richness) recorded at sites where sample-level data were available (only sites with 5 or more samples were used for the prediction). We built a binomial model to predict completeness in sites where no sample-level data were available using latitude and the number of samples taken at a site as predictors: glm(Completeness~N_samples*Latitude). We found a positive effect of the number of samples (Chisq = 1.97, p = 0.0492) and latitude (Chisq = 2.07, p = 0.0391) on the completeness (Supplementary Figs. 17–19). We further used this model to predict extrapolated species richness on the sites with pooled data (435 sites in Europe, 15 in Australia, 6 in South America, 4 in Asia, and 3 in Africa).To calculate biomass, we first cross-checked all taxonomic names with the collembola.org checklist55 using fuzzy matching algorithms (fuzzyjoin R package56) to align taxonomic names and correct typos. Then we merged taxonomic names with a dataset on body lengths compiled from the BETSI database57, a personal database of Matty P. Berg, and additional expert contributions. We used average body lengths for the genus level (body size data on 432 genera) since data at the species level were not available for many morphospecies (especially in tropical regions), and species within most springtail genera had similar body size ranges. Data with no genus-level identifications were excluded from the analysis. Dry and fresh body masses were calculated from body length using a set of group-specific length-mass regressions (Supplementary Table 1)58,59 and the results of different regressions applied to the same morphogroup were averaged. Dry mass was recalculated to fresh mass using corresponding group-specific coefficients58. We used fresh mass to calculate individual metabolic rates60 and account for the mean annual topsoil (0–5 cm) temperature at a given site61. Group-specific metabolic coefficients for insects (including springtails) were used for the calculation: normalization factor (i0) ln(21.972) [J h−1], allometric exponent (a) 0.759, and activation energy (E) 0.657 [eV]60. Community-weighted (specimen-based) mean individual dry masses and metabolic rates were calculated for each sample and then averaged by site after excluding 10% of maximum and 10% of minimum values to reduce impact of outliers. To calculate site-level biomass and community metabolism, we summed masses or metabolic rates of individuals, averaged them across samples, and recalculated them per unit area (m2).Parameter uncertaintiesOur biomass and community metabolism approximations contain several assumptions. To account for the uncertainty in the length-mass and mass-metabolism regression coefficients, in addition to the average coefficients, we also used maximum (average + standard error) and minimum coefficients (average—standard error; Supplementary Table 1) in all equations to calculate maximum and minimum estimations of biomass and community metabolism reported in the main text. Further, we ignored latitudinal variation in body sizes within taxonomic groups62. Nevertheless, latitudinal differences in springtail density (30-fold), environmental temperature (from −16.0 to +27.6 °C in the air and from −10.2 to +30.4 °C in the soil), and genus-level community compositions (there are only few common genera among polar regions and the tropics)55 are higher than the uncertainties introduced by indirect parameter estimations, which allowed us to detect global trends. Although most springtails are concentrated in the litter and uppermost soil layers20, their vertical distribution depends on the particular ecosystem63. Since sampling methods are usually ecosystem-specific (i.e. sampling is done deeper in soils with developed organic layers), we treated the methods used by the original data collectors as representative of a given ecosystem. Under this assumption, we might have underestimated the number of springtails in soils with deep organic horizons, so our global estimates are conservative and we would expect true global density and biomass to be slightly higher. To minimize these effects, we excluded sites where the estimations were likely to be unreliable (see data selection below).Data selectionOnly data collection methods allowing for area-based recalculation (e.g. Tullgren or Berlese funnels) were used for analysis. Data from artificial habitats, coastal ecosystems, caves, canopies, snow surfaces, and strong experimental manipulations beyond the bounds of naturally occurring conditions were excluded (Supplementary Fig. 1). To ensure data quality, we performed a two-step quality check: technical selection and expert evaluation. Collected data varied according to collection protocols, such as sampling depth and the microhabitats (layers) considered. To technically exclude unreliable density estimations, we explored data with a number of diagnostic graphs (Supplementary Table 2; Supplementary Figs. 12–20) and filtered it, excluding the following: (1) All woodlands where only soil or only litter was considered; (2) All scrub ecosystems where only ground cover (litter or mosses) was considered; (3) Agricultural sites in temperate zones where only soil with sampling depth 90% of cases were masked on the main maps; for the map with density-species richness visualisation, two corresponding masks were applied (Fig. 2).To estimate spatial variability of our predictions while accounting for the spatial sampling bias in our data (Fig. 1a) we performed a spatially stratified bootstrapping procedure. We used the relative area of each IPBES79 region (i.e., Europe and Central Asia, Asia and the Pacific, Africa, and the Americas) to resample the original dataset, creating 100 bootstrap resamples. Each of these resamples was used to create a global map, which was then reduced to create mean, standard deviation, 95% confidence interval, and coefficient of variation maps (Supplementary Figs. 4–7).Global biomass, abundance, and community metabolism of springtails were estimated by summing predicted values for each 30 arcsec pixel10. Global community metabolism was recalculated from joule to mass carbon by assuming 1 kg fresh mass = 7 × 106 J80, an average water proportion in springtails of 70%58, and an average carbon concentration of 45% (calculated from 225 measurements across temperate forest ecosystems)81. We repeated the procedure of global extrapolation and prediction for biomass and community metabolism using minimum and maximum estimates of these parameters from regression coefficient uncertainties (see Parameter uncertainties).Path analysisTo reveal the predictors of springtail communities at the global scale, we performed a path analysis. After filtering the selected environmental variables (see above) according to their global availability and collinearity, 13 variables were used (Supplementary Fig. 9b): mean annual air temperature, mean annual precipitation (CHELSA database67), aridity (CGIAR database68), soil pH, sand and clay contents combined (sand and clay contents were co-linear in our dataset), soil organic carbon content (SoilGrids database73), NDVI (MODIS database72), human population density (GPWv4 database74), latitude, elevation69, and vegetation cover reported by the data providers following the habitat classification of European Environment Agency (woodland, scrub, agriculture, and grasslands; the latter were coded as the combination of woodland, scrub, and agriculture absent). Before running the analysis, we performed the Rosner’s generalized extreme Studentized deviate test in the EnvStats package82 to exclude extreme outliers and we z-standardized all variables (Supplementary R Code).Separate structural equation models were run to predict density, dry biomass, community metabolism, and local species richness in the lavaan package83. To account for the spatial clustering of our data in Europe, instead of running a model for the entire dataset, we divided the data by the IPBES79 geographical regions and selected a random subset of sites for Eurasia, such that only twice the number of sites were included in the model as the second-most represented region. We ran the path analysis 99 times for each community parameter with different Eurasian subsets (density had n = 723 per iteration, local species richness had n = 352, dry biomass had n = 568, and community metabolism had n = 533). We decided to keep the share of the Eurasian dataset larger than other regions to increase the number of sites per iteration and validity of the models. The Eurasian dataset also had the best data quality among all regions and a substantial reduction in datasets from Eurasia would result in a low weight for high-quality data. We additionally ran a set of models in which the Eurasian dataset was represented by the same number of sites as the second-most represented region, which yielded similar effect directions for all factors, but slightly higher variations and fewer consistently significant effects. In the paper, only the first version of analysis is presented. To illustrate the results, we averaged effect sizes for the paths across all iterations and presented the distribution of these effect sizes using mirrored Kernel density estimation (violin) plots. We marked and discussed effects that were significant at p  More

