Ackerly, D. D. Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. 164, S165–S184 (2003).Article
Google Scholar
Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325, 1244–1246 (2009).Article
CAS
Google Scholar
Hansen, M. M., Olivieri, I., Waller, D. M. & Nielsen, E. E. Monitoring adaptive genetic responses to environmental change. Mol. Ecol. 21, 1311–1329 (2012).Article
Google Scholar
Aitken, S. N. & Whitlock, M. C. Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388 (2013).Article
Google Scholar
Becker, M. et al. Hybridization may facilitate in situ survival of endemic species through periods of climate change. Nat. Clim. Change 3, 1039–1043 (2013).Article
Google Scholar
Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).Article
Google Scholar
Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892–908 (2016).Article
CAS
Google Scholar
Rhymer, J. M. & Simberloff, D. Extinction by hybridization and introgression. Annu. Rev. Ecol. Syst. 27, 83–109 (1996).Article
Google Scholar
Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).Article
Google Scholar
vonHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2018).Article
Google Scholar
Hamilton, J. A. & Miller, J. M. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv. Biol. 30, 33–41 (2016).Article
Google Scholar
Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: a critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 108784 (2020).Article
Google Scholar
Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M. & Keller, S. R. Genomic prediction of (mal) adaptation across current and future climatic landscapes. Annu. Rev. Ecol. Evol. Syst. 51, 245–269 (2020).Article
Google Scholar
Rellstab, C., Dauphin, B. & Exposito‐Alonso, M. Prospects and limitations of genomic offset in conservation management. Evol. Appl. 14, 1202–1212 (2021).Article
Google Scholar
Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).Article
CAS
Google Scholar
Rellstab, C. et al. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Mol. Ecol. 25, 5907–5924 (2016).Article
Google Scholar
Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).Article
Google Scholar
Exposito-Alonso, M. et al. Genomic basis and evolutionary potential for extreme drought adaptation in Arabidopsis thaliana. Nat. Ecol. Evol. 2, 352–358 (2018).Article
Google Scholar
Kindt, R. AlleleShift: an R package to predict and visualize population-level changes in allele frequencies in response to climate change. PeerJ 9, e11534 (2021).Article
Google Scholar
Gain, C. & François, O. LEA 3: factor models in population genetics and ecological genomics with R. Mol. Ecol. Resour. 21, 2738–2748 (2020).Article
Google Scholar
Aguirre-Liguori, J. A., Ramírez-Barahona, S. & Gaut, B. S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 5, 1350–1360 (2021).Article
Google Scholar
Taylor, S. A., Larson, E. L. & Harrison, R. G. Hybrid zones: windows on climate change. Trends Ecol. Evol. 30, 398–406 (2015).Article
Google Scholar
Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).Article
CAS
Google Scholar
McGuigan, K., Franklin, C. E., Moritz, C. & Blows, M. W. Adaptation of rainbow fish to lake and stream habitats. Evolution 57, 104–118 (2003).