  • in

    The importance of the Andes in the evolutionary radiation of Sigmodontinae (Rodentia, Cricetidae), the most diverse group of mammals in the Neotropics

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 

    Google Scholar 
    Spehn, E. M., Rudmann-Maurer, K. & Körner, C. Mountain biodiversity. Plant Ecol. Divers. 4, 301–302 (2011).
    Google Scholar 
    Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp Bot. 127, 1–15 (2017).
    Google Scholar 
    Hoorn, C. et al. (eds) Mountains, Climate and Biodiversity (Wiley, 2018).
    Google Scholar 
    Huang, S., Meijers, M. J. M., Eyres, A., Mulch, A. & Fritz, S. A. Unravelling the history of biodiversity in mountain ranges through integrating geology and biogeography. J. Biogeogr. 46, 1777–1791 (2019).
    Google Scholar 
    Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315–325 (2020).
    Google Scholar 
    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity?. Science 365, 1108–1113 (2019).ADS 
    CAS 

    Google Scholar 
    Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl. Acad. Sci. USA 115, 6034–6039 (2018).ADS 
    CAS 

    Google Scholar 
    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).ADS 
    CAS 

    Google Scholar 
    Fjeldsa, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).
    Google Scholar 
    Badgley, C. et al. Biodiversity and topographic complexity: Modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211–226 (2017).
    Google Scholar 
    Körner, C. Mountain biodiversity, its causes and function. Ambio 33, 11 (2004).
    Google Scholar 
    Antonelli, A. et al. An engine for global plant diversity: Highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).
    Google Scholar 
    Chazot, N. et al. Into the Andes: Multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784 (2016).
    Google Scholar 
    Stebbins, G. L. Flowering Plants: Evolution Above the Species Level (Belknap Press of Harvard University Press, 1974).
    Google Scholar 
    Rangel, T. F. et al. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science 361, 5452 (2018).
    Google Scholar 
    Chapman, F. M. The relationships and distribution of the warblers of the genus Compsothlypis: A contribution to the study of the origin of Andean bird life. Auk 42(2), 193–208 (1925).
    Google Scholar 
    Endler, J. A. Geographic variation, speciation, and clines. Genet. Res. 1, b1–b3 (1978).
    Google Scholar 
    Baert, L. & Maelfait, J. P. A contribution to the knowledge of the spider fauna of Galápagos (Ecuador). Bull. Koninklijk Belg. Instit. Nat. Entomol. 56, 93–123 (1986).
    Google Scholar 
    Desender, K., Baert, L. & Maelfait, J. P. Distribution and speciation of carabid beetles in the Galápagos Archipelago (Ecuador). Bull. Inst. R. Sci. Natl. Belg. 62, 57–65 (1992).
    Google Scholar 
    Patton, J. L. & Smith, M. F. mtDNA phylogeny of Andean mice: A test of diversification across ecological gradients. Evolution 46, 174 (1992).CAS 

    Google Scholar 
    Nevado, B., Contreras-Ortiz, N., Hughes, C. & Filatov, D. A. Pleistocene glacial cycles drive isolation, gene flow and speciation in the high-elevation Andes. New Phytol 219, 779–793 (2018).
    Google Scholar 
    Winger, B. M. & Bates, J. M. The tempo of trait divergence in geographic isolation: Avian speciation across the Marañon Valley of Peru. Evolution 69, 772–787 (2015).
    Google Scholar 
    Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C. & Palacio, R. D. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc. Natl. Acad. Sci. USA. 115, 7985–7990 (2018).ADS 
    CAS 

    Google Scholar 
    Palma, R. E., Marquet, P. A. & Boric-Bargetto, D. Inter-and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J. Biogeogr. 32(11), 1931–1941 (2005).
    Google Scholar 
    Beckman, E. J. & Witt, C. C. Phylogeny and biogeography of the New World siskins and goldfinches: Rapid, recent diversification in the Central Andes. Mol. Phylogenet. Evol. 87, 28–45 (2015).
    Google Scholar 
    Drummond, C. S., Eastwood, R. J., Miotto, S. T. S. & Hughes, C. E. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete taxon sampling. Syst. Biol. 61, 443–460 (2012).
    Google Scholar 
    Hutter, C. R., Lambert, S. M. & Wiens, J. J. Rapid diversification and time explain amphibian richness at different scales in the tropical Andes, Earth’s most biodiverse hotspot. Am. Nat. 190, 828–843 (2017).
    Google Scholar 
    Toussaint, E. F. A. et al. Flight over the Proto-Caribbean seaway: Phylogeny and macroevolution of Neotropical Anaeini leafwing butterflies. Mol. Phylogenet. Evol. 137, 86–103 (2019).
    Google Scholar 
    Acevedo, A. A. Historical biogeography, phylogenetic diversity and evolution of body size in Pristimantis, the world’s most diverse amphibian genus. Doctoral thesis, Fac. Ciencias Biológicas, Pontificia Universidad Católica de Chile (2021).Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in A ndean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442 (2016).
    Google Scholar 
    Fjeldsa, J. & Rahbek, C. Diversification of tanagers, a species rich bird group, from lowlands to montane regions of South America. Integr. Comp. Biol. 46(1), 72–81 (2006).CAS 

    Google Scholar 
    Struwe, L., Haag, S., Heiberg, E. & Grant, J. R. Andean speciation and vicariance in Neotropical Macrocarpaea (Gentianaceae-Helieae). Ann. Mol. Bot. Gard. 96, 450–469 (2009).
    Google Scholar 
    Hutter, C. R., Guayasamin, J. M. & Wiens, J. J. Explaining Andean megadiversity: The evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol. Lett. 16, 1135–1144 (2013).
    Google Scholar 
    Santos, J. C. et al. Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol. 7, e1000056 (2009).
    Google Scholar 
    Luebert, F. & Weigend, M. Phylogenetic insights into Andean plant diversification. Front. Ecol. Evol. 2, 27 (2014).
    Google Scholar 
    Chazot, N. et al. Renewed diversification following Miocene landscape turnover in a Neotropical butterfly radiation. Glob. Ecol. Biogeogr. 28, 1118–1132 (2019).
    Google Scholar 
    Esquerré, D., Brennan, I. G., Catullo, R. A., Torres-Pérez, F. & Keogh, J. S. How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution 73, 214–230 (2019).
    Google Scholar 
    Garzione, C. N. et al. Rise of the Andes. Science 320, 1304–1307 (2008).ADS 
    CAS 

    Google Scholar 
    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).ADS 
    CAS 

    Google Scholar 
    Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: A Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).CAS 

    Google Scholar 
    Pennington, R. T. et al. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. USA. 107, 13783–13787 (2010).ADS 
    CAS 

    Google Scholar 
    Antonelli, A. & Sanmartín, I. Why are there so many plant species in the Neotropics?. Taxon 60, 403–414 (2011).
    Google Scholar 
    Hughes, C. & Eastwood, R. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA. 103, 10334–10339 (2006).ADS 
    CAS 

    Google Scholar 
    Madriñán, S., Cortés, A. J. & Richardson, J. E. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Front. Genet. 4, 192 (2013).
    Google Scholar 
    Upham, N. S., Ojala-Barbour, R., Brito, M. J., Velazco, P. M. & Patterson, B. D. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evol. Biol. 13, 191 (2013).
    Google Scholar 
    Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: From the Andes to the Hengduan mountains. New Phytol. 207, 275–282 (2015).
    Google Scholar 
    Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).
    Google Scholar 
    Horton, B. K. Sedimentary record of Andean Mountain building. Earth Sci. Rev. 178, 279–309 (2018).ADS 
    CAS 

    Google Scholar 
    Gianni, G. M. et al. Northward propagation of Andean genesis: Insights from Early Cretaceous synorogenic deposits in the Aysén-Río Mayo basin. Gondwana Res. 77, 238–259 (2020).ADS 
    CAS 

    Google Scholar 
    Boschman, L. M. Andean Mountain building since the Late Cretaceous: A paleoelevation reconstruction. Earth Sci. Rev. 220, 103640 (2021).
    Google Scholar 
    Gentry, A. H. Patterns of neotropical plant species diversity. Evol. Biol. 15, 1–84 (1982).
    Google Scholar 
    Gregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).ADS 

    Google Scholar 
    Pérez-Escobar, O. A. et al. Recent origin and rapid speciation of Neotropical orchids in the world’s richest plant biodiversity hotspot. New Phytol. 215(2), 891–905 (2017).
    Google Scholar 
    Alhajeri, B. H., Schenk, J. J. & Steppan, S. J. Ecomorphological diversification following continental colonization in muroid rodents (Rodentia: Muroidea). Biol. J. Linn. Soc. 117, 463–481 (2016).
    Google Scholar 
    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there?. J. Mammal. 99, 1–14 (2018).
    Google Scholar 
    Parada, A., Pardiñas, U. F. J., Salazar-Bravo, J., D’Elía, G. & Palma, R. E. Dating an impressive Neotropical radiation: Molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Mol. Phylogenet. Evol. 66, 960–968 (2013).
    Google Scholar 
    Schenk, J. J. & Steppan, S. J. The role of geography in adaptive radiation. Am. Nat. 192, 415–431 (2018).
    Google Scholar 
    Pardiñas, U. F. J. et al. Morphological disparity in a hyperdiverse mammal clade: A new morphotype and tribe of Neotropical cricetids. Zool. J. Linn. Soc. 196, 1013–1038 (2022).
    Google Scholar 
    Reig, O. A. Distribuição geográfica e história evolutiva dos roedores muroideos sulamericanos (Cricetidae: Sigmodontinae). Rev. Bras. Genét. 7, 333–365 (1984).
    Google Scholar 
    Reig, O. A. Diversity Patterns and Differentiation of High Andean Rodents. High Altitude Tropical Biogeography 404–438 (Oxford University Press, 1986).
    Google Scholar 
    Maestri, R., Upham, N. S. & Patterson, B. D. Tracing the diversification history of a Neogene rodent invasion into South America. Ecography 42, 683–695 (2019).
    Google Scholar 
    Engel, S. R., Hogan, K. M., Taylor, J. F. & Davis, S. K. Molecular systematics and paleobiogeography of the South American sigmodontine rodents. Mol. Biol. Evol. 15(1), 35–49 (1998).CAS 

    Google Scholar 
    Parada, A., D’Elía, G. & Palma, R. E. The influence of ecological and geographical context in the radiation of Neotropical sigmodontine rodents. BMC Evol. Biol. 15(1), 1–17 (2015).
    Google Scholar 
    Leite, R. N. et al. In the wake of invasion: Tracing the historical biogeography of the South American cricetid radiation (Rodentia, Sigmodontinae). PLoS ONE 9, e100687 (2014).ADS 

    Google Scholar 
    Vilela, J. F., Mello, B., Voloch, C. M. & Schrago, C. G. Sigmodontine rodents diversified in South America prior to the complete rise of the Panamanian Isthmus. J. Zool. Syst. Evol. Res. 52, 249–256 (2014).
    Google Scholar 
    Ronez, C., Martin, R. A., Kelly, T. S., Barbière, F. & Pardiñas, U. F. J. A brief critical review of sigmodontine rodent origins, with emphasis on paleontological data. Mastozool. Neotrop 28, 001–026 (2021).
    Google Scholar 
    Maestri, R. & Patterson, B. D. Patterns of species richness and turnover for the South American Rodent Fauna. PLoS ONE 11, e0151895 (2016).
    Google Scholar 
    Smith, M. F. & Patton, J. L. Phylogenetic relationships and the radiation of sigmodontine rodents in South America: Evidence from cytochrome b. J. Mamm. Evol. 6(2), 89–128 (1999).
    Google Scholar 
    Udvardy, M. D. & Udvardy, M. D. F. A Classification of the Biogeographical Provinces of the World Vol. 8 (International Union for Conservation of Nature and Natural Resources, 1975).
    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933 (2001).
    Google Scholar 
    Kreft, H. & Jetz, W. A framework for delineating biogeographical regions based on species distributions: Global quantitative biogeographical regionalizations. J. Biogeogr. 37, 2029–2053 (2010).
    Google Scholar 
    Patton, J. L. et al. (eds) Mammals of South America, Volume 2: Rodents (University of Chicago Press, 2015).
    Google Scholar 
    Marsh, C. J. et al. Expert range maps of global mammal distributions harmonised to three taxonomic authorities. J. Biogeogr. 49, 979–992 (2022).
    Google Scholar 
    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 

    Google Scholar 
    Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).CAS 

    Google Scholar 
    Parada, A., Hanson, J. & D’Eiía, G. Ultraconserved elements improve the resolution of difficult nodes within the rapid radiation of neotropical Sigmodontine Rodents (Cricetidae: Sigmodontinae). Syst. Biol. 70, 1090–1100 (2021).
    Google Scholar 
    Steppan, S. J. & Schenk, J. J. Muroid rodent phylogenetics: 900-species tree reveals increasing diversification rates. PLoS ONE 12, e0183070 (2017).
    Google Scholar 
    Gonçalves, P. R. et al. Unraveling deep branches of the Sigmodontinae Tree (Rodentia: Cricetidae) in Eastern South America. J Mammal Evol 27, 139–160 (2020).
    Google Scholar 
    Steppan, S. J., Adkins, R. M. & Anderson, J. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst. Biol. 53, 533–553 (2004).
    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 