Google Scholar
Smith, S., Bernatchez, L. & Beheregaray, L. RNA-seq analysis reveals extensive transcriptional plasticity to temperature stress in a freshwater fish species. BMC Genomics 14, 375 (2013).Article
CAS
Google Scholar
Smith, S. et al. Latitudinal variation in climate‐associated genes imperils range edge populations. Mol. Ecol. 29, 4337–4349 (2020).Article
CAS
Google Scholar
Sandoval-Castillo, J. et al. Adaptation of plasticity to projected maximum temperatures and across climatically defined bioregions. Proc. Natl Acad. Sci. USA 117, 17112–17121 (2020).Article
CAS
Google Scholar
Brauer, C., Unmack, P. J., Smith, S., Bernatchez, L. & Beheregaray, L. B. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol. Ecol. 27, 3484–3497 (2018).Article
CAS
Google Scholar
Attard, C. R. et al. Fish out of water: genomic insights into persistence of rainbowfish populations in the desert. Evolution 76, 171–183 (2022).Article
Google Scholar
Gates, K. et al. Environmental selection, rather than neutral processes, best explain patterns of diversity in a tropical rainforest fish. Preprint at bioRxiv https://doi.org/10.1101/2022.1105.1113.491913 (2022).Article
Google Scholar
McCairns, R. J. S., Smith, S., Sasaki, M., Bernatchez, L. & Beheregaray, L. B. The adaptive potential of subtropical rainbowfish in the face of climate change: heritability and heritable plasticity for the expression of candidate genes. Evol. Appl. 9, 531–545 (2016).Article
CAS
Google Scholar
McGuigan, K., Zhu, D., Allen, G. & Moritz, C. Phylogenetic relationships and historical biogeography of melanotaeniid fishes in Australia and New Guinea. Mar. Freshwat. Res. 51, 713–723 (2000).Article
Google Scholar
Unmack, P. J. et al. Malanda Gold: the tale of a unique rainbowfish from the Atherton Tablelands, now on the verge of extinction. Fish. Sahul. 30, 1039–1054 (2016).
Google Scholar
Moritz, C. Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst. Biol. 51, 238–254 (2002).Article
Google Scholar
Pope, L., Estoup, A. & Moritz, C. Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites. Mol. Ecol. 9, 2041–2053 (2000).Article
CAS
Google Scholar
Hugall, A., Moritz, C., Moussalli, A. & Stanisic, J. Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc. Natl Acad. Sci. USA 99, 6112–6117 (2002).Article
CAS
Google Scholar
Moritz, C. et al. Identification and dynamics of a cryptic suture zone in tropical rainforest. Proc. R. Soc. B. 276, 1235–1244 (2009).Article
CAS
Google Scholar
Phillips, B. L., Baird, S. J. & Moritz, C. When vicars meet: a narrow contact zone between morphologically cryptic phylogeographic lineages of the rainforest skink, Carlia rubrigularis. Evolution 58, 1536–1548 (2004).
Google Scholar
Krosch, M. N., Baker, A. M., Mckie, B. G., Mather, P. B. & Cranston, P. S. Deeply divergent mitochondrial lineages reveal patterns of local endemism in chironomids of the Australian Wet Tropics. Austral Ecol. 34, 317–328 (2009).Article
Google Scholar
Williams, S. E., Bolitho, E. E. & Fox, S. Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. B. 270, 1887–1892 (2003).Article
Google Scholar
Whitehead, P. et al. Temporal development of the Atherton Basalt Province, north Queensland. Aust. J. Earth Sci. 54, 691–709 (2007).Article
CAS
Google Scholar
Moy, K. G., Unmack, P. J., Lintermans, M., Duncan, R. P. & Brown, C. Barriers to hybridisation and their conservation implications for a highly threatened Australian fish species. Ethology 125, 142–152 (2019).Article
Google Scholar
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).Article
CAS
Google Scholar
Buerkle, C. A. Maximum‐likelihood estimation of a hybrid index based on molecular markers. Mol. Ecol. Notes 5, 684–687 (2005).Article
CAS
Google Scholar