    Google Scholar 
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).
    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).
    Google Scholar 
    Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).ADS 

    Google Scholar 
    Heath, T. A., & Moore, B. R. Bayesian inference of species divergence times. Bayesian phylogenetics: Methods, algorithms, and applications, 277–318 (2014).Douglas, J., Zhang, R. & Bouckaert, R. Adaptive dating and fast proposals: Revisiting the phylogenetic relaxed clock model. PLoS Comput Biol 17, e1008322 (2021).ADS 
    CAS 

    Google Scholar 
    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).
    Google Scholar 
    Barido-Sottani, J., Aguirre-Fernández, G., Hopkins, M. J., Stadler, T. & Warnock, R. Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process. Proc. R. Soc. B. 286, 20190685 (2019).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 

    Google Scholar 
    Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evol. 3, 1086–1092 (2019).
    Google Scholar 
    Maliet, O. & Morlon, H. Fast and accurate estimation of species-specific diversification rates using data augmentation. Syst. Biol. 71, 353–366 (2022).CAS 

    Google Scholar 
    Gelman, A. & Rubin, D. B. A single series from the Gibbs sampler provides a false sense of security. Bayesian Stat. 4(1), 625–631 (1992).
    Google Scholar 
    Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Google Scholar 
    Ree, R. H., Moore, B. R., Webb, C. O. & Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59, 2299–2311 (2005).
    Google Scholar 
    Ree, R. H. & Sanmartín, I. Conceptual and statistical problems with the DEC +J model of founder-event speciation and its comparison with DEC via model selection. J. Biogeogr. 45, 741–749 (2018).
    Google Scholar 
    Matzke, N. J. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Syst. Biol. 63, 951–970 (2014).
    Google Scholar 
    Matzke, N. J. Statistical comparison of DEC and DEC +J is identical to comparison of two ClaSSE submodels, and is therefore valid. J. Biogeogr. 49, 1805–1824 (2022).
    Google Scholar 
    Matzke, N. J. Probabilistic Historical Biogeography: New Models for Founder-Event Speciation, Imperfect Detection, and Fossils Allow Improved Accuracy and Model-Testing (University of California, 2013).
    Google Scholar 
    Tripp, E. A. & McDade, L. A. A rich fossil record yields calibrated phylogeny for acanthaceae (lamiales) and evidence for marked biases in timing and directionality of intercontinental disjunctions. Syst. Biol. 63, 660–684 (2014).
    Google Scholar 
    Matos-Maraví, P. et al. Mesoamerica is a cradle and the Atlantic Forest is a museum of Neotropical butterfly diversity: Insights from the evolution and biogeography of Brassolini (Lepidoptera: Nymphalidae). Biol. J. Lin. Soc. 133, 704–724 (2021).
    Google Scholar 
    Caetano, D. S., O’Meara, B. C. & Beaulieu, J. M. Hidden state models improve state-dependent diversification approaches, including biogeographical models. Evolution 72, 2308–2324 (2018).
    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
    Google Scholar 
    Schenk, J. J., Rowe, K. C. & Steppan, S. J. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62(6), 837–864 (2013).
    Google Scholar 
    Percequillo, A. R. et al. Tempo and mode of evolution of oryzomyine rodents (Rodentia, Cricetidae, Sigmodontinae): A phylogenomic approach. Mol. Phylogenet. Evol. 159, 107120 (2021).
    Google Scholar 
    Pacheco, V. R., Patton, J. L. & D’elía, G. Tribe Thomasomyini Steadman and Ray, 1982. In Mammals of South America Vol. 2 (eds Patton, J. L. et al.) 571–574 (The University of Chicago Press, 2015).
    Google Scholar 
    Salazar-Bravo, J., Pardiñas, U. F., Zeballos, H., & Teta, P. Description of a new tribe of sigmodontine rodents (Cricetidae: Sigmodontinae) with an updated summary of valid tribes and their generic contents. Museum of Texas Tech University 338 (2016).Pardiñas, U. F. et al. Morphological disparity in a hyperdiverse mammal clade: A new morphotype and tribe of Neotropical cricetids. Zool. J. Linnean Soc. 196, 1013–1038 (2022).
    Google Scholar 
    Pardiñas, U. F., Voglino, D. & Galliari, C. A. Miscellany on Bibimys (Rodentia, Sigmodontinae), a unique akodontine cricetid. Mastozool. Neotrop. 24(1), 241–250 (2017).
    Google Scholar 
    Salazar-Bravo, J., Pardiñas, U. F. J. & D’Elía, G. A phylogenetic appraisal of Sigmodontinae (Rodentia, Cricetidae) with emphasis on phyllotine genera: Systematics and biogeography. Zool. Scr. 42, 250–261 (2013).
    Google Scholar 
    Pardiñas, U. F. J., Lessa, G., Teta, P., Salazar-Bravo, J. & Câmara, E. M. V. C. A new genus of sigmodontine rodent from eastern Brazil and the origin of the tribe Phyllotini. J. Mamm. 95, 201–215 (2014).
    Google Scholar 
    Edler, D., Guedes, T., Zizka, A., Rosvall, M. & Antonelli, A. Infomap bioregions: Interactive mapping of biogeographical regions from species distributions. Syst. Biol. 1, 087 (2016).
    Google Scholar 
    Johnson, T. C. et al. Late pleistocene desiccation of lake victoria and rapid evolution of cichlid fishes. Science 273, 1091–1093 (1996).ADS 
    CAS 

    Google Scholar 
    Azevedo, J. A. R. et al. Museums and cradles of diversity are geographically coincident for narrowly distributed Neotropical snakes. Ecography 43, 328–339 (2020).
    Google Scholar 
    Rosauer, D. F. & Jetz, W. Phylogenetic endemism in terrestrial mammals: Mammal phylogenetic endemism. Glob. Ecol. Biogeogr. 24, 168–179 (2015).
    Google Scholar 
    Peyton, B. Ecology, distribution, and food habits of spectacled bears, Tremarctos ornatus, in Peru. J. Mammal. 61, 639–652 (1980).
    Google Scholar 
    Patterson, B. D., Solari, S. & Velazco, P. M. The role of the Andes in the diversification and biogeography of Neotropical mammals. In Bones, Clones, and Biomes: The History and Geography of Recent Neotropical Mammals (eds Patterson, B. D. & Costa, L. P.) (Springer, 2012).
    Google Scholar 
    Tribe, C. J. The Neotropical Rodent Genus’ Rhipidomys’(Cricetidae: Sigmodontinae): A Taxonomic Revision (University of London, 1996).
    Google Scholar 
    Percequillo, A. R. Sistemática de Oryzomys Baird, 1858: Definição dos Grupos de Espécies e Revisão do Grupo Albigularis (Rodentia, Sigmodontinae) (Doctoral dissertation, Tese de Doutorado) (Universidade de São Paulo, 2003).
    Google Scholar 
    Brito, J. et al. A new genus of oryzomyine rodents (Cricetidae, Sigmodontinae) with three new species from montane cloud forests, western Andean cordillera of Colombia and Ecuador. PeerJ 8, e10247 (2020).
    Google Scholar 
    Valencia-Pacheco, E., Avaria-Llautureo, J., Munoz-Escobar, C., Boric-Bargetto, D. & Hernandez, C. E. Geographic patterns of richness distribution of rodents species from the Oryzomyini tribe (Rodentia: Sigmodontinae) in South America: Evaluating the importance of colonization and extinction processes. Rev. Chil. Hist. Nat. 84(3), 365–377 (2011).
    Google Scholar 
    Pine, R. H., Timm, R. M. & Weksler, M. A newly recognized clade of trans-Andean Oryzomyini (Rodentia: Cricetidae), with description of a new genus. J. Mammal. 93(3), 851–870 (2012).
    Google Scholar 
    Prado, J. R. & Percequillo, A. R. Geographic distribution of the genera of the tribe Oryzomyini (Rodentia: Cricetidae: Sigmodontinae) in South America: Patterns of distribution and diversity. Arq. Zool. 44(1), 1–120 (2013).
    Google Scholar 
    Prado, J. R. et al. Species richness and areas of endemism of oryzomyine rodents (Cricetidae, Sigmodontinae) in South America: An NDM/VNDM approach. J. Biogeogr. 42(3), 540–551 (2015).
    Google Scholar 
    Voss, R. S. A new species of Thomasomys (Rodentia: Muridae) from eastern Ecuador, with remarks on mammalian diversity and biogeography in the Cordillera Oriental. Am. Mus. Novit. 2003(3421), 1–47 (2003).
    Google Scholar 
    Brito, J. et al. Diversidad insospechada en los Andes de Ecuador: Filogenia del grupo “cinereus” de Thomasomys y descripción de una nueva especie (Rodentia, Cricetidae). Mastozool. Neotrop. 26(2), 308–330 (2019).
    Google Scholar 
    Rodríguez-Serrano, E., Palma, R. E. & Hernández, C. E. The evolution of ecomorphological traits within the Abrothrichini (Rodentia: Sigmodontinae): A Bayesian phylogenetics approach. Mol. Phylogenet. Evol. 48(2), 473–480 (2008).
    Google Scholar 
    Villagrán, C. & Hinojosa, L. F. Historia de los bosques del sur de Sudamérica, II: Análisis fitogeográfico. Rev. Chil. Hist. Nat. 70(2), 1–267 (1997).ADS 

    Google Scholar 
    Pardinas, U. F., Teta, P., D’elía, G. & Lessa, E. P. The evolutionary history of sigmodontine rodents in Patagonia and Tierra del Fuego. Biol. J. Lin. Soc. 103(2), 495–513 (2011).
    Google Scholar 
    Yepes, J. Consideraciones sobre el género “Andinomys” (Cricetinae) y descripción de una forma nueva. In Anales del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” (Vol. 38, 333–348) (1935).Salazar-Bravo, J. & Jayat, J. P. Genus Andinomys Thomas, 1902. Mamm. S. Am. 2, 75–77 (2015).
    Google Scholar 
    Pacheco, V. & Patton, J. L. A new species of the Puna mouse, genus Punomys Osgood, 1943 (Muridae, Sigmodontinae) from the Southeastern Andes of Peru. Z. Saugetierkunde 60(2), 85–96 (1995).
    Google Scholar 
    Salazar-Bravo, J., Miralles-Salazar, J., Rico-Cernohorska, A. & Vargas, J. First record of Punomys (Rodentia: Sigmodontinae) in Bolivia. Mastozool. Neotrop. 18(1), 143–146 (2011).
    Google Scholar 
    Rolland, J., Condamine, F. L., Beeravolu, C. R., Jiguet, F. & Morlon, H. Dispersal is a major driver of the latitudinal diversity gradient of C arnivora. Glob. Ecol. Biogeogr. 24(9), 1059–1071 (2015).
    Google Scholar 
    Pyron, R. A. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B Biol. Sci. 280(1770), 20131622 (2013).
    Google Scholar 
    Meseguer, A. S. et al. Reconstructing deep-time palaeoclimate legacies in the clusioid Malpighiales unveils their role in the evolution and extinction of the boreotropical flora. Glob. Ecol. Biogeogr. 27(5), 616–628 (2018).
    Google Scholar 
    Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: A Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61(2), 346–367 (2007).CAS 

    Google Scholar 
    Ribas, C. C., Moyle, R. G., Miyaki, C. Y. & Cracraft, J. The assembly of montane biotas: Linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B 274(1624), 2399–2408 (2007).
    Google Scholar 
    Bonaccorso, E. Historical biogeography and speciation in the Neotropical highlands: Molecular phylogenetics of the jay genus Cyanolyca. Mol. Phylogenet. Evol. 50(3), 618–632 (2009).CAS 

    Google Scholar 
    McGuire, J. A., Witt, C. C., Altshuler, D. L. & Remsen, J. V. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst. Biol. 56(5), 837–856 (2007).CAS 

    Google Scholar 
    Rheindt, F. E., Christidis, L. & Norman, J. A. Habitat shifts in the evolutionary history of a Neotropical flycatcher lineage from forest and open landscapes. BMC Evol. Biol. 8(1), 1–18 (2008).
    Google Scholar 
    Percequillo, A. R., Weksler, M. & Costa, L. P. Comments on oryzomyine biogeography. Zool. J. Linn. Soc. 161(2), 357–390 (2011).
    Google Scholar 
    Weksler, M. Tribe Oryzomyini Vorontsov, 1959. Mamm. S. Am. 2, 291–293 (2015).
    Google Scholar 
    Haag, T. et al. Phylogenetic relationships among species of the genus Calomys with emphasis on South American lowland taxa. J. Mammal. 88(3), 769–776 (2007).
    Google Scholar 
    Badgley, C. Tectonics, topography, and mammalian diversity. Ecography 33(2), 220–231 (2010).
    Google Scholar 
    Simpson, G. G. Species density of North American recent mammals. Syst. Zool. 13(2), 57–73 (1964).
    Google Scholar  More

  • in

    Colombian biodiversity is governed by a rich and diverse policy mix

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 

    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge for biodiversity conservation. Ambio 22, 151–156 (1993).
    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge: from local to global. Ambio 50, 967–969 (2021).Article 