Anderson, E. & Thompson, E. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229 (2002).Article
CAS
Google Scholar
Dorion, S. & Landry, J. Activation of the mitogen-activated protein kinase pathways by heat shock. Cell Stress Chaperones 7, 200 (2002).Article
CAS
Google Scholar
Blumstein, M. et al. Protocol for projecting allele frequency change under future climate change at adaptive-associated loci. STAR Protoc. 1, 100061 (2020).Article
Google Scholar
Gougherty, A. V., Keller, S. R. & Fitzpatrick, M. C. Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171 (2021).Article
Google Scholar
Blumstein, M. et al. A new perspective on ecological prediction reveals limits to climate adaptation in a temperate tree species. Curr. Biol. 30, 1447–1453. e1444 (2020).Article
CAS
Google Scholar
Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).Article
CAS
Google Scholar
Goicoechea, P. G. et al. Adaptive introgression promotes fast adaptation in oaks marginal populations. Preprint available at bioRxiv https://doi.org/10.1101/731919 (2019).Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).Article
CAS
Google Scholar
De Carvalho, D. et al. Admixture facilitates adaptation from standing variation in the European aspen (Populus tremula L.), a widespread forest tree. Mol. Ecol. 19, 1638–1650 (2010).Article
Google Scholar
De-Kayne, R. et al. Genomic architecture of adaptive radiation and hybridization in Alpine whitefish. Nat. Commun. 13, 4479 (2022).Article
CAS
Google Scholar
Baskett, M. L. & Gomulkiewicz, R. Introgressive hybridization as a mechanism for species rescue. Theor. Ecol. 4, 223–239 (2011).Article
Google Scholar
Meier, J. I. et al. The coincidence of ecological opportunity with hybridization explains rapid adaptive radiation in Lake Mweru cichlid fishes. Nat. Commun. 10, 1–11 (2019).Article
CAS
Google Scholar
Svardal, H. et al. Ancestral hybridization facilitated species diversification in the Lake Malawi cichlid fish adaptive radiation. Mol. Biol. Evol. 37, 1100–1113 (2020).Article
CAS
Google Scholar
Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).Article
CAS
Google Scholar
Jeong, C. et al. Admixture facilitates genetic adaptations to high altitude in Tibet. Nat. Commun. 5, 1–7 (2014).Article
Google Scholar
Nolte, A. W., Freyhof, J., Stemshorn, K. C. & Tautz, D. An invasive lineage of sculpins, Cottus sp. (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc. R. Soc. B. 272, 2379–2387 (2005).Article
Google Scholar
Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y. & Keller, S. R. Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests. Mol. Ecol. Resour. 21, 2749–2765 (2021).Article
CAS
Google Scholar
Schneider, C., Cunningham, M. & Moritz, C. Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Mol. Ecol. 7, 487–498 (1998).Article
Google Scholar
Hewitt, G. M. Quaternary phylogeography: the roots of hybrid zones. Genetica 139, 617–638 (2011).Article
Google Scholar
Pfennig, K. S., Kelly, A. L. & Pierce, A. A. Hybridization as a facilitator of species range expansion. Proc. R. Soc. B. 283, 20161329 (2016).Article
Google Scholar
Soulé, M. E. What is conservation biology? A new synthetic discipline addresses the dynamics and problems of perturbed species, communities, and ecosystems. Bioscience 35, 727–734 (1985).
Google Scholar
Biermann, C. & Havlick, D. Genetics and the question of purity in cutthroat trout restoration. Restor. Ecol. 29, e13516 (2021).Article
Google Scholar
Fredrickson, R. J. & Hedrick, P. W. Dynamics of hybridization and introgression in red wolves and coyotes. Conserv. Biol. 20, 1272–1283 (2006).Article
Google Scholar
Hirashiki, C., Kareiva, P. & Marvier, M. Concern over hybridization risks should not preclude conservation interventions. Conserv. Sci. Pract. 3, e424 (2021).