    Google Scholar 
    The IPBES regional assessment report on biodiversity and ecosystem services for the Americas. IPBES https://doi.org/10.5281/zenodo.3236252 (2018).Claes, J. et al. Valuing nature conservation: a methodology for quantifying the benefits of protecting the planet’s natural capital (McKinsey & Company, 2020).Retsa, A., Schelske, O., Wilke, B., Rutherford, G. & de Jong, R. Biodiversity and ecosystem services: a business case for re/insurance (Swiss Re, 2020).Petersson, M. & Stoett, P. Lessons learnt in global biodiversity governance. Int. Environ. Agreem. Polit. Law Econ. 22, 333–352 (2022).
    Google Scholar 
    Dasgupta, P. The economics of biodiversity: the Dasgupta review. GOV.UK www.gov.uk/official-documents. (2021).Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 1–13 (2020).Article 

    Google Scholar 
    Hale, T. & Roger, C. Orchestration and transnational climate governance. Rev. Int. Organ. 9, 59–82 (2014).Article 

    Google Scholar 
    Ring, I. & Barton, D. N. Economic instruments in policy mixes for biodiversity conservation and ecosystem governance. in Handbook of Ecological Economics (eds Martinez-Alier, J. & Muradian, R.) Ch, 17 (Edward Elgar, 2015).Von Essen, M. & Lambin, E. Jurisdictional approaches to sustainable resource use. Front. Ecol. Environ. 19, 159–167 (2021).Article 

    Google Scholar 
    Taylor, C., Pollard, S., Rocks, S. & Angus, A. Selecting policy instruments for better environmental regulation: a critique and future research agenda. Environ. Policy Gov. 22, 268–292 (2012).Article 

    Google Scholar 
    Ring, I. & Schröter-Schlaack, C. Instrument mixes for biodiversity policies. POLICYMIX Report https://policymix.nina.no (2011).Howlett, M. & Rayner, J. Design principles for policy mixes: cohesion and coherence in ‘new governance arrangements’. Policy Soc. 26, 1–18 (2007).
    Google Scholar 
    Soulé, M. The “new conservation”. Conserv. Biol. 27, 895–897 (2013).Article 

    Google Scholar 
    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).Article 
    CAS 

    Google Scholar 
    Runhaar, H., Driessen, P. & Uittenbroek, C. Towards a systematic framework for the analysis of environmental policy integration. Environ. Policy Gov. 24, 233–246 (2014).Article 

    Google Scholar 
    Visseren-Hamakers, I. J. Integrative governance: the relationships between governance instruments taking center stage. Environ. Plan. C. Polit. Space 36, 1341–1354 (2018).Article 

    Google Scholar 
    Lafferty, W. & Hovden, E. Environmental policy integration: towards an analytical framework. Environ. Polit. 12, 1–22 (2003).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 

    Google Scholar 
    Decision adopted by the conference of the parties to the Convention on Biological Diversity. 14/3 Mainstreaming biodiversity in the energy and mining, infrastructure, manufacturing and processing sectors. Convention on Biological Diversity https://www.cbd.int/doc/decisions/cop-14/cop-14-dec-03-en.pdf (2018).Update of the zero draft of the post-2020 global biodiversity framework. Convention on Biological Diversity https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf (2020).Whitehorn, P. R. et al. Mainstreaming biodiversity: a review of national strategies. Biol. Conserv. 235, 157–163 (2019).Article 

    Google Scholar 
    Alpízar, F. et al. Mainstreaming of natural capital and biodiversity into planning and decision-making: cases from Latin America and the Caribbean (IDB, 2020).Daily, G. Nature’s Services (Island Press, 1997).Hill, R. et al. Working with indigenous, local and scientific knowledge in assessments of nature and nature’s linkages with people. Curr. Opin. Environ. Sustain. 43, 8–20 (2020).Article 

    Google Scholar 
    Baptiste, B. et al. Greening peace in Colombia. Nat. Ecol. Evol. 1, 1–3 (2017).Article 

    Google Scholar 
    Biodiversidad en cifras. Instituto Alexander von Humboldt https://cifras.biodiversidad.co/ (2022).Censo nacional de población y vivienda. Estadísticas para grupos étnicos. DANE https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/grupos-etnicos/informacion-tecnica (2018).Boyd, E., Corbera, E. & Estrada, M. UNFCCC negotiations (pre-Kyoto to COP-9): what the process says about the politics of CDM-sinks. Int. Environ. Agreem. Polit. Law Econ. 8, 95–112 (2008).
    Google Scholar 
    Alvarez, C. F. et al. Evaluación nacional de biodiversidad y servicios ecosistémicos: resumen para tomadores de decisión. Instituto Alexander von Humboldt. http://www.humboldt.org.co/images/pdf/10721/RTDFinalv290621.pdf (2021).Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article 

    Google Scholar 
    Laikre, L. Genetic diversity is overlooked in international conservation policy implementation. Conserv. Genet. 11, 349–354 (2010).Article 

    Google Scholar 
    Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1912 del 15 de Septiembre de 2017, listado de especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera en el territorio nacional. (2017). https://www.minambiente.gov.co/wp-content/uploads/2021/10/resolucion-1912-de-2017.pdfNewton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).Article 

    Google Scholar 
    Jeanrenaud, S. Changing people/nature representations in international conservation discourses. IDS Bull. 33, 111–122 (2002).Article 

    Google Scholar 
    Louder, E. & Wyborn, C. Biodiversity narratives: stories of the evolving conservation landscape. Environ. Conserv. 47, 251–259 (2020).Article 

    Google Scholar 
    Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).Article 

    Google Scholar 
    African Development Bank Group et al. Joint statement by the Multilateral Development Banks at Paris, COP21. European Investment Bank https://www.eib.org/attachments/press/joint-mdb-statement-climate_nov-28_final.pdf (2021).Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Friedman, K., Garcia, S. M. & Rice, J. Mainstreaming biodiversity in fisheries. Mar. Policy 95, 209–220 (2018).Article 

    Google Scholar 
    Turismo de naturaleza, oportunidad para conocer y proteger la biodiversidad de Colombia. MADS https://www.minambiente.gov.co/negocios-verdes/turismo-de-naturaleza-oportunidad-para-conocer-y-proteger-la-biodiversidad-de-colombia/ (2022).Pacheco, P., Schoneveld, G., Dermawan, A., Komarudin, H. & Djama, M. Governing sustainable palm oil supply: disconnects, complementarities, and antagonisms between state regulations and private standards. Regul. Gov. 14, 568–598 (2020).Article 

    Google Scholar 
    Peters, B. G. & Pierre, J. Developments in intergovernmental relations: towards multi-level governance. Policy Polit. 29, 131–135 (2001).Article 

    Google Scholar 
    Lustig, N. Fiscal redistribution in middle income countries. OECD Social, Employment and Migration Working Papers. 171 (2015).Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl Acad. Sci. USA 98, 5446–5451 (2001).Article 
    CAS 

    Google Scholar 
    Rule of law index 2020. World Justice Project https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf (2020).Recommendation of the council on policy coherence for sustainable development OECD/LEGAL/0381. OECD https://www.oecd.org/gov/pcsd/recommendation-on-policy-coherence-for-sustainable-development-eng.pdf (2019).Arellana, J., Oviedo, D., Guzman, L. A. & Alvarez, V. Urban transport planning and access inequalities: a tale of two Colombian cities. Res. Transp. Bus. Manag. https://doi.org/10.1016/j.rtbm.2020.100554 (2020).Leyes | Ministerio de Ambiente y Desarrollo Sostenible. MADS https://www.minambiente.gov.co/index.php/normativa/leyes (2021).Cavelier Adarve, I. & Rodríguez Becerra, M. in Nuevos Enfoques para el Estudio de las Relaciones Internacionales de Colombia (eds Tickner A.B. & Bitar, S.) Ch. 4 (Ediciones Uniandes-Universidad de los Andes, 2017).Política Nacional para la Gestión Integral de la biodiversidad y los Servicios Ecosistémicos (PNGIBSE) MADS (2012). https://www.minambiente.gov.co/wp-content/uploads/2021/10/Poli%CC%81tica-Nacional-de-Gestio%CC%81n-Integral-de-la-Biodiver.pdfPotts, J., Wenban-Smith, M. & Turley, L. State of sustainability initiatives review: standards and the extractive economy (IISD, 2018).Junguito Bonnet, R. El papel de los gremios en la economía colombiana. Rev. Desarro. Soc. 82, 103–131 (2019).Article 

    Google Scholar 
    Savvidou, G., Dzebo, A. & Atteridge, A. Aid Atlas: new tool to visualize development finance flows. JSTOR https://www.jstor.org/stable/resrep22982 (2019).BIOFIN- Movilizando recursos para la biodiversidad en Colombia, plan financiero. UNDP https://www.biofin.org/sites/default/files/content/knowledge_products/Plan%20Financiero%20Movilizando%20recursos%20para%20la%20biodiversidad%20en%20Colombia.pdf (2018).Echeverri, A. et al. Data for: a policy mix approach to biodiversity governance in Colombia (Dryad, 2022).Gibbs, G. Analyzing Qualitative Data (SAGE Publications, 2007).Maxwell, J. A. Qualitative Research Design: An Interactive Approach (SAGE Publications, 2012).Gould, R. K. et al. A protocol for eliciting nonmaterial values through a cultural ecosystem services frame. Conserv. Biol. 29, 575–586 (2015).Article 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).Article 

    Google Scholar 
    Robinson, J. G. Ethical pluralism, pragmatism, and sustainability in conservation practice. Biol. Conserv. 144, 958–965 (2011).Article 

    Google Scholar 
    Sandbrook, C. What is conservation? Oryx 49, 565–566 (2015).Article 

    Google Scholar 
    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar  More

  • in

    Prioritizing India’s landscapes for biodiversity, ecosystem services and human well-being

    Levett, R. Sustainability indicators—integrating quality of life and environmental protection. J. R. Stat. Soc. A 161, 291–302 (1998).Article 

    Google Scholar 
    Harrison, P. A. Ecosystem services and biodiversity conservation: an introduction to the RUBICODE project. Biodivers. Conserv. 19, 2767–2772 (2010).Article 

    Google Scholar 
    Otero, I. et al. Biodiversity policy beyond economic growth. Conserv. Lett. 13, e12713 (2020).Article 

    Google Scholar 
    Seppelt, R., Lautenbach, S. & Volk, M. Identifying trade-offs between ecosystem services, land use, and biodiversity: a plea for combining scenario analysis and optimization on different spatial scales. Curr. Opin. Environ. Sustain. 5, 458–463 (2013).Article 

    Google Scholar 
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019); accessed from https://ipbes.net/document-library-categoriesDinerstein, E. et al. A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 325, 419–422 (2009).Article 
    CAS 

    Google Scholar 
    Bennett, E. M. et al. Linking biodiversity, ecosystem services, and human well-being: three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 14, 76–85 (2015).Article 

    Google Scholar 
    Haines-Young, R & Potschin, M. in Ecosystem Ecology: A New Synthesis (eds Raffaelli, D. & Frid, C.) 110–139 (Cambridge Univ. Press, 2010).
    Google Scholar 
    Tallis, H. M. & Kareiva, P. Shaping global environmental decisions using socio-ecological models. Trends Ecol. Evol. 21, 562–568 (2006).Article 

    Google Scholar 
    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl Acad. Sci. USA 115, 8252–8259 (2018).Article 
    CAS 

    Google Scholar 
    Wilson, K. A. et al. Conserving biodiversity efficiently: what to do, where, and when. PLoS Biol. 5, e223 (2007).Article 

    Google Scholar 
    Moilanen, A. et al. Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc. R. Soc. B 272, 1885–1891 (2005).Article 

    Google Scholar 
    Moilanen, A. et al. Balancing alternative land uses in conservation prioritization. Ecol. Appl. 21, 1419–1426 (2011).Article 

    Google Scholar 
    Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008).Article 
    CAS 

    Google Scholar 
    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).Article 

    Google Scholar 
    Sayer, J. et al. Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. Proc. Natl Acad. Sci. USA 110, 8349–8356 (2013).Article 
    CAS 

    Google Scholar 
    Watts, M. E. et al. Marxan with Zones: software for optimal conservation based land- and sea-use zoning. Environ. Model. Softw. 24, 1513–1521 (2009).Article 

    Google Scholar 
    Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA` 112, 7390–7395 (2015).Article 
    CAS 

    Google Scholar 
    Wyborn, C. & Evans, M. C. Conservation needs to break free from global priority mapping. Nat. Ecol. Evol. 5, 1322–1324 (2021).Article 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, e2602–e2610 (2013).Article 
    CAS 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).Article 
    CAS 

    Google Scholar 
    Silveira, F. A. et al. Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.14060 (2021).Article 

    Google Scholar 
    Bond, W. J. & Parr, C. L. Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol. Conserv. 143, 2395–2404 (2010).Article 

    Google Scholar 
    Veach, V., Di Minin, E., Pouzols, F. M. & Moilanen, A. Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Divers. Distrib. 23, 715–726 (2017).Article 

    Google Scholar 
    Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 

    Google Scholar 
    Jung, M. et al. Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nat. Ecol. Evol. 5, 1499–1509 (2021).Article 

    Google Scholar 
    First Draft of the Post-2020 Global Biodiversity Framework (CBD, 2021); accessed from www.cbd.int/conferences/post2020Westgate, M. J., Barton, P. S., Lane, P. W. & Lindenmayer, D. B. Global meta-analysis reveals low consistency of biodiversity congruence relationships. Nat. Commun. 5, 3899 (2014).Article 
    CAS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Madhusudhan, M. D. & Vanak, A. T. (2022). Mapping the distribution and extent of India’s semi-arid open natural ecosystems. Journal of Biogeography 00, 1–11; https://doi.org/10.1111/jbi.14471Wastelands Atlas of India 2019 (Department of Land Resources, Ministry of Rural Development and the National Remote Sensing Centre, Indian Space Research Organisation, Department of Space, Government of India, 2019); www.dolr.gov.in/documents/wasteland-atlas-of-indiaKrishnaswamy, J., John, R. & Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Change Biol. 20, 203–215 (2014).Article 