Google Scholar
Unmack, P. J., Allen, G. R. & Johnson, J. B. Phylogeny and biogeography of rainbowfishes (Melanotaeniidae) from Australia and New Guinea. Mol. Phylogenet. Evol. 67, 15–27 (2013).Article
Google Scholar
Allen, G. Rainbowfishes in Nature and the Aquarium (Tetra Publications, 1995).Seehausen, O. Hybridization and adaptive radiation. Trends Ecol. Evol. 19, 198–207 (2004).Article
Google Scholar
Pusey, B., Kennard, M. J. & Arthington, A. H. Freshwater Fishes of North-eastern Australia (CSIRO Publishing, 2004).Zhu, D., Degnan, S. & Moritz, C. Evolutionary distinctiveness and status of the endangered Lake Eacham rainbowfish (Melanotaenia eachamensis). Conserv. Biol. 12, 80–93 (1998).Article
Google Scholar
McGuigan, K., Chenoweth, S. F. & Blows, M. W. Phenotypic divergence along lines of genetic variance. Am. Nat. 165, 32–43 (2005).Article
Google Scholar
Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524 (1996).Article
CAS
Google Scholar
Peterson, B., Weber, J., Kay, E., Fisher, H. & Hoekstra, H. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).Article
CAS
Google Scholar
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes Genomes Genet. 1, 171–182 (2011).Article
CAS
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article
CAS
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).Article
CAS
Google Scholar
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).Article
CAS
Google Scholar
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).Article
Google Scholar
Goudet, J. Hierfstat, a package for R to compute and test hierarchical F‐statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Bailey, R. ribailey/gghybrid: gghybrid R package for Bayesian hybrid index and genomic cline estimation. v2.0.0 https://doi.org/10.5281/zenodo.3676498 (2020).Wringe, B. hybriddetective: automates the process of detecting hybrids from genetic data. R package version 0.1.0.9000 https://github.com/bwringe/hybriddetective (2016).Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 8, e1002967 (2012).Article
CAS
Google Scholar
Malinsky, M., Matschiner, M. & Svardal, H. Dsuite‐Fast D‐statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).Article
Google Scholar
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).Article
CAS
Google Scholar
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).Article
CAS
Google Scholar
Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).Article
CAS
Google Scholar
Malinsky, M. et al. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493–1498 (2015).Article
CAS
Google Scholar
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).Article
CAS
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).Article
Google Scholar
Karger, D. N. et al. CHELSA climatologies at high resolution for the Earth’s land surface areas (v.1.0). https://doi.org/10.1594/WDCC/CHELSA_v1 (2016).Ackerley, D. & Dommenget, D. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures. Geosci. Model Dev. 9, 2077–2098 (2016).Article
Google Scholar
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim: high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 1–9 (2018).Article
Google Scholar
Fordham, D. A. et al. PaleoView: a tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography 40, 1348–1358 (2017).Article
Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article
Google Scholar
Lemus-Canovas, M., Lopez-Bustins, J. A., Martin-Vide, J. & Royé, D. synoptReg: an R package for computing a synoptic climate classification and a spatial regionalization of environmental data. Environ. Model. Softw. 118, 114–119 (2019).Article
Google Scholar
Hao, T., Elith, J., Guillera‐Arroita, G. & Lahoz‐Monfort, J. J. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25, 839–852 (2019).Article
Google Scholar
Galpern, P., Peres‐Neto, P. R., Polfus, J. & Manseau, M. MEMGENE: spatial pattern detection in genetic distance data. Methods Ecol. Evol. 5, 1116–1120 (2014).Article
Google Scholar
Peres‐Neto, P. R. & Galpern, P. memgene: spatial pattern detection in genetic distance data using Moran’s eigenvector maps. R package version 1.0.1 https://cran.r-project.org/web/packages/memgene/ (2019).Oksanen, J. et al. vegan: community ecology package. R package version 2.3–0 https://cran.r-project.org/web/packages/vegan/ (2015).Forester, B. R., Jones, M. R., Joost, S., Landguth, E. L. & Lasky, J. R. Detecting spatial genetic signatures of local adaptation in heterogeneous landscapes. Mol. Ecol. 25, 104–120 (2015).Article
Google Scholar
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).Article
CAS
Google Scholar
Szklarczyk, D. et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49, D605–D612 (2021).Article
CAS
Google Scholar
Brauer, C. J. et al. Data for ‘Natural hybridisation reduces vulnerability to climate change’. figshare https://doi.org/10.6084/m9.figshare.21692918 (2022).Brauer, C. J. et al. Code for ‘Natural hybridisation reduces vulnerability to climate change’. GitHub https://github.com/pygmyperch/NER (2022). More