    Google Scholar 
    Parida, B. R., Pandey, A. C. & Patel, N. R. Greening and browning trends of vegetation in India and their responses to climatic and non-climatic drivers. Climate 8, 92 (2020).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Martin, D. A. et al. Land-use trajectories for sustainable land system transformations: identifying leverage points in a global biodiversity hotspot. Proc. Natl Acad. Sci. USA 119, e2107747119 (2022).Article 
    CAS 

    Google Scholar 
    Pandit, M. K. & Grumbine, R. E. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya. Conserv. Biol. 26, 1061–1071 (2012).Article 

    Google Scholar 
    Nayak, R. et al. Bits and pieces: forest fragmentation by linear intrusions in India. Land Use Policy 99, 104619 (2020).Article 

    Google Scholar 
    Srinivasan, U. et al. Oil palm cultivation can be expanded while sparing biodiversity in India. Nat. Food 2, 442–447 (2021).Article 

    Google Scholar 
    Vasudev, D., Goswami, V. R., Srinivas, N., Syiem, B. L. N. & Sarma, A. Identifying important connectivity areas for the wide‐ranging Asian elephant across conservation landscapes of Northeast India. Divers. Distrib. 27, 2510–2526 (2021).Article 

    Google Scholar 
    Goswami, V. R., Vasudev, D., Joshi, B., Hait, P. & Sharma, P. Coupled effects of climatic forcing and the human footprint on wildlife movement and space use in a dynamic floodplain landscape. Sci. Total Environ. 758, 144000 (2021).Article 
    CAS 

    Google Scholar 
    Rodrigues, R. G., Srivathsa, A. & Vasudev, D. Dog in the matrix: envisioning countrywide connectivity conservation for an endangered carnivore. J. Appl. Ecol. 59, 223–237 (2022).Article 

    Google Scholar 
    Ghosh-Harihar, M. et al. Protected areas and biodiversity conservation in India. Biol. Conserv. 237, 114–124 (2019).Article 

    Google Scholar 
    Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open‐source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).Article 
    CAS 

    Google Scholar 
    Alves-Pinto, H. et al. Opportunities and challenges of other effective area-based conservation measures (OECMs) for biodiversity conservation. Perspect. Ecol. Conserv. 19, 115–120 (2021).
    Google Scholar 
    Joshi, A. A., Sankaran, M. & Ratnam, J. ‘Foresting’ the grassland: historical management legacies in forest-grassland mosaics in southern India, and lessons for the conservation of tropical grassy biomes. Biol. Conserv. 224, 144–152 (2018).Article 

    Google Scholar 
    Chisholm, R. A. Trade-offs between ecosystem services: water and carbon in a biodiversity hotspot. Ecol. Econ. 69, 1973–1987 (2010).Article 

    Google Scholar 
    Clark, B., DeFries, R. & Krishnaswamy, J. India’s commitments to increase tree and forest cover: consequences for water supply and agriculture production within the Central Indian Highlands. Water 13, 959 (2021).Article 

    Google Scholar 
    Paul, S., Ghosh, S., Rajendran, K. & Murtugudde, R. Moisture supply from the Western Ghats forests to water deficit east coast of India. Geophys. Res. Lett. 45, 4337–4344 (2018).Article 

    Google Scholar 
    Almond, R. E. A, Grooten, M., Juffe Bignoli, D. & Petersen, T. (eds) Living Planet Report 2022—Building a Nature-Positive Society (WWF, 2022).Srivathsa, A. et al. Opportunities for prioritizing and expanding conservation enterprise in India using a guild of carnivores as flagships. Environ. Res. Lett. 15, 064009 (2020).Article 

    Google Scholar 
    Vira, B. et al., Negotiating trade-offs: choices about ecosystem services for poverty alleviation. Econ. Polit. Wkly 67–75 (2012).Ravindranath, N. H. & Murthy, I. K. Greening India mission. Curr. Sci. 99, 444–449 (2010).
    Google Scholar 
    Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Glob. Environ. Change 71, 102368 (2021).Article 

    Google Scholar 
    Strassburg, B. B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).Article 
    CAS 

    Google Scholar 
    Belote, R. T. et al. Beyond priority pixels: delineating and evaluating landscapes for conservation in the contiguous United States. Landsc. Urban Plan. 209, 104059 (2021).Article 

    Google Scholar 
    Bawa, K. S. et al. Securing biodiversity, securing our future: a national mission on biodiversity and human well-being for India. Biol. Conserv. 253, 108867 (2021).Article 

    Google Scholar 
    Rodgers, W. A. & Panwar, H. S. Planning a Wildlife Protected Area Network in India. Vol. 1. A Report (Wildlife Institute of India, 1988).Watts, M., Klein, C. J., Tulloch, V. J., Carvalho, S. B. & Possingham, H. P. Software for prioritizing conservation actions based on probabilistic information. Conserv. Biol. 35, 1299–1308 (2021).Article 

    Google Scholar 
    Moilanen, A. et al. Zonation: spatial conservation planning methods and software. Version 4. User Manual. C-BIG; https://core.ac.uk/download/pdf/33733621.pdf (2014).Sierra-Altamiranda, A. et al. Spatial conservation planning under uncertainty using modern portfolio theory and Nash bargaining solution. Ecol. Model. 423, 109016 (2020).Article 

    Google Scholar 
    Silvestro, D., Goria, S., Sterner, T. & Antonelli, A. Improving biodiversity protection through artificial intelligence. Nat. Sustain. 5, 415–424 (2022).Article 

    Google Scholar 
    Delavenne, J. et al. Systematic conservation planning in the eastern English Channel: comparing the Marxan and Zonation decision-support tools. ICES J. Mar. Sci. 69, 75–83 (2012).Article 

    Google Scholar 
    Roy, P. S. et al. Development of decadal (1985–1995–2005) land use and land cover database for India. Remote Sens. 7, 2401–2430 (2015).Article 

    Google Scholar 
    Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Government of India, 1968).BirdLife International World Database of Key Biodiversity Areas (KBA Partnership, version March 2021); accessed from www.keybiodiversityareas.org/kba-data/requestKoschke, L., Fürst, C., Frank, S. & Makeschin, F. A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecol. Indic. 21, 54–66 (2012).Article 

    Google Scholar 
    Sarkar, T., Mishra, M. & Singh, R. B. in Regional Development Planning and Practice (eds Mishra, M. et al.) 205–232 (Springer, 2022). More